WorldWideScience

Sample records for deexcitation spectroscopy study

  1. Chlorine-induced modifications in the electronic structure of Ag surfaces: a metastable deexcitation spectroscopy and photoemission comparative study

    CERN Document Server

    Pasquali, L; Canepa, M; Staicu-Casagrande, E M; Esaulov, V A

    2003-01-01

    Surface-sensitive spectroscopic techniques, namely metastable deexcitation spectroscopy (MDS) and ultraviolet photoemission (UPS), have been applied to investigate the effects of chlorine chemisorption on the electronic properties (surface density of states and charge density) of Ag(100), Ag(110) and Ag(111) surfaces. Initial stages of chemisorption, up to the formation of a saturated Cl overlayer, have been examined. In particular, MDS permitted us to observe at low Cl gas exposure a progressive depletion of the Ag (5s) charge due to transfer and bonding with Cl atoms. From both MDS and UPS it was possible to observe the development of Cl (3p) bonding and anti-bonding states, the amount of their splitting increasing with coverage. Differences between chemisorption at the three surfaces have been noticed and they have been justified in terms of the different adatom packing and possible formation of small AgCl clusters (especially for the Ag(111) surface).

  2. Chlorine-induced modifications in the electronic structure of Ag surfaces: a metastable deexcitation spectroscopy and photoemission comparative study

    International Nuclear Information System (INIS)

    Pasquali, L; Nannarone, S; Canepa, M; Staicu-Casagrande, E M; Esaulov, V A

    2003-01-01

    Surface-sensitive spectroscopic techniques, namely metastable deexcitation spectroscopy (MDS) and ultraviolet photoemission (UPS), have been applied to investigate the effects of chlorine chemisorption on the electronic properties (surface density of states and charge density) of Ag(100), Ag(110) and Ag(111) surfaces. Initial stages of chemisorption, up to the formation of a saturated Cl overlayer, have been examined. In particular, MDS permitted us to observe at low Cl gas exposure a progressive depletion of the Ag (5s) charge due to transfer and bonding with Cl atoms. From both MDS and UPS it was possible to observe the development of Cl (3p) bonding and anti-bonding states, the amount of their splitting increasing with coverage. Differences between chemisorption at the three surfaces have been noticed and they have been justified in terms of the different adatom packing and possible formation of small AgCl clusters (especially for the Ag(111) surface)

  3. Study of the de-excitation of the 44Ti nuclei light charged particles

    International Nuclear Information System (INIS)

    Papka, Paul

    2003-01-01

    The deexcitation process of the 44 Ti compound nuclei, produced by fusion-evaporation reactions, has been studied at bombarding energies E lab 44 Ti has been populated through two reactions: 16 O + 28 Si at bombarding energies E lab ( 16 O) = 76, 96 and 112 MeV, and 32 S + 12 C at E lab ( 32 S) = 180 and 225 MeV. The exclusive experimental data, angular and energy distributions, have been analysed with the statistical code CACARIZO. The well identified evaporation channels have been precisely studied to determine the energy distributions of the residual nuclei. The calculations reproduce the sequential emission of α particles in the deexcitation chains, however, the emission of nucleons is partially misunderstood. In both reactions, the energy distribution of the protons indicates a temperature in residual nuclei lower than predicted. The dynamical deformation induced for the highest angular momenta has been quantified with an axis ratio of 2:1. (author) [fr

  4. Metastable He deexcitation at semiconductor interfaces

    International Nuclear Information System (INIS)

    Pasquali, L.; Nannarone, S.

    2005-01-01

    A review is given of the application of metastable deexcitation spectroscopy (MDS) to the study of the interface formation between semiconductors and different materials. In particular we present an overview of the results obtained on nanostructured interfaces, where strain and reaction between the substrate and the overlayer atoms drive the growth mode and the morphology of the system. As prototypical examples we discuss the growth of CaF 2 on silicon and rare earths (Yb, Er) on silicon and gallium arsenide. The mechanisms and chemical reactions which bring to interface formation are examined on the basis of MDS results and their comparison with photoemission

  5. Deexcitation processes in nuclear reactions: The study of hot hadronic matter

    International Nuclear Information System (INIS)

    Porile, N.T.

    1993-01-01

    The research program involved continuing analysis of Fermilab E-735, search for quark-gluon plasma (QGP) in bar p-p collisions; experiments on multi-fragmentation using reverse kinematics at the Bevalac; continuing study of target fragments produced in the interaction of copper with intermediate-energy heavy ions; and detector R ampersand D for the STAR detector at RHIC

  6. Contribution to the determination of nuclear friction by studying the de-excitation of nuclei in the transient regime

    International Nuclear Information System (INIS)

    Hassani, S.

    1985-01-01

    An old idea of Kramers is to consider nuclear fission as a diffusion process in phase space corresponding to the collective variable of fission. The fission width is taken as an escape rate of the system over the barrier potential. The evolution of the distribution of this collective variable and its conjugate is governed by a Fokker-Planck equation. In a quasistationary treatment Kramers obtained a fission rate which differs from the result given by the transition state method by a friction dependent factor. The non quasistationary solution of the Fokker-Planck equation allows to obtain an escape rate that presents a transient regime: from zero it grows and reaches asymptotically the Kramers' value. This time-dependent fission width is included in a formalism that describes the deexcitation of the compound nucleus in order to calculate the neutron multiplicities in competition with fission. A sensitive friction-dependence of the multiplicities is obtained. Using this formalism and comparing the results with data of a recent experiment gives a good agreement; resolving the disagreement between data and the usual statistical model at high energy. A range of values of the friction coefficient is deduced [fr

  7. Deexcitation of nuclei formed near the instability temperature

    International Nuclear Information System (INIS)

    Rivet, M.F.; Borderie, B.; Gauvin, H.; Gardes, D.; Cabot, C.; Hanappe, F.; Peter, J.

    1986-01-01

    Fusion-like reactions induced on medium mass targets by 27 MeV per nucleon argon projectiles were studied. The properties of evaporation residues and binary fission fragments, both cold remnants of fusion nuclei, show that highly excited nuclei were produced, near the temperature of instability of nuclear matter. Fission-evaporation competition in the deexcitation of these nuclei is reflected in the ratio of fission and residue cross sections, which provides a way of studying the role of prefission evaporation and fission barriers in the deexcitation process

  8. Deexcitation processes in nuclear reactions

    International Nuclear Information System (INIS)

    Porile, N.T.

    1992-09-01

    During the past year, our research program has involved continuing analysis of Fermilab E-735, search for quark-gluon plasma (QGP) in bar p-p collisions; continuing study of target fragments produced in the interaction of copper with intermediate-energy heavy ions; an exclusive study of multifragmentation using reverse kinematics at the Bevalac; and detector development for the STAR detector at RHIC

  9. Atom de-excitation in unexcited medium

    International Nuclear Information System (INIS)

    Shirokov, M.I.

    1987-01-01

    It is shown that the presence of an unexcited atom A does not practically change the time law of the de-excitation of an excited atom D (the distance R between A and D is supposed to be much larger than the wavelength of D radiation). The analysis of the derivation of this qualitative result shows that it is a consequence not of the QED details but of two general properties of the free electromagnetic field operators: the local commutativity and standard particle (photon) interpretation of the field. A method of calculating the inclusive probability is suggested which uses the picture intermediate between the Heisenberg and interaction pictures. It turns out to be simpler than the standard calculation in the interaction picture

  10. Experimental study of fusion nuclei formation and deexcitation for mass around 150μ formed by bombardment of heavy ions at 3 to 5 MeV/nucleon energy. Emission of a few neutrons (1, 2 or 3)

    International Nuclear Information System (INIS)

    Cabot, C.

    1983-01-01

    It has been experimentally pointed out that a nucleus formed, in the rare earth region, at high angular momentum (approximately 40 h) and high excitation energy (approximately 55 MeV), through a rather symetric system (like 65 Cu + 87 Rb → 152 Dy), can deexcite by emitting only 1 or 2 neutrons. To explore the statistical or non-statistical character of a few neutrons emission, γ-n competition has been studied. All the measurements (total γ energy, γ-multiplicity associated with each exit channel, and neutron energy spectra) point out the statistical character, which is related to the unexpectadly strong γ-competition at high J :the γ entry-line constructed in the (E * J) plane for several identified exit channels, diverges from the Yrast line at the highest J. Comparison between various experimental results (including excitation functions (HI, xn) sup(150-x)Gd) and statistical calculations (GROGI-F code) has been used as a crucial test for the choice of the Yrast-line position and of the γ-normalization coefficients. Some experimental results concerning sub-barrier fusion and fission cross-sections are also presented in this thesis [fr

  11. Theoretical Assessment of 178m2Hf De-Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Hartouni, E P; Chen, M; Descalle, M A; Escher, J E; Loshak, A; Navratil, P; Ormand, W E; Pruet, J; Thompson, I J; Wang, T F

    2008-10-06

    This document contains a comprehensive literature review in support of the theoretical assessment of the {sup 178m2}Hf de-excitation, as well as a rigorous description of controlled energy release from an isomeric nuclear state.

  12. Comparative study of the excitation functions of nuclear reactions induced by light ions (protons and α) and heavy ions (Ne, Ca, Ar) and, after neutron evaporation, leading to platinum and polonium isotopes. Analysis by de-excitation programme allowing for the angular momentum and fission

    International Nuclear Information System (INIS)

    Lagarde, Brigitte.

    1979-01-01

    This work is a study on the de-excitation of heavy nuclei from the Pt - Po area obtained by the complete fusion of various projectiles (p, 3 He, 4 He, 20 Ne, 40 Ar and 40 Ca) and of various targets. The aim was to create from different couples the same compound nucleus of a mass equal to the sum of the masses of the component parts. The excitation energy of the system thus created can vary between 60 and 120 MeV. The experimental study of one or more particular de-excitation channels performed by measuring the cross sections of residual nuclei production for various bombardment energies is a very conventional approach. An in depth examination was made of the effect of the angular momentum given to the compound nucleus by the input channel to the de-excitation processes. Now the population of orbital angular momenta depends essentially on the mass of the projectile at equal velocities. Consequently, the utilization of projectiles extending from the proton to mass 40 covers a wide range. Decay by neutrons is not the only de-excitation method. Fission has a significant role particularly for the Po's and consequently this strongly diminishes the probability (P,xn). The decay of (α,xn) when going from the compound nucleus of 204 Po to 182 Pt makes it possble to evaluate the importance of the phenomenon and to have an item of experimental information that can be compared to a theoretical calculation. Theoretical calculations using the 'ALICE' code which expresses schematically the reduction in level densities by subtracting from the excitation energy a rotation energy and the 'JULIAN' code which uses a more accurate level density calculation and takes into account the gamma emission competing with the emission of neutrons show that the last programme reports the experimental results whereas the 'ALICE' code does not enable a consistent presentation to be made of all the results by light and heavy ions. Finally, it had to be agreed that the fission does not intervene as

  13. Contribution of DIAMANT and EUROGAM detectors association to the study of heavy ion-induced fusion-evaporation reactions. Application to the de-excitation study of 90Ru compound nucleus formed in the 32S + 58Ni reaction at 120 MeV

    International Nuclear Information System (INIS)

    Bourgine, Frederic

    1996-01-01

    For the first time, the sensitivity of statistical evaporation model has been established in detail from 1 H and 4 He energy distributions analysis for different exit channels. The association of the light charged particle multidetector DIAMANT and the γ-spectrometer EUROGAM II shows that precise study of the compound nucleus high spin states deexcitation can be done for small particle channels. These channels are fed by the biggest angular momentum values of the compound nucleus. The analysis of pα channel in 32 S + 58 Ni at 120 MeV reaction exhibits that a particles have an energy distribution which leads to an entry region of the residual nucleus 85 Nb parallel to the yrast line. (author) [fr

  14. Transition rates and transition rate diagrams in atomic emission spectroscopy: A review

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Zdeněk, E-mail: weissz@leco.cz [LECO Instrumente Plzeň, s.r.o., Plaská 66, 323 00 Plzeň (Czech Republic); Steers, Edward B.M. [London Metropolitan University, 166-220 Holloway Road, London, N7 8DB (United Kingdom); Pickering, Juliet C. [Blackett Laboratory, Imperial College London, Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2015-08-01

    In low pressure plasmas with low electron densities, such as glow discharges, radiative de-excitation is a major de-excitation process of most excited states. Their relative de-excitation rates can be determined by emission spectroscopy, making it possible to study excitation processes in these discharges. This is in contrast to denser plasmas, in which such considerations are usually based on relative populations of excited states and concepts related to thermodynamic equilibrium. In the approach using reaction rates rather than populations, a convenient tool is the recently introduced formalism of transition rate diagrams. This formalism is reviewed, its relevance to different plasmas is discussed and some recent results on glow discharge excitation of manganese, copper and iron ions are presented. The prospects for the use of this formalism for the comparison of rate constants and cross sections for charge transfer reactions with argon ions of elements of interest in analytical glow discharge spectroscopy are discussed. - Highlights: • Radiative deexcitation is a major deexcitation process in some plasmas. • Rates of radiative transitions can be presented in transition rate diagrams. • Transition rate diagrams can be calculated based on emission spectra. • Transition rate diagrams can indicate collisional excitation processes. • Transition rate diagrams of Fe II, Cu II, Mn II in a glow discharge plasma are reviewed.

  15. Molecular studies by electron spectroscopy

    International Nuclear Information System (INIS)

    Hansteen, J.M.

    1977-01-01

    Experience gained in experimental nuclear physics has played a large role in the development of electron spectroscopy as a powerful tool for studying chemical systems. The use of ESCA (Electron Spectroscopy for Chemical Analysis) for the mapping of molecular properties connected with inner as well as outer electron shells is reviewed, mainly from a phenomological point of view. Molecular Auger electron spectroscopy is described as a means of gaining information on details in molecular structure, simultaneously being extensively applied for surface studies. Future highly promising research areas for molecular electron spectroscopy are suggested to be (e,2e) processes as well as continued exploitation of synchrotron radiation from high energy nuclear devices. (Auth.)

  16. Search for dibaryonic de-excitations in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Besliu, C.; Popa, V.; Popa, L.; Topor Pop, V.

    1993-08-01

    Some odd characteristics are observed in the single particle distributions obtained from He + Li interactions at 4.5AGeV/c momenta which are explained as the manifestation of a new mechanism of strangeness production via dibaryonic de-excitations. A signature of the formation of hadronic and baryonic clusters is also reported. The di- pionic signals of the dibaryonic orbital de- excitations are analyzed in the frame of the MIT -bag Model and a Monte Carlo simulation. The role played by the dibaryonic resonances in relativistic nuclear collisions could be a significant one. (author). 29 refs, 7 figs

  17. Deexcitation of one-dimensional Rydberg atoms with a chirped train of half-cycle pulses

    International Nuclear Information System (INIS)

    Kopyciuk, T.

    2010-01-01

    A protocol for deexcitation of one-dimensional high Rydberg states with the use of a chirped train of half-cycle pulses is given. It is found that the parameters of the efficiently deexciting train are directly related to the phenomenon of the dynamical stabilization of the initial state. Finally, numerical calculations are presented to demonstrate the efficiency of the protocol. The protocol allows to deexcite Rydberg atoms to states lying just above the ground one.

  18. Microscopic description of production cross sections including deexcitation effects

    Science.gov (United States)

    Sekizawa, Kazuyuki

    2017-07-01

    Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing

  19. High precision measurements on fission-fragment de-excitation

    Science.gov (United States)

    Oberstedt, Stephan; Gatera, Angélique; Geerts, Wouter; Göök, Alf; Hambsch, Franz-Josef; Vidali, Marzio; Oberstedt, Andreas

    2017-11-01

    In recent years nuclear fission has gained renewed interest both from the nuclear energy community and in basic science. The first, represented by the OECD Nuclear Energy Agency, expressed the need for more accurate fission cross-section and fragment yield data for safety assessments of Generation IV reactor systems. In basic science modelling made much progress in describing the de-excitation mechanism of neutron-rich isotopes, e.g. produced in nuclear fission. Benchmarking the different models require a precise experimental data on prompt fission neutron and γ-ray emission, e.g. multiplicity, average energy per particle and total dissipated energy per fission, preferably as function of fission-fragment mass and total kinetic energy. A collaboration of scientists from JRC Geel (formerly known as JRC IRMM) and other institutes took the lead in establishing a dedicated measurement programme on prompt fission neutron and γ-ray characteristics, which has triggered even more measurement activities around the world. This contribution presents new advanced instrumentation and methodology we use to generate high-precision spectral data and will give a flavour of future data needs and opportunities.

  20. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  1. Moessbauer spectroscopy studies on steel corrosion in diluted ammonia media

    International Nuclear Information System (INIS)

    Bibicu, I.; Samideb, A.; Preda, M.

    2005-01-01

    Moessbauer spectroscopy has, as one of its most important features, the ability to simultaneously undertake bulk and surface analyses. It is a non-destructive technique that can be applied to investigate surfaces of varying thickness from thin films to coatings without the need to remove them from their substrate. Following resonant absorption of a gamma ray, the nucleus may de-excite either by emission of a gamma ray or by the process of internal conversion when electrons and X-ray are emitted. Detecting the three 'backscattered particles' makes possible surface studies. The conversion electron signal is quite high for the 57 Fe and 119 Sn isotopes. The normal transmission geometry investigates iron-containing samples of thickness typically 3 concentration 10 -1 , 10 -2 , 10 -3 and 10 -4 N) or ammonium salts solutions(0.1M NH 4 Cl, 0.1M NH 4 Cl with 0.05M NH 4 NO 3 ). Moessbauer spectroscopy was performed at room temperature in the transmission (TMS) and conversion electron spectroscopy (CEMS) using a conventional constant-acceleration spectrometer with a 57 Co-Rh source. The CEMS measurements were conducted to a high degree of accuracy, ensuring the same geometry of the detection space and same gas flow rate for all the samples. The parameters of the Moessbauer spectra were calculated using a computer-fitting program, which assumes a Lorentzian line shape. The isomer shifts were referred to α-Fe. The best fit of the CEMS spectra for the corroded samples used a Fe 3+ paramagnetic doublet in addition to the sextet found in the CEMS and TMS spectra of the uncorroded samples. There is a magnetic anisotropy on the surface of the samples, obtained, mainly, by polish procedure. In contrast, TMS spectra show that in the interior of the sample the magnetic moments are in a random arrangement. The Moessbauer data suggests that in the process of corrosion may be a certain preference for the positions of the iron, which are no closes to the atoms of the alloying elements

  2. Accelerated Recombination in Cold Dense Plasmas with Metastable Ions due to Resonant Deexcitation

    International Nuclear Information System (INIS)

    Ralchenko, Yu.V.; Maron, M.

    2001-01-01

    In a recombining plasma the metastable states are known to accumulate population thereby slowing down the recombination process. We show that a proper account of the doubly-excited autoionizing states, populated through collisional 3-body recombination of metastable ions, results in a significant acceleration of recombination. 3-body recombination followed by collisional (de)excitations and autoionization effectively produces deexcitation via the following chain of elementary events: A fully time-dependent collisional-radiative (CR) modeling for stripped ions of carbon recombining in a cold dense plasma demonstrates an order of magnitude faster recombination of He-like ions. The CR model used in calculations is discussed in details

  3. Moessbauer Spectroscopy study of Quimsachata Volcano materials

    International Nuclear Information System (INIS)

    Dominguez, A.G.B.

    1988-01-01

    It has been studied volcanic lava from Quimsachata Volcano in Pem. Moessbauer Spectroscopy, X-ray diffraction, electronic and optical microscopy allowed the identification of different mineralogical phases. (A.C.AS.) [pt

  4. Thermodynamical properties and deexcitation of sources involved in collisions between light nuclei around 100 AMeV incident energy

    International Nuclear Information System (INIS)

    Borderie, B.; Gulminelli, F.; Rivet, M.F.; Dore, D.; Tassan-Got, L.; Bacri, Ch.O.; Ouatizerga, A.; Plagnol, E.; Squalli, M.; Chbihi, A.; Auger, G.; Benlliure, J.; Ecomard, P.; Le Fevre, A.; Marie, N.; Rosato, E.; Saint-Laurent, F.; Wieleczko, J.P.; Durand, D.; Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Laforest, R.; Lecolley, J.F.; Lefort, T.; Lopez, O.; Louvel, M.; Metivier, V.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Parlog, M.; Bisquer, E.; Demeyer, A.; Guinet, D.; Lautesse, P.; Lebreton, L.; Charvet, J.L.; Dayras, R.; De Filippo, E.; Legrain, R.; Nalpas, L.; Volant, C.; Eudes, Ph.; Gourio, D.; Laville, J.L.; Rahmani, A.; Reposeur, T.

    1997-01-01

    Vaporization events, where all species have atomic numbers lower than 3, and deexcitation properties of quasi-projectiles involved in binary dissipative collisions between 36 Ar and 58 Ni are studied with the multidetector INDRA. Kinematical properties and chemical composition (mean values and variances) of vaporizing sources are derived over the excitation energy per nucleon range 8-28 MeV. These data are found in good agreement with the results of a model describing a gas of fermions and bosons in thermal and chemical equilibrium, which strongly suggests that thermodynamical equilibrium has been reached even for such sources produced in very extreme conditions of collisions. Finally, removing the constraint on atomic numbers lower than 3, the evolution of the chemical composition of quasi-projectiles is presented over the excitation energy range 0-25 AMeV. (authors)

  5. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  6. Lattice Studies of Hyperon Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.

  7. Vibrational Spectroscopy in Studies of Atmospheric Corrosion.

    Science.gov (United States)

    Hosseinpour, Saman; Johnson, Magnus

    2017-04-18

    Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  8. Vibrational Spectroscopy in Studies of Atmospheric Corrosion

    Directory of Open Access Journals (Sweden)

    Saman Hosseinpour

    2017-04-01

    Full Text Available Vibrational spectroscopy has been successfully used for decades in studies of the atmospheric corrosion processes, mainly to identify the nature of corrosion products but also to quantify their amounts. In this review article, a summary of the main achievements is presented with focus on how the techniques infrared spectroscopy, Raman spectroscopy, and vibrational sum frequency spectroscopy can be used in the field. Several different studies have been discussed where these instruments have been used to assess both the nature of corrosion products as well as the properties of corrosion inhibitors. Some of these techniques offer the valuable possibility to perform in-situ measurements in real time on ongoing corrosion processes, which allows the kinetics of formation of corrosion products to be studied, and also minimizes the risk of changing the surface properties which may occur during ex-situ experiments. Since corrosion processes often occur heterogeneously over a surface, it is of great importance to obtain a deeper knowledge about atmospheric corrosion phenomena on the nano scale, and this review also discusses novel vibrational microscopy techniques allowing spectra to be acquired with a spatial resolution of 20 nm.

  9. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  10. Formation and de-excitation of hot nuclei in reactions induced by proton beams (475 MeV and 2 GeV) and 3He beam (2 GeV)

    International Nuclear Information System (INIS)

    Ledoux, X.

    1995-04-01

    We are studying the formation and the de-excitation of hot nuclei created in reactions induced by light high energy projectiles. These reactions, described in a two step model: an intranuclear cascade followed by an evaporation phase, produce nuclei in which the collective modes (compression, rotation, deformation) are weakly excited. By measuring the neutron multiplicities, event by event with ORION, and the light charged particle energies and multiplicities one can evaluate the excitation energy distribution of the nuclei. At the same time, theoretical simulations are carried out using the intranuclear cascade code developed by J. Cugnon and the statistical de-excitation code GEMINI. The good agreement with experimental results indicate that 10% of the p-nucleus interactions lead to temperatures greater than 5 MeV. The observation of the fission of a nucleus with a temperature close to 5 MeV shows that the nucleus behaves as a set of bound nucleons and, that the temperature stability limit is not yet reached. The observed decline of fission probability at high excitation energies is most likely to be correlated to the appearance of an other de-excitation process (evaporation residues emission or multifragmentation) which could not be experimentally detected. Finally, in the last chapter, we briefly present the principle of transmutation for long-lived nuclear waste with a proton accelerator and underline the interest of the present work in such studies. (author). 54 refs., 80 figs., 13 tabs

  11. Coherence, energy and charge transfers in de-excitation pathways of electronic excited state of biomolecules in photosynthesis

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F. Bary

    2013-01-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin–chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used F¨orster–Dexter th...

  12. Moessbauer spectroscopy in studies of photosynthesis

    International Nuclear Information System (INIS)

    Burda, Kvetoslava

    2008-01-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the 'heart' of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Moessbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  13. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  14. Study of clusters using negative ion photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuexing [Univ. of California, Berkeley, CA (United States)

    1995-12-01

    The weak van der Waals interaction between an open-shell halogen atom and a closed-shell atom or molecule has been investigated using zero electron kinetic energy (ZEKE) spectroscopy. This technique is also applied to study the low-lying electronic states in GaAs and GaAs-. In addition, the spectroscopy and electron detachment dynamics of several small carbon cluster anions are studied using resonant multiphoton detachment spectroscopy.

  15. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  16. Application of spin-sensitive electron spectroscopies to investigations of electronic and magnetic properties of solid surfaces and epitaxial systems: Progress report, 1 January 1987-31 December 1987

    International Nuclear Information System (INIS)

    Walters, G.K.; Dunning, F.B.

    1987-08-01

    Research during the second year of this grant has focussed on: (1) investigation of surface magnetic structure of Ni(lll) by Spin-Polarized Low Energy Electron Diffraction (SPLEED) and overhaul of the apparatus to incorporate additional spin-dependent electron spectroscopies and epitaxial growth capabilities; and (2) investigation of dynamics of metastable atom deexcitation at magnetic and adsorbate-covered surfaces using Spin-Polarized Metastable Deexcitation Spectroscopy (SPMDS)

  17. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  18. Hot nuclei production and deexcitation in heavy ions induced reactions on medium mass targets in the 10-84 MeV/nucleon energy domain

    International Nuclear Information System (INIS)

    Lleres, A.

    1988-01-01

    Velocity, angular distributions and total cross sections for heavy residues produced in the reactions 12 C, 14 N, 20 Ne, 40 Ar + 124 Sn have been measured in the 10-84 MeV/nucleon incident energy range using catchers technique in association with off-line gamma-activity spectroscopy. The observed reaction products are interpreted as evaporation residues from equilibrated systems formed by complete or incomplete fusion of the projectile and target nuclei. From the velocities and residual masses measured at forward angles, the linear momentum transfers and excitation energies associated with the intermediate systems are estimated using simple fusion-evaporation models and are next compared to the predictions of the preequilibrium and Fermi jets models. Energy, angular, charge and charge correlation distributions for intermediate mass fragments emitted in the reaction 32 S + nat Ag at 30 MeV/nucleon were also measured using gaseous and silicon detectors. The energy and angular distributions indicate that both equilibrated and non-equilibrated emitting sources are present. The equilibrium emission is attributed to the deexcitation of systems produced by incomplete fusion of the projectile and target nuclei. The charge correlation distributions are consistent with an asymmetric fission decay process. The linear momentum transfer and excitation energy associated with the equilibrated source are estimated using a simple fusion-fission model [fr

  19. spectroscopy

    African Journals Online (AJOL)

    Aghomotsegin

    2015-10-14

    Oct 14, 2015 ... Full Length Research Paper. Determination of lactic acid bacteria in Kaşar cheese and identification by Fourier transform infrared (FTIR) spectroscopy. İlkay Turhan1* and Zübeyde Öner2. 1Department of Nutrition and Dietetic, School of Health Sciences, T.C.Istanbul Arel University, 34537 Buyukcekmece /.

  20. Characterization of the Diamant detector array from the de-excitation by emission of two particles of the 44Ti nuclei in the reaction 16O + 28Si at 50 MeV and 60 MeV

    International Nuclear Information System (INIS)

    Sellam-Cabaussel, Dalila

    1996-01-01

    We have characterized the response of the charged particle detector array DIAMANT in the reaction 16 O + 28 Si at 50 MeV and 60 MeV. We were able to select and study the deexcitation of the two particle channels for which the relative cross section is of the order of a few percent. The study of the energy distribution and the angular correlation of the emitted particles allowed a detailed test of the statistical model. The analysis of the results shows, for the first time, specific characteristics of the alpha particle emission from high spin states of the 44 Ti compound nucleus formed in the reaction. (author) [fr

  1. Electronic excitation and deexcitation of atoms and molecules in nonequilibrium plasmas; Hiheiko plasma chu no denshi reiki ryushi hanno katei

    Energy Technology Data Exchange (ETDEWEB)

    Shimamori, H. [Fukui University of Technology, Fukui (Japan)

    1997-05-20

    Regarding excitation and deexcitation due to collision of electrons and deexcitation due to collision of baryons in nonequilibrium plasma, explanation is made about the general characteristics of the elementary processes involving their formation and disappearance and about the prediction of their sectional areas and velocity constants. As for the process of the formation of excited atoms and molecules by collision of electrons, it may be divided into the direct excitation in the ground state, excitation and light emission toward the resonance state, reexcitation and transformation of excited particles, recombination of electrons and positive atomic ions, and dissociation and recombination of electrons and positive molecular ions. As for the process of the disappearance of excited particles, there exist various courses it may follow, and it is quite complicated because it is dependent on the types of particles involved and the conditions the process proceeds under. Although the skeleton has been built of the theory of derivation of the sectional area of excitation due to collision of electrons and atoms/molecules, yet it is accurate enough only when applied to simple atomic/molecular systems, is far from satisfying in general, and is to be augmented by data from future experiments. 22 refs., 3 figs., 1 tab.

  2. Formation and de-excitation of very hot nuclei in Ar + Au collisions at 30 and 60 MeV/nucleon

    International Nuclear Information System (INIS)

    Hamdani, T.

    1993-10-01

    The study of the formation and the de-excitation of very hot nuclei by using collisions between Ar and Au at 30 and 60 MeV/u is presented in this work. The detection system consisted of three multidetectors for fragments (DELF) or light particles (TONNEAU+MUR) plus two groups of four detectors (Silicium, CsI). This system and the triggering conditions adopted allowed the selection of two classes of events: semiperipheral collisions and central collisions. The studies presented using global variables, show clearly that the fragments produced in the reactions are emitted from an equilibrated source. Hence, an event generator based on the statistical model was employed to verify the method of calculation of the excitation energy of the source. It also provides information concerning experimental biases and the sensitivity of some of the global variables used in the experimental analysis. A detailed study of the temperatures of hot nuclei is presented using the data recorded with the CsI detectors. The temperatures measured reached up to 7 MeV for the reaction at 60 MeV/u. (orig.)

  3. Calculations of the Auger deexcitation rate of the dtμ within the muonic quasi-molecule, [(dtμ)dee

    International Nuclear Information System (INIS)

    Armour, E.A.G.; Lewis, D.M.; Hara, S.

    1993-01-01

    A key process in muon catalysed fusion is the deexcitation of the dtμ within the resonant muonic quasi-molecule [(dtμ)dee], by emission of an Auger electron. The dtμ in the quasi-molecule is initially in a weakly bound excited state with J = 1 and v = 1. In this paper, calculations taking full account of the molecular nature of the quasi-molecule are carried out of the rate of the dominant deexcitation to the state with J = 0 and v = 1. (orig.)

  4. Impurity study of TMX using ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Allen, S.L.; Strand, O.T.; Moos, H.W.; Fortner, R.J.; Nash, T.J.; Dietrich, D.D.

    1981-01-01

    An extreme ultraviolet (EUV) study of the emissions from intrinsic and injected impurities in TMX is presented. Two survey spectrographs were used to determine that the major impurities present were oxygen, nitrogen, carbon, and titanium. Three absolutely-calibrated monochromators were used to measure the time histories and radial profiles of these impurity emissions in the central cell and each plug. Two of these instruments were capable of obtaining radial profiles as a function of time in a single shot

  5. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  6. Raman Spectroscopy Studies of Normal and Burned Biological Tissue

    Science.gov (United States)

    Zarnani, Faranak; Maass, David; Idris, Ahamed; Glosser, Robert

    2011-03-01

    Burn injuries are a significant medical problem, and need to be treated quickly and precisely. Burned skin needs to be removed early, within hours (less than 24 hrs) of injury, when the margins of the burn are still hard to define. Studies show that treating and excising burn wounds soon after the injury prevents the wound from becoming deeper, reduces the release of proinflammatory mediators, and reduces or prevents the systemic inflammatory reaction syndrome. Also, removing burned skin prepares the affected region for skin grafting. Raman spectroscopy could be used as an objective diagnostic method that will assist burn surgeons in removing burned skin precisely. As a first step in developing a diagnostic tool, we present Raman spectroscopy information from normal and burned ex vivo rat skin, and a comparison of our findings. Raman spectroscopy is explored for its specificity and sensitivity.

  7. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    Science.gov (United States)

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  8. Magnetic excitations studied with time-of-flight spectroscopy

    International Nuclear Information System (INIS)

    Rainford, B.

    1996-01-01

    An introduction to time-of-flight neutron spectroscopy is presented in the context of the study of magnetic materials. Examples are taken from the class of rare earth and actinide magnetic materials known as 'strongly correlated electron' systems. (author) 11 figs., 24 refs

  9. An RNA toolbox for single-molecule force spectroscopy studies

    NARCIS (Netherlands)

    Vilfan, I.D.; Kamping, W.; Van den Hout, M.; Candelli, A.; Hage, S.; Dekker, N.H.

    2007-01-01

    Precise, controllable single-molecule force spectroscopy studies of RNA and RNA-dependent processes have recently shed new light on the dynamics and pathways of RNA folding and RNAenzyme interactions. A crucial component of this research is the design and assembly of an appropriate RNA construct.

  10. Studies on Viburnum nervosum Hook: Chemistry and Spectroscopy ...

    African Journals Online (AJOL)

    Studies on Viburnum nervosum Hook: Chemistry and Spectroscopy of Bergenin and its Derivatives. B.K. TIWARI* AND R.L. KHOSA. Department of Pharmacy, Bharat Institute of Technology, Meerut 250103, India. This paper reports on the isolation of bergenin from Viburnum nervosum. (Capprifoliaceae). This is the first time ...

  11. Optical spectroscopy by Hantaro Nagaoka Pioneer nuclear structure study

    Science.gov (United States)

    Inamura, Takashi T.

    2000-08-01

    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  12. Optical spectroscopy by Hantaro Nagaoka - Pioneer nuclear structure study

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Takashi T. [Warsaw University, Heavy Ion Laboratory (Poland)], E-mail: inamura@slcj.uw.edu.pl

    2000-08-15

    Hantaro Nagaoka is a Japanese physicist who made an experimental pioneer work on optical spectroscopy for nuclear structure studies in 1920s. Today much attention should be paid to this work rather than to his famous atomic model that died away long time ago along with Thomson's model.

  13. Magnetic excitations studied with time-of-flight spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rainford, B. [Southampton Univ. (United Kingdom). Dept. of Physics

    1996-11-01

    An introduction to time-of-flight neutron spectroscopy is presented in the context of the study of magnetic materials. Examples are taken from the class of rare earth and actinide magnetic materials known as `strongly correlated electron` systems. (author) 11 figs., 24 refs.

  14. Surface oxidation of cobalt nanoparticles studied by Mossbauer spectroscopy

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Charles, S.W.

    1999-01-01

    The surface oxide formed on cobalt nanoparticles has been studied by Mossbauer emission spectroscopy. Exposure of the cobalt particles to oxygen at room temperature was found to result in the formation of a relatively well-ordered surface oxide with Mossbauer parameters similar to those of CoO....

  15. Studies of defects and defect agglomerates by positron annihilation spectroscopy

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Singh, B.N.

    1997-01-01

    A brief introduction to positron annihilation spectroscopy (PAS), and in particular lo its use for defect studies in metals is given. Positrons injected into a metal may become trapped in defects such as vacancies, vacancy clusters, voids, bubbles and dislocations and subsequently annihilate from...

  16. Study of solute segregation at interfaces using Auger electron spectroscopy

    International Nuclear Information System (INIS)

    White, C.L.

    1984-01-01

    Interfacial segregation, often confined to within a few atomic distances of the interface, can strongly influence the processing and properties of metals and ceramics. The thinness of such solute-enriched regions can cause them to be particularly suitable for study using surface sensitive microanalytical techniques such as Auger electron spectroscopy (AES). The application of AES to studies of interfacial segregation in metals and ceramics is briefly reviewed, and several examples are presented. 43 references, 14 figures

  17. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    International Nuclear Information System (INIS)

    Saether, Oddbjoern

    2005-01-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  18. NMR spectroscopy applied to the eye: Drugs and metabolic studies

    Energy Technology Data Exchange (ETDEWEB)

    Saether, Oddbjoern

    2005-07-01

    NMR spectroscopy has been extensively applied in biomedical research during the last decades. It has proved to be an analytical tool of great value. From being mainly used in chemistry, technological developments have expanded the application of NMR spectroscopy to a great wealth of disciplines. With this method, biochemical information can be obtained by analysing tissue extracts. Moreover, NMR spectroscopy is increasingly employed for pharmacokinetic studies and analysis of biofluids. Technological progress has provided increased sensitivity and resolution in the spectra, which enable even more of the complexity of biological samples to be elucidated. With the implementation of high-resolution magic angle spinning (HR-MAS) NMR spectroscopy in biomedicine, intact tissue samples or biopsies can be investigated. Thus, NMR spectroscopy has an ever-increasing impact in metabolic screening of human samples and in animal models, and methods are also increasingly realised in vivo. The present work, NMR spectroscopy applied to eye research, consists of two main parts. Firstly, the feasibility to monitor fluorinated ophthalmic drugs directly in the eye was assessed. Secondly, HR-MAS H1 NMR spectroscopy was applied for metabolic profiling of the anterior eye segment, specifically to analyse metabolic changes in intact corneal and lenticular samples after cataractogenic insults. This work included metabonomics with the application of pattern recognition methods to analyse HR-MAS spectra of eye tissues. Optimisation strategies were explored for F19 NMR detection of fluorinated drugs in a phantom eye. S/N gains in F19 NMR spectroscopy were achieved by implementing time-share H1 decoupling at 2.35 T. The method is advantageous for compounds displaying broad spectral coupling patterns, though detection of drugs at concentrations encountered in the anterior eye segment after topical application was not feasible. Higher magnetic fields and technological improvements could enable

  19. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  20. Infrared Spectroscopy in the Study of Renal Lithiasis

    Science.gov (United States)

    Fernández-Almeida, Jesús; Fernández-Gacio, Ana; Marcos, Carlos F.; Fernández-Gacio, Maira

    2003-08-01

    Infrared spectroscopic analysis of urinary stones is presented as a laboratory experiment for undergraduate students studying life sciences. Infrared spectroscopy, usually combined with the observation of macroscopic and microscopic features, is the preferred tool for unequivocal determination of renal stones composition. In this paper we represent and discuss the IR spectra of some of the most common types of urinary calculi occurring in humans and domestic animals.

  1. Preliminary study of muscle contraction assessment by NIR spectroscopy

    Science.gov (United States)

    Gelmetti, Andrea; Giardini, Mario E.; Lago, Paolo; Pavesi, Roberta; Zambarbieri, Daniela; Maestri, R.; Felicetti, G.

    1998-01-01

    NIR spectroscopy allows monitoring of muscle oxygenation and perfusion during contraction. The knowledge of modifications of blood characteristics in body tissues has relevant clinical interest. A compact and reliable device, which makes use of two laser diodes at 750 and 810 nm coupled with the skin surface through optical fibers, was tested. NIR and surface EMG signals during isokinetic contractions were studied. A set of parameters was analyzed in order to obtain information about metabolic modifications during muscle fatigue.

  2. [Application of UV spectroscopy in structural studies of metal centre of metal-protein].

    Science.gov (United States)

    Liang, H; Zhou, Y; Shen, P

    1997-02-01

    The principle of UV spectroscopy applied in structural studies of metal centre of complexes is introduced in this paper. Several examples prove that such spectroscopy is an effective technical method in structural studies of metal centre of metal-protein.

  3. Study of laser-induced breakdown spectroscopy of gases

    Science.gov (United States)

    Hanafi, M.; Omar, M. M.; Gamal, Y. E. E.-D.

    2000-01-01

    A study of the spectral emission in laser-induced breakdown spectroscopy of gases was performed. The measurements were carried out on helium, argon, nitrogen, and air irradiated with ruby laser radiation at a wavelength of 694.3 nm and a pulse width of 40 ns. The study aimed to evaluate the spectral emission characteristics of these gases as well as the parameters of their formed plasmas, namely: electron temperature and electron density. The temporal behaviour of the spectral emission was also analysed for the different observed emission mechanisms (continuum, atomic, and ionic). Moreover, the effect of gas pressure on the spectral emission intensity is reported in this work.

  4. The deexcitation of the Ar (3P2, 3p1 and 1P1) states as measured by absorption both in pure argon and in the presence of additives

    International Nuclear Information System (INIS)

    Dutuit, Odile

    1974-01-01

    The de-excitation of the 3 P 2 , 3 p 1 and 1 P 1 states of argon was studied in pure argon between 10 and 200 torr and in Ar + CO and Ar + H 2 mixtures. These states are populated after excitation of the gas by a short (20 ns) pulse of 500 keV electrons (FEBETRON). Under our experimental conditions, the relation between the measured optical density of the lines studied and the concentration of absorbing species was found to be: DO = log I 0 /I ∝ (lC) n with n = 0,4. The three body rate constants k 2 were measured for the two resonant states 3 p 1 (k 2 = (1,65 ± 0,3) x 10 -32 cm 6 s -1 ) and 1 P 1 (k 2 = (1,0 ± 0,2) x 10 -32 cm 6 s -1 ); they had not been considered in previous low pressure studies. For the metastable state 3 P 2 , the measured value of k 2 ((1,6 ± 0,3) x 10 -32 cm 6 s -1 ) is in good agreement with those found in the literature. However, our two body rate constant k 1 is about ten times higher than that found in measurements at low pressure. This difference could be due to a collision-induced emission process at high pressure. The rate constants for the quenching by CO and H 2 were measured for the metastable state 3 P 2 (1,85 and 10,5 x 10 -11 cm 3 s -1 ) and for the resonant states 3 P 1 (4,5 and 20 x 10 -11 cm 3 s -1 ) and 1 P 1 (8,5 and 33 X 10 -11 cm 3 s -1 ). Comparison of the de-excitation cross sections of resonant and metastable states should lead to a better understanding of energy transfer processes from these latter. (author) [fr

  5. DMD multi-object spectroscopy in space: the EUCLID study

    Science.gov (United States)

    Spanò, P.; Zamkotsian, F.; Content, R.; Grange, R.; Robberto, M.; Valenziano, L.; Zerbi, F. M.; Sharples, R. M.; Bortoletto, F.; de Caprio, V.; Martin, L.; de Rosa, A.; Franzetti, P.; Diolaiti, E.; Garilli, B.; Guzzo, L.; Leutenegger, P.; Scodeggio, M.; Vink, R.; Zamorani, G.; Cimatti, A.

    2009-08-01

    The benefits Astronomy could gain by performing multi-slit spectroscopy in a space mission is renown. Digital Micromirror Devices (DMD), developed for consumer applications, represent a potentially powerful solution. They are currently studied in the context of the EUCLID project. EUCLID is a mission dedicated to the study of Dark Energy developed under the ESA Cosmic Vision programme. EUCLID is designed with 3 instruments on-board: a Visual Imager, an Infrared Imager and an Infrared Multi-Object Spectrograph (ENIS). ENIS is focused on the study of Baryonic Acoustic Oscillations as the main probe, based on low-resolution spectroscopic observations of a very large number of high-z galaxies, covering a large fraction of the whole sky. To cope with these challenging requirements, a highmultiplexing spectrograph, coupled with a relatively small telescope (1.2m diameter) has been designed. Although the current baseline is to perform slit-less spectroscopy, an important option to increase multiplexing rates is to use DMDs as electronic reconfigurable slit masks. A Texas Instrument 2048x1080 Cinema DMD has been selected, and space validation studies started, as a joint ESA-ENIS Consortium effort. Around DMD, a number of suited optical systems has been developed to project sky sources onto the DMD surface and then, to disperse light onto IR arrays. A detailed study started, both at system and subsystem level, to validate the initial proposal. Here, main results are shown, making clear that the use of DMD devices has great potential in Astronomical Instrumentation.

  6. Titania supported tungsten oxide species studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Han, Sang Hoon; Kim, Hack Sung; Kim, Kwan

    1991-01-01

    Laser Raman spectroscopy has been used to study the tungsta catalyst supported on titania. The surface tungsten species which forms on titania after calcination appeared to possess a structure that is independent of the initial impregnation condition. The surface polytungstate seemed to be stable only at the interfacial region since the crystalline WO 3 phase was observed as long as the tungsta loading was in excess of monolayer coverage. The close intact and strong interaction between the polytungstate and the titania could be evidenced from the inhibition of the phase transition of TiO 2 from anatase to rutile.(Author)

  7. Study of quarkonium spectroscopy through the approximated variational method

    International Nuclear Information System (INIS)

    Brandao, H.J.A.; Kimel, I.

    1982-01-01

    The spectroscopy of the qq sup(-) bound states in a non-relativistic approximation using a approximate variational method is studied. Because of its similarity to positronium, a wave function of the hidrogen atom, is used. The 'coulomb-logaritmic-linear' was the potential used to described it. The fitting is done, and relevant coupling constant due to a logaritmic piece is found. All states described in this way furnishes v 2 3 P are reasonably explained and it no occurs with the mass diference between psi and eta sub(c). (Author) [pt

  8. Moessbauer spectroscopy study of iron corrosion underneath painting system

    International Nuclear Information System (INIS)

    Nigam, R.K.; Hajela, B.P.; Sengupta, S.; Srivastava, B.C.; Gupta, K.N.

    1986-01-01

    The effect of pigments on the development of corrosion products between the painting system and metal surface when exposed to marine environments has been discussed. The pigments studied were: red mud zinc chromate, zinc chromate, red oxide zinc phosphate, manganese phosphate barium chromate and basic lead silico chromate. Moessbauer spectroscopy revealed that the upper rust layer in all the cases consisted of γ-Fe 2 O 3 , γ-FeOOH and α-FeOOH. The lower rust layer immediately in contact with the metal surface consisted of an asymmetrical doublet due to γ-FeOOH. (Auth.)

  9. Raman spectroscopy and X-ray diffraction studies on celestite

    International Nuclear Information System (INIS)

    Chen Yenhua; Yu Shucheng; Huang, Eugene; Lee, P.-L.

    2010-01-01

    High-pressure Raman spectroscopy and X-ray diffraction studies of celestite (SrSO 4 ) were carried out in a diamond anvil cell at room temperature. Variation in the Raman vibrational frequency and change of lattice parameters with pressure indicate that a transformation occurs in celestite. This transformation caused an adjustment in the Sr-O polyhedra that affected the stretching-force constant of SO 4 . Moreover, compressibilities along the crystallographic axes decreased in the order a to c to b. From the compression data, the bulk modulus of the celestite was 87 GPa. Both X-ray and Raman data show that the transition in celestite is reversible.

  10. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  11. Rotational coherence spectroscopy at FLASH. Toward dynamic studies in nanosuperfluids

    Energy Technology Data Exchange (ETDEWEB)

    Kickermann, Andreas

    2013-07-15

    The field of molecular physics, which is focusing on molecular motion in the transition states of physical, chemical, and biological changes, is a wide-spread research area. It strives to reveal the structural and functional properties of molecules, the chemical bonds between atoms and the time evolution. Many processes occurring in nature upon electronic excitation proceed on the ultrafast femtosecond timescale and can be triggered by modern ultrashort femtosecond-laser sources under laboratory conditions. In the present thesis pump-probe studies were performed to follow molecular motion using ultrashort light pulses in the nanometer wavelength range provided by an XUV freeelectron laser (FEL). In detail, alignment of molecular species in space under field-free conditions was investigated. In the specific case of rotational wave packets in molecules the rotational dynamics shows characteristic temporal features, which contain a wealth of information on molecular structure and give insight into molecular coupling mechanisms, i.e. rotational constants and transition frequencies. Within this thesis, Rotational Coherence Spectroscopy (RCS) reveals wave-packet motion observed by subsequent Coulomb explosion of Raman excited carbon monoxide, which results in a time-dependent asymmetry of spatial fragmentation patterns. With the method presented here, the time resolution to elucidate the fast dynamics of strong couplings can be pushed toward a single rotational period even for the fastest rotors. This is due to large pump-probe delays with small subpicosecond step size. This kind of spectroscopy can also be expanded to molecular species, which are not accessible by other powerful spectroscopic methods, such as Fourier-transform microwave spectroscopy (FTMW). Furthermore, it allows to measure weak molecular couplings on a long timescale (large pump-probe delays), e.g. couplings of molecules in a solution or molecules dissolved in quantum fluids. This is valuable to

  12. Rotational coherence spectroscopy at FLASH. Toward dynamic studies in nanosuperfluids

    International Nuclear Information System (INIS)

    Kickermann, Andreas

    2013-07-01

    The field of molecular physics, which is focusing on molecular motion in the transition states of physical, chemical, and biological changes, is a wide-spread research area. It strives to reveal the structural and functional properties of molecules, the chemical bonds between atoms and the time evolution. Many processes occurring in nature upon electronic excitation proceed on the ultrafast femtosecond timescale and can be triggered by modern ultrashort femtosecond-laser sources under laboratory conditions. In the present thesis pump-probe studies were performed to follow molecular motion using ultrashort light pulses in the nanometer wavelength range provided by an XUV freeelectron laser (FEL). In detail, alignment of molecular species in space under field-free conditions was investigated. In the specific case of rotational wave packets in molecules the rotational dynamics shows characteristic temporal features, which contain a wealth of information on molecular structure and give insight into molecular coupling mechanisms, i.e. rotational constants and transition frequencies. Within this thesis, Rotational Coherence Spectroscopy (RCS) reveals wave-packet motion observed by subsequent Coulomb explosion of Raman excited carbon monoxide, which results in a time-dependent asymmetry of spatial fragmentation patterns. With the method presented here, the time resolution to elucidate the fast dynamics of strong couplings can be pushed toward a single rotational period even for the fastest rotors. This is due to large pump-probe delays with small subpicosecond step size. This kind of spectroscopy can also be expanded to molecular species, which are not accessible by other powerful spectroscopic methods, such as Fourier-transform microwave spectroscopy (FTMW). Furthermore, it allows to measure weak molecular couplings on a long timescale (large pump-probe delays), e.g. couplings of molecules in a solution or molecules dissolved in quantum fluids. This is valuable to

  13. Pottery from a Chimu Workshop Studied by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Ceramic finds from a pottery workshop in the Lambayeque valley were studied by neutron activation analysis, Moessbauer spectroscopy and X-ray diffraction in an attempt to assess an advanced division of labour on the North Coast of Peru during the Chimu period (AD 1350-1460). The study suggests that the material was predominantly fired in a reducing environment with partial reoxidation at the end of the firing cycles, although firing in an oxidising atmosphere has taken place occasionally. The observed variation of firing conditions is characteristic for the use of pit kilns. The results of the archaeometric studies confirm the stylistic studies and show that pottery was no status symbol and far less important as a carrier of Chimu style than metal artefacts.

  14. Soft-x-ray spectroscopy study of nanoscale materials

    International Nuclear Information System (INIS)

    Guo, J.-H.

    2005-01-01

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented

  15. Vibronic transitions in the alkali-metal (Li, Na, K, Rb) - alkaline-earth-metal (Ca, Sr) series: A systematic analysis of de-excitation mechanisms based on the graphical mapping of Frank-Condon integrals

    Science.gov (United States)

    Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-02-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.

  16. Study of plant pigment concentration using synchronous luminescence spectroscopy

    International Nuclear Information System (INIS)

    Pawar, B.H.; Raghuvanshi, F.C.; Mahalle, N.S.; Munde, B.S.; Devhade, S.K.; Arsad, S.S.; Kadam, K.P.; Pachkawade, A.P.; Hiswankar, S.U.

    2006-01-01

    We have recorded the SL (Synchronous Luminescence) spectra emitted by several plant leaves. We investigate in detail SL spectra emitted by the leaf of the plants like Hibiscus Schizopetalus, Ficus Benghalensis, Ficus Religiosa and Ficus Glomerata and study the concentration of the pigments in the plant leaves and the mechanism of photosynthesis process taking place in the leaves. The SL spectra have several features which may help in revealing the density and structure of the molecules present in the samples. The SL spectra exhibit two, three, four and five peaked structure. The peak appear at different wavelengths and their spectral widths are also different. The chlorophyll, xanthophyll and carotene concentration may be obtained from the study of the spectra. The plant species may be identified from the study of SL spectroscopy. (author)

  17. Review: Magnetic Resonance Spectroscopy Studies of Pediatric Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Douglas G. Kondo

    2011-01-01

    Full Text Available Introduction. This paper focuses on the application of Magnetic Resonance Spectroscopy (MRS to the study of Major Depressive Disorder (MDD in children and adolescents. Method. A literature search using the National Institutes of Health's PubMed database was conducted to identify indexed peer-reviewed MRS studies in pediatric patients with MDD. Results. The literature search yielded 18 articles reporting original MRS data in pediatric MDD. Neurochemical alterations in Choline, Glutamate, and N-Acetyl Aspartate are associated with pediatric MDD, suggesting pathophysiologic continuity with adult MDD. Conclusions. The MRS literature in pediatric MDD is modest but growing. In studies that are methodologically comparable, the results have been consistent. Because it offers a noninvasive and repeatable measurement of relevant in vivo brain chemistry, MRS has the potential to provide insights into the pathophysiology of MDD as well as the mediators and moderators of treatment response.

  18. Photoluminescence and Raman Spectroscopy Studies of Carbon Nitride Films

    Directory of Open Access Journals (Sweden)

    J. Hernández-Torres

    2016-01-01

    Full Text Available Amorphous carbon nitride films with N/C ratios ranging from 2.24 to 3.26 were deposited by reactive sputtering at room temperature on corning glass, silicon, and quartz as substrates. The average chemical composition of the films was obtained from the semiquantitative energy dispersive spectroscopy analysis. Photoluminescence measurements were performed to determine the optical band gap of the films. The photoluminescence spectra displayed two peaks: one associated with the substrate and the other associated with CNx films located at ≈2.13±0.02 eV. Results show an increase in the optical band gap from 2.11 to 2.15 eV associated with the increase in the N/C ratio. Raman spectroscopy measurements showed a dominant D band. ID/IG ratio reaches a maximum value for N/C ≈ 3.03 when the optical band gap is 2.12 eV. Features observed by the photoluminescence and Raman studies have been associated with the increase in the carbon sp2/sp3 ratio due to presence of high nitrogen content.

  19. X-ray photoelectron spectroscopy (XPS) studies of rhenium catalyst

    International Nuclear Information System (INIS)

    Mohd Ambar Yarmo; Che Seman Mahmood

    2000-01-01

    Rhenium oxide on alumina (Re 2 O 7 /Al 2 O 3 ) is a very active catalyst system for olefin metathesis reaction. The catalyst can be prepared by wet impregnation of ammonium perrhenate (NH 4 ReO 4 ) solution onto alumina (γ-AI 2 O 3 ) support followed by drying and calcination in air. In this study, rhenium catalysts at different treatment conditions namely active, non-active and during propylene metathesis reaction were investigated using X-ray photoelectron spectroscopy (XPS) technique. Analysis of O 1s , photoelectron peak shows that some chemical interaction between rhenium oxides and the support have been established through Re-O-Al linkage. Analysis of Re 4f7/2 photoelectron peak by using a systematic deconvolution procedure, shows that the metal was in a mixed and varied oxidation states from Re(IV) to Re(VII) depending on their treatment condition. The presence of the metal-carbene complex, the reaction intermediate, could possibly be observed by analysing the C 1s , photoelectron peak. However, a much higher vacuum (i.e. 10 -10 - 10 -11 torr) is needed in the spectroscopy system in order to have the improved detection sensitivity. (Author)

  20. [Infrared spectroscopy and XRD studies of coral fossils].

    Science.gov (United States)

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  1. Electronic properties of CaF sub 2 nanodimensional islands on Si(0 0 1) An MDS and UPS study

    CERN Document Server

    Pasquali, L; Sokolov, N; Selvaggi, G; D'Addato, S; Nannarone, S

    2002-01-01

    The joint use of metastable deexcitation spectroscopy and angle resolved ultraviolet photoemission gives a valuable contribution to the comprehension of the physical-chemical reactions occurring during the formation of an interface between different materials. This approach has been applied to study the evolution of the surface valence band of CaF sub 2 deposited on Si(0 0 1) at different temperatures. Under suitable growth conditions, CaF sub 2 nanostructures of different shape and size can be obtained. Information regarding the chemical reactions taking place within the first deposited layer and the dependence of the electronic properties on film thickness was derived.

  2. Mössbauer spectroscopy in studies of photosynthesis

    Science.gov (United States)

    Burda, Květoslava

    2008-02-01

    Photosynthesis is a process occurring in certain species of bacteria, algae and higher plants. It transforms solar energy into various forms of energy-rich organic molecules. Photosystem II (PSII) is the “heart” of the photosynthetic apparatus because it delivers electrons and protons for further steps of the light-driven phases of photosynthesis. There are two enigmatic iron binding structures within the core of photosynthetic apparatus, which play an important role in the electron transfer within PSII. Many investigations focus on the determination of their function which is the key to the understanding of the molecular mechanism of the energy and electron transfer within PSII. Among many methods used in this research field, the Mössbauer spectroscopy is a unique one, which gives the possibility to study changes of the valence and spin states of those two iron sites and the dynamical properties of their protein matrix in the presence of various physiological and stress conditions.

  3. Magnetic resonance spectroscopy and imaging for the study of fossils.

    Science.gov (United States)

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Reaction mechanism studies of unsaturated molecules using photofragment translational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Longfellow, C.A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1996-05-01

    A number of molecules have been studied using the technique of photofragment translational spectroscopy. In Chapter One a brief introduction to the experimental technique is given. In Chapter Two the infrared multiphoton dissociation (IRMPD) of acetic acid is discussed. Carbon dioxide and methane were observed for the first time as products from dissociation under collisionless conditions. Chapter Three relates an IRMPD experiment of hexafluoropropene. The predominant channel produces CFCF{sub 3} or C{sub 2}F{sub 4} and CF{sub 2}, with the heavier species undergoing further dissociation to two CF{sub 2} fragments. In Chapter Four the ultraviolet (UV) dissociation of hexafluoropropene is investigated. Chapter Five explores the IRMPD of octafluoro-1-butene and octafluoro-2-butene.

  5. Functional near-infrared spectroscopy studies in children

    Directory of Open Access Journals (Sweden)

    Nagamitsu Shinichiro

    2012-03-01

    Full Text Available Abstract Psychosomatic and developmental behavioral medicine in pediatrics has been the subject of significant recent attention, with infants, school-age children, and adolescents frequently presenting with psychosomatic, behavioral, and psychiatric symptoms. These may be a consequence of insecurity of attachment, reduced self-confidence, and peer -relationship conflicts during their developmental stages. Developmental cognitive neuroscience has revealed significant associations between specific brain lesions and particular cognitive dysfunctions. Thus, identifying the biological deficits underlying such cognitive dysfunction may provide new insights into therapeutic prospects for the management of those symptoms in children. Recent advances in noninvasive neuroimaging techniques, and especially functional near-infrared spectroscopy (NIRS, have contributed significant findings to the field of developmental cognitive neuroscience in pediatrics. We present here a comprehensive review of functional NIRS studies of children who have developed normally and of children with psychosomatic and behavioral disorders.

  6. High-Sensitivity Rheo-NMR Spectroscopy for Protein Studies.

    Science.gov (United States)

    Morimoto, Daichi; Walinda, Erik; Iwakawa, Naoto; Nishizawa, Mayu; Kawata, Yasushi; Yamamoto, Akihiko; Shirakawa, Masahiro; Scheler, Ulrich; Sugase, Kenji

    2017-07-18

    Shear stress can induce structural deformation of proteins, which might result in aggregate formation. Rheo-NMR spectroscopy has the potential to monitor structural changes in proteins under shear stress at the atomic level; however, existing Rheo-NMR methodologies have insufficient sensitivity to probe protein structure and dynamics. Here we present a simple and versatile approach to Rheo-NMR, which maximizes sensitivity by using a spectrometer equipped with a cryogenic probe. As a result, the sensitivity of the instrument ranks highest among the Rheo-NMR spectrometers reported so far. We demonstrate that the newly developed Rheo-NMR instrument can acquire high-quality relaxation data for a protein under shear stress and can trace structural changes in a protein during fibril formation in real time. The described approach will facilitate rheological studies on protein structural deformation, thereby aiding a physical understanding of shear-induced amyloid fibril formation.

  7. Using Terahertz Spectroscopy to Study Systems with Solar Energy Applications

    Science.gov (United States)

    Milot, Rebecca L.; Moore, Gary F.; Martini, Lauren A.; Brudvig, Gary W.; Crabtree, Robert H.; Schmuttenmaer, Charles A.

    2013-06-01

    Biomimetic solar water oxidation systems are being developed as renewable alternatives to fossil fuels. One possible design incorporates thin-film dye-sensitized nanoparticle photoanades to capture and convert visible light to charge carriers and catalysts to facilitate water oxidation. The physical properties of the dye are important due to its position as the light absorber and electron transfer initiator. Given the role that porphyrins play in photosynthesis and their synthetic tunability, they are promising components for these photoanodes. Time-Resolved THz Spectroscopy (TRTS), an optical pump/THz probe technique, is a non-contact electrical probe with proven usefulness for studying electron transfer and conductivity on a sub-picosecond timescale. Using TRTS, the efficiency and dynamics of electron injection from porphyrin dyes into metal oxide surfaces was found to be strongly influenced by the structure and photophysical properties of the dye.

  8. Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy

    Science.gov (United States)

    Ho, I.-Chen

    Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms

  9. Laser Raman Spectroscopy in studies of corrosion and electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Melendres, C.A.

    1988-01-01

    Laser Raman Spectroscopy (LRS) has become an important tool for the in-situ structural study of electrochemical systems and processes in recent years. Following a brief introduction of the experimental techniques involved in applying LRS to electrochemical systems, we survey the literature for examples of studies in the inhibition of electrode reactions by surface films (e.g., corrosion and passivation phenomena) as well as the acceleration of reactions by electro-sorbates (electrocatalysis). We deal mostly with both normal and resonance Raman effects on fairly thick surface films in contrast to surface-enhanced Raman investigations of monolayer adsorbates, which is covered in another lecture. Laser Raman spectroelectrochemical studies of corrosion and film formation on such metals as Pb, Ag, Fe, Ni, Co, Cr, Au, stainless steel, etc. in various solution conditions are discussed. Further extension of the technique to studies in high-temperature and high-pressure aqueous environments is demonstrated. Results of studies of the structure of corrosion inhibitors are also presented. As applications of the LRS technique in the area of electrocatalysis, we cite studies of the structure of transition metal macrocyclic compounds, i.e., phthalocyanines and porphyrins, used for catalysis of the oxygen reduction reaction. 104 refs., 20 figs.

  10. Excitation and deexcitation of N2 molecular levels. Induced fluorescence by electrons and laser

    International Nuclear Information System (INIS)

    Perez Fernandez-Mayoralas, A.

    1989-01-01

    The electron impact excitation followed by fluorescence induced by N 2 -laser absorption was used to study the lifetime of the lowest vibrational level of the B 3 π g electronic state of N 2 . The experimental result of this work is 13 + 1 μs. To measure the lifetime of B 3 π g (v=2,3,5,6,7,8) levels the delayed coincidence method by electron impact was use. The lifetime values were compared with recent experimental and theoretical results. The relative intensi-ties of 3 π g --- A 3 Σ Ω + system bands, in the range (6540-10500 A o ) was measured using a hollow cathode lamp as spectral source. The relative transition moments and its dependence versus the r-centroid was obtained. Total cross sections for electron scattering by N molecules in the range 600 - 5000 eV have been obtained from measurements of the attenuation of a linear electron beam. The results have been compared with available experimental cross sections and with theoretical calculations based on the first Born approximation. (Author)

  11. Infrared Heterodyne Spectroscopy and its Unique Application to Planetary Studies

    Science.gov (United States)

    Kostiuk, Theodore

    2009-01-01

    Since the early 1970's the infrared heterodyne technique has evolved into a powerful tool for the study of molecular constituents, temperatures, and dynamics in planetary atmospheres. Its extremely high spectral resolution (Lambda/(Delta)Lambda/>10(exp 6)) and highly accurate frequency measurement (to 1 part in 10(exp 8)) enabled the detection of nonthermal/natural lasing phenomena on Mars and Venus; direct measurements of winds on Venus, Mars, and Titan; study of mid-infrared aurorae on Jupiter; direct measurement of species abundances on Mars (ozone, isotopic CO2), hydrocarbons on Jupiter, Saturn., Neptune, and Titan, and stratospheric composition in the Earth's stratosphere (O3, CIO, N2O, CO2 ....). Fully resolved emission and absorption line shapes measured by this method enabled the unambiguous retrieval of molecular abundances and local temperatures and thermal structure in regions not probed by other techniques. The mesosphere of Mars and thermosphere of Venus are uniquely probed by infrared heterodyne spectroscopy. Results of these studies tested and constrained photochemical and dynamical theoretical models describing the phenomena measured. The infrared heterodyne technique will be described. Highlights in its evolution to today's instrumentation and resultant discoveries will be presented, including work at Goddard Space Flight Center and the University of Koln. Resultant work will include studies supporting NASA and ESA space missions and collaborations between instrumental and theoretical groups.

  12. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    Science.gov (United States)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  13. Study of deacetylation in chitinous materials using near infrared spectroscopy

    Science.gov (United States)

    Chen, Suming; Tsai, Chih-Cheng; Chen, Richie L. C.; Yang, I.-Chang; Hsiao, Hsien-Yi; Chen, Chia-Tseng; Yang, Ci-Wen

    2005-11-01

    Chitinous materials are important sources for bio-medical applications, and the process monitoring is one of key factors for the quality control of products. In this study, chitin and chitosan in suspension form were analyzed using near infrared (NIR) spectroscopy. Two models including multiple linear regression (MLR), modified partial least square regression (MPLSR) were adopted for studying the degree of deacetylation (DD) of chitinous materials in order to assure a better quality monitoring and control for chitosan production. During the process of the deacetylation, the real-time measurements of suspension were conducted. The MPLSR model with second derivative spectra in the range of 600-1000 and 1400-1500 nm yielded the best results, which were rc=0.991, SEC=0.019, RESC=1.4%, rp=0.990, SEP=0.022, RSEP=3.4%, RPD=9.4. The NIR measurements of DD status of chitinous suspension could be achieved by using the MLR and MPLSR models developed in this study. It provides great application potentials to the real-time and on-line quality monitoring of deacetylation process for the production of chitosan.

  14. Methanol Photodissociation Studies Using Millimeter and Submillimeter Spectroscopy

    Science.gov (United States)

    Laas, Jacob C.; Weaver, Susanna L. Widicus

    2012-06-01

    Many complex organic molecules (COMs) of prebiotic interest have been detected in interstellar environments, and new astronomical observatories such as ALMA and SOFIA are likely to extend our knowledge of the chemical composition of the universe. Astrochemical models suggest the formation of interstellar COMs is dominated by combination reactions between radicals on grain surfaces. These radicals are primarily produced from UV and cosmic-ray induced photodissociation. The various competing photodissociation pathways greatly contribute to the complexity of the reaction products, but in many cases the photodissociation branching ratios are not well-known. This is a particular challenge in ice photolysis studies, where the products are formed in a complex mixture in the condensed phase. Gas-phase spectroscopic studies offer a means to investigating photodissociation mechanisms in an environment where each product can be directly and separately monitored. To this end, we are developing a laboratory technique utilizing millimeter and submillimeter spectroscopy to directly observe photodissociation products and to quantify their branching ratios. We are focusing our first studies on methanol, which is predicted by astrochemical models to provide much of the starting material for COM chemistry in interstellar clouds. Here we will present our progress toward obtaining a quantitative description of the gas-phase methanol photodissociation mechanism.

  15. Dynamics within alkylsiloxane SAMs studied by sensitive dielectric spectroscopy

    Science.gov (United States)

    Scott, Mary; Stevens, Derrick; Bochinski, Jason; Clarke, Laura

    2009-03-01

    Self assembled monolayers (SAMs) are a ubiquitous tool in modern research and their static structure has been extensively studied. Fewer investigations have addressed dynamics within these systems; however, such motions within SAMs will affect surface properties such as friction and blocking ability (permeability). In this study, sensitive, dielectric spectroscopy over a broad temperature range (4-400 K) has been employed to study relaxations within planar alkylsiloxane SAMs[1] . Highly disordered SAMs of varying density were grown by vapor deposition. Two dielectric relaxations were observed. The first, a polyethylene-like relaxation similar to that previously reported in phase-segregated alkyl side-chain polymers, is observed for all films with alkyl chains containing four or more carbons. This is an interacting or glassy relaxation. The second motion, which is observable only at high film densities, is a local mode, which follows an Arrhenius dependence on temperature, and has been previously assigned to a sub-chain rotation. [1] M.C. Scott, D.R. Stevens, J.R. Bochinski, L.I. Clarke, ACS Nano. DOI: 10.1021/nn800543j.

  16. Interfacial Electron Transfer and Transient Photoconductivity Studied with Terahertz Spectroscopy

    Science.gov (United States)

    Milot, Rebecca Lee

    Terahertz spectroscopy is distinguished from other far infrared and millimeter wave spectroscopies by its inherent phase sensitivity and sub-picosecond time resolution making it a versatile technique to study a wide range of physical phenomena. As THz spectroscopy is still a relatively new field, many aspects of THz generation mechanisms have not been fully examined. Using terahertz emission spectroscopy (TES), THz emission from ZnTe(110) was analyzed and found to be limited by two-photon absorption and free-carrier generation at high excitation fluences. Due to concerns about the continued use of fossil fuels, solar energy has been widely investigated as a promising source of renewable energy. Dye-sensitized solar cells (DSSCs) have been developed as a low-cost alternative to conventional photovoltaic solar cells. To solve the issues of the intermittency and inefficient transport associated with solar energy, researchers are attempting to adapt DSSCs for water oxidation and chemical fuel production. Both device designs incorporate sensitizer molecules covalently bound to metal oxide nanoparticles. The sensitizer, which is comprised of a chromophore and anchoring group, absorbs light and transfers an electron from its excited state to the conduction band of the metal oxide, producing an electric current. Using time-resolved THz spectroscopy (TRTS), an optical pump/THz probe technique, the efficiency and dynamics of electron injection from sensitizers to metal oxides was evaluated as a function of the chromophore, its anchoring group, and the metal oxide identity. Experiments for studying fully functioning DSSCs and water oxidation devices are also described. Bio-inspired pentafluorophenyl porphyrin chromophores have been designed and synthesized for use in photoelectrochemical water oxidation cells. Influences on the efficiency and dynamics of electron injection from the chromophores into TiO2 and SnO2 nanoparticles due to changes in both the central substituent to

  17. The application of near infrared spectroscopy in nutritional intervention studies

    Directory of Open Access Journals (Sweden)

    Philippa A Jackson

    2013-08-01

    Full Text Available Functional near infrared spectroscopy (NIRS is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in haemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavouring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain.

  18. Spectroscopy Study of Synthetic Forsterite Obtained from Zeolite Precursors

    Directory of Open Access Journals (Sweden)

    Subotić, B.

    2008-02-01

    Full Text Available Important ceramics materials are prepared from aluminosilicate based precursors using novel methods, offering at the same time a better control over many important properties. Forsterite, due to its good refractoriness with melting point at 2163 K, excellent electrical insulation properties even at high temperatures, low dielectric permittivity, thermal expansion and chemical stability, is a material of interest to engineers and designers especially as an active medium for tuneable laser and is also a material of interest to SOFC (Solid oxide fuel cells manufacturers. The aim of this study is to investigate the synthesis of crystalline forsterite using different zeolite precursors previously activated by ball milling. Synthetic forsterite was synthesized from different zeolite precursors and MgO combining highenergy ball milling and thermal treatment of the mixture under determined conditions of time and temperature for each operation. In this research are studied the solid-state phase transformations taking place at temperatures below 1273 K. The obtained products were characterized using different spectroscopy techniques in comparison with surface analysis method and X-ray diffraction.

  19. Measurement of de-excitation γ-rays following the photodisintegration of 16O: a test of the quasi-deuteron model in photonuclear reactions above the GDR

    International Nuclear Information System (INIS)

    Kuzin, A.; Sims, D.A.; Rassool, R.P.; Thompson, M.N.; Tetasawa, T.; Itoh, H.; Konno, O.

    1994-01-01

    One of the thrusts of the research program of the photonuclear tagging group is aimed at resolving the nature of the mechanism whereby a high energy photon (∼ 100 MeV) causes protons, neutrons, and correlated p-n paris to be emitted from a nucleus. This report describes the results of a preliminary experiment where de-excitation γ -rays were detected from states in 15 N following the 16 O(γ,p) reaction. The feasibility of this experimental method in this energy region is discussed, and it is concluded that it will be possible to resolve the nature of the reaction mechanism using this method. 7 refs., 4 figs

  20. Laser Spectroscopy Studies in the Neutron-Rich Sn Region

    CERN Multimedia

    Obert, J

    2002-01-01

    We propose to use the powerful laser spectroscopy method to determine the magnetic moment $\\mu$ and the variation of the mean square charge radius ($\\delta\\,\\langle$r$_{c}^{2}\\,\\rangle$) for ground and long-lived isomeric states of the Sn isotopes from A=125 to the doubly-magic $^{132}$Sn isotope and beyond. For these neutron-rich Sn nuclei, numerous $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ curves have already been calculated and the predictions depend upon the effective interactions used. Therefore, a study of the effect of the shell closure N=82 on the $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ values in the Z=50 magic nuclei is of great interest, especially because $^{132}$Sn is located far from the stability valley. It will help to improve the parameters of the effective interactions and make them more suitable to predict the properties of exotic nuclei. \\\\ \\\\The neutron-rich Sn isotopes produced with an uranium carbide target, are ionized using either a hot plasma ion source or the resonant ionization laser ion ...

  1. Study by Moessbauer spectroscopy of the iron-dextran (Imferon)

    International Nuclear Information System (INIS)

    Araujo, S.I. de; Danon, J.

    1985-01-01

    The iron-dextran complexes (imferon) are very important in the anemia treatment resulting of the iron insufficiency. Recent studies by electron diffraction denoted that the imferon is structurally different of the ferritin, one protein which constitute the iron reserve substance in the organisms. However, the obtained data in the imferon by Moessbauer spectroscopy, in different temperature ranges (room, liquid nitrogen and liquid He), show a great resemblance between this compound and the ferritin. A Fe 3+ distorted octahedrical coordenation is observed in both compounds, agreeing with measurements done in ferritin by EXAFS. In spite of the concordant results, persist, nevertheless, some discrepancies. The ferritin seems to be a rather more ionic than the imferon, possibly due to the rather higher interatomic distance in the former compound. In these measurements, a field of 484,6 + - 5 KOe is found for the imferon which, compared with the field of 493 + - 10 KOe for ferritin, confirms to be the ferritin more ionic than the imferon. It is, however, a litle difference, when it is compared to the existent between the iron binary oxides β FeOOH and γFeOOH. (L.C.) [pt

  2. A novel extremophile strategy studied by Raman spectroscopy

    Science.gov (United States)

    Edwards, Howell G. M.

    2007-12-01

    A case is made for the classification of the colonisation by Dirina massiliensis forma sorediata of pigments on ancient wall-paintings as extremophilic behaviour. The lichen encrustations studied using FT-Raman spectroscopy have yielded important molecular information which has assisted in the identification of the survival strategy of the organism in the presence of significant levels of heavy metal toxins. The production of a carotenoid, probably astaxanthin, at the surface of the lichen thalli is identified from its characteristic biomolecular signatures in the Raman spectrum, whereas the presence of calcium oxalate dihydrate (weddellite) has been identified at both the upper and lower surfaces of the thalli and in core samples taken from depths of up to 10 mm through the encrustation into the rock substrate. The latter observation explains the significant disintegrative biodeteriorative effect of the colonisation upon the integrity of the wall-paintings and can be used to direct conservatorial and preservation efforts of the art work. A surprising result proved to be the absence of Raman spectroscopic evidence for the complexation of the metal pigments by the oxalic acid produced by the metabolic action of the organisms, unlike several cases that have been reported in the literature.

  3. Impedance Spectroscopy and FTIR Studies of PEG - Based Polymer Electrolytes

    Directory of Open Access Journals (Sweden)

    Anji Reddy Polu

    2011-01-01

    Full Text Available Ionic conductivity of poly(ethylene glycol (PEG - ammonium chloride (NH4Cl based polymer electrolytes can be enhanced by incorporating ceramic filler TiO2 into PEG-NH4Cl matrix. The electrolyte samples were prepared by solution casting technique. FTIR studies indicates that the complex formation between the polymer, salt and ceramic filler. The ionic conductivity was measured using impedance spectroscopy technique. It was observed that the conductivity of the electrolyte varies with TiO2 concentration and temperature. The highest room temperature conductivity of the electrolyte of 7.72×10−6 S cm-1 was obtained at 15% by weight of TiO2 and that without TiO2 filler was found to be 9.58×10−7 S cm−1. The conductivity has been improved by 8 times when the TiO2 filler was introduced into the PEG–NH4Cl electrolyte system. The conductance spectra shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the conductivity of the polymer electrolytes seems to obey the VTF relation. The conductivity values of the polymer electrolytes were reported and the results were discussed. The imaginary part of dielectric constant (εi decreases with increase in frequency in the low frequency region whereas frequency independent behavior is observed in the high frequency region.

  4. Non-linear optical studies of adsorbates: Spectroscopy and dynamics

    International Nuclear Information System (INIS)

    Zhu, Xiangdong.

    1989-08-01

    In the first part of this thesis, we have established a systematic procedure to apply the surface optical second-harmonic generation (SHG) technique to study surface dynamics of adsorbates. In particular, we have developed a novel technique for studies of molecular surface diffusions. In this technique, the laser-induced desorption with two interfering laser beams is used to produce a monolayer grating of adsorbates. The monolayer grating is detected with diffractions of optical SHG. By monitoring the first-order second-harmonic diffraction, we can follow the time evolution of the grating modulation from which we are able to deduce the diffusion constant of the adsorbates on the surface. We have successfully applied this technique to investigate the surface diffusion of CO on Ni(111). The unique advantages of this novel technique will enable us to readily study anisotropy of a surface diffusion with variable grating orientation, and to investigate diffusion processes of a large dynamic range with variable grating spacings. In the second part of this work, we demonstrate that optical infrared-visible sum-frequency generation (SFG) from surfaces can be used as a viable surface vibrational spectroscopic technique. We have successfully recorded the first vibrational spectrum of a monolayer of adsorbates using optical infrared-visible SFG. The qualitative and quantitative correlation of optical SFG with infrared absorption and Raman scattering spectroscopies are examined and experimentally demonstrated. We have further investigated the possibility to use transient infrared-visible SFG to probe vibrational transients and ultrafast relaxations on surfaces. 146 refs

  5. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc,max ~95 K and (Bi1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc,max 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major di erences in the band structure. First, the Fermi surface segments close to ( π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is consistent with

  6. Angle-resolved photoemission spectroscopy (ARPES) studies of cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Palczewski, Ari Deibert [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    This dissertation is comprised of three different angle-resolved photoemission spectroscopy (ARPES) studies on cuprate superconductors. The first study compares the band structure from two different single layer cuprates Tl2Ba2CuO6+δ (Tl2201) Tc, max ≈ 95 K and (Bi 1.35Pb0.85)(Sr1.47La0.38)CuO6+δ (Bi2201) Tc, max ≈ 35 K. The aim of the study was to provide some insight into the reasons why single layer cuprate's maximum transition temperatures are so different. The study found two major differences in the band structure. First, the Fermi surface segments close to (π,0) are more parallel in Tl2201 than in Bi2201. Second, the shadow band usually related to crystal structure is only present in Bi2201, but absent in higher Tc Tl2201. The second study looks at the different ways of doping Bi2Sr2CaCu2O8+δ (Bi2212) in-situ by only changing the post bake-out vacuum conditions and temperature. The aim of the study is to systematically look into the generally overlooked experimental conditions that change the doping of a cleaved sample in ultra high vacuum (UHV) experiments. The study found two major experimental facts. First, in inadequate UHV conditions the carrier concentration of Bi2212 increases with time, due to the absorption of oxygen from CO2/CO molecules, prime contaminants present in UHV systems. Second, in a very clean UHV system at elevated temperatures (above about 200 K), the carrier concentration decreases due to the loss of oxygen atoms from the Bi-O layer. The final study probed the particle-hole symmetry of the pseudogap phase in high temperature superconducting cuprates by looking at the thermally excited bands above the Fermi level. The data showed a particle-hole symmetric pseudogap which symmetrically closes away from the nested FS before the node. The data is

  7. Corrosion and degradation studies utilizing X-ray photoelectron spectroscopy

    Science.gov (United States)

    Hixson, Holly Gwyndolen

    1997-08-01

    This dissertation involves studies of corrosion behavior at the surface of various metal samples, as well as the degradation of wool fibers obtained from the Star-Spangled Banner. Molybdenum metal and iron-zinc alloys were examined under corrosive conditions, and the degradation of the wool fibers was studied. The behavior of a polished molybdenum metal surface upon exposure to both aerated and deaerated water and 1.0 M NaCl solution was studied by X-ray Photoelectron Spectroscopy (XPS). Exposure to deaerated water and NaCl failed to produce oxidation of the metal surfaces, but exposing the polished metal surface to aerated water produced significant oxidation. Metal surfaces cleaned by argon-ion etching were found to be inert to oxidation by aerated water. The etching process also appears to passivate the metal surface. The behavior of molybdenum metal in 0.5 M Hsb2SOsb4 treated at various potentials has been studied using core and valence band XPS. The study indicates that Mosp{IV} and Mosp{VI} (including possibly Mosp{V} in some cases) were formed as the potential of the system was increased within the active range of molybdenum. The corrosive behavior of iron-zinc alloys that have been electroplated on plain steel in both aerated and deaerated quadruply-distilled water has been studied using XPS. Several different iron-zinc alloys were electroplated for comparative purposes: an iron-rich alloy, a zinc-rich alloy, and an alloy of similar iron and zinc composition. Treatment in aerated water produces oxidation for the iron-rich and similar composition alloys, but the oxide is reduced for the zinc-rich alloy. Degradation of the fibers in the original Star-Spangled Banner has been monitored using XPS and Scanning Electron Microscopy (SEM). Comparison of white and red wool fibers and linen fibers from the flag with new, mechanically-abraded, and chemically-treated white, red, and linen fibers, respectively, was performed in an attempt to determine the fibers' levels

  8. Study on Angelica and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Liu, Hong-xia; Sun, Su-qin; Lv, Guang-hua; Chan, Kelvin K. C.

    2006-05-01

    In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional correlation infrared spectroscopy (2D-IR) to study the main constituents in traditional Chinese medicine Angelica and its different extracts (extracted by petroleum ether, ethanol and water in turn). The findings indicated that FT-IR spectrum can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can not only identify the main chemical constituents in medicinal materials and their different extracts, but also compare the components differences among the similar samples. This analytical method is highly rapid, effective, visual and accurate for pharmaceutical research.

  9. Nanocrystalline zinc ferrite films studied by magneto-optical spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lišková-Jakubisová, E., E-mail: liskova@karlov.mff.cuni.cz; Višňovský, Š. [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague (Czech Republic); Široký, P.; Hrabovský, D.; Pištora, J. [Nanotechnology Center, VŠB-Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba (Czech Republic); Sahoo, Subasa C. [Department of Physics, Central University of Kerala, Kasaragod, Kerala 671314 (India); Prasad, Shiva [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Venkataramani, N. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Bohra, Murtaza [Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa (Japan); Krishnan, R. [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS-UVSQ, 45 Avenue des Etats-Unis, 78935 Versailles (France)

    2015-05-07

    Ferrimagnetic Zn-ferrite (ZnFe{sub 2}O{sub 4}) films can be grown with the ferromagnetic resonance linewidth of 40 Oe at 9.5 GHz without going through a high temperature processing. This presents interest for applications. The work deals with laser ablated ZnFe{sub 2}O{sub 4} films deposited at O{sub 2} pressure of 0.16 mbar onto fused quartz substrates. The films about 120 nm thick are nanocrystalline and their spontaneous magnetization, 4πM{sub s}, depends on the nanograin size, which is controlled by the substrate temperature (T{sub s}). At T{sub s} ≈ 350 °C, where the grain distribution peaks around ∼20–30 nm, the room temperature 4πM{sub s} reaches a maximum of ∼2.3 kG. The films were studied by magnetooptical polar Kerr effect (MOKE) spectroscopy at photon energies between 1 and 5 eV. The complementary characteristics were provided by spectral ellipsometry (SE). Both the SE and MOKE spectra confirmed ferrimagnetic ordering. The structural details correspond to those observed in MgFe{sub 2}O{sub 4} and Li{sub 0.5}Fe{sub 2.5}O{sub 4} spinels. SE experiments confirm the insulator behavior. The films display MOKE amplitudes somewhat reduced with respect to those in Li{sub 0.5}Fe{sub 2.5}O{sub 4} and MgFe{sub 2}O{sub 4} due to a lower degree of spinel inversion and nanocrystalline structure. The results indicate that the films are free of oxygen vacancies and Fe{sup 3+}-Fe{sup 2+} exchange.

  10. High-resolution spectroscopy and time-resolved study of electroluminescence of Er-1 center in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, K.E., E-mail: konstantin@ipm.sci-nnov.r [Institute for Physics of Microstructures, GSP-105, 603950 Nizhniy Novgorod (Russian Federation); Shmagin, V.B.; Shengurov, D.V.; Krasilnik, Z.F. [Institute for Physics of Microstructures, GSP-105, 603950 Nizhniy Novgorod (Russian Federation)

    2009-12-15

    High-resolution and time-resolved measurements on the electroluminescence from Er-doped silicon diode structures with Er-1 center, grown with sublimation molecular beam epitaxy, have been performed within the temperature interval 30-120 K. We find emission lines with full width down to 0.2 cm{sup -1} (25 mueV) at 30 K, the narrowest lines ever observed in Si:Er electroluminescence spectra, and excitation cross-section of 4x1{sup -15} cm{sup 2}. Auger-deexcitation of Er{sup 3+} ions with the activation energy of 16 meV was found to be the only deexcitation process in these structures and no 'back-transfer' deexcitation was observed. Due to ultra narrow emission lines and a high excitation cross-section such diode structures are promising for realization of an electrically pumped silicon-based laser.

  11. Photochemical and free radicals study of cyanobacteria using EPR spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Stopka, Pavel; Maršálek, Blahoslav; Křížová, Jana

    2008-01-01

    Roč. 102, S15 (2008), s. 1117-1119 ISSN 0009-2770. [Meeting on Chemistry and Life /4./. Brno, 09.09.2008-11.09.2008] Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z60050516 Keywords : free radicals * EPR spectroscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 0.593, year: 2008

  12. Dynamics in photosynthetic transient complexes studied by paramagnetic NMR spectroscopy

    NARCIS (Netherlands)

    Scanu, Sandra

    2013-01-01

    This PhD thesis focuses on fundamental aspects of protein-protein interactions. A multidisciplinary methodology for the detection and visualization of transient, lowly-populated encounter protein complexes is described. The new methodology combined paramagnetic NMR spectroscopy with computational

  13. Impedance spectroscopy studies of surface engineered TiO2 ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Dielectric analysis of nanometre range size ceramic particles like TiO2 is very important in the understanding of the performance and design of their polymer nanocomposites for energy storage and other applications. In recent times, impedance spectroscopy is shown to be a very powerful tool to investigate the.

  14. Impedance spectroscopy studies of surface engineered TiO 2 ...

    Indian Academy of Sciences (India)

    Dielectric analysis of nanometre range size ceramic particles like TiO2 is very important in the understanding of the performance and design of their polymer nanocomposites for energy storage and other applications. In recent times, impedance spectroscopy is shown to be a very powerful tool to investigate the dielectric ...

  15. Nuclear molecules and their deexcitation channels, case of Cr{sup 48} generated by the Mg{sup 24} + Mg{sup 24} resonant reaction; Molecules nucleaires et leurs modes de desexcitation: le cas du {sup 48}Cr et de la reaction resonante {sup 24}Mg + {sup 24}Mg

    Energy Technology Data Exchange (ETDEWEB)

    Salsac, M.D

    2006-12-15

    This work is dedicated to the study of the resonance (E = 45,7 MeV, J{sup {pi}} = 36{sup +}, {gamma} = 170 keV) of the Mg{sup 24} + Mg{sup 24} composite nucleus. The PRISMA fragment spectrometer combined with the CLARA gamma detector have been used to study the deexcitation through inelastic channels of the composite system. It is showed that the resonant flux is mainly observed in the inelastic channels involving the contributions 0{sup +}, 2{sup +} and 4{sup +} of the band based on the fundamental state of Mg{sup 24}. This is in good agreement with the theoretical predictions of the molecular model of Uegaki and Abe. Only 30% of the resonant flux has been observed in the inelastic channels and in the transfer channels. The missing flux has been investigated in the fusion/evaporation deexcitation channels with the GASP gamma multi-detector. A weak resonant effect has been highlighted in some residual nuclei such as Ti{sup 45}, Ca{sup 42} and K{sup 39}. A link between the prolate di-nucleus Ca{sup 48} generated in Mg{sup 24} + Mg{sup 24} reaction and a Cr{sup 48} nucleus that has just undergone a Jacobi transition from oblate to prolate, has been discovered. To explain a part of the missing flux it is suggested that the dipolar giant resonance might feed very deformed nuclei through particle emission.

  16. Electrical spectroscopy studies of two new siloxanic proton conducting membranes

    International Nuclear Information System (INIS)

    Di Noto, Vito; Vittadello, Michele; Zago, Vanni; Pace, Giuseppe; Vidali, Maurizio

    2006-01-01

    This contribution is focused on the conductivity study and the protonic transfer investigation of two new siloxanic membranes. The conductivity of the systems has been studied within the temperature range 5 deg. C ≤ T ≤ 145 deg. C, both for pristine and hydrated membranes. Membrane A has been hydrated up to 33.12% in weight, while in B up to 27.76%. The conductivity of these membranes has shown a temperature dependence of the Arrhenius type variable in the interval 1.6 x 10 -4 ≤ σ A ≤ 2.3 x 10 -3 S cm -1 and 1.3 x 10 -5 ≤ σ B ≤ 2.9 x 10 -4 S cm -1 , respectively, for A and B. In particular, conductivities of 2 x 10 -3 S cm -1 (A) and of 2 x 10 -4 S cm -1 (B) at 125 deg. C were observed. The conductivity mechanism was investigated by using broad band electrical spectroscopy in the region between 40 Hz and 10 MHz. This study, for both the materials has shown the presence at low frequencies (10 2 ≤ f β ≤ 10 4 Hz) of β relaxations related to the sulphonic side chain dynamics. The activation energy measured for this molecular dynamics is about ≅30 kJ mol -1 and corresponds to the typical interaction energy associated with hydrogen bonding. Furthermore, it was observed that the activation energies determined from the conductivity measurements are 12 and 14 kJ mol -1 , respectively, for A and B. This shows that the protonic conductivity is strongly influenced by the side chain dynamics and that the charge migration occurs through an ion hopping mechanism between different regions, consisting of micro-clusters of hydration water coordinated with the polar sulphonic groups of the side chains. The comparable activation energies and the values of the conductivity demonstrate that in these systems the conductivity is proportional to the concentration of the sulphonic groups. This shows also that these kinds of membranes, with a high concentration of SO 3 H are necessary in order to obtain materials with a high protonic conductivity with the capacity to

  17. Vibrational spectroscopy

    Science.gov (United States)

    Umesh P. Agarwal; Rajai Atalla

    2010-01-01

    Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...

  18. Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study

    OpenAIRE

    Ryman, Sephira G.; Gasparovic, Chuck; Bedrick, Edward J.; Flores, Ranee A.; Marshall, Alison N.; Jung, Rex E.

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domai...

  19. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  20. Positron Annihilation Spectroscopy study of minerals commonly found in shale

    Science.gov (United States)

    Alsleben, Helge; Ameena, Fnu; Bufkin, James; Chun, Joah; Quarles, C. A.

    2018-01-01

    Positron Annihilation Lifetime and Doppler Broadening spectroscopies are used to investigate twenty-three different rock-forming minerals that are commonly found in shale. Doppler Broadening provides information about the positron and positronium (Ps) trapping sites for comparison among the various minerals. Correlations of positron lifetime and Doppler Broadening are observed for different groups of minerals. Finally, Ps formation, or lack thereof, in the various minerals has been determined.

  1. Corrosion products study of alcohol by Mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Velazquez, R.; Gil de Larre, M.

    1995-01-01

    Simulated corrosion essays in alcohol is presented and corrosion products of storage tanks (CAPASA) were analyzed. The analysis by Mossbauer absortion and transmission spectroscopy shows the formation of hematite substratum in the rust of the storage tanks of carburetant and burning alcohol. In the sample of corrosion with strong rum shows the formation of lepidocrocite and with destilled water besides of lepidocrocite, magnetite (Fe3 O4) is detected

  2. Simultaneous spectroscopy of $\\gamma$- rays and conversion electrons: Systematic study of EO transitions and intruder states in close vicinity of mid-shell point in odd-Au isotopes

    CERN Multimedia

    Venhart, M; Grant, A F; Petrik, K

    This proposal focuses on detailed systematic studies of the $\\beta$ /EC-decays of $^{179,181,183,185}$Hg leading to excited states in the neutron-deficient Au isotopes in the vicinity of the N=104 midshell. $\\gamma$-ray, X-ray and conversion electron de-excitations of odd-A Au isotopes will be studied simultaneously. These studies will address important structural questions such as the excitation energies of coexisting states, properties of multiple intruder states (i.e. intruder particles coupled to intruder cores) and mixing of coexisting structures. The unique combination of Hg beam purity and yields make ISOLDE a unique facility for these experiments.

  3. Total Absorption Spectroscopy study of the 152Yb decay

    International Nuclear Information System (INIS)

    Estevez, M.E.; Algora, A.; Rubio, B.; Bernabeu, J.; Nacher, E.; Gadea, A.; Tain, J.L.; Cano, D.; Batist, L.; Burkard, K.

    2008-01-01

    Complete text of publication follows. The study of neutrino oscillation phenomena, which could open the possibility for Charge Conjugation-Parity violation in the lepton sector, is one of the most exciting problems in physics. In the appearance probability for neutrino oscillations, the CP-even terms and the CP-odd terms have different energy dependence, so the control of the neutrino beam energy has an added value. To study these topics, the construction of a monochromatic neutrino beam facility has been proposed recently. As a source for this beam, accelerated nuclei that decay through electron capture (EC) in a storage ring with long straight sections could be used. In a recent annual report, a preliminary study of the candidate nucleus 152 Yb was discussed. In this report we present the results of the Total Absorption Spectroscopy (TAS) analysis of these data. In the analysis, a coincidence between the X ray of 152 Tm (produced in the EC process) and the TAS spectrum is required. In the gated TAS spectrum the peaks are identified with levels fed in the decay, but it can also have contributions from contaminants and background, and it is modified by the detector response. The relation between the gated TAS spectrum and the feeding is: di = Σ j=1 jmax R ij f j , where d i is the number of counts in channel i of the measured spectrum, f j is the feeding to level j, and R ij is the probability that feeding to E j , gives counts on channel i of the measured spectrum. R is called the 'Response Function' of the detector, and depends on the decay scheme and on the detector. It was calculated by means of Montecarlo simulations. The problem of finding the feedings is reduced to solve this equation, for which the 'Expectation- Maximization Method' was used. It was shown that this algorithm is a very effective way to solve the TAS inverse problem. It is known that in some cases, the high resolution (HR) technique assigns incorrectly more feeding to low lying energy levels

  4. Study on Differential Optical Absorption Spectroscopy : Technique and its Applications

    OpenAIRE

    Liu, Jianguo

    2002-01-01

    ln the first part of speech, with a description of the principle of DOAS (Differential Optical Absorption Spectroscopy), the design and realization of two different kinds of DOAS systems are nresented. 0ne is using a slotted disc raoid scanning device with a photomultiplier, which is suitable for ambient air quality measurement. It can measure total 16 kinds of pollutants such as SO_2, NO, N02, NH_3, O_3, C_6H_6, C_7H_8 and CH_2O etc., with detection limits of 1-2ppb. The other is using a UV ...

  5. ROLE OF MAGNETIC RESONANCE SPECTROSCOPY IN INTRACRANIAL LESIONS- A STUDY OF 75 CASES

    Directory of Open Access Journals (Sweden)

    Rajendra N. Solank

    2017-10-01

    Full Text Available BACKGROUND Our study have shown the role of MR spectroscopy in lesions whenever results are equivocal or non-conclusive even on MRI. MR spectroscopy can differentiate the lesions, particularly intracranial lesions on the basis of various metabolites. The aims of this study is to diagnose the intracranial lesions and to show the advantage of MR spectroscopy over the conventional MRI, to differentiate the neoplastic from non-neoplastic lesion, to prove the reliability of MR spectroscopy in identifying the different grades of glioma with histopathological correlation as well as to differentiate recurrent tumour from post-operative changes or radiation necrosis. MATERIALS AND METHODS During the period of August 2009 to July 2011, a prospective study of 75 patients was carried out at Department of Radiodiagnosis, Civil Hospital and BJ Medical College, Ahmedabad, Gujarat. MRI was performed on 1.5 Tesla MR scanner (GE HDXT using dedicated head coil. Conventional MR imaging was performed followed by MR spectroscopy using point resolved spectroscopy. After deciding the region of interest voxel was kept and 2D multivoxel proton spectroscopy (TR- 1000 msec, TE- 144 msec, voxel size 20 x 20 mm or single voxel proton spectroscopy (TR- 1500 msec, TE- 35 msec, voxel size 20 x 20 mm was performed and spectra obtained. RESULTS In the present study of 75 patients, the maximum number of patients were between 31 to 50 years of age. The approximate ratio of male: female was 2: 1. In our study sensitivity, specificity, positive predictive value, negative predictive value of MRI are 89%, 87%, 87% and 89% respectively and of MRI + MRS are 100%, 97%, 97% and 100% respectively in tumours. CONCLUSION MRS (Magnetic Resonance Spectroscopy is a non-invasive imaging technique that studies the chemical activity in the brain and detects the presence of certain chemical substances. Through this imaging technique, images and graphs of the brain can be obtained.

  6. Lattice dynamic studies from {sup 151}Eu-Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Katada, Motomi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science

    1997-03-01

    New complexes {l_brace}(Eu(napy){sub 2}(H{sub 2}O){sub 3})(Fe(CN){sub 6})4H{sub 2}O{r_brace}{sub x}, bpy({l_brace}(Eu(bpy)(H{sub 2}O){sub 4})(Fe(CN){sub 6})1.5bpy4H{sub 2}O{r_brace}{sub x}) and ({l_brace}(Eu(phen){sub 2}(H{sub 2}O){sub 2})(Fe(CN){sub 6})2phen{r_brace}{sub x}) etc were synthesized using phenanthroline and bipyridine. Lattice dynamic behaviors of Eu and Fe atom in the complexes were investigated by Moessbauer spectroscopy. By {sup 151}Eu-Moessbauer spectrum and parameters of new complexes, bpy complex showed the largest quadrupole splitting value, indicating bad symmetry of Eu ligand in the environment. Molecular structure of napy, bpy and phen complex were shown. These complexes are consisted of Eu atom coordinated with ligand and water molecule, of which (Fe(CN){sub 6}){sup 3-} ion formed one dimentional polymer chain and naphthyridines formed stacking structure. New complexes were observed by {sup 57}Fe-Moessbauer spectroscopy, too. The quadrupole splitting values were very different each other, indicating change of symmetry of Fe atom in the environment and three valence low spin state of Fe in the complex. (S.Y.)

  7. Study of positive parity levels in 41Ca and 41Sc: electromagnetic deexcitation of the 3/2 isospin states

    International Nuclear Information System (INIS)

    Fortier, Simone.

    1976-01-01

    The γ-decay of T=3/2 states in 41 Ca has been investigated by means of the 42 Ca( 3 He,αγ) 41 Ca reaction. Angular correlation measurements have been performed for γ-rays in coincidence with α particles emitted near 0 deg, and branching ratios extracted. The lowest T=3/2 level in 41 Sc (E=5,94MeV) has been excited as a resonance in the 40 Ca(p,γ) 41 Sc reaction, and radiative widths of γ-transitions were measured. The γ decay of the first T=3/2 level in 41 Sc is found to be quite similar to the one measured for the analog level in 41 Ca (E=5,92MeV), as it could be expected from corresponding ΔT=1 transitions in mirror nuclei. The M1 strengths are also compared with the ft values of β + transitions from the 41 Ti ground state. The orbital momentum part of the M1 operator is found to be important for three couples of γ-transition in 41 Ca and 41 Sc. These results suggest that the antianalog configuration could be in the ) 72.01-2.10MeV{ levels whereas the core-excited configurations (2 particles in the f7/2 shell coupled to J=1 and T=0 in the 74.09-4.25MeV{ levels and 74.73-4.77MeV{ levels. Experimental results are finally compared with the predictions of a shell model calculation performed for positive parity levels in A=41 nuclei, with 2 or 4 particles in the 1f7/2 shell and 1 or 3 holes in the 1d3/2 and 2s1/2 shells. )] [fr

  8. Transitions in Structure in Oil-in-Water Emulsions As Studied by Diffusing Wave Spectroscopy

    NARCIS (Netherlands)

    Ruis, H.G.M.; Gruijthuijsen, van K.; Venema, P.; Linden, van der E.

    2007-01-01

    Transitions in structure of sodium caseinate stabilized emulsions were studied using conventional rheometry as well as diffusing wave spectroscopy (DWS). Structural differences were induced by different amounts of stabilizer, and transitions in structure were induced by acidification. Special

  9. Prospects for meson spectroscopy studies with anti P's at the AGS

    International Nuclear Information System (INIS)

    Dover, C.B.

    1987-01-01

    This paper contains viewgraphs on studies of meson spectroscopy. Investigated are the pion inclusive spectrum of proton-antiproton interactions, the spectrum of nucleon-antinucleon interactions, pion missing mass spectra and mechanisms for photon-photon interactions

  10. A comparative study of solid surface analyses between low energy ion scattering spectroscopy (ISS) and secondary ion mass spectroscopy (SIMS)

    International Nuclear Information System (INIS)

    Taya, Shunroku; Tsuyama, Hitoshi; Itoh, Michiyasu; Kanomata, Ichiro

    1977-01-01

    Experimental studies of solid surface analyses are carried out by means of low energy ion scattering spectroscopy (ISS) and secondary ion mass spectroscopy (SIMS). The instrument is composed of a HITACHI IMA-2 ion probe and a stigmatic second-order double focusing mass spectrometer (electric toroidal sector: r sub(e)=212 mm, PHI sub(e)=85 0 , c=0.5; uniform magnetic sector: r sub(m)=200 mm, PHI sub(m)=90 0 , epsilon 1 =32 0 , epsilon 2 =-10 0 ). ISS analyses are carried out using the electric toroidal sector, while SIMS analyses employ both the electric and magnetic sectors. Primary 5 keV argon and helium ion beams are used for ISS analyses, and 8 keV oxygen ion beams for SIMS analyses. An aluminium plate, an Au-Ag-Cu alloy and a GaP crystal are analyzed. The obtained ISS and SIMS spectra are compared. The element discrimination characteristics of ISS are much more accurate than those of SIMS. Maximum mass resolving powers are obtained at 30(50% valley separation) for ISS, and 11,000 (10% valley separation) for SIMS. (auth.)

  11. Study of the effective inverse photon efficiency using optical emission spectroscopy combined with cavity ring-down spectroscopy approach

    Science.gov (United States)

    Wu, Xingwei; Li, Cong; Wang, Yong; Wang, Zhiwei; Feng, Chunlei; Ding, Hongbin

    2015-09-01

    The hydrocarbon impurities formation is inevitable due to wall erosion in a long pulse high performance scenario with carbon-based plasma facing materials in fusion devices. The standard procedure to determine the chemical erosion yield in situ is by means of inverse photon efficiency D/XB. In this work, the conversion factor between CH4 flux and photon flux of CH A → X transition (effective inverse photon efficiency PE-1) was measured directly using a cascaded arc plasma simulator with argon/methane. This study shows that the measured PE-1 is different from the calculated D/XB. We compared the photon flux measured by optical emission spectroscopy (OES) and calculated by electron impact excitation of CH(X) which was diagnosed by cavity ring-down spectroscopy (CRDS). It seems that charge exchange and dissociative recombination processes are the main channels of CH(A) production and removal which lead to the inconsistency of PE -1 and D/XB at lower temperature. Meanwhile, the fraction of excited CH(A) produced by dissociative recombination processes was investigated, and we found it increased with Te in the range from 4% to 13% at Te definition instead of D/XB since the electron impact excitation is not the only channel of CH(A) production. These results have an effect on evaluating the yield of chemical erosion in divertor of fusion device.

  12. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Ryman, Sephira G; Gasparovic, Chuck; Bedrick, Edward J; Flores, Ranee A; Marshall, Alison N; Jung, Rex E

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  13. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Sephira G Ryman

    Full Text Available To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1H-MRS. Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females. Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI. We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho, Creatine (Cre, and N-acetylaspartate (NAA in regions both within (i.e., posterior cingulate cortex and white matter underlying (i.e., precuneus the Default Mode Network (DMN. These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  14. A Mossbauer spectroscopy study of rare-earth compounds

    Science.gov (United States)

    Harker, Stephen John

    The temperature dependent quadrupole splitting, /Delta E/sb [Q], from 169Tm Mossbauer spectroscopy was measured for the rare earth sites in the ceramics TmBa2Cu4O8, an oxygen depleted TmBa2Cu3O6.64, the Pnma phase Tm2BaCoO5/ and/ Tm2BaNiO5 (the 'green- phases') and in the Immm phase of Tm2BaNiO5. This data was interpreted in term of the crystal field acting at the local thulium sites. The analyses for TmBa2CU4O8 and the depleted TmBa2CU3O6.64 in terms of the crystal field parameters, Bnm, were compared with available data from inelastic neutron scattering, magnetic susceptibility, NMR and 155 Gd Mossbauer measurements. For the Pnma/ Tm2BaCoO5/ and/ Tm2BaNiO5 ceramics the crystal field parameters, Bnm, were compared with those for the iso- structural Tm2BaCuO5. The magnetic ordering of the Pnma phases of Tm2BaCoO5/ and/ Tm2BaNiO5 and the Immm phase of Tm2BaNiO5 were investigated by the temperature dependent hyperfine interactions shown by 169Tm Mossbauer spectroscopy. The Pnma phases were shown to order magnetically with temperatures of 3.3(4) K ( Tm2BaCoO5) and 4.8(2) K ( Tm2BaNiO5). For the Immm phase of Tm2BaNiO5 the spectra were consistent with a Tm moment induced by the antiferromagnetically ordered Ni sub-lattice and a Neel temperature of T N = 14.5 K. Fe substitution in Nd(FexNi1-x)8.5 Si2.5 was investigated by x-ray powder diffraction, AC magnetic susceptibility and 57 Fe Mossbauer spectroscopy. Fe was found to preferentially occupy the 4b site. The 4b and 32i sites were found to order magnetically at distinct temperatures which increase linearly with x, reaching maximum values of 236 K and 138 K respectively. Single-phase specimens do not form for x / /geq 0.35, which corresponds to 100% Fe occupation of the larger 4b site. The diffusion of Co into the surface of single crystal PrNi5 was monitored by a variety of techniques, including 57 Fe Mossbauer spectroscopy. The Co was found to occupy either the Pr site of PrNi5 or the Ni site in surface grains of

  15. A Study of 2-Iodobutane by Rotational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, Eric A.; Obenchain, Daniel A.; Choi, Yoon Jeong; Blake, Thomas A.; Cooke, S. A.; Novick, Stewart E.

    2016-09-15

    The rotational transitions belonging to 2-iodobutane (sec-butyl-iodide, CH3CHICH2CH3) have been measured over the frequency range 5.5-16.5 GHz via jet-pulsed Fourier transform microwave (FTMW) spectroscopy. The complete nuclear quadrupole coupling tensor of iodine, ¬, has been obtained for the gauche (g)-, anti (a)-, and gauche0 (g0)-conformers, as well as the four 13C isotopologues of the gauche species. Rotational constants, centrifugal distortion constants, quadrupole coupling constants, and nuclear spin-rotation constants were determined for each species. Changes in the ¬ of the iodine nucleus, resulting from conformational and isotopic dierences, will be discussed. Isotopic substitution of g-2-iodobutane allowed for a rs structure to be determined for the carbon backbone. Additionally, isotopic substitution, in conjunction with an ab initio structure, allowed for a t of various r0 structural parameters belonging to g-2-iodobutane.

  16. A neutron spectroscopy study of magnetic excitations in uranium oxysulfide

    International Nuclear Information System (INIS)

    Amoretti, G.; Larroque, J.; Osborn, R.

    1988-12-01

    A neutron spectroscopy experiment has been performed to observe the position of the crystal field levels in both the paramagnetic and antiferromagnetic phases of UOS (uranium oxysulfide). The J = 4 ground manifold undergoes an overall splitting of about 100 meV in agreement with the predictions of a crystal field model used to analyze specific heat data. Above T N , two main peaks are observed at 74 and 82 meV with a shoulder at about 87 meV. Below T N there is a redistribution of intensity together with a shift of the peak positions to 76, 84 and 92 meV at T = 30K. The experimental observations are interpreted in the framework of a refined crystal field model. (author)

  17. A rheumatoid arthritis study by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Carvalho, Carolina S.; Silva, Ana Carla A.; Santos, Tatiano J. P. S.; Martin, Airton A.; dos Santos Fernandes, Ana Célia; Andrade, Luís E.; Raniero, Leandro

    2012-01-01

    Rheumatoid arthritis is a systemic inflammatory disease of unknown causes and a new methods to identify it in early stages are needed. The main purpose of this work is the biochemical differentiation of sera between normal and RA patients, through the establishment of a statistical method that can be appropriately used for serological analysis. The human sera from 39 healthy donors and 39 rheumatics donors were collected and analyzed by Fourier Transform Infrared Spectroscopy. The results show significant spectral variations with plipids and immunoglobulins. The technique of latex particles, coated with human IgG and monoclonal anti-CRP by indirect agglutination known as FR and CRP, was performed to confirm possible false-negative results within the groups, facilitating the statistical interpretation and validation of the technique.

  18. Visible and ultraviolet spectroscopy of gas phase protein ions.

    Science.gov (United States)

    Antoine, Rodolphe; Dugourd, Philippe

    2011-10-06

    Optical spectroscopy has contributed enormously to our knowledge of the structure and dynamics of atoms and molecules and is now emerging as a cornerstone of the gas phase methods available for investigating biomolecular ions. This article focuses on the UV and visible spectroscopy of peptide and protein ions stored in ion traps, with emphasis placed on recent results obtained on protein polyanions, by electron photodetachment experiments. We show that among a large number of possible de-excitation pathways, the relaxation of biomolecular polyanions is mainly achieved by electron emission following photo-excitation in electronically excited states. Electron photodetachment is a fast process that occurs prior to relaxation on vibrational degrees of freedom. Electron photodetachment yield can then be used to record gas phase action spectra for systems as large as entire proteins, without the limitation of system size that would arise from energy redistribution on numerous modes and prevent fragmentation after the absorption of a photon. The optical activity of proteins in the near UV is directly related to the electronic structure and optical absorption of aromatic amino acids (Trp, Phe and Tyr). UV spectra for peptides and proteins containing neutral, deprotonated and radical aromatic amino acids were recorded. They displayed strong bathochromic shifts. In particular, the results outline the privileged role played by open shell ions in molecular spectroscopy which, in the case of biomolecules, is directly related to their reactivity and biological functions. The optical shifts observed are sufficient to provide unambiguous fingerprints of the electronic structure of chromophores without the requirement of theoretical calculations. They constitute benchmarks for calculating the absorption spectra of chromophores embedded in entire proteins and could be used in the future to study biochemical processes in the gas phase involving charge transfer in aromatic amino acids

  19. Near infrared spectroscopy in the study of polymorphic transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Marcel [Department of Chemistry, Analytical Chemistry Unity, Faculty of Sciences, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: marcel.blanco@uab.es; Alcala, Manel [Department of Chemistry, Analytical Chemistry Unity, Faculty of Sciences, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona (Spain); Gonzalez, Josep M. [Laboratorios Menarini S.A., c/. Alfons XII, 587, E-08918 Badalona, Barcelona (Spain); Torras, Ester [Laboratorios Menarini S.A., c/. Alfons XII, 587, E-08918 Badalona, Barcelona (Spain)

    2006-05-17

    The potential of near infrared (NIR) spectroscopy for the characterization of polymorphs in the active principle of a commercial formulation prior to and after the manufacturing process was assessed. Polymorphism in active principles is extremely significant to the pharmaceutical industry. Polymorphic changes during the production of commercial pharmaceutical formulations can alter some properties of the resulting end-products. Multivariate curve resolution-alternating least squares (MCR-ALS) methodology was used to obtain the 'pure' NIR spectrum for the active principle without the need to pretreat samples. This methodology exposed the polymorphic transformation of Dexketoprofen Trometamol (DKP) in both laboratory and production samples obtained by wet granulation. No polymorphic transformation, however, was observed in samples obtained by direct compaction. These results were confirmed using by X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC) measurements. Pure crystalline polymorphs of DKP were available in the laboratory but amorphous form was not, nevertheless the developed methodology allows the identification of amorphous and crystal forms in spite of the lack of pure DKP.

  20. Cytosine Radical Cations: A Gas-Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion-Molecule Reactions, and Theoretical Calculations

    Czech Academy of Sciences Publication Activity Database

    Lesslie, M.; Lawler, J. T.; Dang, A.; Korn, J. A.; Bím, Daniel; Steinmetz, V.; Maitre, P.; Tureček, F.; Ryzhov, V.

    2017-01-01

    Roč. 18, č. 10 (2017), s. 1293-1301 ISSN 1439-4235 Institutional support: RVO:61388963 Keywords : ion- molecule reactions * IRMPD spectroscopy * nucleobases * radical ions * UVPD spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.075, year: 2016

  1. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV-Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  2. UV?Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 1: basic principles and properties of tyrosine chromophore

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    Spectroscopic properties of tyrosine residues may be employed in structural studies of proteins. Here we discuss several different types of UV?Vis spectroscopy, like normal, difference and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, and corresponding optical properties of the tyrosine chromophore, phenol, which are used to study protein structure.

  3. The formation and deexcitation of hot nuclei in 40Ar + 197Au collisions at 44 and 77 MeV/A. Neutrons emission light charged particles and complex fragments

    International Nuclear Information System (INIS)

    Sokolov, A.

    1990-05-01

    This work is a contribution to the study of the formation and decay of hot nuclei produced in heavy ion collisions at intermediate energies. By studying the system Ar + Au and Ar + Th at 44 MeV/u and 77 MeV/u we first show how to classify events in two groups: peripheral and very dissipative collisions, measuring the number of evaporated neutrons, which depend directly on the violence of the collision. Associated with these neutrons, different deexcitation channels were observed (heavy residues, fission fragments, light charged particles, intermediate mass fragments). The ratio between peripheral and very dissipative collisions was found independent of the system and the same as the one observed at lower incident energy. The most probable neutron multiplicity for very dissipative collisions is not very different at 44 MeV/u and 77 MeV/u. A measurement of the angular distribution of fission fragments and heavy residues was performed. Detected products are essentially associated with large neutron multiplicity and have a cross section close to the one for the very dissipative collisions. The total mass of the fission fragments is close to the mass of the target, while the mass of the heavy residue is much smaller. The backward evaporated light charged particles are also produced in very dissipative collisions. The characteristics of their energy spectra as well as their multiplicities are very similar at 44 MeV/u 77 MeV/u. From the number of evaporated light charged particles, the estimation of the quasi-target excitation energy was done and found to be close to 600 MeV at 44 MeV/u and 77 MeV/u [fr

  4. The adsorption of mercury on tungsten (100) studied by ultra-violet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Egelhoff, W.F. Jr.; Perry, D.L.; Linnett, J.W.

    1976-01-01

    In recent years, photoelectron spectroscopy has been applied to the study of adsorption on several metal surfaces. A popular choice of substrate has been the 100 face of single crystal tungsten, since adsorption on this surface has been well-characterised by a wide variety of experimental techniques. In this letter a study of the adsorption of mercury on W(100) by ultra-violet photoelectron spectroscopy (UPS) is reported. These results, seen in the context of previous UPS studies of chemisorption, show a number of interesting features. (Auth.)

  5. Raman Spectroscopy.

    Science.gov (United States)

    Gerrard, Donald L.

    1984-01-01

    Reviews literature on Raman spectroscopy from late 1981 to late 1983. Topic areas include: instrumentation and sampling; liquids and solutions; gases and matrix isolation; biological molecules; polymers; high-temperature and high-pressure studies; Raman microscopy; thin films and surfaces; resonance-enhanced and surface-enhanced spectroscopy; and…

  6. Dynamical interactions between solute and solvent studied by nonlinear infrared spectroscopy

    International Nuclear Information System (INIS)

    Ohta, K.; Tominaga, K.

    2006-01-01

    Interactions between solute and solvent play an important role in chemical reaction dynamics and in many relaxation processes in condensed phases. Recently third-order nonlinear infrared (IR) spectroscopy has shown to be useful to investigate solute-solvent interaction and dynamics of the vibrational transition. These studies provide detailed information on the energy relaxation of the vibrationally excited state, and the time scale and the magnitude of the time correlation functions of the vibrational frequency fluctuations. In this work we have studied vibrational energy relaxation (VER) of solutions and molecular complexes by nonlinear IR spectroscopy, especially IR pump-probe method, to understand the microscopic interactions in liquids. (authors)

  7. Ultrafast slaving dynamics at the protein-water interface studied with 2D-IR spectroscopy

    Directory of Open Access Journals (Sweden)

    Kubarych K. J.

    2013-03-01

    Full Text Available The dynamics of hen egg white lysozyme in D2O/glycerol mixtures is studied using two-dimensional infrared spectroscopy. The hydration dynamics and the protein dynamics are studied simultaneously through vibrational probes attached to the protein surface.

  8. Chemical spectroscopy

    International Nuclear Information System (INIS)

    Eckert, J.; Brun, T.O.; Dianoux, A.J.; Howard, J.; Rush, J.J.; White, J.W.

    1984-01-01

    The purpose of chemical spectroscopy with neutrons is to utilize the dependence of neutron scattering cross-sections on isotope and on momentum transfer (which probes the spatial extent of the excitation) to understand fundamental and applied aspects of the dynamics of molecules and fluids. Chemical spectroscopy is divided into three energy ranges: vibrational spectroscopy, 25-500 MeV, for which much of the work is done on Be-filter analyzer instruments; low energy spectroscopy, less than 25 MeV; and high resolution spectroscopy, less than 1 MeV, which typically is performed on backscattering spectrometers. Representative examples of measurements of the Q-depenence of vibrational spectra, higher energy resolution as well as extension of the Q-range to lower values at high energy transfers, and provisions of higher sensitivities in vibrational spectroscopy are discussed. High resolution, high sensitivity, and polarization analysis studies in low energy spectroscopy are discussed. Applications of very high resolution spectroscopy are also discussed

  9. Raman and IR Spectroscopy Studies on Propane at Pressures of Up to 40 GPa.

    Science.gov (United States)

    Kudryavtsev, Daniil; Serovaiskii, Alexander; Mukhina, Elena; Kolesnikov, Anton; Gasharova, Biliana; Kutcherov, Vladimir; Dubrovinsky, Leonid

    2017-08-17

    Raman and IR spectroscopy studies on propane were performed at pressures of up to 40 GPa at ambient temperatures using the diamond anvil cell technique. Propane undergoes three phase transitions at 6.4(5), 14.5(5), and 26.5(5) GPa in Raman spectroscopy and at 7.0(5), 14.0(5), and 27.0(5) GPa in IR spectroscopy. The phase transitions were identified using the Raman and IR splitting modes and the appearance or disappearance of peaks, which clearly corresponded to the changes in the frequencies of the modes as the pressure changed. Our results demonstrate the complex high-pressure behavior of solid propane.

  10. Feasibility study of plutonium isotopic analysis of resin beads by nondestructive gamma-ray spectroscopy

    International Nuclear Information System (INIS)

    Li, T.K.

    1985-01-01

    We have initiated a feasibility study on the use of nondestructive low-energy gamma-ray spectroscopy for plutonium isotopic analysis on resin beads. Seven resin bead samples were measured, with each sample containing an average of 9 μg of plutonium; the isotopic compositions of the samples varied over a wide range. The gamma-ray spectroscopy results, obtained from 4-h counting-time measurements, were compared with mass spectrometry results. The average ratios of gamma-ray spectroscopy to mass spectrometry were 1.014 +- 0.025 for 238 Pu/ 239 Pu, 0.996 +- 0.018 for 240 Pu/ 239 Pu, and 0.980 +- 0.038 for 241 Pu/ 239 Pu. The rapid, automated, and accurate nondestructive isotopic analysis of resin beads may be very useful to process technicians and International Atomic Energy Agency inspectors. 3 refs., 1 fig., 3 tabs

  11. Equilibrium forms of vitisin B pigments in an aqueous system studied by NMR and visible spectroscopy.

    Science.gov (United States)

    Oliveira, Joana; Mateus, Nuno; Silva, Artur M S; de Freitas, Victor

    2009-08-13

    The main species in the acid-base equilibria of two pyranoanthocyanins (vitisins B), pyranomalvidin-3-glucoside I and pyranomalvidin-3-O-coumaroylglucoside II, and the respective pK(a) were determined using NMR, visible spectroscopy, and mass spectrometry techniques. The three equilibria involve protonation of the pyranoflavylium cation of vitisin B (pK(a1)) and two deprotonations (pK(a2) and pK(a3)). For pigment I, the values obtained through the titration curves of the chemical shift of some protons versus pH were (pK(a1) visible spectroscopy (pK(a1) visible spectroscopy (pK(a1) < 0.75; pK(a2) = 4.66 +/- 0.10; pK(a3) = 6.76 +/- 0.10). NMR studies have shown that pigment I does not undergo hydration, and the hypothesis of the occurrence of hemiacetal forms in equilibrium was discarded.

  12. Biological mineralization of iron: Studies using Moesbauer spectroscopy and complementary techniques

    International Nuclear Information System (INIS)

    Webb, J.; Kim, K.S.; Tran, K.C.; Pierre, T.G.S.

    1988-01-01

    Biological deposition of solid Fe-containing phases can be studied using 57 Fe Moessbauer spectroscopy. Other techniques are needed in order to understand this complex process. These include proton-induced X-ray and γ-ray emission (PIXE/PIGME), electron microscopy, electron and X-ray diffraction, infrared spectroscopy and chemical characterization of organic components. This paper reviews and evaluates the application of these techniques to biological mineralization of Fe, particularly that occurring in the radula teeth of the marine molluscs, chitons and limpets. (orig.)

  13. Studying the recovery of as-received industrial Al alloys by positron annihilation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hady, E.E. [Physics Department, Faculty of Science, El-Minia University, BO 61519, El-Minia (Egypt)]. E-mail: esamhady@link.net; Ashry, A. [Faculty of Education, Ain Shams University, Cairo (Egypt); Ismail, H. [Faculty of Education, Ain Shams University, Cairo (Egypt); El-Gamal, S. [Faculty of Education, Ain Shams University, Cairo (Egypt)

    2006-02-28

    Positron annihilation lifetime (PAL) spectroscopy, Doppler broadening of annihilation radiation (DBAR) spectroscopy and Vickers microhardness (Hv) measurements were performed to study the micro- and macro-structure variations during isochronal annealing from room temperature (RT) to 500 deg. Cof commercial pure Al (1 1 0 0), Al-Mn-Mg (3 0 0 4) and Al-Mg-Si (6 2 0 1) alloys. Three annealing stages of microstructures have been identified as recovery, partial recrystallization and complete recrystallization followed by grain growth. A positive correlation between the macroscopic mechanical properties (Hv) and positron annihilation parameters has been achieved for the three samples under investigation.

  14. Catalytic oxidation of phosphorus on MoO3 as studied by infrared spectroscopy

    International Nuclear Information System (INIS)

    Paul, D.K.; Rao, L.F.; Yates, J.T. Jr.

    1992-01-01

    Transmission infrared spectroscopy and mass spectroscopy were used to study the decomposition and oxidation of phosphine on an MoO 3 /Al 2 O 3 supported catalyst at 300-800 K. At 573 K, phosphine decomposes and is oxidized to a HP=O surface species. At 673 K, further oxidation forms (HO) x P=O that desorbs from the surface around 773 K. This suggests that the MoO 3 /Al 2 O 3 catalyst may be useful for continuous organophosphorous catalytic oxidation. 30 refs., 12 figs., 1 tab

  15. Spectroscopic techniques in the study of human tissues and their components. Part I: IR spectroscopy.

    Science.gov (United States)

    Olsztyńska-Janus, Sylwia; Szymborska-Małek, Katarzyna; Gąsior-Głogowska, Marlena; Walski, Tomasz; Komorowska, Małgorzata; Witkiewicz, Wojciech; Pezowicz, Celina; Kobielarz, Magdalena; Szotek, Sylwia

    2012-01-01

    Among the currently used methods of monitoring human tissues and their components many types of research are distinguished. These include spectroscopic techniques. The advantage of these techniques is the small amount of sample required, the rapid process of recording the spectra, and most importantly in the case of biological samples - preparation of tissues is not required. In this work, vibrational spectroscopy: ATR-FTIR and Raman spectroscopy will be used. Studies are carried out on tissues: tendons, blood vessels, skin, red blood cells and biological components: amino acids, proteins, DNA, plasma, and deposits.

  16. A Comparative Study of Gold Bonding via Electronic Spectroscopy

    Science.gov (United States)

    Zhang, Ruohan

    The bonding and electrostatic properties of gold containing molecules are highly influenced by relativistic effects. To understand this facet on bonding, a series of simple diatomic AuX (X=F, Cl, O and S) molecules, where upon bond formation the Au atom donates or accepts electrons, was investigated and discussed in this thesis. First, the optical field-free, Stark, and Zeeman spectroscopic studies have been performed on AuF and AuCl. The simple polar bonds between Au and typical halogens (i.e. F and Cl) can be well characterized by the electronic structure studies and the permanent electric dipole moments, mu el. The spectroscopic parameters have been precisely determined for the [17.7]1, [17.8]0+ and X1Sigma + states of AuF, and the [17.07]1, [17.20]0+ and X1Sigma+ states of AuCl. The mu el have been determined for ground and excited states of AuF and AuCl. The results from the hyperfine analysis and Stark measurement support the assignments that the [17.7]1 and [17.8]0+ states of AuF are the components of a 3pi state. Similarly, the analysis demonstrated the [19.07]1 and [19.20]0+ states are the components of the 3pi state of AuCl. Second, my study focused on AuO and AuS because the bonding between gold and sulfur/oxygen is a key component to numerous established and emerging technologies that have applications as far ranging as medical imaging, catalysis, electronics, and material science. The high-resolution spectra were record and analyzed to obtain the geometric and electronic structural data for the ground and excited states. The electric dipole moment, muel , and the magnetic dipole moment, mum, has been the precisely measured by applying external static electric and magnetic fields. muel and mum are used to give insight into the unusual complex bonding in these molecules. In addition to direct studies on the gold-containing molecules, other studies of related molecules are included here as well. These works contain the pure rotation measurement of Pt

  17. Positron annihilation lifetime spectroscopy study of roller burnished magnesium alloy

    Directory of Open Access Journals (Sweden)

    Zaleski Radosław

    2015-12-01

    Full Text Available The effect of roller burnishing on Vickers’ hardness and positron lifetimes in the AZ91HP magnesium alloy was studied. The microhardness increases with an increase in the burnishing force and with a decrease in the feed. The comparison of various methods of analysis of positron annihilation lifetime (PAL spectra allowed identification of two components, which are related to solute-vacancy complexes and vacancy clusters, respectively. It was found that the increase in microhardness was related to the increase in the concentration of vacancy clusters.

  18. X-ray crystal spectroscopy of JET - a design study

    International Nuclear Information System (INIS)

    Bateman, J.E.; Hobby, M.G.; Peacock, N.J.

    1980-02-01

    This study describes the design and specification of a diagnostic system to measure the space- and time-resolved x-ray spectrum from JET discharges with high-resolution crystal spectrometers operating in the wavelength region 1 - 15A. The specification is given in terms of sensitivity, resolving power, detector, and data handling requirements, special attention being given to the problems encountered in interfacing the spectrometer arrays to the torus vacuum system and in their disposition to the machine. Shielding requirements during the active mode are evaluated and a staged diagnostic is proposed to accommodate D - T operation. (U.K.)

  19. Diffusion wear studies of HSS tools by gamma spectroscopy

    International Nuclear Information System (INIS)

    Venkatesh, V.C.

    1979-01-01

    During the machinino. of plain carbon steels with HSS tools diffusion of some elements particularly carbon and chromium has been observed with the help of an electron probe micro-analyser. The disadvantage of the probe is that it gives only spot analysis and measurement of wear of individual elements over several metres of chips becomes a cumbersome affair. Gamma spectrometry presents a rapid method for wear studies of individual elements. A 100 channel scintillation spectrometer was used simultaneously with the radio-active tool wear tests for this ourpose. The study was undertaken of only those radioelements whose gamma energy could be easily distinguished, which in the case of HSS tools are W, Cr and Co. In this method the gamma energy of W, Cr and Co was measured and the energy curves were plotted. Then the specific activity was calculated. Knowing the specific activities it is possible to calculate the transfer of individual elements i.e. the mass of element in gm/gm of tool wear. W and Co unlike Cr did not show the same trend in all the samples. This could be because wear occurs by abrasion and adhesion and by diffusion as well. In the abrasion and adhesion, wear process elements will be in proportion to that obtaining in the HSS matrix or in the carbides in HSS. The regular trend of wear of chromium indicates its wear by diffusion and this has also been established by electron probe micro-analysis. (auth.)

  20. Degradation study of different brands of paracetamol by UV spectroscopy

    Directory of Open Access Journals (Sweden)

    Safila Naveed

    2016-05-01

    Full Text Available Objective: To investgate the forced degradation study for the determination of degradation of the drug substance. Methods: Paracetamol was exposed to different conditions according to International Conference on Harmonization guideline. The amount of degradation product can be calculated with the help of UV spectrophotometer. The official test limits according to British Pharmacopoeia/United States Pharmacopoeia should not less than and should not more than lapelled amount. Forced degradation of drug substance was exposed to acidic and basic medium of panadol. Forced degradation of drug substance of panadol, disprol and calpol were also observed negligible difference in availability on exposure to UV and heat. This method can be used successfully for studying the stress degradation factors. Because this method is less time consuming and simple and cost effective also. Results: The brands i.e. calpol, panadol and disprol, when they come in contact with different degradation parameters (before, acid, base, heat and UV treatments according to statistical analysis, the result showed significant values (P < 0.05 which indicated that there was no degradation in any of the brand. Conclusions: The result indicated there is no degradation found in these brands.

  1. Antioxidant action in irradiated polypropylene studied by ultraviolet spectroscopy

    Science.gov (United States)

    Milosavljevic, B. H.; Novakovic, Lj.

    1999-05-01

    Ultraviolet spectrum of 0.2 mm thick film of polypropylene containing 0.5% ORGANOX 1010 showed that in the sample prepared by slow cooling about 15% of the antioxidant reacted during the preparation process. The difference in turbidity between the samples obtained in the slow and the fast cooling process is attributed to the degree of crystallinity, which is in agreement with the DSC data. Very pronounced effects of the oxygen concentration and the degree of crystallinity on antioxidant uptake in irradiated polypropylene films were observed and discussed. It was also shown that a Febetron 707 pulsed electron accelerator is capable of producing both the single pulse dose (50 kGy) and the dose rate (2.5 TGy/s) large enough to enable a comparison of dose rate effects and LET effects in the study of the antioxidant reactions in polypropylene.

  2. Structural study of aggregated β-carotene by absorption spectroscopy

    Science.gov (United States)

    Lu, Li Ping; Wei, Liang Shu

    2017-10-01

    By UV-visible absorption spectroscope, the aggregated β-carotene in hydrated ethanol was studied in the temperature range of 5 55°C, with different ethanol/water ratio. And the structural evolutions of these aggregates with time were detected. The spectrophotometric analysis showed that the aggregate of β-carotene formed in 1:1 ethanol/water solution transfered from H-type to J-type with temperature increase. In 2:1 ethanol/water solution a new type of aggregate with strong coupling was predicated by the appearing absorption peak located at about 550 nm. In the time scales of 48 houses all the aggregated structures were stable, but the absorption intensity decreased with time. It was concluded that the types of aggregated β-carotene which wouldn't change with time depended on the solvent composition and temperature.

  3. Antioxidant action in irradiated polypropylene studied by ultraviolet spectroscopy

    International Nuclear Information System (INIS)

    Milosavljevic, B.H.; Novakovic, Lj.

    1999-01-01

    Ultraviolet spectrum of 0.2 mm thick film of polypropylene containing 0.5% ORGANOX 1010 showed that in the sample prepared by slow cooling about 15% of the antioxidant reacted during the preparation process. The difference in turbidity between the samples obtained in the slow and the fast cooling process is attributed to the degree of crystallinity, which is in agreement with the DSC data. Very pronounced effects of the oxygen concentration and the degree of crystallinity on antioxidant uptake in irradiated polypropylene films were observed and discussed. It was also shown that a Febetron 707 pulsed electron accelerator is capable of producing both the single pulse dose (50 kGy) and the dose rate (2.5 TGy/s) large enough to enable a comparison of dose rate effects and LET effects in the study of the antioxidant reactions in polypropylene

  4. Metallocene Molecular Clusters Studied with Scanning Tunneling Microscopy and Spectroscopy

    Science.gov (United States)

    Kwon, Jeonghoon; Ham, Ungdon; Lee, Minjun; Lim, Seong Joon; Kuk, Young

    2014-03-01

    Atomic spins and molecular magnets have been actively reported using Scanning Tunneling Microscope(STM) in recent studies. One can even assemble an artificial magnet by STM manipulation. Manganocene((C5H5)2 Mn), a sandwich complex of metallocene, is composed of one manganese atom and two cyclopentadianyl ligands. This molecule is known to reveal not only high spin number S = 5/2 at room temperature but also two structural states: monomer and molecular chain. In this presentation, we report STM images and spectroscopic results of these monomers and dimers. We try to map the molecular electronic state and the spin texture. The molecule is adsorbed on an insulating layer to decouple the spin state from the metallic substrate. We will present that manganocene can become a basic element of a spin chain.

  5. Structure of potassium isotopes studied with collinear laser spectroscopy

    CERN Document Server

    AUTHOR|(CDS)2082445

    By exploring the structure of different nuclei, one can learn about the interaction between the nucleons, their building blocks. In this field of research, there is a strong interplay between experiment and theory. In particular, theory has a crucial role in the interpretation of the experimental results, while new experimental results provide testing ground and directions for theorists. In the light- and mid-mass regions of the nuclear chart, the shell model is very successful and widely used for calculations of the ground- as well as excited- states properties. It is based on associated larger energy gaps between single particle energy levels for isotopes with certain proton (Z) and neutron (N) numbers, which are called "magic numbers". It was believed that these numbers (8, 20, 28, ...) are preserved for all nuclei throughout the nuclear chart. However, during the last decades studies of the isotopes with an unbalanced number of protons and neutrons revealed that in these isotopes the shell gaps could chan...

  6. Tunneling Spectroscopy Study of Spin-Polarized Quasiparticle Injection Effects in Cuparate/Manganite Heterostructures

    Science.gov (United States)

    Wei, J. Y. T.; Yeh, N. C.; Vasquez, R. P.

    1998-01-01

    Scanning tunneling spectroscopy was performed at 4.2K on epitaxial thin-film heterostructures comprising YBa2Cu3O7 and La0.7Ca0.3MnO3, to study the microscopic effects of spin-polarized quasiparticle injection from the half-metallic ferromagnetic manganite on the high-Tc cuprate superconductor.

  7. Authentication of Organic Feed by Near-Infrared Spectroscopy Combined with Chemometrics A Feasibilily Study

    NARCIS (Netherlands)

    Tres, A.; Veer, van der J.C.; Perez-Marin, M.D.; Ruth, van S.M.; Garrido-Varo, A.

    2012-01-01

    Organic products tend to retail at a higher price than their conventional counterparts, which makes them susceptible to fraud. In this study we evaluate the application of near-infrared spectroscopy (NIRS) as a rapid, cost-effective method to verify the organic identity of feed for laying hens. For

  8. The study of electrical conductivity of DNA molecules by scanning tunneling spectroscopy

    Science.gov (United States)

    Sharipov, T. I.; Bakhtizin, R. Z.

    2017-10-01

    An interest to the processes of charge transport in DNA molecules is very high, due to perspective of their using in nanoelectronics. The original sample preparation for studying electrical conductivity of DNA molecules by scanning tunneling spectroscopy has been proposed and tested. The DNA molecules immobilized on gold surface have been imaged clearly and their current-voltage curves have been measured.

  9. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate

    DEFF Research Database (Denmark)

    Wolf, Martin; Greisen, Gorm

    2009-01-01

    This article reviews tissue oximetry and imaging to study the preterm and newborn infant brain by near-infrared spectroscopy. These two technologies are now advanced; nearly 100 reports on their use in newborn infants have been published, and commercial instruments are available. The precision...

  10. {sup 57}Fe quadrupole splitting and isomer shift in various oxyhemoglobins: study using Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural Federal University (The former Ural State Technical University-UPI), Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Berkovsky, A. L. [Hematological Scientific Center of the Russian Academy of Sciences (Russian Federation); Kumar, A.; Kundu, S., E-mail: sumankundu@south.du.ac.in [University of Delhi South Campus, Department of Biochemistry (India); Vinogradov, A. V.; Konstantinova, T. S. [Ural State Medical Academy, Faculty of Internal Diseases Propedeutics (Russian Federation); Semionkin, V. A. [Ural Federal University (The former Ural State Technical University-UPI), Faculty of Physical Techniques and Devices for Quality Control (Russian Federation)

    2010-04-15

    A comparative study of normal human, rabbit and pig oxyhemoglobins and oxyhemoglobin from patients with chronic myeloleukemia and multiple myeloma using Moessbauer spectroscopy with a high velocity resolution demonstrated small variations of the {sup 57}Fe quadrupole splitting and isomer shift. These variations may be a result of small structural differences in the heme iron stereochemistry of various hemoglobins.

  11. ZnO-based semiconductors studied by Raman spectroscopy: semimagnetic alloying, doping, and nanostructures

    OpenAIRE

    Schumm, Marcel

    2009-01-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles).

  12. Photochemical Degradation Of Polymer Films On Metals As Studied By Fourier Transform Infrared (FTIR) Spectroscopy

    Science.gov (United States)

    Webb, John D.; Schissel, Paul; Czanderna, Alvin; Chughtai, Abdul R.; Smith, Dwight M.

    1981-10-01

    An experimental approach to the study of polymer film photodegradation by Fourier transform infrared (FT-IR) spectroscopy, with simultaneous UV irradiation under varying thermal and environmental parameters, has been developed. Reflection spectra from metal-backed polycarbonate films undergoing irradiation in a test chamber illustrate the system's capability. Early degradative events in polycarbonate are revealed by differences in these spectra.

  13. ZnO-based semiconductors studied by Raman spectroscopy. Semimagnetic alloying, doping, and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Schumm, Marcel

    2009-07-01

    ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). (orig.)

  14. Glutamatergic Effects of Divalproex in Adolescents with Mania: A Proton Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Strawn, Jeffrey R.; Patel, Nick C.; Chu, Wen-Jang; Lee, Jing-Huei; Adler, Caleb M.; Kim, Mi Jung; Bryan, Holly S.; Alfieri, David C.; Welge, Jeffrey A.; Blom, Thomas J.; Nandagopal, Jayasree J.; Strakowski, Stephen M.; DelBello, Melissa P.

    2012-01-01

    Objectives: This study used proton magnetic resonance spectroscopy ([superscript 1]H MRS) to evaluate the in vivo effects of extended-release divalproex sodium on the glutamatergic system in adolescents with bipolar disorder, and to identify baseline neurochemical predictors of clinical remission. Method: Adolescents with bipolar disorder who were…

  15. Electronic structure studies of BaFe2As2 by angle-resolved photoemission spectroscopy

    NARCIS (Netherlands)

    Fink, J.; Thirupathaiah, R.; Ovsyannikov, R.; Dürr, H.A.; Follath, R.; Huang, Y.; de Jong, S.; Golden, M.S.; Zhang, Y.Z.; Jeschke, H.O.; Valentí, R.; Felser, C.; Dastjani Farahani, S.; Rotter, M.; Johrendt, D.

    2009-01-01

    We report high resolution angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of BaFe2As2, which is one of the parent compounds of the Fe-pnictide superconductors. ARPES measurements have been performed at 20 and 300 K, corresponding to the orthorhombic

  16. The study of the curing of the polyurethane coating by method of IR spectroscopy

    Directory of Open Access Journals (Sweden)

    N. A. Korshunova

    2016-12-01

    Full Text Available The results of the study of the curing process of polyurethane compositions with participation of two different catalysts by the method of IR spectroscopy are given. The time dependences of curing of polyurethane coatings from concentrations of catalysts were determined, on the basis of which the most effective catalyst was selected.

  17. Structural Evolution in Photoactive Yellow Protein Studied by Femtosecond Stimulated Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Yoshizawa M.

    2013-03-01

    Full Text Available Ultrafast structural evolution in photoactive yellow protein (PYP is studied by femtosecond stimulated Raman spectroscopy. A comparison between wild-type PYP and E46Q mutant reveals that the hydrogen-bonding network surrounding the chromophore of PYP is immediately rearranged in the electronic excited state.

  18. A Classical Test Theory Analysis of the Light and Spectroscopy Concept Inventory National Study Data Set

    Science.gov (United States)

    Schlingman, Wayne M.; Prather, Edward E.; Wallace, Colin S.; Brissenden, Gina; Rudolph, Alexander L.

    2012-01-01

    This paper is the first in a series of investigations into the data from the recent national study using the Light and Spectroscopy Concept Inventory (LSCI). In this paper, we use classical test theory to form a framework of results that will be used to evaluate individual item difficulties, item discriminations, and the overall reliability of the…

  19. Enrichment study of hot intra-cluster gas through X-ray spectroscopy

    NARCIS (Netherlands)

    Plaa, J. de

    2007-01-01

    Enrichment study of hot intra-cluster gas through X-ray spectroscopy Clouds of hot X-ray emitting gas associated with clusters of galaxies are the biggest aggregates of baryons that we know, except for the cosmic web. A typical cloud contains the nuclear-fusion products of billions of supernovae.

  20. The study of synthetic food dyes by positron annihilation lifetime spectroscopy.

    Science.gov (United States)

    Pivtsaev, A. A.; Razov, V. I.

    2015-06-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established.

  1. The study of synthetic food dyes by positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Pivtsaev, A A; Razov, V I

    2015-01-01

    By method of positron annihilation lifetime spectroscopy (PALS), substances are food dyes were studied: E-102 (Tartrazine), E-124 (Ponso 4R), E 132 (Indigo carmine), E-133 (Brilliant Blue), E-151 (Black Shiny). They are examined for the presence of carcinogenic properties. The difference between dyes having explicit carcinogenic properties and mutagenic properties (non-explicit carcinogens) is established. (paper)

  2. Interdot carrier's transfer via tunneling pathway studied from photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Rihani, J.; Sallet, V.; Yahyaoui, N.; Harmand, J.C.; Oueslati, M.; Chtourou, R.

    2009-01-01

    Self-assembled InAs quantum dots (QDs) on GaAs(0 0 1) substrate were grown by molecular beam epitaxy (MBE) at a growth temperature of 490 deg. C. Two different families of dots were observed in the atomic force microscopy (AFM) image and ambiguously identified in the photoluminescence (PL) spectra. Temperature-dependent PL study was carried out in the 8-270 K temperature range. The integrated-PL intensity behavior of the two QDs populations was fit with the help of a rate equations model. It is found that the evolutions of the integrated-PL intensity of the two QDs population were governed by two regimes. The first one occurs in the 8-210 K temperature range and reveals an unusual enhancement of the integrated-PL intensity of the larger QDs (LQDs) class. This was attributed to the carrier supplies from the smaller QDs (SQDs) class via the tunneling process. The second one occurs in the 210-270 K temperature range and shows a common quench of the PL signals of the two QDs families, reflecting the same thermal escape mechanism of carriers

  3. Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

    CERN Document Server

    Andreyev, Andrei

    2013-01-01

    Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

  4. Dielectric spectroscopy study of water hyacinth collected from different media

    Science.gov (United States)

    Mahani, Ragab; Atia, Fatma; Al Neklawy, Mohammed M.; Fahem, Amin

    2018-02-01

    X-ray fluorescence (XRF) study has been shown that the water hyacinth plant is an effective tool for the removals of heavy metals (As, Ba, Cr, Cu, Ni, Pb, Rb, Sr, Zn and Zr) and metal oxides (SiO2, K2O, CaO, Al2O3, Fe2O3, MgO, Na2O, MnO, P2O5, SO3 and TiO2) from agriculture (media 1) and agriculture wastewaters drainage polluted with municipal wastewater (media 2). As a general description, the heavy metals and metal oxides were found at higher levels in the plant collected from media 1 than those in the plant collected from media 2. Similarly, these pollutants were found at higher levels in the plant roots than those in the plant shoots. The dielectric properties were investigated for the plant samples before (control) and after treating by microwave heating power. They were found at higher values in the control roots than those in the control shoots. Furthermore, the properties were found at relatively higher values in the control roots collected from media 1 (ε‧ = 13 at 103 Hz) than those in the control roots collected from media 2 (ε‧ = 9 at 103 Hz). The electrical conductivity of the microwave treated samples remarkably increased due to appearance of OH group through which the plant interacts with heavy metals. Accordingly, the pollutants removing ability could be enhanced upon treating the plant by microwave heating power. The plant-pollutant mixture behaves like highly conductive disordered polymers. The conductivity and dielectric properties of all plant samples are dominated by the media and concentration of pollutants.

  5. Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Mohseni, Hooman; Agahi, Massoud H.; Razeghi, Manijeh; Polisetti, Sneha; Baig, Nameera; Bible, Amber; Morrell-Falvey, Jennifer; Doktycz, Mitchel; Bohn, Paul W.

    2015-08-21

    Bacteria colonize plant roots to form a symbiotic relationship with the plant and can play in important role in promoting plant growth. Raman spectroscopy is a useful technique to study these bacterial systems and the chemical signals they utilize to interact with the plant. We present a Raman study of Pantoea YR343 that was isolated from the rhizosphere of Populus deltoides (Eastern Cottonwood). Pantoea sp. YR343 produce yellowish carotenoid pigment that play a role in protection against UV radiation, in the anti-oxidative pathways and in membrane fluidity. Raman spectroscopy is used to non-invasively characterize the membrane bound carotenoids. The spectra collected from a mutant strain created by knocking out the crtB gene that encodes a phytoene synthase responsible for early stage of carotenoid biosynthesis, lack the carotenoid peaks. Surface Enhanced Raman Spectroscopy is being employed to detect the plant phytoharmone indoleacetic acid that is synthesized by the bacteria. This work describes our recent progress towards utilizing Raman spectroscopy as a label free, non-destructive method of studying plant-bacteria interactions in the rhizosphere.

  6. Fluorescence spectroscopy

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2016-01-01

    Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses the foundati......Fluorescence spectroscopy is a powerful experimental tool used by scientists from many disciplines. During the last decades there have been important developments on distinct fluorescence methods, particularly those related to the study of biological phenomena. This chapter discusses...

  7. The utility of N-15 nuclear magnetic resonance spectroscopy for the study of natural products

    International Nuclear Information System (INIS)

    Randall, E.W.

    1978-01-01

    The utility of 15 N NMR spectroscopy for the study of natural products and the difficulties which must be overcome arte discussed. The widespread use of pulse Fourier techniques, decouplings, larger magnetic fields and large tube sizes allows a large number of 15 N studies of natural products, the more recent and important of these being peptides, nucleosides and nucleotides. Sites of protonation, tautomerism, sites of nitrosation and proton exchange behaviour for some of these natrual products have been studied. (A.G.)

  8. Time-resolved resonance fluorescence spectroscopy for study of chemical reactions in laser-induced plasmas.

    Science.gov (United States)

    Liu, Lei; Deng, Leimin; Fan, Lisha; Huang, Xi; Lu, Yao; Shen, Xiaokang; Jiang, Lan; Silvain, Jean-François; Lu, Yongfeng

    2017-10-30

    Identification of chemical intermediates and study of chemical reaction pathways and mechanisms in laser-induced plasmas are important for laser-ablated applications. Laser-induced breakdown spectroscopy (LIBS), as a promising spectroscopic technique, is efficient for elemental analyses but can only provide limited information about chemical products in laser-induced plasmas. In this work, time-resolved resonance fluorescence spectroscopy was studied as a promising tool for the study of chemical reactions in laser-induced plasmas. Resonance fluorescence excitation of diatomic aluminum monoxide (AlO) and triatomic dialuminum monoxide (Al 2 O) was used to identify these chemical intermediates. Time-resolved fluorescence spectra of AlO and Al 2 O were used to observe the temporal evolution in laser-induced Al plasmas and to study their formation in the Al-O 2 chemistry in air.

  9. Study of the hydroxyl radical: Experimental advances in microwave spectroscopy, theoretical model and astrophysical consequences

    International Nuclear Information System (INIS)

    Destombes, Jean-Luc

    1978-01-01

    This research thesis mainly addresses the experimental and theoretical study of the hydroxyl radical, and the consequences of the obtained results in astrophysics which are studied with a model of pumping by the far infrared. After a recall of notions related to microwave spectroscopy and to molecular radio-astronomy, the author more particularly discusses different aspects of microwave spectroscopy in the interstellar environment and in laboratory. He also reviews different types of spectrometers for unsteady molecules. In the second part, he addresses issues related to the hydroxyl radical (OH): presentation of spectrometers, study of the reaction environment, study of the radical microwave spectrum, identification of transitions by frequency measurements. In the last parts, the author addresses some aspects of interstellar OH masers, and reports the application of some results to simple models of pumping by the far infra red

  10. UV-Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature programmed desorption studies of model and bulk heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tewell, Craig Richmond [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) and Temperature Programmed Desorption (TPD) have been used to investigate the surface structure of model heterogeneous catalysts in ultra-high vacuum (UHV). UV-Raman spectroscopy has been used to probe the structure of bulk model catalysts in ambient and reaction conditions. The structural information obtained through UV-Raman spectroscopy has been correlated with both the UHV surface analysis and reaction results. The present day propylene and ethylene polymerization catalysts (Ziegler-Natta catalysts) are prepared by deposition of TiCl4 and a Al(Et)3 co-catalyst on a microporous Mg-ethoxide support that is prepared from MgCl2 and ethanol. A model thin film catalyst is prepared by depositing metallic Mg on a Au foil in a UHV chamber in a background of TiCl4 in the gas phase. XPS results indicate that the Mg is completely oxidized to MgCl2 by TiCl4 resulting in a thin film of MgCl2/TiClx, where x = 2, 3, and 4. To prepare an active catalyst, the thin film of MgCl2/TiClx on Au foil is enclosed in a high pressure cell contained within the UHV chamber and exposed to ~1 Torr of Al(Et)3.

  11. Windowing of THz time-domain spectroscopy signals: A study based on lactose

    Science.gov (United States)

    Vázquez-Cabo, José; Chamorro-Posada, Pedro; Fraile-Peláez, Francisco Javier; Rubiños-López, Óscar; López-Santos, José María; Martín-Ramos, Pablo

    2016-05-01

    Time-domain spectroscopy has established itself as a reference method for determining material parameters in the terahertz spectral range. This procedure requires the processing of the measured time-domain signals in order to estimate the spectral data. In this work, we present a thorough study of the properties of the signal windowing, a step previous to the parameter extraction algorithm, that permits to improve the accuracy of the results. Lactose has been used as sample material in the study.

  12. Studying phase structure of burned ferrous manganese ores by method of nuclear gamma-resonance spectroscopy

    OpenAIRE

    Shayakhmetov, B.; Issagulov, A.; Baisanov, A.; Karakeyeva, G.; Issagulovа, D.

    2014-01-01

    In the given article there are presented the results of studying the phase structure of burned ferrous manganese ores of Zhomart and Zapadny Kamys deposits of by the method of Mossbauer spectroscopy. There is established a variety of iron location forms in the studied materials and their quantitative content that allows to define the degree of completing regenerative processes at magnetizing roasting, and also the processes of formation of solid solutions (Fe1-XMX3O4 and stabilization of Fe1-...

  13. Gender-related asymmetric brain vasomotor response to color stimulation: a functional transcranial Doppler spectroscopy study

    OpenAIRE

    Njemanze Philip C

    2010-01-01

    Abstract Background and Purpose The present study was designed to examine the effects of color stimulation on cerebral blood mean flow velocity (MFV) in men and women. Methods The study included 16 (8 men and 8 women) right-handed healthy subjects. The MFV was recorded simultaneously in both right and left middle cerebral arteries in Dark and white Light conditions, and during color (Blue, Yellow and Red) stimulations, and was analyzed using functional transcranial Doppler spectroscopy (fTCDS...

  14. Study of High Temperature Superconductors with Angle-Resolved Photoemission Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2003-05-13

    The Angle Resolved Photoemission Spectroscopy (ARPES) recently emerged as a powerful tool for the study of highly correlated materials. This thesis describes the new generation of ARPES experiment, based on the third generation synchrotron radiation source and utilizing very high resolution electron energy and momentum analyzer. This new setup is used to study the physics of high temperature superconductors. New results on the Fermi surfaces, dispersions, scattering rate and superconducting gap in high temperature superconductors are presented.

  15. Photochromism of Composite Organometallic Nanostructures Based on Diarylethenes. II. Vibrational Spectroscopy and Quantum Chemistry Studies

    Science.gov (United States)

    Vasilyuk, G. T.; Askirka, V. F.; Lavysh, A. V.; Kurguzenkov, S. A.; Yasinskii, V. M.; Kobeleva, O. I.; Valova, T. M.; Ayt, A. O.; Barachevsky, V. A.; Yarovenko, V. N.; Krayushkin, M. M.; Maskevich, S. A.

    2017-11-01

    The structure and photochromic transformations of nanostructured organometallic composites consisting of Ag nanoparticles with shells of photochromic diarylethenes (DAEs) deposited from various solutions onto the nanoparticles were studied using infrared absorption and surface enhanced Raman scattering (SERS) vibrational spectroscopy and quantum chemistry. The studied nanostructures exhibited photochromic properties manifested as reversible photoinduced changes of the relative intensities of SERS bands related to vibrations of bonds participating in the reversible photoisomerization. Spectral manifestations of chemical interaction between metal nanoparticles and DAE molecules were detected.

  16. 14N NMR Spectroscopy Study of Binding Interaction between Sodium Azide and Hydrated Fullerene

    Directory of Open Access Journals (Sweden)

    Tamar Chachibaia

    2017-04-01

    Full Text Available Our study is the first attempt to study the interaction between NaN3 and hydrated fullerenes C60 by means of a non-chemical reaction-based approach. The aim is to study deviations of signals obtained by 14N NMR spectroscopy to detect the binding interaction between sodium azide and hydrated fullerene. We considered 14N NMR spectroscopy as one of the most suitable methods for the characterization of azides to show resonance signals corresponding to the three non-equivalent nitrogen atoms. The results demonstrate that there are changes in the chemical shift positions and line-broadening, which are related to the different molar ratios of NaN3:C60 in the samples.

  17. Study of polonium isotopes ground state properties by simultaneous atomic- and nuclear-spectroscopy

    CERN Multimedia

    Koester, U H; Kalaninova, Z; Imai, N

    2007-01-01

    We propose to systematically study the ground state properties of neutron deficient $^{192-200}$Po isotopes by means of in-source laser spectroscopy using the ISOLDE laser ion source coupled with nuclear spectroscopy at the detection setup as successfully done before by this collaboration with neutron deficient lead isotopes. The study of the change in mean square charge radii along the polonium isotope chain will give an insight into shape coexistence above the mid-shell N = 104 and above the closed shell Z = 82. The hyperfine structure of the odd isotopes will also allow determination of the nuclear spin and the magnetic moment of the ground state and of any identifiable isomer state. For this study, a standard UC$_{x}$ target with the ISOLDE RILIS is required for 38 shifts.

  18. $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with radioactive At beams

    CERN Multimedia

    We propose to study the $\\beta$-delayed fission, laser spectroscopy and radioactive decay of the newly available pure beams of neutron-deficient and neutron-rich astatine (Z=85) isotopes. The fission probability and the fission fragment distribution of the even-even isotopes $^{194,196}$Po following the $\\beta$-decay of the isotopes $^{194,196}$At will be studied with the Windmill setup. In-source laser spectroscopy will be performed on the entire astatine isotopic chain, using a combination of the Windmill setup, ISOLTRAP MR-ToF and ISOLDE Faraday. Radioactive decay data will be acquired at the Windmill setup throughout those studies and contribute to the global understanding of the phenomenon of shape coexistence in the neutron-deficient lead region.

  19. An X-ray photoelectron spectroscopy study of uranyl-chitosan interaction

    Directory of Open Access Journals (Sweden)

    Veleshko Alexander N.

    2008-01-01

    Full Text Available An X-ray photoelectron spectroscopy study of uranium sorption by spherically-granulated chitosan in sulphate solutions, as well as the study of the nature of the U(VI - chitosan interaction was carried out in this work. The X-ray photoelectron spectroscopy analysis showed that the uranyl - chitosan interaction results in the formation of complexes with aminogroup nitrogen, and possibly chitin ring oxygens and free hydroxyl groups in the equatorial plane. Under the UHV in the spectrometer chamber, the uranyl-amin and uranyl-hyroxide bonds were shown to break and tetravalent uranium compounds were shown to form on the sample surface. Hydroxyl groups were shown to evaporate. The calculated DG0 = -1,3 kJ/mol can be an evidence of several concurrent processes, some of which require energy, as well as of the formation of a surface chemical compound.

  20. Production of photofission fragments and study of their nuclear structure by laser spectroscopy

    International Nuclear Information System (INIS)

    Gangrskij, Yu.P.; Zemlyanoj, S.G.; Karaivanov, D.V.; Marinova, K.P.; Markov, B.N.; Mel'nikova, L.M.; Myshinskij, G.V.; Penionzhkevich, Yu.Eh.; Zhemenik, V.I.

    2005-01-01

    The prospective nuclear structure investigations of the fission fragments by resonance laser spectroscopy methods are discussed. Research in this field is currently being carried out as part of the DRIBs project, which is under development at the Laboratory of Nuclear Reactions, JINR. The fission fragments under study are mainly very neutron-rich nuclei near the proton (Z=50) and neutron (N=50 and 82) closed shells, nuclei in the region of strong deformation (N>60 and N>90) and nuclei with high-spin isomeric states. Resonance laser spectroscopy is used successfully in the study of the structure of such nuclei. It allows one to determine a number of nuclear parameters (mean-square charge radius, magnetic dipole and electric quadrupole moments) and to make conclusions about the collective and single particle properties of the nuclei

  1. Tetrairon(III) Single Molecule Magnet Studied by Scanning Tunneling Microscopy and Spectroscopy

    Science.gov (United States)

    Oh, Youngtek; Jeong, Hogyun; Lee, Minjun; Kwon, Jeonghoon; Yu, Jaejun; Mamun, Shariful Islam; Gupta, Gajendra; Kim, Jinkwon; Kuk, Young

    2011-03-01

    Tetrairon(III) single-molecule magnet (SMM) on a clean Au(111) has studied using scanning tunneling microscopy (STM) and spectroscopy (STS) to understand quantum mechanical tunneling of magnetization and hysteresis of pure molecular origin. Before the STM studies, elemental analysis, proton nuclear magnetic resonance (NMR) measurement and Energy Dispersive X- ray Spectroscopy (EDS) were carried out to check the robustness of the sample. The STM image of this molecule shows a hexagonal shape, with a phenyl ring at the center and surrounding six dipivaloylmethane ligands. Two peaks are observed at 0.5 eV, 1.5 eV in the STS results, agreeing well with the first principles calculations. Spin-polarized scanning tunneling microscopy (SPSTM) measurements have been performed with a magnetic tip to get the magnetization image of the SMM. We could observe the antiferromagnetic coupling and a centered- triangular topology with six alkoxo bridges inside the molecule while applying external magnetic fields.

  2. Study of anodic dissolution of Fe-Ru alloy with the aid of mossbauer spectroscopy

    International Nuclear Information System (INIS)

    Khlystov, A.S.; Fasman, A.B.; Kil'dibekova, G.A.

    1986-01-01

    This paper uses Fe 57 Mossbauer spectroscopy, whereby iron compounds may be identified quantitatively and their composition and structure can be determined, for the study of the relationships of slime formation from Fe-Ru binary alloys. Both the products of dissolution and the composition and state of intermediate phases formed at various stages of anodic dissolution were studied simultaneously. It was found that the slimes formed both during chemical and during electrochemical destruction of ruthenium-iron alloys are finely dispersed systems of complex composition, analogous to those formed in the course of electrochemical dissolution of Ni-Ru alloys, which were found to contain oxide phases of ruthenium (by x-ray spectroscopy and ESCA) and of nickel (by x-ray phase analysis). The difference between the slime compositions is determined mainly by kinetic factors

  3. Studying the Interstellar Medium of H II/BCD Galaxies Using IFU Spectroscopy

    Directory of Open Access Journals (Sweden)

    Patricio Lagos

    2013-01-01

    Full Text Available We review the results from our studies, and previous published work, on the spatially resolved physical properties of a sample of H ii/BCD galaxies, as obtained mainly from integral-field unit spectroscopy with Gemini/GMOS and VLT/VIMOS. We confirm that, within observational uncertainties, our sample galaxies show nearly spatially constant chemical abundances similar to other low-mass starburst galaxies. They also show He ii  λ4686 emission with the properties being suggestive of a mix of excitation sources and with Wolf-Rayet stars being excluded as the primary ones. Finally, in this contribution, we include a list of all H ii/BCD galaxies studied thus far with integral-field unit spectroscopy.

  4. A study of Raman spectroscopy for the early detection and classification of malignancy in oesophageal tissue

    CERN Document Server

    Kendall, C A

    2002-01-01

    Raman Spectroscopy for the identification and classification of malignancy in the oesophagus has been demonstrated in this thesis. The potential of Raman spectroscopy in this field is twofold; as an adjunct for the pathologist and as a biopsy targeting tool at endoscopy. This study has demonstrated the feasibility of these potential applications in vitro. Spectral diagnostic models have been developed by correlating spectral information with histopathology. This is the current 'gold standard' diagnostic method for the identification of dysplasia, the established risk factor for the development of oesophageal cancer. Histopathology is a subjective assessment and widely acknowledged to have limitations. A more rigorous gold standard was therefore developed, as part of this study, using the consensus opinion of three independent expert pathologists to train the diagnostic models. Raman spectra have been measured from oesophageal tissue covering the full spectrum of malignant disease in the oesophagus, using a ne...

  5. Oxidation of municipal wastewater by free radicals mechanism. A UV/Vis spectroscopy study.

    Science.gov (United States)

    Giannakopoulos, E; Isari, E; Bourikas, K; Karapanagioti, H K; Psarras, G; Oron, G; Kalavrouziotis, I K

    2017-06-15

    This study investigates the oxidation of municipal wastewater (WW) by complexation with natural polyphenols having radical scavenging activity, such as (3,4,5 tri-hydroxy-benzoic acid) gallic acid (GA) in alkaline pH (>7), under ambient O 2 and temperature. Physicochemical and structural characteristics of GA-WW complex-forming are evaluated by UV/Vis spectroscopy. The comparative analysis among UV/Vis spectra of GA monomer, GA-GA polymer, WW compounds, and GA-WW complex reveals significant differences within 350-450 and 500-900 nm. According to attenuated total reflectance (ATR) spectroscopy and thermogravimetric analysis (TGA), these spectra differences correspond to distinct complexes formed. This study suggests a novel role of natural polyphenols on the degradation and humification of wastes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. I–V, C–V and deep level transient spectroscopy study of 24 MeV ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 74; Issue 1. –, – and deep level transient spectroscopy study of 24 MeV ... Keywords. Bipolar junction transistor; gain degradation; – and – characteristics; deep level transient spectroscopy; deep level defects; Shockley–Read–Hall recombination.

  7. Charge Carrier Dynamics in Transition Metal Oxides Studied by Femtosecond Transient Extreme Ultraviolet Absorption Spectroscopy

    OpenAIRE

    Jiang, Chang-Ming

    2015-01-01

    With the ability to disentangle electronic transitions that occur on different elements and local electronic structures, time-resolved extreme ultraviolet (XUV) spectroscopy has emerged as a powerful tool for studying ultrafast dynamics in condensed phase systems. In this dissertation, a visible-pump/XUV-probe transient absorption apparatus with femtosecond resolution was constructed to investigate the carrier relaxation dynamics in semiconductors after photo-excitation. This includes timesca...

  8. Hyperfine interactions of 57Fe implanted in solids studied by conversion electron Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Sawicka, B.D.

    1978-01-01

    The hyperfine interactions of stable 57 Fe nuclei implanted in various matrices were studied using conversion electron Moessbauer spectroscopy. The results obtained for 57 Fe implanted in aluminium in d-metals in silicon and germanium are presented. The properties of the implantation produced materials and the lattice location of iron impurities are discussed. The information concerning the volume dependence of the hyperfine interactions and the origin of the electric field gradients in solids were obtained. (author)

  9. Phase Transition in Trans and Cis-1,2-Cyclohexanediol Studied by Infrared Spectroscopy

    OpenAIRE

    Leitão, M.; Nobre, C.; Jesus, J.; Redinha, J.

    1999-01-01

    Abstract The study of trans- and cis-1,2-cyclohexanediol by infrared spectroscopy was performed. The variation of the maximum frequency and of the bandwidth of the OH stretching vibration give evidence of the role played by hydrogen bonding in the solid and liquid phases of both isomers and allows to follow the phase transitions. A solid rotator phase is shown for the cis compound. http://dx.doi.org/10.1023/A:1010124928198

  10. Study of carvedilol by combined Raman spectroscopy and ab initio MO calculations

    OpenAIRE

    Marques, M. P. M.; Oliveira, P. J.; Moreno, A. J. M.; Carvalho, L. A. E. Batista de

    2002-01-01

    The novel cardioprotective drug carvedilol was studied by both Raman spectroscopy and ab initio molecular orbital methods (using the density functional theory approach). The spectra, acquired both for the solid samples and DMSO solutions as a function of pH, were assigned in view of the calculated wavenumbers and intensities, and also based on the experimental data obtained for individual compounds which comprise the molecule, namely carbazole and 1,2-dimethoxybenzene. The pH dependence of th...

  11. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  12. Impedance spectroscopy studies on (Na0. 5Bi0. 5) 0. 94Ba0 ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Impedance spectroscopy studies on (Na0.5Bi0.5)0.94Ba0.06TiO3 + 0.3 wt% Sm2O3 + 0.25 wt% LiF lead-free piezoelectric ceramics. N Zidi A Chaouchi S D'Astorg M Rguiti C Courtois. Volume 38 Issue 3 June 2015 pp 731-737 ...

  13. Laser assisted nuclear decay spectroscopy: A new method for studying neutron-deficient francium

    CERN Document Server

    Lynch, Kara Marie

    2015-01-01

    Radioactive decay studies of rare isotopes produced at radioactive ion beam facilities have often been hindered by the presence of isobaric and isomeric contamination. The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN uses laser radiation to stepwise excite and ionize an atomic beam in a particular isomeric state. Deflection of this selectively ionized beam of exotic nuclei, from the remaining neutral contaminants, allows ultra-sensitive detection of rare isotopes and nuclear structure measurements in background-free conditions.\

  14. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    Energy Technology Data Exchange (ETDEWEB)

    Morgen, Michael Mark [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  15. Infrared spectroscopy for studying structure and aging effects in rhamnolipid biosurfactants

    OpenAIRE

    Kiefer, Johannes; Radzuan, Mohd Nazren; Winterburn, James

    2017-01-01

    Biosurfactants are produced by microorganisms and represent amphiphilic compounds with polar and non-polar moieties; hence they can be used to stabilize emulsions, e.g. in the cosmetic and food sectors. Their structure and its changes when exposed to light and elevated temperature are yet to be fully understood. In this study, we demonstrate that attenuated total reflection infrared (ATR-IR) spectroscopy is a useful tool for the analysis of biosurfactants, using rhamnolipids produced by ferme...

  16. Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion.

    Science.gov (United States)

    Hao, Fang; Jing, Mingyang; Zhao, Xingchen; Liu, Rutao

    2015-02-01

    In this research, the binding mechanism of Cu(2+) to bovine liver catalase (BLC) was studied by fluorescence spectroscopy, ultraviolet-visible (UV-vis) absorption spectroscopy, circular dichroism (CD) spectroscopy, isothermal titration calorimetry (ITC) and molecular docking methods. The cellar experiment was firstly carried out to investigate the inhibition effect of catalase. During the fluorescence quenching study, after correcting the inner filter effect (IFE), the fluorescence of BLC was found to be quenched by Cu(2+). The quenching mechanism was determined by fluorescence lifetime measurement, and was confirmed to be the dynamic mode. The secondary structure content of BLC was changed by the addition of Cu(2+), as revealed by UV-vis absorption and CD spectra, which further induces the decrease in BLC activity. Molecular simulation study indicates that Cu(2+) is located between two β-sheets and two random coils of BLC near to the heme group, and interacts with His 74 and Ser 113 residues near a hydrophilic area. The decrease of α-helix and the binding of His 74 are considered to be the major reason for the inhibition of BLC activity caused by Cu(2+). The ITC results indicate that the binding stoichiometry of Cu(2+) to catalase is 11.4. Moreover, the binding of Cu(2+) to BLC destroyed H-bonds, which was confirmed by the CD result. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Application of Vibrational Spectroscopy to Study Solid-state Transformations of Pharmaceuticals.

    Science.gov (United States)

    Erxleben, Andrea

    2016-01-01

    Understanding the properties, stability and transformations of the solid-state forms of an active pharmaceutical ingredient (API) in the development pipeline is of crucial importance for process-development, formulation development and FDA approval. Investigation of the polymorphism and polymorphic stability is a routine part of the preformulation studies. Vibrational spectroscopy allows the real-time in situ monitoring of phase transformations and probes intermolecular interactions between API molecules, between API and polymer in amorphous solid dispersions or between API and coformer in cocrystals or coamorphous systems and thus plays a major role in efforts to gain a predictive understanding of the relative stability of solid-state forms and formulations. Infrared (IR), near-infrared (NIR) and Raman spectroscopies, alone or in combination with other analytical methods, are important tools for studying transformations between different crystalline forms, between the crystalline and amorphous form, between hydrate and anhydrous form and for investigating solid-state cocrystal formation. The development of simple-to-use and cost-effective instruments on the one hand and recent technological advances such as access to the low-frequency Raman range down to 5 cm-1, on the other, have led to an exponential growth of the literature in the field. This review discusses the application of IR, NIR and Raman spectroscopies in the study of solid-state transformations with a focus on the literature published over the last eight years.

  18. Raman spectroscopy of bio fluids: an exploratory study for oral cancer detection

    Science.gov (United States)

    Brindha, Elumalai; Rajasekaran, Ramu; Aruna, Prakasarao; Koteeswaran, Dornadula; Ganesan, Singaravelu

    2016-03-01

    ion for various disease diagnosis including cancers. Oral cancer is one of the most common cancers in India and it accounts for one third of the global oral cancer burden. Raman spectroscopy of tissues has gained much attention in the diagnostic oncology, as it provides unique spectral signature corresponding to metabolic alterations under different pathological conditions and micro-environment. Based on these, several studies have been reported on the use of Raman spectroscopy in the discrimination of diseased conditions from their normal counterpart at cellular and tissue level but only limited studies were available on bio-fluids. Recently, optical characterization of bio-fluids has also geared up for biomarker identification in the disease diagnosis. In this context, an attempt was made to study the metabolic variations in the blood, urine and saliva of oral cancer patients and normal subjects using Raman spectroscopy. Principal Component based Linear Discriminant Analysis (PC-LDA) followed by Leave-One-Out Cross-Validation (LOOCV) was employed to find the statistical significance of the present technique in discriminating the malignant conditions from normal subjects.

  19. Electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanized steel and electroplating steel

    Energy Technology Data Exchange (ETDEWEB)

    Lebrini, M., E-mail: mlebrini@yahoo.fr [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, M. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Gengembre, L. [Unite de Catalyse et Chimie du solide UMR 8181 Bat C3, USTL, F-59655, Villeneuve d' Ascq Cedex (France); Fontaine, G. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF-LSPES UMR CNRS 8008, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Lerasle, O.; Genet, N. [TOTAL France, Centre de Recherche de Solaize, Chemin du canal, BP 22, F-69360 Solaize (France)

    2011-02-01

    The efficiency of a formula containing 2-{l_brace}(2-hydroxyethyl)[(4-methyl-1H-1,2,3-benzotriazol-1-yl)methyl] amino{r_brace}ethanol (tolyltriazole) and decanoic acid as corrosion inhibitor for galvanized steel and electroplating steel in aqueous solution have been determined by electrochemical impedance spectroscopy (EIS) techniques. The experimental data obtained from this method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The corrosion behaviour in the presence of different concentration of decanoic acid (DA) in the formula was also investigated by EIS. Results obtained reveal that, the formula is a good inhibitor for galvanized steel and electroplating steel in aqueous solution, the better performance was obtained in the case of galvanized steel. The ability of the inhibitor to be adsorbed on the surface was dependent on the nature of metal. X-ray photoelectron spectroscopy surface analysis with inhibitor shows that it's chemisorbed at the galvanized and electroplating steel/aqueous solution interface.

  20. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  1. Verifying of endocrine disruptor chemical affect to the mouse testes: can raman spectroscopy support histology study?

    Science.gov (United States)

    Andriana, Bibin B.; Oshima, Yusuke; Takanezawa, Sota; Tay, Tat W.; Rosawati Soeratman, Catherine Linda; Alam, Mohammad S.; Mitsuoka, Hiroki; Zhu, Xiao B.; Suzuki, Toshiaki; Yamamoto, Yuko S.; Tsunekawa, Naoki; Kanai, Yoshiakira; Kurohmaru, Masamichi; Sato, Hidetoshi

    2009-02-01

    One of suspect environmental endocrine disruptors that affect mouse male reproduction by altering the morphology of Sertoli cells and spermatogenic cells is phthalate. The effects of mono(2-ethylhexyl)phthalate (MEHP), one of metabolites of di(2-ethylhexyl)phthalate , on immature mouse testes in vivo were examined. We have recently shown that MEHP induced Sertoli cells necrosis and spermatogenic cells apoptosis in mice by TUNEL method, F-actin staining, and ultrastructural study, but there is no data for biochemical changing of testes due to those methods could not explore. To verify in detail of it, we conducted Raman spectroscopy study with 785 nm wavelength laser line, 50mW of laser power and 3 minutes of exposure time to analysis the MEHP-treated testicular tissue, which has been fixatived by 4% paraformaldehyde (PFA). Five weeks old (5 w.o) male mice were used in this experiment. As the results, the alterations were observed by Raman spectroscopy that there are significantly differences of DNA, actin filament, type IV collagen and amide I between control group (0 μM MEHP) and treatment group (100 μM MEHP). These results significantly support histology staining observation (such as the apoptotic spermatogenic cells which is associated with DNA fragmentation and F-actin disruption) and ultrastructural observation (such as mitochondria rupture and disintegration of nucleus membrane). Raman spectroscopy can be used for 4% PFA-fixatived tissue observation. However, we recommend that Raman spectroscopy may be able to be expanded as an armamentarium not just for the clarification of histology staining and ultrastructural study, but furthermore, it may be as a non-invasion assessment for screening animal tissue toxicity of chemical in future.

  2. Study of iron valence state and position in sub-site by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Lim, Jae Cheong; KIm, Chul Sung; Son, Kwang Jae

    2014-01-01

    The magnetic ordering temperature and the magnitude of the magnetic fields at the iron sites of YIG can be influenced by substituting, either partially or totally, the Fe 3+ ions at the octahedral and/or the tetrahedral sites with magnetic or diamagnetic ions, and/or by substitution the Y 3+ ions at the dodecahedral sites with magnetic rare earth ions. It has been known for some time that Moessbauer spectroscopy is a powerful method by which iron-containing garnets can be studied. We report here on the synthesis of the compounds with garnet-related structures of composition Y 3 Fe 4.5 Cr 0.5 O 12 and its examination by 57 Fe Moessbauer spectroscopy. The chromium in compounds of the Y 3 Fe 4.5 Cr 0.5 O 12 is distributed at an octahedral site. The Moessbauer spectra can be analyzed using 3 or 4 sets of six Lorentzians with increasing amount of Cr 3+ compounds in this system. It results from the distribution ( 4 C n ) of Fe 3+ and Cr 3+ at an octahedral site. A comparative study of ferrous tablets of Dynabi was carried out using Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe 2+ ) gluconate and ferrous fumarate in a sample. This observation is important to better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron. The Cr-containing yttrium iron garnet (YIG), and the exchange interactions and site distributions were studied using 57 Fe Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe 2+ ) gluconate and ferrous fumarate in the sample. This observation is important better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron

  3. Impact of UV-irradiation on electrical impedance spectroscopy of benign nevi: study protocol for a prospective, controlled, clinical study.

    Science.gov (United States)

    Fink, Christine; Schweizer, Anissa; Uhlmann, Lorenz; Haenssle, Holger A

    2017-11-08

    The clinical and histological changes of nevi after ultraviolet (UV) irradiation have been studied in detail. In contrast, the impact of UV irradiation on electrical impedance spectroscopy scores of nevi has not been investigated. However, for physicians, it is essential to know the extent to which changes in electrical impedance spectroscopy scores of nevi may be attributed to seasonal effects of UV irradiation. This is a prospective, controlled, clinical study evaluating the impact of UV irradiation on the electrical impedance spectroscopy scores of benign nevi in 50 patients undergoing phototherapy. To this end, benign nevi of patients with a medical indication for phototherapy will be measured by electrical impedance spectroscopy before, during and after UV irradiation. At the same time, non-irradiated nevi of the same patient will be measured to account for changes over time that are independent of direct UV irradiation. Ethical approval was obtained from the ethics committee of the medical faculty of the University of Heidelberg (ethics approval number S-279/2017). The design and the final results of the study will be published and made available to the public. DRKS00012456; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Raman Micro-spectroscopy Study of Healthy and Burned Biological Tissue

    Science.gov (United States)

    Zarnani, Faranak; Glosser, Robert; Idris, Ahamed

    2011-10-01

    Burn injuries are a significant medical problem, and need to be treated quickly and precisely. Burned skin needs to be removed early, within hours (less than 24 hrs) of injury, when the margins of the burn are still hard to define. Studies show that treating and excising burn wounds soon after the injury prevents the wound from becoming deeper, reduces the release of proinflammatory mediators, and reduces or prevents the systemic inflammatory reaction syndrome. Also, removing burned skin prepares the affected region for skin grafting. Raman micro-spectroscopy could be used as an objective diagnostic method that will assist burn surgeons in distinguishing unburned from burned areas. As a first step in developing a diagnostic tool, we present Raman micro-spectroscopy information from normal and burned ex vivo rat skin.

  5. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Southworth, S.H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H 2 and D 2 , and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  6. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes...... and differences in these cells lines utilizing FTIR spectroscopy. We have used the chemometrical and statistical method principal component analysis (PCA) to investigate the spectral differences. We have been able to identify certain bands in the spectra which are so-called biomarkers for two types of cell lines......, three groups for the 5637 human bladder carcinoma cell line (5637A, 5637B and 5637C), and another one for the HeLa human cervix carcinoma cell line. The vibrational modes can be assigned to specific bands involving characteristic motions of the protein backbone. This work shows that infrared vibrational...

  7. A study on N2O measurement characteristics using photoacoustic spectroscopy (PAS).

    Science.gov (United States)

    Kang, Soyoung; Kim, Seoungjin; Kang, Seongmin; Lee, Jeongwoo; Cho, Chang-Sang; Sa, Jea-Hwan; Jeon, Eui-Chan

    2014-08-07

    N2O, which is emitted mainly from nitrogen decomposition via bacteria, livestock manure, agricultural fertilizer use, fossil fuel combustion and waste incineration, is classified as a substance that causes significant destruction of the ozone layer. The N2O measurement methods for these emission sources may be divided into chromatography, optical, and electrical current measurements. Chromatography has been widely utilized for analyzing N2O. However, up until now, few studies have been conducted on N2O using photoacoustic spectroscopy. Therefore, this study aimed to evaluate performance of photoacoustic spectroscopy in this regard based on laboratory and field test results. The repeatability of photoacoustic spectroscopy was measured at 1.12%, which is lower than the repeatability of 3.0% suggested by the ISO 1564 standard, so, it has shown an excellent repeatability. The detection limit was determined to be 0.025 ppm, and the response time was confirmed to be 3 min and 26 s. The results of comparison between these measurements and GC show that the latter has superior accuracy, but mobility and convenience are superior for PAS. On the contrary, GC has a continuous measurement limitation, but PAS makes it possible to conduct continuous measurements. Therefore, PAS can be extremely useful to confirm the characteristics of N2O emissions and to quantify their amount.

  8. A Study on N2O Measurement Characteristics Using Photoacoustic Spectroscopy (PAS

    Directory of Open Access Journals (Sweden)

    Soyoung Kang

    2014-08-01

    Full Text Available N2O, which is emitted mainly from nitrogen decomposition via bacteria, livestock manure, agricultural fertilizer use, fossil fuel combustion and waste incineration, is classified as a substance that causes significant destruction of the ozone layer. The N2O measurement methods for these emission sources may be divided into chromatography, optical, and electrical current measurements. Chromatography has been widely utilized for analyzing N2O. However, up until now, few studies have been conducted on N2O using photoacoustic spectroscopy. Therefore, this study aimed to evaluate performance of photoacoustic spectroscopy in this regard based on laboratory and field test results. The repeatability of photoacoustic spectroscopy was measured at 1.12%, which is lower than the repeatability of 3.0% suggested by the ISO 1564 standard, so, it has shown an excellent repeatability. The detection limit was determined to be 0.025 ppm, and the response time was confirmed to be 3 min and 26 s. The results of comparison between these measurements and GC show that the latter has superior accuracy, but mobility and convenience are superior for PAS. On the contrary, GC has a continuous measurement limitation, but PAS makes it possible to conduct continuous measurements. Therefore, PAS can be extremely useful to confirm the characteristics of N2O emissions and to quantify their amount.

  9. Vibrational spectroscopy studies of structural changes in lignin under microwave irradiation

    Science.gov (United States)

    Arapova, O. V.; Bondarenko, G. N.; Chistyakov, A. V.; Tsodikov, M. V.

    2017-09-01

    Structural changes that occur in lignin surface-modified with nickel nanoparticles during microwave- assisted dry reforming (DR) are studied via vibrational spectroscopy. IR spectroscopy reveals that the nickel deposition has a considerable effect on the structural characteristics of lignin. It is found that nickel deposition from an acetate salt substantially reduces the intensity of absorption bands at 1700 cm-1. This finding suggests that Ni(2+) interacts mostly with formate groups, which are subsequently oxidized to carboxylate groups. It is shown that with the deposition of metallic nickel particles from a colloidal nickel solution in toluene prepared via metal vapor synthesis, the nickel particles do not interact with the surface functional groups of the lignin. Deep conversion of an organic mass of lignin by DR to form synthesis gas reduces the intensity of the absorption bands of the identified functional groups and raises the intensity of the absorption bands of the aromatic rings. Raman spectroscopy shows that during lignin conversion, the aromatic rings condense partially to form amorphized graphite. In operando studies reveal that the DR of nickel-modified lignin heated to 200-400°C results in the isolation of vanillic oxygenates that are probably intermediate products of reforming.

  10. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  11. Study of the Neutron Deficient Pb and Bi Isotopes by Simultaneous Atomic- and Nuclear-Spectroscopy

    CERN Multimedia

    Kessler, T

    2002-01-01

    We propose to study systematically nuclear properties of the neutron deficient lead $^{183-189}$Pb, $^{191g}$Pb, $^{193g}$Pb and bismuth isotopes $^{188-200}$Bi by atomic spectroscopy with the ISOLDE resonance ionisation laser ion source (RILIS) combined with simultaneous nuclear spectroscopy at the detection set-up. The main focus is the determination of the mean square charge radii of $^{183-190}$Pb and $^{188-193}$Bi from which the influence of low-lying intruder states should become obvious. Also the nuclear spin and magnetic moments of ground-states and long-lived isomers will be determined unambiguously through evaluation of the hyperfine structure, and new isomers could be discovered. The decay properties of these nuclei can be measured by $\\alpha$-$\\gamma$ and $\\beta$-$\\gamma$ spectroscopy. With this data at hand, possible shape transitions around mid-shell at N$\\sim$104 will be studied. This data is crucial for the direct test of nuclear theory in the context of intruder state influence (e.g. energy ...

  12. Ultrafast Internal Conversion of Aromatic Molecules Studied by Photoelectron Spectroscopy using Sub-20 fs Laser Pulses

    Directory of Open Access Journals (Sweden)

    Toshinori Suzuki

    2014-02-01

    Full Text Available This article describes our recent experimental studies on internal conversion via a conical intersection using photoelectron spectroscopy. Ultrafast S2(ππ*–S1(nπ* internal conversion in pyrazine is observed in real time using sub-20 fs deep ultraviolet pulses (264 and 198 nm. While the photoelectron kinetic energy distribution does not exhibit a clear signature of internal conversion, the photoelectron angular anisotropy unambiguously reveals the sudden change of electron configuration upon internal conversion. An explanation is presented as to why these two observables have different sensitivities to internal conversion. The 198 nm probe photon energy is insufficient for covering the entire Franck-Condon envelopes upon photoionization from S2/S1 to D1/D0. A vacuum ultraviolet free electron laser (SCSS producing 161 nm radiation is employed to solve this problem, while its pulse-to-pulse timing jitter limits the time resolution to about 1 ps. The S2–S1 internal conversion is revisited using the sub-20 fs 159 nm pulse created by filamentation four-wave mixing. Conical intersections between D1(π−1 and D0(n−1 and also between the Rydberg state with a D1 ion core and that with a D0 ion core of pyrazine are studied by He(I photoelectron spectroscopy, pulsed field ionization photoelectron spectroscopy and one-color resonance-enhanced multiphoton ionization spectroscopy. Finally, ultrafast S2(ππ*–S1(ππ* internal conversion in benzene and toluene are compared with pyrazine.

  13. Study of the stepwise oxidation and nitridation of Si(111): Electron stimulated desorption, Auger spectroscopy, and electron loss spectroscopy

    International Nuclear Information System (INIS)

    Knotek, M.L.; Houston, J.E.

    1983-01-01

    Electron stimulated desorption, Auger line shape analysis, and electron loss spectroscopy measurements are reported for the electron activated stepwise oxidation and nitridation of the Si(111) surface. In ESD it is found that appreciable levels of surface hydrogen can be present which can lead to hydroxyl formation upon oxidation. The hydroxyl rich films are unstable in an electron beam, while surfaces oxidized with activated oxygen, where no OH is formed, are much more stable. The nitrided films are always stable in the electron beam even though there too hydrogen is always found. On the OH-free oxide, ESD shows two chemically distinct O species, one thought to be SiO 2 and the other adsorbed O 2 or a chemical intermediate. The Si(L 23 VV) Auger spectra for both the oxide and nitride are treated by background subtraction, integration, deconvolution, and subtraction of the elemental part of the spectrum, as a function of reaction time over a well controlled series of reaction steps. The Auger spectra for both oxide and nitride films suggest that in the earliest stages of reaction, the reacted film is made up of low coordination intermediates which gradually evolve to the stoichiometric compound as the coordination increases. In loss spectroscopy, both the Si(L 23 ) core loss and the near elastic loss were measured. The L 23 core loss shows the same gradual evolution to the oxide seen in the Auger results, with an intermediate oxidation state dominating in the early stages of reaction. The near elastic loss spectra, by contrast, quickly saturate in the early stages of reaction to the final oxide spectrum which is characterized by features both of the full oxide and a suboxide. Similar results are found for the nitride

  14. Application of HR-MAS NMR spectroscopy for studying chemotype variations of Withania somnifera (L.) Dunal.

    Science.gov (United States)

    Bharti, S K; Bhatia, Anil; Tewari, S K; Sidhu, O P; Roy, Raja

    2011-10-01

    Withania somnifera (L.) Dunal (Solanaceae), commonly known as Ashwagandha, is one of the most valued Indian medicinal plants with a number of pharmaceutical and nutraceutical applications. Metabolic profiling has been performed by HR-MAS NMR spectroscopy on fresh leaf and root tissue specimens from four chemotypes of W. somnifera. The HR-MAS NMR spectroscopy of lyophilized defatted leaf tissue specimens clearly distinguishes resonances of medicinally important secondary metabolites (withaferin A and withanone) and its distinctive quantitative variability among the chemotypes. A total of 41 metabolites were identified from both the leaf and root tissues of the chemotypes. The presence of methanol in leaf and root tissues of W. somnifera was detected by HR-MAS NMR spectroscopy. Multivariate principal component analysis (PCA) on HR-MAS (1) H NMR spectra of leaves revealed clear variations in primary metabolites among the chemotypes. The results of the present study demonstrated an efficient method, which can be utilized for metabolite profiling of primary and secondary metabolites in medicinally important plants. Copyright © 2011 John Wiley & Sons, Ltd.

  15. Fourier Transform Infrared (FTIR) Spectroscopy, Ultraviolet Resonance Raman (UVRR) Spectroscopy, and Atomic Force Microscopy (AFM) for Study of the Kinetics of Formation and Structural Characterization of Tau Fibrils.

    Science.gov (United States)

    Ramachandran, Gayathri

    2017-01-01

    Kinetic studies of tau fibril formation in vitro most commonly employ spectroscopic probes such as thioflavinT fluorescence and laser light scattering or negative stain transmission electron microscopy. Here, I describe the use of Fourier transform infrared (FTIR) spectroscopy, ultraviolet resonance Raman (UVRR) spectroscopy, and atomic force microscopy (AFM) as complementary probes for studies of tau aggregation. The sensitivity of vibrational spectroscopic techniques (FTIR and UVRR) to secondary structure content allows for measurement of conformational changes that occur when the intrinsically disordered protein tau transforms into cross-β-core containing fibrils. AFM imaging serves as a gentle probe of structures populated over the time course of tau fibrillization. Together, these assays help further elucidate the structural and mechanistic complexity inherent in tau fibril formation.

  16. Wall paintings studied using Raman spectroscopy: a comparative study between various assays of cross sections and external layers.

    Science.gov (United States)

    Perez-Rodriguez, Jose Luis; Robador, Maria Dolores; Centeno, Miguel Angel; Siguenza, Belinda; Duran, Adrian

    2014-01-01

    This work describes a comparative study between in situ applications of portable Raman spectroscopy and direct laboratory measurements using micro-Raman spectroscopy on the surface of small samples and of cross sections. The study was performed using wall paintings from different sites of the Alcazar of Seville. Little information was obtained using a portable Raman spectrometer due to the presence of an acrylic polymer, calcium oxalate, calcite and gypsum that was formed or deposited on the surface. The pigments responsible for different colours, except cinnabar, were not detected by the micro-Raman spectroscopy study of the surface of small samples taken from the wall paintings due to the presence of surface contaminants. The pigments and plaster were characterised using cross sections. The black colour consisted of carbon black. The red layers were formed by cinnabar and white lead or by iron oxides. The green and white colours were composed of green emerald or atacamite and calcite, respectively. Pb3O4 has also been characterised. The white layers (plaster) located under the colour layers consisted of calcite, quartz and feldspars. The fresco technique was used to create the wall paintings. A wall painting located on a gypsum layer was also studied. The Naples yellow in this wall painting was not characterised due to the presence of glue and oils. This study showed the advantage of studying cross sections to completely characterise the pigments and plaster in the studied wall paintings. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Studying phase structure of burned ferrous manganese ores by method of nuclear gamma-resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    B. Shayakhmetov

    2014-04-01

    Full Text Available In the given article there are presented the results of studying the phase structure of burned ferrous manganese ores of Zhomart and Zapadny Kamys deposits of by the method of Mossbauer spectroscopy. There is established a variety of iron location forms in the studied materials and their quantitative content that allows to define the degree of completing regenerative processes at magnetizing roasting, and also the processes of formation of solid solutions (Fe1-XMX3O4 and stabilization of Fe1-XO from eutectoid disintegration at cooling.

  18. An exploratory study of human teeth enamel by using Ft-Raman spectroscopy

    International Nuclear Information System (INIS)

    Afishah Alias; Siti Rahayu Mohd Hashim; Mihaly, Judith; Julyannie Wajir; Fauziah Abdul Aziz

    2009-01-01

    Unaffected , affected and heavily affected teeth enamel were studied by using FT-Raman spectroscopy. The 14 permanent teeths enamel surface were measured randomly, resulting in total n = 43 FT-Raman spectra. The results obtained from FT-Raman spectra of heavily affected, affected and unaffected tooths enamel surfaces did not show any significant difference. In this study, Kruskal-Wallis and Wilcoxon rank sum tests were used to compare the intensity between the categories of enamel as well as the surfaces of teeth samples. (author)

  19. Crystallization of amorphous lactose at high humidity studied by terahertz time domain spectroscopy

    Science.gov (United States)

    McIntosh, Alexander I.; Yang, Bin; Goldup, Stephen M.; Watkinson, Michael; Donnan, Robert S.

    2013-02-01

    We report the first use of terahertz time-domain spectroscopy (THz-TDS) to study the hydration and crystallization of an amorphous molecular solid at high humidity. Lactose in its amorphous and monohydrate forms exhibits different terahertz spectra due to the lack of long range order in the amorphous material. This difference allowed the transformation of amorphous lactose to its monohydrate form at high humidity to be studied in real time. Spectral fitting of frequency-domain data allowed kinetic data to be obtained and the crystallization was found to obey Avrami kinetics. Bulk changes during the crystallization could also be observed in the time-domain.

  20. Studies on corrosion of mild steel by water using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Nigam, A.N.; Tripathi, R.P.; Jangid, M.L.

    1987-01-01

    The corrosion of mild steel as a result of interaction with various types of local natural water samples and distilled water is studied with the help of Moessbauer spectroscopy. The data are supplemented with the studies on IR and magnetic properties as and when required. Distilled water and potable water behave in almost similar fashion wherein ferrihydrite and FeOOH are observed to be the precursors of magnetite, the end corrosion product. In case of brakish water, the additional species, viz., FeCl 2 , βFeOOH and an intermediate possibly FeOCl are accounted, and possible mechanisms are suggested. (author)

  1. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Imam, H. [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Ahmed, Doaa [Department of Restorative Sciences, Faculty of Dentistry, Alexandria University, Alexandria (Egypt); Eldakrouri, Ashraf [National Institute of Laser Enhanced Sciences, NILES, Cairo University, Giza (Egypt); Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh (Saudi Arabia)

    2013-06-21

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  2. [Near-infrared spectroscopy as an auxiliary tool in the study of child development].

    Science.gov (United States)

    Oliveira, Suelen Rosa de; Machado, Ana Carolina Cabral de Paula; Miranda, Débora Marques de; Campos, Flávio Dos Santos; Ribeiro, Cristina Oliveira; Magalhães, Lívia de Castro; Bouzada, Maria Cândida Ferrarez

    2015-01-01

    To investigate the applicability of Near-Infrared Spectroscopy (NIRS) for cortical hemodynamic assessment tool as an aid in the study of child development. Search was conducted in the PubMed and Lilacs databases using the following keywords: "psychomotor performance/child development/growth and development/neurodevelopment/spectroscopy/near-infrared" and their equivalents in Portuguese and Spanish. The review was performed according to criteria established by Cochrane and search was limited to 2003 to 2013. English, Portuguese and Spanish were included in the search. Of the 484 articles, 19 were selected: 17 cross-sectional and two longitudinal studies, published in non-Brazilian journals. The analyzed articles were grouped in functional and non-functional studies of child development. Functional studies addressed the object processing, social skills development, language and cognitive development. Non-functional studies discussed the relationship between cerebral oxygen saturation and neurological outcomes, and the comparison between the cortical hemodynamic response of preterm and term newborns. NIRS has become an increasingly feasible alternative and a potentially useful technique for studying functional activity of the infant brain. Copyright © 2015 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. Sedimentation in Particulate Aqueous Suspensions as studied by means of Dielectric Time Domain Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Bjoernar Hauknes

    1997-12-31

    Many problems in offshore oil production and multiphase transport are related to surface and colloid chemistry. This thesis applies dielectric spectroscopy as an experimental technique to study the behaviour of particle suspensions in polar media. The thesis opens with an introduction to suspensions and time domain dielectric spectroscopy. It then investigates the dielectric properties of silica and alumina dispersed in polar solvents. It is found that theoretical models can be used to calculate the volume fraction disperse phase in the suspension and that the particle sedimentation depends on the wetting of the particles, charge on the particle surface and viscosity of the solvent, and that this dependency can be measured by time domain dielectric spectroscopy. When the surface properties of silica and alumina particles were modified by coating them with a non-ionic polymer and a non-ionic surfactant, then different degrees of packing in the sedimented phase at the bottom of the sedimentation vessel occurred. Chemometrical methods on the synthesis of monodisperse silica particles were used to investigate what factors influence the particle size. It turned out that it is insufficient to consider only main variables when discussing the results of the synthesis. By introducing interaction terms, the author could explain the variation in the size of particles synthesized. The difference in the sedimentation rate of monodisperse silica particles upon variation of volume fraction particles, pH, salinity, amount of silanol groups at the particle surface and temperature was studied. The cross interactions play an important role and a model explaining the variation in sedimentation is introduced. Finally, magnetic particles dispersed in water and in an external magnetic field were used to study the impact on the sedimentation due to the induced flocculation. 209 refs., 90 figs., 9 tabs.

  4. Studi Electrochemical Impedance Spectroscopy dari Lembaran Polyvinyl Alcohol dengan Penambahan Liclo4 sebagai Bahan Elektolit Baterai Li-ion

    OpenAIRE

    Gunawan, Indra; Wahyudianingsih, Wahyudianingsih; Sudaryanto, Sudaryanto

    2016-01-01

    ELECTROCHEMICALIMPEDANCE SPECTROSCOPY STUDY OF POLYVINYL ALCOHOL SHEETWITHADDITION OFLiClO4AS ELECTROLYTE MATERIAL OF Li-ION BATTERAY. Solid polymer electrolyte materials for Li ion battery have been prepared using polyvinyl alcohol (PVA) added by lithium perchlorate (LiClO4) salt with various concentration. Electrochemical Impedance Spectroscopy (EIS) study of the material was done by making a Nyquist plot of the measurement with a LCR meter. These electrolyte materials prepared by using PVA...

  5. X-ray emission spectroscopy applied to glycine adsorbed on Cu(110): An atom and symmetry projected view

    Energy Technology Data Exchange (ETDEWEB)

    Hasselstroem, J.; Karis, O.; Weinelt, M. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    When a molecule is adsorbed on a metal surface by chemical bonding new electronic states are formed. For noble and transition metals these adsorption-induced states overlap with the much more intense metal d-valence band, making them difficult to probe by for instance direct photoemission. However, it has recently been shown that X-ray emission spectroscopy (XES) can be applied to adsorbate systems. Since the intermediate state involves a core hole, this technique has the power to project out the partial density of states around each atomic site. Both the excitation and deexcitation processes are in general governed by the dipole selection rules. For oriented system, it is hence possible to obtain a complete separation into 2p{sub x}, 2p{sub y} and 2p{sub z} contributions using angular resolved measurements. The authors have applied XES together with other core level spectroscopies to glycine adsorption on Cu(110). Glycine (NH{sub 2}CH{sub 2}COOH) is the smallest amino acid and very suitable to study by core level spectroscopy since it has several functional groups, all well separated in energy by chemical shifts. Its properties are futhermore of biological interest. In summary, the authors have shown that it is possible to apply XES to more complicated molecular adsorbates. The assignment of different electronic states is however not as straight forward as for simple diatomic molecules. For a complete understanding of the redistribution and formation of new electronic states associated with the surface chemical bond, experimental data must be compared to theoretical calculations.

  6. Luminescence spectroscopy and microscopy applied to study gem materials: a case study of C centre containing diamonds

    Science.gov (United States)

    Hainschwang, Thomas; Karampelas, Stefanos; Fritsch, Emmanuel; Notari, Franck

    2013-06-01

    The methods of luminescence spectroscopy and microscopy are widely used for the analysis of gem materials. This paper gives an overview of the most important applications of the analysis of laser and UV excited luminescence by spectroscopy and visually by microscopy with emphasis on diamond, and specifically natural type Ib diamond, little studied so far. Luminescence based techniques are paramount to the gemmological analysis of diamond, in order to determine whether it is natural, treated or synthetic. The great sensitivity of luminescence helps detect some emitting centres that are undetectable by any other analytical method. Hence, especially for diamond, luminescence is an enabling technology, as illustrated by its pioneering use of imagery for the separation of natural and synthetic diamond, and of spectroscopy for the detection of High Pressure-High Temperature treatment. For all other gemstones the applications are at the moment less numerous, but nevertheless they remain highly important. They provide quickly information on the identification of a gem material, and its treatment. Besides the study of broad band emissions caused by various colour centres, the typical PL-causing trace elements (amongst others) are chromium, manganese, uranium and rare earth elements. In pearls the study of broad band luminescence can be useful, and particularly the study of pink to red porphyrin luminescence in pearls from certain species such as Pinctada and Pteria and others can help identify the pearl-producing mollusc, or if a pearl has been dyed or not. Type Ib diamonds are representative of the importance and complexity of the analysis of luminescence by microscopy and spectroscopy. They show a wide range of sometimes very complex emissions that result in luminescence colours from green to yellow to orange or red. These emissions show generally very inhomogeneous distribution. They are caused by a range of defects, however only a few of them are well characterized.

  7. Spin crossover studies in cationic complexes of iron by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Vadera, S.R.; Kumar, N.

    1990-01-01

    The spin transition in two new cationic complexes of iron, i.e. iron bipyridine formate, [Fe(bipy) 3 ](HCOO) 2 .5(HCOOH) and iron bipyridine tetrafluoro borate, [Fe(bipy) 3 ](BF 4 ) 2 .2H 2 O were studied by Moessbauer spectroscopy. From quadrupole splitting values, it was established that at different temperatures both complexes show the coexistence of both high spin state and low spin state at 300 K, while complete transformation to low spin state occurs at 77 K. Both compounds were prepared by electrochemical technique. (author) 12 refs.; 1 fig.; 1 tab

  8. Optical modulation spectroscopy: a study of the self-reaction of benzophenone oxide

    Energy Technology Data Exchange (ETDEWEB)

    Girard, M.; Griller, D.

    1986-12-18

    The bimolecular self-reaction of benzophenone oxide was investigated by optical modulation spectroscopy and by product studies. The transient decayed to give benzophenone and oxygen and the rate constants for its disappearance, 2k, are described by the expression log (2k) = (9.1 +/- 0.2) - (1.8 +/- 0.3)/theta where theta = 2.30RT kcal mol/sup -1/. The significance of these parameters is discussed in terms of the orientational requirements for self-reaction. Benzophenone oxide was found to react with octanal with a rate constant 2.0 x 10/sup 4/ M/sup -1/ s/sup -1/.

  9. Vibrational structure of the polyunsaturated fatty acids eicosapentaenoic acid and arachidonic acid studied by infrared spectroscopy

    Science.gov (United States)

    Kiefer, Johannes; Noack, Kristina; Bartelmess, Juergen; Walter, Christian; Dörnenburg, Heike; Leipertz, Alfred

    2010-02-01

    The spectroscopic discrimination of the two structurally similar polyunsaturated C 20 fatty acids (PUFAs) 5,8,11,14,17-eicosapentaenoic acid and 5,8,11,14-eicosatetraenoic acid (arachidonic acid) is shown. For this purpose their vibrational structures are studied by means of attenuated total reflection (ATR) Fourier-transform infrared (FT-IR) spectroscopy. The fingerprint regions of the recorded spectra are found to be almost identical, while the C-H stretching mode regions around 3000 cm -1 show such significant differences as results of electronic and molecular structure alterations based on the different degree of saturation that both fatty acids can be clearly distinguished from each other.

  10. Hole emission from Ge/Si quantum dots studied by time-resolved capacitance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kapteyn, C.M.A.; Lion, M.; Heitz, R.; Bimberg, D. [Technische Univ. Berlin (Germany). Inst. fuer Festkoerperphysik; Miesner, C.; Asperger, T.; Brunner, K.; Abstreiter, G. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik

    2001-03-01

    Emission of holes from self-organized Ge quantum dots (QDs) embedded in Si Schottky diodes is studied by time-resolved capacitance spectroscopy (DLTS). The DLTS signal is rather broad and depends strongly on the filling and detection bias conditions. The observed dependence is interpreted in terms of carrier emission from many-hole states of the QDs. The activation energies obtained from the DLTS measurements are a function of the amount of stored charge and the position of the Fermi level in the QDs. (orig.)

  11. Study of high-temperature multiplex HCl coherent anti-Stokes Raman spectroscopy spectra.

    Science.gov (United States)

    Singh, J P; Yueh, F Y; Kao, W; Cook, R L

    1993-02-20

    A feasibility study of temperature measurement with multiplex HCl coherent anti-Stokes Raman spectroscopy (CARS) is investigated. The HCl CARS spectra of a 100% HCl gas sample are recorded in a quartz sample cell placed in a furnace at 1 atm pressure and at different temperatures. The nonlinear susceptibility of HCl (chi(nr)(HCl)), which is measured with the present CARS experimental setup, is reported. The experimental spectra are fit by using a library of simulated HCl CARS spectra with a least-squares-fitting program to infer the temperature. The inferred temperatures from HCl CARS spectra are in agreement with thermocouple temperatures.

  12. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  13. Environmental effects on the lignin model monomer, vanillyl alcohol, studied by raman spectroscopy

    DEFF Research Database (Denmark)

    Larsen, Kiki Lyster; Barsberg, Søren Talbro

    2011-01-01

    Structural analysis of plant materials, i.e., lignin, cellulose, hemicellulose, etc., supports the growing interest of their uses, e.g., as sources for biofuels or materials. Lignin is a main polymer formed from three phenolic presursors, containing none, one, or two OMe groups, i.e., H, G, and S...... units, respectively. Raman spectroscopy gives valuable knowledge on lignin and has a large potential for further developments. Thus in the present work we show how the use of electronic structure theory can support the study of environmental effects on lignin Raman bands. Raman spectra of the lignin...

  14. Optical spectroscopy study of transparent noncarious human dentin and dentin-enamel junction

    Science.gov (United States)

    Demos, Stavros G.; Balooch, Mehdi; Marshall, Grayson W.; Marshall, Sally J.; Gallagher, R. R.

    2000-03-01

    Improving our knowledge of the morphology, composition and properties of the dentin, enamel, and the dentin-enamel junction (DEJ) is vital for the development of improved restorative materials and clinical placement techniques. Most studies of dental tissues have used light microscopy for characterization. In our investigation, the spectroscopic properties of normal and non-carious transparent human root dentin, and the dentin-enamel junction were investigated using emission imaging microscopy, and micro-spectroscopy. Experimental results reveal new information on the structural and biochemical characteristics of these dental tissues.

  15. Optical Spectroscopy Study of Transparent Non-Carious Human Dentin and Dentin-Enamel Junction

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, G.W.; Marshall, S.J.; Gallagher, R.R.; Demos, S.

    1999-12-14

    Improving our knowledge of the morphology, composition and properties of the dentin, enamel, and the dentin-enamel junction (DEJ) is vital for the development of improved restorative materials and clinical placement techniques. Most studies of dental tissues have used light microscopy for characterization. In our investigation, the spectroscopic properties of normal and non-carious transparent human root dentin, and the dentin-enamel junction were investigated using emission imaging microscopy, and micro-spectroscopy. Experimental results reveal new information on the structural and biochemical characteristics of these dental tissues.

  16. Study of rotational bands in 136 Pr using on-line γ-spectroscopy methodology

    International Nuclear Information System (INIS)

    Emediato, L.G.R.

    1990-01-01

    The structure of the doubly odd nucleus 136 Pr has been studied using techniques of on-line γ-spectroscopy with the reactions 123 Sb ( 16 O, 3 n) 136 Pr and 126 Te ( 14 N, 4 n) 136 Pr populating high spin states. The excitation functions were measured at four energies, and γ-γ-τ coincidences and angular distributions at 69 M e V and 56 M e V, respectively, using high resolution HPGe detectors (2 K e V) and targets of enriched isotope of 123 Sb (99%) and 126 Te (94%) with thicknesses of approximately 9 mg/cm 2 . (author)

  17. Viscosimetry and IR spectroscopy studies of the structure of water in aqueous KBr solutions

    Science.gov (United States)

    Masimov, E. A.; Pashayev, B. G.; Hasanov, H. Sh.; Hasanov, N. H.

    2015-07-01

    The structure of aqueous solutions of KBr was studied by viscosimetry and IR spectroscopy at temperatures of 283.15-333.15 K and concentrations of 0.01-0.07 mole fractions. The results of our experiments were used for calculating the activation parameters of viscous flow, the partial molar volume of KBr in solution, and the energies and lengths of hydrogen bonds between water molecules; the concentration dependences of these parameters were analyzed. The results indicate that KBr desrtroys the structure of water.

  18. Raman spectroscopy study of disordering processes of anion sublattice in superionic fluorides with the tysonite structure

    International Nuclear Information System (INIS)

    Krivorotov, V.F.; Fershtat, L.N.; Khabibullaev, P.K.; Sharipov, Kh.T.

    1990-01-01

    By the method of Raman spectroscopy the mechanism of disordering of LaF 3 -NdF 3 series superionic conductor lattice has been studied. It is ascertained that high ionic conductivity in the compounds is related to the formation of antifrenkel defects, while disordering activation energy, constituting 0.026-0.028 eV in the range of the first phase transition at the temperatures exceeding the critical ones, decreases to 0.0006 eV. It is shown that nodal and interstitial positions of F - (1) ions are practically equivalent energetically and it determines high conductivity in superionic phase

  19. Relaxation in the glass former acetylsalicylic acid studied by deuteron magnetic resonance and dielectric spectroscopy

    Science.gov (United States)

    Nath, R.; El Goresy, T.; Geil, B.; Zimmermann, H.; Böhmer, R.

    2006-08-01

    Supercooled liquid and glassy acetylsalicylic acid was studied using dielectric spectroscopy and deuteron relaxometry in a wide temperature range. The supercooled liquid is characterized by major deviations from thermally activated behavior. In the glass the secondary relaxation exhibits the typical features of a Johari-Goldstein process. Via measurements of spin-lattice relaxation times the selectively deuterated methyl group was used as a sensitive probe of its local environments. There is a large difference in the mean activation energy in the glass with respect to that in crystalline acetylsalicylic acid. This can be understood by taking into account the broad energy barrier distribution in the glass.

  20. Raman spectroscopy study of the crystal - melt phase transition of lanthanum, cerium and neodymium trichlorides

    International Nuclear Information System (INIS)

    Zakir'yanova, I.D.; Salyulev, A.B.

    2007-01-01

    Systematic structural studies of crystalline (over a wide temperature range) and molten LaCl 3 , CeCl 3 , and NdCl 3 salts (near the crystal-melt phase transition temperature) are conducted employing Raman spectroscopy. A change in the trend of temperature dependences of characteristic frequencies is revealed in the pre-melting region of the compounds. This is attributed to an increase in the number of crystal defects due to weakening of a part of Ln-Cl bonds and decreasing of coordination number of chloride anions in the vicinity of rare earth cation [ru

  1. Study of iron valence state and position in sub-site by Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Young Rang; Lim, Jae Cheong; KIm, Chul Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Son, Kwang Jae [Kookmin Univ., Seoul (Korea, Republic of)

    2014-05-15

    The magnetic ordering temperature and the magnitude of the magnetic fields at the iron sites of YIG can be influenced by substituting, either partially or totally, the Fe{sup 3+} ions at the octahedral and/or the tetrahedral sites with magnetic or diamagnetic ions, and/or by substitution the Y{sup 3+} ions at the dodecahedral sites with magnetic rare earth ions. It has been known for some time that Moessbauer spectroscopy is a powerful method by which iron-containing garnets can be studied. We report here on the synthesis of the compounds with garnet-related structures of composition Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} and its examination by {sup 57}Fe Moessbauer spectroscopy. The chromium in compounds of the Y{sub 3}Fe{sub 4.5}Cr{sub 0.5}O{sub 12} is distributed at an octahedral site. The Moessbauer spectra can be analyzed using 3 or 4 sets of six Lorentzians with increasing amount of Cr{sup 3+} compounds in this system. It results from the distribution ({sub 4}C{sub n}) of Fe{sup 3+} and Cr{sup 3+} at an octahedral site. A comparative study of ferrous tablets of Dynabi was carried out using Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in a sample. This observation is important to better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron. The Cr-containing yttrium iron garnet (YIG), and the exchange interactions and site distributions were studied using {sup 57}Fe Moessbauer spectroscopy. The obtained results revealed the presence of ferrous (Fe{sup 2+}) gluconate and ferrous fumarate in the sample. This observation is important better control the iron state in such medicaments because their pharmaceutical effect in the body is related to the form and valence of iron.

  2. Electron spectroscopy

    International Nuclear Information System (INIS)

    Hegde, M.S.

    1979-01-01

    An introduction to the various techniques in electron spectroscopy is presented. These techniques include: (1) UV Photoelectron spectroscopy, (2) X-ray Photoelectron spectroscopy, (3) Auger electron spectroscopy, (4) Electron energy loss spectroscopy, (5) Penning ionization spectroscopy and (6) Ion neutralization spectroscopy. The radiations used in each technique, the basis of the technique and the special information obtained in structure determination in atoms and molecules by each technique are summarised. (A.K.)

  3. Metabolite profile of cerebrospinal fluid in patients with spina bifida: a proton magnetic resonance spectroscopy study.

    Science.gov (United States)

    Pal, Kamalesh; Sharma, Uma; Gupta, D K; Pratap, Akshay; Jagannathan, N R

    2005-02-01

    The present study was carried out to assess the metabolic differences between cerebrospinal fluid samples of patients with spina bifida and age-matched control individuals. To study the metabolite profile of cerebrospinal fluid of patients with spina bifida using proton magnetic resonance spectroscopy, compare the levels of metabolites with controls, establish correlation of underlying neuronal dysfunction with metabolic changes in patients with spina bifida, and evaluate the potential use of this technique as an additional tool for diagnostic assessment. Combination of embryopathy, stretching, ischemia, compression, and trauma is responsible for cord dysfunction in spina bifida. Changes in neuronal metabolism leads to changes in the local milieu of cerebrospinal fluid in the cord. Change in metabolite profile of cerebrospinal fluid in spina bifida in terms of increase in products of anaerobic metabolism, nerve membrane integrity, and nerve ischemia has not yet been studied. Cerebrospinal fluid obtained from patients and control individuals were characterized using various one- and two-dimensional proton magnetic resonance spectroscopy techniques. Concentration of various metabolites was calculated using the area under the nuclear magnetic resonance peak. Statistically significantly higher levels of lactate, choline, glycerophosphocholine, acetate, and alanine in the cerebrospinal fluid of patients with spina bifida was observed compared with control individuals. Significantly higher levels of metabolites were observed in patients with spina bifida, representing a state of nerve ischemia, anaerobic metabolism, and disruption of neuronal membrane.

  4. Insulin amyloid fibrillation studied by terahertz spectroscopy and other biophysical methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Rui [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); He, Mingxia [College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072 (China); Su, Rongxin, E-mail: surx@tju.edu.cn [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Yu, Yanjun [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Qi, Wei; He, Zhimin [State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China)

    2010-01-01

    Assembly and fibrillation of amyloid proteins are believed to play a key role in the etiology of various human diseases, including Alzheimer's, Parkinson's, Huntington's and type II diabetes. Insights into conformational changes and formation processes during amyloid fibrillation are essential for the clinical diagnosis and drug discovery. To study the changes in secondary, tertiary, quaternary structures, and the alteration in the collective vibrational mode density of states during the amyloid fibrillation, bovine insulin in 20% acetic acid was incubated at 60 {sup o}C, and its multi-level structures were followed by various biophysical techniques, including circular dichroism (CD), thioflavin T fluorescence (ThT), dynamic light scattering (DLS), electron microscopy, and terahertz (THz) absorption spectroscopy. The experimental data demonstrated a transformation of {alpha}-helix into {beta}-sheet starting at 26 h. This was followed by the aggregation of insulin, as shown by ThT binding, with a transition midpoint at 41 h, and by the bulk formation of mature aggregates after about 71 h. THz is a quick and non-invasive technique, which has the advantage of allowing the study of the conformational state of biomolecules and tissues. We first applied THz spectroscopy to study the amyloid fibrillation. At the terahertz frequency range of 0.2-2.0 THz, there was an apparent increase in both the absorbance and refractive index in THz spectra. Thus, THz is expected to provide a new way of looking into amyloid fibrillation.

  5. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  6. Shape coexistence in the lightest Tl isotopes studied by laser spectroscopy

    CERN Multimedia

    Herfurth, F; Antalic, S; Darby, I G; Venhart, M; Flanagan, K; Veselsky, M; Blaum, K; Radulov, D P; Beck, D; Kowalska, M; Schwarz, S; Chapman, R; Diriken, J V J; Lane, J; Rosenbusch, M

    This proposal aims at atomic spectroscopy studies of the very neutron-deficient isotopes $^{178-187}$Tl, at and far beyond the region of the neutron mid-shell at N=104, in which shape coexistence phenomena were investigated so far by particle and $\\gamma$-ray spectroscopy methods only. Our motivation for this proposal is as follows : \\\\\\\\ -These studies will provide direct data on magnetic dipole moment, spin, charge radii and deformations of these isotopes. The results will form a stringent test for our current understanding of the shape coexistence phenomena in the vicinity of the neutron mid-shell at N=104, where the relevant effects are expected to be the strongest (cf.shape staggering in the isotopes $^{181,183,185}$Hg). \\\\-The knowledge of the structure (configuration, spin, deformation) and whether one or two $\\beta$-decaying isomers are present in the parent isotopes $^{178,180,182}$Tl are crucial for understanding of the results of our recent studies of $\\beta$-delayed fission in the lightest thalli...

  7. Raman spectroscopy study of the nanodiamond-to-carbon onion transformation

    International Nuclear Information System (INIS)

    Cebik, Jonathan; Peerally, Filipe; Medrano, Rene; Osswald, Sebastian; McDonough, John K; Neitzel, Ioannis; Gogotsi, Yury

    2013-01-01

    Here, we present a comprehensive study analyzing early stages of the transformation of detonation nanodiamond (ND) powder to graphitic carbon onions via thermal annealing in argon atmosphere. Raman spectroscopy was employed to monitor this transformation, starting with the sp 3 -to-sp 2 conversion of the ND surface at the onset of the graphitization process. Additionally, transmission electron microscopy, x-ray diffraction, and thermogravimetric analysis were used to supplement the structural information obtained from Raman spectroscopy and allow for an accurate interpretation of the obtained Raman data. The effect of the annealing time on the transformation process was also studied to determine the kinetics of the conversion at low temperatures. The results presented in this study complement previous work on ND annealing and provide deeper insight into the nanodiamond-to-carbon onion conversion mechanism, in particular the time and size dependence. We present further evidence for the existence of a disordered sp 2 phase as an intermediate step in the transformation process. (paper)

  8. Nanostructured ZnO films: A study of molecular influence on transport properties by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sappia, Luciano D.; Trujillo, Matias R. [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Lorite, Israel [Division of Superconductivity and Magnetism, Institute for Experimental Physics II, University of Leipzig, Linnéstrasse 5, 04103 Leipzig (Germany); Madrid, Rossana E., E-mail: rmadrid@herrera.unt.edu.ar [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Tirado, Monica [NanoProject and Laboratorio de Nanomateriales y Propiedades Dieléctricas, Departamento de Física, Universidad Nacional de Tucumán, Avenida Independencia 1800, Tucumán (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); and others

    2015-10-15

    Graphical abstract: - Highlights: • We study electrical transport in nanostructured ZnO films by impedance spectroscopy. • Bioaggregates on the surface produce strong changes in film transport properties. • This behavior is explained by modeling data with RC parallel circuits. • Electrical responses of ZnO films to aggregates are promising for biosensing. - Abstract: Nanomaterials based on ZnO have been used to build glucose sensors due to its high isoelectric point, which is important when a protein like Glucose Oxidase (GOx) is attached to a surface. It also creates a biologically friendly environment to preserve the activity of the enzyme. In this work we study the electrical transport properties of ZnO thin films (TFs) and single crystals (SC) in contact with different solutions by using impedance spectroscopy. We have found that the composition of the liquid, by means of the charge of the ions, produces strong changes in the transport properties of the TF. The enzyme GOx and phosphate buffer solutions have the major effect in the conduction through the films, which can be explained by the entrapment of carriers at the grain boundaries of the TFs. These results can help to design a new concept in glucose biosensing.

  9. Study of the Pigments in Colombian Powdered Coffee Using Photoacoustic Spectroscopy

    Science.gov (United States)

    Gordillo-Delgado, F.; Bedoya, A.; Marín, E.

    2017-01-01

    Biological pigments are chemical compounds that absorb light in the wavelength range of the visible region. They are present in all living organisms, vegetables being among their main producers. In this work, the photoacoustic spectroscopy technique was used to investigate some qualitative features related to pigments of ground and roasted coffee. The samples were collected at several Colombian commercial markets from different regions. Colombian coffee is known worldwide for its quality and flavor, being the main agricultural export product of the country. Therefore, it is important to study the composition and color of ground and roasted coffee in order to show quality and special characteristics of local varieties. Studying the content of pigments after roasting and grinding the coffee can allow a better understanding of the coloring process, which can lead to the definition of new criteria for evaluating the quality and other characteristics of the final product by comparing the optical spectra. In this work, the optical absorption spectra obtained by photoacoustic spectroscopy show absorption bands that match those of the pigments capsanthin, lutein and chlorophyll. In addition, an absorption peak in the near-infrared region was revealed, which also provides information regarding the composition of roasted and ground coffee.

  10. Effect of a bioactive curcumin derivative on DPPC membrane: A DSC and Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Gardikis, Kostantinos [Department of Pharm. Technology, School of Pharmacy, University of Athens, Athens (Greece); Hatziantoniou, Sophia [Department of Pharm. Technology, School of Pharmacy, University of Athens, Athens (Greece); Viras, Kyriakos [Laboratory of Physical Chemistry, Department of Chemistry, University of Athens, Athens (Greece); Demetzos, Costas [Department of Pharm. Technology, School of Pharmacy, University of Athens, Athens (Greece)]. E-mail: demetzos@pharm.uoa.gr

    2006-08-01

    Interactions of dimethoxycurcumin (1) a lipophilic bioactive curcumin derivative with dipalmitoyl phosphatidylcholine (DPPC) were investigated. The thermodynamic changes caused by (1) and its location into DPPC lipid bilayers were monitored by differential scanning calorimetry and Raman spectroscopy. The results reveal that (1) influences the thermotropic properties of DPPC lipid membrane causing abolition of the pretransition and broadening of the phase-transition profile and slightly decreases the T {sub m} at increasing concentrations. The Raman height intensity ratios of the peaks I {sub 2935/2880}, I {sub 2844/2880} and I {sub 1090/1130} are representative of the interaction of (1) with the alkyl chains and furnish information about the ratio between disorder and order that exists in the conformation of the alkyl chain. The intensity changes of the peak at 715 cm{sup -1} indicates interaction between the choline head group and (1). The Raman spectroscopy results are in agreement with the thermal analysis results. Biologically active lipophilic molecules such as (1) should be studied in terms of their interaction with lipid bilayers prior to the development of advanced lipid carrier systems such as liposomes. The results of these studies provide information on the membrane integrity and physicochemical properties that are essential for the rational design lipidic drug delivery systems.

  11. The structure of betaxolol studied by infrared spectroscopy and natural bond orbital theory.

    Science.gov (United States)

    Canotilho, João; Castro, Ricardo A E

    2010-08-01

    Betaxolol is a selective beta(1) receptor blocker used in the treatment of hypertension and glaucoma. A study of the betaxolol structure based on infrared spectroscopy and natural bond orbital (NBO) theory is the main aim of the present research. FTIR spectra of the solid betaxolol were recorded in the region from 4000 to 400cm(-1), in the temperature range between 25 and -170 degrees C. For spectral interpretation, spectrum of the deuterated betaxolol and the theoretical vibrational spectra of the conformer present in the solid obtained at the B3LYP/6-31G* level of theory, were used. Further insight into the structure was provided by natural bond orbital theory. NBO analysis of the conformer, before and after optimization, was carried out at the same level of theory referred above. Vibrational modes involved in hydrogen bond in the stretching and bending region were used in the estimation of the enthalpy using empirical correlations between enthalpy and the frequency shift that occurs as a result of the establishment of intermolecular hydrogen bonds. A detailed study of the structure of betaxolol and of its intermolecular interactions was obtained from the combination spectroscopy and NBO theory. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Structure of transformer oil-based magnetic fluids studied using acoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kudelcik, Jozef, E-mail: kudelcik@fyzika.uniza.sk [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Bury, Peter; Drga, Jozef [Department of Physics, University of Zilina, Univerzitna 1, 010 01 Zilina (Slovakia); Kopcansky, Peter; Zavisova, Vlasta; Timko, Milan [Department of Magnetism, IEP SAS, Watsonova 47, 040 01 Kosice (Slovakia)

    2013-01-15

    The structural changes in transformer oil-based magnetic fluids upon the effect of an external magnetic field and temperature were studied by acoustic spectroscopy. The attenuation of acoustic wave was measured as a function of the magnetic field in the range of 0-300 mT and in the temperature range of 15-35 Degree-Sign C for various magnetic nanoparticles concentrations. The effect of anisotropy of the acoustic attenuation was determined, too. The both strong influence of the magnetic field on the acoustic attenuation and its hysteresis were observed. When a magnetic field is increased, the interaction between the external magnetic field and the magnetic moments of the nanoparticles occurs, leading to the aggregation of magnetic nanoparticles and following clusters formation. However, the temperature of magnetic fluids also has very important influence on the structural changes because of the mechanism of thermal motion that acts against the cluster creation. The observed influences of both magnetic field and temperature on the investigated magnetic fluid structure are discussed. - Highlights: Black-Right-Pointing-Pointer Structural changes in transformer oil-based magnetic fluids were investigated. Black-Right-Pointing-Pointer The acoustic spectroscopy as the method of investigation was used. Black-Right-Pointing-Pointer The influence of magnetic field on the structural was studied. Black-Right-Pointing-Pointer The influence of temperatures on the structures was investigated, too. Black-Right-Pointing-Pointer The influence of external conditions on the structure of MF is interpreted.

  13. Chemical kinetic studies of atmospheric reactions using tunable diode laser spectroscopy

    Science.gov (United States)

    Worsnop, Douglas R.; Nelson, David D.; Zahniser, Mark S.

    1993-01-01

    IR absorption using tunable diode laser spectroscopy provides a sensitive and quantitative detection method for laboratory kinetic studies of atmospheric trace gases. Improvements in multipass cell design, real time signal processing, and computer controlled data acquisition and analysis have extended the applicability of the technique. We have developed several optical systems using off-axis resonator mirror designs which maximize path length while minimizing both the sample volume and the interference fringes inherent in conventional 'White' cells. Computerized signal processing using rapid scan (300 kHz), sweep integration with 100 percent duty cycle allows substantial noise reduction while retaining the advantages of using direct absorption for absolute absorbance measurements and simultaneous detection of multiple species. Peak heights and areas are determined by curve fitting using nonlinear least square methods. We have applied these techniques to measurements of: (1) heterogeneous uptake chemistry of atmospheric trace gases (HCl, H2O2, and N2O5) on aqueous and sulfuric acid droplets; (2) vapor pressure measurements of nitric acid and water over prototypical stratospheric aerosol (nitric acid trihydrate) surfaces; and (3) discharge flow tube kinetic studies of the HO2 radical using isotopic labeling for product channel and mechanistic analysis. Results from each of these areas demonstrate the versatility of TDL absorption spectroscopy for atmospheric chemistry applications.

  14. Chemical reactions on platinum-group metal surfaces studied by synchrotron-radiation-based spectroscopy

    International Nuclear Information System (INIS)

    Kondoh, Hiroshi; Nakai, Ikuyo; Nagasaka, Masanari; Amemiya, Kenta; Ohta, Toshiaki

    2009-01-01

    A new version of synchrotron-radiation-based x-ray spectroscopy, wave-length-dispersive near-edge x-ray absorption fine structure (dispersive-NEXAFS), and fast x-ray photoelectron spectroscopy have been applied to mechanistic studies on several surface catalytic reactions on platinum-group-metal surfaces. In this review, our approach using above techniques to understand the reaction mechanism and actual application studies on three well-known catalytic surface reactions, CO oxidation on Pt(111) and Pd(111), NO reduction on Rh(111), and H 2 O formation on Pt(111), are introduced. Spectroscopic monitoring of the progress of the surface reactions enabled us to detect reaction intermediates and analyze the reaction kinetics quantitatively which provides information on reaction order, rate constant, pre-exponential factor, activation energy and etc. Such quantitative analyses combined with scanning tunneling microscopy and kinetic Monte Carlo simulations revealed significant contribution of the adsorbate configurations and their dynamic changes to the reaction mechanisms of the above fundamental catalytic surface reactions. (author)

  15. A Metabolic Study on Colon Cancer Using 1H Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zahra Zamani

    2014-01-01

    Full Text Available Background. Colorectal carcinoma is the third cause of cancer deaths in the world. For diagnosis, invasive methods like colonoscopy and sigmoidoscopy are used, and noninvasive screening tests are not very accurate. We decided to study the potential of 1HNMR spectroscopy with metabolomics and chemometrics as a preliminary noninvasive test. We obtained a distinguishing pattern of metabolites and metabolic pathways between colon cancer patient and normal. Methods. Sera were obtained from confirmed colon cancer patients and the same number of healthy controls. Samples were sent for 1HNMR spectroscopy and analysis was carried out Chenomex and MATLAB software. Metabolites were identified using Human Metabolic Data Base (HDMB and the main metabolic cycles were identified using Metaboanalyst software. Results. 15 metabolites were identified such as pyridoxine, orotidine, and taurocholic acid. Main metabolic cycles involved were the bile acid biosynthesis, vitamin B6 metabolism, methane metabolism, and glutathione metabolism. Discussion. The main detected metabolic cycles were also reported earlier in different cancers. Our observations corroborated earlier studies that suggest the importance of lowering serum LCA/DCA and increasing vitamin B6 intake to help prevent colon cancer. This work can be looked upon as a preliminary step in using 1HNMR analysis as a screening test before invasive procedures.

  16. Study of the alteration products of a natural uraninite by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bonales, L.J., E-mail: laura.jimenez@ciemat.es [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT Avenida Complutense, 40, 28040 Madrid (Spain); Menor-Salván, C. [Centro de Astrobiología (CSIC-INTA), Ctra. Torrejón-Ajalvir, km 4, 28850 Torrejon de Ardoz (Spain); Cobos, J. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT Avenida Complutense, 40, 28040 Madrid (Spain)

    2015-07-15

    Uraninite is a mineral considered as an analogue of the spent fuel, and the study of its alteration products has been used to predict the secondary phases produced during the fuel storage under specific environmental conditions. In this work, we study by Raman spectroscopy the alteration by weathering of the primary uraninite from the uranium deposit of Sierra Albarrana. The identification of the different secondary phases is based on the analysis of the symmetrical stretching vibration of the uranyl group (UO{sub 2}{sup 2+}), which allows the identification of individual uranyl phases and can be used as a fingerprint. Additionally, we show in this work a new approach to perform a semi-quantitative analysis of these uranium minerals by means of Raman spectroscopy. From this analysis we found the next sequence of alteration products: rutherfordine in contact with the uraninite core, then a mixture of uranyl silicates: soddyite, uranophane alpha and kasolite. Soddyite prevails in the inner part while uranophane alpha predominates in the outer part of the sample, and kasolite appears intermittently (1.0–3.3 mm; 4.6–7.1 mm and 8.8–10 mm)

  17. Study of the alteration products of a natural uraninite by Raman spectroscopy

    Science.gov (United States)

    Bonales, L. J.; Menor-Salván, C.; Cobos, J.

    2015-07-01

    Uraninite is a mineral considered as an analogue of the spent fuel, and the study of its alteration products has been used to predict the secondary phases produced during the fuel storage under specific environmental conditions. In this work, we study by Raman spectroscopy the alteration by weathering of the primary uraninite from the uranium deposit of Sierra Albarrana. The identification of the different secondary phases is based on the analysis of the symmetrical stretching vibration of the uranyl group (UO22+), which allows the identification of individual uranyl phases and can be used as a fingerprint. Additionally, we show in this work a new approach to perform a semi-quantitative analysis of these uranium minerals by means of Raman spectroscopy. From this analysis we found the next sequence of alteration products: rutherfordine in contact with the uraninite core, then a mixture of uranyl silicates: soddyite, uranophane alpha and kasolite. Soddyite prevails in the inner part while uranophane alpha predominates in the outer part of the sample, and kasolite appears intermittently (1.0-3.3 mm; 4.6-7.1 mm and 8.8-10 mm).

  18. Study of the alteration products of a natural uraninite by Raman spectroscopy

    International Nuclear Information System (INIS)

    Bonales, L.J.; Menor-Salván, C.; Cobos, J.

    2015-01-01

    Uraninite is a mineral considered as an analogue of the spent fuel, and the study of its alteration products has been used to predict the secondary phases produced during the fuel storage under specific environmental conditions. In this work, we study by Raman spectroscopy the alteration by weathering of the primary uraninite from the uranium deposit of Sierra Albarrana. The identification of the different secondary phases is based on the analysis of the symmetrical stretching vibration of the uranyl group (UO 2 2+ ), which allows the identification of individual uranyl phases and can be used as a fingerprint. Additionally, we show in this work a new approach to perform a semi-quantitative analysis of these uranium minerals by means of Raman spectroscopy. From this analysis we found the next sequence of alteration products: rutherfordine in contact with the uraninite core, then a mixture of uranyl silicates: soddyite, uranophane alpha and kasolite. Soddyite prevails in the inner part while uranophane alpha predominates in the outer part of the sample, and kasolite appears intermittently (1.0–3.3 mm; 4.6–7.1 mm and 8.8–10 mm)

  19. Study of high density polyethylene under UV irradiation or mechanical stress by fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Douminge, L.

    2010-05-01

    Due to their diversity and their wide range of applications, polymers have emerged in our environment. For technical applications, these materials can be exposed to aggressive environment leading to an alteration of their properties. The effects of this degradation are linked to the concept of life duration, corresponding to the time required for a property to reach a threshold below which the material becomes unusable. Monitoring the ageing of polymer materials constitute a major challenge. Fluorescence spectroscopy is a technique able to provide accurate information concerning this issue. In this study, emphasis was placed on the use of fluorescence spectroscopy to study the phenomena involved in either the UV radiation or mechanical stresses of a polymer. In the case of high density polyethylene, the lack of intrinsic fluorescent signal leads to the use of a dye. This dye gives a fluorescent response depending on its microenvironment. All modifications in the macromolecular chain generate a shift of the fluorescent peak. This work can be dissociated in two major parts, on one hand the influence of UV aging on the fluorescent response and in another hand the influence of mechanical stresses. In the first part, complementary analyses like FTIR or DSC are used to correlate fluorescent results with known photo degradation mechanisms. The results show the great sensibility of the technique to the microstructural rearrangement in the polymer. In the second part, the dependence between the stress and the fluorescence emission gives opportunity to evaluate internal stresses in the material during cyclic solicitations. (author)

  20. Fourier transform infrared spectroscopy as a tool to study farmed and wild sea bass lipid composition.

    Science.gov (United States)

    Vidal, Natalia P; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2014-05-01

    The lipids of 16 farmed and wild European sea bass (Dicentrarchus labrax) samples were studied by Fourier transform infrared (FTIR) spectroscopy. The spectroscopic parameters which would be useful when distinguishing between both fish origins were analysed. It was shown, for the first time, that the frequency and the ratio between the absorbance of certain bands are efficient and reliable authentication tools for the origin of sea bass. Furthermore, relationships between infrared data and fish lipids composition referring to the molar percentage or concentration of certain acyl groups were also studied. It was proved that some infrared spectroscopic data (the frequency of certain bands or the ratio of the absorbance of others), are very closely related to the composition of sea bass lipids. It was shown for the first time that certain infrared spectroscopic data could predict, with a certain degree of approximation, the molar percentage, or concentration, of omega-3, docosahexaenoic (DHA) and di-unsaturated omega-6 (linoleic) in sea bass lipids. The consistency of the results confirms the usefulness of FTIR spectroscopy to detect frauds regarding sea bass origin, and to provide important compositional data about sea bass lipids from the nutritional and technological point of view. © 2013 Society of Chemical Industry.

  1. Sintering and thermal ageing studies of zirconia - yttria ceramics by impedance spectroscopy

    International Nuclear Information System (INIS)

    Florio, Daniel Zanetti de

    1998-01-01

    ZrO 2 :8 mol %Y 2 O 3 solid electrolyte ceramic pellets have been prepared with powders of three different origins: a Nissan (Japan) commercial powder, a powder obtained by the coprecipitation technique at IPEN, and the mixing of powder oxides (ZrO 2 produced at a Pilot Plant at IPEN and 99.9% pure Y 2 O 3 of USA origin). These starting powders have been analysed by the following techniques: X-ray fluorescence for yttrium content, X-ray diffraction for structural phase content, sedimentation for particle size distribution, gas adsorption (BET) for surface area determination, and transmission electron microscopy for average particle size determination. Pressed ceramic pellets have been analysed by dilatometry to evaluate the sintering stages. Sintered pellets have been characterized by X-ray diffraction for phase analysis and scanning electron microscopy for grain morphology analysis. Impedance spectroscopy analysis have been carried out to follow thermal ageing of zirconia-yttria solid electrolyte at 600 deg C, the working temperature of permanent oxygen sensor, and to study sintering kinetics. The main results show that ageing at 600 deg C decreases the emf sensor response in the first 100 h to a steady value. Moreover, sintering studies by impedance spectroscopy allowed for finding correlations between electrical parameters, sintering kinetics and grain growth mechanisms. (author)

  2. Potential of NMR spectroscopy for the study of human amniotic fluid.

    Science.gov (United States)

    Graça, Gonçalo; Duarte, Iola F; Goodfellow, Brian J; Barros, António S; Carreira, Isabel M; Couceiro, Ana Bela; Spraul, Manfred; Gil, Ana M

    2007-11-01

    1D and 2D 800 MHz high-resolution nuclear magnetic resonance spectroscopy of human amniotic fluid (HAF) enabled the identification of approximately 50 metabolites. In addition, liquid chromatography-NMR and diffusion ordered spectroscopy (DOSY) allowed signal overlap to be reduced and the characterization of higher molecular weight (Mw) components, respectively. Indeed, the DOSY spectrum of a Mw >10 kDa HAF fraction enabled three protein families, differing in average Mw, to be detected and may therefore be of potential value in the study of disorder-related variations in HAF protein profiles. The effects of freeze-drying, storage at -20 or -70 degrees C, and freeze-thawing cycles on HAF compositional stability were investigated, as well as stability at room temperature (to account for overnight data acquisition runs). These data are the basis for establishing statistically validated correlations between HAF NMR data and any physiological disorders of the fetus/mother. Freeze-drying caused signal loss for urea, ethanol, and compounds resonating at 2.22 and 1.17 ppm. Storage at -70 degrees C or lower is recommended since only minor compositional changes were observed, affecting mainly acetate and pyruvate. Freeze-thaw cycles did not cause significant compositional changes, and room-temperature stability studies indicated a 4-5 h maximum period of handling/acquisition time to ensure HAF stability.

  3. Band structure of Heusler compounds studied by photoemission and tunneling spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arbelo Jorge, Elena

    2011-07-01

    Heusler compounds are key materials for spintronic applications. They have attracted a lot of interest due to their half-metallic properties predicted by band structure calculations. The aim of this work is to evaluate experimentally the validity of the predictions of half metallicity by band structure calculations for two specific Heusler compounds, Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa. Two different spectroscopy methods for the analysis of the electronic properties were used: Angular Resolved Ultraviolet Photoemission Spectroscopy (ARUPS) and Tunneling Spectroscopy. Heusler compounds are prepared as thin films by RF-sputtering in an ultra high vacuum system. For the characterization of the samples, bulk and surface crystallographic and magnetic properties of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa are studied. X-ray and electron diffraction reveal a bulk and surface crossover between two different types of sublattice order (from B2 to L2{sub 1}) with increasing annealing temperature. X-ray magnetic circular dichroism results show that the magnetic properties in the surface and bulk are identical, although the magnetic moments obtained are 5 % below from the theoretically predicted. By ARUPS evidence for the validity of the predicted total bulk density of states (DOS) was demonstrated for both Heusler compounds. Additional ARUPS intensity contributions close to the Fermi energy indicates the presence of a specific surface DOS. Moreover, it is demonstrated that the crystallographic order, controlled by annealing, plays an important role on broadening effects of DOS features. Improving order resulted in better defined ARUPS features. Tunneling magnetoresistance measurements of Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} and Co{sub 2}MnGa based MTJ's result in a Co{sub 2}FeAl{sub 0.3}Si{sub 0.7} spin polarization of 44 %, which is the highest experimentally obtained value for this compound, although it is lower than the 100 % predicted. For Co

  4. Growth and Raman spectroscopy studies of gold-free catalyzed semiconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Zardo, Ilaria

    2010-12-15

    The present Ph.D. thesis proposes two aims: the search for catalysts alternative to gold for the growth of silicon nanowires and the investigation of the structural properties of the gold-free catalyzed Si, Ge, and GaAs nanowires. The successful growth of gold free catalyzed silicon nanowires was obtained using Ga and In as catalyst. Hydrogen plasma conditions were needed during the growth process. We proposed a growth mechanism where the role of the hydrogen plasma is taken into account. The influence of the growth conditions on nanowire growth morphology and structural properties was investigated in detail. The TEM studies showed the occurrence of different kind of twin defects depending on the nanowire growth direction. The intersection of twins in different spatial directions in <111>-oriented nanowires or the periodicity of highly dense twins in <112>-oriented nanowires leads to the formation of hexagonal domains embedded in the diamond silicon structure. A simple crystallographic model which illustrates the formation of the hexagonal phase was proposed. The presence of the hexagonal domains embedded in the diamond silicon structure was investigated also by means of Raman spectroscopy. The measured frequencies of the E2g and A1g modes were found to be in agreement with frequencies expected from phonon dispersion folding. An estimation of the percentage of hexagonal structure with respect to the cubic structure was given. The relative percentage of the two structures was found to change with growth temperature. Spatially resolved Raman scattering experiments were also realized on single Si nanowires. The lattice dynamics of gold-free catalyzed Ge and GaAs nanowires was studied by means of Raman spectroscopy. We performed spatially resolved Raman spectroscopy experiments on single crystalline- amorphous core-shell Ge nanowires. The correlation with TEM studies on nanowires grown under the same conditions and with AFM measurements realized of the same nanowires

  5. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  6. 2D spectroscopy study of water-soluble chlorophyll-binding protein from Lepidium virginicum.

    Science.gov (United States)

    Alster, Jan; Lokstein, Heiko; Dostál, Jakub; Uchida, Akira; Zigmantas, Donatas

    2014-04-03

    Water-soluble chlorophyll-binding proteins (WSCPs) are interesting model systems for the study of pigment-pigment and pigment-protein interactions. While class IIa WSCP has been extensively studied by spectroscopic and theoretical methods, a comprehensive spectroscopic study of class IIb WSCP was lacking so far despite the fact that its structure was determined by X-ray crystallography. In this paper, results of two-dimensional electronic spectroscopy applied to the class IIb WSCP from Lepidium virginicum are presented. Global analysis of 2D data allowed determination of energy levels and excitation energy transfer pathways in the system. Some additional pathways, not present in class IIa WSCP, were observed. The data were interpreted in terms of a model comprising two interacting chlorophyll dimers. In addition, oscillatory signals were observed and identified as coherent beatings of vibrational origin.

  7. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  8. Studying the assembly of galaxies over the last 10 Gyr with 3D spectroscopy

    International Nuclear Information System (INIS)

    Divoy, Claire

    2014-01-01

    Cold gas accretion, mergers, outflows, feedbacks.. These are as many physical processes involved in galaxy mass assembly. But many fundamental questions remained unanswered. For instance, which one is the most efficient? And when? In this thesis, we attempt to constrain the role of these processes by studying the chemical composition of galaxies via the metallicity at redshifts between 1 and 2. We study the 84 galaxies of the MASSIV sample which is representative of the star-forming galaxies in this range of redshift. These galaxies have been observed with the integral field spectrograph SINFONI mounted at the VLT. Thanks to this powerful technique, also called 3D spectroscopy, we are now able to study spatially resolved properties such as kinematics and metallicity gradients. (author)

  9. The study of defects in metallic alloys by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Romero, R.; Salgueiro, W.; Somoza, A.

    1990-01-01

    Positron annihilation spectroscopy (PAS) has become in a very useful non destructive testing to the study of condensed matter. Specially, in the last two decades, with the advent of solid state detectors and high-resolution time spectrometers. The basic information obtained with PAS in solid-state physics is on electronic structure in free defect materials. However, positron annihilation techniques (lifetime, angular correlation and Doppler broadening) have been succesfully applied to study crystal lattice defects with lower-than-average electron density, such as vacancies, small vacancy clusters, etc.. In this sense, information about: vacancy formation and migration energies, dislocations, grain boundaries, solid-solid phase transformation and radiation damage was obtained. In this work the application of the positron lifetime technique to study the thermal effects on a fine-grained superplastic Al-Ca-Zn alloy and the quenched-in defects in monocrystals of β Cu-Zn-Al alloy for several quenching temperatures is shown. (Author) [es

  10. Diode laser absorption spectroscopy for studies of gas exchange in fruits

    Science.gov (United States)

    Persson, L.; Gao, H.; Sjöholm, M.; Svanberg, S.

    2006-07-01

    Gas exchange in fruits, in particular oxygen transport in apples, was studied non-intrusively using wavelength modulation diode laser absorption spectroscopy at about 761 nm, applied to the strongly scattering intact fruit structure. The applicability of the technique was demonstrated by studies of the influence of the skin to regulate the internal oxygen balance and of cling film in modifying it by observing the response of the signal from the internal oxygen gas to a transient change in the ambient gas concentration. Applications within controlled atmosphere fruit storage and modified atmosphere packaging are discussed. The results suggest that the technique could be applied to studies of a large number of problems concerning gas exchange in foods and in food packaging.

  11. A SHERLOC Study: Detection of Organics in Simulated Martian Soil using Deep UV Raman Spectroscopy

    Science.gov (United States)

    Abbey, W.; Bhartia, R.; Carrier, B. L.; Doloboff, I.; Hara, E. K.; Beegle, L. W.

    2017-12-01

    The SHERLOC investigation is a vital part of NASA's 2020 Mars payload [1]. It utilizes deep UV Raman and fluorescence spectroscopy to enable non-contact, non-destructive detection and characterization of in situ organics and minerals in the Martian surface and near subsurface. Raman spectroscopy using deep UV excitation wavelengths (noise ratio. Also, it should be noted that this technique requires very low fluence on the sample ( 60 J/cm2), minimizing degradation of organics and allowing their detection in the presence of strong oxidizers without fear of combustion due to heating [5,6]. In this study, perchlorate at 1 wt% was successfully detected in the presence of organic compounds native to the MMS; this concentration is comparable to the amount of perchlorate suspected to be present in Mars soil [6,7]. This work expands on data previously reported in Abbey et al., 2017 [8]. References: [1] Beegle et al., 2015 IEEE Aerospace Conf., 2015; [2] Asher, Anal. Chem. 65 (4), 1993; [3] Bhartia et al., Appl. Spectrosc. 62 (10), 2008; [4] Peters et al., Icarus 197, 2008; [5] Navarro-Gonzalez et al., J. Geophys. Res. 115, 2010; [6] Glavin et al., J. Geophys. Res. 118, 2013; [7] Hecht et al., Science 325, 2009; [8] Abbey et al., Icarus 290, 2017.

  12. Laser Spectroscopy Study on the Neutron-Rich and Neutron-Deficient Te Isotopes

    CERN Multimedia

    2002-01-01

    We propose to perform laser spectroscopy measurements on the Te isotopes. This will give access to fundamental properties of the ground and rather long-lived isomeric states such as the change in the mean square charge radius ($\\delta\\langle$r$^2_c\\rangle$) and the nuclear moments. For these medium-mass isotopes, at this moment the optical resolution obtained with RILIS is not high enough to perform isotope shift measurements. Thus we will use the COMPLIS experimental setup which allows Resonant Ionization Spectroscopy (RIS) on laser desorbed atoms. The 5p$^{4}$ $^{3}$P$_{2} \\rightarrow$ 5p$^{3}$ 6s $^{3}$S$_{1}$ and 5p$^{4}$ $^{3}$P$_{2} \\rightarrow$ 5p$^{3}$ 6s $^{5}$S$_{2}$ optical transitions have been used to perform, on the stable Te isotopes, the tests required by the INTC committee. For this purpose stable-ion sources have been built and Te isotopes have been delivered as stable beams by the injector coupled to the COMPLIS setup. ISOLDE offers the opportunity for studying the Te isotope series over a ...

  13. Study of acute biochemical effects of thallium toxicity in mouse urine by NMR spectroscopy.

    Science.gov (United States)

    Tyagi, Ritu; Rana, Poonam; Khan, Ahmad Raza; Bhatnagar, Deepak; Devi, M Memita; Chaturvedi, Shubhra; Tripathi, Rajendra P; Khushu, Subash

    2011-10-01

    Thallium (Tl) is a toxic heavy metal and its exposure to the human body causes physiological and biochemical changes due to its interference with potassium-dependent biological reactions. A high-resolution (1)H NMR spectroscopy based metabonomic approach has been applied for investigating acute biochemical effects caused by thallium sulfate (Tl(2)SO(4)). Male strain A mice were divided in three groups and received three doses of Tl(2)SO(4) (5, 10 and 20 mg kg(-1) b.w., i.p.). Urine samples collected at 3, 24, 72 and 96 h post-dose time points were analyzed by (1)H NMR spectroscopy. NMR spectral data were processed and analyzed using principal components analysis to represent biochemical variations induced by Tl(2)SO(4). Results showed Tl-exposed mice urine to have distinct metabonomic phenotypes and revealed dose- and time-dependent clustering of treated groups. The metabolic signature of urine analysis from Tl(2)SO(4)-treated animals exhibited an increase in the levels of creatinine, taurine, hippurate and β-hydroxybutyrate along with a decrease in energy metabolites trimethylamine and choline. These findings revealed Tl-induced disturbed gut flora, membrane metabolite, energy and protein metabolism, representing physiological dysfunction of vital organs. The present study indicates the great potential of NMR-based metabonomics in mapping metabolic response for toxicology, which could ultimately lead to identification of potential markers for Tl toxicity. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Interest in broadband dielectric spectroscopy to study the electronic transport in materials for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Badot, Jean-Claude, E-mail: jc.badot@chimie-paristech.fr [Institut de Recherche de Chimie Paris, UMR CNRS 8247, Réseau sur le Stockage Electrochimique de l' Energie (RS2E), Chimie Paris Tech, PSL*, 11 rue P. et M. Curie, 75231 Cedex 05 Paris (France); Lestriez, Bernard [Institut des Matériaux Jean Rouxel, UMR CNRS 6502, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes (France); Dubrunfaut, Olivier [GeePs | Group of electrical engineering – Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay, Sorbonne Universités, UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette CEDEX, Paris (France)

    2016-11-15

    Highlights: • Broadband dielectric spectroscopy measures the multiscale electronic conductivity from macroscopic to interatomic sizes. • There is an influence of the surface states on the electronic transfer of powdered materials (e.g. thin insulating layer of Li{sub 2}CO{sub 3} on LiNiO{sub 2} and carbon coating on LiFePO{sub 4}). • Electrical relaxations resulting from the interfacial polarizations at the different scales of the carbon black network are evidenced. - Abstract: Broadband dielectric spectroscopy (BDS) is used to measure complex permittivity and conductivity of conducting materials for lithium batteries at frequencies from a few Hz to several GHz with network and impedance analysers. Under the influence of an electric field, there will be charge density fluctuations in the conductor mainly due to electronic transfer. These fluctuations result in dielectric relaxations for frequencies below 100 GHz. The materials are compacted powders in which each element (particles, agglomerates of particles) can have different sizes and morphologies. In the present review, studies are reported on the influence of surface states in LiNiO{sub 2} (ageing and degradation in air) and LiFePO{sub 4} (carbon coating thin layer), and on a composite electrode based on the lithium trivanadate (Li{sub 1.1}V{sub 3}O{sub 8}) active material. The results have shown that the BDS technique is very sensitive to the different scales of materials architectures involved in electronic transport, from interatomic distances to macroscopic sizes.

  15. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity

    Science.gov (United States)

    Litvin, Valentina A.; Minaev, Boris F.

    2013-05-01

    In this present study, silver nanoparticles were synthesized using synthetic humic substances (HSs) as reducing and stabilizing agents. Preference of synthetic HSs over natural humic matter is determined by a standardization problem resolution of the product due to the strict control of conditions of the synthetic HSs formation. It allows to receive the silver nanoparticles with the standardized biologically-active protective shell that is very important for their use, mainly in medicine. The concentration of sodium hydroxide, synthetic HSs, silver nitrate and temperature employed in the synthesis process are optimized to attain better yield, controlled size and stability by means of UV-visible technique. In the optimal reaction conditions the concentrated silver colloids (55 mM) with 99.99% yield are obtained which were stable for more than 1 year under ambient conditions. The received silver nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction (XRD), FT-IR spectroscopy and transmission electron microscopy (TEM). The antimicrobial activity of silver nanoparticles against fungal and bacterial strains is also shown.

  16. A study of double stranded DNA adsorption on aluminum surface by means of electrochemical impedance spectroscopy.

    Science.gov (United States)

    Heli, H

    2014-04-01

    Immobilization of DNA on the solid surfaces is one of the goals in bio- and nano-technologies. Adsorption of double stranded DNA on the surface of aluminum was electrochemically studied by means of impedance spectroscopy. Nyquist diagram of aluminum in a tris (hydroxymethyl) ammoniummethane-HCl (Tris-HCl) buffer solution, pH 7.4 consisted of two overlapped capacitive semicircles. The high-frequency semicircle was related to the passivity of Cl(-)-containing aluminum species in the oxide layer, and low-frequency semicircle was attributed to metal dissolution. When DNA was added to the Tris-HCl buffer solution, Nyquist diagrams represented an inductive loop at low frequencies due to the adsorption of DNA on the pre-covered aluminum surface by hydroxy-contained species. The DNA adsorption on the aluminum surface was also confirmed by X-ray photoelectron spectroscopy. Open circuit potential variation with time also indicated the chemical adsorption of DNA on the aluminum surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. SANS and UV-vis spectroscopy studies of resultant structure from lysozyme adsorption on silica nanoparticles.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2011-08-16

    The interaction of lysozyme protein (M.W. 14.7 kD) with two sizes of silica nanoparticles (16 and 25 nm) has been examined in aqueous solution using UV-vis spectroscopy and small-angle neutron scattering (SANS). The measurements were performed on fixed concentration (1 wt %) of nanoparticles and varying concentration of protein in the range 0 to 2 wt %. The adsorption isotherm as obtained using UV-vis spectroscopy suggests strong interaction of the two components and shows an exponential behavior. The saturation values of adsorption are found to be around 90 and 270 protein molecules per particle for 16 and 25 nm sized nanoparticles, respectively. The adsorption of protein on nanoparticles leads to the aggregation of particles and these structures have been studied by SANS. The aggregates are characterized by fractal structure coexisting with unaggregated particles at low protein concentrations and free proteins at higher protein concentrations. Further, contrast variation SANS measurements have been carried out to differentiate the adsorbed and free protein in these systems.

  18. Final Technical Report Structural Dynamics in Complex Liquids Studied with Multidimensional Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tokmakoff, Andrei [Univ. of Chicago, IL (United States); Fiechtner, Gregory J. [Univ. of Chicago, IL (United States)

    2015-12-10

    This grant supported work in the Tokmakoff lab at the University of Chicago aimed at understanding the fundamental properties of water at a molecular level, and how water participates in proton transport in aqueous media. The physical properties of water and aqueous solutions are inextricably linked with efforts to develop new sustainable energy sources. Energy conversion, storage, and transduction processes, particularly those that occur in biology and soft matter, make use of water for the purpose of storing and moving charge. Water’s unique physical and chemical properties depend on the ability of water molecules to participate in up to four hydrogen bonds, and the rapid fluctuations and ultrafast energy dissipation of its hydrogenbonded networks. Our work during the grant period led to advances in four areas: (1) the generation of short pulses of broadband infrared light (BBIR) for use in time-resolved twodimensional spectroscopy (2D IR), (2) the investigation of the spectroscopy and transport of excess protons in water, (3) the study of aqueous hydroxide to describe the interaction of the ion and water and the dynamics of proton transfer, and (4) the coupled motion of water and its hydrogen-bonding solutes.

  19. Study of the meson mass spectroscopy with a potential model inspired in the quantum chromodynamics

    International Nuclear Information System (INIS)

    Bernardini, Alex Eduardo de

    2001-01-01

    Since the discovery of QCD (Quantum Chromodynamics), there have been remarkable technical achievements in perturbative calculations applied to hadrons. However, it is difficult to use QCD directly to compute hadronic properties. In this context, phenomenological potential models have provided extremely satisfactory results on description of ordinary hadrons, more specifically about quark-antiquark bound states (mesons). In this work we propose and study the main aspects in the construction of a potential model and search a generalized description of meson spectroscopy, with emphasis in heavy quark bound states. We analyze important aspects in the choice of the treatment in good agreement with the dynamics of interacting particles, attempting to relativistic aspects as well as to the possibilities of nonrelativistic approximation analysis. Initially the 'soft QCD' is employed to determine effective potential terms establishing the asymptotic Coulomb term from one gluon exchange approximation. At the same time, a linear confinement term is introduced in accordance with QCD and phenomenological prescription. We perform the calculations of mass spectroscopy for particular sets of mesons and we verify whether the potential model could be extended to calculating the electronic transition rate (Γ(q q-bar → e - e + )). Finishing, we discuss the real physical possibilities of development of a generalized potential model (all quark flavors), its possible advantages relative to experimental parametrization, complexity in numerical calculations and in the description of physical reality in agreement with a quantum field theory (QCD). (author)

  20. Iron in typical and atypical parkinsonism – Mössbauer spectroscopy and MRI studies

    Energy Technology Data Exchange (ETDEWEB)

    Kuliński, R. [Bródno Hospital, MRI Lab (Poland); Bauminger, E. R. [Hebrew University, Racah Institute of Physics (Israel); Friedman, A. [Medical University of Warsaw, Department of Neurology (Poland); Duda, P.; Gałązka-Friedman, J., E-mail: jgfrie@if.pw.edu.pl [Warsaw University of Technology, Faculty of Physics (Poland)

    2016-12-15

    Iron may play important role in neurodegeneration. The results of comparative studies of human brain areas (control and pathological) performed by Mössbauer spectroscopy (MS) and magnetic resonance imaging (MRI) techniques are presented. Mössbauer spectroscopy demonstrated a higher concentration of iron in atypical parkinsonism (progressive supranuclear palsy PSP) in the brain areas Substantia Nigra (SN) and Globus Pallidus (GP) involved in this pathological process, compared to control, while the concentration of iron in pathological tissues in typical parkinsonism (Parkinson’s disease - PD) did not differ from that in control. These results were compared with the changes in 1/T1 and 1/T2 (T1 and T2 being the relaxation times determined by MRI). A good linear correlation curve was found between the concentration of iron as determined by MS in different areas of control human brains and between 1/T1 and 1/T2. Whereas the finding in PSP-GP (the brain area involved in PSP) also fitted to such a correlation, this was not so for the correlation between pathological SN – the brain area involved in both diseases – and 1/T2, indicating a dependence of T2 on other factors than just the concentration of iron.

  1. Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer - A pilot study

    Science.gov (United States)

    Anand, Suresh; Sujatha, N.; Narayanamurthy, V. B.; Seshadri, V.; Poddar, Richa

    2014-02-01

    Foot ulceration due to diabetes mellitus is a major problem affecting 12-25% of diabetic subjects in their lifetime. An untreated ulcer further gets infected which causes necrosis leading to amputation of lower extremities. Early identification of risk factors and treatment for these chronic wounds would reduce health care costs and improve the quality of life for people with diabetes. Recent clinical investigations have shown that a series of factors including reduced oxygen delivery and disturbed metabolism have been observed on patients with foot ulceration due to diabetes. Also, these factors can impair the wound healing process. Optical techniques based on diffuse reflectance spectroscopy provide characteristic spectral finger prints shed light on tissue oxygenation levels and morphological composition of a tissue. This study deals with the application of diffuse reflectance intensity ratios based on oxyhemoglobin bands (R542/R580), ratios of oxy- and deoxy-hemoglobin bands (R580/R555), total hemoglobin concentration and hemoglobin oxygen saturation between normal and diabetic foot ulcer sites. Preliminary results obtained are found to be promising indicating the application of reflectance spectroscopy in the assessment of foot ulcer healing.

  2. Study of calcification formation and disease diagnostics utilising advanced vibrational spectroscopy

    Science.gov (United States)

    Kerssens, Marleen Maartje

    The accurate and safe diagnosis of breast cancer is a significant societal issue, with annual disease incidence of 48,000 women and around 370 men in the UK. Early diagnosis of the disease allows more conservative treatments and better patient outcomes. Microcalcifications in breast tissue are an important indicator for breast cancers, and often the only sign of their presence. Several studies have suggested that the type of calcification formed may act as a marker for malignancy and its presence may be of biological significance. In this work, breast calcifications are studied with FTIR, synchrotron FTIR, ATR FTIR, and Raman mapping to explore their disease specific composition. From a comparison between vibrational spectroscopy and routine staining procedures it becomes clear that calcium builds up prior to calcification formation. Raman and FTIR indicate the same size for calcifications and are in agreement with routine staining techniques. From the synchrotron FTIR measurements it can be proven that amide is present in the centre of the calcifications and the intensity of the bands depends on the pathology. Special attention is paid to the type of carbonate substitution in the calcifications relating to different pathology grades. In contrast to mammography, Raman spectroscopy has the capability to distinguish calcifications based on their chemical composition. The ultimate goal is to turn the acquired knowledge from the mapping studies into a clinical tool based on deep Raman spectroscopy. Deep Raman techniques have a considerable potential to reduce large numbers of normal biopsies, reduce the time delay between screening and diagnosis and therefore diminish patient anxiety. In order to achieve this, a deep Raman system is designed and after evaluation of its performance tested on buried calcification standards in porcine soft tissue and human mammary tissue. It is shown that, when the calcification is probed through tissue, the strong 960 cm-1 phosphate band

  3. In situ/Operando studies of electrocatalysts using hard X-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lassalle-Kaiser, Benedikt [Synchrotron SOLEIL, Gif-sur-Yvette (France); Gul, Sheraz [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Kern, Jan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Yachandra, Vittal K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.; Yano, Junko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Molecular Biophysics and Integrated Bioimaging Div.

    2017-05-02

    This review focuses on the use of X-ray absorption and emission spectroscopy techniques using hard X-rays to study electrocatalysts under in situ/operando conditions. The importance and the versatility of methods in the study of electrodes in contact with the electrolytes are described, when they are being cycled through the catalytic potentials during the progress of the oxygen-evolution, oxygen reduction and hydrogen evolution reactions. The catalytic oxygen evolution reaction is illustrated with examples using three oxides, Co, Ni and Mn, and two sulfides, Mo and Co. These are used as examples for the hydrogen evolution reaction. A bimetallic, bifunctional oxygen evolving and oxygen reducing Ni/Mn oxide is also presented. The various advantages and constraints in the use of these techniques and the future outlook are discussed.

  4. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanni, Martin Thomas [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents.

  5. Positron annihilation spectroscopy studies of bronze exposed to sandblasting at different pressure

    Science.gov (United States)

    Kurdyumov, S.; Siemek, K.; Horodek, P.

    2017-11-01

    An application of Doppler broadening of annihilation line spectroscopy to samples of beryllium bronze DIN-CuBe2 exposed to sandblasting is presented in performed studies. It is familiar that sandblasting introduces open-volume defects. Samples were sandblasted under different pressure for 1 minute using 110 μm particles of Al2O3. For a non-defected sample the constant value of S-parameter was detected. In the cases of sandblasted samples, S-parameter decreased when the depth enhanced. In our studies the thicknesses of defected zones were determined (it was c.a. 30 μm for a sample blasted under pressure of 1 bar and 110 μm – for 5 bar), and it was also observed that if sandblasting pressure is higher the defected zone is larger.

  6. A study of carbonates, sulfates, and phosphates using thermal emission spectroscopy

    Science.gov (United States)

    Wenrich, M. L.; Christensen, P. R.

    1993-01-01

    Thermal emission spectroscopy is useful for identifying mineralogies including carbonates, sulfates, and phosphates. Each of these groups of minerals has a distinct emissivity profile that allows for general identification (e.g., carbonate). Laboratory data are being collected that suggest the potential for determining specific composition of these minerals (e.g., calcite, magnesite). Previous studies of Mars suggest that the above groups of minerals should be present. On Mars fine-grained mineralogies are likely to be intimately mixed due to aeolian activity. Mixtures of calcite with palagonite will be studied to determine the volume percent requirement for salt identification and to understand the complexities of fine-grained mixtures observed by thermal emission. Further work with mixtures will include sulfate and phosphate mineralogies.

  7. Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation

    Directory of Open Access Journals (Sweden)

    Hsiu-An eChu

    2013-05-01

    Full Text Available The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC, which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR difference spectroscopy has been successfully used to study the molecular mechanism of photosynthetic water oxidation. This powerful technique has enabled the characterization of the dynamic structural changes in active water molecules, the Mn4CaO5 cluster, and its surrounding protein matrix during the catalytic cycle. This mini-review presents an overview of recent important progress in FTIR studies of the OEC and implications for revealing the molecular mechanism of photosynthetic water oxidation.

  8. Study of carbonate concretions using imaging spectroscopy in the Frontier Formation, Wyoming

    Science.gov (United States)

    de Linaje, Virginia Alonso; Khan, Shuhab D.; Bhattacharya, Janok

    2018-04-01

    Imaging spectroscopy is applied to study diagenetic processes of the Wall Creek Member of the Cretaceous Frontier Formation, Wyoming. Visible Near-Infrared and Shortwave-Infrared hyperspectral cameras were used to scan near vertical and well-exposed outcrop walls to analyze lateral and vertical geochemical variations. Reflectance spectra were analyzed and compared with high-resolution laboratory spectral and hyperspectral imaging data. Spectral Angle Mapper (SAM) and Mixture Tuned Matched Filtering (MTMF) classification algorithms were applied to quantify facies and mineral abundances in the Frontier Formation. MTMF is the most effective and reliable technique when studying spectrally similar materials. Classification results show that calcite cement in concretions associated with the channel facies is homogeneously distributed, whereas the bar facies was shown to be interbedded with layers of non-calcite-cemented sandstone.

  9. Decomposition kinetics study of zirconium hydride by interrupted thermal desorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Mingwang; Liang, Li; Tang, Binghua; Xiang, Wei; Wang, Yuan; Cheng, Yanlin; Tan, Xiaohua, E-mail: caepiee@163.com

    2015-10-05

    Highlights: • Interrupted TDS was applied to investigate the mechanism of ZrH{sub 2} decomposition. • The activation energies for the five desorption peaks were determined. • The origins of the five desorption peaks were identified. • The γZrH phase was observed at ambient conditions. - Abstract: Thermal desorption kinetics of zirconium hydride powder were studied using thermogravimetry and simultaneous thermal desorption spectroscopy. The activation energies for observed desorption peaks were estimated according to Kissinger relation. The intermediate phase composition was studied using X-ray diffraction by rapid cooling on different stages of heating. The origins of the peaks were described as the equilibrium hydrogen pressure of a number of consecutive phase regions that decomposition reaction passed through. The zirconium monohydride γZrH was observed for extended periods of time at ambient conditions, which has been supposed to be metastable for a long time.

  10. Study of the Pyrrol/Diphenylamine Copolymer by FT-IR spectroscopy and conductivity

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Perez

    2004-01-01

    Full Text Available The main goal of this study was to analyze the physical properties of the copolymer formed by the electrochemical deposition of the polydiphenylamine (PDPA on polypyrrole (Ppy and Ppy on PDPA, in different conditions, through the characterization of the materials formed by the resonant Raman, FT-IR and conductivity techniques. The interactions among the species which are present in the new copolymer structure and the changes in electronic conductivity, were verified. The copolymer was also synthesized electrochemically in the presence of iodide species and the material was characterized by FT-IR spectroscopy and conductivity. The role of the dopant was studied in the process of charge transfer between the copolymer-dopant, acting in the stabilization of the species in the polymer backbone and the increase of the electronic conductivity.

  11. Photodissociation and charge transfer dynamics of negative ions studied with femtosecond photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Zanni, Martin T.

    1999-01-01

    This dissertation presents studies aimed at understanding the potential energy surfaces and dynamics of isolated negative ions, and the effects of solvent on each. Although negative ions play important roles in atmospheric and solution phase chemistry, to a large extent the ground and excited state potential energy surfaces of gas phase negative ions are poorly characterized, and solvent effects even less well understood. In an effort to fill this gap, the author's coworkers and the author have developed a new technique, anion femtosecond photoelectron spectroscopy, and applied it to gas phase photodissociation and charge transfer processes. Studies are presented that (1) characterize the ground and excited states of isolated and clustered anions, (2) monitor the photodissociation dynamics of isolated and clustered anions, and (3) explore the charge-transfer-to-solvent states of atomic iodide clustered with polar and non-polar solvents

  12. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei

    International Nuclear Information System (INIS)

    Khalfallah, F.

    2007-08-01

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  13. Rotational spectroscopy and dynamics of carbonyl sulphide studied by terahertz free induction decays signals

    Science.gov (United States)

    Bigourd, D.; Mouret, G.; Cuisset, A.; Hindle, F.; Fertein, E.; Bocquet, R.

    2008-06-01

    A terahertz time domain spectroscopy experiment is used to study the coherent re-emission after exciting more than 60 energy rotational states of OCS molecules in gas phase. Due to the regular structure of the absorption spectrum of such linear molecules, a set of subsequent pulses separated by 82.6 ps is re-radiated from the vapour and recorded up to 450 ps. A model based on a linear response of the gas and by use of "Maxwell-Bloch" equations has permitted the re-emitted free induced decay to be investigated. Spectroscopic parameters, such as rotational constant, centrifugal distortion coefficient and relaxation times are responsible for the temporal shape and so can be evaluated. The influence of the optical thickness to access the relaxation times is discussed.

  14. Vibrational Spectroscopy of Binary Titanium Borides: First-Principles and Experimental Studies

    Directory of Open Access Journals (Sweden)

    Urszula D. Wdowik

    2017-01-01

    Full Text Available Vibrational dynamics of binary titanium borides is studied from first-principles. Polarized and unpolarized Raman spectra of TiB, TiB2, and Ti3B4 are reported along with the experimental spectra of commercial powder and bulk TiB2 containing less than 1 wt.% of impurity phases. The X-ray diffraction spectroscopy, applied for phase composition examination of both bulk and powder materials, identifies only the TiB2 phase. The simulated Raman spectra together with literature data support interpretation and refinement of experimental spectra which reveal components arising from titanium dioxide (TiO2 and amorphous boron carbide (B4C impurity phases as well as graphitic carbon. These contaminations are the by-products of synthesis, consolidation, and sintering aids employed to fabricate powder and bulk titanium diboride.

  15. FT Raman spectroscopy in the study of human teeth under medications demineralization

    Science.gov (United States)

    de Sant'Anna, G. R.; Nascimento, E. B.; Higa, A. G.; Santos, E. A. P.; Espirito Santo, A. M.; Martín, A. A.

    2015-06-01

    The in situ study evaluated antihistamine (DA) and bronchodilator(DB) drugs actions on dental enamel using FT Raman spectroscopy. Analysis of pH drugs were permorfed, DA 1.48 and DB 2.90. Enamel (n=24) were analysed by FT - Raman and randomly distributed in control group (CG) and experimental groups (GEA and GEB), specimens fixed in palatine appliances. In CG, dripped 20% sucrose (8Xday/3 min)/7 days. In GEA, 20% sucrose (8Xday/3 min) + drug (4Xday/3 min). In GEB, 20% sucrose (8Xday/3 min) B + drug (4Xday/3 min). FT- Raman analysis was performed again. Data analyzed by Student t test and ANOVA Differences in peak intensity of carbonate (CO3) /phosphate (PO4) (pdrugs, reduction in the amount of carbonate, organic and inorganic components were observed, denoting possible demineralization.

  16. Study on the Carbonation Behavior of Cement Mortar by Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Biqin Dong

    2014-01-01

    Full Text Available A new electrochemical model has been carefully established to explain the carbonation behavior of cement mortar, and the model has been validated by the experimental results. In fact, it is shown by this study that the electrochemical impedance behavior of mortars varies in the process of carbonation. With the cement/sand ratio reduced, the carbonation rate reveals more remarkable. The carbonation process can be quantitatively accessed by a parameter, which can be obtained by means of the electrochemical impedance spectroscopy (EIS-based electrochemical model. It has been found that the parameter is a function of carbonation depth and of carbonation time. Thereby, prediction of carbonation depth can be achieved.

  17. Raman Scattering and Surface Photovoltage Spectroscopy Studies of InGaAs/GaAs Radial Superlattices

    Science.gov (United States)

    Angelova, T.; Cros, A.; Ivanov, Ts.; Donchev, V.; Cantarero, A.; Shtinkov, N.; Deneke, Ch.; Schmidt, O. G.

    2011-12-01

    In this work we get insight into the multilayer structure of rolled-up microtube radial superlattices (RSLs) by the study of the optical and folded acoustic phonon modes of individual microtubes. Raman results show shifts of the InGaAs and GaAs related longitudinal optical modes that can be related to the strain state of the tubes. The folding of the acoustic modes has been related with the periodicity of the artificial superlattice formed by the multiple turns of the heterostructures. Information on the electronic structure and optical transitions of RSLs has been obtained by surface photovoltage spectroscopy. Room temperature spectra reveal several electronic transitions with energies below 1.3 eV. These transitions have been identified as originating from defect levels at the interfaces, as well as from the RSLs and the In0.215Ga0.785As/GaAs quantum well in the unfolded regions of the sample.

  18. Study of Dronino Iron Meteorite Weathering in Clay Sand Using Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Grigoriy A. Yakovlev

    2016-06-01

    Full Text Available Weathering products of two fragments of Dronino iron ungrouped meteorite found in the wet and drier clay sand were studied using X-ray diffraction and Mössbauer spectroscopy with a high velocity resolution. The products of metal oxidation in the internal and external surface layers were different for both fragments. The weathering products in fragment found in the wet clay sand contain magnetite (Fe3O4, maghemite (γ-Fe2O3, goethite (α-FeOOH and probably ferrihydrite (5Fe2O3∙9H2O while those in fragment found in drier clay sand contained ferric hydrous oxides (FeOOH and siderite (FeCO3 mainly. Concretions found near the first fragment contain ferric hydrous oxides (FeOOH mainly. This work is licensed under a Creative Commons Attribution 4.0 International License.

  19. Study of atomic and molecular emission spectra of Sr by laser induced breakdown spectroscopy (LIBS).

    Science.gov (United States)

    Bhatt, Chet R; Alfarraj, Bader; Ayyalasomayajula, Krishna K; Ghany, Charles; Yueh, Fang Y; Singh, Jagdish P

    2015-12-01

    Laser Induced Breakdown Spectroscopy (LIBS) is an ideal analytical technique for in situ analysis of elemental composition. We have performed a comparative study of the quantitative and qualitative analysis of atomic and molecular emission from LIBS spectra. In our experiments, a mixture of SrCl2 and Al2O3 in powder form was used as a sample. The atomic emission from Sr and molecular emission from SrCl and SrO observed in LIBS spectra were analyzed. The optimum laser energies, gate delays, and gate widths for selected atomic lines and molecular bands were determined from spectra recorded at various experimental parameters. These optimum experimental conditions were used to collect calibration data, and the calibration curves were used to predict the Sr concentration. Limits of detection (LODs) for selected atomic and molecular emission spectra were determined.

  20. Micro-Raman spectroscopy studies of the phase separation mechanisms of transition-metal phosphate glasses

    International Nuclear Information System (INIS)

    Mazali, Italo Odone; Alves, Oswaldo Luiz; Gimenez, Iara de Fatima

    2009-01-01

    Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation. (author)

  1. Studies of critical phenomena in molecular magnets by μSR spectroscopy

    International Nuclear Information System (INIS)

    Wasiutynski, T; Balanda, M; Czapla, M; Pelka, R; Zielinski, P M; Pratt, F L; Korzeniak, T; Podgajny, R; Pinkowicz, D; Sieklucka, B

    2011-01-01

    The rapidly developing field of molecular magnetism supplies a multitude of novel compounds of unprecedented properties and structure. Molecular magnets predominantly belong to the class of compounds involving well localized magnetic moments. This feature together with the fact that the nature and symmetry of magnetic interactions is encrypted in the critical behaviour makes them a perfect testing ground of the existing theoretical spin models. It is demonstrated that the experimental technique of the μSR spectroscopy is perfectly suited to study magnetic fluctuations and spin dynamics in the neighbourhood of a phase transition. This unique method can even dispense with the complementary measurements of the AC susceptibility or heat capacity to supply a complete set of the static and dynamic critical exponents. It can thus be used to pinpoint the universality class of the material of interest.

  2. Polymer Adsorption on Graphite and CVD Graphene Surfaces Studied by Surface-Specific Vibrational Spectroscopy.

    Science.gov (United States)

    Su, Yudan; Han, Hui-Ling; Cai, Qun; Wu, Qiong; Xie, Mingxiu; Chen, Daoyong; Geng, Baisong; Zhang, Yuanbo; Wang, Feng; Shen, Y R; Tian, Chuanshan

    2015-10-14

    Sum-frequency vibrational spectroscopy was employed to probe polymer contaminants on chemical vapor deposition (CVD) graphene and to study alkane and polyethylene (PE) adsorption on graphite. In comparing the spectra from the two surfaces, it was found that the contaminants on CVD graphene must be long-chain alkane or PE-like molecules. PE adsorption from solution on the honeycomb surface results in a self-assembled ordered monolayer with the C-C skeleton plane perpendicular to the surface and an adsorption free energy of ∼42 kJ/mol for PE(H(CH2CH2)nH) with n ≈ 60. Such large adsorption energy is responsible for the easy contamination of CVD graphene by impurity in the polymer during standard transfer processes. Contamination can be minimized with the use of purified polymers free of PE-like impurities.

  3. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    Science.gov (United States)

    Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.

    2005-01-01

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  4. Vibrational two-dimensional correlation spectroscopy (2DCOS) study of proteins

    Science.gov (United States)

    Noda, Isao

    2017-12-01

    A tutorial is provided for the generalized two-dimensional correlation spectroscopy (2DCOS), which is applicable to the vibrational spectroscopic study of proteins and related systems. In 2DCOS, similarity or dissimilarity among variations of spectroscopic intensities, which are induced by applying an external perturbation to the sample, is examined by constructing correlation spectra defined by two independent spectral variable axes. By spreading congested or overlapped peaks along the second dimension, apparent spectral resolution is enhanced and interpretation of complex spectra becomes simplified. A set of simple rules for the intensities and signs of correlation peaks is used to extract insightful information. Simulated IR spectra for a model protein are used to demonstrate the specific utility of 2DCOS. Additional tools useful in the 2DCOS analysis of proteins, such as data segmentation assisted with moving-window analysis, 2D codistribution analysis, Pareto scaling, and null-space projection are also discussed.

  5. Electrochemical impedance spectroscopy study of the metal hydride alloy/electrolyte junction

    International Nuclear Information System (INIS)

    Khaldi, Chokri; Mathlouthi, Hamadi; Lamloumi, Jilani

    2009-01-01

    The behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.75 alloy, used as a negative electrode in the Ni-MH batteries, was studied by the electrochemical impedance spectroscopy (EIS), measured at different potentials. The modeling of the EIS spectra allows us to model the interface electrolyte/Ni-MH electrode by a succession of interfaces electrolyte/corrosion film/alloy particles. The various processes and the physics parameters of each interface are discussed and evaluated. When the potential shifts to more negative values, two reactions are in competition: the hydrogen molecular evolution and the hydrogen atomic absorption. The hydrogen diffuses in the bulk of the alloy and the diffusion is not the limiting factor for the hydrogen absorption.

  6. A study of dye molecule diffusion in human hair using positron lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chandrashekara, M.N.; Ranganathaiah, C. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore (India)

    2009-11-15

    The diffusion behavior of a commercial permanent liquid hair dye in human hair has been investigated using Positron Annihilation Lifetime Spectroscopy (PALS) and gravimetric sorption method. The o-Ps lifetime parameters {tau}{sub 3} and I{sub 3} decrease rapidly during the first 60 minutes of sorption time. This is understood in terms of dye molecules filling the free volume cavities in hair. The sorption results suggest that the dye molecule diffusion is essentially a Fickian process. In the latter part of the sorption, where positron parameters remain almost constant, mass increase might be due to surface adhesion. These two stages of sorption are well separated by the positron technique. The study shows that the free volume theory and positron technique, widely used in polymer research, may expediently be used to understand hair properties, more importantly diffusion of dye molecules. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Chemical environment in halogenated styrene polymers studied by using positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Zhang, R.; Wu, Y.C.; Chen, H.; Zhang, J.; Li, Y.; Sandreczki, T.C.; Jean, Y.C.

    2003-01-01

    Polystyrene samples, incorporated with halogen elements (F, Cl, Br, I) on the para-position of the benzene ring, were studied using positron annihilation lifetime spectroscopy. It was found that the free-volume hole size is significantly affected by the internal Coulombic interaction of the halogen group, and is mainly related to the electronegativity of halogen-carbon bonds. In addition, it is found that the free-volume is secondarily modified by the steric effect of the side groups. The intensity of o-Ps has a linear relationship with the strength of the C-X bond and is strongly affected by the chemical environment in a halogenated styrene polymer system

  8. Charge radii of magnesium isotopes by laser spectroscopy a structural study over the $sd$ shell

    CERN Multimedia

    Schug, M; Krieger, A R

    We propose to study the evolution of nuclear sizes and shapes over the magnesium chain by measuring the root-mean-square charge radii of $^{21 - 32}$Mg, essentially covering the entire $\\textit{sd}$ shell. Our goal is to detect the structural changes, which in the neutron-deficient isotopes may originate from clustering, in a way similar to neon, and on the neutron-rich side would characterize the transition to the "island of inversion". We will combine, for the first time, the sensitive $\\beta$-detection technique with traditional fluorescence spectroscopy for isotope-shift measurements and in such a way gain access to the exotic species near the ${N}$ = 8 and ${N}$ = 20 shell closures.

  9. Cyclic Voltammetry and Impedance Spectroscopy Behavior Studies of Polyterthiophene Modified Electrode

    Directory of Open Access Journals (Sweden)

    Naima Maouche

    2011-01-01

    Full Text Available We present in this work a study of the electrochemical behaviour of terthiophene and its corresponding polymer, which is obtained electrochemically as a film by cyclic voltammetry (CV on platinum electrode. The analysis focuses essentially on the effect of two solvents acetonitrile and dichloromethane on the electrochemical behaviour of the obtained polymer. The electrochemical behavior of this material was investigated by cyclic voltammetry and electrochemical impedance spectroscopy (EIS. The voltammograms show that the film of polyterthiophene can oxide and reduce in two solutions; in acetonitrile, the oxidation current intensity is more important than in dichloromethane. The impedance plots show the semicircle which is characteristic of charge-transfer resistance at the electrode/polymer interface at high frequency and the diffusion process at low frequency.

  10. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Krishna Kant

    2014-11-01

    Full Text Available The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm and lengths (5 μm to 20 μm was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores.

  11. A study of the conformational isomerism of 1-iodobutane by high resolution rotational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arsenault, Eric A.; Obenchain, Daniel A.; Blake, Thomas A.; Cooke, S. A.; Novick, Stewart E.

    2017-05-01

    The first microwave study of 1-iodobutane, performed by Steinmetz et al.in 1977) led to the determination of the B + C parameter for the anti-anti­and gauche-anti-conformers. Nearly 40 years later, this reinvestigation of 1- iodobutane, by high-resolution microwave spectroscopy, led to the determina­tion of rotational constants, centrifugal distortion constants, nuclear quadrupole coupling constants (NQCCs), and nuclear-sp rotation constants belonging to both of the two previously mentioned conformers, in addition to the gauche­ gauche-conformer, which was observed in this frequency regime for the first time. Comparisons between the three conformers of 1-iodobutanc and other iodo- and bromoalkanes are made, specifically through an analysis of the nuclear quadrupole coupling constants belonging to the iodine and bromine atoms in the respective chemical environments.

  12. Study of the diffusion of some emulsions in the human skin by pulsed photoacoustic spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lahjomri, F [Ecole Nationale des Sciences Appliquees de Tanger, Universite Abdelmalek Essaadi, Route Ziaten, km 10, BP 1818 Tanger (Morocco); Benamar, N [Departement de Physique, Faculte des Sciences de Meknes, Universite Moulay Ismail, BP 4010 Beni M' hamed, Meknes (Morocco); Chatri, E [Departement de Physique, Faculte des Sciences de Meknes, Universite Moulay Ismail, BP 4010 Beni M' hamed, Meknes (Morocco); Leblanc, R M [Department of Chemistry, University of Miami, Cox Science Building, 1301 Memorial Drive, PO Box 249118, Miami, FL 33124-0431 (United States)

    2003-08-21

    We previously used pulsed photoacoustic spectroscopy (PPAS) to quantify sunscreen diffusion into human skin, and suggested a methodology to evaluate the time and the depth diffusion profile. These results were obtained by the analysis of the photoacoustic maximum response signal P{sub max} decrease, the time delay t{sub max} and the Fourier transform representation of the photoacoustic signal. In this study we present the results obtained for diffusion of four typical emulsions used in sunscreen compositions that show, for the first time, a particular behaviour for one of these emulsions due to a chemical reaction inside the skin during the diffusion process. This result provides a particularly interesting technique through the PPAS, to evaluate in situ the eventual chemical reactions that can occur during drug diffusion into human skin.

  13. Orientational ordering studies of fluorinated thermotropic liquid crystals by NMR spectroscopy.

    Science.gov (United States)

    Calucci, Lucia; Geppi, Marco; Urban, Stanislaw

    2014-10-01

    Fluorinated calamitic thermotropic liquid crystals represent an important class of materials for high-tech applications, especially in the field of liquid crystal displays. The investigation of orientational ordering in these systems is fundamental owing to the dependence of their applications on the anisotropic nature of macroscopic optical, dielectric, and visco-elastic properties. NMR spectroscopy is the most powerful technique for studying orientational order in liquid crystalline systems at a molecular level thanks to the possibility of exploiting different anisotropic observables (chemical shift, dipolar couplings, and quadrupolar coupling) and nuclei ((2)H, (13)C, and (19)F). In this paper, the basic theory and NMR experiments useful for the investigation of orientational order on fluorinated calamitic liquid crystals are reported, and a review of the literature published on this subject is given. Finally, orientational order parameters determined by NMR data are discussed in comparison to those obtained by optical and dielectric anisotropy measurements. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Study of spin-temperature effects using energy-ordered continuum gamma-ray spectroscopy technique

    Energy Technology Data Exchange (ETDEWEB)

    Baktash, C.; Halbert, M.L.; Hensley, D.C.; Johnson, N.R.; Lee, I.Y.; McConnell, J.W.; McGowan, F.K.

    1990-01-01

    We have investigated a new continuum {gamma}-ray spectroscopy technique which is based on the detection of all emitted {gamma} rays in a 4{pi} detector system, and ordering them according to their energies on an event-by-event basis. The technique allows determination of gamma strength functions, and rotational damping width as a function of spin and temperature. Thus, it opens up the possibility of studying the onset of motional narrowing, order-to-chaos transition, and the mapping of the evolution of nuclear collectivity with a spin and temperature. Application of the technique for preferential entry-state population, exit-channel selection, and feeding of the discrete states via selective pathways will be discussed. 20 refs., 4 figs.

  15. Preliminary study on the detection of irradiated food containing bone by ESR spectroscopy

    International Nuclear Information System (INIS)

    Zhao Yongfu; Ha Yiming; Liu Ting; Wang Rongfu; Wang Changbao

    2007-01-01

    Electron spin resonance (ESR) spectroscopy is one of the most effective technique for detection of irradiated food containing bone. It was found that the radiation -induced ESR signal (Spectrum, g factor and peak-to-peak line width AH) in bone before and after irradiation was significantly different and could be easily distinguished from the endogenous ESR signal. Sample preparation studies showed vacuum drying and grinding at frozen temperature was an ideal method. A linear relationship was observed between ESR signal intensity and the absorbed dose (0.3-10.1kGy). It can be proposed that 0.5kGy absorbed doses can be detected by ESR for irradiated food containing bone though detecting sensitivity is very different at the same irradiated dosage with different food such as pork, beef, duck, chicken and fish. The ultimate purpose of this work is to establish a national criterion for detection of irradiated foodstuffs by use of ESR. (authors)

  16. Study of Iron oxide nanoparticles using Mössbauer spectroscopy with a high velocity resolution

    Science.gov (United States)

    Oshtrakh, M. I.; Ushakov, M. V.; Šepelák, V.; Semionkin, V. A.; Morais, P. C.

    2016-01-01

    Iron oxide (magnetite and maghemite) nanoparticles developed for magnetic fluids were studied using Mössbauer spectroscopy with a high velocity resolution at 295 and 90 K. The recorded Mössbauer spectra have demonstrated that usual physical models based on octahedral and tetrahedral sites were not suitable for fitting. Alternatively, the Mössbauer spectra were nicely fitted using a large number of magnetic sextets. The obtained results showed that the Mössbauer spectra and the assessed parameters were different for nanoparticles as-prepared and dispersed in the dispersing fluid at 295 K. We claim that this finding is mainly due to the interaction of polar molecules with Iron cations at nanoparticle's surface or due to the surface coating using carboxylic-terminated molecules. It is assumed that the large number of spectral components may be related to complexity of the nanoparticle's characteristics and deviations from stoichiometry, including in the latter the influence of the oxidation of magnetite towards maghemite.

  17. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials

    Science.gov (United States)

    Mo, Sung-Kwan

    2017-03-01

    Quantum systems in confined geometries allow novel physical properties that cannot easily be attained in their bulk form. These properties are governed by the changes in the band structure and the lattice symmetry, and most pronounced in their single layer limit. Angle-resolved photoemission spectroscopy (ARPES) is a direct tool to investigate the underlying changes of band structure to provide essential information for understanding and controlling such properties. In this review, recent progresses in ARPES as a tool to study two-dimensional atomic crystals have been presented. ARPES results from few-layer and bulk crystals of material class often referred as "beyond graphene" are discussed along with the relevant developments in the instrumentation.

  18. X-ray photoelectron spectroscopy study of CO2 reaction with polycrystalline uranium surface

    International Nuclear Information System (INIS)

    Liu Kezhao; Yu Yong; Zhou Juesheng; Wu Sheng; Wang Xiaolin; Fu Yibei

    1999-10-01

    The adsorption of CO 2 on 'clean' depleted polycrystalline uranium metal surface has been studied by X-ray photoelectron spectroscopy (XPS) at 300 K. The 'clean' surface were prepared by Ar + ion sputtering under ultra-high vacuum (UHV) condition with a base pressure 6.7 x 10 -8 Pa. The result s shows that adsorption of CO 2 on 'clean' uranium metal took place in total dissociation, and leads to the formation of uranium dioxide, uranium carbides and free carbon. The total dissociation of CO 2 produced carbon, oxygen species, CO 2 2- and CO 3 2- species. The diffusion tendency of carbon was much stronger than that of oxygen, and led to form a carbide in oxide-metal interface while the oxygen remained on their surface as an oxide

  19. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    Science.gov (United States)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  20. Advantages of infrared transflection micro spectroscopy and paraffin-embedded sample preparation for biological studies

    Science.gov (United States)

    Yao, Jie; Li, Qian; Zhou, Bo; Wang, Dan; Wu, Rie

    2018-04-01

    Fourier-Transform Infrared micro-spectroscopy is an excellent method for biological analyses. In this paper, series metal coating films on ITO glass were prepared by the electrochemical method and the different thicknesses of paraffin embedding rat's brain tissue on the substrates were studied by IR micro-spetroscopy in attenuated total reflection (ATR) mode and transflection mode respectively. The Co-Ni-Cu alloy coating film with low cost is good reflection substrates for the IR analysis. The infrared microscopic transflection mode needs not to touch the sample at all and can get the IR spectra with higher signal to noise ratios. The Paraffin-embedding method allows tissues to be stored for a long time for re-analysis to ensure the traceability of the sample. Also it isolates the sample from the metal and avoids the interaction of biological tissue with the metals. The best thickness of the tissues is 4 μm.

  1. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    International Nuclear Information System (INIS)

    Arnold, C.C.

    1994-08-01

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C 6 - /C 6 , Si n - /Si n (n = 2, 3, 4), Ge 2 - /Ge 2 , In 2 P - /In 2 P,InP 2 - /InP 2 , and Ga 2 As - . The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I - ·CH 3 I S N 2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C 6 , as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important π bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C 6 - spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only ∼40 cm -1 relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C 6 , and the open shell of the anion

  2. Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy

    Science.gov (United States)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2017-09-01

    The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.

  3. Interfacial chemistry of a perfluoropolyether lubricant studied by X-ray photoelectron spectroscopy and temperature desorption spectroscopy

    Science.gov (United States)

    Herrera-Fierro, Pilar; Jones, William R., Jr.; Pepper, Stephen V.

    1993-01-01

    The interfacial chemistry of Fomblin Z25, a commercial perfluoropolyether used as lubricant for space applications was studied with different metallic surfaces: 440C steel, gold, and aluminum. Thin layers of Fomblin Z25 were evaporated onto the oxide-free substrates, and the interfacial chemistry was studied using XPS and TDS. The reactions were induced by heating the substrate and by rubbing the substrate with a steel ball. Gold was found to be completely unreactive towards Fomblin at any temperature. Reaction at room temperature was observed only in the case of the aluminum substrate, the most reactive towards Fomblin Z25 of the substrates studied. It was necessary to heat the 440C steel substrate to 190 C to induce decomposition of the fluid. The degradation of the fluid was indicated by the formation of a debris layer at the interface. This debris layer, composed of inorganic and organic reaction products, when completely formed, passivated the surface from further attack to the Fromblin on top. The tribologically induced reactions on 440C steel formed a debris layer of similar chemical characteristics to the thermally induced layer. In all cases, the degradation reaction resulted in preferential consumption of the difluoroformyl carbon (-OCF2O-).

  4. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  5. Photochromism of indolino-benzopyrans studied by NMR and UV-visible spectroscopy

    OpenAIRE

    Delbaere, S.; Berthet, J.; Salvador, M. A.; Vermeersch, G.; Oliveira, M. M.

    2006-01-01

    The synthesis of photochromic 3,3-di(4′-fluorophenyl)-3H-benzopyrans fused to an indole moiety is described. The structures of photomerocyanines elucidated by NMR spectroscopy and spectrokinetic data (λmax⁡ of colored form, colorability, and rate constant of bleaching) obtained by UV-visible spectroscopy are reported.

  6. Time dependent thermal treatment of oxidized MWCNTs studied by the electron and mass spectroscopy methods

    Czech Academy of Sciences Publication Activity Database

    Stobinski, L.; Lesiak, B.; Zemek, Josef; Jiříček, Petr

    2012-01-01

    Roč. 258, č. 20 (2012), s. 7912-7917 ISSN 0169-4332 Institutional research plan: CEZ:AV0Z10100521 Keywords : MWCNTs * ox-MWCNTs * functional materials * electron spectroscopy * mass spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.112, year: 2012

  7. Phosphatation of zeolite H-ZSM-5 : A combined microscopy and spectroscopy study

    NARCIS (Netherlands)

    Van Der Bij, Hendrik E.; Aramburo, Luis R.; Arstad, Bjørnar; Dynes, James J.; Wang, Jian; Weckhuysen, Bert M.

    2014-01-01

    A variety of phosphated zeolite H-ZSM-5 samples are investigated by using a combination of Fourier transfer infrared (FTIR) spectroscopy, single pulse 27Al, 29Si, 31P, 1H-31P cross polarization (CP), 27Al-31P CP, and 27Al 3Q magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy,

  8. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  9. Charge Carrier Dynamics in Transition Metal Oxides Studied by Femtosecond Transient Extreme Ultraviolet Absorption Spectroscopy

    Science.gov (United States)

    Jiang, Chang-Ming

    With the ability to disentangle electronic transitions that occur on different elements and local electronic structures, time-resolved extreme ultraviolet (XUV) spectroscopy has emerged as a powerful tool for studying ultrafast dynamics in condensed phase systems. In this dissertation, a visible-pump/XUV-probe transient absorption apparatus with femtosecond resolution was constructed to investigate the carrier relaxation dynamics in semiconductors after photo-excitation. This includes timescales for carrier thermalization by carrier-carrier and carrier-phonon scattering. The 30 -- 72 eV photon energy coverage (17 -- 40 nm wavelength) generated by a table-top XUV light source is suitable for probing the 3p-to-3d core level absorptions of various transition metal oxides (TMOs) with specificities to elements and oxidation states. In Chapter 1, a brief introduction to charge carrier dynamics in semiconductor-based materials is given. In addition, fundamentals of core-level spectroscopy and the high harmonic generation (HHG) process are also addressed in this introductory chapter. Specifications of the experimental apparatus that was constructed are summarized in Chapter 2, including the design concepts and characterization of performance. Chapter 3 presents the spectral tunability of the XUV pulses generated from a semi-infinite gas cell (SIGC), as well as the data acquisition procedures. Charge carrier relaxation dynamics in Co3O4 following the charge transfer excitation pathway at 400 nm are documented in Chapter 4. In Chapter 5, various visible pump wavelengths are used to excite Co3O4 and the differences in the carrier dynamics versus excitation wavelength are considered. After selectively photoexciting a Si/TiO2 heterojunction, the resulted electron transfer process is observed and reported in Chapter 6. The concluding remarks of the dissertation are made in Chapter 7, while several ongoing time-resolved experiments are addressed in the Appendix sections.

  10. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  11. Accurate and Rapid Differentiation of Acinetobacter baumannii Strains by Raman Spectroscopy: a Comparative Study.

    Science.gov (United States)

    Ghebremedhin, Meron; Heitkamp, Rae; Yesupriya, Shubha; Clay, Bradford; Crane, Nicole J

    2017-08-01

    In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become the standard for routine bacterial species identification due to its rapidity and low costs for consumables compared to those of traditional DNA-based methods. However, it has been observed that strains of some bacterial species, such as Acinetobacter baumannii strains, cannot be reliably identified using mass spectrometry (MS). Raman spectroscopy is a rapid technique, as fast as MALDI-TOF, and has been shown to accurately identify bacterial strains and species. In this study, we compared hierarchical clustering results for MS, genomic, and antimicrobial susceptibility test data to hierarchical clustering results from Raman spectroscopic data for 31 A. baumannii clinical isolates labeled according to their pulsed-field gel electrophoresis data for strain differentiation. In addition to performing hierarchical cluster analysis (HCA), multiple chemometric methods of analysis, including principal-component analysis (PCA) and partial least-squares discriminant analysis (PLSDA), were performed on the MS and Raman spectral data, along with a variety of spectral preprocessing techniques for best discriminative results. Finally, simple HCA algorithms were performed on all of the data sets to explore the relationships between, and natural groupings of, the strains and to compare results for the four data sets. To obtain numerical comparison values of the clustering results, the external cluster evaluation criteria of the Rand index of the HCA dendrograms were calculated. With a Rand index value of 0.88, Raman spectroscopy outperformed the other techniques, including MS (with a Rand index value of 0.58). Copyright © 2017 Ghebremedhin et al.

  12. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  13. Experimental study of the burned of nuclear fuel by the gamma spectroscopy method

    International Nuclear Information System (INIS)

    Amador V, P.

    2009-01-01

    Accurate information on nuclear fuel burnup is of vital importance in reactor operation, fuel management and fuel-characteristics studies. Conventionally fuel management of the TRIGA III Reactor from the National Institute of Nuclear Research (ININ) is done through the thermal balance method (management) of the power generated during reactor operation, since it is known that with 1.24 grams of 235 U is possible to generate a power or 1 MW per day during the reactor operation. On the other hand, it is possible to calculate the operation time in days during a power of 1 MW with the help of the data registered in logs. With the information just mentioned one can calculate the quantity of 235 U consumed in the fuel during a complete period of irradiation. In order to compare and prove that the burnup values, calculated through the thermal balance method, are correct, the ININ implemented, for the first time, the gamma-ray spectroscopy method as an experimental technique to calculate the burnup of several fuel elements. Gamma-ray spectroscopy is a nondestructive method, so that the integrity of the fuel element is not affected which is of great importance. Since there is a direct relation between the activity of 137 Cs contained in the fuel elements and a series of constants which are unique for the radioisotope and for the high resolution system, the problem just simplifies in measuring the 137 Cs activities. Furthermore the 137 Cs concentration equation was developed theoretically and I wrote a computer program (AMAVAL) in Fortran. The task of this program is to calculate the concentrations and the activity through the use of the equation just mentioned and the history of each fuel element. The purpose of this is to compare and validate the experimental activities with the theoretical ones for each fuel element. (Author)

  14. Defect evolution during annealing of deformed FeSi alloys studied by positron annihilation spectroscopy

    Science.gov (United States)

    Mostafa, K. M.; Cámara, F. González; Petrov, Roumen; Calvillo, P. Rodríguez; De Grave, E.; Segers, D.; Houbaert, Y.

    2011-04-01

    High silicon steel is widely used in electrical appliances. Alloying iron with silicon improves its magnetic performance. A silicon content up to 6.5 wt. % gives excellent magnetic properties such as high saturation magnetization, near zero magnetostriction and low iron loss in high frequencies. Their workability is greatly reduced by the appearance of ordered structures, namely B2 and D03, as soon as the Si content becomes higher than 3.5 wt. %. This limits the mass production by conventional rolling to this maximum percentage of Si. In this work a series of FeSi (7.5 wt. % Si) samples with different degrees of deformation are investigated with positron annihilation spectroscopy and optical microscopy (OM). The influence of annealing on the concentration of defects of different deformed FeSi alloys has been investigated by positron annihilation lifetime spectroscopy and Doppler broadening of the annihilation radiation. OM is used to investigate the microstructure of deformed samples before and after annealing. The values of the S parameter present a decrease for all studied FeSi alloys with the increase of the annealing temperature, being attributed to a decrease of the concentration of defects. A sudden increase of the S-parameter value at 600 °C was observed for all samples, which could be related to the change of the ordering of the FeSi alloys at that temperature. At 700 °C, the values of the S parameter decreased drastically and starting from 900 °C, they became constant. The microstructures of the alloys, investigated by OM, show that recrystallization is completed at 900 °C and the samples are mainly free of defects, which is in agreement with the positron annihilation lifetime data.

  15. Composition-thermal expandability relations and oxidation processes in tourmaline studied by in situ Raman spectroscopy

    Science.gov (United States)

    Watenphul, Anke; Malcherek, Thomas; Wilke, Franziska D. H.; Schlüter, Jochen; Mihailova, Boriana

    2017-11-01

    The crystal chemistry of tourmaline, XY3Z6(T6O18)(BO3)3V3W, has a strong influence on the structure and physical properties. Since tourmalines occur in a wide range of geological settings and have large temperature and pressure stability fields, the understanding of the relation between the tourmaline chemistry and thermal expansion allows for better thermodynamic modeling of geological processes. Here, we report dynamic and static thermal expansions as well as mode Grüneisen parameters studied by Raman spectroscopy and single-crystal X-ray diffraction data on several tourmaline species. In addition, oxidation processes in fluor-schorl and Fe2+-bearing elbaite were followed by Raman spectroscopy. Our results emphasize the role of Y-/Z-site occupancy disorder to reduce the local strains and demonstrate that small-size octahedrally coordinated cations perturb the topology of the SiO4 rings, which in turn seems to enhance the anisotropic thermal-expansion response. In addition, it is shown that the temperature-dependent behavior of the VOH modes primarily depends on the occupancy of the Y site, whereas that of the WOH modes depends on the occupancy of the X site. High-temperature Raman experiments in air allowed to follow the oxidation of Fe2+ to Fe3+ in fluor-schorl by analyzing both the framework and OH-stretching phonon modes. It is further demonstrated that under the same conditions, no oxidation of iron is observed for Fe2+-bearing elbaite, which implies that at high oxygen fugacity, iron is only oxidized in tourmaline species with prevalent divalent cations at the Y site.

  16. Quantitative study of a gaseous atmosphere by Fourier transformation infrared spectroscopy (FTIR); Etude quantitative d atmosphere gazeuse par spectroscopie infrarouge a transformee de Fourier

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, G.; Faivret, O.; Doncourt, A.; Dubard, V. [CEA, Is sur Tille, (France)

    2006-07-01

    The aim of this work is to implement an in situ quantitative analysis of gases present in a gaseous atmosphere by Fourier transformation infrared spectroscopy in order to determine the processes occurring during the uranium corrosion reactions. Indeed, during these reactions, the gaseous atmosphere initially present evolves during the reaction and leads to the formation of new gaseous species. The aim is then to in situ quantify the proportion of species present during all the reactional process. A preliminary study on pure gases has been carried out. The studied gases are: CH{sub 4}, CO{sub 2}, H{sub 2} and CO. The aim is to identify their spectral symbol in the infrared and to determine their behaviour (absorbance) in terms of their concentration. The study of different binary gases mixtures, as for instance CO{sub 2}/H{sub 2}, CH{sub 4}/H{sub 2}, CO/H{sub 2} or CH{sub 4}/CO{sub 2} has been carried out too. This study presents the results concerning the CO{sub 2}/H{sub 2} mixture and more particularly the evolution of the spectral sign of gases in terms of the partial concentrations of H{sub 2} and CO{sub 2}. The study of the spectra of this mixtures show that the presence of a gaseous specie has an influence on the characteristics of the peaks (intensity and area) of the spectra relative to other gaseous species present in the mixture according to a transfer function which has then been determined. The feasibility of the implementation of an in situ quantitative gaseous analysis by Fourier transformation infrared spectroscopy is then discussed from FTIR tables (intensity and area of peaks) obtained on gaseous mixtures. (O.M.)

  17. Quantitative multivoxel proton MR spectroscopy study of brain metabolites in patients with amnestic mild cognitive impairment: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhong-Xian; Cheng, Xiao-Fang; Xu, Zhi-Feng; Cao, Zhen; Xiao, Ye-Yu; You, Ke-Zeng; Liu, Yan-Yan [Medical College of Shantou University, Department of Medical Imaging, The Second Affiliated Hospital, Shantou (China); Huo, Shan-Shan [Science College of Shantou University, Department of Physics, Shantou (China); Zeng, Jie-Xia; Chen, Wei [Medical College of Shantou University, Department of Neurology, The Second Affiliated Hospital, Shantou (China); Wu, Ren-Hua [Medical College of Shantou University, Department of Medical Imaging, The Second Affiliated Hospital, Shantou (China); Medical College of Shantou University, Provincial Key Laboratory of Medical Molecular Imaging, Guangdong, Shantou (China)

    2012-05-15

    The purpose of this study is to investigate brain metabolic changes in patients with amnestic mild cognitive impairment (aMCI) using multivoxel proton MR spectroscopy ({sup 1}H-MVS). Fourteen aMCI patients and fifteen healthy control subjects participated in this experiment. All MR measurements were acquired using a 1.5-T GE scanner. {sup 1}H-MVS point resolved spectroscopy (2D PROBE-CSI PRESS) pulse sequence (TE = 35 ms; TR = 1,500 ms; phase x frequency, 18 x 18) was used for acquiring MRS data. All data were post-processed using Spectroscopy Analysis by General Electric software and linear combination of model (LCModel). The absolute concentrations of N-acetylaspartate (NAA), choline (Cho), myoinositol (MI), creatine (Cr), and the metabolite ratios of NAA/Cr, Cho/Cr, MI/Cr, and NAA/MI were measured bilaterally in the posterior cingulate gyrus (PCG), inferior precuneus (Pr), paratrigonal white matter (PWM), dorsal thalamus (DT), and lentiform nucleus (LN). Patients with aMCI displayed significantly lower NAA levels in the bilateral PCG (p < 0.01), PWM (p < 0.05), and left inferior Pr (p < 0.05). The metabolite ratio of NAA/MI was decreased in the bilateral PCG (p < 0.01) and PWM (p < 0.05) and in the left DT (p < 0.01). NAA/Cr was decreased in the left PCG (p < 0.01), DT (p < 0.05), right PWM (p < 0.05), and LN (p < 0.05). However, MI/Cr was elevated in the right PCG (p < 0.01) and left PWM (p < 0.05). Significantly increased Cho level was also evident in the left PWM (p < 0.05). Our observations of decreased NAA, NAA/Cr, and NAA/MI, in parallel with increased Cho and MI/Cr might be characteristic of aMCI patients. (orig.)

  18. In vivo study of dermal collagen of striae distensae by confocal Raman spectroscopy.

    Science.gov (United States)

    Lung, Pam Wen; Tippavajhala, Vamshi Krishna; de Oliveira Mendes, Thiago; Téllez-Soto, Claudio A; Schuck, Desirée Cigaran; Brohem, Carla Abdo; Lorencini, Marcio; Martin, Airton Abrahão

    2018-04-01

    This research work mainly deals with studying qualitatively the changes in the dermal collagen of two forms of striae distensae (SD) namely striae rubrae (SR) and striae albae (SA) when compared to normal skin (NS) using confocal Raman spectroscopy. The methodology includes an in vivo human skin study for the comparison of confocal Raman spectra of dermis region of SR, SA, and NS by supervised multivariate analysis using partial least squares discriminant analysis (PLS-DA) to determine qualitatively the changes in dermal collagen. These groups are further analyzed for the extent of hydration of dermal collagen by studying the changes in the water content bound to it. PLS-DA score plot showed good separation of the confocal Raman spectra of dermis region into SR, SA, and NS data groups. Further analysis using loading plot and S-plot indicated the participation of various components of dermal collagen in the separation of these groups. Bound water content analysis showed that the extent of hydration of collagen is more in SD when compared to NS. Based on the results obtained, this study confirms the active involvement of dermal collagen in the formation of SD. It also emphasizes the need to study quantitatively the role of these various biochemical changes in the dermal collagen responsible for the variance between SR, SA, and NS.

  19. Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study.

    Science.gov (United States)

    Rowland, L M; Pradhan, S; Korenic, S; Wijtenburg, S A; Hong, L E; Edden, R A; Barker, P B

    2016-11-29

    Various lines of evidence suggest that brain bioenergetics and mitochondrial function may be altered in schizophrenia. On the basis of prior phosphorus-31 ( 31 P)-magnetic resonance spectroscopy (MRS), post-mortem and preclinical studies, this study was designed to test the hypothesis that abnormal glycolysis leads to elevated lactate concentrations in subjects with schizophrenia. The high sensitivity of 7 Tesla proton ( 1 H)-MRS was used to measure brain lactate levels in vivo. Twenty-nine controls and 27 participants with schizophrenia completed the study. MRS scanning was conducted on a Philips 'Achieva' 7T scanner, and spectra were acquired from a voxel in the anterior cingulate cortex. Patients were assessed for psychiatric symptom severity, and all participants completed the MATRICS Consensus Cognitive Battery (MCCB) and University of California, San Diego Performance-Based Skills Assessment (UPSA). The relationship between lactate, psychiatric symptom severity, MCCB and UPSA was examined. Lactate was significantly higher in patients compared with controls (P=0.013). Higher lactate was associated with lower MCCB (r=-0.36, P=0.01) and UPSA total scores (r=-0.43, P=0.001). We believe this is the first study to report elevated in vivo cerebral lactate levels in schizophrenia. Elevated lactate levels in schizophrenia may reflect increased anaerobic glycolysis possibly because of mitochondrial dysfunction. This study also suggests that altered cerebral bioenergetics contribute to cognitive and functional impairments in schizophrenia.

  20. Using resonance light scattering and UV/vis absorption spectroscopy to study the interaction between gliclazide and bovine serum albumin.

    Science.gov (United States)

    Zhang, Qiu-Ju; Liu, Bao-Sheng; Li, Gai-Xia; Han, Rong

    2016-08-01

    At different temperatures (298, 310 and 318 K), the interaction between gliclazide and bovine serum albumin (BSA) was investigated using fluorescence quenching spectroscopy, resonance light scattering spectroscopy and UV/vis absorption spectroscopy. The first method studied changes in the fluorescence of BSA on addition of gliclazide, and the latter two methods studied the spectral change in gliclazide while BSA was being added. The results indicated that the quenching mechanism between BSA and gliclazide was static. The binding constant (Ka ), number of binding sites (n), thermodynamic parameters, binding forces and Hill's coefficient were calculated at three temperatures. Values for the binding constant obtained using resonance light scattering and UV/vis absorption spectroscopy were much greater than those obtained from fluorescence quenching spectroscopy, indicating that methods monitoring gliclazide were more accurate and reasonable. In addition, the results suggest that other residues are involved in the reaction and the mode 'point to surface' existed in the interaction between BSA and gliclazide. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. UV-Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications.

    Science.gov (United States)

    Antosiewicz, Jan M; Shugar, David

    2016-06-01

    In Part 2 we discuss application of several different types of UV-Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  2. UV?Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: selected applications

    OpenAIRE

    Antosiewicz, Jan M.; Shugar, David

    2016-01-01

    In Part 2 we discuss application of several different types of UV?Vis spectroscopy, such as normal, difference, and second-derivative UV absorption spectroscopy, fluorescence spectroscopy, linear and circular dichroism spectroscopy, and Raman spectroscopy, of the side-chain of tyrosine residues in different molecular environments. We review the ways these spectroscopies can be used to probe complex protein structures.

  3. Study of anti-cancer effects of chemotherapeutic agents and radiotherapy in breast cancer patients using fluorescence spectroscopy

    Science.gov (United States)

    Chithra, K.; Vijayaraghavan, S.; Prakasarao, Aruna; Singaravelu, Ganesan

    2017-02-01

    The analysis of the variations in the spectroscopic patterns of the key bio molecules using Native fluorescence spectroscopy, without exogenous labels, has emerged as a new trend in the characterization of the Physiological State and the Discrimination of Pathological from normal conditions of cells and tissues as the relative concentration of these bio-molecules serve as markers in evaluating the presence of cancer in the body. The aim of this unique study is to use these features of Optical spectroscopy in monitoring the behavior of cells to treatment and thus to evaluate the response to Chemotherapeutic agents and Radiation in Breast Cancer Patients. The results of the study conducted using NFS of Human blood plasma of biopsy proved Breast Cancer patients undergoing treatment are promising, enhancing the scope of Native fluorescence Spectroscopy emerging as a promising technology in the evaluation of Therapeutic Response in Breast Cancer Patients.

  4. Shelf life study of egg albumin in pasteurized and non-pasteurized eggs using visible-near infrared spectroscopy

    Science.gov (United States)

    A twelve week shelf life study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. The goal of the study was to correlate the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior eg...

  5. The hydroxylation of passive oxide films on X-70 steel by dissolved hydrogen studied by nuclear reaction analysis, Auger electron spectroscopy, X-ray photoelectron spectroscopy and secondary ion mass spectroscopy

    International Nuclear Information System (INIS)

    Zhang Chunsi; Luo Jingli; Munoz-Paniagua, David; Norton, Peter R.

    2006-01-01

    Dissolved hydrogen is known to reduce the corrosion resistance of a passive oxide film on iron and its alloys, especially towards pitting corrosion. Electrochemical techniques have been used to show that the passive films are changed by dissolved hydrogen in an alloy substrate, but direct confirmation of the chemical and compositional profiles and changes has been missing. In this paper we report the direct profiling and compositional analysis of the 4 nm passive film on X-70 steel by Auger electron spectroscopy (AES), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and nuclear reaction analysis (NRA) while hydrogen (deuterium) is charged into the alloy samples from the reverse, unpassivated side. The only route for D to the passive film is therefore by dissolution and diffusion. We show that the original duplex structure of the passive film is converted to a more continuous film containing hydroxyl groups, by reaction with the dissolved hydrogen. This conversion of the oxide ions to hydroxyl groups can lead to more rapid reaction and replacement with (e.g.) Cl - , which is known to enhance pitting. These results are entirely consistent with previous electrochemical studies and provide the first direct confirmation of models on the formation and role of hydroxyl groups derived from these earlier studies

  6. [Progress in application of near infrared reflectance spectroscopy to the study of ruminant nutrition].

    Science.gov (United States)

    Guo, Xu-Sheng; Shang, Zhan-Huan; Fang, Xiang-Wen; Long, Rui-Jun

    2009-03-01

    The near infrared reflectance spectroscopy (NIRS) technique has been widely used in the study of ruminant nutrition with many of its operational merits such as facility, shortcut and accuracy, etc. Study suggested that the standard error of cross-validation (SECV) ranges from 1.6% to 2.8% in predicting organic matter digestion of ruminant diet by using the NIRS technique; the chemical and biological compositions and the microbial protein proportion in the duodenal digesta can be predicted accurately using the NIRS. However, the kinetic parameters of degradation are not well predicted; The prediction of intake of stall feeding animals by using NIRS is similar to the determination of in vivo method, but the standard error of prediction is about 14% when using the NIRS to predict intake of grazing animals. All of the studies suggest that big progress has been made in using NIRS technique to predict feed digestion and evaluate the diet quality and intake of ruminant animals, which also suggest that the NIRS technique has a wide prospect in the study of ruminant nutrition.

  7. In vivo study of the human skin by the method of laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Borisova, E.; Avramov, L.

    2000-01-01

    The goals of this study are to perform a preliminary evaluation of the diagnostic potential of noninvasive laser-induced auto-fluorescence spectroscopy (LIAFS) for human skin and optimize of detection and diagnosis of hollow organs and skin. In recent years, there has been growing interest in the use of laser-induced fluorescence to discriminate disease from normal surrounding tissue. The most fluorescence studies have used exogenous fluorophores of this discrimination. The laser-induced auto-fluorescence which is used for diagnosis of tissues in the human body avoids administration of any drugs. In this study a technique for optical biopsy of in vivo human skin is presented. The auto-fluorescence characterization of tissue relies on different spectral properties of tissues. It was demonstrated a differentiation between normal skin and skin with vitiligo. Two main endogenous fluorophores in the human skin account for most of the cellular auto-fluorescence for excitation wavelength 337 nm reduced from of nicotinamide adenine dinucleotide and collagen. The auto-fluorescence spectrum of human skin depend on main internal absorbers which are blood and melanin. In this study was described the effect caused by blood and melanin content on the shape of the auto-fluorescence spectrum of human skin. Human skin fluorescence spectrum might provide dermatologists with important information and such investigations are successfully used now in skin disease diagnostics, in investigation of the environmental factor impact or for evaluation of treatment efficiency. (authors)

  8. Gender difference in spontaneous deception: A hyperscanning study using functional near-infrared spectroscopy.

    Science.gov (United States)

    Zhang, Mingming; Liu, Tao; Pelowski, Matthew; Yu, Dongchuan

    2017-08-08

    Previous studies have demonstrated that the neural basis of deception involves a network of regions including the medial frontal cortex (MFC), superior temporal sulcus (STS), temporo-parietal junction (TPJ), etc. However, to test the actual activity of the brain in the act of deceptive practice itself, existing studies have mainly adopted paradigms of passive deception, where participants are told to lie in certain conditions, and have focused on intra-brain mechanisms in single participants. In order to examine the neural substrates underlying more natural, spontaneous deception in real social interactions, the present study employed a functional near-infrared spectroscopy (fNIRS) hyperscanning technique to simultaneously measure pairs of participants' fronto-temporal activations in a two-person gambling card-game. We demonstrated higher TPJ activation in deceptive compared to honest acts. Analysis of participants' inter-brain correlation further revealed that the STS is uniquely involved in deception but not in honesty, especially in females. These results suggest that the STS may play a critical role in spontaneous deception due to mentalizing requirements relating to modulating opponents' thoughts. To our knowledge, this study was the first to investigate such inter-brain correlates of deception in real face-to-face interactions, and thus is hoped to provide a new path for future complex social behavior research.

  9. Sorption of pollutants on crystal surfaces studied by second-harmonic generation spectroscopy; Sorption de polluants sur des surfaces cristallines etudiee par spectroscopie de generation de seconde harmonique (GSH)

    Energy Technology Data Exchange (ETDEWEB)

    Cremel, S.; Dossot, M.; Grausem, J.; Ehrhardt, J.J. [Universite Henri Poincare, UMR CNRS 7564, 54 - Villers les Nancy (France)

    2006-01-15

    Sorption of pollutants on crystalline surfaces studied by second harmonic generation spectroscopy (SHG) This article enlightens a non linear spectroscopy that reveals to be useful to study the sorption of molecules of pollutants in solution onto crystalline surfaces. The capabilities of second harmonic generation (SHG) spectroscopy are illustrated by two experimental examples: the monitoring of a kinetics of adsorption of dodecane-thiol on polycrystalline gold, and the change of surface symmetry of a rutile TiO{sub 2} (110) face after absorption of uranyl cations UO{sub 2}{sup 2+}. (authors)

  10. Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Moens, Maarten; Marien, Peter; Brouns, Raf; Smedt, Ann de; Poelaert, Jan; Buyl, Ronald; Droogmans, Steven; Schuerbeek, Peter van; Sunaert, Stefan; Nuttin, Bart

    2013-01-01

    Although spinal cord stimulation (SCS) is a widely used treatment for chronic neuropathic pain secondary to spinal surgery, little is known about the underlying physiological mechanisms. The primary aim of this study is to investigate the neural substrate underlying short-term SCS by means of 1 H MR spectroscopy with short echo time, in 20 patients with failed back surgery syndrome. Marked increase of γ-aminobutyric acid (GABA) and decrease in glucose in the ipsilateral thalamus were found between baseline situation without SCS and after 9' of SCS, indicating the key role of the ipsilateral thalamus as a mediator of chronic neuropathic pain. In addition, this study also showed a progressive decrease in glucose in the ipsilateral thalamus over time, which is in line with the findings of previous studies reporting deactivation in the ipsilateral thalamic region. The observation of GABA increase and glucose decrease over time in the ipsilateral thalamus may be the causal mechanism of the pain relief due to SCS or an epiphenomenon. (orig.)

  11. Spinal cord stimulation modulates cerebral neurobiology: a proton magnetic resonance spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Moens, Maarten [Universitair Ziekenhuis Brussel, Department of Neurosurgery and Center for Neuroscience, Brussels (Belgium); Marien, Peter [ZNA Middelheim General Hospital, Department of Neurology, Antwerp (Belgium); Vrije Universiteit Brussel, Department of Clinical and Experimental Neurolinguistics, Brussels (Belgium); Brouns, Raf; Smedt, Ann de [Universitair Ziekenhuis Brussel, Neurology and Center for Neuroscience, Brussels (Belgium); Poelaert, Jan [Universitair Ziekenhuis Brussel, Anesthesiology, Brussels (Belgium); Buyl, Ronald [Vrije Universiteit Brussel, Department of Biostatistics and Medical Informatics, Brussels (Belgium); Droogmans, Steven [Universitair Ziekenhuis Brussel, Cardiology, Brussels (Belgium); Schuerbeek, Peter van [Universitair Ziekenhuis Brussel, Radiology, Brussels (Belgium); Sunaert, Stefan [Katholieke Universiteit Leuven, Department of Radiology, UZ Leuven, Leuven (Belgium); Nuttin, Bart [Katholieke Universiteit Leuven, Neurosurgery, UZ Leuven, Leuven (Belgium)

    2013-08-15

    Although spinal cord stimulation (SCS) is a widely used treatment for chronic neuropathic pain secondary to spinal surgery, little is known about the underlying physiological mechanisms. The primary aim of this study is to investigate the neural substrate underlying short-term SCS by means of {sup 1}H MR spectroscopy with short echo time, in 20 patients with failed back surgery syndrome. Marked increase of {gamma}-aminobutyric acid (GABA) and decrease in glucose in the ipsilateral thalamus were found between baseline situation without SCS and after 9' of SCS, indicating the key role of the ipsilateral thalamus as a mediator of chronic neuropathic pain. In addition, this study also showed a progressive decrease in glucose in the ipsilateral thalamus over time, which is in line with the findings of previous studies reporting deactivation in the ipsilateral thalamic region. The observation of GABA increase and glucose decrease over time in the ipsilateral thalamus may be the causal mechanism of the pain relief due to SCS or an epiphenomenon. (orig.)

  12. Study of molybdenum oxide by means of Perturbed Angular Correlations (PAC) and Mössbauer spectroscopy

    CERN Multimedia

    Among transition-metal oxides, the molybdenum oxide compounds are particularly attractive due to the structural (2D) anisotropy and to the ability of the molybdenum ion to change its oxidation state. These properties make it suitable for applications on, e.g., chemical sensors, solar cells, catalytic and optoelectronic devices. At ISOLDE we aim studying the incorporation of selected dopants by ion implantation, using the nuclear techniques of Perturbed Angular Correlations (PAC) and Mössbauer spectroscopy (MS). Both techniques make use of highly diluted radioactive probe nuclei, which interact – as atomic-sized tips – with the host atoms and defects. The objectives of this project are to study at the atomic scale the probe’s local environment, its electronic configuration and polarization, the probe’s lattice sites, point defects and its recombination dynamics. In the case of e-$\\gamma$ PAC, the electron mobility on the host can be further studied, e.g., as a function of temperature.

  13. Study of radiation induced changes of phosphorus metabolism in mice by (31)P NMR spectroscopy.

    Science.gov (United States)

    Sersa, Igor; Kranjc, Simona; Sersa, Gregor; Nemec-Svete, Alenka; Lozar, Bojan; Sepe, Ana; Vidmar, Jernej; Sentjurc, Marjeta

    2010-09-01

    The aim of this study was to examine whether (31)P NMR can efficiently detect X-ray radiation induced changes of energy metabolism in mice. Exposure to ionizing radiation causes changes in energy supply that are associated with the tissue damage because of oxidative stress and uncoupled oxidative phosphorylation. This has as a consequence decreased phosphocreatine to adenosine triphosphate ratio (Pcr/ATP) as well as increased creatine kinase (CK) and liver enzymes (transaminases AST and ALT) levels in serum. In this study, experimental mice that received 7 Gy of X-ray radiation and a control group were studied by (31)P NMR spectroscopy and biochemically by measuring CK and liver enzyme levels in plasma. Mice (irradiated and control) were measured at regular time intervals for the next three weeks after the exposure to radiation. A significant change in the Pcr/ATP ratio, determined from corresponding peaks of (31)P NMR spectra, was observed in the 7 Gy group 2 days or more after the irradiation, while no significant change in the Pcr/ATP ratio, was observed in the control group. This result was supported by parallel measurements of CK levels that were highly increased immediately after the irradiation which correlates with the observed decrease of the Pcr/ATP ratio and with it associated drop of muscle energy supply. The (31)P NMR measurements of the Pcr/ATP ratio can in principle serve as an instantaneous and noninvasive index for assessment of the received dose of irradiation.

  14. Angle-resolved photoemission spectroscopy studies of metallic surface and interface states of oxide insulators

    Science.gov (United States)

    Plumb, Nicholas C.; Radović, Milan

    2017-11-01

    Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.

  15. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study

    Science.gov (United States)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  16. Biochemical support for the "threshold" theory of creativity: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Jung, Rex E; Gasparovic, Charles; Chavez, Robert S; Flores, Ranee A; Smith, Shirley M; Caprihan, Arvind; Yeo, Ronald A

    2009-04-22

    A broadly accepted definition of creativity refers to the production of something both novel and useful within a given social context. Studies of patients with neurological and psychiatric disorders and neuroimaging studies of healthy controls have each drawn attention to frontal and temporal lobe contributions to creativity. Based on previous magnetic resonance (MR) spectroscopy studies demonstrating relationships between cognitive ability and concentrations of N-acetyl-aspartate (NAA), a common neurometabolite, we hypothesized that NAA assessed in gray and white matter (from a supraventricular slab) would relate to laboratory measures of creativity. MR imaging and divergent thinking measures were obtained in a cohort of 56 healthy controls. Independent judges ranked the creative products of each participant, from which a "Composite Creativity Index" (CCI) was created. Different patterns of correlations between NAA and CCI were found in higher verbal ability versus lower verbal ability participants, providing neurobiological support for a critical "threshold" regarding the relationship between intelligence and creativity. To our knowledge, this is the first report assessing the relationship between brain chemistry and creative cognition, as measured with divergent thinking, in a cohort comprised exclusively of normal, healthy participants.

  17. Biochemical Support for the “Threshold” Theory of Creativity: A Magnetic Resonance Spectroscopy Study

    Science.gov (United States)

    Jung, Rex E.; Gasparovic, Charles; Chavez, Robert S.; Flores, Ranee A.; Smith, Shirley M.; Caprihan, Arvind; Yeo, Ronald A.

    2009-01-01

    A broadly accepted definition of creativity refers to the production of something both novel and useful within a given social context. Studies of patients with neurological and psychiatric disorders and neuroimaging studies of healthy controls have each drawn attention to frontal and temporal lobe contributions to creativity. Based on previous magnetic resonance (MR) spectroscopy studies demonstrating relationships between cognitive ability and concentrations of N-acetyl-aspartate (NAA), a common neurometabolite, we hypothesized that NAA assessed in gray and white matter (from a supraventricular slab) would relate to laboratory measures of creativity. MR imaging and divergent thinking measures were obtained in a cohort of 56 healthy controls. Independent judges ranked the creative products of each participant, from which a “Composite Creativity Index” (CCI) was created. Different patterns of correlations between NAA and CCI were found in higher verbal ability versus lower verbal ability participants, providing neurobiological support for a critical “threshold” regarding the relationship between intelligence and creativity. To our knowledge, this is the first report assessing the relationship between brain chemistry and creative cognition, as measured with divergent thinking, in a cohort comprised exclusively of normal, healthy participants. PMID:19386928

  18. Ion implantation induced defects in Fe-Cr alloys studied by conventional positron annihilation lifetime spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krsjak, V [Joint Research Centre, Institute for Energy, European Commission, PO Box 2, 1755 ZG Petten (Netherlands); Sojak, S; Slugen, V; Petriska, M, E-mail: vladimir.krsjak@ec.europa.eu [Department of Nuclear Physics and Technology, FEI, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)

    2011-01-10

    The influence of chromium on the radiation damage resistance of the iron based alloys has been studied using conventional positron annihilation lifetime spectroscopy (PALS). Experimental data evaluation has been supported by the former theoretical calculation of positron lifetimes in the studied materials and well-defined types of defects. For this purpose, density functional theory (DFT) computation method has been applied. The spectrum of used {sup 22}Na positron source was decomposed into discrete fractions to better calculate efficiency of near surface layers study. For the experimental simulation of a-radiation and obtaining of defined cascade collisions in the materials, helium implantation was used. Different level of the implanted dose (6.24x10{sup 17} - 3.12x10{sup 18} cm{sup -2}) corresponds to local damage up to 90 DPA acquired in thin <1 {mu}m region. Experimental measurement has been performed using the PALS technique on the four different Fe-Cr binary alloys (2.36; 4.62; 8.39; 11.62 wt% of Cr). The results showed that chromium has a significant effect on the size and density of the implanted defects and specific Cr content should prevent the vacancy clusters formation.

  19. Prostate cancer: a comparative study of {sup 11}C-choline PET and MR imaging combined with proton MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Takako; Lee, Jin; Takahashi, Nobukazu; Oka, Takashi; Shizukuishi, Kazuya; Inoue, Tomio [Yokohama City University School of Medicine, Department of Radiology, Yokohama (Japan); Uemura, Hiroji; Kubota, Yoshinobu [Yokohama City University School of Medicine, Department of Urology, Kanagawa (Japan); Sasaki, Takeshi [Yokohama City University School of Medicine, Department of Pathology, Kanagawa (Japan); Endou, Hisashi [Yokohama City University School of Medicine, Department of Pharmacy, Kanagawa (Japan)

    2005-07-01

    Prostate cancer is difficult to visualise in its early stages using current imaging technology. The present study aimed to clarify the utility of {sup 11}C-choline PET for localising and evaluating cancer lesions in patients with prostate cancer by conducting a prospective comparison with magnetic resonance (MR) imaging combined with proton MR spectroscopy. PET and MR imaging combined with proton MR spectroscopy were performed in 20 patients with prostate cancer. Correlations among the metabolite ratio of choline + creatine to citrate (Cho+Cr/Ci) on MR spectroscopy, serum PSA and maximum standardised uptake value (SUV{sub max}) of {sup 11}C-choline were assessed. The location of the primary lesion was assessed by the site of SUV{sub max} and the laterality of the highest Cho+Cr/Ci ratio and confirmed by examination of surgical pathology specimens (n=16). PET exhibited a diagnostic sensitivity of 100% (20/20) for primary lesions, while the sensitivities of MR imaging and MR spectroscopy were 60% (12/20) and 65% (13/20), respectively. Weak linear correlations were observed between SUV{sub max} and serum PSA (r=0.52, p<0.05), and between SUV{sub max} and Cho+Cr/Ci ratio (r=0.49, p<0.05). Regarding the localisation of main primary lesions, PET results agreed with pathological findings in 13 patients (81%) ({kappa}=0.59), while MR spectroscopy results were in accordance with pathological findings in eight patients (50%) ({kappa}=0.11). This preliminary study suggests that {sup 11}C-choline PET may provide more accurate information regarding the localisation of main primary prostate cancer lesions than MR imaging/MR spectroscopy. A further clinical study of {sup 11}C-choline PET in a large number of patients suspected of prostate cancer will be necessary to determine the clinical utility of {sup 11}C-choline PET in patients who clinically require biopsy. (orig.)

  20. Probing the Interaction of Ionic Liquids with CO2: A Raman Spectroscopy and Ab Initio Study

    National Research Council Canada - National Science Library

    Eucker, IV, William

    2008-01-01

    ...) with selected ionic liquids (ILs). Raman spectroscopy and first principle quantum mechanical calculations were performed on selected IL solvents in contact with CO2 in the effort to discover how the solvents interact with the gas. ILs are salts...

  1. Covalent Reactions on Chemical Vapor Deposition Grown Graphene Studied by Surface-Enhanced Raman Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Kovaříček, Petr; Bastl, Zdeněk; Valeš, Václav; Kalbáč, Martin

    2016-01-01

    Roč. 22, č. 15 (2016), s. 5404-5408 ISSN 1521-3765 R&D Projects: GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene * nanomaterials * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry

  2. Quantitative Studies of Antimicrobial Peptide Pore Formation in Large Unilamellar Vesicles by Fluorescence Correlation Spectroscopy (FCS)

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Henriksen, Jonas Rosager; Andresen, Thomas Lars

    2013-01-01

    leakage of fluorescent probes of different sizes through transmembrane pores formed by each of the three representative antimicrobial peptides: melittin, magainin 2, and mastoparan X. The experimental results demonstrate that leakage assays based on fluorescence correlation spectroscopy offer new...... highly warranted. Fluorescence correlation spectroscopy is a biophysical technique that can be used to quantify leakage of fluorescent probes of different sizes from large unilamellar vesicle, thereby potentially becoming such a new tool. However, the usage of fluorescence correlation spectroscopy...... to quantify leakage from large unilamellar vesicles is associated with a number of experimental pitfalls. Based on theoretical and experimental considerations, we discuss how to properly design experiments to avoid these pitfalls. Subsequently, we apply fluorescence correlation spectroscopy to quantify...

  3. Study by photoelectron spectroscopy of isotopic effects in various polyatomic molecules. Comparison between experimental and calculated vibrational transitions probabilities

    International Nuclear Information System (INIS)

    Carlier, J.; Botter, R.

    1978-01-01

    Isotopic substitution of polyatomic molecules shift the spectrum in photoelectron spectroscopy. This effect is easier to detect with substitution of hydrogen by deuterium than with heavier elements. Hydrogen partially or totally substituted in ethylene by deuterium is studied by photoelectron spectroscopy for frequency attribution and experimental results are compared with frequency ratio calculated by the Teller-Redlich rule. Vibrational transition probabilities are also determined with a good precision. Ionization potentials are higher for molecules with heavy isotopes but for partially substituted molecules a variation of symetry could shift slightly potential curves [fr

  4. Moessbauer spectroscopy study on the hydrothermal transformation α-FeOOH → α-Fe2O3

    International Nuclear Information System (INIS)

    Barb, D.; Diamandescu, L.; Mihaila-Tarabsanu, D.; Rusi, A.; Moraria, M.

    1990-01-01

    The reaction kinetics of the hydrothermal transformation α-FeOOH→α-Fe 2 O 3 was studied by means of Moessbauer spectroscopy. From the reaction isotherms, a monomolecular, first order reaction was found to characterise the hydrothermal transformation of alpha oxihydroxide to the alpha iron oxide. The rate constant as well as the activation energy of this process were determined. No intermediate phases were identified in the hydrothermal samples. The thermodynamic properties of the hydrothermal system α-FeOOH→α-Fe 2 O 3 in correlation with Moessbauer spectroscopy data are discussed. (orig.)

  5. Study of the deexcitation by monopole pair emission from the first J=0+ states in some even-even nuclei of the 2s-1d shell

    International Nuclear Information System (INIS)

    Souw, Kenghok.

    1975-01-01

    A new high efficiency plastic scintillation pair spectrometer was used to measure the E0 branching ratio GAMMAsub(π)/GAMMA(tot) (GAMMAsub(π)=pair emission partial width, GAMMA(tot)=total width) of the transition from the first excited Jsup(π)=0 + state to the Jsup(π)=0 + ground state in some even-even nuclei of the 2s-1d shell. Experiments were performed on 18 O, 26 Mg, 30 Si, 32 S, 34 S and 38 Ar nuclei. The method consisted in detecting the electron and positron of the pair in coincidence in two telescopes. A surface barrier counter placed downstream the target, working in coincidence with the spectrometer, allowed the relevant pair-decays to be selected and the feeding yield to be determined from direct spectra. The branching ratios were such directly determined. These ratios combined with the values available for the lifetimes of these states give the monopole matrix elements Msub(π). The single particle strength of these decays passes through a minimum in the middle of the shell ( 30 Si) and reaches a maximum around the closed shells ( 18 O, and 48 Ca) [fr

  6. Study of small carbon and semiconductor clusters using negative ion threshold photodetachment spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Caroline Chick [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    The bonding and electronics of several small carbon and semiconductor clusters containing less than ten atoms are probed using negative ion threshold photodetachment (zero electron kinetic energy, or ZEKE) spectroscopy. ZEKE spectroscopy is a particularly advantageous technique for small cluster study, as it combines mass selection with good spectroscopic resolution. The ground and low-lying electronic states of small clusters in general can be accessed by detaching an electron from the ground anion state. The clusters studied using this technique and described in this work are C6-/C6, Sin-/Sin (n = 2, 3, 4), Ge2-/Ge2, In2P-/In2P,InP2-/InP2, and Ga2As-. The total photodetachment cross sections of several other small carbon clusters and the ZEKE spectrum of the I-•CH3I SN2 reaction complex are also presented to illustrate the versatility of the experimental apparatus. Clusters with so few atoms do not exhibit bulk properties. However, each specie exhibits bonding properties that relate to the type of bonding found in the bulk. C6, as has been predicted, exhibits a linear cumulenic structure, where double bonds connect all six carbon atoms. This double bonding reflects how important π bonding is in certain phases of pure carbon (graphite and fullerenes). The symmetric stretch frequencies observed in the C6- spectra, however, are in poor agreement with the calculated values. Also observed as sharp structure in total photodetachment cross section scans was an excited anion state bound by only ~40 cm-1 relative to the detachment continuum. This excited anion state appears to be a valence bound state, possible because of the high electron affinity of C6, and the open shell of the anion.

  7. A Synchrotron Mössbauer Spectroscopy Study of a Hydrated Iron-Sulfate at High Pressures

    Science.gov (United States)

    Perez, T. M.; Finkelstein, G. J.; Solomatova, N. V.; Jackson, J. M.

    2017-12-01

    Szomolnokite is a monohydrated ferrous iron sulfate mineral, FeSO4*H2O, where the ferrous iron atoms are in octahedral coordination with four corners shared with SO4 and two with H2O. While somewhat rare on Earth, szomolnokite has been detected on the surface of Mars along with several other hydrated sulfates and suggested to occur near the surface of Venus [1,2]. It is not clear if these sulfates are a result of reactions occurring at depth driven by changes in the behavior of iron in the sulfate. To date, only a few high-pressure studies have been conducted on hydrated iron sulfates using Mössbauer spectroscopy. Our study represents a first step towards understanding of the electronic environment of iron in a monohydrated sulfate at pressure. Using a hydrostatic helium pressure-transmitting medium, the pressure dependence of iron's site-specific behavior in a synthetic szomolnokite powdered sample was explored up to about 100 GPa with time-resolved synchrotron Mössbauer spectroscopy at the Advanced Photon Source of Argonne National Laboratory. At 1 bar, the Mössbauer spectrum is well described by three Fe2+-like sites, consistent with conventional Mössbauer spectra reported in Dyar et al. [3]. At pressures up to 20 GPa, changes in the hyperfine parameters are most likely due to a structural phase transition. Above this pressure, a fourth site is required to explain the time-spectra. Changes in the electronic configuration of iron, such as those due to a phase transition and/or a spin crossover, will affect the material's compressibility and transport properties. We will compare our high-pressure trends with those of other iron-bearing phases and discuss the relative influence on the dynamics of terrestrial planetary interiors. 1. Bishop et al. (2014) What Lurks in the Martian Rocks and Soil? Investigations of Sulfates, Phosphates, and Perchlorates. Spectral and thermal properties of perchlorate salts and implications for Mars. Am. Min. 99(8-9), 1580

  8. Studies on the interaction between nanodiamond and human hemoglobin by surface tension measurement and spectroscopy methods.

    Science.gov (United States)

    Pishkar, Leila; Taheri, Saba; Makarem, Somayeh; Alizadeh Zeinabad, Hojjat; Rahimi, Arash; Saboury, Ali Akbar; Falahati, Mojtaba

    2017-02-01

    In this study, a novel method to probe molecular interactions and binding of human hemoglobin (Hb) with nanodiamond (ND) was introduced based on the surface tension measurement. This method complements conventional techniques, which are basically done by zeta potential and dynamic light scattering (DLS) measurements, near and far circular dichroism (CD) spectroscopy, intrinsic and extrinsic fluorescence spectroscopy. Addition of ND to Hb solution increased the surface tension value of Hb-ND complex relative to those of Hb and ND molecules. The zeta potential values reveled that Hb and ND provide identical charge distribution at pH 7.5. DLS measurements demonstrated that Hb, ND, and ND-Hb complex have hydrodynamic radiuses of 98.37 ± 4.57, 122.07 ± 7.88 nm and 62.27 ± 3.70 at pH of 7.5 respectively. Far and near UV-CD results indicated the loss of α-helix structure and conformational changes of Hb, respectively. Intrinsic fluorescence data demonstrated that the fluorescence quenching of Hb by ND was the result of the static quenching. The hydrophobic interaction plays a pivotal role in the interaction of ND with Hb. Fluorescence intensity changes over time revealed conformational change of Hb continues after the mixing of the components (Hb-ND) till 15 min, which is indicative of the denaturation of the Hb relative to the protein control. Extrinsic fluorescence data showed a considerable enhancement of the ANS fluorescence intensity of Hb-ND system relative to the Hb till 60 nM of ND, likely persuaded by greater exposure of nonpolar residues of Hb hydrophobic pocket. The remarkable decrease in T m value of Hb in Hb-ND complex exhibits interaction of Hb with ND conducts to conformational changes of Hb. This study offers consequential discrimination into the interaction of ND with proteins, which may be of significance for further appeal of these nanoparticles in biotechnology prosecution.

  9. Advances in atomic spectroscopy

    CERN Document Server

    Sneddon, J

    2000-01-01

    This fifth volume of the successful series Advances in Atomic Spectroscopy continues to discuss and investigate the area of atomic spectroscopy.It begins with a description of the use of various atomic spectroscopic methods and applications of speciation studies in atomic spectroscopy. The emphasis is on combining atomic spectroscopy with gas and liquid chromatography. In chapter two the authors describe new developments in tunable lasers and the impact they will have on atomic spectroscopy. The traditional methods of detection, such as photography and the photomultiplier, and how they are being replaced by new detectors is discussed in chapter three. The very active area of glow discharge atomic spectrometry is presented in chapter four where, after a brief introduction and historical review, the use of glow discharge lamps for atomic spectroscopy and mass spectrometry are discussed. Included in this discussion is geometry and radiofrequency power. The future of this source in atomic spectroscopy is also dis...

  10. A study of the phase transition of reheated diphenyl carbazide (DPC) by using UV spectroscopy.

    Science.gov (United States)

    El-Kabbany, F; Taha, S; Hafez, M

    2014-07-15

    Phase transition phenomenon in reheated diphenyl carbazide (DPC) is studied here using UV spectroscopy. The optical band gap for reheated DPC is obtained by measuring the optical diffused reflectance (DR) and equals to 3.55 eV. Also, the optical band gap is calculated using UV technique and equals to 3.548 eV. The absorbance of reheated DPC is studied at some selected temperatures in order to check the presence of phase transitions at 90°C and 125°C. According to the present work, the band gaps are calculated at 80°C, 110°C and 130°C and equal to 3.548 eV. But at 100°C, the optical band gap has changed to 4.139 eV. It was found that each phase of reheated DPC belongs to a certain definite crystal structure. The presence of the phase transitions are checked and confirmed by scanning electron microscopy (SEM). The structural properties and morphology of reheated diphenyl carbazide are investigated by SEM. The SEM images are taken at some selected temperatures to confirm the presence of phase transitions. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Study of selected benzyl azides by UV photoelectron spectroscopy and mass spectrometry

    Science.gov (United States)

    Pinto, R. M.; Olariu, R. I.; Lameiras, J.; Martins, F. T.; Dias, A. A.; Langley, G. J.; Rodrigues, P.; Maycock, C. D.; Santos, J. P.; Duarte, M. F.; Fernandez, M. T.; Costa, M. L.

    2010-09-01

    Benzyl azide and the three methylbenzyl azides were synthesized and characterized by mass spectrometry (MS) and ultraviolet photoelectron spectroscopy (UVPES). The electron ionization fragmentation mechanisms for benzyl azide and their methyl derivatives were studied by accurate mass measurements and linked scans at constant B/ E. For benzyl azide, in order to clarify the fragmentation mechanism, labelling experiments were performed. From the mass analysis of methylbenzyl azides isomers it was possible to differentiate the isomers ortho, meta and para. The abundance and nature of the ions resulting from the molecular ion fragmentation, for the three distinct isomers of substituted benzyl azides, were rationalized in terms of the electronic properties of the substituent. Concerning the para-isomer, IRC calculations were performed at UHF/6-31G(d) level. The photoionization study of benzyl azide, with He(I) radiation, revealed five bands in the 8-21 eV ionization energies region. From every photoelectron spectrum of methylbenzyl azides isomers it has been identified seven bands, on the same range as the benzyl azide. Interpretation of the photoelectron spectra was accomplished applying Koopmans' theorem to the SCF orbital energies obtained at HF/6-311++G(d, p) level.

  12. Development characteristics of polymethyl methacrylate in alcohol/water mixtures. A lithography and Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Ocola, Leonidas E.; Costales, Maya; Gosztola, David J.

    2015-12-10

    Poly methyl methacrylate (PMMA) is the most widely used resist in electron beam lithography. This paper reports on a lithography and Raman spectroscopy study of development characteristics of PMMA in methanol, ethanol and isopropanol mixtures with water as developers. We have found that ethanol/water mixtures at a 4:1 volume ratio are an excellent, high resolution, non-toxic, developer for exposed PMMA. We also have found that the proper methodology to use so that contrast data can be compared to techniques used in polymer science is not to rinse the developed resist but to immediately dry with nitrogen. Our results show how powerful simple lithographic techniques can be used to study ternary polymer solvent solutions when compared to other techniques used in the literature. Raman data shows that there both tightly bonded –OH groups and non-hydrogen bonded –OH groups play a role in the development of PMMA. Tightly hydrogen bonded –OH groups show pure Lorentzian Raman absorption only in the concentration ranges where ethanol/water and IPA/water mixtures are effective developers of PMMA. The impact of the understanding these interactions may open doors to a new developers of other electron beam resists that can reduce the toxicity of the waste stream.

  13. Development characteristics of polymethyl methacrylate in alcohol/water mixtures: a lithography and Raman spectroscopy study.

    Science.gov (United States)

    Ocola, Leonidas E; Costales, Maya; Gosztola, David J

    2016-01-22

    Poly methyl methacrylate (PMMA) is the most widely used resist in electron beam lithography. This paper reports on a lithography and Raman spectroscopy study of development characteristics of PMMA in methanol, ethanol and isopropanol mixtures with water as developers. We have found that ethanol/water mixtures at a 4:1 volume ratio are an excellent, high resolution, non-toxic developer for exposed PMMA. We have also found that the proper methodology to use so that contrast data can be compared to techniques used in polymer science is not to rinse the developed resist but to immediately dry with nitrogen. Our results show how powerful simple lithographic techniques can be used to study ternary polymer solvent solutions when compared to other techniques used in the literature. Raman data show that both tightly bonded -OH groups and non-hydrogen bonded -OH groups play a role in the development of PMMA. Tightly hydrogen bonded -OH groups show pure Lorentzian Raman absorption only in the concentration ranges where ethanol/water and IPA/water mixtures are effective developers of PMMA, pointing to possible ordering or reduced amorphization due to the liquid state. The impact of understanding these interactions may open doors to a new developers of other electron beam resists that can reduce the toxicity of the waste stream.

  14. Development characteristics of polymethyl methacrylate in alcohol/water mixtures: a lithography and Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Ocola, Leonidas E.; Costales, Maya; Gosztola, David J.

    2015-12-10

    Poly methyl methacrylate (PMMA) is the most widely used resist in electron beam lithography. This paper reports on a lithography and Raman spectroscopy study of development characteristics of PMMA in methanol, ethanol and isopropanol mixtures with water as developers. We have found that ethanol/water mixtures at a 4:1 volume ratio are an excellent, high resolution, non-toxic, developer for exposed PMMA. We also have found that the proper methodology to use so that contrast data can be compared to techniques used in polymer science is not to rinse the developed resist but to immediately dry with nitrogen. Our results show how powerful simple lithographic techniques can be used to study ternary polymer solvent solutions when compared to other techniques used in the literature. Raman data shows that there both tightly bonded –OH groups and non-hydrogen bonded –OH groups play a role in the development of PMMA. Tightly hydrogen bonded –OH groups show pure Lorentzian Raman absorption only in the concentration ranges where ethanol/water and IPA/water mixtures are effective developers of PMMA. The impact of the understanding these interactions may open doors to a new developers of other electron beam resists that can reduce the toxicity of the waste stream.

  15. Molecular dynamics of amorphous pharmaceutical fenofibrate studied by broadband dielectric spectroscopy

    Directory of Open Access Journals (Sweden)

    U. Sailaja

    2016-06-01

    Full Text Available Fenofibrate is mainly used to reduce cholesterol level in patients at risk of cardiovascular disease. Thermal transition study with the help of differential scanning calorimetry (DSC shows that the aforesaid active pharmaceutical ingredient (API is a good glass former. Based on our DSC study, the molecular dynamics of this API has been carried out by broadband dielectric spectroscopy (BDS covering wide temperature and frequency ranges. Dielectric measurements of amorphous fenofibrate were performed after its vitrification by fast cooling from a few degrees above the melting point (Tm=354.11 K to deep glassy state. The sample does not show any crystallization tendency during cooling and reaches the glassy state. The temperature dependence of the structural relaxation has been fitted by single Vogel–Fulcher–Tamman (VFT equation. From VFT fit, glass transition temperature (Tg was estimated as 250.56 K and fragility (m was determined as 94.02. This drug is classified as a fragile glass former. Deviations of experimental data from Kohlrausch–Williams–Watts (KWW fits on high-frequency flank of α-peak indicate the presence of an excess wing in fenofibrate. Based on Ngai׳s coupling model, we identified the excess wing as true Johari–Goldstein (JG process. Below the glass transition temperature one can clearly see a secondary relaxation (γ with an activation energy of 32.67 kJ/mol.

  16. Raster image correlation spectroscopy as a novel tool to study interactions of macromolecules with nanofiber scaffolds.

    Science.gov (United States)

    Norris, S C P; Humpolíčková, J; Amler, E; Huranová, M; Buzgo, M; Macháň, R; Lukáš, D; Hof, M

    2011-12-01

    Dynamic processes such as diffusion and binding/unbinding of macromolecules (e.g. growth factors or nutrients) are crucial parameters for the design and application of effective artificial tissue materials. Here, dynamics of selected macromolecules were studied in two different composite tissue engineering scaffolds containing an electrospun nanofiber mesh (polycaprolactone or hydrophobically plasma modified polyvinylalcohol-chitosan) encapsulated in agarose hydrogels by a conventional approach fluorescence recovery after photobleaching (FRAP) and a novel technique, raster image correlation spectroscopy (RICS). The two approaches are compared, and it is shown that FRAP is unable to determine processes occurring at low molecular concentrations, especially accurately separating binding/unbinding from diffusion, and its results depend on the concentration of the studied molecules. RICS measures processes of single molecules and, because of its multiple adjustable timescales, can distinguish whether diffusion or binding controls molecular movement and separates fast diffusion from slow transient binding. In addition, RICS provides a robust read-out parameter quantifying binding affinity. Finally, the combination of FRAP and RICS helps to characterize diffusion and binding of macromolecules in tested artificial tissues better, and therefore predicts the behavior of biologically active molecules in these materials for medical applications. Copyright © 2011. Published by Elsevier Ltd.

  17. Photoelectron spectroscopy study on Li substituted NiO using PES beamline installed on Indus-1

    CERN Document Server

    Banerjee, A; Phase, D M; Dasannacharya, B A

    2003-01-01

    Photoelectron spectroscopy beamline based on a toroidal grating monochromator (TGM) is recently commissioned on Indus-1 storage ring. It has been used to carry out valence band photoemission study of Li substituted NiO. In this paper initially a brief description of the beamline components and the experimental station for angle integrated photoemission experiment is presented. The later part of this paper is devoted to studies carried out on Li sub x Ni sub 1 sub - sub x O with x=0.0, 0.35 and 0.5 samples. Thin pellets of polycrystalline samples were used for the measurements reported here. Valence band spectra recorded on polycrystalline Li sub x Ni sub 1 sub - sub x O samples show drastic changes in various features as compared to that of pure NiO. The prominent changes are: (i) change in the relative contributions of Ni-3d and O-2p emissions, (ii) change in the peak position of Ni-3d from the top of the valance band of NiO and (iii) no noticeable change in the Ni satellite peak. These results are evaluated...

  18. Study of microstructure of modified polyethylene films with acrylic and methacrylic acids, by positron annihilation spectroscopy

    International Nuclear Information System (INIS)

    Lopez C, R.

    1995-09-01

    Low density polyethylene (LDPE) was preirradiated with γ -rays and after some contact time with the monomers AA and MAA, suitable graft copolymers were obtained at different grafting grades. After their physical-chemistry characterization, the copolymers were studied using the Positron Annihilation Lifetime Spectroscopy (PALS). Owing to its sensitive and non-destructive nature PALS has proven to be very useful in studying free-volume properties -at the molecular level- during phase transitions in molecular solids, such as the graft copolymers of LDPE/AA and LDPE/MAA. Using PALS it was possible to detect the changes in the melting point of the LDPE as a function of the grafting degree, obtaining thus, valuable information about the microstructure of this kind of copolymers. The increase in the values of the o-Ps lifetime, was interpreted as suggesting that the melting transition is followed by a free-volume cavity expansion as the temperature increased. The o-Ps intensity of formation behavior is in accord with the distortions occurring in the electronic density surrounding the o-Ps as well as the changes in the number of cavities available to the formation of o-Ps. (Author)

  19. Operando X-ray absorption spectroscopy studies on Pd-SnO2 based sensors.

    Science.gov (United States)

    Koziej, Dorota; Hübner, Michael; Barsan, Nicolae; Weimar, Udo; Sikora, Marcin; Grunwaldt, Jan-Dierk

    2009-10-14

    SnO2 gas sensors with palladium as additive in the range of 0.2 wt% and 3 wt% were studied by in situ X-ray absorption spectroscopy under idealized and real operating conditions. Simultaneously to the structural studies, measurements of the sensing properties were undertaken allowing for the determination of structure-function relationships. For this purpose a new in situ spectroscopic cell was designed which permitted on the one hand sensing on conventional screen printed 50 microm thick sensing layers and on the other hand structural analysis with X-rays provided by an insertion device at a 3rd generation synchrotron facility in fluorescence mode. Pd K-edge XANES and EXAFS results on gas sensors showed that palladium, present in an oxidized state, is finely dispersed if it is added in small quantities (0.2 wt%) while it forms clusters at higher concentrations (3 wt%). This is also reflected by the much easier reduction of palladium in the latter, higher concentrated ones. Under realistic sensing conditions (30-200 ppm H2; 10-50 ppm CO in dry and humid air at 200 and 300 degrees C) for the low additive concentration samples, no change in oxidation state was observed, i.e. palladium remained in its oxidized state. This has important consequences on the understanding and modeling of the gas sensing mechanism.

  20. Dynamic time warping-based averaging framework for functional near-infrared spectroscopy brain imaging studies

    Science.gov (United States)

    Zhu, Li; Najafizadeh, Laleh

    2017-06-01

    We investigate the problem related to the averaging procedure in functional near-infrared spectroscopy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals) are averaged through a point-by-point conventional averaging technique. However, due to the existence of variable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active brain regions. The framework is extensively tested on experimental data (obtained from both block design and event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based averaging technique outperforms the conventional-based averaging technique in estimating the location of task-induced active regions in the brain, suggesting that such advanced averaging methods should be employed in fNIRS brain imaging studies.

  1. Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Beatrix Barth

    2016-12-01

    Full Text Available Neurofeedback is a promising tool for treatment and rehabilitation of several patient groups. In this proof of principle study, near-infrared spectroscopy (NIRS based neurofeedback of frontal cortical areas was investigated in healthy adults. Main aims were the assessment of learning, the effects on performance in a working memory (n-back task and the impact of applied strategies on regulation.13 healthy participants underwent 8 sessions of NIRS based neurofeedback within two weeks to learn to voluntarily up-regulate hemodynamic activity in prefrontal areas. An n-back task in pre-/post measurements was used to monitor neurocognitive changes. Mean oxygenated hemoglobin (O2Hb amplitudes over the course of the sessions as well as during the n-back task were evaluated. 12 out of 13 participants were able to regulate their frontal hemodynamic response via NIRS neurofeedback. However, no systematic learning effects were observed in frontal O2Hb amplitudes over the training course in our healthy sample. We found an impact of applied strategies in only 5 out of 13 subjects. Regarding the n-back task, neurofeedback appeared to induce more focused and specific brain activation compared to pre-training measurement. NIRS based neurofeedback is a feasible and potentially effective method, with an impact on activation patterns in a working memory task. Ceiling effects might explain the lack of a systematic learning pattern in healthy subjects. Clinical studies are needed to show effects in patients exhibiting pathological deviations in prefrontal function.

  2. Measurement of oxyhemoglobin concentration changes in interstitial cystitis female patients: A near-infrared spectroscopy study.

    Science.gov (United States)

    Matsumoto, Shinya; Matsumoto, Shinichi; Homma, Yukio

    2015-07-01

    To investigate brain activity related to bladder sensation in interstitial cystitis patients. A total of 10 interstitial cystitis patients (all women; mean age 68 years) and 10 healthy controls (all women; mean age 64 years) participated in the present study. Frontal lobe blood flow was measured non-invasively by using multichannel near-infrared spectroscopy with large and small bladder volumes (created by infusing water) up to the first desire to void. The frontal cortex of the right and left hemisphere was activated, and the activation was detected as an increase in oxyhemoglobin concentration. The increase during the first desire to void in the interstitial cystitis group was greater than that in the control group. In addition, this difference was particularly observed in Brodmann's areas 9, 44, 45 and 46, reportedly associated with micturition and sensory modulation. The present study shows that the frontal area is largely activated during bladder filling in interstitial cystitis patients. Our findings suggest that the major change in cerebral blood flow is related to the characteristic urinary symptoms of interstitial cystitis patients. © 2015 The Japanese Urological Association.

  3. Spin dynamics study of magnetic molecular clusters by means of Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Cianchi, L.; Del Giallo, F.; Spina, G.; Reiff, W.; Caneschi, A.

    2002-01-01

    Spin dynamics of the two magnetic molecular clusters Fe4 and Fe8, with four and eight Fe(III) ions, respectively, was studied by means of Moessbauer spectroscopy. The transition probabilities W's between the spin states of the ground multiplet were obtained from the fitting of the spectra. For the Fe4 cluster we found that, in the range from 1.38 to 77 K, the trend of W's versus the temperature corresponds to an Orbach's process involving an excited state with energy of about 160 K. For the Fe8, which, due to the presence of a low-energy excited state, could not be studied at temperatures greater than 20 K, the trend of W's in the range from 4 to 18 K seems to correspond to a direct process. The correlation functions of the magnetization were then calculated in terms of the W's. They have an exponential trend for the Fe4 cluster, while a small oscillating component is also present for the Fe8 cluster. For the first of the clusters, τ vs T (τ is the decay time of the magnetization) has a trend which, at low temperatures (T 15 K, τ follows the trend of W -1 . For the Fe8, τ follows an Arrhenius law, but with a prefactor which is smaller than the one obtained susceptibility measurements

  4. Study of plasmonic nanoparticles interactions with skin layers by vibrational spectroscopy.

    Science.gov (United States)

    Jeništová, Adéla; Dendisová, Marcela; Matějka, Pavel

    2017-07-01

    The healing effects of silver and gold nanoparticles (AgNPs, AuNPs) are already known from ancient times. In addition considering to their antibacterial and anti-inflammatory effects speculations are being lead with respect to these nanoparticles (NPs) also about enhancement of skin penetration properties. In this work the interactions of pig skin (PS) layers and ointments with additions of AgNPs or AuNPs prepared by standard procedures and also by "green" synthesis in a different weight proportion by vibrational spectroscopy were studied. Spectra of untreated skin and skin treated by pure ointment were measured, as well as by ointment modified by vitamins without addition of NPs or with different proportion of NPs. Kinetics of interactions of modified ointments with skin was monitored during two hours with a five-minutes interval between each two consecutive measurements. The obtained series of spectra were analyzed by multivariate statistical methods namely Partial Least Squares (PLS), Principal Component Analysis (PCA) and Soft Independent Modelling of Class Analogy (SIMCA) which revealed observation of spectral changes in time-dependent spectra and variations of the peak intensity ratios. The study showed that the effects of quantity and type of NPs on skin penetration characteristics are evident. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. In Vivo Human Skin Penetration Study of Sunscreens by Confocal Raman Spectroscopy.

    Science.gov (United States)

    Tippavajhala, Vamshi Krishna; de Oliveira Mendes, Thiago; Martin, Airton Abrahão

    2018-02-01

    This research work mainly deals with the application of confocal Raman spectroscopic technique to study in vivo human skin penetration of sunscreen products, as there are a lot of controversies associated with their skin penetration. Healthy human volunteers were tested for penetration of two commercial sunscreen products into their volar forearm skin for a period of 2 h. Measurements were taken before and after application of these sunscreen products. All the confocal Raman spectra were pre-processed and then subjected to multivariate two-dimensional principal component analysis and classical least squares analysis to determine the skin penetration of these sunscreens in comparison to the "sunscreen product spectrum" which was considered as the control. Score plots of principal component analysis of confocal Raman spectra indicated clear separation between the spectra before and after application of sunscreen products. Loading plots showed the maximum differences in the spectral region from 1590 to 1626 cm -1 where the characteristic peak of the pure sunscreen products was observed. Classical least squares analysis has shown a significant penetration to a depth of 10 μm in the volar forearm skin of healthy human volunteers for both these sunscreen products. The results confirm that the penetration of these tested sunscreen products was restricted to stratum corneum and also prove that confocal Raman spectroscopy is a simple, fast, nondestructive, and noninvasive semi-quantitative analytical technique for these studies.

  6. Magnetic Resonance Spectroscopy in Patients with Insomnia: A Repeated Measurement Study.

    Directory of Open Access Journals (Sweden)

    Kai Spiegelhalder

    Full Text Available Chronic insomnia is one of the most prevalent central nervous system disorders. It is characterized by increased arousal levels, however, the neurobiological causes and correlates of hyperarousal in insomnia remain to be further determined. In the current study, magnetic resonance spectroscopy was used in the morning and evening in a well-characterized sample of 20 primary insomnia patients (12 females; 8 males; 42.7 ± 13.4 years and 20 healthy good sleepers (12 females; 8 males; 44.1 ± 10.6 years. The most important inhibitory and excitatory neurotransmitters of the central nervous system, γ-aminobutyric acid (GABA and glutamate/glutamine (Glx, were assessed in the anterior cingulate cortex (ACC and dorsolateral prefrontal cortex (DLPFC. The primary hypothesis, a diurnal effect on GABA levels in patients with insomnia, could not be confirmed. Moreover, the current results did not support previous findings of altered GABA levels in individuals with insomnia. Exploratory analyses, however, suggested that GABA levels in the ACC may be positively associated with habitual sleep duration, and, thus, reduced GABA levels may be a trait marker of objective sleep disturbances. Moreover, there was a significant GROUP x MEASUREMENT TIME interaction effect on Glx in the DLPFC with increasing Glx levels across the day in the patients but not in the control group. Therefore, Glx levels may reflect hyperarousal at bedtime in those with insomnia. Future confirmatory studies should include larger sample sizes to investigate brain metabolites in different subgroups of insomnia.

  7. An experimental and theoretical study of the synthesis and vibrational spectroscopy of triacetone triperoxide (TATP)

    Science.gov (United States)

    Pacheco-Londono, Leonardo C.; Pena, Alvaro J.; Primera-Pedrozo, Oliva M.; Hernandez-Rivera, Samuel P.; Mina, Nairmen; Garcia, Rafael; Chamberlain, R. Thomas; Lareau, Richard T.

    2004-09-01

    Non nitrogen containing, organic peroxides explosives Triacetone triperoxide and diacetone diperoxide have been prepared in the laboratory in order to study various aspects of their synthesis and their experimental and theoretical spectroscopic characteristics. By using different proportions of acetone/hydrogen peroxide (Ac/H2O2), sulfuric, hydrochloric and methanosulfuric acids as catalyzers, it was possible to obtain both compounds in a rapid and simple form. Raman, IR spectroscopy, and GC-MS were used in order to determine the precursors, intermediates and final analytes. Experiments and theoretical studies using density functional theory (DFT) have been used in the elucidation step of the mechanism of the synthesis of the so called "transparent" explosives. The B3LYP functional with the 6-31G** basis set was used to carry out the electronic structure calculation of the intermediates and internal rotations and vibrations of TATP. Raman spectra of solid TATP and FTIR spectra of gas TATP, were recorded in order to assign the experimental spectra. Although full agreement with experiment was not obtained, spectral features of the main TATP bands were assigned.

  8. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity

    Science.gov (United States)

    Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui

    2014-05-01

    Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.

  9. The surface of 1-euro coins studied by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Gou, F.; Gleeson, M.A.; Villette, J.; Kleyn, S.E.F.; Kleyn, A.W.

    2004-01-01

    The two alloy surfaces (pill and ring) that are present on 1-euro coins have been studied by X-ray photoelectron spectroscopy (XPS). Comparison is made between coins from general circulation and coin surfaces that have been subjected to a variety of cleaning and oxidation treatments. The concentrations and possible oxidation states of the metals (nickel, copper and zinc) at the surface were derived from analysis of the 2p 3/2 core levels. The surface atomic ratios measured for the pill and the ring parts of the euro coins were compared to the official bulk ratios. This study shows a clear nickel enrichment of both pill and ring surfaces. Nickel at surface seems to be present mainly in hydroxide form although the chloride form cannot be excluded. A small concentration of zinc was present on the surface of the pill, even though it is not present in the bulk alloy. Evidence of both nickel and zinc surface enrichment is observed for the ring. No surface enrichment is observed for the atomically clean or oxidized alloy surfaces over a 60-h time scale

  10. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, C.; Zhang, K. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Brüsewitz, C.; Vetter, U. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4001 (South Africa)

    2015-12-01

    Highlights: • We study the formation of self-organized nanoscale dot and ripple patterns on Si. • Patterns are created by keV noble gas ion irradiation and simultaneous {sup 57}Fe co-deposition. • Ion-induced phase separation and the formation of a-FeSi{sub 2} is identified as relevant process. - Abstract: The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  11. Electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES)

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yun [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    The discovery of quantum Hall e ect has motivated the use of topology instead of broken symmetry to classify the states of matter. Quantum spin Hall e ect has been proposed to have a separation of spin currents as an analogue of the charge currents separation in quantum Hall e ect, leading us to the era of topological insulators. Three-dimensional analogue of the Dirac state in graphene has brought us the three-dimensional Dirac states. Materials with three-dimensional Dirac states could potentially be the parent compounds for Weyl semimetals and topological insulators when time-reversal or space inversion symmetry is broken. In addition to the single Dirac point linking the two dispersion cones in the Dirac/Weyl semimetals, Dirac points can form a line in the momentum space, resulting in a topological node line semimetal. These fascinating novel topological quantum materials could provide us platforms for studying the relativistic physics in condensed matter systems and potentially lead to design of new electronic devices that run faster and consume less power than traditional, silicon based transistors. In this thesis, we present the electronic properties of novel topological quantum materials studied by angle-resolved photoemission spectroscopy (ARPES).

  12. Polarized x-ray absorption spectroscopy for the study of superconductors and magnetic materials

    Science.gov (United States)

    Ramanathan, Mohan; Alp, Esen E.; Mini, Susan M.; Salem-Sugui, S.; Bommannavar, A.

    1991-11-01

    Synchrotron radiation is a good source of polarized radiation in the x-ray regime. The radiation obtained from a bending magnet source is linearly polarized in the bending plane and has a varying degree of circular polarization away from the bending plane. This feature of synchrotron radiation can be taken advantage of with proper optics to selectively use the type of polarized radiation required for the experiment in question. Linear polarized radiation is used to study the anisotropic nature of electronic and atomic structure by x-ray absorption techniques from single crystal and oriented powder samples. We will give a specific example of the use of linearly polarized x-ray absorption spectroscopy measurements for the study of the magnetically oriented layered copper oxide superconductors. While such linear dichroism measurements help identify the symmetry of the empty electronic states, circular dichroism measurements in magnetic systems help in determining the spin contribution to the absorption process. We will discuss magnetic circular dichroism measurements of the ordered-disordered invar alloy Fe(subscript 3)Pt.

  13. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  14. Magnetic circular dichroism spectroscopy of weakly exchange coupled transition metal dimers: A model study

    DEFF Research Database (Denmark)

    Piligkos, S.; Slep, L.D.; Weyhermuller, T.

    2009-01-01

    bands of the minority spin Ni(II) ligand field bands were observed to change sign relative to the parent complex 2. This behavior has been analyzed. The present work hence provides a benchmark study for the application of MCD spectroscopy to weakly interacting transition metal dinners. (C) 2008 Elsevier......A detailed study of the magnetic circular dichroism (MCD) spectra of weakly exchange coupled transition metal heterodimers is reported. The systems consist of three isostructural complexes of the type [LM(III)(PyA)(3)M(II)](ClO4)(2) where L represents 1,4,7-trimethyl-1,4,7-triazacyclonanane and Py......A- is the monoanion of pyridine-2-aldoxime. The trivalent metal ion M(III) is either diamagnetic Ga(III) or paramagnetic Cr(III) (S-Cr = 3/2). The divalent metal ion M(II) is either diamagnetic Zn(II) or paramagnetic Ni(II) (S-Ni = 1). The three systems 1 (CrZn), 2 (GaNi) and 3 (CrNi) have been structurally...

  15. Fragile X syndrome: a pilot proton magnetic resonance spectroscopy study in premutation carriers

    LENUS (Irish Health Repository)

    Hallahan, Brian P

    2012-08-30

    AbstractPurposeThere is increasing evidence that neurodevelopmental differences in people with Fragile X syndrome (FraX) may be explained by differences in glutamatergic metabolism. Premutation carriers of FraX were originally considered to be unaffected although several recent reports demonstrate neuroanatomical, cognitive, and emotional differences from controls. However there are few studies on brain metabolism in premutation carriers of FraX.MethodsWe used proton magnetic resonance spectroscopy to compare neuronal integrity of a number of brain metabolites including N-Acetyl Aspartate, Creatine + Phosphocreatinine, Choline, myoInositol, and Glutamate containing substances (Glx) in 17 male premutation carriers of FraX and 16 male healthy control individuals.ResultsThere was no significant between-group difference in the concentration of any measured brain metabolites. However there was a differential increase in N-acetyl aspartate with aging in premutation FraX individuals compared to controls.ConclusionsThis is the first 1 H-MRS study to examine premutation FraX individuals. Although we demonstrated no difference in the concentration of any of the metabolites examined between the groups, this may be due to the large age ranges included in the two samples. The differential increase in NAA levels with aging may reflect an abnormal synaptic pruning process.

  16. Raman Spectroscopy Study of Annealing-Induced Effects on Graphene Prepared by Micromechanical Exfoliation

    International Nuclear Information System (INIS)

    Song, Ji Eun; Ko, Taeg Yeoung; Ryu, Sun Min

    2010-01-01

    Raman spectroscopy was combined with AFM to investigate the effects of thermal annealing on the graphene samples prepared by the widely used micromechanical exfoliation method. Following annealing cycles, adhesive residues were shown to contaminate graphene sheets with thin molecular layers in their close vicinity causing several new intense Raman bands. Detailed investigation shows that the Raman scattering is very strong and may be enhanced by the interaction with graphene. Although the current study does not pinpoint detailed origins for the new Raman bands, the presented results stress that graphene prepared by the above method may require extra cautions when treated with heat or possibly solvents. Since its isolation from graphite, graphene has drawn a lot of experimental and theoretical research. These efforts have been mostly in pursuit of various applications such as electronics, sensors, stretchable transparent electrodes, and various composite materials. To accomplish such graphene-based applications, understanding chemical interactions of this new material with environments during various processing treatments will become more important. Since thermal annealing is widely used in various research of graphene for varying purposes such as cleaning, nanostructuring, reactions, etc., understanding annealing-induced effects is prerequisite to many fundamental studies of graphene. In this regard, it is to be noted that there has been a controversy on the cause of the annealing-induced hole doping in graphene

  17. Development characteristics of polymethyl methacrylate in alcohol/water mixtures: a lithography and Raman spectroscopy study

    Science.gov (United States)

    Ocola, Leonidas E.; Costales, Maya; Gosztola, David J.

    2016-01-01

    Poly methyl methacrylate (PMMA) is the most widely used resist in electron beam lithography. This paper reports on a lithography and Raman spectroscopy study of development characteristics of PMMA in methanol, ethanol and isopropanol mixtures with water as developers. We have found that ethanol/water mixtures at a 4:1 volume ratio are an excellent, high resolution, non-toxic developer for exposed PMMA. We have also found that the proper methodology to use so that contrast data can be compared to techniques used in polymer science is not to rinse the developed resist but to immediately dry with nitrogen. Our results show how powerful simple lithographic techniques can be used to study ternary polymer solvent solutions when compared to other techniques used in the literature. Raman data show that both tightly bonded -OH groups and non-hydrogen bonded -OH groups play a role in the development of PMMA. Tightly hydrogen bonded -OH groups show pure Lorentzian Raman absorption only in the concentration ranges where ethanol/water and IPA/water mixtures are effective developers of PMMA, pointing to possible ordering or reduced amorphization due to the liquid state. The impact of understanding these interactions may open doors to a new developers of other electron beam resists that can reduce the toxicity of the waste stream.

  18. Single Cell Confocal Raman Spectroscopy of Human Osteoarthritic Chondrocytes: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Rajesh Kumar

    2015-04-01

    Full Text Available A great deal of effort has been focused on exploring the underlying molecular mechanism of osteoarthritis (OA especially at the cellular level. We report a confocal Raman spectroscopic investigation on human osteoarthritic chondrocytes. The objective of this investigation is to identify molecular features and the stage of OA based on the spectral signatures corresponding to bio-molecular changes at the cellular level in chondrocytes. In this study, we isolated chondrocytes from human osteoarthritic cartilage and acquired Raman spectra from single cells. Major spectral differences between the cells obtained from different International Cartilage Repair Society (ICRS grades of osteoarthritic cartilage were identified. During progression of OA, a decrease in protein content and an increase in cell death were observed from the vibrational spectra. Principal component analysis and subsequent cross-validation was able to associate osteoarthritic chondrocytes to ICRS Grade I, II and III with specificity 100.0%, 98.1%, and 90.7% respectively, while, sensitivity was 98.6%, 82.8%, and 97.5% respectively. The overall predictive efficiency was 92.2%. Our pilot study encourages further use of Raman spectroscopy as a noninvasive and label free technique for revealing molecular features associated with osteoarthritic chondrocytes.

  19. Photoelectron spectroscopy: a strategy for the study of reactions at solid surfaces

    Science.gov (United States)

    Au, C. T.; Carley, A. F.; Roberts, M. W.

    The development of X-ray photoelectron spectroscopy for the study of the nature of chemisorbed species and the mechanisms of surface reactions is described. The methodology of data analysis and the establishment of data banks which enable photoelectron spectra to be assigned to specific surface species is discussed by reference to examples from recent studies. Although in the first instance the primary aim was to establish a qualitative logic in a well defined area of surface chemistry, this was then developed quantitatively and extended to studies of the mechanism of surface catalysed reactions. Emphasis is given here to the activation of molecules at metal surfaces either by surface modification or through chemical specificity which is associated with coadsorbed molecules. As illustration we discuss the activation of O-H and N-H bonds by `oxygen' resulting in reaction pathways being followed which would not have been predicted on the basis of the known reactivities of the individual molecules. The examples chosen also illustrate the severe limitations of mechanistic studies in surface chemistry based (a) on the study of the individual reactants separately; (b) on a post-mortem type of analysis of the surface and (c) on just a gaseous product analysis. An important concept that has emerged is the dual role of surface `oxygen'. It may either act as a promoter in activating an otherwise unreactive adsorbate molecule, or it may form an unreactive oxide overlayer. Parallel studies of metal oxides per se provide information on the defect nature of both oxide overlayers at metal surfaces and also bulk oxide surfaces. Close similarities are shown to exist between the `oxygen' activation of molecules at metal surfaces and the catalytic reactivity of defective bulk oxides. A common theme is that the dominant mechanism involves hydrogen abstraction by oxygen adatoms, which are assigned as O-(s) both at metal surfaces (by XPS) and at bulk oxide surfaces (by E.P.R. and XPS).

  20. DNA binding studies of Sunset Yellow FCF using spectroscopy, viscometry and electrochemical techniques

    Science.gov (United States)

    Asaadi, Sara; Hajian, Reza

    2017-10-01

    Color is one of the important factors in food industry. All food companies use synthetic pigments to improve the aesthetic of products. Studies on the interaction between deoxyribonucleic acid (DNA) and food dye molecules is important because DNA is responsible for some processes including replication and transcription of cells, mutations, genetic diseases, and some synthetic chemical nucleases. In this study, the molecular interaction between Sunset Yellow FCF (SY) as a common food coloring additive and calf thymus DNA (ct-DNA) has been studied using UV-Vis spectrophotometry, spectrofluorometry, Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry and viscometry techniques. The binding constant between ct-DNA and SY in phosphate buffer solution (pH 7.4) was calculated as 2.09 × 103 L mol-1. The non-electrostatic bonding constant (K0t) was almost consistent and the ratio of K0t/Kb increased by increasing the ionic strength in the range of 0.01-0.1 mol L-1 of KCl. This observation shows that, the molecular bonding of SY to ct-DNA is a combination of electrostatic and intercalation interactions. In the electrochemical studies, an oxidation peak at 0.71 V and a reduction peak at about 0.63 V was observed with the peak potential difference (ΔEp) of 0.08 V, showing a reversible process. The oxidation and reduction peaks were significantly decreased in the presence of ct-DNA and the reduction peak current shifted to negative values. In spectrofluorometric study, the fluorescence intensity of SY increased dramatically after successive addition of DNA due to the increasing of molecular surface area and decreasing of impact frequency between solvent and SY-DNA adduct. Moreover, viscometric study shows that the increasing of viscosity for SY solution in the presence of DNA is due to the intercalation mechanism with double strand DNA (ds-DNA).

  1. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Tran Thien [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Pozina, Galia; Son, Nguyen Tien; Kordina, Olof; Janzén, Erik; Hemmingsson, Carl [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); Ohshima, Takeshi [Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of two electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.

  2. Thermal damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM

    CSIR Research Space (South Africa)

    Masina, BN

    2011-07-01

    Full Text Available damage study on diamond tools at varying laser heating time and temperature by Raman spectroscopy and SEM BN Masina1, BW Mwakikunga2, M Elayaperumal2, A Forbes1, and R Bodkin3 1CSIR National Laser Centre, PO BOX 395, Pretoria 0001, South Africa 2CSIR...

  3. Structure and acidity of individual Fluid Catalytic Cracking catalyst particles studied by synchrotron-based infrared micro-spectroscopy

    NARCIS (Netherlands)

    Buurmans, I.L.C.|info:eu-repo/dai/nl/31406592X; Soulimani, F.|info:eu-repo/dai/nl/313889449; Ruiz Martinez, J.|info:eu-repo/dai/nl/341386405; van der Bij, H.E.|info:eu-repo/dai/nl/328201294; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2013-01-01

    A synchrotron-based infrared micro-spectroscopy study has been conducted to investigate the structure as well as the Brønsted and Lewis acidity of Fluid Catalytic Cracking (FCC) catalyst particles at the individual particle level. Both fresh and laboratory-deactivated catalyst particles have been

  4. Potential of 13C and 15N Labeling for Studying Protein-Protein Interactions Using Fourier Transform Infrared Spectroscopy

    NARCIS (Netherlands)

    Haris, Parvez I.; Robillard, George T.; Dijk, Alard A. van; Chapman, Dennis

    1992-01-01

    In this study, we examine the interaction between two bacterial proteins, namely HPr and IIAmtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system, using FTIR spectroscopy. In an interaction involving a 1:1 molar ratio of these two proteins, when they are unlabeled, the

  5. Hyperfine interactions in soybean and lupin oxy-leghemoglobins studied using Mössbauer spectroscopy with a high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [University of Delhi South Campus, Department of Biochemistry (India); Alenkina, I. V. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation); Zakharova, A. P. [Ural Federal University, Department of Experimental Physics, Institute of Physics and Technology (Russian Federation); Oshtrakh, M. I., E-mail: oshtrakh@gmail.com; Semionkin, V. A. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation)

    2015-04-15

    A comparative study of monomeric soybean and lupin leghemoglobins in the oxy-form was carried out using Mössbauer spectroscopy with a high velocity resolution at 90 K. The {sup 57}Fe hyperfine parameters of measured spectra were evaluated and compared with possible structural differences in the heme Fe(II)–O {sub 2} bond.

  6. Control of porphyrin biosynthesis in Rhodopseudomonas spheroides and Propionibacterium shermanii. A direct 13C nuclear-magnetic-resonance spectroscopy study.

    Science.gov (United States)

    Burton, G; Jordan, P M; MacKenzie, N E; Fagerness, P E; Scott, A I

    1981-01-01

    The facultative anaerobes Rhodopseudomonas spheroides and Propionibacterium shermanii were grown under anaerobic and aerobic conditions. The effect of light was studied with the photosynthetic R. spheroides, and the adaptation of both species to dark anaerobic life was monitored by direct observation of 5-amino[5-13C]laevulinic acid metabolism by using 13C nuclear-magnetic-resonance spectroscopy. PMID:6975620

  7. Electronic structure of disordered Au-Pd alloys studied by electron spectroscopies

    Science.gov (United States)

    Nahm, Tschang-Uh; Jung, Ranju; Kim, Jae-Young; Park, W.-G.; Oh, S.-J.; Park, J.-H.; Allen, J. W.; Chung, S.-M.; Lee, Y. S.; Whang, C. N.

    1998-10-01

    The occupied and unoccupied electronic structures of disordered AuxPd1-x alloys are studied by valence-band photoemission, bremsstrahlung isochromat spectroscopy (BIS), and x-ray absorption near-edge spectroscopy (XANES). The occupied partial spectral weights (PSW's) of Au 5d and Pd 4d states are obtained from the valence-band photoemission spectra using synchrotron radiation by taking the matrix-element effect into account. We use the Cooper minimum phenomenon of the Pd 4d states with the measured ratios of photoionization cross sections. The Pd 4d PSW's are found to form a virtual bound state in the Pd-diluted alloy but become broader as the Pd concentration increases due to the Pd 4d-Pd 4d hybridization. On the other hand, Au 5d5/2 states show the common-band behavior due to the appreciable mixing with Pd 4d5/2 states, while Au 5d3/2 states retain their sharp structure and show the split-band behavior. These experimental PSW's of Au-Pd alloys are in good qualitative agreement with the results of recent self-consistent-field coherent-potential-approximation calculations. The comparison of the experimental Pd PSW of Au-Pd with those of other Pd-noble-metal alloys clearly shows that in noble-metal-rich alloys, the mixing of Pd 4d states with host d bands increases in the order of Ag-Pd, Au-Pd, Cu-Pd systems. This trend results in the split-band for Au-Pd and Ag-Pd in Pd diluted alloys, but gives the common band for Cu-Pd. The unoccupied Pd 4d states of disordered AuxPd1-x alloys obtained from BIS and XANES spectra show the gradual filling of Pd 4d states as the Au concentration is increased, but it is not completely filled even in the Pd-diluted alloy.

  8. Oxidative stress and depressive symptoms in older adults: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Duffy, Shantel L; Lagopoulos, Jim; Cockayne, Nicole; Hermens, Daniel F; Hickie, Ian B; Naismith, Sharon L

    2015-07-15

    Major depression is common in older adults and associated with greater health care utilisation and increased risk of poor health outcomes. Oxidative stress may be implicated in the pathophysiology of depression and can be measured via the neurometabolite glutathione using proton magnetic resonance spectroscopy ((1)H-MRS). This study aimed to examine the relationship between glutathione concentration and depressive symptom severity in older adults 'at-risk' of depression. In total, fifty-eight older adults considered 'at-risk' of depression (DEP) and 12 controls underwent (1)H-MRS, medical and neuropsychological assessments. Glutathione was measured in the anterior cingulate cortex (ACC), and calculated as a ratio to creatine. Depressive and anxiety symptoms were assessed using the Hospital Anxiety and Depression Scale (HADS). Compared to controls, DEP patients had increased glutathione/creatine ratios in the ACC (t=2.7, p=0.012). In turn, these increased ratios were associated with greater depressive symptoms (r=0.28, p=0.038), and poorer performance on a verbal learning task (r=-0.28, p=0.040). In conclusion, depressive symptoms in older people are associated with increased glutathione in the ACC. Oxidative stress may be pathophysiologically linked to illness development and may represent an early compensatory response. Further research examining the utility of glutathione as a marker for depressive symptoms and cognitive decline is now required. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Exchange-dynamics of a neutral hydrophobic dye in micellar solutions studied by Fluorescence Correlation Spectroscopy.

    Science.gov (United States)

    Bordello, Jorge; Novo, Mercedes; Al-Soufi, Wajih

    2010-05-15

    The dynamics of the exchange of the moderately hydrophobic neutral dye Coumarine 152 between the aqueous phase and the phase formed by neutral Triton X-100 micelles is studied by Fluorescence Correlation Spectroscopy. The changes in the photophysical properties of the dye in presence of the micelles are discussed. The low quantum yield, the low saturation threshold and the necessary high energetic excitation of this dye requires a careful selection of the experimental conditions in order to obtain dynamic and diffusional properties with reasonable precision. It is shown that the contrast between the brightness of free and bound dye has a strong influence on the sensitivity of the FCS experiment. The entry rate constant of the dye to the micelles, k(+)=(0.8±0.3)×10(10) M(-1) s(-1), is very near to the diffusion controlled limit. The high association equilibrium constant of K=(129±3)×10(3) M(-1) is mainly determined by the low exit rate constant, k(-)=(0.6±0.2)×10(5) s(-1). Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Self-face recognition in children with autism spectrum disorders: a near-infrared spectroscopy study.

    Science.gov (United States)

    Kita, Yosuke; Gunji, Atsuko; Inoue, Yuki; Goto, Takaaki; Sakihara, Kotoe; Kaga, Makiko; Inagaki, Masumi; Hosokawa, Toru

    2011-06-01

    It is assumed that children with autism spectrum disorders (ASD) have specificities for self-face recognition, which is known to be a basic cognitive ability for social development. In the present study, we investigated neurological substrates and potentially influential factors for self-face recognition of ASD patients using near-infrared spectroscopy (NIRS). The subjects were 11 healthy adult men, 13 normally developing boys, and 10 boys with ASD. Their hemodynamic activities in the frontal area and their scanning strategies (eye-movement) were examined during self-face recognition. Other factors such as ASD severities and self-consciousness were also evaluated by parents and patients, respectively. Oxygenated hemoglobin levels were higher in the regions corresponding to the right inferior frontal gyrus than in those corresponding to the left inferior frontal gyrus. In two groups of children these activities reflected ASD severities, such that the more serious ASD characteristics corresponded with lower activity levels. Moreover, higher levels of public self-consciousness intensified the activities, which were not influenced by the scanning strategies. These findings suggest that dysfunction in the right inferior frontal gyrus areas responsible for self-face recognition is one of the crucial neural substrates underlying ASD characteristics, which could potentially be used to evaluate psychological aspects such as public self-consciousness. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  11. Studying radiolytic ageing of nuclear power plant electric cables with FTIR spectroscopy.

    Science.gov (United States)

    Levet, A; Colombani, J; Duponchel, L

    2017-09-01

    Due to the willingness to extend the nuclear power plants length of life, it is of prime importance to understand long term ageing effect on all constitutive materials. For this purpose gamma-irradiation effects on insulation of instrumentation and control cables are studied. Mid-infrared spectroscopy and principal components analysis (PCA) were used to highlight molecular modifications induced by gamma-irradiation under oxidizing conditions. In order to be closer to real world conditions, a low dose rate of 11Gyh -1 was used to irradiate insulations in full cable or alone with a dose up to 58 kGy. Spectral differences according to irradiation dose were extracted using PCA. It was then possible to observe different behaviors of the insulation constitutive compounds i.e. ethylene vinyl acetate (EVA), ethylene propylene diene monomer (EPDM) and aluminium trihydrate (ATH). Irradiation of insulations led to the oxidation of their constitutive polymers and a modification of filler-polymer ratio. Moreover all these modifications were observed for insulations alone or in full cable indicating that oxygen easily diffuses into the material. Spectral contributions were discussed considering different degradation mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Near and mid infrared spectroscopy and multivariate data analysis in studies of oxidation of edible oils.

    Science.gov (United States)

    Wójcicki, Krzysztof; Khmelinskii, Igor; Sikorski, Marek; Sikorska, Ewa

    2015-11-15

    Infrared spectroscopic techniques and chemometric methods were used to study oxidation of olive, sunflower and rapeseed oils. Accelerated oxidative degradation of oils at 60°C was monitored using peroxide values and FT-MIR ATR and FT-NIR transmittance spectroscopy. Principal component analysis (PCA) facilitated visualization and interpretation of spectral changes occurring during oxidation. Multivariate curve resolution (MCR) method found three spectral components in the NIR and MIR spectral matrix, corresponding to the oxidation products, and saturated and unsaturated structures. Good quantitative relation was found between peroxide value and contribution of oxidation products evaluated using MCR--based on NIR (R(2) = 0.890), MIR (R(2) = 0.707) and combined NIR and MIR (R(2) = 0.747) data. Calibration models for prediction peroxide value established using partial least squares (PLS) regression were characterized for MIR (R(2) = 0.701, RPD = 1.7), NIR (R(2) = 0.970, RPD = 5.3), and combined NIR and MIR data (R(2) = 0.954, RPD = 3.1). Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials

    Directory of Open Access Journals (Sweden)

    Daniel den Engelsen

    2017-03-01

    Full Text Available Herein, we describe three advanced techniques for cathodoluminescence (CL spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (Eg > 5 eV is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM of Brunel University London (UK. This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images.

  14. Effect of oxygen plasma etching on graphene studied using Raman spectroscopy and electronic transport measurements

    International Nuclear Information System (INIS)

    Childres, Isaac; Tian, Jifa; Chen, Yong P; Jauregui, Luis A

    2011-01-01

    In this paper, we report a study of graphene and graphene field effect devices after their exposure to a series of short pulses of oxygen plasma. Our data from Raman spectroscopy, back-gated field-effect and magnetotransport measurements are presented. The intensity ratio between Raman 'D' and 'G' peaks, I D /I G (commonly used to characterize disorder in graphene), is observed to initially increase almost linearly with the number (N e ) of plasma-etching pulses, but later decreases at higher N e values. We also discuss the implications of our data for extracting graphene crystalline domain sizes from I D /I G . At the highest N e value measured, the '2D' peak is found to be nearly suppressed while the 'D' peak is still prominent. Electronic transport measurements in plasma-etched graphene show an up-shifting of the Dirac point, indicating hole doping. We also characterize mobility, quantum Hall states, weak localization and various scattering lengths in a moderately etched sample. Our findings are valuable for understanding the effects of plasma etching on graphene and the physics of disordered graphene through artificially generated defects.

  15. Silicon nitride and YMgSiAlON glass study by mechanical spectroscopy

    International Nuclear Information System (INIS)

    Doen, B.; Gadaud, P.

    1996-01-01

    Si 3 N 4 /TiN and YMgSiAlON/SiC composites have been studied by isothermal mechanical spectroscopy over a large frequency range. Internal friction curves obtained for the composite Si 3 N 4 -TiN(30% vol)-Al 2 O 3 , Y 2 O 3 (7.5% vol) exhibit a thermally activated pseudo peak superposed on a non purely exponential background. We can assume that this maximum is due to relaxations in the compressed intergranular glassy films. The apparent dynamical parameters deduced from its shift (11.2 eV and 3.10 -45 s) are unusual as observed in amorphous materials. YMgSiAlON glass has a composition very similar to the one of the intergranular phase of Si 3 N 4 /TiN composite. The damping curves obtained for YMgSiAlON/SiC composites above the glass transition temperature are pure exponential backgrounds. An original analysis of these curves allows to determine an activation energy of about 3.6 eV. This value is more realistic for an elementary diffusion mechanism in a glass near Tg. (orig.)

  16. Structural study of α-amino-acid crystals by 1H CRAMPS NMR spectroscopy

    Science.gov (United States)

    Kimura, Hideaki; Nakamura, Kaori; Eguchi, Akiko; Sugisawa, Hisashi; Deguchi, Kenzo; Ebisawa, Kazuyoshi; Suzuki, Ei-ichiro; Shoji, Akira

    1998-06-01

    1H CRAMPS (combined rotation and multiple pulse spectroscopy) NMR was applied to structural analysis of polymorphic forms of α-amino acid crystals in order to test the power of 1H CRAMPS NMR compared with the 13C and 15N NMR methods. We have studied two different stages of α-amino acid crystals: α-glycine and γ-glycine, and A-histidine and B-histidine. As a result, it was found that the α-methylene proton (H α) signal of α-glycine splits into two peaks (4.4 and 3.4 ppm), but that of γ-glycine gives a singlet peak (3.3 ppm), which was reasonably explained by the 1H electrostatic potential charge calculation for this glycine system. Furthermore, it was found that the 1H chemical shift difference between the H 2 and H 5 peaks from the imidazole ring of A-histidine (0.4 ppm) could easily be distinguished from that of B-histidine (0.9 ppm). Thus, the 1H chemical shifts of α-amino acids are very sensitive to a slight difference in magnetic surroundings of protons as well as to differences of the hydrogen bond network. Therefore, the 1H CRAMPS NMR spectra are very useful for the structural analysis of α-amino acid crystals.

  17. Adsorption on metal oxides Studies with the metastable impact electron spectroscopy

    CERN Document Server

    Krischok, S; Kempter, V

    2002-01-01

    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H sub 2 O, molecular adsorption takes place both on MgO and TiO sub 2; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO sub 2 , chemisorption takes place in form of carbonate (CO sub 3) species. These originate from the CO sub 2 interaction with O sup 2 sup - surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO sub 2 chemisorption requires alkali coadsor...

  18. Study of iron exchanged zeolites by Moessbauer effect and electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Aguirre Campuzano, C.E.

    1993-01-01

    Crystalline iron exchanged NaY zeolites, prepared from aqueous solutions and calcined at atmospheric conditions, have been studied and characterized by XRD, Moessbauer and EPR spectroscopies and TGA analysis. Three iron sites are clearly distinguished from Moessbauer and EPR measurements. Firstly, characteristic Moessbauer and EPR spectra may arise from framework sites, suggesting that Fe has substituted Al. It is also found that their spectroscopic signals are not intensity affected by thermal treatments. Secondly, a Moessbauer doublet which may arise from octahedral sites in the large cavity of the zeolite, shows however, that this doublet and its EPR signal are intensity temperature affected. An additional line broadening is observed on the low velocity line of this doublet, Thirdly, characteristic Moessbauer and EPR signals, which are also intensity temperature dependent have been associated to accluded material, where the Moessbauer doublet presents the line broadening effect before mentioned. Such line broadening effect may be due to perturbing signals from iron ions in tetrahedral sites. Finally, it has been observed that during calcination of the FeY zeolites, the three characteristic EPR signals for the three iron sites, do not increase at the expenses of the other. A result that may suggest a strong bonding between Fe-site of the Y zeolite, irrespective of the iron source. (Author)

  19. Study on the degradation of PLEDs by in-situ micro-Raman spectroscopy

    Science.gov (United States)

    Xu, Xiaoxuan; Qin, Zhe; Lin, Haibo; Xu, Wei

    2007-11-01

    Electro luminescence spectra and in-suit micro-Raman spectra was used to study voltaic aging of organic light emitting devices with two kinds of conjugated macromolecule polymer emission layer, one is called PFO-BT15 and the other is poly (2-(4-Ethylhexyl) phenyl-1 , 4-phenylene vinylene) (P-PPV) polymer. The first device has a configuration of ITO glass/ PEDOT( 120nm ) PFO-BT15(80nm)/Ba( 4nm )/Al(200nm) , and we encapsulated the cathode of diode with epoxy resin to reduce the entrance of oxygen and water. After long time current stress, the electro luminescent spectra and Raman spectra show that the polymer device's molecular configuration of polymer layer is unchanged , but the PEDOT anode's breakage which lead to the emission failure of the device, which indicates that this kind of polymer materials have relatively steady photoelectric performance . The second device, during current stress , the reduction of conjugation length is provided by Raman spectroscopy. This reduction of the conjugation length , which dramatically increases the resistance and cuts off the current density , was the main reason for the failure of lighting. These findings provide an important insight into the intrinsic degradation mechanisms of the polymer LEDs and help in the development of even more stable devices.

  20. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.

    Science.gov (United States)

    Lu, Zhihao; Girguis, Peter; Liang, Peng; Shi, Haifeng; Huang, Guangtuan; Cai, Lankun; Zhang, Lehua

    2015-07-01

    It is known that cell potential increases while anode resistance decreases during the start-up of microbial fuel cells (MFCs). Biological capacitance, defined as the apparent capacitance attributed to biological activity including biofilm production, plays a role in this phenomenon. In this research, electrochemical impedance spectroscopy was employed to study anode capacitance and resistance during the start-up period of MFCs so that the role of biological capacitance was revealed in electricity generation by MFCs. It was observed that the anode capacitance ranged from 3.29 to 120 mF which increased by 16.8% to 18-20 times over 10-12 days. Notably, lowering the temperature and arresting biological activity via fixation by 4% para formaldehyde resulted in the decrease of biological capacitance by 16.9 and 62.6%, indicating a negative correlation between anode capacitance and anode resistance of MFCs. Thus, biological capacitance of anode should play an important role in power generation by MFCs. We suggest that MFCs are not only biological reactors and/or electrochemical cells, but also biological capacitors, extending the vision on mechanism exploration of electron transfer, reactor structure design and electrode materials development of MFCs.

  1. Thermoplastic starch modified with microfibrillated cellulose and natural rubber latex: A broadband dielectric spectroscopy study.

    Science.gov (United States)

    Drakopoulos, S X; Karger-Kocsis, J; Kmetty, Á; Lendvai, L; Psarras, G C

    2017-02-10

    Thermoplastic starch (TPS) biocomposites modified with cellulose microfibers and/or natural rubber were prepared via extrusion compounding. Glycerol and water served as plasticizers for starch. The dielectric properties of the TPS composites were examined via broadband dielectric spectroscopy in the temperature and frequency ranges of 30°C-65°C and 0.1Hz-10MHz, respectively. Each specimen was tested twice in order to study the effect of absorbed water. The hydrophobic/hydrophilic character of the modifiers governed the dielectric performance of the corresponding TPS biocomposites. Conducted analysis revealed two relaxation processes attributed to matrix-water-reinforcement interfacial polarization and glass to rubber transition of the TPS. Evaporation of water significantly affected the first process and only slightly the second one. Energy density, prior and after water evaporation, was also determined at constant field. By employing dielectric reinforcing function the contributions of water-assisted and constituents' originated interfacial phenomena could be separated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed

    2012-09-01

    Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.

  3. Collison-Induced Absorption of Oxygen Molecule as Studied by High Sensitivity Spectroscopy

    Science.gov (United States)

    Kashihara, Wataru; Shoji, Atsushi; Kawai, Akio

    2017-06-01

    Oxygen dimol is transiently generated when two oxygen molecules collide. At this short period, the electron clouds of molecules are distorted and some forbidden transition electronic transitions become partially allowed. This transition is called CIA (Collision-induced absorption). There are several CIA bands appearing in the spectral region from UV to near IR. Absorption of solar radiation by oxygen dimol is a small but significant part of the total budget of incoming shortwave radiation. However, a theory predicting the lineshape of CIA is still under developing. In this study, we measured CIA band around 630 nm that is assigned to optical transition, a^{1}Δ_{g}(v=0):a^{1}Δ_{g}(v=0)-X^{3}Σ_{g}^{-}(v=0):X^{3}Σ_{g}^{-}(v=0) of oxygen dimol. CRDS(Cavity Ring-down Spectroscopy) was employed to measure weak absorption CIA band of oxygen. Laser beam around 630 nm was generated by a dye laser that was pumped by a YAG Laser. Multiple reflection of the probe light was performed within a vacuum chamber that was equipped with two high reflective mirrors. We discuss the measured line shape of CIA on the basis of collision pair model.

  4. Optical pathology study of human abdominal aorta tissues using confocal micro resonance Raman spectroscopy

    Science.gov (United States)

    Liu, Cheng-hui; Boydston-White, Susie; Wang, Wubao; Sordillo, Laura A.; Shi, Lingyan; Weisberg, Arel; Tomaselli, Vincent P.; Sordillo, Peter P.; Alfano, Robert R.

    2016-03-01

    Resonance Raman (RR) spectroscopic technique has a high potential for label-free and in-situ detection of biomedical lesions in vivo. This study evaluates the ability of RR spectroscopy method as an optical histopathology tool to detect the atherosclerotic plaque states of abdominal aorta in vitro. This part demonstrates the RR spectral molecular fingerprint features from different sites of the atherosclerotic abdominal aortic wall tissues. Total 57 sites of five pieces aortic samples in intimal and adventitial wall from an autopsy specimen were examined using confocal micro Raman system of WITec 300R with excitation wavelength of 532nm. The preliminary RR spectral biomarkers of molecular fingerprints indicated that typical calcified atherosclerotic plaque (RR peak at 964cm-1) tissue; fibrolipid plaque (RR peaks at 1007, 1161, 1517 and 2888cm-1) tissue, lipid pool with the fatty precipitation cholesterol) with collagen type I (RR peaks at 864, 1452, 1658, 2888 and 2948cm-1) in the soft tissue were observed and investigated.

  5. Recent progress of soft X-ray photoelectron spectroscopy studies of uranium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Shin-ichi; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Fujimori, Atsushi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033 (Japan); Yamagami, Hiroshi [Condensed Matter Science Divisions, Japan Atomic Energy Agency, Sayo, Hyogo (Japan); Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan); Yamamoto, Etsuji; Haga, Yoshinori [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ōnuki, Yoshichika [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 (Japan)

    2016-04-15

    Recent progresses in the soft X-ray photoelectron spectroscopy (PES) studies (hν ≳ 100 eV) for uranium compounds are briefly reviewed. The soft X-ray PES has enhanced sensitivities for the bulk U 5f electronic structure, which is essential to understand the unique physical properties of uranium compounds. In particular, the recent remarkable improvement in energy resolutions from an order of 1 eV to 100 meV made it possible to observe fine structures in U 5f density of states. Furthermore, soft X-ray ARPES becomes available due to the increase of photon flux at beamlines in third generation synchrotron radiation facilities.The technique made it possible to observe bulk band structures and Fermi surfaces of uranium compounds and therefore, the results can be directly compared with theoretical models such as band-structure calculations. The core-level spectra of uranium compounds show a systematic behavior depending on their electronic structures, suggesting that they can be utilized to determine basic physical parameters such as the U 5f-ligand hybridizations or Comlomb interaction between U 5f electrons. It is shown that soft X-ray PES provides unique opportunities to understand the electronic structures of uranium compounds.

  6. Photoelectron spectroscopy studies of mixed-valence states of Sm overlayers on transition-metal surfaces

    International Nuclear Information System (INIS)

    Tao Lian.

    1990-01-01

    To investigate and understand how the mixed-valent state of rare earths (RE) is formed and affected by their interactions with transition metals (TM), synchrotron-radiation-excited photoelectron spectroscopy was used to systematically study valence states of Sm overlayers on three TM surfaces as functions of Sm coverages. On polycrystalline Ta, Sm always has a mixed-valent state, consisting of the trivalent state and the divalent state. At a coverage of 0.02 monolayer, Sm has an average valence of 2.24. As the coverage increases, the Sm 3+ and Sm 2+ components increase at different rates. Sm on polycrystalline Cu behaves quite differently. At coverages below one monolayer, all the Sm ions adopt the trivalent state. When the coverage exceeds one monolayer, Sm 2+ ions appear, with a resulting average valence of 2.52. After that the average valence does not change significantly. On a Cu(110) single crystal surface, the situation is found to closely resemble that observed on polycrystalline Cu. These results indicate that the Sm-Ta interaction is weak compared to the Sm-Sm interaction, while the Sm-Cu interaction is stronger and affects the electronic structure

  7. Adsorption on metal oxides: Studies with the metastable impact electron spectroscopy

    International Nuclear Information System (INIS)

    Krischok, S.; Hoefft, O.; Kempter, V.

    2002-01-01

    An overview is given on the application of metastable impact electron spectroscopy, in combination with UPS, to the study of clean magnesia and titania surfaces and their interaction with metal atoms and small molecules. The mechanisms for metal adsorption on reducible (titania) and non-reducible (magnesia) substrates are different: while on titania the metal atom often bonds by electron transfer to Ti3d states, it is hybridization of the adsorbate and anion wavefunctions which accounts for the bonding on MgO. In the case of H 2 O, molecular adsorption takes place both on MgO and TiO 2 ; on the other hand, water-alkali coadsorption leads to hydroxide formation. In the case of CO 2 , chemisorption takes place in form of carbonate (CO 3 ) species. These originate from the CO 2 interaction with O 2- surface anions. While for CaO chemisorption takes place at regular oxygen sites, for MgO this occurs at low-coordinated oxygen ions only; for TiO 2 chemisorption requires alkali coadsorption

  8. Surface-enhanced Raman spectroscopy studies of yellow organic dyestuffs and lake pigments in oil paint.

    Science.gov (United States)

    Mayhew, Hannah E; Fabian, David M; Svoboda, Shelley A; Wustholz, Kristin L

    2013-08-21

    Identifying natural, organic dyes and pigments is important for the conservation, preservation, and historical interpretation of works of art. Although previous SERS studies have demonstrated high sensitivity and selectivity for red lake pigments using various pretreatment conditions, corresponding investigations of yellow lake pigments and paints are relatively sparse. Here, surface-enhanced Raman scattering (SERS) spectroscopy is used to identify a variety of yellow organic dyestuffs and lake pigments in oil paint. High-quality SERS spectra of yellow dyestuffs (i.e., turmeric, old fustic, Buckthorn berries) and corresponding paints could be obtained with or without sample pretreatment using microliter quantities of HCl and methanol at room temperature. However, the SERS spectra of yellow lake pigments (i.e., Stil de Grain, Reseda lake) and their corresponding oil paints were only observed upon sample pretreatment. Ultimately, we demonstrate a reliable sample treatment protocol for SERS-based identification of turmeric, old fustic, Buckthorn berries, Stil de Grain, and Reseda lake as well as for microscopic samples of the corresponding oil paints.

  9. New Developments in Cathodoluminescence Spectroscopy for the Study of Luminescent Materials.

    Science.gov (United States)

    Engelsen, Daniel den; Fern, George R; Harris, Paul G; Ireland, Terry G; Silver, Jack

    2017-03-17

    Herein, we describe three advanced techniques for cathodoluminescence (CL) spectroscopy that have recently been developed in our laboratories. The first is a new method to accurately determine the CL-efficiency of thin layers of phosphor powders. When a wide band phosphor with a band gap (E g > 5 eV) is bombarded with electrons, charging of the phosphor particles will occur, which eventually leads to erroneous results in the determination of the luminous efficacy. To overcome this problem of charging, a comparison method has been developed, which enables accurate measurement of the current density of the electron beam. The study of CL from phosphor specimens in a scanning electron microscope (SEM) is the second subject to be treated. A detailed description of a measuring method to determine the overall decay time of single phosphor crystals in a SEM without beam blanking is presented. The third technique is based on the unique combination of microscopy and spectrometry in the transmission electron microscope (TEM) of Brunel University London (UK). This combination enables the recording of CL-spectra of nanometre-sized specimens and determining spatial variations in CL emission across individual particles by superimposing the scanning TEM and CL-images.

  10. Resonant photo-thermal modification of vertical gallium arsenide nanowires studied using Raman spectroscopy.

    Science.gov (United States)

    Walia, Jaspreet; Boulanger, Jonathan; Dhindsa, Navneet; LaPierre, Ray; Tang, Xiaowu Shirley; Saini, Simarjeet S

    2016-06-17

    Gallium arsenide nanowires have shown considerable promise for use in applications in which the absorption of light is required. When the nanowires are oriented vertically, a considerable amount of light can be absorbed, leading to significant heating effects. Thus, it is important to understand the threshold power densities that vertical GaAs nanowires can support, and how the nanowire morphology is altered under these conditions. Here, resonant photo-thermal modification of vertical GaAs nanowires was studied using both Raman spectroscopy and electron microscopy techniques. Resonant waveguiding, and subsequent absorption of the excited optical mode reduces the irradiance vertical GaAs nanowires can support relative to horizontal ones, by three orders of magnitude before the onset of structural changes occur. A power density of only 20 W mm(-2) was sufficient to induce local heating in the nanowires, resulting in the formation of arsenic species. Upon further increasing the power, a hollow nanowire morphology was realized. These findings are pertinent to all optical applications and spectroscopic measurements involving vertically oriented GaAs nanowires. Understanding the optical absorption limitations, and the effects of exceeding these limitations will help improve the development of all III-V nanowire devices.

  11. Non-invasive detection of periodontal disease using diffuse reflectance spectroscopy: a clinical study

    Science.gov (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Subhash, Narayanan; Jayanthi, Jayaraj L.; Prasanthila, Janam

    2012-03-01

    In clinical diagnostic procedures, gingival inflammation is considered as the initial stage of periodontal breakdown. This is often detected clinically by bleeding on probing as it is an objective measure of inflammation. Since conventional diagnostic procedures have several inherent drawbacks, development of novel non-invasive diagnostic techniques assumes significance. This clinical study was carried out in 15 healthy volunteers and 25 patients to demonstrate the applicability of diffuse reflectance (DR) spectroscopy for quantification and discrimination of various stages of inflammatory conditions in periodontal disease. The DR spectra of diseased lesions recorded using a point monitoring system consisting of a tungsten halogen lamp and a fiber-optic spectrometer showed oxygenated hemoglobin absorption dips at 545 and 575 nm. Mean DR spectra on normalization shows marked differences between healthy and different stages of gingival inflammation. Among the various DR intensity ratios investigated, involving oxy Hb absorption peaks, the R620/R575 ratio was found to be a good parameter of gingival inflammation. In order to screen the entire diseased area and its surroundings instantaneously, DR images were recorded with an EMCCD camera at 620 and 575 nm. We have observed that using the DR image intensity ratio R620/R575 mild inflammatory tissues could be discriminated from healthy with a sensitivity of 92% and specificity of 93%, and from moderate with a sensitivity of 83% and specificity of 96%. The sensitivity and specificity obtained between moderate and severe inflammation are 82% and 76% respectively.

  12. Temperature-dependent vibrational spectroscopy to study order-disorder transitions in charge transfer complexes

    Science.gov (United States)

    Isaac, Rohan; Goetz, Katelyn P.; Roberts, Drew; Jurchescu, Oana D.; McNeil, L. E.

    2018-02-01

    Charge-transfer (CT) complexes are a promising class of materials for the semiconductor industry because of their versatile properties. This class of compounds shows a variety of phase transitions, which are of interest because of their potential impact on the electronic characteristics. Here temperature-dependent vibrational spectroscopy is used to study structural phase transitions in a set of organic CT complexes. Splitting and broadening of infrared-active phonons in the complex formed between pyrene and pyromellitic dianhydride (PMDA) confirm the structural transition is of the order-disorder type and complement previous x-ray diffraction (XRD) results. We show that this technique is a powerful tool to characterize transitions, and apply it to a range of binary CT complexes composed of polyaromatic hyrdocarbons (anthracene, perylene, phenanthrene, pyrene, and stilbene) and PMDA. We extend the understanding of transitions in perylene-PMDA and pyrene-PMDA, and show that there are no order-disorder transitions present in anthracene-PMDA, stilbene-PMDA and phenanthrene-PMDA in the temperature range investigated here.

  13. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  14. Chapter 3 Studies of complex I by Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Marshall, Douglas; Rich, Peter R

    2009-01-01

    Fourier transform vibrational infrared (FTIR) difference spectroscopy provides a novel spectroscopic tool to study atomic details of the structure and mechanism of respiratory NADH: ubiquinone oxidoreductase (complex I). Methods for the acquisition of difference spectra in both transmission and ATR modes in the mid-IR 4000 to 900 cm(-1) region are reviewed. In both modes, redox transitions can be induced by electrochemistry, and ultraviolet (UV)/visible spectra can be recorded simultaneously. Use of the ATR method with complex I layers immobilized on an internal reflection element (IRE) additionally allows transitions to be induced by perfusion/buffer exchange, hence providing a versatile means of analyzing IR changes associated with, for example, ligand/substrate binding or specific catalytic intermediates at high signal-to-noise. Absolute absorbance IR spectra can provide information on secondary structure, lipid/protein ratio, extent of isotope exchange, and sample quality and stability more generally. Such information is useful for quality control of samples during the acquisition of difference spectra in which specific atomic details of changes between two states may be probed. Examples of absolute and difference IR spectra of complex I are presented, and strategies for assignments of the spectral features are discussed.

  15. [Study on analysis of copy paper by Fourier transform infrared spectroscopy].

    Science.gov (United States)

    Li, Ji-Min; Wang, Yan-Ji; Wang, Jing-Han; Yao, Li-Juan; Zhang, Biao

    2009-06-01

    A new method of fast identification of copy papers by Fourier transform infrared spectroscopy (FTIR) was developed. The kinds of filler and the cellulosic degree of crystallinity were analyzed by FTIR, and the ageing curves of cellulosic paper were studied with heating and ultraviolet light. The cellulosic degree of crystallinity was showed by the ratio of absorbance at 1 429 cm(-1) to that at 893 cm(-1), the standard deviation of different brands of copy papers was 0.010 7-0.016 0, and the standard deviation of the same brands of copy papers was 0.014 8. The kinds of filler and the cellulosic degree of crystallinity were different in copy papers from different brands of different manufacturing plants, different brands of same manufacturing plants and different manufacturing times of the same brands from the same manufacturing plants, and the curves of ageing were different with heating and ultraviolet light. The results of fast identification of copy papers by FTIR are satisfactory.

  16. Proton spectroscopy study of the masseter in patients with systemic sclerosis

    International Nuclear Information System (INIS)

    Marcucci, Marcelo; Abdala, Nitamar

    2009-01-01

    Objective: To evaluate metabolite concentration in the masseter of patients with systemic sclerosis, by analyzing creatine, choline, lipid and lactate levels, and correlating them with the presence of mandibular osteolysis. Materials and methods: The sample included 25 individuals, 15 of them with diagnosis of systemic sclerosis, divided into two groups according to the presence (group I) or absence (group II) of osteolysis, and 10 healthy individuals (group III, control). All of them were submitted to proton magnetic resonance spectroscopy with PRESS sequence and 3D acquisition. Results: Metabolite analysis showed that the creatine and lipid levels were the same for the three groups. Patients in group I presented higher levels of choline when compared with group III. On the other hand, lower lactate levels were observed in groups I and II when compared with the healthy individuals. Creatine/lipid and choline/lactate ratios were the same in the three groups. Conclusion: Lower lactate levels were observed in the patients with systemic sclerosis (groups I and II). Choline levels were increased in the patients with mandibular osteolysis (group I). Creatine/choline, lipid/lactate and choline/lipid ratios were different among the three groups. Further studies are necessary to understand the role played by the masseter in the development of mandibular osteolysis. (author)

  17. Clinical studies of head and neck tumors with P-31 spectroscopy

    International Nuclear Information System (INIS)

    Vogl, T.; Peer, F.; Reimann, V.; Holtmann, S.; Sauter, R.; Rennschmid, C.; Lissner, J.A.

    1988-01-01

    P-31 magnetic resonance (MR) spectroscopy and MR imaging with different localization methods was used for in vivo investigation of tumor metabolism and response to therapy. Examinations of 25 patients with head and neck tumors were performed with a whole-body MR imager, operating at 1.5 T. In 15 tumors located superficially and of different histologic types, the examinations were made with surface coils. IN ten deep tumors, spectra were obtained by means of an image-guided technique (ISIS). The in vivo results showed that PME, Pi, and PDE were significantly elevated in tumor tissue, and phosphocreatine (PCr) and adenosine triphosphate were reduced. An increase in Pi were correlated with the degree of tumor necrosis, and tumor recurrences showed a raise in PME. In long-term follow-up studies during chemotherapy, the tumor response resulted in similar behavior of PME and PCr concentrating between tumor and muscle. The results show that in vivo MR spectra can predict tumor metabolism and therefore may be used for therapy planning

  18. Effect of Hydrogen on Vacancy Formation in Sputtered Cu Films Studied by Positron Annihilation Spectroscopy

    Science.gov (United States)

    Yabuuchi, Atsushi; Kihara, Teruo; Kubo, Daichi; Mizuno, Masataka; Araki, Hideki; Onishi, Takashi; Shirai, Yasuharu

    2013-04-01

    As a part of the LSI interconnect fabrication process, a post-deposition high-pressure annealing process is proposed for embedding copper into trench structures. The embedding property of sputtered Cu films has been recognized to be improved by adding hydrogen to the sputtering argon gas. In this study, to elucidate the effect of hydrogen on vacancy formation in sputtered Cu films, normal argon-sputtered and argon-hydrogen-sputtered Cu films were evaluated by positron annihilation spectroscopy. As a result, monovacancies with a concentration of more than 10-4 were observed in the argon-hydrogen-sputtered Cu films, whereas only one positron lifetime component corresponding to the grain boundary was detected in the normal argon-sputtered Cu films. This result means monovacancies are stabilized by adding hydrogen to sputtering gas. In the annealing process, the stabilized monovacancies began clustering at around 300 °C, which indicates the dissociation of monovacancy-hydrogen bonds. The introduced monovacancies may promote creep deformation during high-pressure annealing.

  19. Experimental and theoretical studies on the characterization of monocrotaline by infrared and Raman spectroscopies

    Science.gov (United States)

    Oliveira, Ramon Prata; Demuner, Antonio Jacinto; Alvarenga, Elson Santiago; Parma, Monica Cropo; Barbosa, Luiz Claudio Almeida; de Moura Guimarães, Luciano; Aguiar, Alex Ramos

    2017-05-01

    The use of plants in folk medicine has a long and ancient history in the treatment of various diseases. Currently, a large proportion of commercial drugs are based on natural products or are synthetic compounds inspired on such natural substances. Therefore, in this communication to aid that research, structural and spectroscopic analysis of the natural pyrrolizidine alkaloid called monocrotaline was carried out. Pyrrolizidine alkaloids that are commonly found in the Boraginaceae and Asteraceae families are among the great diversity of secondary metabolites which are produced by plants to act as a defense mechanism against herbivores and microbes. In the present study, the natural product, monocrotaline, an alkaloid isolated from the leaves of Crotalaria paulina, with potential application in medicine, was characterized by infrared (IR) and Raman spectroscopy with the support of Density Functional Theory (DFT) calculations. IR and Raman spectra of monocrotaline were recorded at room temperature ranging from 4000 to 400 cm-1. DFT calculations with the hybrid functional B3LYP and the basis set 6-31 + G(d,p) were performed with the purpose of obtaining information on the structural and vibrational properties of this structure. A perfect fit between the experimentally measured frequencies of the IR and Raman spectra and the calculated values were observed, and we have performed the complete identification of monocrotaline by these techniques.

  20. [Study of dental alloys in the artificial saliva using an electrochemical impedance spectroscopy].

    Science.gov (United States)

    Lu, Chun-Hui; Zheng, Yuan-Li; Qiu, Jing

    2010-04-01

    With the help of electrochemical impedance spectroscopy (EIS), the purpose of the study was to investigate the corrosion resistance of CoCr alloys ,NiCr alloys and commercially pure Ti(cp Ti) in the artificial saliva(AS). With the EIS, a test was made on the three alloys/metals in the AS (See Bode plot and Nyquist plot). And then, an analysis was made on what was known in the test by the software of ZSimpWin, after which the corrosion resistance of the alloys/metals was evaluated against the parameters of equivalent circuit [R(CR)]. In the Nyquist plot, the capacitance arc radius was in the sequence of cp Ti>CoCr>NiCr. From the Bode plot, an one time constant was able to be obtained. That was the capacitor layer. According to the equivalent circuit[R(CR)], there was no significant difference in the capacitor layer of the three alloys/metals. And the sequence of the impedance value of the three alloys/metals was cp Ti>CoCr>NiCr. The EIS results suggest that the three alloys/metals have a great corrosion resistance with cp Ti having the highest corrosion resistance and that CoCr alloys is better than NiCr alloys in the corrosion resistance. Supported by Research Fund of Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2271100) and Shanghai Leading Academic Discipline Project(Grant No.T0202).

  1. Energy loss spectroscopy study of Si(111)--alkali metal interfaces at low temperatures

    International Nuclear Information System (INIS)

    Avci, R.

    1986-01-01

    Studies are made at approx.150 K under ultrahigh vacuum conditions on a wide range of alkali metal coverages on Si(111)-7 x 7. Negative second-derivative backscattered electron energy loss spectroscopy is used with 100 eV primary electrons. The interaction of the alkali metals with the silicon substrate goes through two stages as a function of alkali coverage: In the initial coverages, for less than approx.0.3 monolayer of alkali atoms, the basic reaction is that of charge transfer from the alkali atoms to the Si surface with a loss peak at approx.3.3 eV associated with the charge transfer states. The second stage of reaction: starting after the depletion of all the Si surface states: falls in a coverage range between approx.0.3 and approx.1 monolayer, in which the formation of a metallic layer with a coverage-dependent loss feature at about 2 eV is observed. At still higher coverages, multiple surface and bulk plasmon excitations and their combinations are dominant. In the overall scattering processes most of the parallel momentum (approx.3 A -1 ) is transferred to the sample during the elastic backscattering from the surface, and all the losses are essentially attributed to the forward inelastic scattering before and/or after the elastic process takes place near the metal/Si interface

  2. Structure elucidation and degradation kinetic study of Ofloxacin using surface enhanced Raman spectroscopy

    Science.gov (United States)

    El-Zahry, Marwa R.; Lendl, Bernhard

    2018-03-01

    A simple, fast and sensitive surface enhanced Raman spectroscopy (SERS) method for quantitative determination of fluoroquinolone antibiotic Ofloxacin (OFX) is presented. Also the stability behavior of OFX was investigated by monitoring the SERS spectra of OFX after various degradation processes. Acidic, basic and oxidative force degradation processes were applied at different time intervals. The forced degradation conditions were conducted and followed using SERS method utilizing silver nanoparticles (Ag NPs) as a SERS substrate. The Ag NPs colloids were prepared by reduction of silver nitrate using polyethyelene glycol (PEG) as a reducing and stabilizing agent. Validation tests were done in accordance with International Conference on Harmonization (ICH) guidelines. The calibration curve with a correlation coefficient (R = 0.9992) was constructed as a relationship between the concentration range of OFX (100-500 ng/ml) and SERS intensity at 1394 cm- 1 band. LOD and LOQ values were calculated and found to be 23.5 ng/ml and 72.6 ng/ml, respectively. The developed method was applied successfully for quantitation of OFX in different pharmaceutical dosage forms. Kinetic parameters were calculated including rate constant of the degradation of the studied antibiotic.

  3. Impedance Spectroscopy and AC Conductivity Studies of Bulk 3-Amino-7-(dimethylamino)-2-methyl-hydrochloride

    Science.gov (United States)

    El-Shabaan, M. M.

    2018-02-01

    Impedance spectroscopy and alternating-current (AC) conductivity (σ AC) studies of bulk 3-amino-7-(dimethylamino)-2-methyl-hydrochloride (neutral red, NR) have been carried out over the temperature (T) range from 303 K to 383 K and frequency (f) range from 0.5 kHz to 5 MHz. Dielectric data were analyzed using the complex impedance (Z *) and complex electric modulus (M *) for bulk NR at various temperatures. The impedance loss peaks were found to shift towards high frequencies, indicating an increase in the relaxation time (τ 0) and loss in the material, with increasing temperature. For each temperature, a single depressed semicircle was observed at high frequencies, originating from the bulk transport, and a spike in the low-frequency region, resulting from the electrode effect. Fitting of these curves yielded an equivalent circuit containing a parallel combination of a resistance R and constant-phase element (CPE) Q. The carrier transport in bulk NR is governed by the correlated barrier hopping (CBH) mechanism, some parameters of which, such as the maximum barrier height (W M), charge density (N), and hopping distance (r), were determined as functions of both temperature and frequency. The frequency dependence of σ AC at different temperatures indicated that the conduction in bulk NR is a thermally activated process. The σ AC value at different frequencies increased linearly with temperature.

  4. Neutron spin echo spectroscopy. Its application to the study of the dynamics of polymers in solution

    International Nuclear Information System (INIS)

    Papoular, Robert

    1992-06-01

    This work focuses on Neutron Spin Echo (NSE) spectroscopy and on the NSE spectrometer MESS, which we have built at the L.L.B. (CE Saclay). After analyzing in detail the classical and quantum principles of this type of instrument, and illustrated them with optical analogies, we expound a simple formalism for the interpretation of polarized neutron experiments of the most general type. In a second part, we describe the MESS spectrometer extensively; its characteristics and performances as well as the first results obtained with this instrument. In particular, we include two papers showing how the neutron depolarization, spin rotation and echoes can be used to investigate high-Tc superconductors. The last part deals with the dynamics of Polymer-Polymer-Solvent ternary solutions and demonstrates how the Neutron Spin Echo technique becomes a privileged tool for such physico-chemical studies thanks to the joint use of NSE and contrast variation methods, coupled with the adequate ranges of time and scattering vectors accessible. Finally, we describe the specific case of partially deuterated polydimethyl-siloxane (PDMS) in semi-dilute solution in Toluene. We have experimentally and separately evidenced the cooperative and inter-diffusive diffusion modes predicted by the theory of Akcasu, Benoit, Benmouna et al. These results, obtained at the L.L.B. (CE Saclay) are the subject matter of the last paper included in this work. (author) [fr

  5. Reactivity and Diffusivity of Li Polysulfides: A Fundamental Study Using Impedance Spectroscopy.

    Science.gov (United States)

    Drvarič Talian, Sara; Moškon, Jože; Dominko, Robert; Gaberšček, Miran

    2017-09-06

    Polysulfides are central compounds in lithium-sulfur battery cells. However, the fundamental redox and diffusion properties of polysulfides are still poorly understood. We try to fill this gap by performing an accurate impedance spectroscopy investigation using symmetrical cells consisting of two planar glassy carbon electrodes separated with catholyte-soaked separator. The catholyte contains a mixture of selected polysulfides with predetermined nominal concentrations. Impedance measurements reveal textbook shapes of spectra for most polysulfide compounds or their mixtures. This allows reliable and accurate determination of the rate constant (exchange current density) for a given redox reaction as well as the diffusion coefficient and diffusion length for the rate-determining polysulfide species. Further, it is confirmed that polysulfides tend to disproportionate with time, which significantly changes the chemistry and electrochemistry of the system. Two approaches are proposed for identification of the prevailing redox mechanism in the resulting mixtures. The values of kinetic and transport parameters obtained for different cases of interest are commented on in significant detail. The study provides a solid basis for better understanding of the complex processes in polysulfide mixtures.

  6. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyesu; Jang, Kyoung Won; Shin, Sang Hun and others

    2014-05-15

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors.

  7. Glutamatergic system dysfunction in schizophrenia. A proton magnetic resonance spectroscopy (1H MRS) study

    International Nuclear Information System (INIS)

    Szulc, A.; Galinska, B.; Czernikiewicz, A.; Tarasow, E.; Kubas, B.; Dzienis, W.; Walecki, J.

    2004-01-01

    The present study was performed to determine whether there are any differences in metabolite levels as measured by 1 H MRS between chronic and first-episode schizophrenic patients. 17 patients with the diagnosis of chronic schizophrenia and 31 patients with first-episode schizophrenia (ICD-10) were included into the study. The patients were assessed by means of PANSS, CGI and Calgary scales.We also examined 13 healthy persons as control group. MRI and MRS procedures: Proton resonance spectroscopy was performed on a 1,5 MR scanner, PRESS sequence, TR=1500 ms, TE=35 ms, number of repetition=192 and included suppression of water by MOIST sequence. Each volume element (voxel) had dimension of 2x2x2 cm and was localised in the left frontal lobe, in the left temporal lobe and in left thalamus. Complex containing glutamine (Gln), glutamate (Glu) and gamma-aminobutyric acid (GABA) was measured. Ratios of metabolite to creatine and unsuppressed water signal were analysed. We didn't find any significant differences in Glx levels between chronic and first-episode patients and between chronic patients and controls in all studied regions.In the left temporal lobe Glx/Cr ratio was significantly higher in first-episode patients in comparison to controls.We observed significant positive correlation between Glx/Cr level in the left temporal lobe and CGI and PANSS-Negative scores, and negative correlation between Glx/H 2 0 level in the left temporal lobe and PANSS-Positive score. Increased Glx level in the left temporal lobe in first-episode patients suggest that altered glutamatergic activity in this region is present at the onset of disease and doesn't progress over time. (author)

  8. Role of Absorbing Nanocrystal Cores in Soft Photonic Crystals: A Spectroscopy and SANS Study.

    Science.gov (United States)

    Rauh, Astrid; Carl, Nico; Schweins, Ralf; Karg, Matthias

    2018-01-23

    Periodic superstructures of plasmonic nanoparticles have attracted significant interest because they can support coupled plasmonic modes, making them interesting for plasmonic lasing, metamaterials, and as light-management structures in thin-film optoelectronic devices. We have recently shown that noble metal hydrogel core-shell colloids allow for the fabrication of highly ordered 2-dimensional plasmonic lattices that show surface lattice resonances as the result of plasmonic/diffractive coupling (Volk, K.; Fitzgerald, J. P. S.; Ruckdeschel, P.; Retsch, M.; König, T. A. F.; Karg, M. Reversible Tuning of Visible Wavelength Surface Lattice Resonances in Self-Assembled Hybrid Monolayers. Adv. Optical Mater. 2017, 5, 1600971, DOI: 10.1002/adom.201600971). In the present work, we study the photonic properties and structure of 3-dimensional crystalline superstructures of gold hydrogel core-shell colloids and their pitted counterparts without gold cores. We use far-field extinction spectroscopy to investigate the optical response of these superstructures. Narrow Bragg peaks are measured, independently of the presence or absence of the gold cores. All crystals show a significant reduction in low-wavelength scattering. This leads to a significant enhancement of the plasmonic properties of the samples prepared from gold-nanoparticle-containing core-shell colloids. Plasmonic/diffractive coupling is not evident, which we mostly attribute to the relatively small size of the gold cores limiting the effective coupling strength. Small-angle neutron scattering is applied to study the crystal structure. Bragg peaks of several orders clearly assignable to an fcc arrangement of the particles are observed for all crystalline samples in a broad range of volume fractions. Our results indicate that the nanocrystal cores do not influence the overall crystallization behavior or the crystal structure. These are important prerequisites for future studies on photonic materials built from core

  9. A comparative study of PCA, SIMCA and Cole model for classification of bioimpedance spectroscopy measurements.

    Science.gov (United States)

    Nejadgholi, Isar; Bolic, Miodrag

    2015-08-01

    Due to safety and low cost of bioimpedance spectroscopy (BIS), classification of BIS can be potentially a preferred way of detecting changes in living tissues. However, for longitudinal datasets linear classifiers fail to classify conventional Cole parameters extracted from BIS measurements because of their high variability. In some applications, linear classification based on Principal Component Analysis (PCA) has shown more accurate results. Yet, these methods have not been established for BIS classification, since PCA features have neither been investigated in combination with other classifiers nor have been compared to conventional Cole features in benchmark classification tasks. In this work, PCA and Cole features are compared in three synthesized benchmark classification tasks which are expected to be detected by BIS. These three tasks are classification of before and after geometry change, relative composition change and blood perfusion in a cylindrical organ. Our results show that in all tasks the features extracted by PCA are more discriminant than Cole parameters. Moreover, a pilot study was done on a longitudinal arm BIS dataset including eight subjects and three arm positions. The goal of the study was to compare different methods in arm position classification which includes all three synthesized changes mentioned above. Our comparative study on various classification methods shows that the best classification accuracy is obtained when PCA features are classified by a K-Nearest Neighbors (KNN) classifier. The results of this work suggest that PCA+KNN is a promising method to be considered for classification of BIS datasets that deal with subject and time variability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Study on the Influence of Mineralizer on the Preparation of Calcium Aluminates Based on Infrared Spectroscopy].

    Science.gov (United States)

    Fan, Wei; Wang, Liang; Zheng, Huai-li; Chen, Wei; Tang, Xiao-min; Shang, Juan-fang; Qian, Li

    2015-05-01

    In this study, effect of mineralizer on the structure and spectraproperties of calcium aluminates formation was extensively studied. Medium or low-grade bauxite and calcium carbonate were used as raw material and mineralizer CaF2 as additive. Calcium aluminates can be obtained after mixing fully, calcination and grinding. The prepared calcium aluminates can be directly used for the production of polyaluminiumchloride (PAC), polymeric aluminum sulfate, sodium aluminate and some other water treatment agents. The calcium aluminates preparation technology was optimized by investigating the mass ratio of raw materials (bauxiteand calcium carbonate) and mineralizer CaF2 dosage. The structure and spectra properties of bauxite and calcium aluminates were characterized by Fourier transform infrared(FTIR) spectroscopy analysis and the mineralization mechanism of the mineralizer was studied. FTIR spectra indicated that the addition of mineralizer promoted the decomposition and transformation of the diaspore, gibbsite and kaolinite, the decomposition of calcium carbonate, and more adequately reaction between bauxite and calcium carbonate. In addition, not only Ca in calcium carbonate and Si in bauxite were more readily reacted, but also Si-O, Si-O-Al and Al-Si bonds in the bauxite were more fractured which contributed to the release of Al in bauxite, and therefore, the dissolution rate of Al2O3 could be improved. The dissolution rate of Al2O3 can be promoted effectively when the mineralizer CaF2 was added in a mass ratio amount of 3%. And the mineralizer CaF2 cannot be fully functioned, when its dosage was in a mass percent of 1. 5%. Low-grade bauxite was easier to sinter for the preparation of calcium aluminates comparing with the highgrade one. The optimum material ratio for the preparation of calcium aluminates calcium at 1 250 °C was the mass ratio between bauxite and calcium carbonate of 1 : 0. 6 and mineralizer CaF2 mass ratio percent of 3%.

  11. Determination of aluminium induced metabolic changes in mice liver: a Fourier transform infrared spectroscopy study.

    Science.gov (United States)

    Sivakumar, S; Sivasubramanian, J; Khatiwada, Chandra Prasad; Manivannan, J; Raja, B

    2013-06-01

    In this study, we made a new approach to evaluate aluminium induced metabolic changes in liver tissue of mice using Fourier transform infrared spectroscopy analysis taking one step further in correlation with strong biochemical evidence. This finding reveals the alterations on the major biochemical constituents, such as lipids, proteins, nucleic acids and glycogen of the liver tissues of mice. The peak area value of amide A significantly decrease from 288.278±3.121 to 189.872±2.012 between control and aluminium treated liver tissue respectively. Amide I and amide II peak area value also decrease from 40.749±2.052 to 21.170±1.311 and 13.167±1.441 to 8.953±0.548 in aluminium treated liver tissue respectively. This result suggests an alteration in the protein profile. The absence of olefinicCH stretching band and CO stretching of triglycerides in aluminium treated liver suggests an altered lipid levels due to aluminium exposure. Significant shift in the peak position of glycogen may be the interruption of aluminium in the calcium metabolism and the reduced level of calcium. The overall findings exhibit that the liver metabolic program is altered through increasing the structural modification in proteins, triglycerides and quantitative alteration in proteins, lipids, and glycogen. All the above mentioned modifications were protected in desferrioxamine treated mice. Histopathological results also revealed impairment of aluminium induced alterations in liver tissue. The results of the FTIR study were found to be in agreement with biochemical studies and which demonstrate FTIR can be used successfully to indicate the molecular level changes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Feasibility Study on Fiber-optic Radiation Sensor for Remote Gamma-ray Spectroscopy

    International Nuclear Information System (INIS)

    Jeon, Hyesu; Jang, Kyoung Won; Shin, Sang Hun and others

    2014-01-01

    In this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors. As a result, the BGO was suitable for the sensing probe of fiber-optic radiation sensor due to its high scintillation output and exact photoelectric peak for the gamma-ray energy. The basic principle of radiation detection is to detect the signals caused by interactions between radiations and materials. There are various types of radiation detectors depending on types of radiation to be detected and physical quantities to be measured. As one of the radiation detectors, a fiber-optic radiation sensor using a scintillator and an optical fiber has two advantages such as no space restraint and remote sensing. Moreover, in nuclear environments, this kind of sensor has immunities for electromagnetic field, temperature, and pressure. Thus, the fiber-optic radiation sensor can be used in various fields including nondestructive inspection, radioactive waste management, nuclear safety, radiodiagnosis and radiation therapy. As a fundamental study of the fiber-optic radiation sensor for remote gamma-ray spectroscopy, in this study, we fabricated a fiber-optic radiation sensor using an optical fiber and various scintillators. To select an adequate inorganic scintillator for the sensing probe of fiber-optic radiation sensor, 5 types of scintillators were evaluated. The spectra of gamma-rays emitted from a Na-22 radiation source were measured by using the manufactured sensors

  13. A study of the ionized gas in Stephan's Quintet from integral field spectroscopy observations★

    Science.gov (United States)

    Rodríguez-Baras, M.; Rosales-Ortega, F. F.; Díaz, A. I.; Sánchez, S. F.; Pasquali, A.

    2014-07-01

    Stephan's Quintet (SQ) is a famous interacting compact group of galaxies in an important stage of dynamical evolution, but surprisingly very few spectroscopic studies are found in the literature. We present optical integral field spectroscopy (IFS) observations of the SQ from the PPAK IFS Nearby Galaxies Survey, that provide a powerful way of studying with spatial resolution the physical characteristics of the ionized gas within the group. The nature of the gas emission is analysed using 2D maps of continuum-subtracted, pure emission-line intensities, stacked spectra, diagnostic diagrams, and photoionization model predictions. In the case of NGC 7319, we study the galaxy-wide high-velocity outflow emission by comparing the emission properties with theoretical shock and AGN models. We conclude that the excitation mechanism of the gas in this galaxy is a mixture of AGN photoionization and shocks with a photoionizing precursor. The emission spectra from the large-scale shock front in the interacting pair NGC 7318A/B is analysed, confirming the presence of several kinematic components. Comparison with predictions from theoretical shock models suggests that the gas emission is consistent with shocks without a photoionizing precursor, low pre-shock density, and velocities in the range of ˜200-400 km s-1. The gas oxygen abundance for NGC 7318B is determined using an updated O3N2 calibration. Although NGC 7317 shows no significant gas emission, an ionizing cluster is found southwest of this galaxy, probably the result of tidal interaction. As a by-product, we analyse the gas emission of the foreground galaxy NGC 7320.

  14. [Research progress on standardization study of NIR spectroscopy based method for quality control of traditional Chinese medicine].

    Science.gov (United States)

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In recent years, the near infrared (NIR) spectroscopy has gained wide acceptance within the quantitative analysis of traditional Chinese medicine (TCM). However, the lack of technical standards is the bottleneck problem in this process. To address this issue, standardization study of the NIR spectroscopy based method for the quantitative analysis of TCM is needed, in which the specific characteristics of TCM should be given full considerations. The main research contents include:the scope definition for the application of NIR spectroscopy in the TCM quantitative analysis field, the selection criteria for the sample pretreatment and spectral acquisition conditions, the rules for the model optimization and evaluation, and the regulations for the model update and transfer. In this paper, some foreign studies in the agricultural areas are reviewed for reference. Different chemometrics methods reported in the literature are investigated and compared systematically. This research is important actual significance to the theoretical development of NIR spectroscopy analytical techniques, and will effectively promote the application of the technology in the TCM industry. Furthermore, it is beneficial to improve the technical level of TCM quality control, and can also be used as references to achieve similar purposes for other natural products. Copyright© by the Chinese Pharmaceutical Association.

  15. Structural studies of WO3-TeO2 glasses by high-Q-neutron diffraction and Raman spectroscopy

    International Nuclear Information System (INIS)

    Khanna, A.; Kaur, A.; Krishna, P.S.R.; Shinde, A.B.

    2013-01-01

    Glasses from the system: xWO 3 -(100-x)TeO 2 (x=15, 20 and 25 mol %) were prepared by melt quenching technique and characterized by density, UV-visible absorption spectroscopy, Differential Scanning Calorimetry (DSC), Raman spectroscopy and high-Q neutron diffraction measurements. Glass density and glass transition temperature increased with increase in WO 3 concentration, Raman spectroscopy indicated the conversion of TeO 4 units into TeO 3 units with increase in WO 3 content. The increase in glass transition temperature with the incorporation of WO 3 was attributed to the increase in average bond strength of the glass network since the bond dissociation energy of W-O bonds (672 kJ/mol) is significantly higher than that of Te-O bonds (376 kJ/mol). UV-visible studies found a very strong optical absorption band due to W 6+ ions, just below the absorption edge. High-Q neutron diffraction measurements were performed on glasses and radial distribution function analyses revealed changes in W-O and Te-O correlations in the glass network. The findings about changes in glass structure from neutron diffraction studies were consistent with structural information obtained from Raman spectroscopy and structure-property correlations were made. (author)

  16. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz [Washington Univ., St. Louis, MO (United States); Collins, Aaron M. [Washington Univ., St. Louis, MO (United States); LaFountain, Amy M. [Univ. of Connecticut, Storrs, CT (United States); Enriquez, Miriam M. [Univ. of Connecticut, Storrs, CT (United States); Frank, Harry A. [Washington Univ., St. Louis, MO (United States); Blankenship, R. E. [Washington Univ., St. Louis, MO (United States)

    2010-06-14

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, γ-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infrared (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S1(21Ag-) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.

  17. Studies of Basalt Through Laser Induced Breakdown Spectroscopy (LIBS for the Manufacturing of Lapilli Blocks

    Directory of Open Access Journals (Sweden)

    Ismael De la Viuda-Pérez

    2016-10-01

    Full Text Available Basaltic samples selected from different areas of Tenerife were analyzed by applying laser induced breakdown spectroscopy (LIBS, Raman spectroscopy and X Ray Diffraction (XRD in order to identify the basic chemical composition and mineralogy. The basic composition obtained from the analysis was: O, F, Na, K, Mg, Al Si, Ca, Ti and Fe. Raman spectroscopic and XRD analyses indicated a basaltic mineralogy which is consistent with the basic composition results obtained from LIBS. The results of the analyses carried out using portable instrumentation proved the suitability of the LIBS, specially combined with the Raman spectroscopy for their application in the mineralogical-chemical identification in the areas where basalts and lapilli are extracted for construction works in Tenerife.

  18. Chemical bonding of water to metal surfaces studied with core-level spectroscopies

    International Nuclear Information System (INIS)

    Schiros, T.; Andersson, K.J.; Pettersson, L.G.M.; Nilsson, A.; Ogasawara, H.

    2010-01-01

    The nature of the contact layer of water on surfaces is of relevance for many practical fields, including corrosion, electrochemistry, environmental science and heterogeneous catalysis. Here we focus on the geometric and electronic structure of the water contact layer on transition metal surfaces and the interaction between the water monolayer and the surface. By combining synchrotron radiation-based X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) techniques with density functional theory (DFT) computational methods we obtain element-specific information on the partial local density of states, local atomic structure, geometrical parameters and molecular orientation, allowing general principles for water-metal interaction to be derived.

  19. Study of archaeological iron objects by PGAA, Mössbauer spectroscopy and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, F. E., E-mail: fwagner@tum.de [Technische Universität München, Physik- Department E15 (Germany); Gebhard, R. [Archäologische Staatssammlung München (Germany); Häusler, W.; Wagner, U. [Technische Universität München, Physik- Department E15 (Germany); Albert, P.; Hess, H. [Archäologische Staatssammlung München (Germany); Révay, Z.; Kudejová, P.; Kleszcz, K. [Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) (Germany)

    2016-12-15

    Archaeological iron objects often corrode rapidly after their excavation, even though they have survived long times of burial in the ground. Chlorine that accumulates during burial is thought to play a major role in this destructive post-excavation corrosion. It is therefore important for the conservation of such objects to determine the chlorine content in a non-destructive manner and, if necessary, to remove the chlorine from the artefacts by appropriate methods. Such methods are leaching in alkaline solutions or heating in a reducing atmosphere at temperatures up to 800 {sup ∘}C. We have studied the efficiency of the heating method using prompt gamma activation analysis (PGAA) for monitoring the Cl content and Mössbauer spectroscopy at room temperature (RT) and 4.2 K as well as X-ray diffraction to study the mineralogical transformations of the rust layers. The heat treatments were performed a N{sub 2}/H{sub 2} (90/10) mixture at temperatures up to 750 {sup ∘}C. As test specimens sections of iron rods from the Celtic oppidum of Manching (Bavaria) were used. The initial Cl contents of the pieces varied in the range of several hundred ppm, referring to the iron mass. Annealing for 24 h at 350, 550 and 750 {sup ∘}C was found to reduce the Cl contents of the specimens, to about 70, 30 and 15 % of the original values, respectively. The rust consists mainly of goethite with admixtures of magnetite, lepidocrocite and akaganeite, which is thought to be a major carrier of chlorine, probably together with iron chlorides. Much of the goethite is so fine-grained that it does not split magnetically at RT. Annealing converts the rust mainly to maghemite at 350 {sup ∘}C, to magnetite at 550 {sup ∘}C and to wüstite plus magnetite and metallic iron at 750 {sup ∘}C. Pure akaganeite behaves in nearly the same manner.

  20. Electrochemical impedance spectroscopy for study of electronic structure in disordered organic semiconductors—Possibilities and limitations

    Science.gov (United States)

    Schauer, F.; Nádaždy, V.; Gmucová, K.

    2018-04-01

    There is potential in applying conjugated polymers in novel organic optoelectronic devices, where a comprehensive understanding of the fundamental processes and energetics involved during transport and recombination is still lacking, limiting further device optimization. The electronic transport modeling and its optimization need the energy distribution of transport and defect states, expressed by the energy distribution of the Density of States (DOS) function, as input/comparative parameters. We present the Energy Resolved-Electrochemical Impedance Spectroscopy (ER-EIS) method for the study of transport and defect electronic states in organic materials. The method allows mapping over unprecedentedly wide energy and DOS ranges. The ER-EIS spectroscopic method is based on the small signal interaction between the surface of the organic film and the liquid electrolyte containing reduction-oxidation (redox) species, which is similar to the extraction of an electron by an acceptor and capture of an electron by a donor at a semiconductor surface. The desired DOS of electronic transport and defect states can be derived directly from the measured redox response signal to the small voltage perturbation at the instantaneous position of the Fermi energy, given by the externally applied voltage. The theory of the ER-EIS method and conditions for its validity for solid polymers are presented in detail. We choose four case studies on poly(3-hexylthiophene-2,5-diyl) and poly[methyl(phenyl)silane] to show the possibilities of the method to investigate the electronic structure expressed by DOS of polymers with a high resolution of about 6 orders of magnitude and in a wide energy range of 6 eV.

  1. Can Lactobacillus acidophilus improve minimal hepatic encephalopathy? A neurometabolite study using magnetic resonance spectroscopy.

    Science.gov (United States)

    Ziada, Dina H; Soliman, Hanan H; El Yamany, Saher A; Hamisa, Manal F; Hasan, Azza M

    2013-09-01

    Minimal hepatic encephalopathy (MHE) is diagnosed when hepatic patients perform worse on psychometric tests compared to healthy controls. This study aimed to evaluate probiotics as alternative therapy in MHE. This is an open-label randomised controlled trial, performed in the Department of Tropical Medicine and Infectious Diseases, Tanta University Hospitals, from March 2010 to January 2012. A total of 90 patients with MHE were allocated by simple randomisation to three parallel equal groups. Group A received lactulose, group B a probiotic (Lactobacillus acidophilus) and group C served as the control. After informed consent, patients were tested for gut micrecology, fasting blood ammonia, liver functions and magnetic resonance spectroscopy (MRS) examination to study brain metabolites, mainly choline (Cho), myo-inositol (mI), glutamine+glutamate (Glx) and creatinin (Cre). Patients who developed overt encephalopathy were excluded from analysis. The whole battery of investigations was repeated in the same order after 4weeks. The probiotic was better tolerated than lactulose. The relative risk reduction (RRR) of developing overt encephalopathy was 60% in the case of lactulose and 80% in the case of probiotic, with a number needed to treat (NNT) of 2.4 and 2.3, respectively. The differential but not total microecology count was significantly shifted towards saccharolytic rather than proteolytic bacteria. The mI/Cre and (Cho+mI)/Glx ratios were significantly increased and the Glx/Cre ratio was significantly reduced after 1month-follow-up in the probiotic group compared to the lactulose group and in both treatment groups compared to the control group. Both probiotic and lactulose therapy can improve blood ammonia and psychometric tests in MHE and reduce the risk of developing overt encephalopathy. MRS showed more improvement in the levels of brain neurometabolites in the probiotic group. Copyright © 2013 Arab Journal of Gastroenterology. Published by Elsevier Ltd. All

  2. Spectroscopy study of the dynamics of the transencephalic electrical impedance in the perinatal brain during hypoxia.

    Science.gov (United States)

    Seoane, Fernando; Lindecrantz, Kaj; Olsson, Torsten; Kjellmer, Ingemar; Flisberg, Anders; Bågenholm, Ralph

    2005-10-01

    Hypoxia/ischaemia is the most common cause of brain damage in neonates. Thousands of newborn children suffer from perinatal asphyxia every year. The cells go through a response mechanism during hypoxia/ischaemia, to maintain the cellular viability and, as a response to the hypoxic/ischaemic insult, the composition and the structure of the cellular environment are altered. The alterations in the ionic concentration of the intra- and extracellular and the consequent cytotoxic oedema, cell swelling, modify the electrical properties of the constituted tissue. The changes produced can be easily measured using electrical impedance instrumentation. In this paper, we report the results from an impedance spectroscopy study on the effects of the hypoxia on the perinatal brain. The transencephalic impedance, both resistance and reactance, was measured in newborn piglets using the four-electrode method in the frequency range from 20 kHz to 750 kHz and the experimental results were compared with numerical results from a simulation of a suspension of cells during cell swelling. The experimental results make clear the frequency dependence of the bioelectrical impedance, confirm that the variation of resistance is more sensitive at low than at high frequencies and show that the reactance changes substantially during hypoxia. The resemblance between the experimental and numerical results proves the validity of modelling tissue as a suspension of cells and confirms the importance of the cellular oedema process in the alterations of the electrical properties of biological tissue. The study of the effects of hypoxia/ischaemia in the bioelectrical properties of tissue may lead to the development of useful clinical tools based on the application of bioelectrical impedance technology.

  3. Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.

    Science.gov (United States)

    Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan

    2016-01-01

    Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs ( p  = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p  = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI ( p  < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.

  4. Laser-spectroscopy studies of the nuclear structure of neutron-rich radium

    Science.gov (United States)

    Lynch, K. M.; Wilkins, S. G.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Chrysalidis, K.; Cocolios, T. E.; Goodacre, T. Day; de Groote, R. P.; Farooq-Smith, G. J.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heinke, R.; Koszorús, Á.; Marsh, B. A.; Molkanov, P. L.; Naubereit, P.; Neyens, G.; Ricketts, C. M.; Rothe, S.; Seiffert, C.; Seliverstov, M. D.; Stroke, H. H.; Studer, D.; Vernon, A. R.; Wendt, K. D. A.; Yang, X. F.

    2018-02-01

    The neutron-rich radium isotopes, Ra-233222, were measured with Collinear Resonance Ionization Spectroscopy (CRIS) at the ISOLDE facility, CERN. The hyperfine structure of the 7 s2S10→7 s 7 p P31 transition was probed, allowing measurement of the magnetic moments, quadrupole moments, and changes in mean-square charge radii. These results are compared to existing literature values, and the new moments and change in mean-square charge radii of 231Ra are presented. Low-resolution laser spectroscopy of the very neutron-rich 233Ra has allowed the isotope shift and relative charge radius to be determined for the first time.

  5. Terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    2009-01-01

    In this presentation I will review methods for spectroscopy in the THz range, with special emphasis on the practical implementation of the technique known ad THz time-domain spectroscopy (THz-TDS). THz-TDS has revived the old field of far-infrared spectroscopy, and enabled a wealth of new...... activities that promise commercial potential for spectroscopic applications in the THz range. This will be illustrated with examples of spectroscopy of liquids inside their bottles as well as sensitive, quantitative spectroscopy in waveguides....

  6. Study of Organic Matter in Soils of the Amazon Region Employing Laser Induced Fluorescence Spectroscopy

    Science.gov (United States)

    Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stéphane; Montes, Célia Regina; Marcondes Bastos Pereira Milori, Débora

    2014-05-01

    In the face of climate change and increasing CO2 levels in the atmosphere, the global carbon cycle, soil organic carbon (SOC) sequestration, and the role of different world biomes as potential sources and sinks of carbon are receiving increasing attention. Carbon quantification is an important environmental indicator, but the structure of organic matter is also important because is related to carbon stability. The synthesis of soil organic matter (SOM), as presented in soils of forest vegetation, can be originated from condensation polymeric polyphenols and quinones that are responsible for controlling the main physical-chemical properties of soils. These systems are present in humic substances, representing the major fluorophore of SOM[1-3]. Abiotic factors, such as soil texture, use and occupation of soil, can influence on the process of SOM formation, molecular structure and in its humification index[4]. Laser Induced Fluorescence Spectroscopy (LIFS) have become a promising technique for assessing humification index of SOM (HLIFS). In this context, the aim of this study was to analyze the humification index of the SOM in the region of Barcelos (Amazon) employing LIFS. The study area was the region of Barcelos, close the river Demeni. The whose vegetation distribution in this area, is two biomes the Dense Ombrophylous Forest (DPQD) and Campinarana (DPQT), with areas of edaphic contacts between these two phytophysiognomies, which ranged from Open field (FDE) to closed Depression (DPQ). Preliminary results showed that the area closed Depression (DPQ) there was a continuous gradient of humification with increasing soil depth. A similar behavior was verified for area Forest (DPQD), where the highest values of HLIFS were obtained between the four points analyzed, indicating the magnitude of the molecular recalcitrance this organic matter in this area. The results obtained for area Campinarana (DPQT) and Open field (FDE) showed an opposite behavior. These points there

  7. Determination of counterfeit medicines by Raman spectroscopy: Systematic study based on a large set of model tablets.

    Science.gov (United States)

    Neuberger, Sabine; Neusüß, Christian

    2015-08-10

    In the last decade, counterfeit pharmaceutical products have become a widespread issue for public health. Raman spectroscopy which is easy, non-destructive and information-rich is particularly suitable as screening method for fast characterization of chemicals and pharmaceuticals. Combined with chemometric techniques, it provides a powerful tool for the analysis and determination of counterfeit medicines. Here, for the first time, a systematic study of the benefits and limitations of Raman spectroscopy for the analysis of pharmaceutical samples on a large set of model tablets, varying with respect to chemical and physical properties, was performed. To discriminate between the different mixtures, a combination of dispersive Raman spectroscopy performing in backscattering mode and principal component analysis was used. The discrimination between samples with different coatings, a varying amount of active pharmaceutical ingredients and a diversity of excipients were possible. However, it was not possible to distinguish between variations of the press power, mixing quality and granulation. As a showcase, the change in Raman signals of commercial acetylsalicylic acid effervescent tablets due to five different storage conditions was monitored. It was possible to detect early small chemical changes caused by inappropriate storage conditions. These results demonstrate that Raman spectroscopy combined with multivariate data analysis provides a powerful methodology for the fast and easy characterization of genuine and counterfeit medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. 57Fe internal field nuclear magnetic resonance and Mössbauer spectroscopy study of Li-Zn ferrites

    Science.gov (United States)

    Anupama, A. V.; Manjunatha, M.; Rathod, V.; Jali, V. M.; Damle, R.; Ramesh, K. P.; Sahoo, B.

    2018-01-01

    We report the internal field nuclear magnetic resonance (IFNMR) and Mössbauer spectroscopy study of Li-Zn ferrites at RT. The results were supported by the IFNMR data measured at 77 K. As Zn concentration increases the IFNMR echo amplitude decreases and below certain Zn concentration no signal was detected. At RT the echo amplitude vanishes at a lower Zn concentration, whereas at 77 K, the echo amplitude does not vanish completely (except for pure Zn-ferrite). However, in Mössbauer spectroscopy at RT, we have observed magnetically ordered state of all the Li-Zn ferrite samples. This discrepancy could be related to the difference between the time scale of detection of the spins by Mössbauer spectroscopy (10-7-10-10 s) and NMR spectroscopy (10-6 s). Hence, sensitivity of zero-field NMR depends on the magnetic hyperfine field, temperature and abundance of the magnetic cations at the lattice of the spinel ferrites. We have demonstrated that the 'two-equal-pulses' sequence leads to higher echo signal than the spin echo pulse sequence due to the presence of distribution of internal magnetic fields throughout the material. We obtained a limiting value for the fraction of spins needed to produce an echo signal at a particular temperature and at a particular site of the Li-Zn ferrite spinels that can be sensitively detected by pulsed IFNMR technique.

  9. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  10. Co on Pt(111) studied by spin-polarized scanning tunneling microscopy and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meier, F.K.

    2006-07-01

    In this thesis the electronic properties of the bare Pt(111) surface, the structural, electronic, and magnetic properties of monolayer and double-layer high Co nanostructures as well as the spin-averaged electronic structure of single Co atoms on Pt(111) were studied by low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The experiments on the bare Pt(111) surface and on single Co atoms have been performed in an STM facility operating at temperatures of down to 0.3 K and at magnetic fields of up to 14 T under ultra-high vacuum conditions. The facility has been taken into operation within the time period of this thesis and its specifications were tested by STS measurements. These characterization measurements show a very high stability of the tunneling junction and an energy resolution of about 100 {mu}eV, which is close to the thermal limit. The investigation of the electronic structure of the bare Pt(111) surface reveals the existence of an unoccupied surface state. By a comparison of the measured dispersion to first-principles electronic structure calculations the state is assigned to an sp-derived surface band at the lower boundary of the projected bulk band gap. The surface state exhibits a strong spin-orbit coupling induced spin splitting. The close vicinity to the bulk bands leads to a strong linear contribution to the dispersion and thus to a deviant appearance in the density of states in comparison to the surface states of the (111) surfaces of noble metals. A detailed study of Co monolayer and double-layer nanostructures on the Pt(111) surface shows that both kinds of nanostructures exhibit a highly inhomogeneous electronic structure which changes at the scale of only a few Aa due to a strong stacking dependence with respect to the Pt(111) substrate. With the help of first principles calculations the different spectroscopic appearance for Co atoms within the Co monolayer is assigned to a stacking dependent hybridization of Co states

  11. Metal-polymer interfaces studied with adsorption microcalorimetry and photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bebensee, Fabian

    2010-06-21

    The interface formation between calcium and two different semiconducting, ?-conjugated polymers, namely poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-(1-cyanovilylene)phenylene] (CN-MEH-PPV), was investigated using adsorption microcalorimetry, low energy ion scattering spectroscopy (LEIS), atomic beam scattering and X-ray photoelectron spectroscopy. In addition to the interface formation on pristine, i.e., untreated polymer surfaces, the influence of electron irradiation prior to calcium deposition and the effect of dosing calcium at a low substrate temperature was studied. The reactive site for the interaction of calcium atoms impinging on a pristine P3HT surface appears to be the sulfur in the thiophene ring, as is concluded from a combination of XPS, adsorption calorimetry and theory results. The interaction, in fact, is strong enough that the sulfur atoms abstracted from the thiophene ring under formation of calcium sulfide with an overall reaction energy of this process of 405 kJ per mol. Quantitative evaluation of XPS data reveal that the depth up to which Ca atoms react with sulfur in the polymer is 3 nm, irrespective of increasing the amount of Ca dosed onto the substrate. A closed layer of Ca is only formed at a Ca coverage exceeding 11 ML, as suggested by LEIS. Irradiation of P3HT with electrons with a kinetic energy of 100 eV results in dehydrogenation of the hexyl side chains and formation of new C=C double bonds. This in turn results in a higher initial sticking probability of 0.63 for Ca, while no other significant changes could be observed: XPS indicates that the thiophene rings remain intact and the measured heat of adsorption is the same as observed for the deposition of Ca on pristine P3HT. Dosing Ca onto P3HT held at low temperature (130 K) is found to result in a very low saturation thickness of the reacted layer of approximately 0.3 nm. Upon warming the sample up to room temperature, the thickness of the reacted layer

  12. Studies on the MxiH protein in T3SS needles using DNP-enhanced ssNMR spectroscopy.

    Science.gov (United States)

    Fricke, Pascal; Demers, Jean-Philippe; Becker, Stefan; Lange, Adam

    2014-01-13

    Bacterial T3SS needles formed by the protein MxiH are studied using DNP-enhanced ssNMR spectroscopy at 14.1 T (600 MHz). This technique provides spectra of good resolution, allowing us to draw conclusions about the protein dynamics. With the obtained signal enhancement, samples of limited quantity now get within reach of ssNMR studies. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The application of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the stratum corneum

    OpenAIRE

    Goh, C. F.; Craig, D. Q.; Hadgraft, J.; Lane, M. E.

    2017-01-01

    Drug permeation through the intercellular lipids, which pack around and between corneocytes, may be enhanced by increasing the thermodynamic activity of the active in a formulation. However, this may also result in unwanted drug crystallisation on and in the skin. In this work, we explore the combination of ATR-FTIR spectroscopy and multivariate data analysis to study drug crystallisation in the skin. Ex vivo permeation studies of saturated solutions of diclofenac sodium (DF Na) in two vehicl...

  14. Cerebral Magnesium Levels in Preeclampsia; A Phosphorus Magnetic Resonance Spectroscopy Study.

    Science.gov (United States)

    Nelander, Maria; Weis, Jan; Bergman, Lina; Larsson, Anders; Wikström, Anna-Karin; Wikström, Johan

    2017-07-01

    Magnesium sulfate (MgSO4) is used as a prophylaxis for eclamptic seizures. The exact mechanism of action is not fully established. We used phosphorus magnetic resonance spectroscopy (31P-MRS) to investigate if cerebral magnesium (Mg2+) levels differ between women with preeclampsia, normal pregnant, and nonpregnant women. This cross-sectional study comprised 28 women with preeclampsia, 30 women with normal pregnancies in corresponding gestational week (range: 23-41 weeks) and 11 nonpregnant healthy controls. All women underwent 31P-MRS from the parieto-occipital region of the brain and were interviewed about cerebral symptoms. Differences between groups were assessed by analysis of variance and Tukey's post-hoc test. Correlations between Mg2+ levels and specific neurological symptoms were estimated with Spearman's rank test. Mean maternal cerebral Mg2+ levels were lower in women with preeclampsia (0.12 mM ± 0.02) compared to normal pregnant controls (0.14 mM ± 0.03) (P = 0.04). Nonpregnant and normal pregnant women did not differ in Mg2+ levels. Among women with preeclampsia, lower Mg2+ levels correlated with presence of visual disturbances (P = 0.04). Plasma levels of Mg2+ did not differ between preeclampsia and normal pregnancy. Women with preeclampsia have reduced cerebral Mg2+ levels, which could explain the potent antiseizure prophylactic properties of MgSO4. Within the preeclampsia group, women with visual disturbances have lower levels of Mg2+ than those without such symptoms. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy.

    Science.gov (United States)

    Jin, Lanying; Wang, Yuemin

    2017-05-24

    The adsorption and reactions of CH 3 OH on nonpolar mixed-terminated ZnO(101[combining macron]0), polar O-ZnO(0001[combining macron]) and Zn-ZnO(0001) surfaces have been studied systematically using high-resolution electron energy loss spectroscopy (HREELS) in conjunction with temperature programmed desorption (TPD). For all three ZnO surfaces, exposure to methanol at room temperature leads to (partially) dissociative adsorption resulting in the formation of hydroxyl and methoxy species. Upon heating to higher temperatures, the dissociated and intact methanol species on ZnO(101[combining macron]0) predominantly undergo molecular desorption releasing CH 3 OH at 370 and 440 K. The Zn-O dimer vacancies are responsible for the decomposition of a small fraction of methanol yielding H 2 , CH 2 O and CO at 540 and 565 K. The interaction of methanol with polar O-ZnO and Zn-ZnO surfaces is dominated by thermal decomposition of CH 3 OH to produce CH 2 O, H 2 , CO, CO 2 and H 2 O at elevated temperatures. The high chemical reactivity of both polar surfaces is related to the high abundance of different types of surface defects formed via massive restructuring. Importantly, the reconstructed Zn-ZnO surface exhibits high selectivity for hydrogen production at 520 K, which was not observed for the polar O-ZnO surface. The HREELS data revealed that this low-temperature hydrogen evolution on Zn-ZnO results from methoxy oxidation to a formate species occurring at O-terminated step-edge sites.

  16. The dynamic complex of cytochrome c6 and cytochrome f studied with paramagnetic NMR spectroscopy.

    Science.gov (United States)

    Díaz-Moreno, Irene; Hulsker, Rinske; Skubak, Pavol; Foerster, Johannes M; Cavazzini, Davide; Finiguerra, Michelina G; Díaz-Quintana, Antonio; Moreno-Beltrán, Blas; Rossi, Gian-Luigi; Ullmann, G Matthias; Pannu, Navraj S; De la Rosa, Miguel A; Ubbink, Marcellus

    2014-08-01

    The rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp. PCC 7119 was studied using NMR spectroscopy and X-ray diffraction. The crystal structures of wild type, M58H and M58C cytochrome c6 were determined. The M58C variant is an excellent low potential mimic of the wild type protein and was used in chemical shift perturbation and paramagnetic relaxation NMR experiments to characterize the complex with cytochrome f. The interaction is highly dynamic and can be described as a pure encounter complex, with no dominant stereospecific complex. Ensemble docking calculations and Monte-Carlo simulations suggest a model in which charge-charge interactions pre-orient cytochrome c6 with its haem edge toward cytochrome f to form an ensemble of orientations with extensive contacts between the hydrophobic patches on both cytochromes, bringing the two haem groups sufficiently close to allow for rapid electron transfer. This model of complex formation allows for a gradual increase and decrease of the hydrophobic interactions during association and dissociation, thus avoiding a high transition state barrier that would slow down the dissociation process. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Examining the Amine Functionalization in Dicarboxylates: Photoelectron Spectroscopy and Theoretical Studies of Aspartate and Glutamate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Shihu; Hou, Gao-Lei; Kong, Xiangyu; Valiev, Marat; Wang, Xue B.

    2014-06-30

    Aspartate (Asp2-) and Glutamate (Glu2-), two doubly charged conjugate bases of the corresponding amino acids were investigated using low temperature negative ion photoelectron spectroscopy (NIPES) and ab-initio calculations. The effect of amine functionalization was studied by a direct comparison to the parent dicarboxylate species (-CO2–(CH2)n–CO2-, DCn2-) -- succinate (DC22-) and propionate (DC32-). Experimentally the addition of amine group for n = 2 case (DC22-, Asp2-) significantly improves the stability of the resultant Asp2- dianionic species, albeit that NIPES shows only a small increase in adiabatic electron detachment energy (ADE) (+0.05eV). In contrast, for n = 3 (DC32-, Glu2-), much larger ADE increase is observed (+0.15eV). Similar results are obtained through ab-initio calculations. The latter indicates that increased stability of Asp2- can be attributed to the lowering of the energy of singlet dianion state due to hydrogen bonding effects. The effect of the amino group on the doublet monoanion state is more complicated, and results in the weakening of the binding of the adjacent carboxylate group due to electronic structure resonance effects. This conclusion is confirmed by the analysis of NIPES results that show enhanced production of near zero kinetic energy electrons observed experimentally for amine-functionalized species.

  18. Frontal activation and connectivity using near-infrared spectroscopy: verbal fluency language study.

    Science.gov (United States)

    Chaudhary, Ujwal; Hall, Michael; DeCerce, Joe; Rey, Gustavo; Godavarty, Anuradha

    2011-02-28

    Near infrared spectroscopy (NIRS) is an optical technique with high temporal resolution and reasonably good spatial resolution, which allows non invasive measurement of the blood oxygenation of tissue. The current work is focused in assessing and correlating brain activation, connectivity and cortical lateralization of the frontal cortex in response to language-based stimuli, using NIRS. Experimental studies were performed on 15 normal right-handed adults, wherein the participants were presented with a verbal fluency task. The hemodynamic responses in the pre- and anterior frontal cortex were assessed in response to a Word generation task in comparison to the baseline random Jaw movement and Rest conditions. The functional connectivity analysis was performed using zero-order correlations and the cortical lateralization was evaluated as well. An increase in oxy- and a decrease in deoxy-hemoglobin were observed during verbal fluency task in the frontal cortex. Unlike in the pre-frontal cortex, the hemodynamic response in the anterior frontal during verbal fluency task was not significantly different from that during random Jaw movement. Bilateral activation and symmetrical connectivity were observed in the pre-frontal cortex, independent of the stimuli presented. A left cortical dominance and asymmetry connectivity was observed in the anterior frontal during the verbal fluency task. The work is focused to target the pediatric epileptic populations in the future, where understanding the brain functionality (activation, connectivity, and dominance) in response to language is essential as a part of the pre-surgical evaluation in a clinical environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Torriani, Martin [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Massachusetts General Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Townsend, Elise [MGH Institute of Health Professions and Massachusetts General Hospital, Boston, MA (United States); Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Tseng, Brian S. [Massachusetts General Hospital and Harvard Medical School, Pediatric Neuromuscular Clinic, Boston, MA (United States); Novartis Institute of Biomedical Research, Cambridge, MA (United States)

    2012-04-15

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  20. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    International Nuclear Information System (INIS)

    Torriani, Martin; Townsend, Elise; Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H.; Tseng, Brian S.

    2012-01-01

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)