WorldWideScience

Sample records for deep-subsurface oil reservoir

  1. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  2. Reduction of light oil usage as power fluid for jet pumping in deep heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.; Li, H.; Yang, D. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada); Zhang, Q. [China Univ. of Petroleum, Dongying, Shandong (China); He, J. [China National Petroleum Corp., Haidan District, Beijing (China). PetroChina Tarim Oilfield Co.

    2008-10-15

    In deep heavy oil reservoirs, reservoir fluid can flow more easily in the formation as well as around the bottomhole. However, during its path along the production string, viscosity of the reservoir fluid increases dramatically due to heat loss and release of the dissolved gas, resulting in significant pressure drop along the wellbore. Artificial lifting methods need to be adopted to pump the reservoir fluids to the surface. This paper discussed the development of a new technique for reducing the amount of light oil used for jet pumping in deep heavy oil wells. Two approaches were discussed. Approach A uses the light oil as a power fluid first to obtain produced fluid with lower viscosity, and then the produced fluid is reinjected into the well as a power fluid. The process continues until the viscosity of the produced fluid is too high to be utilized. Approach B combines a portion of the produced fluid with the light oil at a reasonable ratio and then the produced fluid-light oil mixture is used as the power fluid for deep heavy oil well production. The viscosity of the blended power fluid continue to increase and eventually reach equilibrium. The paper presented the detailed processes of both approaches in order to indicate how to apply them in field applications. Theoretic models were also developed and presented to determine the key parameters in the field operations. A field case was also presented and a comparison and analysis between the two approaches were discussed. It was concluded from the field applications that, with a certain amount of light oil, the amount of reservoir fluid produced by using the new technique could be 3 times higher than that of the conventional jet pumping method. 17 refs., 3 tabs., 6 figs.

  3. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    Han, Weon Shik; McPherson, Brian J.

    2009-01-01

    The purpose of this research is to present a best-case paradigm for geologic CO 2 storage: CO 2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO 2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO 2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO 2 , CO 2 -brine, and CO 2 -oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO 2 migration, and mobility ratio (M), which characterizes the impeded CO 2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO 2 injection in oil reservoirs vs. brine formations: (1) CO 2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO 2 migration is smaller in oil reservoirs because density contrast between oil and CO 2 is smaller than it between brine and oil (the approximate density contrast between CO 2 and crude oil is ∼100 kg/m 3 and between CO 2 and brine is ∼350 kg/m 3 ); (3) the increased density of oil and brine due to the CO 2 dissolution is not significant (about 7-15 kg/m 3 ); (4) the viscosity reduction of oil due to CO 2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing

  4. Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data

    Science.gov (United States)

    Khomsi, Sami; Echihi, Oussema; Slimani, Naji

    2012-03-01

    A set of different data including high resolution seismic sections, petroleum wire-logging well data, borehole piezometry, structural cross-sections and outcrop analysis allowed us to characterise the tectonic framework, and its relationships with the deep aquifers seated in Cretaceous-Miocene deep reservoirs. The structural framework, based on major structures, controls the occurrence of deep aquifers and sub-basin aquifer distributions. Five structural domains can be defined, having different morphostructural characteristics. The northernmost domain lying on the north-south axis and Zaghouan thrust system is a domain of recharge by underflow of the different subsurface reservoirs and aquifers from outcrops of highly fractured reservoirs. On the other hand, the morphostructural configuration controls the piezometry of underground flows in the Plio-Quaternary unconfined aquifer. In the subsurface the Late Cretaceous-Miocene reservoirs are widespread with high thicknesses in many places and high porosities and connectivities especially along major fault corridors and on the crestal parts of major anticlines. Among all reservoirs, the Oligo-Miocene, detritic series are widespread and present high cumulative thicknesses. Subsurface and fieldwork outline the occurrence of 10 fractured sandy reservoirs for these series with packages having high hydrodynamic and petrophysical characteristics. These series show low salinities (maximum 5 g/l) in the northern part of the study area and will constitute an important source of drinkable water for the next generations. A regional structural cross-section is presented, compiled from all the different data sets, allowing us to define the major characteristics of the hydrogeological-hydrogeothermal sub-basins. Eight hydrogeological provinces are defined from north-west to south-east. A major thermal anomaly is clearly identified in the south-eastern part of the study area in Sfax-Sidi Il Itayem. This anomaly is possibly related to

  5. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  6. Succession in the petroleum reservoir microbiome through an oil field production lifecycle.

    Science.gov (United States)

    Vigneron, Adrien; Alsop, Eric B; Lomans, Bartholomeus P; Kyrpides, Nikos C; Head, Ian M; Tsesmetzis, Nicolas

    2017-09-01

    Subsurface petroleum reservoirs are an important component of the deep biosphere where indigenous microorganisms live under extreme conditions and in isolation from the Earth's surface for millions of years. However, unlike the bulk of the deep biosphere, the petroleum reservoir deep biosphere is subject to extreme anthropogenic perturbation, with the introduction of new electron acceptors, donors and exogenous microbes during oil exploration and production. Despite the fundamental and practical significance of this perturbation, there has never been a systematic evaluation of the ecological changes that occur over the production lifetime of an active offshore petroleum production system. Analysis of the entire Halfdan oil field in the North Sea (32 producing wells in production for 1-15 years) using quantitative PCR, multigenic sequencing, comparative metagenomic and genomic bins reconstruction revealed systematic shifts in microbial community composition and metabolic potential, as well as changing ecological strategies in response to anthropogenic perturbation of the oil field ecosystem, related to length of time in production. The microbial communities were initially dominated by slow growing anaerobes such as members of the Thermotogales and Clostridiales adapted to living on hydrocarbons and complex refractory organic matter. However, as seawater and nitrate injection (used for secondary oil production) delivered oxidants, the microbial community composition progressively changed to fast growing opportunists such as members of the Deferribacteres, Delta-, Epsilon- and Gammaproteobacteria, with energetically more favorable metabolism (for example, nitrate reduction, H 2 S, sulfide and sulfur oxidation). This perturbation has profound consequences for understanding the microbial ecology of the system and is of considerable practical importance as it promotes detrimental processes such as reservoir souring and metal corrosion. These findings provide a new

  7. Muon Tomography of Deep Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Alain H.; Kouzes, Richard T.

    2016-12-31

    Imaging subsurface geological formations, oil and gas reservoirs, mineral deposits, cavities or magma chambers under active volcanoes has been for many years a major quest of geophysicists and geologists. Since these objects cannot be observed directly, different indirect geophysical methods have been developed. They are all based on variations of certain physical properties of the subsurface that can be detected from the ground surface or from boreholes. Electrical resistivity, seismic wave’s velocities and density are certainly the most used properties. If we look at density, indirect estimates of density distributions are performed currently by seismic reflection methods - since the velocity of seismic waves depend also on density - but they are expensive and discontinuous in time. Direct estimates of density are performed using gravimetric data looking at variations of the gravity field induced by the density variations at depth but this is not sufficiently accurate. A new imaging technique using cosmic-ray muon detectors has emerged during the last decade and muon tomography - or muography - promises to provide, for the first time, a complete and precise image of the density distribution in the subsurface. Further, this novel approach has the potential to become a direct, real-time, and low-cost method for monitoring fluid displacement in subsurface reservoirs.

  8. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  9. Microbial ecology of methanogenic crude oil biodegradation; from microbial consortia to heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Head, Ian M.; Maguire, Michael J.; Sherry, Angela; Grant, Russell; Gray, Neil D.; Aitken, Carolyn M.; Martin Jones, D.; Oldenburg, Thomas B.P.; Larter, Stephen R. [Petroleum Research Group, Geosciences, University of Calgary (Canada)

    2011-07-01

    This paper presents the microbial ecology of methanogenic crude oil biodegradation. Biodegraded petroleum reservoirs are one of the most dramatic indications of the deep biosphere. It is estimated that heavy oil and oil sands will account for a considerable amount of energy production in the future. Carbon, a major resource for deep subsurface microorganisms, and energy are contained in large quantities in petroleum reservoirs. The aerobic to anaerobic paradigm shift is explained. A key process for in-situ oil biodegradation in petroleum reservoirs is methanogenesis. New paradigms for in-reservoir crude oil biodegradation are discussed. Variations in anaerobic degradation of crude oil hydrocarbons are also discussed. A graph shows the different patterns of crude oil biodegradation under sulfate-reducing and methanogenic conditions. Alternative anaerobic alkane activation mechanisms are also shown. From the study, it can be concluded that methanogenic crude oil degradation is of global importance and led to the establishment of the world's enormous heavy oil deposits.

  10. Cultivation Of Deep Subsurface Microbial Communities

    Science.gov (United States)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  11. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs

    Science.gov (United States)

    Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.

    2018-01-01

    In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.

  12. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production.

    Science.gov (United States)

    Gniese, Claudia; Bombach, Petra; Rakoczy, Jana; Hoth, Nils; Schlömann, Michael; Richnow, Hans-Hermann; Krüger, Martin

    2014-01-01

    This chapter gives the reader an introduction into the microbiology of deep geological systems with a special focus on potential geobiotechnological applications and respective risk assessments. It has been known for decades that microbial activity is responsible for the degradation or conversion of hydrocarbons in oil, gas, and coal reservoirs. These processes occur in the absence of oxygen, a typical characteristic of such deep ecosystems. The understanding of the responsible microbial processes and their environmental regulation is not only of great scientific interest. It also has substantial economic and social relevance, inasmuch as these processes directly or indirectly affect the quantity and quality of the stored oil or gas. As outlined in the following chapter, in addition to the conventional hydrocarbons, new interest in such deep subsurface systems is rising for different technological developments. These are introduced together with related geomicrobiological topics. The capture and long-termed storage of large amounts of carbon dioxide, carbon capture and storage (CCS), for example, in depleted oil and gas reservoirs, is considered to be an important options to mitigate greenhouse gas emissions and global warming. On the other hand, the increasing contribution of energy from natural and renewable sources, such as wind, solar, geothermal energy, or biogas production leads to an increasing interest in underground storage of renewable energies. Energy carriers, that is, biogas, methane, or hydrogen, are often produced in a nonconstant manner and renewable energy may be produced at some distance from the place where it is needed. Therefore, storing the energy after its conversion to methane or hydrogen in porous reservoirs or salt caverns is extensively discussed. All these developments create new research fields and challenges for microbiologists and geobiotechnologists. As a basis for respective future work, we introduce the three major topics, that is

  13. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu

    2017-07-01

    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  14. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    Science.gov (United States)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  15. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  16. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  17. DWH MC 252: Subsurface Oil Transport

    Science.gov (United States)

    Beegle-Krause, C. J.; Boyer, T.; Murray, D.

    2010-12-01

    Before reaching the ocean surface, the oil and gas released from the DWH MC 252 blowout at 1500 m moves as a buoyant plume until the trapping depth and plume transition point are reached (Zheng et al 2002). At the transition point, the oil droplets and bubbles move independently of each other, and rise at a rate related to their diameter. The oil density, droplet size distribution and currents primarily determine the distribution of the oil between: Large droplets that rise quickly and create a surface expression of the oil. Moderate size droplets that rise over the course of days, and so spread out quite differently than the surface oil, and commonly do not reach the surface in large enough quantities to create a surface sheen. These droplets separate in the currents, particularly in the strong current shear in upper 500 m currents. Very tiny droplets that rise very slowly, over the course or weeks to months, and may be removed by dissolution, biodegradation or marine snow before ever reaching the surface. Modeling and observations (Joint Analysis Group, 2010) confirm the presence of a deep layer of oil and gas between approximately 1100 and 1300 m over the release location and spreading out along the isopycnal surfaces. Later in the event, a small oxygen depression was a proxy for where oil and gas had been. The DWH MC252 well is located at intermediate depth in the Gulf of Mexico (GoM). The water mass is Antarctic Intermediate Water, which enters and exits the GoM through the Yucatan Straits. Surface influences, such as Loop Current Frontal Eddies (e.g. Berger et al 2000) can reach down to these depths, and alter the flow within De Soto Canyon. The water mass containing the deep layer of oil droplets changes depth within the GoM, but does not reach above a depth of about 900 m. There are no physical processes that could cause this deep layer of oil to reach the continental shelf or the Florida Straits. Observed and historical hydrographic data, observations

  18. Characterization of oil and gas reservoir heterogeneity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  19. Approaches to identifying reservoir heterogeneity and reserve growth opportunities from subsurface data: The Oficina Formation, Budare field, Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, D.S.; Raeuchle, S.K.; Holtz, M.H. [Bureau of Economic Geology, Austin, TX (United States)] [and others

    1997-08-01

    We applied an integrated geologic, geophysical, and engineering approach devised to identify heterogeneities in the subsurface that might lead to reserve growth opportunities in our analysis of the Oficina Formation at Budare field, Venezuela. The approach involves 4 key steps: (1) Determine geologic reservoir architecture; (2) Investigate trends in reservoir fluid flow; (3) Integrate fluid flow trends with reservoir architecture; and (4) Estimate original oil-in-place, residual oil saturation, and remaining mobile oil, to identify opportunities for reserve growth. There are three main oil-producing reservoirs in the Oficina Formation that were deposited in a bed-load fluvial system, an incised valley-fill, and a barrier-strandplain system. Reservoir continuity is complex because, in addition to lateral facies variability, the major Oficina depositional systems were internally subdivided by high-frequency stratigraphic surfaces. These surfaces define times of intermittent lacustrine and marine flooding events that punctuated the fluvial and marginal marine sedimentation, respectively. Syn and post depositional faulting further disrupted reservoir continuity. Trends in fluid flow established from initial fluid levels, response to recompletion workovers, and pressure depletion data demonstrated barriers to lateral and vertical fluid flow caused by a combination of reservoir facies pinchout, flooding shale markers, and the faults. Considerable reserve growth potential exists at Budare field because the reservoir units are highly compartment by the depositional heterogeneity and structural complexity. Numerous reserve growth opportunities were identified in attics updip of existing production, in untapped or incompletely drained compartments, and in field extensions.

  20. Where the oil from surface and subsurface plumes deposited during/after Deepwater Horizon oil spill?

    Science.gov (United States)

    Yan, B.

    2016-02-01

    The Deepwater Horizon (DwH) oil spill released an estimated 4.9 million barrels (about 200 million gallons) of crude oil into the Gulf of Mexico between April 20, 2010 and July 15, 2010. Though Valentine et al. has linked the elevated oil components in some sediments with the subsurface plume, the sites with fallout from the ocean surface plume has not been identified. This piece of information is critical not only for a comprehensive scientific understanding of the ecosystem response and fate of spill-related pollutants, but also for litigation purposes and future spill response and restoration planning. In this study we focus on testing the hypothesis that marine snow from the surface plume were deposited on the sea floor over a broad area. To do so, we use publicly available data generated as part of the ongoing Natural Resource Damage Assessment (NRDA) process to assess the spatial distribution of petroleum hydrocarbons in the water column and deep-ocean sediments of the Gulf of Mexico. Sensitive hydrocarbon markers are used to differentiate hydrocarbons from surface plume, deep subsurface plume, and in-situ burning. Preliminary results suggest the overlapping but different falling sites of these plumes and the sedimentation process was controlled by various biological, chemical, and physical factors.

  1. Conversion of Crude Oil to Methane by a Microbial Consortium Enriched From Oil Reservoir Production Waters

    Directory of Open Access Journals (Sweden)

    Carolina eBerdugo-Clavijo

    2014-05-01

    Full Text Available The methanogenic biodegradation of crude oil is an important process occurring in petroleum reservoirs and other oil-containing environments such as contaminated aquifers. In this process, syntrophic bacteria degrade hydrocarbon substrates to products such as acetate, and/or H2 and CO2 that are then used by methanogens to produce methane in a thermodynamically dependent manner. We enriched a methanogenic crude oil-degrading consortium from production waters sampled from a low temperature heavy oil reservoir. Alkylsuccinates indicative of fumarate addition to C5 and C6 n-alkanes were identified in the culture (above levels found in controls, corresponding to the detection of an alkyl succinate synthase gene (assA in the culture. In addition, the enrichment culture was tested for its ability to produce methane from residual oil in a sandstone-packed column system simulating a mature field. Methane production rates of up 5.8 μmol CH4/g of oil/day were measured in the column system. Amounts of produced methane were in relatively good agreement with hydrocarbon loss showing depletion of more than 50% of saturate and aromatic hydrocarbons. Microbial community analysis revealed that the enrichment culture was dominated by members of the genus Smithella, Methanosaeta, and Methanoculleus. However, a shift in microbial community occurred following incubation of the enrichment in the sandstone columns. Here, Methanobacterium sp. were most abundant, as were bacterial members of the genus Pseudomonas and other known biofilm forming organisms. Our findings show that microorganisms enriched from petroleum reservoir waters can bioconvert crude oil components to methane both planktonically and in sandstone-packed columns as test systems. Further, the results suggest that different organisms may contribute to oil biodegradation within different phases (e.g., planktonic versus sessile within a subsurface crude oil reservoir.

  2. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  3. Development of anomaly detection models for deep subsurface monitoring

    Science.gov (United States)

    Sun, A. Y.

    2017-12-01

    Deep subsurface repositories are used for waste disposal and carbon sequestration. Monitoring deep subsurface repositories for potential anomalies is challenging, not only because the number of sensor networks and the quality of data are often limited, but also because of the lack of labeled data needed to train and validate machine learning (ML) algorithms. Although physical simulation models may be applied to predict anomalies (or the system's nominal state for that sake), the accuracy of such predictions may be limited by inherent conceptual and parameter uncertainties. The main objective of this study was to demonstrate the potential of data-driven models for leakage detection in carbon sequestration repositories. Monitoring data collected during an artificial CO2 release test at a carbon sequestration repository were used, which include both scalar time series (pressure) and vector time series (distributed temperature sensing). For each type of data, separate online anomaly detection algorithms were developed using the baseline experiment data (no leak) and then tested on the leak experiment data. Performance of a number of different online algorithms was compared. Results show the importance of including contextual information in the dataset to mitigate the impact of reservoir noise and reduce false positive rate. The developed algorithms were integrated into a generic Web-based platform for real-time anomaly detection.

  4. Heavy oil reservoirs recoverable by thermal technology. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  5. Constructive Activation of Reservoir-Resident Microbes for Enhanced Oil Recovery

    Science.gov (United States)

    DeBruyn, R. P.

    2017-12-01

    Microbial communities living in subsurface oil reservoirs biodegrade oil, producing methane. If this process could create methane within the waterflooded pore spaces of an oilfield, the methane would be expected to remain and occupy pore space, decreasing water relative permeability, diverting water flow, and increasing oil recovery by expanding the swept zone of the waterflood. This approach was tested in an oilfield in northern Montana. Preliminary assessments were made of geochemical conditions and microbiological habitations. Then, a formulation of microbial activators, with composition tailored for the reservoir's conditions, was metered at low rates into the existing injection water system for one year. In the field, the responses observed included improved oil production performance; a slight increase in injection pressure; and increased time needed for tracers to move between injection and producing wells. We interpret these results to confirm that successful stimulation of the microbial community caused more methane to be created within the swept zone of the waterflooded reservoir. When the methane exsolved as water flowed between high-pressure injection and low-pressure production wells, the bubbles occupied pore space, reducing water saturation and relative permeability, and re-directing some water flow to "slower" unswept rock with lower permeability and higher oil saturation. In total, the waterflood's swept zone had been expanded to include previously-unflooded rock. This technology was applied in this field after screening based on careful anaerobic sampling, advanced microbiological analysis, and the ongoing success of its waterflood. No reservoir or geological or geophysical simulation models were employed, and physical modifications to field facilities were minor. This technology of utilizing existing microbial populations for enhanced oil recovery can therefore be considered for deployment into waterfloods where small scale, advanced maturity, or

  6. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  7. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens

    2016-08-25

    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  8. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    Science.gov (United States)

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  9. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad Salim

    2016-01-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method

  10. Maximization of wave motion within a hydrocarbon reservoir for wave-based enhanced oil recovery

    KAUST Repository

    Jeong, C.

    2015-05-01

    © 2015 Elsevier B.V. We discuss a systematic methodology for investigating the feasibility of mobilizing oil droplets trapped within the pore space of a target reservoir region by optimally directing wave energy to the region of interest. The motivation stems from field and laboratory observations, which have provided sufficient evidence suggesting that wave-based reservoir stimulation could lead to economically viable oil recovery.Using controlled active surface wave sources, we first describe the mathematical framework necessary for identifying optimal wave source signals that can maximize a desired motion metric (kinetic energy, particle acceleration, etc.) at the target region of interest. We use the apparatus of partial-differential-equation (PDE)-constrained optimization to formulate the associated inverse-source problem, and deploy state-of-the-art numerical wave simulation tools to resolve numerically the associated discrete inverse problem.Numerical experiments with a synthetic subsurface model featuring a shallow reservoir show that the optimizer converges to wave source signals capable of maximizing the motion within the reservoir. The spectra of the wave sources are dominated by the amplification frequencies of the formation. We also show that wave energy could be focused within the target reservoir area, while simultaneously minimizing the disturbance to neighboring formations - a concept that can also be exploited in fracking operations.Lastly, we compare the results of our numerical experiments conducted at the reservoir scale, with results obtained from semi-analytical studies at the granular level, to conclude that, in the case of shallow targets, the optimized wave sources are likely to mobilize trapped oil droplets, and thus enhance oil recovery.

  11. The central Myanmar (Burma) oil family - composition and implications for source

    Energy Technology Data Exchange (ETDEWEB)

    Curiale, J A; Kyi, P; Collins, I D; Din, A; Nyein, K; Nyunt, M; Stuart, C J [Unocal Inc., Brea, CA (United States). Energy Resources Division

    1994-11-01

    Geochemical characteristics of 13 Miocene through Eocene oils/seeps, an Eocene coal and an Eocene resin from the central Myanmar (Burma) basin system are examined. Geologic arguments suggest a deep Paleogene source for these oils. Two geochemical arguments that support this inference are (a) the occurrence of saturated and unsaturated C-15 and C-30 cadinane monomers and dimers in pyrolyzates of an Eocene resin and the kerogen from an Eocene coal, and (b) identical compound-specific carbon isotope ratios for selected isoprenoids and n-alkanes in a typical central Myanmar oil and the hydrous pyrolyzate expelled from an Eocene coal. The authors propose an Eocene resinous shale/coal source for these oils, with the oldest (Eocene) reservoirs filling first and the youngst (Miocene) reservoirs filling last, consistent with the observation that the least mature oils are present in the oldest reservoirs. According to this model, surface seepage and near-surface oil could result from subsurface traps that are filled to spillpoint.

  12. Effect of reservoir heterogeneity on air injection performance in a light oil reservoir

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available Air injection is a good option to development light oil reservoir. As well-known that, reservoir heterogeneity has great effect for various EOR processes. This also applies to air injection. However, oil recovery mechanisms and physical processes for air injection in heterogeneous reservoir with dip angle are still not well understood. The reported setting of reservoir heterogeneous for physical model or simulation model of air injection only simply uses different-layer permeability of porous media. In practice, reservoir heterogeneity follows the principle of geostatistics. How much of contrast in permeability actually challenges the air injection in light oil reservoir? This should be investigated by using layered porous medial settings of the classical Dykstra-Parsons style. Unfortunately, there has been no work addressing this issue for air injection in light oil reservoir. In this paper, Reservoir heterogeneity is quantified based on the use of different reservoir permeability distribution according to classical Dykstra-Parsons coefficients method. The aim of this work is to investigate the effect of reservoir heterogeneity on physical process and production performance of air injection in light oil reservoir through numerical reservoir simulation approach. The basic model is calibrated based on previous study. Total eleven pseudo compounders are included in this model and ten complexity of reactions are proposed to achieve the reaction scheme. Results show that oil recovery factor is decreased with the increasing of reservoir heterogeneity both for air and N2 injection from updip location, which is against the working behavior of air injection from updip location. Reservoir heterogeneity sometimes can act as positive effect to improve sweep efficiency as well as enhance production performance for air injection. High O2 content air injection can benefit oil recovery factor, also lead to early O2 breakthrough in heterogeneous reservoir. Well

  13. Activation of CO2-reducing methanogens in oil reservoir after addition of nutrient.

    Science.gov (United States)

    Yang, Guang-Chao; Zhou, Lei; Mbadinga, Serge Maurice; You, Jing; Yang, Hua-Zhen; Liu, Jin-Feng; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2016-12-01

    Nutrient addition as part of microbial enhanced oil recovery (MEOR) operations have important implications for more energy recovery from oil reservoirs, but very little is known about the in situ response of microorganisms after intervention. An analysis of two genes as biomarkers, mcrA encoding the key enzyme in methanogenesis and fthfs encoding the key enzyme in acetogenesis, was conducted during nutrient addition in oil reservoir. Clone library data showed that dominant mcrA sequences changed from acetoclastic (Methanosaetaceae) to CO 2 -reducing methanogens (Methanomicrobiales and Methanobacteriales), and the authentic acetogens affiliated to Firmicutes decreased after the intervention. Principal coordinates analysis (PCoA) and Jackknife environment clusters revealed evidence on the shift of the microbial community structure among the samples. Quantitative analysis of methanogens via qPCR showed that Methanobacteriales and Methanomicrobiales increased after nutrient addition, while acetoclastic methanogens (Methanosaetaceae) changed slightly. Nutrient treatment activated native CO 2 -reducing methanogens in oil reservoir. The high frequency of Methanobacteriales and Methanomicrobiales (CO 2 -reducers) after nutrient addition in this petroleum system suggested that CO 2 -reducing methanogenesis was involved in methane production. The nutrient addition could promote the methane production. The results will likely improve strategies of utilizing microorganisms in subsurface environments. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  14. Seismic modeling of acid-gas injection in a deep saline reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ursenbach, C.P.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S) are common byproducts of the energy industry. As such, remediation studies are underway to determine the feasibility of sequestering these byproducts in subsurface reservoirs, including deep saline reservoirs. Acid gas injection at smaller gas wells holds promise. However, in order for such injection programs to work, the progress of the injection plume must be tracked. A modeling study of fluid substitution was carried out to gain insight into the ability of seismic monitoring to distinguish pre- and post-injection states of the reservoir medium. The purpose of this study was to carry out fluid substitution calculations for the modeling of an injection process. A methodology that may be applied or adapted to a variety of acid-gas injection scenarios was also developed. The general approach involved determining acoustic properties at reservoir temperature and pressure of relevant fluids; obtaining elastic properties of the reservoir rock for some reference saturated state, and the elastic properties of the mineral comprising it; and, determining the change in reservoir elastic properties due to fluid substitution via Gassmann's equation. Water, brine and non-aqueous acid gas were the 3 fluids of interest in this case. The feasibility of monitoring was judged by the sensitivity of travel times and reflection coefficients to fluid substitution. 4 refs., 2 figs.

  15. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    Science.gov (United States)

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  16. Subsurface ecosystems. Oil triggered life. Opportunities for the petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Van der Kraan, G.M.

    2010-10-05

    As it is getting more difficult to retrieve oil from the subsurface, there is a renewed interest from the petroleum industry regarding microbial processes in oil-water systems, like oil reservoirs and their associated refineries. Oil fields are specific ecosystems, they are oxygen depleted, contain a variety of hydrocarbons and often have elevated temperatures and pressures. Through human exploitation, active changes in oil field ecosystems are induced. An example is seawater injection to displace oil. Seawater injection causes a decrease in temperature and induces the growth of sulphate reducing bacteria due to the introduction of sulphate and thereby as a consequence the production of harmful H2S. The current idea is that microorganisms detected in, for example, production water from an oil well, hold additional information on the oil field itself and the processes that are occurring in this oil field during exploitation of the field, so-called 'Biomonitoring'. Through the application of 'smart well' technology, viz. clever exploitation of the oil field, more oil can be retrieved from the field. This however requires new information sources from the field itself. Biotechnology might offer an additional information source. Also it is expected that growth of microorganisms in oil field can plug so called 'thief zones' in oil fields, which forces injected water to take an alternative route and thereby displacing more of the oil. This process however has first to be understood on the pore level. This thesis investigates the concept of 'biomonitoring'. To this purpose the microbial community of water and core samples taken from various oil fields, their separation facilities, and other subsurface environments have been investigated with the use of various molecular techniques like denaturing gradient gel electrophoresis (DGGE) and clone library construction of 16S rRNA gene fragments. The presence of several species can be

  17. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  18. Formate-Dependent Microbial Conversion of CO2 and the Dominant Pathways of methanogenesis in production water of high-temperature oil reservoirs amended with bicarbonate

    Directory of Open Access Journals (Sweden)

    Guang-Chao eYang

    2016-03-01

    Full Text Available CO2 sequestration in deep-subsurface formations including oil reservoirs is a potential measure to reduce the CO2 concentration in the atmosphere. However, the fate of the CO2 and the ecological influences in Carbon Dioxide Capture and Storage (CDCS facilities is not understood clearly. In the current study, the fate of CO2 (in bicarbonate form (0~90 mM with 10 mM of formate as electron donor and carbon source was investigated with high-temperature production water from oilfield in China. The isotope data showed that bicarbonate could be reduced to methane by methanogens and major pathway of methanogenesis could be syntrophic formate oxidation coupled with CO2 reduction and formate methanogenesis under the anaerobic conditions. The bicarbonate addition induced the shift of microbial community. Addition of bicarbonate and formate was associated with a decrease of Methanosarcinales, but promotion of Methanobacteriales in all treatments. Thermodesulfovibrio was the major group in all the samples and Thermacetogenium dominated in the high bicarbonate treatments. The results indicated that CO2 from CDCS could be transformed to methane and the possibility of microbial CO2 conversion for enhanced microbial energy recovery in oil reservoirs.

  19. Understanding the subsurface thermal structure of deep sedimentary basins in Denmark - measurements and modelling results

    DEFF Research Database (Denmark)

    Balling, N.; Poulsen, Søren Erbs; Bording, Thue Sylvester

    2015-01-01

    Most of the Danish area is characterized by deep sedimentary basins with a great potential for exploitation of geothermal energy. Geothermal reservoirs are present at various depths and temperatures. Currently, three geothermal plants are operating producing warm water for district heating purposes...... of different conductivity. Mean geothermal gradients from surface to depths of 1000 to 3000 m are generally between 20 and 35 °C/km. The subsurface thermal structure is clearly dominated by conduction. Advection by groundwater migration is generally insignificant. Heat flow increases significantly with depth...... due to perturbation from long-term palaeoclimatic surface temperature variations. Examples of modelled temperature distribution for selected geothermal reservoir are shown. In the Gassum Formation, which is present in most of the Danish area, temperatures are largely between 35 and 90 °C for depths...

  20. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  1. The deep-subsurface sulfate reducer Desulfotomaculum kuznetsovii employs two methanol-degrading pathways.

    Science.gov (United States)

    Sousa, Diana Z; Visser, Michael; van Gelder, Antonie H; Boeren, Sjef; Pieterse, Mervin M; Pinkse, Martijn W H; Verhaert, Peter D E M; Vogt, Carsten; Franke, Steffi; Kümmel, Steffen; Stams, Alfons J M

    2018-01-16

    Methanol is generally metabolized through a pathway initiated by a cobalamine-containing methanol methyltransferase by anaerobic methylotrophs (such as methanogens and acetogens), or through oxidation to formaldehyde using a methanol dehydrogenase by aerobes. Methanol is an important substrate in deep-subsurface environments, where thermophilic sulfate-reducing bacteria of the genus Desulfotomaculum have key roles. Here, we study the methanol metabolism of Desulfotomaculum kuznetsovii strain 17 T , isolated from a 3000-m deep geothermal water reservoir. We use proteomics to analyze cells grown with methanol and sulfate in the presence and absence of cobalt and vitamin B12. The results indicate the presence of two methanol-degrading pathways in D. kuznetsovii, a cobalt-dependent methanol methyltransferase and a cobalt-independent methanol dehydrogenase, which is further confirmed by stable isotope fractionation. This is the first report of a microorganism utilizing two distinct methanol conversion pathways. We hypothesize that this gives D. kuznetsovii a competitive advantage in its natural environment.

  2. Theoretical and experimental fundamentals of designing promising technological equipment to improve efficiency and environmental safety of highly viscous oil recovery from deep oil reservoirs

    Science.gov (United States)

    Moiseyev, V. A.; Nazarov, V. P.; Zhuravlev, V. Y.; Zhuykov, D. A.; Kubrikov, M. V.; Klokotov, Y. N.

    2016-12-01

    The development of new technological equipment for the implementation of highly effective methods of recovering highly viscous oil from deep reservoirs is an important scientific and technical challenge. Thermal recovery methods are promising approaches to solving the problem. It is necessary to carry out theoretical and experimental research aimed at developing oil-well tubing (OWT) with composite heatinsulating coatings on the basis of basalt and glass fibers. We used the method of finite element analysis in Nastran software, which implements complex scientific and engineering calculations, including the calculation of the stress-strain state of mechanical systems, the solution of problems of heat transfer, the study of nonlinear static, the dynamic transient analysis of frequency characteristics, etc. As a result, we obtained a mathematical model of thermal conductivity which describes the steady-state temperature and changes in the fibrous highly porous material with the heat loss by Stefan-Boltzmann's radiation. It has been performed for the first time using the method of computer modeling in Nastran software environments. The results give grounds for further implementation of the real design of the OWT when implementing thermal methods for increasing the rates of oil production and mitigating environmental impacts.

  3. The Discovery of Deep Oil Plumes at the Deepwater Horizon Oil Spill Site (Invited)

    Science.gov (United States)

    Diercks, A. R.; Asper, V. L.; Highsmith, R. C.; Woolsey, M.; Lohrenz, S. E.; McLetchie, K.; Gossett, A.; Lowe, M., III; Joung, D.; McKay, L.

    2010-12-01

    In May 2010, the National Institute for Undersea Science and Technology (NIUST), a partnership of the University of Mississippi, the University of Southern Mississippi and NOAA, had a 17-day research cruise aboard the UNOLS vessel R/V Pelican scheduled. Two weeks before departure, the Deepwater Horizon oil platform burned and sank, resulting in an uncontrolled oil spill at a depth of ~1500 m at Mississippi Canyon Block 252. The initial mission plan to do AUV surveys of wrecks and hydrate outcrops in the northern Gulf of Mexico, some of them very close to the site of the accident, was abandoned in favor of responding to the still uncontrolled oil spill. The primary goals of the redefined cruise were to acquire baseline and early impact data for seafloor sediments and subsurface distribution of oil and gas hydrates as close as possible in time and space to the origin of the oil spill. Investigating an oil spill nearly a mile deep in the ocean presents special benthic sampling and subsurface oil detection challenges. NIUST’s AUV’s were unloaded from the ship and a large main winch installed to allow operation of a full ocean depth box corer for collecting sediment samples in water depths up to 2000 m. During the first five-day leg of the cruise, a total of 28 box cores were collected. The Pelican returned to port (Cocodrie, LA) to drop off sediment and water samples for immediate analyses, and to take on more sampling gear and supplies for the second leg of the cruise, including an Acrobat, a CDOM fluorometer, a Video Ray ROV, and a CO2 sensor in addition to the already installed CTD Rosette with O2 sensor and beam transmissometer. During Leg 2, CTD stations were plotted to cover the area surrounding the wreck site and at various water depths to map the subsurface water column structure and chemistry as baseline values for future investigations and especially to look for submerged oil and/or gas hydrates. Early in the water column sampling, a subsurface feature

  4. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Li

    2017-06-01

    Full Text Available Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01. In addition, the sulfate-reducing microorganisms (SRMs were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs.

  5. Diversity and Composition of Sulfate-Reducing Microbial Communities Based on Genomic DNA and RNA Transcription in Production Water of High Temperature and Corrosive Oil Reservoir

    Science.gov (United States)

    Li, Xiao-Xiao; Liu, Jin-Feng; Zhou, Lei; Mbadinga, Serge M.; Yang, Shi-Zhong; Gu, Ji-Dong; Mu, Bo-Zhong

    2017-01-01

    Deep subsurface petroleum reservoir ecosystems harbor a high diversity of microorganisms, and microbial influenced corrosion is a major problem for the petroleum industry. Here, we used high-throughput sequencing to explore the microbial communities based on genomic 16S rDNA and metabolically active 16S rRNA analyses of production water samples with different extents of corrosion from a high-temperature oil reservoir. Results showed that Desulfotignum and Roseovarius were the most abundant genera in both genomic and active bacterial communities of all the samples. Both genomic and active archaeal communities were mainly composed of Archaeoglobus and Methanolobus. Within both bacteria and archaea, the active and genomic communities were compositionally distinct from one another across the different oil wells (bacteria p = 0.002; archaea p = 0.01). In addition, the sulfate-reducing microorganisms (SRMs) were specifically assessed by Sanger sequencing of functional genes aprA and dsrA encoding the enzymes adenosine-5′-phosphosulfate reductase and dissimilatory sulfite reductase, respectively. Functional gene analysis indicated that potentially active Archaeoglobus, Desulfotignum, Desulfovibrio, and Thermodesulforhabdus were frequently detected, with Archaeoglobus as the most abundant and active sulfate-reducing group. Canonical correspondence analysis revealed that the SRM communities in petroleum reservoir system were closely related to pH of the production water and sulfate concentration. This study highlights the importance of distinguishing the metabolically active microorganisms from the genomic community and extends our knowledge on the active SRM communities in corrosive petroleum reservoirs. PMID:28638372

  6. Improved oil recovery in fluvial dominated deltaic reservoirs of Kansas - Near-term, Class I

    Energy Technology Data Exchange (ETDEWEB)

    Green, D.W.; Willhite, G.P.; Reynolds, Rodney R.; McCune, A. Dwayne; Michnick, Michael J.; Walton, Anthony W.; Watney, W. Lynn

    2000-06-08

    This project involved two demonstration projects, one in a Marrow reservoir located in the southwestern part of the state and the second in the Cherokee Group in eastern Kansas. Morrow reservoirs of western Kansas are still actively being explored and constitute an important resource in Kansas. Cumulative oil production from the Morrow in Kansas is over 400,000,000 bbls. Much of the production from the Morrow is still in the primary stage and has not reached the mature declining state of that in the Cherokee. The Cherokee Group has produced about 1 billion bbls of oil since the first commercial production began over a century ago. It is a billion-barrel plus resource that is distributed over a large number of fields and small production units. Many of the reservoirs are operated close to the economic limit, although the small units and low production per well are offset by low costs associated with the shallow nature of the reservoirs (less than 1000 ft. deep).

  7. Field experiments with subsurface releases of oil and and dyed water

    International Nuclear Information System (INIS)

    Rye, H.; Brandvik, P.J.; Strom, T.

    1998-01-01

    A field experiment with a subsurface release of oil and air was carried out in June 1996 close to the Frigg Field in the North Sea area. One of the purposes of this sea trial was to increase the knowledge concerning the behaviour of the oil and gas during a subsurface blowout. This was done by releasing oil and air at 106 meters depth with a realistic gas oil ratio (GOR=67) and release velocity of the oil. In addition to the oil release, several releases with dyed water and gas (GOR=7 - 65) were performed. Important and unique data were collected during these subsurface releases. In particular, the experiments with the dyed water releases combined with air turned out to be an efficient way of obtaining field data for the behaviour of subsurface plumes. The main conclusions from analysis for the data collected are: the field methodology used to study blowout releases in the field appears to be appropriate. The use of dyed water to determine the performance of the subsurface plume proved out to be an efficient way to obtain reliable and useful data. The behaviour of the subsurface plume is very sensitive to gas flow rates. For low gas flow rates, the plume did not reach the sea surface at all due to the presence of stratification in the ambient water. Some discrepancies were found between a numerical model for subsurface releases and field results. These discrepancies are pointed out, and recommendations for possible model improvements are given. (author)

  8. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    Energy Technology Data Exchange (ETDEWEB)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  9. Discussion of the feasibility of air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2017-06-01

    Full Text Available Air injection in light oil reservoirs has received considerable attention as an effective, improved oil recovery process, based primarily on the success of several projects within the Williston Basin in the United States. The main mechanism of air injection is the oxidation behavior between oxygen and crude oil in the reservoir. Air injection is a good option because of its wide availability and low cost. Whether air injection can be applied to shale is an interesting topic from both economic and technical perspectives. This paper initiates a comprehensive discussion on the feasibility and potential of air injection in shale oil reservoirs based on state-of-the-art literature review. Favorable and unfavorable effects of using air injection are discussed in an analogy analysis on geology, reservoir features, temperature, pressure, and petrophysical, mineral and crude oil properties of shale oil reservoirs. The available data comparison of the historically successful air injection projects with typical shale oil reservoirs in the U.S. is summarized in this paper. Some operation methods to improve air injection performance are recommended. This paper provides an avenue for us to make use of many of the favorable conditions of shale oil reservoirs for implementing air injection, or air huff ‘n’ puff injection, and the low cost of air has the potential to improve oil recovery in shale oil reservoirs. This analysis may stimulate further investigation.

  10. Reservoir Identification: Parameter Characterization or Feature Classification

    Science.gov (United States)

    Cao, J.

    2017-12-01

    The ultimate goal of oil and gas exploration is to find the oil or gas reservoirs with industrial mining value. Therefore, the core task of modern oil and gas exploration is to identify oil or gas reservoirs on the seismic profiles. Traditionally, the reservoir is identify by seismic inversion of a series of physical parameters such as porosity, saturation, permeability, formation pressure, and so on. Due to the heterogeneity of the geological medium, the approximation of the inversion model and the incompleteness and noisy of the data, the inversion results are highly uncertain and must be calibrated or corrected with well data. In areas where there are few wells or no well, reservoir identification based on seismic inversion is high-risk. Reservoir identification is essentially a classification issue. In the identification process, the underground rocks are divided into reservoirs with industrial mining value and host rocks with non-industrial mining value. In addition to the traditional physical parameters classification, the classification may be achieved using one or a few comprehensive features. By introducing the concept of seismic-print, we have developed a new reservoir identification method based on seismic-print analysis. Furthermore, we explore the possibility to use deep leaning to discover the seismic-print characteristics of oil and gas reservoirs. Preliminary experiments have shown that the deep learning of seismic data could distinguish gas reservoirs from host rocks. The combination of both seismic-print analysis and seismic deep learning is expected to be a more robust reservoir identification method. The work was supported by NSFC under grant No. 41430323 and No. U1562219, and the National Key Research and Development Program under Grant No. 2016YFC0601

  11. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery.

    Science.gov (United States)

    Gray, N D; Sherry, A; Hubert, C; Dolfing, J; Head, I M

    2010-01-01

    Hydrocarbons are common constituents of surface, shallow, and deep-subsurface environments. Under anaerobic conditions, hydrocarbons can be degraded to methane by methanogenic microbial consortia. This degradation process is widespread in the geosphere. In comparison with other anaerobic processes, methanogenic hydrocarbon degradation is more sustainable over geological time scales because replenishment of an exogenous electron acceptor is not required. As a consequence, this process has been responsible for the formation of the world's vast deposits of heavy oil, which far exceed conventional oil assets such as those found in the Middle East. Methanogenic degradation is also a potentially important component of attenuation in hydrocarbon contamination plumes. Studies of the organisms, syntrophic partnerships, mechanisms, and geochemical signatures associated with methanogenic hydrocarbon degradation have identified common themes and diagnostic markers for this process in the subsurface. These studies have also identified the potential to engineer methanogenic processes to enhance the recovery of energy assets as biogenic methane from residual oils stranded in petroleum systems. Copyright 2010 Elsevier Inc. All rights reserved.

  12. A Review of distribution and quantity of lingering subsurface oil from the Exxon Valdez Oil Spill

    Science.gov (United States)

    Nixon, Zachary; Michel, Jacqueline

    2018-01-01

    Remaining lingering subsurface oil residues from the Exxon Valdez oil spill (EVOS) are, at present, patchily distributed across the geologically complex and spatially extensive shorelines of Prince William Sound and the Gulf of Alaska. We review and synthesize previous literature describing the causal geomorphic and physical mechanisms for persistence of oil in the intertidal subsurface sediments of these areas. We also summarize previous sampling and modeling efforts, and refine previously presented models with additional data to characterize the present-day linear and areal spatial extent, and quantity of lingering subsurface oil. In the weeks after the spill in March of 1989, approximately 17,750 t of oil were stranded along impacted shorelines, and by October of 1992, only 2% of the mass of spilled oil was estimated to remain in intertidal areas. We estimate that lingering subsurface residues, generally between 5 and 20 cm thick and sequestered below 10-20 cm of clean sediment, are present over 30 ha of intertidal area, along 11.4 km of shoreline, and represent approximately 227 t or 0.6% of the total mass of spilled oil. These residues are typically located in finer-grained sand and gravel sediments, often under an armor of cobble- or boulder-sized clasts, in areas with limited groundwater flow and porosity. Persistence of these residues is correlated with heavy initial oil loading together with localized sheltering from physical disturbance such as wave energy within the beach face. While no longer generally bioavailable and increasingly chemically weathered, present removal rates for these remaining subsurface oil residues have slowed to nearly zero. The only remaining plausible removal mechanisms will operate over time scales of decades.

  13. Design of a lube oil reservoir by using flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rinkinen, J; Alfthan, A. [Institute of Hydraulics and Automation IHA, Tampere University of Technology, Tampere (Finland)] Suominen, J. [Institute of Energy and Process Engineering, Tampere University of Technology, Tampere (Finland); Airaksinen, A; Antila, K [R and D Engineer Safematic Oy, Muurame (Finland)

    1998-12-31

    The volume of usual oil reservoir for lubrication oil systems is designed by the traditional rule of thumb so that the total oil volume is theoretically changed in every 30 minutes by rated pumping capacity. This is commonly used settling time for air, water and particles to separate by gravity from the oil returning of the bearings. This leads to rather big volumes of lube oil reservoirs, which are sometimes difficult to situate in different applications. In this presentation traditionally sized lube oil reservoir (8 m{sup 3}) is modelled in rectangular coordinates and laminar oil flow is calculated by using FLUENT software that is based on finite difference method. The results of calculation are velocity and temperature fields inside the reservoir. The velocity field is used to visualize different particle paths through the reservoir. Particles that are studied by the model are air bubbles and water droplets. The interest of the study has been to define the size of the air bubbles that are released and the size of the water droplets that are separated in the reservoir. The velocity field is also used to calculate the modelled circulating time of the oil volume which is then compared with the theoretical circulating time that is obtained from the rated pump flow. These results have been used for designing a new lube oil reservoir. This reservoir has also been modelled and optimized by the aid of flow calculations. The best shape of the designed reservoir is constructed in real size for empirical measurements. Some results of the oil flow measurements are shown. (orig.) 7 refs.

  14. Design of a lube oil reservoir by using flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rinkinen, J.; Alfthan, A. [Institute of Hydraulics and Automation IHA, Tampere University of Technology, Tampere (Finland)] Suominen, J. [Institute of Energy and Process Engineering, Tampere University of Technology, Tampere (Finland); Airaksinen, A.; Antila, K. [R and D Engineer Safematic Oy, Muurame (Finland)

    1997-12-31

    The volume of usual oil reservoir for lubrication oil systems is designed by the traditional rule of thumb so that the total oil volume is theoretically changed in every 30 minutes by rated pumping capacity. This is commonly used settling time for air, water and particles to separate by gravity from the oil returning of the bearings. This leads to rather big volumes of lube oil reservoirs, which are sometimes difficult to situate in different applications. In this presentation traditionally sized lube oil reservoir (8 m{sup 3}) is modelled in rectangular coordinates and laminar oil flow is calculated by using FLUENT software that is based on finite difference method. The results of calculation are velocity and temperature fields inside the reservoir. The velocity field is used to visualize different particle paths through the reservoir. Particles that are studied by the model are air bubbles and water droplets. The interest of the study has been to define the size of the air bubbles that are released and the size of the water droplets that are separated in the reservoir. The velocity field is also used to calculate the modelled circulating time of the oil volume which is then compared with the theoretical circulating time that is obtained from the rated pump flow. These results have been used for designing a new lube oil reservoir. This reservoir has also been modelled and optimized by the aid of flow calculations. The best shape of the designed reservoir is constructed in real size for empirical measurements. Some results of the oil flow measurements are shown. (orig.) 7 refs.

  15. Oil Reservoir Production Optimization using Optimal Control

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan

    2011-01-01

    Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...

  16. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  17. Simulation study of huff-n-puff air injection for enhanced oil recovery in shale oil reservoirs

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2018-03-01

    Full Text Available This paper is the first attempt to evaluate huff-n-puff air injection in a shale oil reservoir using a simulation approach. Recovery mechanisms and physical processes of huff-n-puff air injection in a shale oil reservoir are investigated through investigating production performance, thermal behavior, reservoir pressure and fluid saturation features. Air flooding is used as the basic case for a comparative study. The simulation study suggests that thermal drive is the main recovery mechanism for huff-n-puff air injection in the shale oil reservoir, but not for simple air flooding. The synergic recovery mechanism of air flooding in conventional light oil reservoirs can be replicated in shale oil reservoirs by using air huff-n-puff injection strategy. Reducing huff-n-puff time is better for performing the synergic recovery mechanism of air injection. O2 diffusion plays an important role in huff-n-puff air injection in shale oil reservoirs. Pressure transmissibility as well as reservoir pressure maintenance ability in huff-n-puff air injection is more pronounced than the simple air flooding after primary depletion stage. No obvious gas override is exhibited in both air flooding and air huff-n-puff injection scenarios in shale reservoirs. Huff-n-puff air injection has great potential to develop shale oil reservoirs. The results from this work may stimulate further investigations.

  18. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    Science.gov (United States)

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  19. Biodegradation of crude oil in Arctic subsurface water from the Disko Bay (Greenland) is limited

    DEFF Research Database (Denmark)

    Scheibye, Katrine; Christensen, Jan H.; Johnsen, Anders R.

    2017-01-01

    Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurfac...... for the C1-naphthalenes. To conclude, the marine subsurface microorganisms from the Disko Bay had the potential for biodegradation of n-alkanes and isoprenoids while the metabolically complex and toxic PACs and their alkylated homologs remained almost unchanged.......Biological degradation is the main process for oil degradation in a subsurface oil plume. There is, however, little information on the biodegradation potential of Arctic, marine subsurface environments. We therefore investigated oil biodegradation in microcosms at 2 °C containing Arctic subsurface...... seawater from the Disko Bay (Greenland) and crude oil at three concentrations of 2.5-10 mg/L. Within 71 days, the total petroleum hydrocarbon concentration decreased only by 18 ± 18% for an initial concentration of 5 mg/L. The saturated alkanes nC13-nC30 and the isoprenoids iC18-iC21 were biodegraded...

  20. Origin of late pleistocene formation water in Mexican oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, P. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    2004-07-01

    Brine water invasion into petroleum reservoirs, especially in sedimentary basins, are known from a variety of global oil field, such as the Western Canada sedimentary basin and, the central Mississippi Salt Dome basin (Kharaka et al., 1987). The majority of oil wells, especially in the more mature North American fields, produce more water than they do oil (Peachey et al., 1998). In the case of Mexican oil fields, increasing volumes of invading water into the petroleum wells were detected during the past few years. Major oil reserves in the SE-part of the Gulf of Mexico are economically affected due to decreases in production rate, pipeline corrosion and well closure. The origin of deep formation water in many sedimentary basins is still controversial: Former hypothesis mainly in the 60's, explained the formation of formation water by entrapment of seawater during sediment deposition. Subsequent water-rock interaction processes explain the chemical evolution of hydrostatic connate water. More recent hydrodynamic models, mainly based on isotopic data, suggest the partial migration of connate fluids, whereas the subsequent invasion of surface water causes mixing processes (Carpenter 1978). As part of the presented study, a total of 90 oil production wells were sampled from 1998 to 2004 to obtain chemical (Major and trace elements) and isotopic composition ({sup 2}H, {sup 13}C, {sup 14}C, {sup 18}O {sup 36}Cl, {sup 37}Cl, {sup 87}Sr, {sup 129}I, tritium) of deep formation water at the Mexican Gulf coast. Samples were extracted from carbonate-type reservoirs of the oil fields Luna, Samaria-Sitio Grande, Jujo-Tecominoac (on-shore), and Pol-Chuc (off-shore, including Abkatun, Batab, Caan, and Taratunich) at a depth between 2,900 m b.s.l. and 6,100 m b.s.l. During the field work, the influence of atmospheric contamination e.g. by CO{sub 2}-atmospheric input was avoided by using an interval sampler to get in-situ samples from the extraction zone of selected bore holes

  1. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  2. Cultivating the Deep Subsurface Microbiome

    Science.gov (United States)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system

  3. Turbidite Systems in Brazil: From Outcrops to Deep Waters

    Science.gov (United States)

    ´Avila, R. S. F.; Arienti, L. M.; Vesely, F. F.; Santos, S. F.; Voelcker, H. E.

    2012-04-01

    Reliable depositional models depend on careful observation of rocks, to allow the correct description and interpretation of facies and facies associations and their formative processes. They are of paramount importance to characterize deep water depositional systems, which still are the most important siliciclastic reservoirs for the oil industry. Turbidite sandstone reservoirs are responsible for almost 80% of petroleum produced from Brazilian Basins. A comprehensive characterization of these systems, depicting the main differences in terms of their geometries and facies will be presented. In Brazilian basins most of the turbidites were originated from extremely catastrophic flows, essentially linked to fluvio-deltaic influx that generates very dense hyperpycnal flows. Based on outcrop and subsurface data, two main zones with characteristic geometries and facies associations are commonly identified in turbidite systems: the transference zone and the depositional zone. Erosion and bypass dominate in the transference zone, which frequently occur as submarine canyons and channels. Turbidite channels can contain residual conglomeratic facies and coarser sandstone facies. The depositional area comprises lobes that constitute a major exploratory target because of their greater lateral continuity and the concentration of clean reservoirs. Turbidite lobes can be tabular or lenticular deposits associated with channelized bodies. Taking into account outcrop and subsurface data we can distinguish five main turbidite systems: foredeep turbidite systems, prodelta turbidite systems, mixed turbidite systems, meandering channels turbidite systems and channel-levee turbidite systems. In the Brazilian margin, deep water turbidites and other gravity-flow deposits are commonly associated with bottom current deposits, largely in Tertiary strata. Such bottom current deposits, often called contourites, are also important petroleum reservoirs, commonly mistaken as turbidites. Integration

  4. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  5. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens; Hoteit, Ibrahim

    2014-01-01

    process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase

  6. Liquid oil production from shale gas condensate reservoirs

    Science.gov (United States)

    Sheng, James J.

    2018-04-03

    A process of producing liquid oil from shale gas condensate reservoirs and, more particularly, to increase liquid oil production by huff-n-puff in shale gas condensate reservoirs. The process includes performing a huff-n-puff gas injection mode and flowing the bottom-hole pressure lower than the dew point pressure.

  7. Heavy-oil recovery in naturally fractured reservoirs with varying wettability by steam solvent co-injection

    Energy Technology Data Exchange (ETDEWEB)

    Al Bahlani, A. [Alberta Univ., Edmonton, AB (Canada); Babadagli, T. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    Steam injection may not be an efficient oil recovery process in certain circumstances, such as in deep reservoirs, where steam injection may be ineffective because of hot-water flooding due to excessive heat loss. Steam injection may also be ineffective in oil-wet fractured carbonates, where steam channels through fracture zones without effectively sweeping the matrix oil. Steam flooding is one of the many solutions for heavy oil recovery in unconsolidated sandstones that is in commercial production. However, heavy-oil fractured carbonates are more challenging, where the recovery is generally limited only to matrix oil drainage gravity due to unfavorable wettability or thermal expansion if heat is introduced during the process. This paper proposed a new approach to improve steam/hot-water injection and efficiency for heavy-oil fractured carbonate reservoirs. The paper provided background information on oil recovery from fractured carbonates and provided a statement of the problem. Three phases were described, including steam/hot-waterflooding phase (spontaneous imbibition); miscible flooding phase (diffusion); and steam/hot-waterflooding phase (spontaneous imbibition or solvent retention). The paper also discussed core preparation and saturation procedures. It was concluded that efficient oil recovery is possible using alternate injection of steam/hot water and solvent. 43 refs., 1 tab., 13 figs.

  8. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    Energy Technology Data Exchange (ETDEWEB)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  9. A poroelastic reservoir model for predicting subsidence and mapping subsurface pressure fronts

    International Nuclear Information System (INIS)

    Du, J.; Olson, J.E.

    2001-01-01

    A forward model was constructed to numerically predict surface subsidence and reservoir compaction following the approach of Segall [Pure Appl. Phys. 139 (1992) 536]. A nucleus of poroelastic strain is numerically integrated over a rectangular prism assuming constant pressure change. This fundamental geometry allows a reservoir to be divided into many small cubic blocks in a manner similar to reservoir simulation. The subsidence and compaction effects of the pressure change throughout the reservoir are calculated by the superposition of results from each individual block. Using forward modeling, pressure boundary conditions can be acquired from pressure test data or reservoir simulation predictions. An inversion model also was developed that can track pressure fronts in a subsurface reservoir using surface displacements. The capability of the inversion model was demonstrated using synthetic examples of one-well and four-well cases with different layouts of surface observation locations. The impact of noise on the inversion result is also included

  10. Synergizing Crosswell Seismic and Electromagnetic Techniques for Enhancing Reservoir Characterization

    KAUST Repository

    Katterbauer, Klemens

    2015-11-18

    Increasing complexity of hydrocarbon projects and the request for higher recovery rates have driven the oil-and-gas industry to look for a more-detailed understanding of the subsurface formation to optimize recovery of oil and profitability. Despite the significant successes of geophysical techniques in determining changes within the reservoir, the benefits from individually mapping the information are limited. Although seismic techniques have been the main approach for imaging the subsurface, the weak density contrast between water and oil has made electromagnetic (EM) technology an attractive complement to improve fluid distinction, especially for high-saline water. This crosswell technology assumes greater importance for obtaining higher-resolution images of the interwell regions to more accurately characterize the reservoir and track fluid-front developments. In this study, an ensemble-Kalman-based history-matching framework is proposed for directly incorporating crosswell time-lapse seismic and EM data into the history-matching process. The direct incorporation of the time-lapse seismic and EM data into the history-matching process exploits the complementarity of these data to enhance subsurface characterization, to incorporate interwell information, and to avoid biases that may be incurred from separate inversions of the geophysical data for attributes. An extensive analysis with 2D and realistic 3D reservoirs illustrates the robustness and enhanced forecastability of critical reservoir variables. The 2D reservoir provides a better understanding of the connection between fluid discrimination and enhanced history matches, and the 3D reservoir demonstrates its applicability to a realistic reservoir. History-matching enhancements (in terms of reduction in the history-matching error) when incorporating both seismic and EM data averaged approximately 50% for the 2D case, and approximately 30% for the 3D case, and permeability estimates were approximately 25

  11. Experiment on Measurement of Interfacial Tension for Subsurface Conditions of Light Oil from Thailand

    Directory of Open Access Journals (Sweden)

    Jiravivitpanya Jiramet

    2017-01-01

    Full Text Available One of enhanced oil recovery techniques to increase oil production is surfactant flooding. Surfactants are considered as effective chemical agents used in oilfield in Thailand. It is used to reduce the interfacial tension (IFT of two fluids and to make them flow easier in the reservoir. In this study, Monoethanolamide (MEA commonly used for carbon dioxide capture, is applied as a surfactant to reduce IFT between oil and brine. Therefore, the aim of this work is to investigate and measure the IFT based on the conditions of subsurface at the oilfield in Thailand. These parameters such as temperature, pressure, salinity as well as the concentration of surfactant are adjusted to investigate the effects on IFT reduction. From the results, it is reported that pressure from 1000 to 2000 psi and temperature varied from 70°C to 90°C can reduce IFT insignificantly. However, salinity and surfactant concentration are the main parameters that impact on the IFT reduction. It can greatly decrease IFT up to 87.13% for surfactant concentration and up to 74.06% for salinity. Finally, the results can be applied to use in the real field for enhanced oil production in Thailand.

  12. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie

    the water phase. The biofilm formation implies that the concentration of bacteria near the inlet increases. In combination with surfactant production, the biofilm results in a higher surfactant concentration in the initial part of the reservoir. The oil that is initially bypassed in connection...... simulator. In the streamline simulator, the effect of gravity is introduced using an operator splitting technique. The gravity effect stabilizes oil displacement causing markedly improvement of the oil recovery, when the oil density becomes relatively low. The general characteristics found for MEOR in one......-dimensional simulations are also demonstrated both in two and three dimensions. Overall, this MEOR process conducted in a heterogeneous reservoir also produces more oil compared to waterflooding, when the simulations are run in multiple dimensions. The work presented in this thesis has resulted in two publications so far....

  13. Refined reservoir description to maximize oil recovery

    International Nuclear Information System (INIS)

    Flewitt, W.E.

    1975-01-01

    To assure maximized oil recovery from older pools, reservoir description has been advanced by fully integrating original open-hole logs and the recently introduced interpretive techniques made available through cased-hole wireline saturation logs. A refined reservoir description utilizing normalized original wireline porosity logs has been completed in the Judy Creek Beaverhill Lake ''A'' Pool, a reefal carbonate pool with current potential productivity of 100,000 BOPD and 188 active wells. Continuous porosity was documented within a reef rim and cap while discontinuous porous lenses characterized an interior lagoon. With the use of pulsed neutron logs and production data a separate water front and pressure response was recognized within discrete environmental units. The refined reservoir description aided in reservoir simulation model studies and quantifying pool performance. A pattern water flood has now replaced the original peripheral bottom water drive to maximize oil recovery

  14. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    Science.gov (United States)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  15. Deep percolation in greenhouse-cultivated celery using the technique of subsurface film strips placement

    Directory of Open Access Journals (Sweden)

    Zhida Du

    2014-05-01

    Full Text Available To reduce the deep percolation during greenhouse vegetable cultivation, the technique of subsurface film strips placement was tested. Four treatments with two kinds of cross-sections (flat and U-shaped and two different spacings (10 cm and 40 cm of subsurface film strips were arranged in a greenhouse before planting celery. At the same time, a non-film treatment was arranged for comparison. Soil water content was measured and irrigation time was adjusted according to the soil water content. Evapotranspiration of celery during growth was calculated by the method of energy balance and the deep percolation was calculated by the equation of water balance. Deep percolation was reduced in all experimental treatments. Greater reduction in deep percolation was observed when using U-shaped cross-section strips compared with that using the flat cross-section strips. In addition, greater reduction in deep percolation was observed when the spacing between the film strips was smaller. The results of this test showed that the technique of subsurface film strips placement can reduce deep percolation and conserve irrigation water for greenhouse vegetables cultivation. However, the optimal layout variables for the use of the technique of subsurface film strips placement need further experimental and numerical analysis.

  16. A fast complex domain-matching pursuit algorithm and its application to deep-water gas reservoir detection

    Science.gov (United States)

    Zeng, Jing; Huang, Handong; Li, Huijie; Miao, Yuxin; Wen, Junxiang; Zhou, Fei

    2017-12-01

    The main emphasis of exploration and development is shifting from simple structural reservoirs to complex reservoirs, which all have the characteristics of complex structure, thin reservoir thickness and large buried depth. Faced with these complex geological features, hydrocarbon detection technology is a direct indication of changes in hydrocarbon reservoirs and a good approach for delimiting the distribution of underground reservoirs. It is common to utilize the time-frequency (TF) features of seismic data in detecting hydrocarbon reservoirs. Therefore, we research the complex domain-matching pursuit (CDMP) method and propose some improvements. First is the introduction of a scale parameter, which corrects the defect that atomic waveforms only change with the frequency parameter. Its introduction not only decomposes seismic signal with high accuracy and high efficiency but also reduces iterations. We also integrate jumping search with ergodic search to improve computational efficiency while maintaining the reasonable accuracy. Then we combine the improved CDMP with the Wigner-Ville distribution to obtain a high-resolution TF spectrum. A one-dimensional modeling experiment has proved the validity of our method. Basing on the low-frequency domain reflection coefficient in fluid-saturated porous media, we finally get an approximation formula for the mobility attributes of reservoir fluid. This approximation formula is used as a hydrocarbon identification factor to predict deep-water gas-bearing sand of the M oil field in the South China Sea. The results are consistent with the actual well test results and our method can help inform the future exploration of deep-water gas reservoirs.

  17. Subsurface Analysis of the Mesaverde Group on and near the Jicarilla Apache Indian Reservation, New Mexico-its implication on Sites of Oil and Gas Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Ridgley, Jennie

    2001-08-21

    The purpose of the phase 2 Mesaverde study part of the Department of Energy funded project ''Analysis of oil-bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico'' was to define the facies of the oil-producing units within the subsurface units of the Mesaverde Group and integrate these results with outcrop studies that defined the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) integration of subsurface correlations with outcrop correlations of components of the Mesaverde, (2) application of the sequence stratigraphic model determined in the phase one study to these correlations, (3) determination of the facies distribution of the Mesaverde Group and their relationship to sites of oil and gas accumulation, (4) evaluation of the thermal maturity and potential source rocks for oil and gas in the Mesaverde Group, and (5) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.

  18. Strontium isotopic signatures of oil-field waters: Applications for reservoir characterization

    Science.gov (United States)

    Barnaby, R.J.; Oetting, G.C.; Gao, G.

    2004-01-01

    The 87Sr/86Sr compositions of formation waters that were collected from 71 wells producing from a Pennsylvanian carbonate reservoir in New Mexico display a well-defined distribution, with radiogenic waters (up to 0.710129) at the updip western part of the reservoir, grading downdip to less radiogenic waters (as low as 0.708903 to the east. Salinity (2800-50,000 mg/L) displays a parallel trend; saline waters to the west pass downdip to brackish waters. Elemental and isotopic data indicate that the waters originated as meteoric precipitation and acquired their salinity and radiogenic 87Sr through dissolution of Upper Permian evaporites. These meteoric-derived waters descended, perhaps along deeply penetrating faults, driven by gravity and density, to depths of more than 7000 ft (2100 m). The 87 Sr/86Sr and salinity trends record influx of these waters along the western field margin and downdip flow across the field, consistent with the strong water drive, potentiometric gradient, and tilted gas-oil-water contacts. The formation water 87Sr/86Sr composition can be useful to evaluate subsurface flow and reservoir behavior, especially in immature fields with scarce pressure and production data. In mature reservoirs, Sr Sr isotopes can be used to differentiate original formation water from injected water for waterflood surveillance. Strontium isotopes thus provide a valuable tool for both static and dynamic reservoir characterization in conjunction with conventional studies using seismic, log, core, engineering, and production data. Copyright ??2004. The American Association of Petroleum Geologist. All rights reserved.

  19. Potential evaluation of CO2 storage and enhanced oil recovery of tight oil reservoir in the Ordos Basin, China.

    Science.gov (United States)

    Tian, Xiaofeng; Cheng, Linsong; Cao, Renyi; Zhang, Miaoyi; Guo, Qiang; Wang, Yimin; Zhang, Jian; Cui, Yu

    2015-07-01

    Carbon -di-oxide (CO2) is regarded as the most important greenhouse gas to accelerate climate change and ocean acidification. The Chinese government is seeking methods to reduce anthropogenic CO2 gas emission. CO2 capture and geological storage is one of the main methods. In addition, injecting CO2 is also an effective method to replenish formation energy in developing tight oil reservoirs. However, exiting methods to estimate CO2 storage capacity are all based on the material balance theory. This was absolutely correct for normal reservoirs. However, as natural fractures widely exist in tight oil reservoirs and majority of them are vertical ones, tight oil reservoirs are not close. Therefore, material balance theory is not adaptive. In the present study, a new method to calculate CO2 storage capacity is presented. The CO2 effective storage capacity, in this new method, consisted of free CO2, CO2 dissolved in oil and CO2 dissolved in water. Case studies of tight oil reservoir from Ordos Basin was conducted and it was found that due to far lower viscosity of CO2 and larger solubility in oil, CO2 could flow in tight oil reservoirs more easily. As a result, injecting CO2 in tight oil reservoirs could obviously enhance sweep efficiency by 24.5% and oil recovery efficiency by 7.5%. CO2 effective storage capacity of Chang 7 tight oil reservoir in Longdong area was 1.88 x 10(7) t. The Chang 7 tight oil reservoir in Ordos Basin was estimated to be 6.38 x 10(11) t. As tight oil reservoirs were widely distributed in Songliao Basin, Sichuan Basin and so on, geological storage capacity of CO2 in China is potential.

  20. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    Science.gov (United States)

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  1. Time-lapse seismic waveform modelling and attribute analysis using hydromechanical models for a deep reservoir undergoing depletion

    Science.gov (United States)

    He, Y.-X.; Angus, D. A.; Blanchard, T. D.; Wang, G.-L.; Yuan, S.-Y.; Garcia, A.

    2016-04-01

    Extraction of fluids from subsurface reservoirs induces changes in pore pressure, leading not only to geomechanical changes, but also perturbations in seismic velocities and hence observable seismic attributes. Time-lapse seismic analysis can be used to estimate changes in subsurface hydromechanical properties and thus act as a monitoring tool for geological reservoirs. The ability to observe and quantify changes in fluid, stress and strain using seismic techniques has important implications for monitoring risk not only for petroleum applications but also for geological storage of CO2 and nuclear waste scenarios. In this paper, we integrate hydromechanical simulation results with rock physics models and full-waveform seismic modelling to assess time-lapse seismic attribute resolution for dynamic reservoir characterization and hydromechanical model calibration. The time-lapse seismic simulations use a dynamic elastic reservoir model based on a North Sea deep reservoir undergoing large pressure changes. The time-lapse seismic traveltime shifts and time strains calculated from the modelled and processed synthetic data sets (i.e. pre-stack and post-stack data) are in a reasonable agreement with the true earth models, indicating the feasibility of using 1-D strain rock physics transform and time-lapse seismic processing methodology. Estimated vertical traveltime shifts for the overburden and the majority of the reservoir are within ±1 ms of the true earth model values, indicating that the time-lapse technique is sufficiently accurate for predicting overburden velocity changes and hence geomechanical effects. Characterization of deeper structure below the overburden becomes less accurate, where more advanced time-lapse seismic processing and migration is needed to handle the complex geometry and strong lateral induced velocity changes. Nevertheless, both migrated full-offset pre-stack and near-offset post-stack data image the general features of both the overburden and

  2. Performance Analysis of Depleted Oil Reservoirs for Underground Gas Storage

    Directory of Open Access Journals (Sweden)

    Dr. C.I.C. Anyadiegwu

    2014-02-01

    Full Text Available The performance of underground gas storage in depleted oil reservoir was analysed with reservoir Y-19, a depleted oil reservoir in Southern region of the Niger Delta. Information on the geologic and production history of the reservoir were obtained from the available field data of the reservoir. The verification of inventory was done to establish the storage capacity of the reservoir. The plot of the well flowing pressure (Pwf against the flow rate (Q, gives the deliverability of the reservoir at various pressures. Results of the estimated properties signified that reservoir Y-19 is a good candidate due to its storage capacity and its flow rate (Q of 287.61 MMscf/d at a flowing pressure of 3900 psig

  3. Quantification of oil recovery efficiency, CO 2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran; Sisson, Adam

    2017-01-01

    Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (CO...... for oil recovery and CO2 storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO2 storage scenario in heterogeneous oil reservoirs is essential....

  4. Ray-based stochastic inversion of pre-stack seismic data for improved reservoir characterisation

    NARCIS (Netherlands)

    van der Burg, D.W.

    2007-01-01

    To estimate rock and pore-fluid properties of oil and gas reservoirs in the subsurface, techniques can be used that invert seismic data. Hereby, the detailed information about the reservoir that is available at well locations, such as the thickness and porosity of individual layers, is extrapolated

  5. Isotopic insights into microbial sulfur cycling in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Christopher G Hubbard

    2014-09-01

    Full Text Available Microbial sulfate reduction in oil reservoirs (biosouring is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters containing elevated concentrations of volatile fatty acids and injection water containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

  6. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1997-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  7. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1996-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  8. Multi-data reservoir history matching of crosswell seismic, electromagnetics and gravimetry data

    KAUST Repository

    Katterbauer, Klemens

    2014-01-01

    Reservoir engineering has become of prime importance for oil and gas field development projects. With rising complexity, reservoir simulations and history matching have become critical for fine-tuning reservoir production strategies, improved subsurface formation knowledge and forecasting remaining reserves. The sparse spatial sampling of production data has posed a significant challenge for reducing uncertainty of subsurface parameters. Seismic, electromagnetic and gravimetry techniques have found widespread application in enhancing exploration for oil and gas and monitor reservoirs, however these data have been interpreted and analyzed mostly separately rarely utilizing the synergy effects that may be attainable. With the incorporation of multiple data into the reservoir history matching process there has been the request knowing the impact each incorporated observation has on the estimation. We present multi-data ensemble-based history matching framework for the incorporation of multiple data such as seismic, electromagnetics, and gravimetry for improved reservoir history matching and provide an adjointfree ensemble sensitivity method to compute the impact of each observation on the estimated reservoir parameters. The incorporation of all data sets displays the advantages multiple data may provide for enhancing reservoir understanding and matching, with the impact of each data set on the matching improvement being determined by the ensemble sensitivity method.

  9. Estimation of Oil Production Rates in Reservoirs Exposed to Focused Vibrational Energy

    KAUST Repository

    Jeong, Chanseok

    2014-01-01

    Elastic wave-based enhanced oil recovery (EOR) is being investigated as a possible EOR method, since strong wave motions within an oil reservoir - induced by earthquakes or artificially generated vibrations - have been reported to improve the production rate of remaining oil from existing oil fields. To date, there are few theoretical studies on estimating how much bypassed oil within an oil reservoir could be mobilized by such vibrational stimulation. To fill this gap, this paper presents a numerical method to estimate the extent to which the bypassed oil is mobilized from low to high permeability reservoir areas, within a heterogeneous reservoir, via wave-induced cross-flow oscillation at the interface between the two reservoir permeability areas. This work uses the finite element method to numerically obtain the pore fluid wave motion within a one-dimensional fluid-saturated porous permeable elastic solid medium embedded in a non-permeable elastic semi-infinite solid. To estimate the net volume of mobilized oil from the low to the high permeability area, a fluid flow hysteresis hypothesis is adopted to describe the behavior at the interface between the two areas. Accordingly, the fluid that is moving from the low to the high permeability areas is assumed to transport a larger volume of oil than the fluid moving in the opposite direction. The numerical experiments were conducted by using a prototype heterogeneous oil reservoir model, subjected to ground surface dynamic loading operating at low frequencies (1 to 50 Hz). The numerical results show that a sizeable amount of oil could be mobilized via the elastic wave stimulation. It is observed that certain wave frequencies are more effective than others in mobilizing the remaining oil. We remark that these amplification frequencies depend on the formation’s elastic properties. This numerical work shows that the wave-based mobilization of the bypassed oil in a heterogeneous oil reservoir is feasible, especially

  10. A hybrid model to predict the entrainment and subsurface transport of oil

    International Nuclear Information System (INIS)

    Spaulding, M.L.; Odulo, A.; Kolluru, V.S.

    1992-01-01

    The entrainment of surface oil into the water column and its subsequent subsurface transport and dispersion are predicted by a hybrid analytic-numerical solution to the advective diffusion equation. Total oil or selected hydrocarbon component concentrations in the water column are predicted. Assuming that the principal mechanism for entrainment is due to breaking waves, the oil entrainment rate is specified using the empirically based algorithm of Delvigne and Sweeney (1988). The subsurface transport model explicitly accounts for buoyant forces on dispersed oil by droplet size. Application of the model to an analytic test case and several hypothetical scenarios illustrates the model's utility. 35 refs., 8 figs., 2 tabs

  11. Network optimization including gas lift and network parameters under subsurface uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Riegert, R.; Baffoe, J.; Pajonk, O. [SPT Group GmbH, Hamburg (Germany); Badalov, H.; Huseynov, S. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE; Trick, M. [SPT Group, Calgary, AB (Canada)

    2013-08-01

    Optimization of oil and gas field production systems poses a great challenge to field development due to complex and multiple interactions between various operational design parameters and subsurface uncertainties. Conventional analytical methods are capable of finding local optima based on single deterministic models. They are less applicable for efficiently generating alternative design scenarios in a multi-objective context. Practical implementations of robust optimization workflows integrate the evaluation of alternative design scenarios and multiple realizations of subsurface uncertainty descriptions. Production or economic performance indicators such as NPV (Net Present Value) are linked to a risk-weighted objective function definition to guide the optimization processes. This work focuses on an integrated workflow using a reservoir-network simulator coupled to an optimization framework. The work will investigate the impact of design parameters while considering the physics of the reservoir, wells, and surface facilities. Subsurface uncertainties are described by well parameters such as inflow performance. Experimental design methods are used to investigate parameter sensitivities and interactions. Optimization methods are used to find optimal design parameter combinations which improve key performance indicators of the production network system. The proposed workflow will be applied to a representative oil reservoir coupled to a network which is modelled by an integrated reservoir-network simulator. Gas-lift will be included as an explicit measure to improve production. An objective function will be formulated for the net present value of the integrated system including production revenue and facility costs. Facility and gas lift design parameters are tuned to maximize NPV. Well inflow performance uncertainties are introduced with an impact on gas lift performance. Resulting variances on NPV are identified as a risk measure for the optimized system design. A

  12. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  13. Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia Crude Oil Pipeline route.

    Directory of Open Access Journals (Sweden)

    Sizhong Yang

    Full Text Available The buried China-Russia Crude Oil Pipeline (CRCOP across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs. The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.

  14. Crude Oil Treatment Leads to Shift of Bacterial Communities in Soils from the Deep Active Layer and Upper Permafrost along the China-Russia Crude Oil Pipeline Route

    Science.gov (United States)

    Yang, Sizhong; Wen, Xi; Zhao, Liang; Shi, Yulan; Jin, Huijun

    2014-01-01

    The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils. PMID:24794099

  15. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  16. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine

    2012-12-31

    trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was

  17. Oligo-Miocene reservoir sequence characterization and structuring in the Sisseb El Alem-Kalaa Kebira regions (Northeastern Tunisia)

    Science.gov (United States)

    Houatmia, Faten; Khomsi, Sami; Bédir, Mourad

    2015-11-01

    The Sisseb El Alem-Enfidha basin is located in the northeastern Tunisia, It is borded by Nadhour - Saouaf syncline to the north, Kairouan plain to the south, the Mediterranean Sea to the east and Tunisian Atlassic "dorsale" to the west. Oligocene and Miocene deltaic deposits present the main potential deep aquifers in this basin with high porosity (25%-30%). The interpretation of twenty seismic reflection profiles, calibrated by wire line logging data of twelve oil wells, hydraulic wells and geologic field sections highlighted the impact of tectonics on the structuring geometry of Oligo-Miocene sandstones reservoirs and their distribution in raised structures and subsurface depressions. Miocene seismostratigraphy analysis from Ain Ghrab Formation (Langhian) to the Segui Formation (Quaternary) showed five third-order seismic sequence deposits and nine extended lenticular sandy bodies reservoirs limited by toplap and downlap surfaces unconformities, Oligocene deposits presented also five third- order seismic sequences with five extended lenticular sandy bodies reservoirs. The Depth and the thickness maps of these sequence reservoir packages exhibited the structuring of this basin in sub-basins characterized by important lateral and vertical geometric and thichness variations. Petroleum wells wire line logging correlation with clay volume calculation showed an heterogeneous multilayer reservoirs of Oligocene and Miocene formed by the arrangement of fourteen sandstone bodies being able to be good reservoirs, separated by impermeable clay packages and affected by faults. Reservoirs levels correspond mainly to the lower system tract (LST) of sequences. Intensive fracturing by deep seated faults bounding the different sub-basins play a great role for water surface recharge and inter-layer circulations between affected reservoirs. The total pore volume of the Oligo-Miocene reservoir sandy bodies in the study area, is estimated to about 4 × 1012 m3 and equivalent to 4

  18. Nematoda from the terrestrial deep subsurface of South Africa

    NARCIS (Netherlands)

    Borgonie, G.; García-Moyano, A.; Litthauer, D.; Bert, W.; Bester, A.; Heerden, van E.; Möller, C.; Erasmus, M.; Onstott, T.C.

    2011-01-01

    Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth’s crust and comprising a significant fraction of the global biosphere1–4. The constraints of temperature, energy,

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  20. Preconditioning methods to improve SAGD performance in heavy oil and bitumen reservoirs with variable oil phase viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Gates, I.D. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R.; Adams, J.J.; Snowdon, L.; Jiang, C. [Gushor Inc., Calgary, AB (Canada)]|[Calgary Univ., Calgary, AB (Canada). Dept. of Geoscience

    2008-10-15

    This study investigated preconditioning techniques for altering reservoir fluid properties prior to steam assisted gravity drainage (SAGD) recovery processes. Viscosity-reducing agents were distributed in mobile reservoir water. Simulations were conducted to demonstrate the method's ability to modify oil viscosity prior to steam injection. The study simulated the action of water soluble organic solvents that preferentially partitioned in the oil phase. The solvent was injected with water into the reservoir in a slow waterflood that did not displace oil from the near wellbore region. A reservoir simulation model was used to investigate the technique. Shu's correlation was used to establish a viscosity correlation for the bitumen and solvent mixtures. Solvent injection was modelled by converting the oil phase viscosity through time. Over the first 2 years, oil rates of the preconditioned case were double that of the non-preconditioned case study. However, after 11 years, the preconditioned case's rates declined below rates observed in the non-preconditioned case. The model demonstrated that oil viscosity distributions were significantly altered using the preconditioners. The majority of the most viscous oil surrounding the production well was significantly reduced. It was concluded that accelerated steam chamber growth provided faster access to lower viscosity materials at the top of the reservoir. 12 refs., 9 figs.

  1. Analysis of Microbial Communities in the Oil Reservoir Subjected to CO2-Flooding by Using Functional Genes as Molecular Biomarkers for Microbial CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Jin-Feng eLiu

    2015-03-01

    Full Text Available Sequestration of CO2 in oil reservoirs is considered to be one of the feasible options for mitigating atmospheric CO2 building up and also for the in situ potential bioconversion of stored CO2 to methane. However, the information on these functional microbial communities and the impact of CO2 storage on them is hardly available. In this paper a comprehensive molecular survey was performed on microbial communities in production water samples from oil reservoirs experienced CO2-flooding by analysis of functional genes involved in the process, including cbbM, cbbL, fthfs, [FeFe]-hydrogenase and mcrA. As a comparison, these functional genes in the production water samples from oil reservoir only experienced water-flooding in areas of the same oil bearing bed were also analyzed. It showed that these functional genes were all of rich diversity in these samples, and the functional microbial communities and their diversity were strongly affected by a long-term exposure to injected CO2. More interestingly, microorganisms affiliated with members of the genera Methanothemobacter, Acetobacterium and Halothiobacillus as well as hydrogen producers in CO2 injected area either increased or remained unchanged in relative abundance compared to that in water-flooded area, which implied that these microorganisms could adapt to CO2 injection and, if so, demonstrated the potential for microbial fixation and conversion of CO2 into methane in subsurface oil reservoirs.

  2. Sub-Surface Oil Monitoring Cruise (GU1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives were to evaluate ability of acoustic echosounder measurements to detect and localize a sub-surface plume of oil or related hydrocarbons released from the...

  3. Oil recovery from naturally fractured reservoirs by steam injection methods. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Reis, J.C.; Miller, M.A.

    1995-05-01

    Oil recovery by steam injection is a proven, successful technology for nonfractured reservoirs, but has received only limited study for fractured reservoirs. Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased by as much as 50% with the application of steam relative to that of low temperature processes. The key mechanisms enhancing oil production at high temperature are the differential thermal expansion between oil and the pore volume, and the generation of gases within matrix blocks. Other mechanisms may also contribute to increased production. These mechanisms are relatively independent of oil gravity, making steam injection into naturally fractured reservoirs equally attractive to light and heavy oil deposits. The objectives of this research program are to quantify the amount of oil expelled by these recovery mechanisms and to develop a numerical model for predicting oil recovery in naturally fractured reservoirs during steam injection. The experimental study consists of constructing and operating several apparatuses to isolate each of these mechanisms. The first measures thermal expansion and capillary imbibition rates at relatively low temperature, but for various lithologies and matrix block shapes. The second apparatus measures the same parameters, but at high temperatures and for only one shape. A third experimental apparatus measures the maximum gas saturations that could build up within a matrix block. A fourth apparatus measures thermal conductivity and diffusivity of porous media. The numerical study consists of developing transfer functions for oil expulsion from matrix blocks to fractures at high temperatures and incorporating them, along with the energy equation, into a dual porosity thermal reservoir simulator. This simulator can be utilized to make predictions for steam injection processes in naturally-fractured reservoirs. Analytical models for capillary imbibition have also been developed.

  4. On the evaluation of steam assisted gravity drainage in naturally fractured oil reservoirs

    Directory of Open Access Journals (Sweden)

    Seyed Morteza Tohidi Hosseini

    2017-06-01

    Full Text Available Steam Assisted Gravity Drainage (SAGD as a successful enhanced oil recovery (EOR process has been applied to extract heavy and extra heavy oils. Huge amount of global heavy oil resources exists in carbonate reservoirs which are mostly naturally fractured reservoirs. Unlike clastic reservoirs, few studies were carried out to determine the performance of SAGD in carbonate reservoirs. Even though SAGD is a highly promising technique, several uncertainties and unanswered questions still exist and they should be clarified for expansion of SAGD methods to world wide applications especially in naturally fractured reservoirs. In this communication, the effects of some operational and reservoir parameters on SAGD processes were investigated in a naturally fractured reservoir with oil wet rock using CMG-STARS thermal simulator. The purpose of this study was to investigate the role of fracture properties including fracture orientation, fracture spacing and fracture permeability on the SAGD performance in naturally fractured reservoirs. Moreover, one operational parameter was also studied; one new well configuration, staggered well pair was evaluated. Results indicated that fracture orientation influences steam expansion and oil production from the horizontal well pairs. It was also found that horizontal fractures have unfavorable effects on oil production, while vertical fractures increase the production rate for the horizontal well. Moreover, an increase in fracture spacing results in more oil production, because in higher fracture spacing model, steam will have more time to diffuse into matrices and heat up the entire reservoir. Furthermore, an increase in fracture permeability results in process enhancement and ultimate recovery improvement. Besides, diagonal change in the location of injection wells (staggered model increases the recovery efficiency in long-term production plan.

  5. Mathematical simulation of oil reservoir properties

    International Nuclear Information System (INIS)

    Ramirez, A.; Romero, A.; Chavez, F.; Carrillo, F.; Lopez, S.

    2008-01-01

    The study and computational representation of porous media properties are very important for many industries where problems of fluid flow, percolation phenomena and liquid movement and stagnation are involved, for example, in building constructions, ore processing, chemical industries, mining, corrosion sciences, etc. Nevertheless, these kinds of processes present a noneasy behavior to be predicted and mathematical models must include statistical analysis, fractal and/or stochastic procedures to do it. This work shows the characterization of sandstone berea core samples which can be found as a porous media (PM) in natural oil reservoirs, rock formations, etc. and the development of a mathematical algorithm for simulating the anisotropic characteristics of a PM based on a stochastic distribution of some of their most important properties like porosity, permeability, pressure and saturation. Finally a stochastic process is used again to simulated the topography of an oil reservoir

  6. INTEGRATED OUTCROP AND SUBSURFACE STUDIES OF THE INTERWELL ENVIRONMENT OF CARBONATE RESERVOIRS: CLEAR FORK (LEONARDIAN-AGE) RESERVOIRS, WEST TEXAS AND NEW MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    F. Jerry Lucia

    2002-01-31

    This is the final report of the project ''Integrated Outcrop and Subsurface Studies of the Interwell Environment of Carbonate Reservoirs: Clear Fork (Leonardian-Age) Reservoirs, West Texas and New Mexico'', Department of Energy contract no. DE-AC26-98BC15105 and is the third in a series of similar projects funded jointly by the U.S. Department of Energy and The University of Texas at Austin, Bureau of Economic Geology, Reservoir Characterization Research Laboratory for Carbonates. All three projects focus on the integration of outcrop and subsurface data for the purpose of developing improved methods for modeling petrophysical properties in the interwell environment. The first project, funded by contract no. DE-AC22-89BC14470, was a study of San Andres outcrops in the Algerita Escarpment, Guadalupe Mountains, Texas and New Mexico, and the Seminole San Andres reservoir, Permian Basin. This study established the basic concepts for constructing a reservoir model using sequence-stratigraphic principles and rock-fabric, petrophysical relationships. The second project, funded by contract no. DE-AC22-93BC14895, was a study of Grayburg outcrops in the Brokeoff Mountains, New Mexico, and the South Cowden Grayburg reservoir, Permian Basin. This study developed a sequence-stratigraphic succession for the Grayburg and improved methods for locating remaining hydrocarbons in carbonate ramp reservoirs. The current study is of the Clear Fork Group in Apache Canyon, Sierra Diablo Mountains, West Texas, and the South Wasson Clear Fork reservoir, Permian Basin. The focus was on scales of heterogeneity, imaging high- and low-permeability layers, and the impact of fractures on reservoir performance. In this study (1) the Clear Fork cycle stratigraphy is defined, (2) important scales of petrophysical variability are confirmed, (3) a unique rock-fabric, petrophysical relationship is defined, (4) a porosity method for correlating high-frequency cycles and defining rock

  7. Research on oil recovery mechanisms in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  8. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Grigg, Reid B.

    2002-01-01

    A three-year contract, DOE Contract No. DE-FG26-01BC15364 ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs,'' was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. This report discusses the activity during the six-month period covering January 1, 2002 through June 30, 2002 that covers the second and third fiscal quarters of the project's first year. Paper SPE 75178, ''Cost Reduction and Injectivity Improvements for CO 2 Foams for Mobility Control,'' has been presented and included in the proceedings of the SPE/DOE Thirteenth Symposium on Improved Oil Recovery, Tulsa, OK, April 13-17, 2002. During these two quarters of the project we have been working in several areas: reservoir fluid/rock interactions and their relationships to changing injectivity, producer survey on injectivity, and surfactant adsorption on quarried and reservoir core

  9. Active Cooling of Oil after Deep-frying.

    Science.gov (United States)

    Totani, Nagao; Yasaki, Naoko; Doi, Rena; Hasegawa, Etsuko

    2017-10-01

    Oil used for deep-frying is often left to stand after cooking. A major concern is oxidation during standing that might be avoidable, especially in the case of oil used repeatedly for commercial deep-frying as this involves large volumes that are difficult to cool in a conventional fryer. This paper describes a method to minimize oil oxidation. French fries were deep-fried and the oil temperature decreased in a manner typical for a commercial deep-fryer. The concentration of polar compounds generated from thermally oxidized oil remarkably increased at temperature higher than 100°C but little oxidation occurred below 60°C. Heating the oil showed that the peroxide and polar compound content did not increase when the oil was actively cooled using a running water-cooled Graham-type condenser system to cool the oil from 180°C to room temperature within 30 min. When French fries were fried and the oil was then immediately cooled using the condenser, the polar compound content during cooling did not increase. Our results demonstrate that active cooling of heated oil is simple and quite effective for inhibiting oxidation.

  10. SIMULATION AND OPTIMIZATION OF THE HYDRAULIC FRACTURING OPERATION IN A HEAVY OIL RESERVOIR IN SOUTHERN IRAN

    Directory of Open Access Journals (Sweden)

    REZA MASOOMI

    2017-01-01

    Full Text Available Extraction of oil from some Iranian reservoirs due to high viscosity of their oil or reducing the formation permeability due to asphaltene precipitation or other problems is not satisfactory. Hydraulic fracturing method increases production in the viscous oil reservoirs that the production rate is low. So this is very important for some Iranian reservoirs that contain these characteristics. In this study, hydraulic fracturing method has been compositionally simulated in a heavy oil reservoir in southern Iran. In this study, the parameters of the fracture half length, the propagation direction of the cracks and the depth of fracturing have been considered in this oil reservoir. The aim of this study is to find the best scenario which has the highest recovery factor in this oil reservoir. For this purpose the parameters of the length, propagation direction and depth of fracturing have been optimized in this reservoir. Through this study the cumulative oil production has been evaluated with the compositional simulation for the next 10 years in this reservoir. Also at the end of this paper, increasing the final production of this oil reservoir caused by optimized hydraulic fracturing has been evaluated.

  11. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  12. Utilizing natural gas huff and puff to enhance production in heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Wenlong, G.; Shuhong, W.; Jian, Z.; Xialin, Z. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[PetroChina Co. Ltd., Beijing (China); Jinzhong, L.; Xiao, M. [China Univ. of Petroleum, Beijing (China)

    2008-10-15

    The L Block in the north structural belt of China's Tuha Basin is a super deep heavy oil reservoir. The gas to oil ratio (GOR) is 12 m{sup 3}/m{sup 3} and the initial bubble point pressure is only 4 MPa. The low production can be attributed to high oil viscosity and low flowability. Although steam injection is the most widely method for heavy oil production in China, it is not suitable for the L Block because of its depth. This paper reviewed pilot tests in which the natural gas huff and puff process was used to enhance production in the L Block. Laboratory experiments that included both conventional and unconventional PVT were conducted to determine the physical property of heavy oil saturated by natural gas. The experiments revealed that the heavy oil can entrap the gas for more than several hours because of its high viscosity. A pseudo bubble point pressure exists much lower than the bubble point pressure in manmade foamy oils, which is relative to the depressurization rate. Elastic energy could be maintained in a wider pressure scope than natural depletion without gas injection. A special experimental apparatus that can stimulate the process of gas huff and puff in the reservoir was also introduced. The foamy oil could be seen during the huff and puff experiment. Most of the oil flowed to the producer in a pseudo single phase, which is among the most important mechanisms for enhancing production. A pilot test of a single well demonstrated that the oil production increased from 1 to 2 cubic metres per day to 5 to 6 cubic metres per day via the natural gas huff and puff process. The stable production period which was 5 to 10 days prior to huff and puff, was prolonged to 91 days in the first cycle and 245 days in the second cycle. 10 refs., 1 tab., 12 figs.

  13. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  14. Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7-2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA

    Directory of Open Access Journals (Sweden)

    Yiran eDong

    2014-09-01

    Full Text Available The Cambrian-age Mt. Simon Sandstone, deeply buried within the Illinois Basin of the midcontinent of North America, contains quartz sand grains ubiquitously encrusted with iron-oxide cements and dissolved ferrous iron in pore-water. Although microbial iron reduction has previously been documented in the deep terrestrial subsurface, the potential for diagenetic mineral cementation to drive microbial activity has not been well studied. In this study, two subsurface formation water samples were collected at 1.72 and 2.02 km, respectively, from the Mt. Simon Sandstone in Decatur, Illinois. Low-diversity microbial communities were detected from both horizons and were dominated by Halanaerobiales of Phylum Firmicutes. Iron-reducing enrichment cultures fed with ferric citrate were successfully established using the formation water. Phylogenetic classification identified the enriched species to be related to Vulcanibacillus from the 1.72 km depth sample, while Orenia dominated the communities at 2.02 km of burial depth. Species-specific quantitative analyses of the enriched organisms in the microbial communities suggest that they are indigenous to the Mt. Simon Sandstone. Optimal iron reduction by the 1.72 km enrichment culture occurred at a temperature of 40oC (range 20 to 60oC and a salinity of 25 parts per thousand (range 25-75 ppt. This culture also mediated fermentation and nitrate reduction. In contrast, the 2.02 km enrichment culture exclusively utilized hydrogen and pyruvate as the electron donors for iron reduction, tolerated a wider range of salinities (25-200 ppt, and exhibited only minimal nitrate- and sulfate-reduction. In addition, the 2.02 km depth community actively reduces the more crystalline ferric iron minerals goethite and hematite. The results suggest evolutionary adaptation of the autochthonous microbial communities to the Mt. Simon Sandstone and carries potentially important implications for future utilization of this reservoir

  15. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    Science.gov (United States)

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  16. Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: A further discussion

    Directory of Open Access Journals (Sweden)

    Zhao Wenzhi

    2014-10-01

    Full Text Available Deep marine carbonate rocks have become one of the key targets of onshore oil and gas exploration and development for reserves replacement in China. Further geological researches of such rocks may practically facilitate the sustainable, steady and smooth development of the petroleum industry in the country. Therefore, through a deep investigation into the fundamental geological conditions of deep marine carbonate reservoirs, we found higher-than-expected resource potential therein, which may uncover large oil or gas fields. The findings were reflected in four aspects. Firstly, there are two kinds of hydrocarbon kitchens which were respectively formed by conventional source rocks and liquid hydrocarbons cracking that were detained in source rocks, and both of them can provide large-scale hydrocarbons. Secondly, as controlled by the bedding and interstratal karstification, as well as the burial and hydrothermal dolomitization, effective carbonate reservoirs may be extensively developed in the deep and ultra-deep strata. Thirdly, under the coupling action of progressive burial and annealing heating, some marine source rocks could form hydrocarbon accumulations spanning important tectonic phases, and large quantity of liquid hydrocarbons could be kept in late stage, contributing to rich oil and gas in such deep marine strata. Fourthly, large-scale uplifts were formed by the stacking of multi-episodic tectonism and oil and gas could be accumulated in three modes (i.e., stratoid large-area reservoir-forming mode of karst reservoirs in the slope area of uplift, back-flow type large-area reservoir-forming mode of buried hill weathered crust karst reservoirs, and wide-range reservoir-forming mode of reef-shoal reservoirs; groups of stratigraphic and lithologic traps were widely developed in the areas of periclinal structures of paleohighs and continental margins. In conclusion, deep marine carbonate strata in China onshore contain the conditions for

  17. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok

    2011-03-01

    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.

  18. High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.

    Science.gov (United States)

    Iglauer, Stefan; Lebedev, Maxim

    2018-06-01

    Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO 2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e.g. mineral dissolution and/or precipitation over geological times), geo-mechanical rock behaviour (e.g. rock compaction during diagenesis) or fines migration during water production, which can dramatically reduce reservoir permeability (and thus reservoir performance). All above examples are 3D processes, and 2D experiments (as traditionally done for micro-scale investigations) will thus only provide qualitative information; for instance the percolation threshold is much lower in 3D than in 2D. However, with the advent of x-ray micro-computed tomography (μCT) - which is now routinely used - this limitation has been overcome, and such pore-scale processes can be observed in 3D at micrometer-scale. A serious complication is, however, the fact that in the subsurface high pressures and elevated temperatures (HPET) prevail, due to the hydrostatic and geothermal gradients imposed upon it. Such HPET-reservoir conditions significantly change the above mentioned physical and chemical processes, e.g. gas density is much higher at high pressure, which strongly affects buoyancy and wettability and thus gas distributions in the subsurface; or chemical reactions are significantly accelerated at increased temperature, strongly affecting fluid-rock interactions and thus diagenesis and deposition of valuable minerals. It is thus necessary to apply HPET conditions to the aforementioned μCT experiments, to be able to mimic subsurface

  19. Lessons learned from IOR steamflooding in a bitumen-light oil heterogeneous reservoir

    NARCIS (Netherlands)

    Al Mudhafar, W.J.M.; Hosseini Nasab, S.M.

    2015-01-01

    The Steamflooding was considered in this research to extract the discontinuous bitumen layers that are located at the oil-water contact for the heterogeneous light oil sandstone reservoir of South Rumaila Field. The reservoir heterogeneity and the bitumen layers impede water aquifer approaching into

  20. Real-time detection of dielectric anisotropy or isotropy in unconventional oil-gas reservoir rocks supported by the oblique-incidence reflectivity difference technique.

    Science.gov (United States)

    Zhan, Honglei; Wang, Jin; Zhao, Kun; Lű, Huibin; Jin, Kuijuan; He, Liping; Yang, Guozhen; Xiao, Lizhi

    2016-12-15

    Current geological extraction theory and techniques are very limited to adequately characterize the unconventional oil-gas reservoirs because of the considerable complexity of the geological structures. Optical measurement has the advantages of non-interference with the earth magnetic fields, and is often useful in detecting various physical properties. One key parameter that can be detected using optical methods is the dielectric permittivity, which reflects the mineral and organic properties. Here we reported an oblique-incidence reflectivity difference (OIRD) technique that is sensitive to the dielectric and surface properties and can be applied to characterization of reservoir rocks, such as shale and sandstone core samples extracted from subsurface. The layered distribution of the dielectric properties in shales and the uniform distribution in sandstones are clearly identified using the OIRD signals. In shales, the micro-cracks and particle orientation result in directional changes of the dielectric and surface properties, and thus, the isotropy and anisotropy of the rock can be characterized by OIRD. As the dielectric and surface properties are closely related to the hydrocarbon-bearing features in oil-gas reservoirs, we believe that the precise measurement carried with OIRD can help in improving the recovery efficiency in well-drilling process.

  1. Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Poston, S.W.

    1991-12-31

    Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

  2. Microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Martin; Beckmaann, Sabrina; Siegert, Michael; Grundger, Friederike; Richnow, Hans [Geomicrobiology Group, Federal Institute for Geosciences and Natural Resources (Germany)

    2011-07-01

    In recent years, oil production has increased enormously but almost half of the oil now remaining is heavy/biodegraded and cannot be put into production. There is therefore a need for new technology and for diversification of energy sources. This paper discusses the microbial conversion of higher hydrocarbons to methane in oil and coal reservoirs. The objective of the study is to identify microbial and geochemical controls on methanogenesis in reservoirs. A graph shows the utilization of methane for various purposes in Germany from 1998 to 2007. A degradation process to convert coal to methane is shown using a flow chart. The process for converting oil to methane is also given. Controlling factors include elements such as Fe, nitrogen and sulfur. Atmospheric temperature and reservoir pressure and temperature also play an important role. From the study it can be concluded that isotopes of methane provide exploration tools for reservoir selection and alkanes and aromatic compounds provide enrichment cultures.

  3. Microbial potential for carbon and nutrient cycling in a geogenic supercritical carbon dioxide reservoir.

    Science.gov (United States)

    Freedman, Adam J E; Tan, BoonFei; Thompson, Janelle R

    2017-06-01

    Microorganisms catalyze carbon cycling and biogeochemical reactions in the deep subsurface and thus may be expected to influence the fate of injected supercritical (sc) CO 2 following geological carbon sequestration (GCS). We hypothesized that natural subsurface scCO 2 reservoirs, which serve as analogs for the long-term fate of sequestered scCO 2 , harbor a 'deep carbonated biosphere' with carbon cycling potential. We sampled subsurface fluids from scCO 2 -water separators at a natural scCO 2 reservoir at McElmo Dome, Colorado for analysis of 16S rRNA gene diversity and metagenome content. Sequence annotations indicated dominance of Sulfurospirillum, Rhizobium, Desulfovibrio and four members of the Clostridiales family. Genomes extracted from metagenomes using homology and compositional approaches revealed diverse mechanisms for growth and nutrient cycling, including pathways for CO 2 and N 2 fixation, anaerobic respiration, sulfur oxidation, fermentation and potential for metabolic syntrophy. Differences in biogeochemical potential between two production well communities were consistent with differences in fluid chemical profiles, suggesting a potential link between microbial activity and geochemistry. The existence of a microbial ecosystem associated with the McElmo Dome scCO 2 reservoir indicates that potential impacts of the deep biosphere on CO 2 fate and transport should be taken into consideration as a component of GCS planning and modelling. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Impact disruption and recovery of the deep subsurface biosphere

    Science.gov (United States)

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaron L.; Finster, Kai; Kirshtein, Julie D.; Howard, Kieren; Reitner, Joachim; Gohn, Gregory S.; Sanford, Ward E.; Horton, J. Wright; Kallmeyer, Jens; Kelly, Laura; Powars, David S.

    2012-01-01

    Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from the ~35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced by the geological disturbances caused by the impact. Microbial abundance is low in buried crater-fill, ocean-resurge, and avalanche deposits despite the presence of redox couples for growth. Coupled with the low hydraulic conductivity, the data suggest the microbial community has not yet recovered from the impact ~35 million years ago. Microbial enumerations, molecular analysis of microbial enrichment cultures, and geochemical analysis showed recolonization of a deep region of impact-fractured rock that was heated to above the upper temperature limit for life at the time of impact. These results show how, by fracturing subsurface rocks, impacts can extend the depth of the biosphere. This phenomenon would have provided deep refugia for life on the more heavily bombarded early Earth, and it shows that the deeply fractured regions of impact craters are promising targets to study the past and present habitability of Mars.

  5. Nuclear stimulation of oil-reservoirs

    International Nuclear Information System (INIS)

    Delort, F.; Supiot, F.

    1970-01-01

    Underground nuclear explosions in the Hoggar nuclear test site have shown that the geological effects may increase the production of oil or gas reservoirs. By studying the permanent liquid flow-rate with approximate DUPUIT's equation, or with a computer code, it is shown that the conventional well flow-rate may be increased by a factor between 3 and 50, depending on the medium and explosion conditions. (author)

  6. Nuclear stimulation of oil-reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Delort, F; Supiot, F [Commissariat a l' Energie Atomique, Centre d' Etudes de Bruyere-le-Chatel (France)

    1970-05-01

    Underground nuclear explosions in the Hoggar nuclear test site have shown that the geological effects may increase the production of oil or gas reservoirs. By studying the permanent liquid flow-rate with approximate DUPUIT's equation, or with a computer code, it is shown that the conventional well flow-rate may be increased by a factor between 3 and 50, depending on the medium and explosion conditions. (author)

  7. Girassol I. Girassol development: project challenges and reservoir uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Bancelin, J.P.; Pelleau, R.; Serceau, A. [TotalFinaElf, la Defense 6, 92 - Courbevoie (France)

    2002-10-01

    The Girassol Field is located 210 km northwest of Luanda, the Angolan capital, and about 150 km from shore. Girassol was the first discovery made in the prolific Block 17. This was followed by Dalia, Rosa, Lirio, Jasmim, Cravo, Orchidea, etc. April 1996: Girassol field is discovered on Block 17 in deep waters, offshore Angola. July 1998: The Girassol development project is approved by all parties. December 2001: Less than three and a half years after approval, Girassol comes on-stream. By the end of 2001, daily production is 100000 b/d with the production plateau of 200000 b/d to be reached by April 2002. The reservoir, located in 1,400 m water depth, is large (10 km by 14 km). Estimated oil in place is 1,550 mmbbls with recoverable reserves put at 725 mmbbls. The oil quality of 32 deg API is close to Brent specifications. The Girassol development scheme is based on 39 sub-sea wells - 23 oil producers, 14 water injectors and two gas injectors. The field will be developed in two phases: the first phase, completed in December 2001, includes 11 wells - eight oil producers, two water injectors and one gas injector. The second phase development is ongoing and will be completed mid-2003. The overall investment for the two phases of the Girassol development is US$ 2.8 bn. The Girassol project team had to fulfill three main objectives: first priority was given to technical quality; second priority was to closely monitor the development budget and contain the final cost; third priority was to achieve first oil as early as possible. Describe the Girassol reservoir and explain the main subsurface uncertainties; describe the selected development scheme; explain Girassol's major challenges; describe the contractual strategy information on cost, schedule and the project organisation are given. (authors)

  8. Analytical filtration model for nonlinear viscoplastic oil in the theory of oil production stimulation and heating of oil reservoir in a dual-well system

    Science.gov (United States)

    Ivanovich Astafev, Vladimir; Igorevich Gubanov, Sergey; Alexandrovna Olkhovskaya, Valeria; Mikhailovna Sylantyeva, Anastasia; Mikhailovich Zinovyev, Alexey

    2018-02-01

    Production of high-viscosity oil and design of field development systems for such oil is one of the most promising directions in the development of world oil industry. The ability of high-viscosity oil to show in filtration process properties typical for non-Newtonian systems is proven by experimental studies. Nonlinear relationship between the pressure gradient and the rate of oil flow is due to interaction of high-molecular substances, in particular, asphaltenes and tars that form a plastic structure in it. The authors of this article have used the analytical model of stationary influx of nonlinear viscoplastic oil to the well bottom in order to provide rationale for the intensifying impact on a reservoir. They also have analyzed the method of periodic heating of productive reservoir by means of dual-wells. The high-temperature source is placed at the bottom of the vertical well, very close to the reservoir; at the same time the side well, located outside the zone of expected rock damage, is used for production. Suggested method of systemic treatment of reservoirs with dual wells can be useful for small fields of high-viscosity oil. The effect is based on the opportunity to control the structural and mechanical properties of high-viscosity oil and to increase depletion of reserves.

  9. Visualization of viscous coupling effects in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-Arango, J.D. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory; Kantzas, A. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Some heavy oil reservoirs in Venezuela and Canada have shown higher than expected production rates attributed to the effects of foamy oil or enhanced solution gas drive. However, foamy oil 2-phase flow does not fully explain oil rate enhancement in heavy oil reservoirs. In this study, flow visualization experiments were conducted in a 2-D etched network micromodel in order to determine the effect of the viscosity ratio on oil mobility at the pore scale. The micromodel's pattern was characterized by macroscopic heterogeneities with a random network of larger pore bodies interconnected with a random network of smaller pore throats. Displacement tests were conducted with green-dyed distilled water as a wetting phase. N-octane, bromododecane and mineral oil were used as non-wetting phases. An unsteady-state method was used to obtain displacement data, and the Alternate method was used to calculate relative permeabilities. Results of the study showed that relative permeabilities depended on the viscosity ratio of the fluids flowing through the porous medium. Channel and annular flows co-existed, and water lubrication was stronger at higher water saturations. The results of the study explained the abnormally high production rates in heavier oil fields. 19 refs., 3 tabs., 14 figs.

  10. Two-phase flow in volatile oil reservoir using two-phase pseudo-pressure well test method

    Energy Technology Data Exchange (ETDEWEB)

    Sharifi, M.; Ahmadi, M. [Calgary Univ., AB (Canada)

    2009-09-15

    A study was conducted to better understand the behaviour of volatile oil reservoirs. Retrograde condensation occurs in gas-condensate reservoirs when the flowing bottomhole pressure (BHP) lowers below the dewpoint pressure, thus creating 4 regions in the reservoir with different liquid saturations. Similarly, when the BHP of volatile oil reservoirs falls below the bubblepoint pressure, two phases are created in the region around the wellbore, and a single phase (oil) appears in regions away from the well. In turn, higher gas saturation causes the oil relative permeability to decrease towards the near-wellbore region. Reservoir compositional simulations were used in this study to predict the fluid behaviour below the bubblepoint. The flowing bottomhole pressure was then exported to a well test package to diagnose the occurrence of different mobility regions. The study also investigated the use of a two-phase pseudo-pressure method on volatile and highly volatile oil reservoirs. It was concluded that this method can successfully predict the true permeability and mechanical skin. It can also distinguish between mechanical skin and condensate bank skin. As such, the two-phase pseudo-pressure method is particularly useful for developing after-drilling well treatment and enhanced oil recovery process designs. However, accurate relative permeability and PVT data must be available for reliable interpretation of the well test in volatile oil reservoirs. 18 refs., 3 tabs., 9 figs.

  11. Electro-magnetic heating in viscous oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    This paper discussed electromagnetic (EM) heating techniques for primary and secondary enhanced oil recovery (EOR) processes. Ohmic, induction, and formation resistive heating techniques were discussed. Issues related to energy equivalence and hardware requirements were reviewed. Challenges related to heat losses in vertical wellbores, well integrity, and galvanic corrosion were also outlined. A pair of 1500 foot horizontal wells in a heavy oil reservoir were then modelled in order to optimize EM recovery processes. DC current was used in a base case water flood run. Electrical conductivities were measured. The model was converted to a homogenous model in order to study injector and producer electrodes. The study showed that reservoir resistance was low, and most of the heating took place near the electrode area where electric lines diverged or converged. Results of the study suggested that EM heating in formations is not as efficient as steam-based processes. Accurate simulations of EM heating processes within reservoirs are difficult to obtain, as the amounts of estimated heat input are sensitive to grid refinement. It was concluded that hot spots in the EM electrodes have also caused failures in other field applications and studies. 11 refs., 12 figs.

  12. Application of microbiological methods for secondary oil recovery from the Carpathian crude oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Karaskiewicz, J

    1974-01-01

    The investigation made it possible to isolate from different ecologic environmental (soil, crude oil, formation water, industrial wastes) bacteria cultures of the genus Arthrobacter, Clostridium, Mycobacterium, Peptococcus, and Pseudomonas. These heterotrophic bacteria are characterized by a high metabolic and biogeochemical activity hydrocarbon transformation. Experiments on a technical scale were conducted from 1961 to 1971 in 20 wells; in this study, only the 16 most typical examples are discussed. The experiments were conducted in Carpathian crude oil reservoirs. To each well, a 500:1 mixture of the so-called bacteria vaccine (containing an active biomass of cultures obtained by a specific cultivation method and holding 6 x 10/sup 5/ bacteria cells in 1 ml of fluid, 2,000 kg of molasses, and 50 cu m of water originating from the reservoir submitted to treatment) was injected at 500 to 1,200 m. The intensification of the microbiological processes in the reservoir was observed. This phenomenon occurred not only in the wells to which the bacteria vaccine was injected, but also in the surrounding producing wells. At the same time, an increase in the crude oil production occurred on the average within the range from 20 to 200% and the surpluses of crude oil production continued for 2 to 8 yr. (92 refs.)

  13. Reservoir characterization and monitoring of cold and thermal heavy oil production using multi-transient EM

    Energy Technology Data Exchange (ETDEWEB)

    Engelmark, F. [Petroleum Geo-Services Asia Pacific Pte Ltd., Singapore (Singapore)

    2008-10-15

    This study emphasized the importance of mapping the in situ subsurface distribution of heavy oil for evaluating the amount of oil in place. The multi-transient electromagnetic (MTEM) method was shown to be an ideal method to characterize the large scale distribution of oil, including the average saturation levels, on the scale needed to optimize oil extraction using steam assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS). A feasibility study for an MTEM monitoring project would simulate reservoir temperature, water saturation and salinity to determine the evolution over time expressed in resistivity and the expanding steam chamber. The 4 factors influencing the resistivity in the monitoring phase were discussed. The temperature due to steaming causes a significant drop in resistivity of the affected rock volume, while the changes in water saturation affect resistivity. The drop in salinity of the pore water due to mixing with distilled water originating in the condensation of the injected steam causes an increase in resistivity, while the mineral dissolution and overall volume expansion causes formation damage that permanently changes the rock fabric. The overall effect of steam injection is a reduction in resistivity within the main part of the chamber, with a sudden increase in resistivity in the proximity of the injection well due to salt depletion. The lowered resistivity within a halo outside the steam chamber can be attributed to the heat radiation front expanding faster than the maturing steam chamber. The author noted that reservoir simulators do not yet incorporate the dynamic changes in porosity and permeability that are observed as permanent reductions of the elastic moduli and reduced resistivity. It was concluded that in order to fully describe the evolution of the steam chamber, this so called formation damage must be better understood. 6 refs., 7 figs.

  14. Bluebell Field, Uinta Basin: reservoir characterization for improved well completion and oil recovery

    Science.gov (United States)

    Montgomery, S.L.; Morgan, C.D.

    1998-01-01

    Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine

  15. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

  16. Physical Aspects in Upscaling of Fractured Reservoirs and Improved Oil Recovery Prediction

    NARCIS (Netherlands)

    Salimi, H.

    2010-01-01

    This thesis is concerned with upscaled models for waterflooded naturally fractured reservoirs (NFRs). Naturally fractured petroleum reservoirs provide over 20% of the world’s oil reserves and production. From the fluid-flow point of view, a fractured reservoir is defined as a reservoir in which a

  17. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  18. A Novel Approach for Risk Minimization in Life-Cycle Oil Production Optimization

    DEFF Research Database (Denmark)

    Capolei, Andrea; Christiansen, Lasse Hjuler; Jørgensen, John Bagterp

    2017-01-01

    The oil research community has invested much effort into computer aided optimization to enhance oil recovery. While simulation studies have demonstrated the potential of model-based technology to improve industrial standards, the largely unknown geology of subsurface reservoirs limits application...

  19. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens

    2015-04-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated for adjusting reservoir parameters. However, the sparse spatial sampling of this data set has posed a significant challenge for efficiently reducing uncertainty of reservoir parameters. Seismic, electromagnetic, gravity and InSAR techniques have found widespread applications in enhancing exploration for oil and gas and monitoring reservoirs. These data have however been interpreted and analyzed mostly separately, rarely exploiting the synergy effects that could result from combining them. We present a multi-data ensemble Kalman filter-based history matching framework for the simultaneous incorporation of various reservoir data such as seismic, electromagnetics, gravimetry and InSAR for best possible characterization of the reservoir formation. We apply an ensemble-based sensitivity method to evaluate the impact of each observation on the estimated reservoir parameters. Numerical experiments for different test cases demonstrate considerable matching enhancements when integrating all data sets in the history matching process. Results from the sensitivity analysis further suggest that electromagnetic data exhibit the strongest impact on the matching enhancements due to their strong differentiation between water fronts and hydrocarbons in the test cases.

  20. Risk management in oil reservoir water-flooding under economic uncertainty

    NARCIS (Netherlands)

    Siraj, Muhammad; Van den Hof, Paul; Jansen, Jan Dirk

    2015-01-01

    Model-based economic optimization of the water-flooding process in oil reservoirs suffers from high levels of uncertainty. The achievable economic objective is highly uncertain due to the varying economic conditions and the limited knowledge of the reservoir model parameters. For improving

  1. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai

    2015-10-26

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of

  2. A numerical investigation of combined heat storage and extraction in deep geothermal reservoirs

    DEFF Research Database (Denmark)

    Major, Márton; Poulsen, Søren Erbs; Balling, Niels

    2018-01-01

    Heat storage capabilities of deep sedimentary geothermal reservoirs are evaluated through numerical model simulations. We combine storage with heat extraction in a doublet well system when storage phases are restricted to summer months. The effects of stored volume and annual repetition on energy...... recovery are investigated. Recovery factors are evaluated for several different model setups and we find that storing 90 °C water at 2500 m depth is capable of reproducing, on average 67% of the stored energy. In addition, ambient reservoir temperature of 75 °C is slightly elevated leading to increased...... efficiency. Additional simulations concerning pressure build-up in the reservoir are carried out to show that safety levels may not be reached. Reservoir characteristics are inspired by Danish geothermal conditions, but results are assumed to have more general validity. Thus, deep sedimentary reservoirs...

  3. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  4. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  5. On using rational enzyme redesign to improve enzyme-mediated microbial dehalogenation of recalcitrant substances in deep-subsurface environments

    International Nuclear Information System (INIS)

    Ornstein, R.L.

    1993-06-01

    Heavily halogenated hydrocarbons are one of the most prevalent classes of man-made recalcitrant environmental contaminants and often make their way into subsurface environments. Biodegradation of heavily chlorinated compounds in the deep subsurface often occurs at extremely slow rates because native enzymes of indigenous microbes are unable to efficiently metabolize such synthetic substances. Cost-effective engineering solutions do not exist for dealing with disperse and recalcitrant pollutants in the deep subsurface (i.e., ground water, soils, and sediments). Timely biodegradation of heavily chlorinated compounds in the deep subsurface may be best accomplished by rational redesign of appropriate enzymes that enhance the ability of indigenous microbes to metabolize these substances. The isozyme family cytochromes P450 are catalytically very robust and are found in all aerobic life forms and may be active in may anaerobes as well. The author is attempting to demonstrate proof-of-principle rational enzyme redesign of cytochromes P450 to enhance biodehalogenation

  6. Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery.

    Science.gov (United States)

    Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan

    2013-11-01

    The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Energy R and D. Geothermal energy and underground reservoirs; R et D energie. Geothermie et reservoirs souterrains

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Geothermal energy appears as a viable economic alternative among the different renewable energy sources. The French bureau of geological and mining researches (BRGM) is involved in several research and development programs in the domain of geothermal energy and underground reservoirs. This document presents the content of 5 programs: the deep hot dry rock system of Soultz-sous-Forets (construction and testing of the scientific pilot, modeling of the reservoir structure), the development of low and high enthalpy geothermal energy in the French West Indies, the comparison of the geothermal development success of Bouillante (Guadeloupe, French West Indies) with the check of the geothermal development of Nyssiros (Greece) and Pantelleria (Italy), the development of the high enthalpy geothermal potentialities of Reunion Island, and the underground storage of CO{sub 2} emissions in geologic formations (deep aquifers, geothermal reservoirs, abandoned mines or oil reservoirs). (J.S.)

  8. Computer Modeling of the Displacement Behavior of Carbon Dioxide in Undersaturated Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ju Binshan

    2015-11-01

    Full Text Available The injection of CO2 into oil reservoirs is performed not only to improve oil recovery but also to store CO2 captured from fuel combustion. The objective of this work is to develop a numerical simulator to predict quantitatively supercritical CO2 flooding behaviors for Enhanced Oil Recovery (EOR. A non-isothermal compositional flow mathematical model is developed. The phase transition diagram is designed according to the Minimum Miscibility Pressure (MMP and CO2 maximum solubility in oil phase. The convection and diffusion of CO2 mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude and phase partitioning are considered. The governing equations are discretized by applying a fully implicit finite difference technique. Newton-Raphson iterative technique was used to solve the nonlinear equation systems and a simulator was developed. The performances of CO2 immiscible and miscible flooding in oil reservoirs are predicted by the new simulator. The distribution of pressure and temperature, phase saturations, mole fraction of each component in each phase, formation damage caused by asphaltene precipitation and the improved oil recovery are predicted by the simulator. Experimental data validate the developed simulator by comparison with simulation results. The applications of the simulator in prediction of CO2 flooding in oil reservoirs indicate that the simulator is robust for predicting CO2 flooding performance.

  9. Comparative Single-Cell Genomics of Chloroflexi from the Okinawa Trough Deep-Subsurface Biosphere.

    Science.gov (United States)

    Fullerton, Heather; Moyer, Craig L

    2016-05-15

    Chloroflexi small-subunit (SSU) rRNA gene sequences are frequently recovered from subseafloor environments, but the metabolic potential of the phylum is poorly understood. The phylum Chloroflexi is represented by isolates with diverse metabolic strategies, including anoxic phototrophy, fermentation, and reductive dehalogenation; therefore, function cannot be attributed to these organisms based solely on phylogeny. Single-cell genomics can provide metabolic insights into uncultured organisms, like the deep-subsurface Chloroflexi Nine SSU rRNA gene sequences were identified from single-cell sorts of whole-round core material collected from the Okinawa Trough at Iheya North hydrothermal field as part of Integrated Ocean Drilling Program (IODP) expedition 331 (Deep Hot Biosphere). Previous studies of subsurface Chloroflexi single amplified genomes (SAGs) suggested heterotrophic or lithotrophic metabolisms and provided no evidence for growth by reductive dehalogenation. Our nine Chloroflexi SAGs (seven of which are from the order Anaerolineales) indicate that, in addition to genes for the Wood-Ljungdahl pathway, exogenous carbon sources can be actively transported into cells. At least one subunit for pyruvate ferredoxin oxidoreductase was found in four of the Chloroflexi SAGs. This protein can provide a link between the Wood-Ljungdahl pathway and other carbon anabolic pathways. Finally, one of the seven Anaerolineales SAGs contains a distinct reductive dehalogenase homologous (rdhA) gene. Through the use of single amplified genomes (SAGs), we have extended the metabolic potential of an understudied group of subsurface microbes, the Chloroflexi These microbes are frequently detected in the subsurface biosphere, though their metabolic capabilities have remained elusive. In contrast to previously examined Chloroflexi SAGs, our genomes (several are from the order Anaerolineales) were recovered from a hydrothermally driven system and therefore provide a unique window into

  10. Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, James [Texas Tech Univ., Lubbock, TX (United States); Li, Lei [Texas Tech Univ., Lubbock, TX (United States); Yu, Yang [Texas Tech Univ., Lubbock, TX (United States); Meng, Xingbang [Texas Tech Univ., Lubbock, TX (United States); Sharma, Sharanya [Texas Tech Univ., Lubbock, TX (United States); Huang, Siyuan [Texas Tech Univ., Lubbock, TX (United States); Shen, Ziqi [Texas Tech Univ., Lubbock, TX (United States); Zhang, Yao [Texas Tech Univ., Lubbock, TX (United States); Wang, Xiukun [Texas Tech Univ., Lubbock, TX (United States); Carey, Bill [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nguyen, Phong [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Porter, Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jimenez-Martinez, Joaquin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mody, Fersheed [Apache Corp., Houston, TX (United States); Barnes, Warren [Apache Corp., Houston, TX (United States); Cook, Tim [Apache Corp., Houston, TX (United States); Griffith, Paul [Apache Corp., Houston, TX (United States)

    2017-11-17

    The current technology to produce shale oil reservoirs is the primary depletion using fractured wells (generally horizontal wells). The oil recovery is less than 10%. The prize to enhance oil recovery (EOR) is big. Based on our earlier simulation study, huff-n-puff gas injection has the highest EOR potential. This project was to explore the potential extensively and from broader aspects. The huff-n-puff gas injection was compared with gas flooding, water huff-n-puff and waterflooding. The potential to mitigate liquid blockage was also studied and the gas huff-n-puff method was compared with other solvent methods. Field pilot tests were initiated but terminated owing to the low oil price and the operator’s budget cut. To meet the original project objectives, efforts were made to review existing and relevant field projects in shale and tight reservoirs. The fundamental flow in nanopores was also studied.

  11. Status and prospects of exploration and exploitation key technologies of the deep petroleum resources in onshore China

    Directory of Open Access Journals (Sweden)

    Genshun Yao

    2018-02-01

    Full Text Available In recent years, China's deep oil and gas exploration and exploitation have developed rapidly. Technological advancements have played an important role in the rapid exploration and highly efficient development. Aimed at the complex engineering geological environment of deep oil and gas in China, this paper has combined the four technological systems that have made significant progress, mainly including: (1 seismic imaging and reservoir prediction techniques for deep–burial complex structures, includign “2W1S” technique (wide-band, wide azimuth, and small bin, RTM (Reverse Time Migration, integrated modeling technology for complex structures and variable velocity mapping technique, improving structural interpretation accuracy, ensuring high precision ofimaging, and prediction for deep geological bodies; (2 deep speed raising and efficiency drilling technology series, which significantly improved the drilling speed, in turn reduced the drilling cost and drilling risk; (3 development of a deep high-temperature and high-pressure logging technology series, which provided a guarantee for the accurate identification of reservoir properties and fluid properties; (4 the efficient development technology for deep reservoirs, especially the development and maturity of the reconstruction volume technology, improve the production of single well and the benefit of deep oil and gas development. This paper further points out the improvement direction of the four major technology series of deep oil based on the analysis of the current development of the four major technological systems. Moreover, the development of applicability and economy for technical system is the key to realize high efficiency and low-cost exploration and development of deep oil and gas. Keywords: Deep oil & gas, Exploration and exploitation technologies, Seismic, Logging, Drilling, Petroleum reservoir stimulation

  12. Hydrodynamic modeling of petroleum reservoirs using simulator MUFITS

    Science.gov (United States)

    Afanasyev, Andrey

    2015-04-01

    MUFITS is new noncommercial software for numerical modeling of subsurface processes in various applications (www.mufits.imec.msu.ru). To this point, the simulator was used for modeling nonisothermal flows in geothermal reservoirs and for modeling underground carbon dioxide storage. In this work, we present recent extension of the code to petroleum reservoirs. The simulator can be applied in conventional black oil modeling, but it also utilizes a more complicated models for volatile oil and gas condensate reservoirs as well as for oil rim fields. We give a brief overview of the code by providing the description of internal representation of reservoir models, which are constructed of grid blocks, interfaces, stock tanks as well as of pipe segments and pipe junctions for modeling wells and surface networks. For conventional black oil approach, we present the simulation results for SPE comparative tests. We propose an accelerated compositional modeling method for sub- and supercritical flows subjected to various phase equilibria, particularly to three-phase equilibria of vapour-liquid-liquid type. The method is based on the calculation of the thermodynamic potential of reservoir fluid as a function of pressure, total enthalpy and total composition and storing its values as a spline table, which is used in hydrodynamic simulation for accelerated PVT properties prediction. We provide the description of both the spline calculation procedure and the flashing algorithm. We evaluate the thermodynamic potential for a mixture of two pseudo-components modeling the heavy and light hydrocarbon fractions. We develop a technique for converting black oil PVT tables to the potential, which can be used for in-situ hydrocarbons multiphase equilibria prediction under sub- and supercritical conditions, particularly, in gas condensate and volatile oil reservoirs. We simulate recovery from a reservoir subject to near-critical initial conditions for hydrocarbon mixture. We acknowledge

  13. Improving Oil Recovery (IOR) with Polymer Flooding in a Heavy-Oil River-Channel Sandstone Reservoir

    OpenAIRE

    Lu, Hongjiang

    2009-01-01

    Most of the old oil fields in China have reached high water cut stage, in order to meet the booming energy demanding, oil production rate must be kept in the near future with corresponding IOR (Improving Oil Recovery) methods. Z106 oilfield lies in Shengli Oilfields Area at the Yellow River delta. It was put into development in 1988. Since the oil belongs to heavy oil, the oil-water mobility ratio is so unfavourable that water cut increases very quickly. Especially for reservoir Ng21, the san...

  14. Geophysical and geological investigations of subsurface reservoirs : case studies of Spitsbergen, Norway

    Energy Technology Data Exchange (ETDEWEB)

    Baelum, Karoline

    2011-07-01

    The thesis gives a description of the subsurface and outcrop geology at a number of localities on Svalbard through a selection of various geophysical and geological methods. The localities represent a series of geological settings of varying scale, from near surface paleokarst and glacial environments to large scale geological features such as fault zones, grabens and dolerite intrusions. The geophysical and geological methods deployed likewise represent both detailed small scale investigations such as Lidar, radar and geoelectric investigations on and near the surface, and seismic investigations covering larger areas to a depth of several kilometers. The overall aim for all the studies has been to better understand reservoir and cap rock/ice systems in a barren arctic desert characterized by a frozen ground that challenges common geophysical methods. The investigations undertaken in connection with this thesis cover several areas The first part addresses the Billefjorden fault zone (BFZ) with its eastern hanging wall classic rift-basin. This fault zone can be traced for more than 200 km as a lineament that runs almost the entire length of Spitsbergen, from Wijdefjorden in the north to Storfjorden in the south. The seismic data along with surface observations and Lidar scans illustrate the long and complicated history of the BFZ and associated basin, from the initial formation via linkage of reverse faults in the Devonian, through Carboniferous reactivation as a normal fault with adjacent rift-basin in an extensional tectonic regime, to finally Tertiary contraction seen as fault reactivation and basin inversion in connection with the formation of the west-coast fold and thrust-belt. Especially the development of the Carboniferous rift-basin is of interest. An integrated study by seismic and georadar mapping, and Lidar data interpretation combined with outcrop analysis of faults and sedimentary succession, have shed new, detailed information on the good sandstone

  15. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    KAUST Repository

    Karve, P. M.; Kallivokas, L. F.

    2015-01-01

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within

  16. Estimation of Oil Production Rates in Reservoirs Exposed to Focused Vibrational Energy

    KAUST Repository

    Jeong, Chanseok; Kallivokas, Loukas F.; Huh, Chun; Lake, Larry W.

    2014-01-01

    the production rate of remaining oil from existing oil fields. To date, there are few theoretical studies on estimating how much bypassed oil within an oil reservoir could be mobilized by such vibrational stimulation. To fill this gap, this paper presents a

  17. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    Energy Technology Data Exchange (ETDEWEB)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  18. Simulation study to determine the feasibility of injecting hydrogen sulfide, carbon dioxide and nitrogen gas injection to improve gas and oil recovery oil-rim reservoir

    Science.gov (United States)

    Eid, Mohamed El Gohary

    This study is combining two important and complicated processes; Enhanced Oil Recovery, EOR, from the oil rim and Enhanced Gas Recovery, EGR from the gas cap using nonhydrocarbon injection gases. EOR is proven technology that is continuously evolving to meet increased demand and oil production and desire to augment oil reserves. On the other hand, the rapid growth of the industrial and urban development has generated an unprecedented power demand, particularly during summer months. The required gas supplies to meet this demand are being stretched. To free up gas supply, alternative injectants to hydrocarbon gas are being reviewed to support reservoir pressure and maximize oil and gas recovery in oil rim reservoirs. In this study, a multi layered heterogeneous gas reservoir with an oil rim was selected to identify the most optimized development plan for maximum oil and gas recovery. The integrated reservoir characterization model and the pertinent transformed reservoir simulation history matched model were quality assured and quality checked. The development scheme is identified, in which the pattern and completion of the wells are optimized to best adapt to the heterogeneity of the reservoir. Lateral and maximum block contact holes will be investigated. The non-hydrocarbon gases considered for this study are hydrogen sulphide, carbon dioxide and nitrogen, utilized to investigate miscible and immiscible EOR processes. In November 2010, re-vaporization study, was completed successfully, the first in the UAE, with an ultimate objective is to examine the gas and condensate production in gas reservoir using non hydrocarbon gases. Field development options and proces schemes as well as reservoir management and long term business plans including phases of implementation will be identified and assured. The development option that maximizes the ultimate recovery factor will be evaluated and selected. The study achieved satisfactory results in integrating gas and oil

  19. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2015-10-01

    Full Text Available Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301. The organism was isolated at 20 °C and atmospheric pressure from ~61 °C-warm sediments approximately five meters above the sediment-basement interface. In comparison to standard laboratory conditions (20 °C and 0.1 MPa, faster growth was recorded when incubated at in situ pressure and high temperature (45 °C, while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.

  20. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    Science.gov (United States)

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  1. Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?

    Science.gov (United States)

    Colwell, F. S.; Thurber, A. R.

    2016-12-01

    Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.

  2. Geochemical characteristics of crude oil from a tight oil reservoir in the Lucaogou Formation, Jimusar Sag, Junggar Basin

    Science.gov (United States)

    Cao, Z.

    2015-12-01

    Jimusar Sag, which lies in the Junggar Basin,is one of the most typical tight oil study areas in China. However, the properties and origin of the crude oil and the geochemical characteristics of the tight oil from the Lucaogou Formation have not yet been studied. In the present study, 23 crude oilsfrom the Lucaogou Formation were collected for analysis, such as physical properties, bulk composition, saturated hydrocarbon gas chromatography-mass spectrometry (GC-MS), and the calculation of various biomarker parameters. In addition,source rock evaluation and porosity permeability analysis were applied to the mudstones and siltstones. Biomarkers of suitable source rocks (TOC>1, S1+S2>6mg/g, 0.7%oil-source correlation. To analyze the hydrocarbon generation history of the Lucaogou source rock, 1D basin modeling was performed. The oil-filling history was also defined by means of basin modeling and microthermometry. The results indicated the presence of low maturity to mature crude oils originating from the burial of terrigenous organic matter beneath a saline lake in the source rocks of mainly type II1kerogen. In addition, a higher proportion of bacteria and algae was shown to contribute to the formation of crude oil in the lower section when compared with the upper section of the Lucaogou Formation. Oil-source correlations demonstrated that not all mudstones within the Lucaogou Formation contributed to oil accumulation.Crude oil from the upper and lower sections originated from thin-bedded mudstones interbedded within sweet spot sand bodies. A good coincidence of filling history and hydrocarbon generation history indicated that the Lucaogou reservoir is a typical in situ reservoir. The mudstones over or beneath the sweet spot bodies consisted of natural caprocks and prevented the vertical movement of oil by capillary forces. Despite being thicker, the thick-bedded mudstone between the upper and lower sweet spots had no obvious contribution to

  3. A study of relations between physicochemical properties of crude oils and microbiological characteristics of reservoir microflora

    Science.gov (United States)

    Yashchenko, I. G.; Polishchuk, Yu. M.; Peremitina, T. O.

    2015-10-01

    The dependence of the population and activity of reservoir microflora upon the chemical composition and viscosity of crude oils has been investigated, since it allows the problem of improvement in the technologies and enhancement of oil recovery as applied to production of difficult types of oils with anomalous properties (viscous, heavy, waxy, high resin) to be solved. The effect of the chemical composition of the oil on the number, distribution, and activity of reservoir microflora has been studied using data on the microbiological properties of reservoir water of 16 different fields in oil and gas basins of Russia, Mongolia, China, and Vietnam. Information on the physicochemical properties of crude oils of these fields has been obtained from the database created at the Institute of Petroleum Chemistry, Siberian Branch on the physicochemical properties of oils throughout the world. It has been found that formation water in viscous oil reservoirs is char acterized by a large population of heterotrophic and sulfate reducing bacteria and the water of oil fields with a high paraffin content, by population of denitrifying bacteria.

  4. Characterization of DNA-repair potential in deep subsurface bacteria challenged by UV light, hydrogen peroxide, and gamma radiation

    OpenAIRE

    Arrage, Andrew Anthony

    1991-01-01

    Subsurface bacterial isolates obtained through the DOE Subsurface Science Program were tested for resistance to UV light, gamma radiation and H202. Some deep subsurface bacteria were resistant to UV light, demonstrating â ¥1.0% survival at fluences which resulted in a 0.0001% survival level of E. coli B. The percentage of UV resistant aerobic subsurface bacteria and surface soil bacteria were similar; 30.8% and 25.8% respectively. All of the microaerophilic subsurface isolates ...

  5. Profiles of Reservoir Properties of Oil-Bearing Plays for Selected Petroleum Provinces in the United States

    Science.gov (United States)

    Freeman, P.A.; Attanasi, E.D.

    2015-11-05

    Profiles of reservoir properties of oil-bearing plays for selected petroleum provinces in the United States were developed to characterize the database to be used for a potential assessment by the U.S. Geological Survey (USGS) of oil that would be technically recoverable by the application of enhanced oil recovery methods using injection of carbon dioxide (CO2-EOR). The USGS assessment methodology may require reservoir-level data for the purposes of screening conventional oil reservoirs and projecting CO2-EOR performance in terms of the incremental recoverable oil. The information used in this report is based on reservoir properties from the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012). As described by Nehring Associates, Inc., the database “covers all producing provinces (basins) in the United States except the Appalachian Basin and the Cincinnati Arch.”

  6. Effect of stratification on segregation in carbon dioxide miscible flooding in a water-flooded oil reservoir

    International Nuclear Information System (INIS)

    Bhatti, A.A.; Mahmood, S.M.; Amjad, B.

    2013-01-01

    Oil reservoirs are subjected to tertiary recovery by deploying any enhanced oil recovery (EOR) technique for the recovery of left over oil. Amongst many EOR methods one of the widely applied worldwide is CO/sub 2/ flooding through miscible, near miscible or immiscible displacement processes. CO/sub 2/ flooding process responds to a number of reservoir and fluid characteristics. These characteristics have strong effect on overall efficiency of the displacement process. Better understanding of the effect of different characteristics on displacement process is important to plan an efficient displacement process. In this work, the effect of stratification resulting in gravity segregation of the injected fluid is studied in an oil reservoir which is water-flooded during secondary phase of recovery. Sensitivity analysis is performed through successive simulation on Eclipse 300 (compositional) reservoir simulator. Process involves the continuous CO/sub 2/ injection in an oil reservoir with more than 1/3rd of original oil in place left after water flooding. Reservoir model with four different permeability layers is studied. Four patterns by changing the arrangement of the permeabilities of the layers are analysed. The effect of different arrangement or stratification on segregation of CO/sub 2/ and ultimately on the incremental oil recovery, is investigated. It has been observed that out of four arrangements, upward fining pattern relatively overcame the issue of the segregation of CO/sub 2/ and consequently 33% more oil with half injection volume is recovered when compared with the downward fining pattern. (author)

  7. Inverse Problems in Geosciences: Modelling the Rock Properties of an Oil Reservoir

    DEFF Research Database (Denmark)

    Lange, Katrine

    . We have developed and implemented the Frequency Matching method that uses the closed form expression of the a priori probability density function to formulate an inverse problem and compute the maximum a posteriori solution to it. Other methods for computing models that simultaneously fit data...... of the subsurface of the reservoirs. Hence the focus of this work has been on acquiring models of spatial parameters describing rock properties of the subsurface using geostatistical a priori knowledge and available geophysical data. Such models are solutions to often severely under-determined, inverse problems...

  8. Reactive Transport Modeling of Microbe-mediated Fe (II) Oxidation for Enhanced Oil Recovery

    Science.gov (United States)

    Surasani, V.; Li, L.

    2011-12-01

    Microbially Enhanced Oil Recovery (MEOR) aims to improve the recovery of entrapped heavy oil in depleted reservoirs using microbe-based technology. Reservoir ecosystems often contain diverse microbial communities those can interact with subsurface fluids and minerals through a network of nutrients and energy fluxes. Microbe-mediated reactions products include gases, biosurfactants, biopolymers those can alter the properties of oil and interfacial interactions between oil, brine, and rocks. In addition, the produced biomass and mineral precipitates can change the reservoir permeability profile and increase sweeping efficiency. Under subsurface conditions, the injection of nitrate and Fe (II) as the electron acceptor and donor allows bacteria to grow. The reaction products include minerals such as Fe(OH)3 and nitrogen containing gases. These reaction products can have large impact on oil and reservoir properties and can enhance the recovery of trapped oil. This work aims to understand the Fe(II) oxidation by nitrate under conditions relevant to MEOR. Reactive transport modeling is used to simulate the fluid flow, transport, and reactions involved in this process. Here we developed a complex reactive network for microbial mediated nitrate-dependent Fe (II) oxidation that involves both thermodynamic controlled aqueous reactions and kinetic controlled Fe (II) mineral reaction. Reactive transport modeling is used to understand and quantify the coupling between flow, transport, and reaction processes. Our results identify key parameter controls those are important for the alteration of permeability profile under field conditions.

  9. Time lapse seismic observations and effects of reservoir compressibility at Teal South oil field

    Science.gov (United States)

    Islam, Nayyer

    One of the original ocean-bottom time-lapse seismic studies was performed at the Teal South oil field in the Gulf of Mexico during the late 1990's. This work reexamines some aspects of previous work using modern analysis techniques to provide improved quantitative interpretations. Using three-dimensional volume visualization of legacy data and the two phases of post-production time-lapse data, I provide additional insight into the fluid migration pathways and the pressure communication between different reservoirs, separated by faults. This work supports a conclusion from previous studies that production from one reservoir caused regional pressure decline that in turn resulted in liberation of gas from multiple surrounding unproduced reservoirs. I also provide an explanation for unusual time-lapse changes in amplitude-versus-offset (AVO) data related to the compaction of the producing reservoir which, in turn, changed an isotropic medium to an anisotropic medium. In the first part of this work, I examine regional changes in seismic response due to the production of oil and gas from one reservoir. The previous studies primarily used two post-production ocean-bottom surveys (Phase I and Phase II), and not the legacy streamer data, due to the unavailability of legacy prestack data and very different acquisition parameters. In order to incorporate the legacy data in the present study, all three post-stack data sets were cross-equalized and examined using instantaneous amplitude and energy volumes. This approach appears quite effective and helps to suppress changes unrelated to production while emphasizing those large-amplitude changes that are related to production in this noisy (by current standards) suite of data. I examine the multiple data sets first by using the instantaneous amplitude and energy attributes, and then also examine specific apparent time-lapse changes through direct comparisons of seismic traces. In so doing, I identify time-delays that, when

  10. A simulation method for the rapid screening of potential depleted oil reservoirs for CO2 sequestration

    International Nuclear Information System (INIS)

    Bossie-Codreanu, D.; Le Gallo, Y.

    2004-01-01

    The reduction of greenhouse gases emission is a growing concern of many industries. The oil and gas industry has a long commercial practice of gas injection, enhanced oil recovery (EOR) and gas storage. Using a depleted oil or gas reservoir for CO 2 storage has several interesting advantages. The long-term risk analysis of the CO 2 behavior and its impact on the environment is a major concern. That is why the selection of an appropriate reservoir is crucial to the success of a sequestration operation. Our modeling study, based on a synthetic reservoir, quantifies uncertainties due to reservoir parameters in order to establish a set of guidelines to select the most appropriate depleted reservoirs. Several production and sequestration scenarios are investigated in order to quantify key parameter for CO 2 storage. The influence of parameters such as API gravity, heterogeneity (Dykstra-Parson coefficient), pressure support (water injection) and cap rock integrity are analyzed. Estimation of sequestration capacity is proposed through a sequestration factor (SF) estimated for different reservoir production drives. Multiple regression relationships were developed, allowing SF estimation. CO 2 sequestration optimization highlights the best clean oil recovery strategy (CO 2 injection and/or oil production)

  11. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    Science.gov (United States)

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Microbial diversity in methanogenic hydrocarbon-degrading enrichment cultures isolated from a water-flooded oil reservoir (Dagang oil field, China)

    Science.gov (United States)

    Jiménez, Núria; Cai, Minmin; Straaten, Nontje; Yao, Jun; Richnow, Hans H.; Krüger, Martin

    2015-04-01

    Microbial transformation of oil to methane is one of the main degradation processes taking place in oil reservoirs, and it has important consequences as it negatively affects the quality and economic value of the oil. Nevertheless, methane could constitute a recovery method of carbon from exhausted reservoirs. Previous studies combining geochemical and isotopic analysis with molecular methods showed evidence for in situ methanogenic oil degradation in the Dagang oil field, China (Jiménez et al., 2012). However, the main key microbial players and the underlying mechanisms are still relatively unknown. In order to better characterize these processes and identify the main microorganisms involved, laboratory biodegradation experiments under methanogenic conditions were performed. Microcosms were inoculated with production and injection waters from the reservoir, and oil or 13C-labelled single hydrocarbons (e.g. n-hexadecane or 2-methylnaphthalene) were added as sole substrates. Indigenous microbiota were able to extensively degrade oil within months, depleting most of the n-alkanes in 200 days, and producing methane at a rate of 76 ± 6 µmol day-1 g-1 oil added. They could also produce heavy methane from 13C-labeled 2-methylnaphthalene, suggesting that further methanogenesis may occur from the aromatic and polyaromatic fractions of Dagang reservoir fluids. Microbial communities from oil and 2-methyl-naphthalene enrichment cultures were slightly different. Although, in both cases Deltaproteobacteria, mainly belonging to Syntrophobacterales (e.g. Syntrophobacter, Smithella or Syntrophus) and Clostridia, mostly Clostridiales, were among the most represented taxa, Gammaproteobacteria could be only identified in oil-degrading cultures. The proportion of Chloroflexi, exclusively belonging to Anaerolineales (e.g. Leptolinea, Bellilinea) was considerably higher in 2-methyl-naphthalene degrading cultures. Archaeal communities consisted almost exclusively of representatives of

  13. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok; Huh, Chun; Kallivokas, Loukas F.

    2011-01-01

    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use

  14. Terahertz-dependent identification of simulated hole shapes in oil-gas reservoirs

    Science.gov (United States)

    Bao, Ri-Ma; Zhan, Hong-Lei; Miao, Xin-Yang; Zhao, Kun; Feng, Cheng-Jing; Dong, Chen; Li, Yi-Zhang; Xiao, Li-Zhi

    2016-10-01

    Detecting holes in oil-gas reservoirs is vital to the evaluation of reservoir potential. The main objective of this study is to demonstrate the feasibility of identifying general micro-hole shapes, including triangular, circular, and square shapes, in oil-gas reservoirs by adopting terahertz time-domain spectroscopy (THz-TDS). We evaluate the THz absorption responses of punched silicon (Si) wafers having micro-holes with sizes of 20 μm-500 μm. Principal component analysis (PCA) is used to establish a model between THz absorbance and hole shapes. The positions of samples in three-dimensional spaces for three principal components are used to determine the differences among diverse hole shapes and the homogeneity of similar shapes. In addition, a new Si wafer with the unknown hole shapes, including triangular, circular, and square, can be qualitatively identified by combining THz-TDS and PCA. Therefore, the combination of THz-TDS with mathematical statistical methods can serve as an effective approach to the rapid identification of micro-hole shapes in oil-gas reservoirs. Project supported by the National Natural Science Foundation of China (Grant No. 61405259), the National Basic Research Program of China (Grant No. 2014CB744302), and the Specially Founded Program on National Key Scientific Instruments and Equipment Development, China (Grant No. 2012YQ140005).

  15. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  16. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    Science.gov (United States)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  17. Estimation of oil reservoir thermal properties through temperature log data using inversion method

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Nian, Yong-Le; Li, Tong-Tong; Wang, Chang-Long

    2013-01-01

    Oil reservoir thermal properties not only play an important role in steam injection well heat transfer, but also are the basic parameters for evaluating the oil saturation in reservoir. In this study, for estimating reservoir thermal properties, a novel heat and mass transfer model of steam injection well was established at first, this model made full analysis on the wellbore-reservoir heat and mass transfer as well as the wellbore-formation, and the simulated results by the model were quite consistent with the log data. Then this study presented an effective inversion method for estimating the reservoir thermal properties through temperature log data. This method is based on the heat transfer model in steam injection wells, and can be used to predict the thermal properties as a stochastic approximation method. The inversion method was applied to estimate the reservoir thermal properties of two steam injection wells, it was found that the relative error of thermal conductivity for the two wells were 2.9% and 6.5%, and the relative error of volumetric specific heat capacity were 6.7% and 7.0%,which demonstrated the feasibility of the proposed method for estimating the reservoir thermal properties. - Highlights: • An effective inversion method for predicting the oil reservoir thermal properties was presented. • A novel model for steam injection well made full study on the wellbore-reservoir heat and mass transfer. • The wellbore temperature field and steam parameters can be simulated by the model efficiently. • Both reservoirs and formation thermal properties could be estimated simultaneously by the proposed method. • The estimated steam temperature was quite consistent with the field data

  18. Possibility of predicting the water drive mechanism of oil bearing reservoirs before its exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Cubric, S

    1971-10-01

    The study deals with the application of Van Everdingen and Hurst's method to prediction of water influx from aquifer into an oil-bearing part of a reservoir. The examples show an influence of the factors affecting the water influx (time, permeability, ratio of radii of the aquifer, and oil-bearing part of reservoir.)

  19. DEEP HANGING WALL TRAPS-THE REMAINING PROMISSING TARGETS FOR OIL EXPLORATION IN THE NIGER DELTA

    International Nuclear Information System (INIS)

    Oton, S.W

    2004-01-01

    It is well known that the most dominant types of Hydrocarbon types found in the petroliferous Niger Delta are the classical rollover anticlinical traps 'I of oil exploration in the delta, these easy-to-find rollover structures are getting exhausted. They are most numerous at shallow depths in the younger delta front sedimentary sequence. Generally, during this primary oil exploration stage, oil and gas exploration have been concentrated in the shallow depths where they are easy to reach, easy to explore and easy to produce. This means that the present and future exploration campaigns in the Niger Delta should be directed towards other types of hydrocarbon trapping mechanisms that have been mapped in the delta. Many exploration models have been used and oil has been found in at least nine types of traps in the Niger Delta. The contrary (or anitithetic) fault model was used at the close of the last century. This model is so called because the controlling antithetic fault has a regional dip contrary to the structure-building growth fault with which it is associated. These faults, which are widespread in the Niger Delta, are easy to map especially on the Petro geological model. In this period, several promising hydrocarbon accumulations trapped against antithetic faults were discovered and tested. These hydrocarbon targets also seem fully explored and exhausted now. Recently, from modern high resolution 2-D and 3-D seismic data a lot of good prospects have been mapped and drilled in the deep horizon. In the last few years, a lot of unexplored oil have been discovered and tested in the deep horizons. They are mostly in hanging wall traps, at depth below 4,000 meters. This shows that most of the remaining undiscovered hydrocarbons in the Niger Delta may well be in these deep hanging wall traps between 4,000 and close to 5,600 meters. A definite search for deep-seated hanging wall traps is therefore recommended in a bid to find more new reservoirs and thereby increase the

  20. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    ,100 ft above the basal sandstone and is 100-200 ft thick. The storage capacity estimates for a 20-mile radius from the injection well ranged from 39-78 million tons (Mt) for each formation. Several other oil and gas plays have hydraulic properties conducive for injection, but the formations are generally only 5-50 ft thick in the study area. Overlying the injection reservoirs are thick sequences of dense, impermeable dolomite, limestone, and shale. These layers provide containment above the potential injection reservoirs. In general, it appears that the containment layers are much thicker and extensive than the injection intervals. Other physical parameters for the study area appear to be typical for the region. Anticipated pressures at maximum depths are approximately 4,100 psi based on a 0.45 psi/ft pressure gradient. Temperatures are likely to be 150 F. Groundwater flow is slow and complex in deep formations. Regional flow directions appear to be toward the west-northwest at less than 1 ft per year within the basal sandstone. Vertical gradients are downward in the study area. A review of brine geochemistry indicates that formation fluids have high salinity and dissolved solids. Total dissolved solids ranges from 200,000-325,000 mg/L in the deep reservoirs. Brine chemistry is similar throughout the different formations, suggesting extensive mixing in a mature basin. Unconsolidated sediments in the Ohio River Valley are the primary source of drinking water in the study area.

  1. Daily Reservoir Inflow Forecasting using Deep Learning with Downscaled Multi-General Circulation Models (GCMs) Platform

    Science.gov (United States)

    Li, D.; Fang, N. Z.

    2017-12-01

    Dallas-Fort Worth Metroplex (DFW) has a population of over 7 million depending on many water supply reservoirs. The reservoir inflow plays a vital role in water supply decision making process and long-term strategic planning for the region. This paper demonstrates a method of utilizing deep learning algorithms and multi-general circulation model (GCM) platform to forecast reservoir inflow for three reservoirs within the DFW: Eagle Mountain Lake, Lake Benbrook and Lake Arlington. Ensemble empirical mode decomposition was firstly employed to extract the features, which were then represented by the deep belief networks (DBNs). The first 75 years of the historical data (1940 -2015) were used to train the model, while the last 2 years of the data (2016-2017) were used for the model validation. The weights of each DBN gained from the training process were then applied to establish a neural network (NN) that was able to forecast reservoir inflow. Feature predictors used for the forecasting model were generated from weather forecast results of the downscaled multi-GCM platform for the North Texas region. By comparing root mean square error (RMSE) and mean bias error (MBE) with the observed data, the authors found that the deep learning with downscaled multi-GCM platform is an effective approach in the reservoir inflow forecasting.

  2. Surface water iron supplies in the Southern Ocean sustained by deep winter mixing

    CSIR Research Space (South Africa)

    Tagliabue, A

    2014-04-01

    Full Text Available Low levels of iron limit primary productivity across much of the Southern Ocean. At the basin scale, most dissolved iron is supplied to surfacewaters from subsurface reservoirs, because land inputs are spatially limited. Deep mixing in winter...

  3. Visualized study of thermochemistry assisted steam flooding to improve oil recovery in heavy oil reservoir with glass micromodels

    NARCIS (Netherlands)

    Lyu, X.; Liu, Huiqing; Pang, Zhanxi; Sun, Zhixue

    2018-01-01

    Steam channeling, one serious problem in the process of steam flooding in heavy oil reservoir, decreases the sweep efficiency of steam to cause a lower oil recovery. Viscosity reducer and nitrogen foam, two effective methods to improve oil recovery with different mechanism, present a satisfactory

  4. Impact disruption and recovery of the deep subsurface biosphere

    DEFF Research Database (Denmark)

    Cockell, Charles S.; Voytek, Mary A.; Gronstal, Aaaron L

    2012-01-01

    the 35 million-year-old Chesapeake Bay impact structure, USA, with robust contamination control. Microbial enumerations displayed a logarithmic downward decline, but the different gradient, when compared to previously studied sites, and the scatter of the data are consistent with a microbiota influenced......Although a large fraction of the world's biomass resides in the subsurface, there has been no study of the effects of catastrophic disturbance on the deep biosphere and the rate of its subsequent recovery. We carried out an investigation of the microbiology of a 1.76 km drill core obtained from...

  5. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad

    2016-09-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method to replace correlations and equations of state in subsurface flow simulators. In order to accelerate MC simulations, a set of early rejection schemes (conservative, hybrid, and non-conservative) in addition to extrapolation methods through reweighting and reconstruction of pre-generated MC Markov chains were developed. Furthermore, an extensive study was conducted to investigate sorption and transport processes of methane, carbon dioxide, water, and their mixtures in the inorganic part of shale using both MC and MD simulations. These simulations covered a wide range of thermodynamic conditions, pore sizes, and fluid compositions shedding light on several interesting findings. For example, the possibility to have more carbon dioxide adsorbed with more preadsorbed water concentrations at relatively large basal spaces. The dissertation is divided into four chapters. The first chapter corresponds to the introductory part where a brief background about molecular simulation and motivations are given. The second chapter is devoted to discuss the theoretical aspects and methodology of the proposed MC speeding up techniques in addition to the corresponding results leading to the successful multi-scale simulation of the compressible single-phase flow scenario. In chapter 3, the results regarding our extensive study on shale gas at laboratory conditions are reported. At the fourth and last chapter, we end the dissertation with few concluding remarks highlighting the key findings and summarizing the future directions.

  6. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Directory of Open Access Journals (Sweden)

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.

  7. Design and implementation of a caustic flooding EOR pilot at Court Bakken heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Xie, J.; Chung, B.; Leung, L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Nexen Inc., Calgary, AB (Canada)

    2008-10-15

    Successful waterflooding has been ongoing since 1988 at the Court Bakken heavy oil field in west central Saskatchewan. There are currently 20 injectors and 28 active oil producers in the Court main unit which is owned by Nexen and Pengrowth. The Court pool has an estimated 103.8 mmbbl of original oil in place (OOIP), of which 24 per cent has been successfully recovered after 20 years of waterflooding. A high-level enhanced oil recovery (EOR) screening study was conducted to evaluate other EOR technologies for a heavy oil reservoir of this viscosity range (17 degrees API). Laboratory studies showed that caustic flooding may enhance oil recovery after waterflooding at the Court Bakken heavy oil pool. A single well test demonstrated that caustic injection effectively reduced residual oil saturation. A sector model reservoir simulation revealed that caustic flood could achieve 9 per cent incremental oil recovery in the pilot area. Following the promising laboratory results, a successful caustic flood pilot was implemented at Court heavy oil pool where the major challenges encountered were low reservoir pressure and water channeling. 6 refs., 2 tabs., 6 figs.

  8. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Nikole Elizabeth Kimes

    2013-03-01

    Full Text Available Marine subsurface environments, such as deep-sea sediments, house abundant and diverse microbial communities that are believed to influence large-scale geochemical processes. These processes include the biotransformation and mineralization of numerous petroleum constituents. Thus, microbial communities in the Gulf of Mexico are thought to be responsible for the intrinsic bioremediation of crude oil released by the Deepwater Horizon (DWH oil spill. While hydrocarbon contamination is known to enrich for aerobic, oil-degrading bacteria in deep-seawater habitats, relatively little is known about the response of communities in deep-sea sediments, where low oxygen levels may hinder such a response. Here, we examined the hypothesis that increased hydrocarbon exposure results in an altered sediment microbial community structure that reflects the prospects for oil biodegradation under the prevailing conditions. We explore this hypothesis using metagenomic analysis and metabolite profiling of deep-sea sediment samples following the DWH oil spill. The presence of aerobic microbial communities and associated functional genes was consistent among all samples, whereas, a greater number of Deltaproteobacteria and anaerobic functional genes were found in sediments closest to the DWH blowout site. Metabolite profiling also revealed a greater number of putative metabolites in sediments surrounding the blowout zone relative to a background site located 127 km away. The mass spectral analysis of the putative metabolites revealed that alkylsuccinates remained below detection levels, but a homologous series of benzylsuccinates (with carbon chain lengths from 5 to 10 could be detected. Our findings suggest that increased exposure to hydrocarbons enriches for Deltaproteobacteria, which are known to be capable of anaerobic hydrocarbon metabolism. We also provide evidence for an active microbial community metabolizing aromatic hydrocarbons in deep-sea sediments of the

  9. Microbial mineral illization of montmorillonite in low-permeability oil reservoirs for microbial enhanced oil recovery.

    Science.gov (United States)

    Cui, Kai; Sun, Shanshan; Xiao, Meng; Liu, Tongjing; Xu, Quanshu; Dong, Honghong; Wang, Di; Gong, Yejing; Sha, Te; Hou, Jirui; Zhang, Zhongzhi; Fu, Pengcheng

    2018-05-11

    Microbial mineral illization has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of mineral bioillization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe (III)-reducing microbial strains under anaerobic growth conditions on the Ca-montmorillonite. The mineralogical characterization of the Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and energy dispersive spectrometer. Results showed that the microbial strains could efficiently reduce Fe (III) at an optimal rate of 71 %, and alter the crystal lattice structure of the lamella to promote the interlayer cation exchange, and to efficiently inhibit the Ca-montmorillonite swelling at an inhibitory rate of 48.9 %. Importance Microbial mineral illization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to enable the alteration of the structure and phase of the Fe-poor minerals by reducing Fe (III) and inhibiting clay swelling which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe (III)-reducing bacterial strains and Ca-montmorillonite under anaerobic atmosphere, and to investigate the extent and rates of Fe (III) reduction and phase changes with their activities. Application of Fe (III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs. Copyright © 2018 American Society for Microbiology.

  10. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Reid B. Grigg

    2003-10-31

    The second annual report of ''Improving CO{sub 2} Efficiency for Recovery Oil in Heterogeneous Reservoirs'' presents results of laboratory studies with related analytical models for improved oil recovery. All studies have been undertaken with the intention to optimize utilization and extend the practice of CO{sub 2} flooding to a wider range of reservoirs. Many items presented in this report are applicable to other interest areas: e.g. gas injection and production, greenhouse gas sequestration, chemical flooding, reservoir damage, etc. Major areas of studies include reduction of CO{sub 2} mobility to improve conformance, determining and understanding injectivity changes in particular injectivity loses, and modeling process mechanisms determined in the first two areas. Interfacial tension (IFT) between a high-pressure, high-temperature CO{sub 2} and brine/surfactant and foam stability are used to assess and screen surfactant systems. In this work the effects of salinity, pressure, temperature, surfactant concentration, and the presence of oil on IFT and CO{sub 2} foam stability were determined on the surfactant (CD1045{trademark}). Temperature, pressure, and surfactant concentration effected both IFT and foam stability while oil destabilized the foam, but did not destroy it. Calcium lignosulfonate (CLS) can be used as a sacrificial and an enhancing agent. This work indicates that on Berea sandstone CLS concentration, brine salinity, and temperature are dominant affects on both adsorption and desorption and that adsorption is not totally reversible. Additionally, CLS adsorption was tested on five minerals common to oil reservoirs; it was found that CLS concentration, salinity, temperature, and mineral type had significant effects on adsorption. The adsorption density from most to least was: bentonite > kaolinite > dolomite > calcite > silica. This work demonstrates the extent of dissolution and precipitation from co-injection of CO{sub 2} and

  11. Enhanced heavy oil recovery for carbonate reservoirs integrating cross-well seismic–a synthetic Wafra case study

    KAUST Repository

    Katterbauer, Klemens

    2015-07-14

    Heavy oil recovery has been a major focus in the oil and gas industry to counter the rapid depletion of conventional reservoirs. Various techniques for enhancing the recovery of heavy oil were developed and pilot-tested, with steam drive techniques proven in most circumstances to be successful and economically viable. The Wafra field in Saudi Arabia is at the forefront of utilizing steam recovery for carbonate heavy oil reservoirs in the Middle East. With growing injection volumes, tracking the steam evolution within the reservoir and characterizing the formation, especially in terms of its porosity and permeability heterogeneity, are key objectives for sound economic decisions and enhanced production forecasts. We have developed an integrated reservoir history matching framework using ensemble based techniques incorporating seismic data for enhancing reservoir characterization and improving history matches. Examining the performance on a synthetic field study of the Wafra field, we could demonstrate the improved characterization of the reservoir formation, determining more accurately the position of the steam chambers and obtaining more reliable forecasts of the reservoir’s recovery potential. History matching results are fairly robust even for noise levels up to 30%. The results demonstrate the potential of the integration of full-waveform seismic data for steam drive reservoir characterization and increased recovery efficiency.

  12. Direct heat resource assessment and subsurface information systems for geothermal aquifers; the Dutch perspetive

    NARCIS (Netherlands)

    Kramers, L.; Wees, van J.-D.; Pluymaekers, M.P.D.; Kronimus, A.; Boxem, T.

    2012-01-01

    A resource assessment methodology has been developed to designate prospective high permeable clastic aquifers and to assess the amount of potential geothermal energy in the Netherlands. It builds from the wealth of deep subsurface data from oil and gas exploration and production which is

  13. Desulfotomaculum spp. and related Gram-positive sulfate-reducing bacteria in deep subsurface environments.

    Directory of Open Access Journals (Sweden)

    Thomas eAullo

    2013-12-01

    Full Text Available Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2 and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review.

  14. Geological Characterisation of Depleted Oil and Gas Reservoirs for ...

    African Journals Online (AJOL)

    Dr Tse

    The reservoir formation consists of multilayered alternating beds of sandstone and shale cap rocks ... In the oil sector, Nigeria is one of the highest emitters ... Industrial emission and flaring .... integration of the 3D seismic data and wireline logs.

  15. Stable and Variable Parts of Microbial Community in Siberian Deep Subsurface Thermal Aquifer System Revealed in a Long-Term Monitoring Study

    OpenAIRE

    Frank, Yulia A.; Kadnikov, Vitaly V.; Gavrilov, Sergey N.; Banks, David; Gerasimchuk, Anna L.; Podosokorskaya, Olga A.; Merkel, Alexander Y.; Chernyh, Nikolai A.; Mardanov, Andrey V.; Ravin, Nikolai V.; Karnachuk, Olga V.; Bonch-Osmolovskaya, Elizaveta A.

    2016-01-01

    The goal of this work was to study the diversity of microorganisms inhabiting a deep subsurface aquifer system in order to understand their functional roles and interspecies relations formed in the course of buried organic matter degradation. A microbial community of a deep subsurface thermal aquifer in the Tomsk Region, Western Siberia was monitored over the course of five years via a 2.7 km deep borehole 3P, drilled down to a Palaeozoic basement. The borehole water discharges with a tempera...

  16. A strategy for low cost development of incremental oil in legacy reservoirs

    Science.gov (United States)

    Attanasi, E.D.

    2016-01-01

    The precipitous decline in oil prices during 2015 has forced operators to search for ways to develop low-cost and low-risk oil reserves. This study examines strategies to low cost development of legacy reservoirs, particularly those which have already implemented a carbon dioxide enhanced oil recovery (CO2 EOR) program. Initially the study examines the occurrence and nature of the distribution of the oil resources that are targets for miscible and near-miscible CO2 EOR programs. The analysis then examines determinants of technical recovery through the analysis of representative clastic and carbonate reservoirs. The economic analysis focusses on delineating the dominant components of investment and operational costs. The concluding sections describe options to maximize the value of assets that the operator of such a legacy reservoir may have that include incremental expansion within the same producing zone and to producing zones that are laterally or stratigraphically near main producing zones. The analysis identified the CO2 recycle plant as the dominant investment cost item and purchased CO2 and liquids management as a dominant operational cost items. Strategies to utilize recycle plants for processing CO2 from multiple producing zones and multiple reservoir units can significantly reduce costs. Industrial sources for CO2 should be investigated as a possibly less costly way of meeting EOR requirements. Implementation of tapered water alternating gas injection schemes can partially mitigate increases in fluid lifting costs.

  17. Productivity Analysis of Volume Fractured Vertical Well Model in Tight Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jiahang Wang

    2017-01-01

    Full Text Available This paper presents a semianalytical model to simulate the productivity of a volume fractured vertical well in tight oil reservoirs. In the proposed model, the reservoir is a composite system which contains two regions. The inner region is described as formation with finite conductivity hydraulic fracture network and the flow in fracture is assumed to be linear, while the outer region is simulated by the classical Warren-Root model where radial flow is applied. The transient rate is calculated, and flow patterns and characteristic flowing periods caused by volume fractured vertical well are analyzed. Combining the calculated results with actual production data at the decline stage shows a good fitting performance. Finally, the effects of some sensitive parameters on the type curves are also analyzed extensively. The results demonstrate that the effect of fracture length is more obvious than that of fracture conductivity on improving production in tight oil reservoirs. When the length and conductivity of main fracture are constant, the contribution of stimulated reservoir volume (SRV to the cumulative oil production is not obvious. When the SRV is constant, the length of fracture should also be increased so as to improve the fracture penetration and well production.

  18. Long Term Geoelectrical Monitoring of Deep-water Horizon Oil Spill in the Gulf Coast

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.

    2011-12-01

    In the aftermath of the catastrophic Deep-water Horizon (DWH) spill in the Gulf Coast, opportunities exist to study the evolution of fresh crude oil contamination in beach sediments and marshes. Grand Terre 1 Island, off the coast of Grand Isle in southern Louisiana, is an uninhabited barrier island, heavily impacted by the DWH spill, and ideal for undisturbed long term monitoring of crude oil degradation processes. A 10 channel Syscal-Pro resistivity / IP instrument (IRIS Instruments, France) is the heart of the fully autonomous geoelectrical monitoring system; the system, which is housed in a weatherproof container, relies solely on solar power, is controlled by an energy efficient PC and can be accessed remotely via web tools. The monitoring scheme involves collecting bi-daily resistivity measurements from surface and shallow boreholes, ranging from January 2011 to the present; environmental parameters, such as T, are continuously recorded at several depths. During regular field trips we perform larger scale geophysical surveys, and geochemical measurements (pH, DO, T, fluid C) to support the continuous geophysical monitoring. The contaminated layer on site is a visually distinctive layer of crude oil, isolated by cleaner sands above and below which is identified by a clear and obvious resistive anomaly in preliminary surveys. Early results show a decrease in average of the resistance values of each dataset over time. Further processing of the data yields a linearly shaped resistive anomaly, which coincides with the location of the oil layer. The changes in subsurface resistivity appear to be focused within this anomaly. Time filtering of the data by the time that they were collected, morning or evening, reveals a diurnal variation. While both time frames follow the same overall trend, the measurements in the morning are slightly more resistive than those in the evening. This indicates that there are environmental factors, such as temperature, that need to be

  19. Effect of lithological composition of oil reservoirs on oil production by a hot agent

    Energy Technology Data Exchange (ETDEWEB)

    Abbasov, A A; Kasimov, Sh A

    1965-01-01

    Several small-scale experiments were performed to determine the effect of steam on oil recovery and on permeability of water-sensitive clay-containing cores. Steam has 2 contradictory actions on oil recovery - (1) steam increases temperature and decreases viscosity of the oil, which aids oil recovery; and (2) steam hydrates and swells clays, which reduces permeability and hinders oil recovery. The oil-recovery experiments were carried out with consolidated cores containing 0, 10, and 22% clay, saturated with water and 28 cp crude oil; superheated steam at 125-300$C was used. The following conclusions were made from the experimental results: (1) oil recovery decreased as clay content of cores increased; however, at all temperatures steam recovered more oil than cold water did. (2) As steam temperature increases, oil recovery reaches a maximum, then decreases. The temperature at which oil recovery begins to decrease depends on core clay content; the higher the clay content, the lower this temperature. (3) Irrespective of whether a reservoir contains clay or not, oil recovery is considerably greater with steam than with water.

  20. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Lowry, Gregory V. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO2) emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations could unintentionally lead to CO2 leakage into overlying freshwater aquifers. Introduction of CO2 into these subsurface environments will greatly increase the CO2 concentration and will create CO2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO2 gradients will impact these communities. The overarching goal of this project is to understand how CO2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO2 injection/leakage plume where CO2 concentrations are highest. At CO2 exposures expected downgradient from the CO2 plume, selected microorganisms

  1. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Lowry, Gregorgy V. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO2) emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations could unintentionally lead to CO2 leakage into overlying freshwater aquifers. Introduction of CO2 into these subsurface environments will greatly increase the CO22 concentration and will create CO2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO2 gradients will impact these communities. The overarching goal of this project is to understand how CO2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO2 injection/leakage plume where CO2 concentrations are highest. At CO2 exposures expected downgradient from the CO2 plume, selected microorganisms

  2. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  3. Deep subsurface structure modeling and site amplification factor estimation in Niigata plain for broadband strong motion prediction

    International Nuclear Information System (INIS)

    Sato, Hiroaki

    2009-01-01

    This report addresses a methodology of deep subsurface structure modeling in Niigata plain, Japan to estimate site amplification factor in the broadband frequency range for broadband strong motion prediction. In order to investigate deep S-wave velocity structures, we conduct microtremor array measurements at nine sites in Niigata plain, which are important to estimate both long- and short-period ground motion. The estimated depths of the top of the basement layer agree well with those of the Green tuff formation as well as the Bouguer anomaly distribution. Dispersion characteristics derived from the observed long-period ground motion records are well explained by the theoretical dispersion curves of Love wave group velocities calculated from the estimated subsurface structures. These results demonstrate the deep subsurface structures from microtremor array measurements make it possible to estimate long-period ground motions in Niigata plain. Moreover an applicability of microtremor array exploration for inclined basement structure like a folding structure is shown from the two dimensional finite difference numerical simulations. The short-period site amplification factors in Niigata plain are empirically estimated by the spectral inversion analysis from S-wave parts of strong motion data. The resultant characteristics of site amplification are relative large in the frequency range of about 1.5-5 Hz, and decay significantly with the frequency increasing over about 5 Hz. However, these features can't be explained by the calculations from the deep subsurface structures. The estimation of site amplification factors in the frequency range of about 1.5-5 Hz are improved by introducing a shallow detailed structure down to GL-20m depth at a site. We also propose to consider random fluctuation in a modeling of deep S-wave velocity structure for broadband site amplification factor estimation. The Site amplification in the frequency range higher than about 5 Hz are filtered

  4. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    The injection of CO2 into geological formations at quantities necessary to significantly reduce CO2 emissions will represent an environmental perturbation on a continental scale. The extent to which biological processes may play a role in the fate and transport of CO2 injected into geological formations has remained an open question due to the fact that at temperatures and pressures associated with reservoirs targeted for sequestration CO2 exists as a supercritical fluid (scCO2), which has generally been regarded as a sterilizing agent. Natural subsurface accumulations of CO2 serve as an excellent analogue for studying the long-term effects, implications and benefits of CO2 capture and storage (CCS). While several geologic formations bearing significant volumes of nearly pure scCO2 phases have been identified in the western United States, no study has attempted to characterize the microbial community present in these systems. Because the CO2 in the region is thought to have first accumulated millions of years ago, it is reasonable to assume that native microbial populations have undergone extensive and unique physiological and behavioral adaptations to adjust to the exceedingly high scCO2 content. Our study focuses on the microbial communities associated with the dolomite limestone McElmo Dome scCO2 Field in the Colorado Plateau region, approximately 1,000 m below the surface. Fluid samples were collected from 10 wells at an industrial CO2 production facility outside Cortez, CO. Subsamples preserved on site in 3.7% formaldehyde were treated in the lab with Syto 9 green-fluorescent nucleic acid stain, revealing 3.2E6 to 1.4E8 microbial cells per liter of produced fluid and 8.0E9 cells per liter of local pond water used in well drilling fluids. Extracted DNAs from sterivex 0.22 um filters containing 20 L of sample biomass were used as templates for PCR targeting the 16S rRNA gene. 16S rRNA amplicons from these samples were cloned, sequenced and subjected to microbial

  5. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  6. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal

  7. Biogeochemistry of anaerobic crude oil biodegradation

    Science.gov (United States)

    Head, Ian; Gray, Neil; Aitken, Caroline; Sherry, Angela; Jones, Martin; Larter, Stephen

    2010-05-01

    Anaerobic degradation of crude oil and petroleum hydrocarbons is widely recognized as a globally significant process both in the formation of the world's vast heavy oil deposits and for the dissipation of hydrocarbon pollution in anoxic contaminated environments. Comparative analysis of crude oil biodegradation under methanogenic and sulfate-reducing conditions has revealed differences not only in the patterns of compound class removal but also in the microbial communities responsible. Under methanogenic conditions syntrophic associations dominated by bacteria from the Syntropheaceae are prevalent and these are likely key players in the initial anaerobic degradation of crude oil alkanes to intermediates such as hydrogen and acetate. Syntrophic acetate oxidation plays an important role in these systems and often results in methanogenesis dominated by CO2 reduction by members of the Methanomicrobiales. By contrast the bacterial communities from sulfate-reducing crude oil-degrading systems were more diverse and no single taxon dominated the oil-degrading sulfate-reducing systems. All five proteobacterial subdivisions were represented with Delta- and Gammaproteobacteria being detected most consistently. In sediments which were pasteurized hydrocarbon degradation continued at a relatively low rate. Nevertheless, alkylsuccinates characteristic of anaerobic hydrocarbon degradation accumulated to high concentrations. This suggested that the sediments harbour heat resistant, possibly spore-forming alkane degrading sulfate-reducers. This is particularly interesting since it has been proposed recently, that spore-forming sulfate-reducing bacteria found in cold arctic sediments may have originated from seepage of geofluids from deep subsurface hydrocarbon reservoirs.

  8. Ranking oil viscosity in heavy-oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie, R.J.M. [Halliburton Energy Services, Calgary, AB (Canada); Seccombe, J. [BP Alaska, AK (United States)

    2005-11-01

    This paper discussed attempts to identify lower viscosity zones within the Ugnu formation at Milne Point field in Alaska through the use of Nuclear Magnetic Resonance (NMR) measurements. To date, only 1 well has been completed in the Ugnu, and BP Alaska is now engaged in studies to find ways to commercialize the formation. While geochemical analysis of oil samples extracted from sidewall cores has successfully identified sweet spots, the costs are prohibitive and they are too slow for real-time decision-making. NMR data acquisition offers a more economical, continuous and almost instantaneous alternative. Two wells were logged and analyzed using both logging while drilling (LWD) NMR and wire log (WL)-NMR tools. With the WL-NMR tool, data were collected in continuous passes and in a series of 45 minute stationary points, acquiring both routine T{sub 2} and diffusion editing data to predict oil viscosity. The LWD-NMR tool was set up to acquire T{sub 1} data when drilling. Forward modelling was used to generate NMR T{sub 2} spectra for reservoir parameters. The NMR logs indicate that the technology is a viable non-radioactive porosity measurement alternative. Data quality had high-vertical resolution and spectral resolution and showed good agreement with density-derived porosity. Zones with viscous oil were located and findings were validated by geochemical analyses. Bandwidth limitation was the only obstacle that prevented real time application of the NMR ranking process. 6 refs., 11 figs.

  9. SAGD pilot project, wells MFB-772 (producer) / MFB-773 (injector), U1,3 MFB-53 reservoir, Bare Field. Orinoco oil belt. Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Mago, R.; Franco, L.; Armas, F.; Vasquez, R.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)

    2011-07-01

    In heavy oil and extra heavy oil fields, steam assisted gravity drainage is a thermal recovery method used to reduce oil viscosity and thus increase oil recovery. For SAGD to be successfully applied in deep reservoirs, drilling and completion of the producer and injector wells are critical. Petroleos de Venezuela SA (PDVSA) is currently assessing the feasibility of SAGD in the Orinoco oil belt in Venezuela and this paper aims at presenting the methodology used to ensure optimal drilling and completion of the project. This method was divided in several stages: planning, drilling and completion of the producer, injector and then of the observer wells and cold information capture. It was found that the use of magnetic guidance tools, injection pipe pre-insulated and pressure and temperature sensors helps optimize the drilling and completion process. A methodology was presented to standardize operational procedures in the drilling and completion of SAGD projects in the Orinoco oil belt.

  10. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  11. Increasing Heavy Oil in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies. Annual Report, March 30, 1995--March 31, 1996

    International Nuclear Information System (INIS)

    Allison, Edith

    1996-12-01

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs

  12. Feasibility study of the in-situ combustion in shallow, thin, and multi-layered heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, L. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Daqing Petroleum Inst., Beijing (China); Yu, D. [Daqing Petroleum Inst., Beijing (China); Gong, Y. [China National Petroleum Corp., Beijing (China). Liaohe Oilfield; Wang, P.; Zhang, L. [China National Petroleum Corp., Beijing (China). Huabei Oilfield; Liu, C. [China National Petroleum Corp., Beijing (China). JiLin Oilfield

    2008-10-15

    In situ combustion is a process where oxygen is injected into oil reservoirs in order to oxidize the heavier components of crude oil. The oil is driven towards the production wells by the combustion gases and steam generated by the combustion processes. This paper investigated dry and wet forward in situ combustion processes designed for an oil reservoir with thin sand layers. Laboratory and numerical simulations were conducted to demonstrate the feasibility of the processes in a shallow, thin, heterogenous heavy oil reservoir in China. Combustion tube experiments were conducted in order to determine fuel consumption rates. A numerical geological model was constructed to represent the reservoir conditions. Gas, water, oil and solid phases were modelled. Four processes were considered: cracking; pyrolysis of heavy fractions; the combustion of light and heavy fractions; and the combustion of coke. Oil recovery rates were calculated for a period of 10 years. Reactor experiments were conducted to investigate igniting temperatures and air injection rates using an apparatus comprised of an electric heater, oil sand pack tube and a computerized control system. Experiments were performed at different temperature and injection rates. The experiments demonstrated that ignition times and air volumes decreased when air temperature was increased. Results of the study showed that a 20 per cent increase in oil recovery using the in situ combustion processes. It was concluded that adequate air injection rates are needed to ensure effective combustion front movement. 4 refs., 6 tabs., 4 figs.

  13. Play-level distributions of estimates of recovery factors for a miscible carbon dioxide enhanced oil recovery method used in oil reservoirs in the conterminous United States

    Science.gov (United States)

    Attanasi, E.D.; Freeman, P.A.

    2016-03-02

    In a U.S. Geological Survey (USGS) study, recovery-factor estimates were calculated by using a publicly available reservoir simulator (CO2 Prophet) to estimate how much oil might be recovered with the application of a miscible carbon dioxide (CO2) enhanced oil recovery (EOR) method to technically screened oil reservoirs located in onshore and State offshore areas in the conterminous United States. A recovery factor represents the percentage of an oil reservoir’s original oil in place estimated to be recoverable by the application of a miscible CO2-EOR method. The USGS estimates were calculated for 2,018 clastic and 1,681 carbonate candidate reservoirs in the “Significant Oil and Gas Fields of the United States Database” prepared by Nehring Associates, Inc. (2012).

  14. Optimisation of Oil Production in Two – Phase Flow Reservoir Using Simultaneous Method and Interior Point Optimiser

    DEFF Research Database (Denmark)

    Lerch, Dariusz Michal; Völcker, Carsten; Capolei, Andrea

    2012-01-01

    in the reservoir. A promising decrease of these remained resources can be provided by smart wells applying water injections to sustain satisfactory pressure level in the reservoir throughout the whole process of oil production. Basically to enhance secondary recovery of the remaining oil after drilling, water...... is injected at the injection wells of the down-hole pipes. This sustains the pressure in the reservoir and drives oil towards production wells. There are however, many factors contributing to the poor conventional secondary recovery methods e.g. strong surface tension, heterogeneity of the porous rock...... fields, or closed loop optimisation, can be used for optimising the reservoir performance in terms of net present value of oil recovery or another economic objective. In order to solve an optimal control problem we use a direct collocation method where we translate a continuous problem into a discrete...

  15. Time Course-Dependent Methanogenic Crude Oil Biodegradation: Dynamics of Fumarate Addition Metabolites, Biodegradative Genes, and Microbial Community Composition

    Directory of Open Access Journals (Sweden)

    Courtney R. A. Toth

    2018-01-01

    Full Text Available Biodegradation of crude oil in subsurface petroleum reservoirs has adversely impacted most of the world's oil, converting this resource to heavier forms that are of lower quality and more challenging to recover. Oil degradation in deep reservoir environments has been attributed to methanogenesis over geological time, yet our understanding of the processes and organisms mediating oil transformation in the absence of electron acceptors remains incomplete. Here, we sought to identify hydrocarbon activation mechanisms and reservoir-associated microorganisms that may have helped shape the formation of biodegraded oil by incubating oilfield produced water in the presence of light (°API = 32 or heavy crude oil (°API = 16. Over the course of 17 months, we conducted routine analytical (GC, GC-MS and molecular (PCR/qPCR of assA and bssA genes, 16S rRNA gene sequencing surveys to assess microbial community composition and activity changes over time. Over the incubation period, we detected the formation of transient hydrocarbon metabolites indicative of alkane and alkylbenzene addition to fumarate, corresponding with increases in methane production and fumarate addition gene abundance. Chemical and gene-based evidence of hydrocarbon biodegradation under methanogenic conditions was supported by the enrichment of hydrocarbon fermenters known to catalyze fumarate addition reactions (e.g., Desulfotomaculum, Smithella, along with syntrophic bacteria (Syntrophus, methanogenic archaea, and several candidate phyla (e.g., “Atribacteria”, “Cloacimonetes”. Our results reveal that fumarate addition is a possible mechanism for catalyzing the methanogenic biodegradation of susceptible saturates and aromatic hydrocarbons in crude oil, and we propose the roles of community members and candidate phyla in our cultures that may be involved in hydrocarbon transformation to methane in crude oil systems.

  16. Characteristics of waterflooding of oil pools with clay-containing reservoir rocks

    Energy Technology Data Exchange (ETDEWEB)

    Zheltov, Yu V; Stupochenko, V E; Khavkin, A Ya; Martos, V N

    1981-01-01

    When planning the development of oil fields with reservoir pressure maintenance by the injection of water or activated solutions (surfactants, alkali, etc.), it is necessary to take into account the consequences of phenomena related to clay swelling. For this purpose, it is necessary to measure on a core the parameters characterizing the change and hysteresis of the filtration and storage properties of the reservoir rocks. Swelling of the clay component of the rock along with reducing these properties in the sweep zone can promote an increase of the efficiency of displacing oil by water. Theoretical investigations showed that the maximum displacement efficiency in homogeneous clay-containing rocks does not depend on the time of starting stimulation by demineralized waters. The efficiency from changing the mineralization of the stimulating agent increases with increase of viscosity of the oil. Under certain physical and geologic conditions, a purposeful change of the filtration and storage properties by increasing or decreasing clay swelling can increase the efficiency of developing the field and can increase oil recovery.

  17. Tracer applications in oil reservoirs in Brazil

    International Nuclear Information System (INIS)

    Moreira, R.M.; Ferreira Pinto, A.M.

    2004-01-01

    Radiotracer applications in oil reservoirs in Brazil started in 1997 at the request of the State Oil Company (Petrobras) at the Carmoplois oilfield. 1 Ci of HTO was injected in a regular five-spot plot and the results obtained were quite satisfactory. Shortly after this test one other request asked for distinguishing the contribution of different injection wells to a production well. It was then realized that other tracers should be available. As a first choice 35 SCN - has been selected since it could be produced at CDTN. An alternative synthesis path was defined which shortened post-irradiation manipulations. The tracer was tested in core samples and a field injection, simultaneously with HTO, was carried out at the Buracica field; again the HTO performed well but 35 SCN - showed up well ahead. Presently the HTO applications are being done on a routine basis. All in all, four tests were performed (some are still ongoing), and the detection limits for both 3 H and 35 S were optimized by refining the sample preparation stage. Lanthanide complexes used as activable tracers are also an appealing option, however core tests performed so far with La-, Ce- and Eu-EDTA indicated some delay of the tracer, so other complexants such as DOTA are to be tried in further laboratory tests and in a field application. Thus, a deeper understanding of their complexation chemistry and carefully conducted tests must be performed before lanthanide complexes can be qualified as reliable oil reservoir tracers. More recently, Petrobras has been asking for partitioning tracers intended for SOR measurement

  18. Multi-data reservoir history matching for enhanced reservoir forecasting and uncertainty quantification

    KAUST Repository

    Katterbauer, Klemens; Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim

    2015-01-01

    Reservoir simulations and history matching are critical for fine-tuning reservoir production strategies, improving understanding of the subsurface formation, and forecasting remaining reserves. Production data have long been incorporated

  19. Extended application of radon as a natural tracer in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Moreira R.M.

    2013-05-01

    Full Text Available In the 80's it was a common practice in the study of contamination by NAPL to incorporate a tracer to the medium to be studied. At that time the first applications focused on the use of 222Rn, a naturally occurring radioactive isotope as a natural tracer, appropriate for thermodynamics studies, geology and transport properties in thermal reservoirs. In 1993 the deficit of radon was used to spot and quantify the contamination by DNAPL under the surface. For the first time these studies showed that radon could be used as a partitioning tracer. A methodology that provides alternatives to quantify the oil volume stored in the porous space of oil reservoirs is under development at CDTN. The methodology here applied, widens up and adapts the knowledge acquired from the use of radon as a tracer to the studies aimed at assessing SOR. It is a postulation of this work that once the radon partition coefficient between oil and water is known, SOR will be determined considering the increased amount of radon in the water phase as compared to the amount initially existent as the reservoir is flooded with water. This paper will present a description of the apparatus used and some preliminary results of the experiments.

  20. Well test mathematical model for fractures network in tight oil reservoirs

    Science.gov (United States)

    Diwu, Pengxiang; Liu, Tongjing; Jiang, Baoyi; Wang, Rui; Yang, Peidie; Yang, Jiping; Wang, Zhaoming

    2018-02-01

    Well test, especially build-up test, has been applied widely in the development of tight oil reservoirs, since it is the only available low cost way to directly quantify flow ability and formation heterogeneity parameters. However, because of the fractures network near wellbore, generated from artificial fracturing linking up natural factures, traditional infinite and finite conductivity fracture models usually result in significantly deviation in field application. In this work, considering the random distribution of natural fractures, physical model of fractures network is proposed, and it shows a composite model feature in the large scale. Consequently, a nonhomogeneous composite mathematical model is established with threshold pressure gradient. To solve this model semi-analytically, we proposed a solution approach including Laplace transform and virtual argument Bessel function, and this method is verified by comparing with existing analytical solution. The matching data of typical type curves generated from semi-analytical solution indicates that the proposed physical and mathematical model can describe the type curves characteristic in typical tight oil reservoirs, which have up warping in late-term rather than parallel lines with slope 1/2 or 1/4. It means the composite model could be used into pressure interpretation of artificial fracturing wells in tight oil reservoir.

  1. Distribution of hydrocarbons released during the 2010 MC252 oil spill in deep offshore waters

    International Nuclear Information System (INIS)

    Spier, Chelsea; Stringfellow, William T.; Hazen, Terry C.; Conrad, Mark

    2013-01-01

    The explosion of the Deepwater Horizon oil platform on April 20th, 2010 resulted in the second largest oil spill in history. The distribution and chemical composition of hydrocarbons within a 45 km radius of the blowout was investigated. All available certified hydrocarbon data were acquired from NOAA and BP. The distribution of hydrocarbons was found to be dispersed over a wider area in subsurface waters than previously predicted or reported. A deepwater hydrocarbon plume predicted by models was verified and additional plumes were identified. Because the samples were not collected systematically, there is still some question about the presence and persistence of an 865 m depth plume predicted by models. Water soluble compounds were extracted from the rising oil in deepwater, and were found at potentially toxic levels outside of areas previously reported to contain hydrocarbons. Application of subsurface dispersants was found to increase hydrocarbon concentration in subsurface waters. - Highlights: ► The hydrocarbon distribution was more widely spread than previously predicted or reported. ► 4 subsurface plumes were identified. ► More soluble compounds were preferentially extracted in the deepwater. ► Percentage of detectable results is a useful data analysis technique. ► Subsurface dispersants application increased hydrocarbons in subsurface waters. - All available certified Deepwater Horizon data was used to determine the spatial, temporal, and chemical distribution of hydrocarbons in subsurface of the Gulf of Mexico.

  2. Flow behavior of N2 huff and puff process for enhanced oil recovery in tight oil reservoirs.

    Science.gov (United States)

    Lu, Teng; Li, Zhaomin; Li, Jian; Hou, Dawei; Zhang, Dingyong

    2017-11-16

    In the present work, the potential of N 2 huff and puff process to enhance the recovery of tight oil reservoir was evaluated. N 2 huff and puff experiments were performed in micromodels and cores to investigate the flow behaviors of different cycles. The results showed that, in the first cycle, N 2 was dispersed in the oil, forming the foamy oil flow. In the second cycle, the dispersed gas bubbles gradually coalesced into the continuous gas phase. In the third cycle, N 2 was produced in the form of continuous gas phase. The results from the coreflood tests showed that, the primary recovery was only 5.32%, while the recoveries for the three N 2 huff and puff cycles were 15.1%, 8.53% and 3.22%, respectively.The recovery and the pressure gradient in the first cycle were high. With the increase of huff and puff cycles, and the oil recovery and the pressure gradient rapidly decreased. The oil recovery of N 2 huff and puff has been found to increase as the N 2 injection pressure and the soaking time increased. These results showed that, the properly designed and controlled N 2 huff and puff process can lead to enhanced recovery of tight oil reservoirs.

  3. Quantifying the clay content with borehole depth and impact on reservoir flow

    Science.gov (United States)

    Sarath Kumar, Aaraellu D.; Chattopadhyay, Pallavi B.

    2017-04-01

    This study focuses on the application of reservoir well log data and 3D transient numerical model for proper optimization of flow dynamics and hydrocarbon potential. Fluid flow through porous media depends on clay content that controls porosity, permeability and pore pressure. The pressure dependence of permeability is more pronounced in tight formations. Therefore, preliminary clay concentration analysis and geo-mechanical characterizations have been done by using wells logs. The assumption of a constant permeability for a reservoir is inappropriate and therefore the study deals with impact of permeability variation for pressure-sensitive formation. The study started with obtaining field data from available well logs. Then, the mathematical models are developed to understand the efficient extraction of oil in terms of reservoir architecture, porosity and permeability. The fluid flow simulations have been done using COMSOL Multiphysics Software by choosing time dependent subsurface flow module that is governed by Darcy's law. This study suggests that the reservoir should not be treated as a single homogeneous structure with unique porosity and permeability. The reservoir parameters change with varying clay content and it should be considered for effective planning and extraction of oil. There is an optimum drawdown for maximum production with varying permeability in a reservoir.

  4. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    Directory of Open Access Journals (Sweden)

    William Orsi

    Full Text Available The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC, nitrate, sulfide, and dissolved inorganic carbon (DIC. These correlations are supported by terminal restriction length polymorphism (TRFLP analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  5. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  6. Rapid Reactivation of Deep Subsurface Microbes in the Presence of C-1 Compounds

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2015-02-01

    Full Text Available Microorganisms in the deep biosphere are believed to conduct little metabolic activity due to low nutrient availability in these environments. However, destructive penetration to long-isolated bedrock environments during construction of underground waste repositories can lead to increased nutrient availability and potentially affect the long-term stability of the repository systems, Here, we studied how microorganisms present in fracture fluid from a depth of 500 m in Outokumpu, Finland, respond to simple carbon compounds (C-1 compounds in the presence or absence of sulphate as an electron acceptor. C-1 compounds such as methane and methanol are important intermediates in the deep subsurface carbon cycle, and electron acceptors such as sulphate are critical components of oxidation processes. Fracture fluid samples were incubated in vitro with either methane or methanol in the presence or absence of sulphate as an electron acceptor. Metabolic response was measured by staining the microbial cells with fluorescent dyes that indicate metabolic activity and transcriptional response with RT-qPCR. Our results show that deep subsurface microbes exist in dormant states but rapidly reactivate their transcription and respiration systems in the presence of C-1 substrates, particularly methane. Microbial activity was further enhanced by the addition of sulphate as an electron acceptor. Sulphate- and nitrate-reducing microbes were particularly responsive to the addition of C-1 compounds and sulphate. These taxa are common in deep biosphere environments and may be affected by conditions disturbed by bedrock intrusion, as from drilling and excavation for long-term storage of hazardous waste.

  7. Synthesis of radiolabelled organic compounds for use as water tracers in oil reservoirs

    International Nuclear Information System (INIS)

    Eriksen, D.Oe.; Bjoernstad, V.

    1999-01-01

    Injection of water into oil containing strata to maintain field pressure and to replace oil is usually the primary choice to enhance oil-recovery. Use of tracer methods is becoming an important part of the oil companies' basis for making economical decisions. Such water tracing requires passive tracers, i.e. compounds that behave exactly like the substance studied under the conditions of interest. This implies that a water-tracer in a water-flooded oil-field must fulfil requirements like no absorption to reservoir rock, no partitioning (or distribution) with respect to the other fluids present, long time thermal stability, microbial resistance and high detectability. In addition, the tracer compound has to be environmentally acceptable and available at a reasonable cost. Among the extensive number of compounds tested according to these criteria in the laboratory we have qualified four compounds as tracers for water in oil reservoirs. For three of them we propose radiolabelling syntheses with 14 C as radioactive label to lower detection limits. The compounds are benzene 1,2- and 1,3-dicarboxylic acids and benzene 1,3,5-tricarboxylic acid. (author)

  8. Microbial dynamics in petroleum oilfields and their relationship with physiological properties of petroleum oil reservoirs.

    Science.gov (United States)

    Varjani, Sunita J; Gnansounou, Edgard

    2017-12-01

    Petroleum is produced by thermal decay of buried organic material over millions of years. Petroleum oilfield ecosystems represent resource of reduced carbon which favours microbial growth. Therefore, it is obvious that many microorganisms have adapted to harsh environmental conditions of these ecosystems specifically temperature, oxygen availability and pressure. Knowledge of microorganisms present in ecosystems of petroleum oil reservoirs; their physiological and biological properties help in successful exploration of petroleum. Understanding microbiology of petroleum oilfield(s) can be used to enhance oil recovery, as microorganisms in oil reservoirs produce various metabolites viz. gases, acids, solvents, biopolymers and biosurfactants. The aim of this review is to discuss characteristics of petroleum oil reservoirs. This review also provides an updated literature on microbial ecology of these extreme ecosystems including microbial origin as well as various types of microorganisms such as methanogens; iron, nitrate and sulphate reducing bacteria, and fermentative microbes present in petroleum oilfield ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, Roy; Clarke, Don; Walker, Scott

    1999-11-09

    The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  10. An experimental investigation of geochromatography during secondary migration of petroleum performed under subsurface conditions with a real rock

    Directory of Open Access Journals (Sweden)

    Larter Steve

    2000-10-01

    Full Text Available An understanding of the size of petroleum secondary migration systems is vital for successful exploration for petroleum reserves. Geochemists have suggested that compositional fractionation of petroleum accompanying the migration process (geochromatography can potentially be used to infer distances petroleum may have travelled and the ratio of oil in the reservoir to that lost in the carrier. To date, this has been attempted by measuring concentrations and distributions of specific steranes, and aromatic oxygen and nitrogen compounds in reservoired oils which have been proposed to respond to migration rather than to source maturity or other effects. We report here an experiment involving oil migration through an initially water wet siltstone under realistic subsurface carrier bed or reservoir conditions (48 MPa, 70°C where source facies and maturity effects are eliminated. We show that geochromatography does indeed occur even for initially water-saturated rocks and that the migration fractionations observed for alkylcarbazoles, benzocarbazoles and alkylphenols are very similar to those seen in field data sets. In contrast, sterane based migration parameters show no compositional fractionation under these conditions.

  11. Experiences with linear solvers for oil reservoir simulation problems

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, W.; Janardhan, R. [Los Alamos National Lab., NM (United States); Biswas, D.; Carey, G.

    1996-12-31

    This talk will focus on practical experiences with iterative linear solver algorithms used in conjunction with Amoco Production Company`s Falcon oil reservoir simulation code. The goal of this study is to determine the best linear solver algorithms for these types of problems. The results of numerical experiments will be presented.

  12. The seismic expression and hydrocarbon potential of subsurface impact craters

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.; Westbroek, H.H.; Lawton, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The seismic characteristics of meteorite impact craters and their potential as oil and gas reservoirs were discussed. Seismic data from James River, Alberta, in the Western Canada Sedimentary Basin show subsurface anomalies to be meteorite impact structures. The White Valley structure in Saskatchewan has similar features and seismic anomalies indicate that it too could be a meteorite impact structure, although other possibilities have been proposed. Other impact structures in western Canada such as the Steen River structure and the Viewfield crater have or are producing hydrocarbons. 5 refs., 2 figs.

  13. Characterization of indigenous oil field microorganisms for microbially enhanced oil recovery (MEOR)

    Energy Technology Data Exchange (ETDEWEB)

    Sitte, J.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Biegel, E.; Herold, A. [BASF SE, Ludwigshafen (Germany); Alkan, H. [Wintershall Holding GmbH, Kassel (Germany)

    2013-08-01

    Microbial activities and their resulting metabolites became a focus of attention for enhanced oil recovery (MEOR, microbial enhanced oil recovery) in the recent years. In order to develop a strategy for a MEOR application in a German oil field operated by Wintershall experiments were performed to investigate different sampling strategies and the microbial communities found in these samples. The objectives of this study were (1) to characterize the indigenous microbial communities, (2) to investigate the dependency of microbial activity/diversity on the different sampling strategies, and (3) to study the influence of the in situ pressure on bacterial growth and metabolite production. Fluids were sampled at the well head (surface) and in situ in approx. 785 m depth to collect uncontaminated production water directly from the reservoir horizon and under the in situ pressure of 31 bar (subsurface). In the lab the pressure was either released quickly or slowly to assess the sensitivity of microorganisms to rapid pressure changes. Quantitative PCR resulted in higher microbial cell numbers in the subsurface than in the surface sample. Biogenic CO{sub 2} and CH{sub 4} formation rates were determined under atmospheric and high pressure conditions in the original fluids, with highest rates found in the surface fluid. Interestingly, no methane was formed in the native fluid samples. While nitrate reduction was exclusively detected in the surface samples, sulfide formation also occurred in the subsurface fluids. Increased CO{sub 2} formation was measured after addition of a variety of substrates in the surface fluids, while only fructose and glucose showed a stimulating effect on CO{sub 2} production for the subsurface sample. Stable enrichment cultures were obtained in complex medium inoculated with the subsurface fluid, both under atmospheric and in situ pressure. Growth experiments with constant or changing pressure, and subsequent DGGE analysis of bacterial 16S rRNA genes

  14. Development of a 400 Level 3C Clamped Downhole Seismic Receiver Array for 3D Borehole Seismic Imaging of Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bjorn N. P. Paulsson

    2006-09-30

    Borehole seismology is the highest resolution geophysical imaging technique available today to the oil and gas industry for characterization and monitoring of oil and gas reservoirs. However, the industry's ability to perform high resolution 3D imaging of deep and complex gas reservoirs using borehole seismology has been hampered by the lack of acquisition technology necessary to record large volumes of high frequency, high signal-to-noise-ratio borehole seismic data. This project took aim at this shortcoming by developing a 400 level 3C clamped downhole seismic receiver array, and accompanying software, for borehole seismic 3D imaging. This large borehole seismic array has removed the technical acquisition barrier for recording the data volumes necessary to do high resolution 3D VSP and 3D cross-well seismic imaging. Massive 3D VSP{reg_sign} and long range Cross-Well Seismology (CWS) are two of the borehole seismic techniques that promise to take the gas industry to the next level in their quest for higher resolution images of deep and complex oil and gas reservoirs. Today only a fraction of the oil or gas in place is produced when reservoirs are considered depleted. This is primarily due to our lack of understanding of detailed compartmentalization of oil and gas reservoirs. In this project, we developed a 400 level 3C borehole seismic receiver array that allows for economic use of 3D borehole seismic imaging for reservoir characterization and monitoring. This new array has significantly increased the efficiency of recording large data volumes at sufficiently dense spatial sampling to resolve reservoir complexities. The receiver pods have been fabricated and tested to withstand high temperature (200 C/400 F) and high pressure (25,000 psi), so that they can operate in wells up to 7,620 meters (25,000 feet) deep. The receiver array is deployed on standard production or drill tubing. In combination with 3C surface seismic or 3C borehole seismic sources, the 400

  15. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  16. Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term

    International Nuclear Information System (INIS)

    Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-01

    The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2

  17. Origin of an unusual heavy oil from the Baiyinchagan depression, Erlian basin, northern China

    Energy Technology Data Exchange (ETDEWEB)

    Haiping Huang [China University of Geosciences, Beijing (China); University of Newcastle, Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Guangxi Jin [China University of Geosciences, Beijing (China); Exploration and Development Institute, Puyang (China); Changsong Lin; Yabin Zheng [China University of Geosciences, Beijing (China)

    2003-01-01

    A detailed organic geochemical analysis of six oil samples from the Baiyinchagan depression in the Erlian basin, Northern China, was carried out in order to evaluate their origin. The oils are reservoired at a very shallow depth (223-560 m subsurface) and their chemical and physical properties vary greatly, ranging from normal to extremely heavy oil. The preservation of non-biodegraded oil in such a shallow reservoir is possibly related with palaeo-pasteurization of the reservoir before uplift. Maturity difference is not the primary control on the chemical and physical properties of the oils and there is considerable geochemical evidence to suggest the additional influence of in-reservoir/post-accumulation processes such as biodegradation, water-washing and (possibly) evaporation. Whereas some oils appear to be less affected, others are moderately biodegraded up to level 4 on the [Peters and Moldowan, 1993] scale, with sterane distributions largely unaffected and 25-norhopanes undetected. Contrary to classical biodegradation, the unusual heavy oil shows little evidence of biodegradation from aliphatic components. Water-washing is suggested to be the primary process leading to its formation since the severe alteration of soluble aromatic hydrocarbons is observed. In addition, since the oils have been uplifted significantly after accumulation, evaporation and/or leakage to modify oil compositions cannot be ruled out. (author)

  18. Letting Off Steam and Getting Into Hot Water - Harnessing the Geothermal Energy Potential of Heavy Oil Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Teodoriu, Catalin; Falcone, Gioia; Espinel, Arnaldo

    2007-07-01

    The oil industry is turning its attention to the more complex development of heavy oil fields in order to meet the ever increasing demands of the manufacturing sector. The current thermal recovery techniques of heavy oil developments provide an opportunity to benefit from the geothermal energy created during the heavy oil production process. There is scope to improve the current recovery factors of heavy oil reservoirs, and there is a need to investigate the associated geothermal energy potential that has been historically neglected. This paper presents a new concept of harnessing the geothermal energy potential of heavy oil reservoirs with the co-production of incremental reserves. (auth)

  19. Well performance relationships in heavy foamy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Mahadevan, J. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Tulsa Univ., Tulsa, OK (United States)

    2008-10-15

    The viscosities and thermodynamic properties of heavy oils are different from conventional oils. Heavy oil reservoirs have foamy behaviour and the gas/oil interface stabilizes in the presence of asphaltenes. In the case of conventional oils, gas evolves from the solution when the formation pressure reaches the bubble point pressure. This study modelled the fluid properties of heavy foamy oils and their influence on the inflow performance relationship (IPR). An expression for inflow performance in heavy oil was developed by including the properties of foamy oil into a space averaged flow equation assuming pseudo-steady state conditions. The unique feature of this study was that the density, formation volume factor and solution gas-oil ratio were modelled as functions of entrained gas fraction. The newly developed expression for inflow performance of foamy oils may also be used to model conventional oil inflow by setting the entrained gas fraction to zero in the fluid property models. The results of the inflow performance of foamy oil and conventional oil were compared and an outflow performance relationship was calculated. The study showed that the inflow performance in foamy oil is influenced by entrained gas. The surface flow rates and bottom-hole flow rates are also influenced by the presence of entrained gas, with heavy foamy oil showing a higher volumetric production rate than conventional oil. The outflow performance curve depended on the fluid properties of the foamy oil. A nodal analysis of the well performance showed that the conventional calculation methods underestimate the production from foamy oil wells because they do not consider the effect of entrained gas which lowers density and improves the mobility of foamy oil. 14 refs., 2 tabs., 20 figs., 1 appendix.

  20. Integrated geomechanical modelling for deep subsurface damage

    NARCIS (Netherlands)

    Wees, J.D. van; Orlic, B.; Zijl, W.; Jongerius, P.; Schreppers, G.J.; Hendriks, M.

    2001-01-01

    Government, E&P and mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is difficult to

  1. A Novel Approach for Risk Minimization in Life-Cycle Oil Production Optimization

    DEFF Research Database (Denmark)

    Capolei, Andrea; Christiansen, Lasse Hjuler; Jørgensen, John Bagterp

    2017-01-01

    The oil research community has invested much effort into computer aided optimization to enhance oil recovery. While simulation studies have demonstrated the potential of model-based technology to improve industrial standards, the largely unknown geology of subsurface reservoirs limits applications...... to commercial oil fields. In particular, uncertain model descriptions lead to risks of profit loss. To address the challenges of geological uncertainty, this paper proposes offset risk minimization. As opposed to existing methodologies of the oil literature, the offset approach minimizes risk of profit loss...

  2. Microbial communities in the deep subsurface

    Science.gov (United States)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  3. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  4. Seismic sequence stratigraphy and platform to basin reservoir structuring of Lower Cretaceous deposits in the Sidi Aïch-Majoura region (Central Tunisia)

    Science.gov (United States)

    Azaïez, Hajer; Bédir, Mourad; Tanfous, Dorra; Soussi, Mohamed

    2007-05-01

    In central Tunisia, Lower Cretaceous deposits represent carbonate and sandstone reservoir series that correspond to proven oil fields. The main problems for hydrocarbon exploration of these levels are their basin tectonic configuration and their sequence distribution in addition to the source rock availability. The Central Atlas of Tunisia is characterized by deep seated faults directed northeast-southwest, northwest-southeast and north-south. These faults limit inherited tectonic blocks and show intruded Triassic salt domes. Lower Cretaceous series outcropping in the region along the anticline flanks present platform deposits. The seismic interpretation has followed the Exxon methodologies in the 26th A.A.P.G. Memoir. The defined Lower Cretaceous seismic units were calibrated with petroleum well data and tied to stratigraphic sequences established by outcrop studies. This allows the subsurface identification of subsiding zones and thus sequence deposit distribution. Seismic mapping of these units boundary shows a structuring from a platform to basin blocks zones and helps to understand the hydrocarbon reservoir systems-tract and horizon distribution around these domains.

  5. Application of seismic interferometry to an exploration of subsurface structure by using microtremors. Estimation of deep ground structures in the Wakasa bay region

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Kuriyama, Masayuki; Higashi, Sadanori; Shiba, Yoshiaki; Okazaki, Atsushi

    2015-01-01

    We carried out continuous measurements of microtremors to synthesize Green's function based on seismic interferometry in order to estimate deep subsurface structures of the Ohshima peninsula (OSM) and the Otomi peninsula (OTM) in the Wakasa bay region. Using more than 80 days of data, dispersive waveforms in the cross correlations were identified as a Green's function based on seismic interferometry. Rayleigh-wave phase velocities at OSM and OTM were estimated by two different method using microtremors: first, by analyzing microtremor array data, and second, by applying the f-k spectral analysis to synthesized Green's functions derived from cross-correlation with a common observation station. Relatively longer period of phase velocities were estimated by the f-k spectral analysis using the synthesized Green's functions with a common observation station. This suggests that the synthesized Green's functions from seismic interferometry can provide a valuable data for phase velocity inversion to estimate a deep subsurface structure. By identifying deep subsurface structures at OSM and OTM based on an inversion of phase velocity from both methods, the depth of S wave velocity of about 3.5 km/s, considered as a top of seismogenic layer, were determined to be 3.8 - 4.0 km at OSM and 4.4 - 4.6 km at OTM, respectively. Love- and Rayleigh-wave group velocities were estimated from the multiple filtering analysis of the synthesized Green's functions. From the comparison of observed surface wave group velocities and theoretical group velocities of OSM and OTM, we demonstrated that the observed group velocities were in good agreement with the average of theoretical group velocities calculated by identified deep subsurface structures at OSM and OTM. It is suggested that the deep subsurface structure of the shallow sea region between two peninsulas is continuous structure from OSM to OTM and that Love- and Rayleigh-wave group velocities using

  6. Clays and Carbonates in a Groundwater-Fed 3.8 Ga Martian Lake: Insights to Subsurface Habitability on Mars

    Science.gov (United States)

    Michalski, Joseph; Niles, Paul

    2015-01-01

    On Earth, the deep biosphere remains a largely unexplored, but clearly important carbon reservoir. Results from some uplifted central peaks in craters on Mars indicate that substantial carbon was also present at depth and might have helped sustain a deep biosphere. In fact, many factors relevant to deep biosphere habitability are more favorable on Mars than on Earth (e.g. porosity of the crust, geothermal gradient). Future exploration of Mars should include landing sites where materials have been exhumed from depth by meteor impact or basins where subsurface fluids have emerged, carrying clues to subsurface habitability. One of the most astrobiologically interesting sites on Mars McLaughlin Crater, a 93 km-diameter impact crater that formed approximately 4 b.y. ago. On the floor of the crater is a stratigraphic section of subhorizontal, layered sedimentary rocks with strong spectroscopic evidence for Fe-rich clay minerals and Mg-rich carbonates, which we interpret as ancient lacustrine deposits. The fluids that formed these materials likely originated in the subsurface, based on the paucity of channels leading into the crater basin and the fact that this is one of the deepest basins on Mars - a good candidate to have experienced upwelling of subsurface fluids. Therefore, the deposits within McLaughlin crater provide insight into subsurface processes on Mars. In this presentation, we will discuss the habitability of the martian subsurface as well as the geology of McLaughlin Crater and the possibility to detect biomarkers at that site with a future landed mission.

  7. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures

    Science.gov (United States)

    Wang, L.-Y.; Duan, R.-Y.; Liu, J.-F.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z.

    2012-04-01

    Temperature is one of the most important environmental factors regulating the activity and determining the composition of the microbial community. Analysis of microbial communities from six water-flooding petroleum reservoirs at temperatures from 20 to 63 °C by 16S rRNA gene clone libraries indicates the presence of physiologically diverse and temperature-dependent microorganisms in these subterrestrial ecosystems. In high-temperature petroleum reservoirs, most of the archaeal sequences belong to the thermophilic archaea including the genera Thermococcus, Methanothermobacter and Thermoplasmatales, most of the bacterial sequences belong to the phyla Firmicutes, Thermotogae and Thermodesulfobacteria; in low-temperature petroleum reservoirs, most of the archaeal sequences are affiliated with the genera Methanobacterium, Methanoculleus and Methanocalculus, most of the bacterial sequences to the phyla Proteobacteria, Bacteroidetes and Actinobacteria. Canonical correspondence analysis (CCA) revealed that temperature, mineralization, ionic type as well as volatile fatty acids showed correlation with the microbial community structures. These organisms may be adapted to the environmental conditions of these petroleum reservoirs over geologic time by metabolizing buried organic matter from the original deep subsurface environment and became the common inhabitants in subsurface environments.

  8. A new flooding scheme by horizontal well in thin heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.; Zhang, H.; Wang, M. [China Univ. of Petroleum, Beijing (China). MOE Key Laboratory of Petroleum Engineering ; Wang, Z. [Shengli Oil Field Co. (China). Dept. of Science and Technology]|[SINOPEC, Shengli (China)

    2008-10-15

    This paper presented a new flooding scheme for single horizontal wells that could improve recovery from thin marginal heavy oil reservoirs or from offshore reservoirs. The scheme involved the use of a multiple tubing string completion in a single wellbore. Special packers were installed within the long completion horizontal interval to establish an injection zone and a production zone. The new flooding scheme also involved simultaneous injection and production. Numerical simulation of the reservoir was used to determine the thickness of the formation and the lower limitation for different viscosities and the optimum time to start steam flooding after steam soaking by economic oil/steam ratio. The peak recovery efficiency of steam flooding was shown to occur when the length of separation section ratio is 0.15 to 0.2. It was concluded that high thermal efficiency in horizontal wells with long completion intervals can be maintained by alternating between steam soaking and steam flooding. Suitable alternation time to steam flooding is a seventh cycle for horizontal wells. Water cut and pressure difference will increase the steam injection rate, and thereby improve the oil production rate. The suitable injection rate for steam flooding is 2.4 t/d.ha.h because of its slow pressure change. 11 refs., 7 figs.

  9. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  10. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes.

  11. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9, and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR. PMID:27872613

  12. Rhamnolipids produced by indigenous Acinetobacter junii from petroleum reservoir and its potential in enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Hao Dong

    2016-11-01

    Full Text Available Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS. The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C26H48O9, C28H52O9 and C32H58O13. The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  13. Rhamnolipids Produced by Indigenous Acinetobacter junii from Petroleum Reservoir and its Potential in Enhanced Oil Recovery.

    Science.gov (United States)

    Dong, Hao; Xia, Wenjie; Dong, Honghong; She, Yuehui; Zhu, Panfeng; Liang, Kang; Zhang, Zhongzhi; Liang, Chuanfu; Song, Zhaozheng; Sun, Shanshan; Zhang, Guangqing

    2016-01-01

    Biosurfactant producers are crucial for incremental oil production in microbial enhanced oil recovery (MEOR) processes. The isolation of biosurfactant-producing bacteria from oil reservoirs is important because they are considered suitable for the extreme conditions of the reservoir. In this work, a novel biosurfactant-producing strain Acinetobacter junii BD was isolated from a reservoir to reduce surface tension and emulsify crude oil. The biosurfactants produced by the strain were purified and then identified via electrospray ionization-Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR-MS). The biosurfactants generated by the strain were concluded to be rhamnolipids, the dominant rhamnolipids were C 26 H 48 O 9 , C 28 H 52 O 9 , and C 32 H 58 O 13 . The optimal carbon source and nitrogen source for biomass and biosurfactant production were NaNO 3 and soybean oil. The results showed that the content of acid components increased with the progress of crude oil biodegradation. A glass micromodel test demonstrated that the strain significantly increased oil recovery through interfacial tension reduction, wettability alteration and the mobility of microorganisms. In summary, the findings of this study indicate that the newly developed BD strain and its metabolites have great potential in MEOR.

  14. Hydrocarbon accumulation in deep fluid modified carbonate rock in the Tarim Basin

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The activities of deep fluid are regionalized in the Tarim Basin. By analyzing the REE in core samples and crude oil, carbon isotope of carbon dioxide and inclusion temperature measurement in the west of the Tazhong Uplift in the western Tarim Basin, all the evidence confirms the existence of deep fluid. The deep fluid below the basin floor moved up into the basin through discordogenic fauit and volcanicity to cause corrosion and metaaomatosis of carbonate rock by exchange of matter and energy. The pore structure and permeability of the carbonate reservoirs were improved, making the carbonate reservoirs an excellent type of deeply buried modification. The fluorite ore belts discovered along the large fault and the volcanic area in the west of the Tazhong Uplift are the outcome of deep fluid action. Such carbonate reservoirs are the main type of reservoirs in the Tazhong 45 oilfield. The carbonate reservoirs in well YM 7 are improved obviously by thermal fluid dolomitization. The origin and territory of deep fluid are associated with the discordogenic fault and volcanicity in the basin. The discordogenic fault and volcanic area may be the pointer of looking for the deep fluid modified reservoirs. The primary characteristics of hydrocarbon accumulation in deep fluid reconstructed carbonate rock are summarized as accumulation near the large fault and volcano passage, late-period hydrocarbon accumulation after volcanic activity, and subtle trap reservoirs controlled by lithology.

  15. Geologic storage of carbon dioxide and enhanced oil recovery. I. Uncertainty quantification employing a streamline based proxy for reservoir flow simulation

    International Nuclear Information System (INIS)

    Kovscek, A.R.; Wang, Y.

    2005-01-01

    Carbon dioxide (CO 2 ) is already injected into a limited class of reservoirs for oil recovery purposes; however, the engineering design question for simultaneous oil recovery and storage of anthropogenic CO 2 is significantly different from that of oil recovery alone. Currently, the volumes of CO 2 injected solely for oil recovery are minimized due to the purchase cost of CO 2 . If and when CO 2 emissions to the atmosphere are managed, it will be necessary to maximize simultaneously both economic oil recovery and the volumes of CO 2 emplaced in oil reservoirs. This process is coined 'cooptimization'. This paper proposes a work flow for cooptimization of oil recovery and geologic CO 2 storage. An important component of the work flow is the assessment of uncertainty in predictions of performance. Typical methods for quantifying uncertainty employ exhaustive flow simulation of multiple stochastic realizations of the geologic architecture of a reservoir. Such approaches are computationally intensive and thereby time consuming. An analytic streamline based proxy for full reservoir simulation is proposed and tested. Streamline trajectories represent the three-dimensional velocity field during multiphase flow in porous media and so are useful for quantifying the similarity and differences among various reservoir models. The proxy allows rational selection of a representative subset of equi-probable reservoir models that encompass uncertainty with respect to true reservoir geology. The streamline approach is demonstrated to be thorough and rapid

  16. IMPROVING CO2 EFFICIENCY FOR RECOVERING OIL IN HETEROGENEOUS RESERVOIRS

    International Nuclear Information System (INIS)

    Reid B. Grigg; Robert K. Svec; Zheng-Wen Zeng; Liu Yi; Baojun Bai

    2004-01-01

    A three-year contract for the project, DOE Contract No. DE-FG26-01BC15364, ''Improving CO 2 Efficiency for Recovering Oil in Heterogeneous Reservoirs'', was started on September 28, 2001. This project examines three major areas in which CO 2 flooding can be improved: fluid and matrix interactions, conformance control/sweep efficiency, and reservoir simulation for improved oil recovery. The project has received a one-year, no-cost extension to September 27, 2005. During this extra time additional deliverables will be (1) the version of MASTER that has been debugged and a foam option added for CO 2 mobility control and (2) adsorption/desorption data on pure component minerals common in reservoir rock that will be used to improve predictions of chemical loss to adsorption in reservoirs. This report discusses the activity during the six-month period covering October 1, 2003 through March 31, 2004 that comprises the first and second fiscal quarters of the project's third year. During this period of the project several areas have advanced: reservoir fluid/rock interactions and their relationships to changing injectivity, and surfactant adsorption on quarried core and pure component granules, foam stability, and high flow rate effects. Presentations and papers included: a papers covered in a previous report was presented at the fall SPE ATCE in Denver in October 2003, a presentation at the Southwest ACS meeting in Oklahoma City, presentation on CO 2 flood basic behavior at the Midland Annual CO 2 Conference December 2003; two papers prepared for the biannual SPE/DOE Symposium on IOR, Tulsa, April 2004; one paper accepted for the fall 2004 SPE ATCE in Houston; and a paper submitted to an international journal Journal of Colloid and Interface Science which is being revised after peer review

  17. Application of advanced reservoir characterization, simulation and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Asquith, G.B.; Barton, M.D.; Cole, A.G.; Gogas, J.; Malik, M.A.; Clift, S.J.; Guzman, J.I.

    1997-11-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. This project involves reservoir characterization of two Late Permian slope and basin clastic reservoirs in the Delaware Basin, West Texas, followed by a field demonstration in one of the fields. The fields being investigated are Geraldine Ford and Ford West fields in Reeves and Culberson Counties, Texas. Project objectives are divided into two major phases, reservoir characterization and implementation. The objectives of the reservoir characterization phase of the project were to provide a detailed understanding of the architecture and heterogeneity of the two fields, the Ford Geraldine unit and Ford West field. Reservoir characterization utilized 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once reservoir characterized was completed, a pilot area of approximately 1 mi{sup 2} at the northern end of the Ford Geraldine unit was chosen for reservoir simulation. This report summarizes the results of the second year of reservoir characterization.

  18. Local Refinement of the Super Element Model of Oil Reservoir

    Directory of Open Access Journals (Sweden)

    A.B. Mazo

    2017-12-01

    Full Text Available In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailing to describe hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves is modeled (characteristic scale of such changes is km / year. The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200-500 m. The tensor coefficients of the super-element model are calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model is constructed for calculating small-scale processes (with a scale of m / day, which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem are formulated on the basis of the super-element solution. This approach allows us to reduce the computational costs in order to solve the problems of designing and monitoring the oil reservoir. To demonstrate the proposed approach, we give an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We show a good compliance between the locally refined solution of the super-element model in the area of measure exposure and the results of numerical modeling of the whole history of reservoir

  19. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.

    Science.gov (United States)

    Olsen, Gro Harlaug; Coquillé, Nathalie; Le Floch, Stephane; Geraudie, Perrine; Dussauze, Matthieu; Lemaire, Philippe; Camus, Lionel

    2016-04-01

    In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50% of test individuals (LC50) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC50 (24 h) was 101 and 24 mg L(-1) after 72 h and 12 mg L(-1) at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC50 (96 h) of 12 mg L(-1) indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC50 value in this study was similar to the LC50 value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental

  20. Practices and prospect of petroleum engineering technologies in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-12-01

    Full Text Available Located in the Sichuan Basin, the Yuanba Gasfield is the deepest marine sour gas field among those developed in China so far. Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth, high content of hydrogen sulfide, medium–low porosity and permeability, and small reservoir thickness. Economic evaluation on it shows that horizontal well drilling is the only way to develop this gas reservoir efficiently and to reduce the total development investment. At present, the petroleum engineering technology for this type of ultra-deep sour gas reservoir is less applied in the world, so an ultra-deep horizontal well is subject to a series of petroleum engineering technology difficulties, such as safe and fast well drilling and completion, mud logging, well logging, downhole operation, safety and environmental protection. Based on the successful development experience of the Puguang Gasfield, therefore, Sinopec Southwest Petroleum Engineering Co., Ltd. took the advantage of integrated engineering geology method to carry out specific technical research and perform practice diligently for 7 years. As a result, 18 key items of technologies for ultra-deep sour gas reservoirs were developed, including horizontal-well drilling speed increasing technology, horizontal-well mud logging and well logging technology, downhole operation technology, and safety and environmental protection technology. These technologies were applied in 40 wells during the first and second phases of productivity construction of the Yuanba Gasfield. All the 40 wells have been built into commercial gas wells, and the productivity construction goal of 3.4 billion m3 purified gas has also been achieved. These petroleum engineering technologies for ultra-deep sour gas fields play a reference role in exploring and developing similar gas reservoirs at home and abroad.

  1. The influence of lumping on the behavior of reservoir with light oil and CO2

    Energy Technology Data Exchange (ETDEWEB)

    Scanavini, Helena Finardi Alvares [Universidade Estadual de Campinas (UNISIM/UNICAMP), SP (Brazil). Dept. de Engenharia de Petroleo. Pesquisa em Simulacao e Gerenciamento de Reservatorios; Schiozer, Denis Jose [Universidade Estadual de Campinas (DEP/FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Dept. de Engenharia de Petroleo

    2012-07-01

    Compositional simulation demands a large number of equations and functions to be solved, once fluid properties depend on reservoir pressure and temperature and also on fluid composition. As a consequence, the number of components used influences considerably in the simulation run time and accuracy: more components yield more equations to be solved with expected higher run time. Giant petroleum fields discovered recently in Brazil (pre-salt reservoirs) demand compositional simulation due to the fluid characteristics (light oil with the presence of CO2). However, the computational time can be a limitation because of the number of grid blocks that are necessary to represent the reservoir. So, reducing the number of components is an important step for the simulation models. Under this context, this paper presents a study on the influence of different lumping clusters, used to reduce the number of components in a volatile oil, on reservoir simulation. Phase diagram, saturation pressure and simulation results were used for comparison purposes. The best results were obtained for the cases with 14, 9 and 7 pseudo components, which represented correctly the original fluid, reducing till three times the simulation run time, for the same production volumes of oil and gas. (author)

  2. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Davey, R.A.; Lappin-Scott, H. [Univ. of Exeter (United Kingdom)

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  3. A New Sensitive GC-MS-based Method for Analysis of Dipicolinic Acid and Quantifying Bacterial Endospores in Deep Marine Subsurface Sediment

    Science.gov (United States)

    Fang, J.

    2015-12-01

    Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.

  4. An improved method for predicting brittleness of rocks via well logs in tight oil reservoirs

    Science.gov (United States)

    Wang, Zhenlin; Sun, Ting; Feng, Cheng; Wang, Wei; Han, Chuang

    2018-06-01

    There can be no industrial oil production in tight oil reservoirs until fracturing is undertaken. Under such conditions, the brittleness of the rocks is a very important factor. However, it has so far been difficult to predict. In this paper, the selected study area is the tight oil reservoirs in Lucaogou formation, Permian, Jimusaer sag, Junggar basin. According to the transformation of dynamic and static rock mechanics parameters and the correction of confining pressure, an improved method is proposed for quantitatively predicting the brittleness of rocks via well logs in tight oil reservoirs. First, 19 typical tight oil core samples are selected in the study area. Their static Young’s modulus, static Poisson’s ratio and petrophysical parameters are measured. In addition, the static brittleness indices of four other tight oil cores are measured under different confining pressure conditions. Second, the dynamic Young’s modulus, Poisson’s ratio and brittleness index are calculated using the compressional and shear wave velocity. With combination of the measured and calculated results, the transformation model of dynamic and static brittleness index is built based on the influence of porosity and clay content. The comparison of the predicted brittleness indices and measured results shows that the model has high accuracy. Third, on the basis of the experimental data under different confining pressure conditions, the amplifying factor of brittleness index is proposed to correct for the influence of confining pressure on the brittleness index. Finally, the above improved models are applied to formation evaluation via well logs. Compared with the results before correction, the results of the improved models agree better with the experimental data, which indicates that the improved models have better application effects. The brittleness index prediction method of tight oil reservoirs is improved in this research. It is of great importance in the optimization of

  5. Rapid Response of Eastern Mediterranean Deep Sea Microbial Communities to Oil

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jiang; Techtmann, Stephen M.; Woo, Hannah L.; Ning, Daliang; Fortney, Julian L.; Hazen, Terry C.

    2017-07-18

    Deep marine oil spills like the Deepwater Horizon (DWH) in the Gulf of Mexico have the potential to drastically impact marine systems. Crude oil contamination in marine systems remains a concern, especially for countries around the Mediterranean Sea with off shore oil production. The goal of this study was to investigate the response of indigenous microbial communities to crude oil in the deep Eastern Mediterranean Sea (E. Med.) water column and to minimize potential bias associated with storage and shifts in microbial community structure from sample storage. 16S rRNA amplicon sequencing was combined with GeoChip metagenomic analysis to monitor the microbial community changes to the crude oil and dispersant in on-ship microcosms set up immediately after water collection. After 3 days of incubation at 14 °C, the microbial communities from two different water depths: 824 m and 1210 m became dominated by well-known oil degrading bacteria. The archaeal population and the overall microbial community diversity drastically decreased. Similarly, GeoChip metagenomic analysis revealed a tremendous enrichment of genes related to oil biodegradation, which was consistent with the results from the DWH oil spill. These results highlight a rapid microbial adaption to oil contamination in the deep E. Med., and indicate strong oil biodegradation potentia

  6. Feasibility of microbially improved oil recovery (MIOR) in Northern German oil reservoirs; Bakterien zur Erhoehung des Entoelungsgrades in norddeutschen Erdoellagerstaetten

    Energy Technology Data Exchange (ETDEWEB)

    Amro, M. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany); Kessel, D. [Inst. fuer Erdoel- und Erdgasforschung, Clausthal-Zellerfeld (Germany)

    1996-05-01

    The scope of this study was to investigate the feasibility of microbially improved oil recovery (MIOR) in Northern German oil reservoirs. Suitable bacterial strains had to be identified. The mechanisms for oil mobilization and incremental recovery had to be investigated. To this end, two independent methods were employed, namely static autoclave tests and dynamic flood experiments. The static tests were carried out without reservoir rock matrix to preselect suitable bacterial strains with a minimum of experimental effort. The selected strains were then tested in dynamic flood experiments under reservoir conditions on Bentheimer sandstone cores to quantify the oil recovery. Key results of the study are: (1) Two bacterial strains were found having excellent metabolic activity with potential for oil recovery under Northern German reservoir conditions. (2) These bacteria can be injected into and transported in the pores of the sandstone. (3) The metabolic activity of these bacteria leads to substantial incremental oil recovery in repeated injection - shut in - production cycles. (4) Incremental oil recovery is attributed to wettability change and biomass production by the metabolites of the bacteria. (orig.) [Deutsch] Das Ziel dieser Arbeit ist die Untersuchung der Anwendbarkeit der mikrobiell verbesserten Erdoelgewinnung in norddeutschen Lagerstaetten. Zunaechst waren hierfuer einsetzbare Bakterienstaemme zu identifizieren. Diese waren dann auf ihr Entoelungsvermoegen zu ueberpruefen. Schliesslich sollten die Entoelungsmechanismen ermittelt werden. Die Vorauswahl potentiell geeigneter Bakterienstaemme erfolgte durch verschiedene mikrobiologische Forschungsinstitute. Zur Minimierung des experimentellen Aufwands wurden diese Staemme dann im Institut fuer Erdoel- und Erdgasforschung in statischen Autoklavenversuchen unter Lagerstaettenbedingungen, jedoch noch ohne Lagerstaettengestein, auf ihre Stoffwechselaktivitaet sowie Art und Eigenschaften ihrer Stoffwechselprodukte

  7. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    Directory of Open Access Journals (Sweden)

    Jenna L Shelton

    2016-09-01

    Full Text Available Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow up-dip wells was different than the 17 deeper, down-dip wells, and that

  8. Diffusion and spatially resolved NMR in Berea and Venezuelan oil reservoir rocks.

    Science.gov (United States)

    Murgich, J; Corti, M; Pavesi, L; Voltini, F

    1992-01-01

    Conventional and spatially resolved proton NMR and relaxation measurements are used in order to study the molecular motions and the equilibrium and nonequilibrium diffusion of oils in Berea sandstone and Venezuelan reservoir rocks. In the water-saturated Berea a single line with T*2 congruent to 150 microseconds is observed, while the relaxation recovery is multiexponential. In an oil reservoir rock (Ful 13) a single narrow line is present while a distribution of relaxation rates is evidenced from the recovery plots. On the contrary, in the Ful 7 sample (extracted at a deeper depth in a different zone) two NMR components are present, with 3.5 and 30 KHz linewidths, and the recovery plot exhibits biexponential law. No echo signal could be reconstructed in the oil reservoir rocks. These findings can be related to the effects in the micropores, where motions at very low frequency can occur in a thin layer. From a comparison of the diffusion constant in water-saturated Berea, D congruent to 5*10(-6) cm2/sec, with the ones in model systems, the average size of the pores is estimated around 40 A. The density profiles at the equilibrium show uniform distribution of oils or of water, and the relaxation rates appear independent from the selected slice. The nonequilibrium diffusion was studied as a function of time in a Berea cylinder with z axis along H0, starting from a thin layer of oil at the base, and detecting the spin density profiles d(z,t) with slice-selection techniques. Simultaneously, the values of T1's were measured locally, and the distribution of the relaxation rates was observed to be present in any slice.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and

  10. Brine migration resulting from pressure increases in a layered subsurface system

    Science.gov (United States)

    Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian

    2016-04-01

    Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each

  11. Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    Science.gov (United States)

    Barry, Peter H.; Kulongoski, Justin; Landon, Matthew K.; Tyne, R.L.; Gillespie, Janice; Stephens, Michael; Hillegonds, D.J.; Byrne, D.J.; Ballentine, C.J.

    2018-01-01

    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however the environmental impacts of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and disposal of high volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil-water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR.

  12. Experimental and numerical modeling of sulfur plugging in a carbonate oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awadhy, F. [ADMA-OPCO, Abudhabi (United Arab Emirates); Kocabas, I.; Abou-Kassem, J.H. [UAE University, Al Ain (United Arab Emirates); Islam, M.R. [Dalhousie University, Halifax, NS (United States)

    2005-01-15

    Many oil and gas reservoirs in the United Arab Emirates produce large amounts of sour gas, mainly in the form of hydrogen sulfide. In addition to creating problems in the production line, wellbore damage is often reported due to the precipitation of elemental sulfur in the vicinity of the wellbore. While there have been several studies performed on the role of solid deposition in a gas reservoir, the role of sulfur deposition in oil reservoirs has not been investigated. This article presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. The experiments were conducted in a core (linear) system. Both analytical and numerical modelings were performed in a linear coordinate system. Data for the numerical model was obtained from both test tube and coreflood experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results). The crude oil was de-asphalted prior to conducting the experiment in order to isolate the effect of asphaltene plugging. A series of coreflood tests was carried out to observe sulfur precipitation and plugging in a carbonate rock. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in the phenomenological model and can be incorporated in the wellbore numerical model. (author)

  13. Optimisation of production from an oil-reservoir using augmented Lagrangian methods

    Energy Technology Data Exchange (ETDEWEB)

    Doublet, Daniel Christopher

    2007-07-01

    This work studies the use of augmented Lagrangian methods for water flooding production optimisation from an oil reservoir. Commonly, water flooding is used as a means to enhance oil recovery, and due to heterogeneous rock properties, water will flow with different velocities throughout the reservoir. Due to this, water breakthrough can occur when great regions of the reservoir are still unflooded so that much of the oil may become 'trapped' in the reservoir. To avoid or reduce this problem, one can control the production so that the oil recovery rate is maximised, or alternatively the net present value (NPV) of the reservoir is maximised. We have considered water flooding, using smart wells. Smart wells with down-hole valves gives us the possibility to control the injection/production at each of the valve openings along the well, so that it is possible to control the flowregime. One can control the injection/production at all valve openings, and the setting of the valves may be changed during the production period, which gives us a great deal of control over the production and we want to control the injection/ production so that the profit obtained from the reservoir is maximised. The problem is regarded as an optimal control problem, and it is formulated as an augmented Lagrangian saddle point problem. We develop a method for optimal control based on solving the Karush-Kuhn-Tucker conditions for the augmented Lagrangian functional, a method, which to my knowledge has not been presented in the literature before. The advantage of this method is that we do not need to solve the forward problem for each new estimate of the control variables, which reduces the computational effort compared to other methods that requires the solution of the forward problem every time we find a new estimate of the control variables, such as the adjoint method. We test this method on several examples, where it is compared to the adjoint method. Our numerical experiments show

  14. Determination of residual oil saturation from time-lapse pulsed neutron capture logs in a large sandstone reservoir

    International Nuclear Information System (INIS)

    Syed, E.V.; Salaita, G.N.; McCaffery, F.G.

    1991-01-01

    Cased hole logging with pulsed neutron tools finds extensive use for identifying zones of water breakthrough and monitoring oil-water contacts in oil reservoirs being depleted by waterflooding or natural water drive. Results of such surveys then find direct use for planning recompletions and water shutoff treatments. Pulsed neutron capture (PNC) logs are useful for estimating water saturation changes behind casing in the presence of a constant, high-salinity environment. PNC log surveys run at different times, i.e., in a time-lapse mode, are particularly amenable to quantitative analysis. The combined use of the original open hole and PNC time-lapse log information can then provide information on remaining or residual oil saturations in a reservoir. This paper reports analyses of historical pulsed neutron capture log data to assess residual oil saturation in naturally water-swept zones for selected wells from a large sandstone reservoir in the Middle East. Quantitative determination of oil saturations was aided by PNC log information obtained from a series of tests conducted in a new well in the same field

  15. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  16. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    Science.gov (United States)

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  17. Expanding solvent SAGD in heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Govind, P.A. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[ConocoPhillips Canada Resources Corp., Calgary, AB (Canada); Das, S.; Wheeler, T.J. [Society of Petroleum Engineers, Richardson, TX (United States)]|[ConocoPhillips Co., Houston, TX (United States); Srinivasan, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Texas Univ., Austin, TX (United States)

    2008-10-15

    Steam assisted gravity drainage (SAGD) projects have proven effective for the recovery of oil and bitumen. Expanding solvent (ES) SAGD pilot projects have also demonstrated positive results of improved performance. This paper presented the results of a simulation study that investigated several important factors of the ES-SAGD process, including solvent types; concentration; operating pressure; and injection strategy. The objectives of the study were to examine the effectiveness of the ES-SAGD process in terms of production acceleration and energy requirements; to optimize solvent selection; to understand the effect of dilation in unconsolidated oil sands and the directional impact on reservoir parameters and oil production rate in ES-SAGD; and to understand the impact of operating conditions such as pressure, solvent concentration, circulation preheating period and the role of conduction heating and grid size in this process. The advantages of ES-SAGD over SAGD were also outlined. The paper presented results of sensitivity studies that were conducted on these four factors. Conclusions and recommendations for operating strategy were also offered. It was concluded that dilation is an important factor for SAGD performance at high operating pressure. 8 refs., 15 figs.

  18. Game-Theory Based Research on Oil-Spill Prevention and Control Modes in Three Gorges Reservoir Area

    Science.gov (United States)

    Yin, Jie; Xiong, Ting

    2018-01-01

    Aiming at solving the existing oil pollution in the Three Gorges reservoir, this paper makes research on oil-spill prevention and control mode based on game theory. Regarding the built modes and comparative indicator system, overall efficiency indicator functions are used to compare general effect, overall cost, and overall efficiency, which concludes that the mode combining government and enterprise has the highest overall efficiency in preventing and controlling ship oil spills. The suggested mode together its correspondingly designed management system, has been applied to practice for a year in Three Gorges Reservoir Area and has made evident improvements to the existing oil pollution, meanwhile proved to be quite helpful to the pollution prevention and control in the lower reaches of Yangtze River.

  19. Mobility Effect on Poroelastic Seismic Signatures in Partially Saturated Rocks With Applications in Time-Lapse Monitoring of a Heavy Oil Reservoir

    Science.gov (United States)

    Zhao, Luanxiao; Yuan, Hemin; Yang, Jingkang; Han, De-hua; Geng, Jianhua; Zhou, Rui; Li, Hui; Yao, Qiuliang

    2017-11-01

    Conventional seismic analysis in partially saturated rocks normally lays emphasis on estimating pore fluid content and saturation, typically ignoring the effect of mobility, which decides the ability of fluids moving in the porous rocks. Deformation resulting from a seismic wave in heterogeneous partially saturated media can cause pore fluid pressure relaxation at mesoscopic scale, thereby making the fluid mobility inherently associated with poroelastic reflectivity. For two typical gas-brine reservoir models, with the given rock and fluid properties, the numerical analysis suggests that variations of patchy fluid saturation, fluid compressibility contrast, and acoustic stiffness of rock frame collectively affect the seismic reflection dependence on mobility. In particular, the realistic compressibility contrast of fluid patches in shallow and deep reservoir environments plays an important role in determining the reflection sensitivity to mobility. We also use a time-lapse seismic data set from a Steam-Assisted Gravity Drainage producing heavy oil reservoir to demonstrate that mobility change coupled with patchy saturation possibly leads to seismic spectral energy shifting from the baseline to monitor line. Our workflow starts from performing seismic spectral analysis on the targeted reflectivity interface. Then, on the basis of mesoscopic fluid pressure diffusion between patches of steam and heavy oil, poroelastic reflectivity modeling is conducted to understand the shift of the central frequency toward low frequencies after the steam injection. The presented results open the possibility of monitoring mobility change of a partially saturated geological formation from dissipation-related seismic attributes.

  20. The Role of Horizontal Wells when Developing Low-Permeable, Heterogeneous Reservoirs

    Directory of Open Access Journals (Sweden)

    M.P. Yurova

    2017-09-01

    Full Text Available The widespread use of horizontal drilling in recent years has shown that horizontal wells can be successfully used both at the initial and late stages of development. This is due to the fact that horizontal wells, in contrast to vertical wells, contact a larger area of ​​the productive formation, while the surface of drainage of the oil-saturated layer, productivity of the wells due to the formation of cracks, and also the influence on thin layers increases. One of the methods of impact on the reservoir is the steam-thermal method. The main advantage of the use of the heat wave method in horizontal wells is a significant increase in the well production rate, a decrease in the water cut of the reservoir, a decrease in the oil viscosity, an increase in the injectivity of the injection well, and an increase in the inflow in producing wells. As a result of the total effect, a significant increase in production is obtained throughout the entire deposit. Enhanced oil recovery from the injection of steam is achieved by reducing the viscosity of oil, covering the reservoir with steam, distilling oil and extracting with a solvent. All this increases the displacement coefficient. One of the most effective ways to increase oil recovery at a late stage of field operation is sidetracking in emergency, highly watered and low-productive wells. This leads to the development of residual reserves in weakly drained zones of reservoirs with a substantial increase in well productivity in low-permeable reservoirs. This approach assumes that the initial drilling of wells is a ‘pilot’ stage, which precedes the development of oil reserves in the late stages of deposit development. In the fields of Western Siberia, multiple hydraulic fracturing of the reservoir has been improved due to a special stinger in the liner hanger of multi-packer installation, which excludes the influence of high pressures on the production column under the multiple hydraulic fracturing

  1. Study on distribution of reservoir endogenous microbe and oil displacement mechanism

    Directory of Open Access Journals (Sweden)

    Ming Yue

    2017-02-01

    Full Text Available In order to research oil displacement mechanism by indigenous microbial communities under reservoir conditions, indigenous microbial flooding experiments using the endogenous mixed bacterium from Shengli Oilfield were carried out. Through microscopic simulation visual model, observation and analysis of distribution and flow of the remaining oil in the process of water flooding and microbial oil displacement were conducted under high temperature and high pressure conditions. Research has shown that compared with atmospheric conditions, the growth of the microorganism metabolism and attenuation is slowly under high pressure conditions, and the existence of the porous medium for microbial provides good adhesion, also makes its growth cycle extension. The microbial activities can effectively launch all kinds of residual oil, and can together with metabolites, enter the blind holes off which water flooding, polymer flooding and gas flooding can’t sweep, then swap out remaining oil, increase liquidity of the crude oil and remarkably improve oil displacement effect.

  2. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    Directory of Open Access Journals (Sweden)

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  3. Modelling and simulation of compressible fluid flow in oil reservoir: a case study of the Jubilee Field, Tano Basin (Ghana)

    International Nuclear Information System (INIS)

    Gawusu, S.

    2015-07-01

    Oil extraction represents an important investment and the control of a rational exploitation of a field means mastering various scientific techniques including the understanding of the dynamics of fluids in place. This thesis presents a theoretical investigation of the dynamic behaviour of an oil reservoir during its exploitation. The study investigated the dynamics of fluid flow patterns in a homogeneous oil reservoir using the Radial Diffusivity Equation (RDE) as well as two phase oil-water flow equations. The RDE model was solved analytically and numerically for pressure using the Constant Terminal Rate Solution (CTRS) and the fully implicit Finite Difference Method (FDM) respectively. The mathematical derivations of the models and their solution procedures were presented to allow for easy utilization of the techniques for reservoir and engineering applications. The study predicted that the initial oil reservoir pressure will be able to do the extraction for a very long time before any other recovery method will be used to aid in the extraction process depending on the rate of production. Reservoir simulation describing a one dimensional radial flow of a compressible fluid in porous media may be adequately performed using ordinary laptop computers as revealed by the study. For the simulation of MATLAB, the case of the Jubilee Fields, Tano Basin was studied, an algorithm was developed for the simulation of pressure in the reservoir. It ensues from the analysis of the plots of pressure vrs time and space that the Pressure Transient Analysis (PTA) was duly followed. The approximate solutions of the analytical and numerical solutions to the Radial Diffusivity Equation (RDE) were in excellent agreement, thus the reservoir simulation model developed can be used to describe typical pressure-time relationships that are used in conventional Pressure Transient Analysis (PTA). The study was extended to two phase oil-water flow in reservoirs. The flow of fluids in multi

  4. Review of flow rate estimates of the Deepwater Horizon oil spill

    OpenAIRE

    McNutt, Marcia K.; Camilli, Rich; Crone, Timothy J.; Guthrie, George D.; Hsieh, Paul A.; Ryerson, Thomas B.; Savas, Omer; Shaffer, Frank

    2011-01-01

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ ...

  5. The Deepwater Horizon Oil Spill: Ecogenomics of the Deep-Sea Plume

    Science.gov (United States)

    Hazen, T. C.

    2012-12-01

    The explosion on April 20, 2010 at the BP-leased Deepwater Horizon drilling rig in the Gulf of Mexico off the coast of Louisiana, resulted in oil and gas rising to the surface and the oil coming ashore in many parts of the Gulf, it also resulted in the dispersment of an immense oil plume 4,000 feet below the surface of the water. Despite spanning more than 600 feet in the water column and extending more than 10 miles from the wellhead, the dispersed oil plume was gone within weeks after the wellhead was capped - degraded and diluted to undetectable levels. Furthermore, this degradation took place without significant oxygen depletion. Ecogenomics enabled discovery of new and unclassified species of oil-eating bacteria that apparently lives in the deep Gulf where oil seeps are common. Using 16s microarrays, functional gene arrays, clone libraries, lipid analysis and a variety of hydrocarbon and micronutrient analyses we were able to characterize the oil degraders. Metagenomic sequence data was obtained for the deep-water samples using the Illumina platform. In addition, single cells were sorted and sequenced for the some of the most dominant bacteria that were represented in the oil plume; namely uncultivated representatives of Colwellia and Oceanospirillum. In addition, we performed laboratory microcosm experiments using uncontaminated water collected from The Gulf at the depth of the oil plume to which we added oil and COREXIT. These samples were characterized by 454 pyrotag. The results provide information about the key players and processes involved in degradation of oil, with and without COREXIT, in different impacted environments in The Gulf of Mexico. We are also extending these studies to explore dozens of deep sediment samples that were also collected after the oil spill around the wellhead. This data suggests that a great potential for intrinsic bioremediation of oil plumes exists in the deep-sea and other environs in the Gulf of Mexico.

  6. Influence of Mg2+ on CaCO3 precipitation during subsurface reactive transport in a homogeneous silicon-etched pore network

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Victoria [Univ. of Illinois, Urbana-Champaign, IL (United States); Yoon, Hongkyu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhang, Changyong [Exxon Mobil Upstream Research Company, Houston, TX (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hess, Nancy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fouke, Bruce W. [Univ. of Illinois, Urbana-Champaign, IL (United States); Valocchi, Albert J. [Univ. of Illinois, Urbana-Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-04-04

    Calcium carbonate (CaCO3) geochemical reactions exert a fundamental control on the evolution of porosity and permeability in shallow-to-deep subsurface siliciclastic and limestone rock reservoirs. As a result, these carbonate water-rock interactions play a critically important role in research on groundwater remediation, geological carbon sequestration, and hydrocarbon exploration. A study was undertaken to determine the effects of Mg2+ concentration on CaCO3 crystal morphology, precipitation rate, and porosity occlusion under flow and mixing conditions similar to those in subsurface aquifers.

  7. Saskatchewan's place in the Canadian oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, L.L. [Saskatchewan Research Council, Saskatoon, SK (Canada); Kramers, J.W. [Owl Ventures Inc., Edmonton, AB (Canada); Isaacs, E.E. [Alberta Energy Research Inst., Calgary, AB (Canada)

    2009-07-01

    This paper provided a detailed description of the oil sands geology and physical properties and highlighted some of the novel recovery technologies that are being developed for shallow in-situ reservoirs in Alberta and Saskatchewan. Canada's oil sands are well known around the world, with Alberta's mined and in-situ oil sands reservoirs being well developed with mature commercial technologies. Shallow in-situ oil sands located in both Saskatchewan and Alberta will be the next frontier in Canadian petroleum development. Shallow reservoirs will need to be developed with new environmentally sound in-situ technologies that will reduce the use of steam and fresh water, and also reduce greenhouse gas emissions. Research and development programs are currently underway to develop and demonstrate such new technologies. It was concluded that innovation has been the key to developing the immense and complex technology oil contained in Canada's heavy oil reservoirs and also in its shallow and deep in-situ oil sands reservoirs. Promising technologies include the solvent vapour extraction and hybrid thermal solvent extraction processes that are being developed and demonstrated in large-scale three-dimensional scaled physical models and associated numerical simulation models. Electrical heating and gravity stable combustion are other examples of technologies that could play a significant role in developing these resources. 88 refs., 3 tabs., 8 figs.

  8. Changes of Major Antioxidant Compounds and Radical Scavenging Activity of Palm Oil and Rice Bran Oil during Deep-Frying

    Science.gov (United States)

    Abdul Hamid, Azizah; Pak Dek, Mohd Sabri; Tan, Chin Ping; Mohd Zainudin, Mohd Asraf; Wee Fang, Evelyn Koh

    2014-01-01

    Changes in antioxidant properties and degradation of bioactives in palm oil (PO) and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p -oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying. PMID:26785067

  9. Recipe for residual oil saturation determination

    Energy Technology Data Exchange (ETDEWEB)

    Guillory, A.J.; Kidwell, C.M.

    1979-01-01

    In 1978, Shell Oil Co., in conjunction with the US Department of Energy, conducted a residual oil saturation study in a deep, hot high-pressured Gulf Coast Reservoir. The work was conducted prior to initiation of CO/sub 2/ tertiary recovery pilot. Many problems had to be resolved prior to and during the residual oil saturation determination. The problems confronted are outlined such that the procedure can be used much like a cookbook in designing future studies in similar reservoirs. Primary discussion centers around planning and results of a log-inject-log operation used as a prime method to determine the residual oil saturation. Several independent methods were used to calculate the residual oil saturation in the subject well in an interval between 12,910 ft (3935 m) and 12,020 ft (3938 m). In general, these numbers were in good agreement and indicated a residual oil saturation between 22% and 24%. 10 references.

  10. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Erdlac, Richard J., Jr.

    2006-10-12

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities

  11. Friction Theory Prediction of Crude Oil Viscosity at Reservoir Conditions Based on Dead Oil Properties

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan

    2003-01-01

    The general one-parameter friction theory (f-theory) models have been further extended to the prediction of the viscosity of real "live" reservoir fluids based on viscosity measurements of the "dead" oil and the compositional information of the live fluid. This work representation of the viscosity...... of real fluids is obtained by a simple one-parameter tuning of a linear equation derived from a general one-parameter f-theory model. Further, this is achieved using simple cubic equations of state (EOS), such as the Peng-Robinson (PR) EOS or the Soave-Redlich-Kwong (SRK) EOS, which are commonly used...... within the oil industry. In sake of completeness, this work also presents a simple characterization procedure which is based on compositional information of an oil sample. This procedure provides a method for characterizing an oil into a number of compound groups along with the critical constants...

  12. Unconventional energy resources in a crowded subsurface: Reducing uncertainty and developing a separation zone concept for resource estimation and deep 3D subsurface planning using legacy mining data.

    Science.gov (United States)

    Monaghan, Alison A

    2017-12-01

    Over significant areas of the UK and western Europe, anthropogenic alteration of the subsurface by mining of coal has occurred beneath highly populated areas which are now considering a multiplicity of 'low carbon' unconventional energy resources including shale gas and oil, coal bed methane, geothermal energy and energy storage. To enable decision making on the 3D planning, licensing and extraction of these resources requires reduced uncertainty around complex geology and hydrogeological and geomechanical processes. An exemplar from the Carboniferous of central Scotland, UK, illustrates how, in areas lacking hydrocarbon well production data and 3D seismic surveys, legacy coal mine plans and associated boreholes provide valuable data that can be used to reduce the uncertainty around geometry and faulting of subsurface energy resources. However, legacy coal mines also limit unconventional resource volumes since mines and associated shafts alter the stress and hydrogeochemical state of the subsurface, commonly forming pathways to the surface. To reduce the risk of subsurface connections between energy resources, an example of an adapted methodology is described for shale gas/oil resource estimation to include a vertical separation or 'stand-off' zone between the deepest mine workings, to ensure the hydraulic fracturing required for shale resource production would not intersect legacy coal mines. Whilst the size of such separation zones requires further work, developing the concept of 3D spatial separation and planning is key to utilising the crowded subsurface energy system, whilst mitigating against resource sterilisation and environmental impacts, and could play a role in positively informing public and policy debate. Copyright © 2017 British Geological Survey, a component institute of NERC. Published by Elsevier B.V. All rights reserved.

  13. Subsurface microbial habitats on Mars

    Science.gov (United States)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  14. Insights into the Anaerobic Biodegradation Pathway of n-Alkanes in Oil Reservoirs by Detection of Signature Metabolites

    Science.gov (United States)

    Bian, Xin-Yu; Maurice Mbadinga, Serge; Liu, Yi-Fan; Yang, Shi-Zhong; Liu, Jin-Feng; Ye, Ru-Qiang; Gu, Ji-Dong; Mu, Bo-Zhong

    2015-01-01

    Anaerobic degradation of alkanes in hydrocarbon-rich environments has been documented and different degradation strategies proposed, of which the most encountered one is fumarate addition mechanism, generating alkylsuccinates as specific biomarkers. However, little is known about the mechanisms of anaerobic degradation of alkanes in oil reservoirs, due to low concentrations of signature metabolites and lack of mass spectral characteristics to allow identification. In this work, we used a multidisciplinary approach combining metabolite profiling and selective gene assays to establish the biodegradation mechanism of alkanes in oil reservoirs. A total of twelve production fluids from three different oil reservoirs were collected and treated with alkali; organic acids were extracted, derivatized with ethanol to form ethyl esters and determined using GC-MS analysis. Collectively, signature metabolite alkylsuccinates of parent compounds from C1 to C8 together with their (putative) downstream metabolites were detected from these samples. Additionally, metabolites indicative of the anaerobic degradation of mono- and poly-aromatic hydrocarbons (2-benzylsuccinate, naphthoate, 5,6,7,8-tetrahydro-naphthoate) were also observed. The detection of alkylsuccinates and genes encoding for alkylsuccinate synthase shows that anaerobic degradation of alkanes via fumarate addition occurs in oil reservoirs. This work provides strong evidence on the in situ anaerobic biodegradation mechanisms of hydrocarbons by fumarate addition. PMID:25966798

  15. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico

    International Nuclear Information System (INIS)

    Murphy, Mark B.

    1999-01-01

    The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry

  16. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh

    2015-07-26

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  17. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2015-01-01

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  18. Magnetically tunable oil droplet lens of deep-sea shrimp

    Science.gov (United States)

    Iwasaka, M.; Hirota, N.; Oba, Y.

    2018-05-01

    In this study, the tunable properties of a bio-lens from a deep-sea shrimp were investigated for the first time using magnetic fields. The skin of the shrimp exhibited a brilliantly colored reflection of incident white light. The light reflecting parts and the oil droplets in the shrimp's skin were observed in a glass slide sample cell using a digital microscope that operated in the bore of two superconducting magnets (maximum strengths of 5 and 13 T). In the ventral skin of the shrimp, which contained many oil droplets, some comparatively large oil droplets (50 to 150 μm in diameter) were present. A distinct response to magnetic fields was found in these large oil droplets. Further, the application of the magnetic fields to the sample cell caused a change in the size of the oil droplets. The phenomena observed in this work indicate that the oil droplets of deep sea shrimp can act as lenses in which the optical focusing can be modified via the application of external magnetic fields. The results of this study will make it possible to fabricate bio-inspired soft optical devices in future.

  19. Application of the CPA equation of state to reservoir fluids in presence of water and polar chemicals

    DEFF Research Database (Denmark)

    Yan, Wei; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2009-01-01

    to reservoir fluids in presence of water and polar chemical Such as methanol and monoethylene glycol. With a minimum number of adjustable parameters from binary pairs, satisfactory results have been obtained for different types of phase equilibria in reservoir fluid systems and several relevant model......The complex phase equilibrium between reservoir fluids and associating compounds like water, methanol and glycols has become more and more important as the increasing global energy demand pushes the oil industry to target reservoirs with extreme or complicated conditions, such as deep or offshore...

  20. Mineral content prediction for unconventional oil and gas reservoirs based on logging data

    Science.gov (United States)

    Maojin, Tan; Youlong, Zou; Guoyue

    2012-09-01

    Coal bed methane and shale oil &gas are both important unconventional oil and gas resources, whose reservoirs are typical non-linear with complex and various mineral components, and the logging data interpretation model are difficult to establish for calculate the mineral contents, and the empirical formula cannot be constructed due to various mineral. The radial basis function (RBF) network analysis is a new method developed in recent years; the technique can generate smooth continuous function of several variables to approximate the unknown forward model. Firstly, the basic principles of the RBF is discussed including net construct and base function, and the network training is given in detail the adjacent clustering algorithm specific process. Multi-mineral content for coal bed methane and shale oil &gas, using the RBF interpolation method to achieve a number of well logging data to predict the mineral component contents; then, for coal-bed methane reservoir parameters prediction, the RBF method is used to realized some mineral contents calculation such as ash, volatile matter, carbon content, which achieves a mapping from various logging data to multimineral. To shale gas reservoirs, the RBF method can be used to predict the clay content, quartz content, feldspar content, carbonate content and pyrite content. Various tests in coalbed and gas shale show the method is effective and applicable for mineral component contents prediction

  1. Wettability of Oil-Producing Reservoir Rocks as Determined from X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Toledo; Araujo; Leon

    1996-11-10

    Wettability has a dominant effect in oil recovery by waterflooding and in many other processes of industrial and environmental interest. Recently, the suggestion has been made that surface science analytical techniques (SSAT) could be used to rapidly determine the wettability of reservoir materials. Here, we bring the capability of X-ray photoelectron spectroscopy (XPS) to bear on the wettability evaluation of producing reservoir rocks. For a suite of freshly exposed fracture surfaces of rocks we investigate the relationship between wettability and surface composition as determined from XPS. The classical wettability index as measured with the Amott-Harvey test is used here as an indicator of the wettability of natural sandstones. The XPS spectra of oil-wet surfaces of rocks reveal the existence of organic carbon and also of an "organic" silicon species, of the kind Si-CH relevant to silanes, having a well-defined binding energy which differs from that of the Si-O species of mineral grains. We provide quantifiable evidence that chemisorbed organic material on the pore surfaces defines the oil-wetting character of various reservoir sandstones studied here which on a mineralogic basis are expected to be water-wet. This view is supported by a strong correlation between C content of pore surfaces and rock wettability. The results also suggest a correlation between organic silicon content on the pore surfaces and rock hydrophobicity.

  2. Using Thermodynamics to Predict the Outcomes of Nitrate-Based Oil Reservoir Souring Control Interventions

    Directory of Open Access Journals (Sweden)

    Jan Dolfing

    2017-12-01

    Full Text Available Souring is the undesirable production of hydrogen sulfide (H2S in oil reservoirs by sulfate-reducing bacteria (SRB. Souring is a common problem during secondary oil recovery via water flooding, especially when seawater with its high sulfate concentration is introduced. Nitrate injection into these oil reservoirs can prevent and remediate souring by stimulating nitrate-reducing bacteria (NRB. Two conceptually different mechanisms for NRB-facilitated souring control have been proposed: nitrate-sulfate competition for electron donors (oil-derived organics or H2 and nitrate driven sulfide oxidation. Thermodynamics can facilitate predictions about which nitrate-driven mechanism is most likely to occur in different scenarios. From a thermodynamic perspective the question “Which reaction yields more energy, nitrate driven oxidation of sulfide or nitrate driven oxidation of organic compounds?” can be rephrased as: “Is acetate driven sulfate reduction to sulfide exergonic or endergonic?” Our analysis indicates that under conditions encountered in oil fields, sulfate driven oxidation of acetate (or other SRB organic electron donors is always more favorable than sulfide oxidation to sulfate. That predicts that organotrophic NRB that oxidize acetate would outcompete lithotrophic NRB that oxidize sulfide. However, sulfide oxidation to elemental sulfur is different. At low acetate HS− oxidation is more favorable than acetate oxidation. Incomplete oxidation of sulfide to S0 is likely to occur when nitrate levels are low, and is favored by low temperatures; conditions that can be encountered at oil field above-ground facilities where intermediate sulfur compounds like S0 may cause corrosion. These findings have implications for reservoir management strategies and for assessing the success and progress of nitrate-based souring control strategies and the attendant risks of corrosion associated with souring and nitrate injection.

  3. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  4. A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, A.; Emanuel, A.S.; Bernath, J.A. [Chevron Petroleum Technology Company, LaHabra, CA (United States)

    1997-08-01

    The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

  5. Modeling Highly Buoyant Flows in the Castel Giorgio: Torre Alfina Deep Geothermal Reservoir

    Directory of Open Access Journals (Sweden)

    Giorgio Volpi

    2018-01-01

    Full Text Available The Castel Giorgio-Torre Alfina (CG-TA, central Italy is a geothermal reservoir whose fluids are hosted in a carbonate formation at temperatures ranging between 120°C and 210°C. Data from deep wells suggest the existence of convective flow. We present the 3D numerical model of the CG-TA to simulate the undisturbed natural geothermal field and investigate the impacts of the exploitation process. The open source finite-element code OpenGeoSys is applied to solve the coupled systems of partial differential equations. The commercial software FEFLOW® is also used as additional numerical constraint. Calculated pressure and temperature have been calibrated against data from geothermal wells. The flow field displays multicellular convective patterns that cover the entire geothermal reservoir. The resulting thermal plumes protrude vertically over 3 km at Darcy velocity of about 7⁎10-8 m/s. The analysis of the exploitation process demonstrated the sustainability of a geothermal doublet for the development of a 5 MW pilot plant. The buoyant circulation within the geothermal system allows the reservoir to sustain a 50-year production at a flow rate of 1050 t/h. The distance of 2 km, between the production and reinjection wells, is sufficient to prevent any thermal breakthrough within the estimated operational lifetime. OGS and FELFOW results are qualitatively very similar with differences in peak velocities and temperatures. The case study provides valuable guidelines for future exploitation of the CG-TA deep geothermal reservoir.

  6. Production Optimization of Oil Reservoirs

    DEFF Research Database (Denmark)

    Völcker, Carsten

    with emphasis on optimal control of water ooding with the use of smartwell technology. We have implemented immiscible ow of water and oil in isothermal reservoirs with isotropic heterogenous permeability elds. We use the method of lines for solution of the partial differential equation (PDE) system that governs...... the uid ow. We discretize the the two-phase ow model spatially using the nite volume method (FVM), and we use the two point ux approximation (TPFA) and the single-point upstream (SPU) scheme for computing the uxes. We propose a new formulation of the differential equation system that arise...... as a consequence of the spatial discretization of the two-phase ow model. Upon discretization in time, the proposed equation system ensures the mass conserving property of the two-phase ow model. For the solution of the spatially discretized two-phase ow model, we develop mass conserving explicit singly diagonally...

  7. Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions; ANNUAL

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Barrufet, Maria

    2002-01-01

    The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes

  8. Sequence Stratigraphic Framework Analysis of Putaohua Oil Reservoir in Chaochang Area of Songliao Basin

    Science.gov (United States)

    Chang, Yan; Liu, Dameng; Yao, Yanbin

    2018-01-01

    The regional structure of the Changchang area in the Songliao Basin is located on the Chaoyangou terrace and Changchunling anticline belt in the central depression of the northern part of the Songliao Basin, across the two secondary tectonic units of the Chaoyanggou terrace and Changchunling anticline. However, with the continuous development of oil and gas, the unused reserves of Fuyu oil reservoir decreased year by year, and the oil field faced a serious shortage of reserve reserves. At the same time, during the evaluation process, a better oil-bearing display was found during the drilling and test oil in the Putao depression to the Chaoyanggou terraces, the Yudong-Taipingchuan area, and in the process of drilling and testing oil in the Putaohua reservoir. Zhao41, Zhao18-1, Shu38 and other exploration wells to obtain oil oil, indicating that the area has a further evaluation of the potential. Based on the principle of stratification, the Putao area was divided into three parts by using the core, logging and logging. It is concluded that the middle and western strata of the study area are well developed, including three sequences, one cycle from bottom to top (three small layers), two cycles (one small layer), three cycles (two small layers) Rhythm is positive-anti-positive. From the Midwest to the southeastern part of the strata, the strata are overtaken, the lower strata are missing, and the top rhythms become rhythmic.

  9. Multigrid methods for fully implicit oil reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Molenaar, J.

    1995-12-31

    In this paper, the authors consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations the material balance or continuity equations, and the equation of motion (Darcy`s law). For the numerical solution of this system of nonlinear partial differential equations, there are two approaches: the fully implicit or simultaneous solution method, and the sequential solution method. In this paper, the authors consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations.

  10. Potential application of oxygen containing gases to enhance gravity drainage in heavy oil bearing reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, I. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Bauer, K. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry; Lakatos-Szabo, J. [Hungarian Academy of Sciences, Miscolc (Hungary). Lab. for Mining Chemistry

    1997-06-01

    In the frame of laboratory studies the effect of air/natural CO{sub 2} mixtures on chemical composition of crude oil and gas phase, the rheological and interfacial properties, the flow mechanism and the safety measures were analyzed. The tests were performed at reservoir conditions (200 bar and 109 C) using natural rock, oil and gas samples. The oxygen content of the gas phase and the gas/oil ratio varied within wide limits. Both crude and asphaltene-free oil were used to determine the consequences of the low temperature oxidation. On the basis of the experimental results it was found that the oxygen content of the cap gas had been completely consumed by the chemical reactions (oxidation, condensation and water formation) before the asphaltene content set in equilibrium. Nearly 9% excess asphaltene formation was observed in both the crude and the asphaltene-free oils. The substantial increase in asphaltene content and the presence of colloidal water results in a measurable change in rheological and interfacial properties. Despite these factors the flow and displacement mechanism is only slightly influenced if the reservoir is of fractured character. On the other hand the in-situ oxidation of this heavy crude oil improves the efficiency of bitumen production and the quality of product used mostly for road construction. As a final statement, it was concluded that replacing the CO{sub 2} with oxygen containing inert gas, the chemical reactions can be in-situ regulated without jeopardizing the recovery efficiency. Application of the artificial gas cap concept opens new perspectives in EOR technology of karstic and fractured reservoirs containing medium and heavy crude oils in those cases where CO{sub 2} or CH gas is not available. (orig./MSK)

  11. Exploration and reservoir characterization; Technology Target Areas; TTA2 - Exploration and reservoir characterisation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    projects are prioritised: Develop technology for frontier areas like ultra-deep water areas and/or harsh environment, sub-salt/sub-basalt exploration imaging and reservoir characterization; Address risk factors and data integration challenges in mature areas and to develop technology and know-how for making additional resources that can be tied back to exiting infrastructures; Develop a better understanding of petroleum systems and plays on a semi-regional scale by integrating basin modelling and reservoir characterization; Increase confidence in hydrocarbon volumes and subsurface geometries; Reservoir characterisation of low permeable reservoirs; Establish a consortium that will focus on integration of different disciplines ranging from seismic, rock physics, sequence stratigraphy and basin modelling. Improving the communication and exchange of results generated by these different methods; Develop and implement a higher education strategy for both exploration and reservoir characterization disciplines within the Norwegian academia to provide relevant skills and expertise within Norway and worldwide. Part of this will be a further development of the play data base available and NPD. (Author)

  12. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  13. Enhanced oil recovery by nitrogen and carbon dioxide injection followed by low salinity water flooding for tight carbonate reservoir: experimental approach

    Science.gov (United States)

    Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.

    2018-03-01

    Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.

  14. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, S.P.

    1997-01-01

    The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

  15. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.

    Science.gov (United States)

    Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  16. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  17. Deep hydrotreating of middle distillates from crude and shale oils

    Energy Technology Data Exchange (ETDEWEB)

    Landau, M.V. [The Blechner Center for Industrial Catalysis and Process Development, Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    1997-06-20

    The potential scientific and technological solutions to the problems that appear as a result of shifting the hydrotreating of crude oil middle distillates and shale oils from the `normal` to the `deep` mode are considered on the basis of the reactivities and transformation routes of the least-reactive sulfur-, nitrogen-, and oxygen-containing compounds. The efficiency of selecting the optimal feedstock, increasing the process severity, improving the catalysts activity, and using alternative catalytic routes are compared, taking into account the specific issues related to deep hydrodesulfurization/hydrodenitrogenation/hydrodeoxygenation, i.e., chemical aspects, kinetics and catalysts

  18. Competitive, microbially-mediated reduction of nitrate with sulfide and aromatic oil components in a low-temperature, western Canadian oil reservoir.

    Science.gov (United States)

    Lambo, Adewale J; Noke, Kim; Larter, Steve R; Voordouw, Gerrit

    2008-12-01

    Fields from which oil is produced by injection of sulfate-bearing water often exhibit an increase in sulfide concentration with time (souring). Nitrate added to the injection water lowers the sulfide concentration by the action of sulfide-oxidizing, nitrate-reducing bacteria (SO-NRB). However, the injected nitrate can also be reduced with oil organics by heterotrophic NRB (hNRB). Aqueous volatile fatty acids (VFAs; a mixture of acetate, propionate, and butyrate) are considered important electron donors in this regard. Injection and produced waters from a western Canadian oil field with a low in situ reservoir temperature (30 degrees C) had only 0.1-0.2 mM VFAs. Amendment of these waters with nitrate gave therefore only partial reduction. More nitrate was reduced when 2% (v/v) oil was added, with light oil giving more reduction than heavy oil. GC-MS analysis of in vitro degraded oils and electron balance considerations indicated that toluene served as the primary electron donor for nitrate reduction. The differences in the extent of nitrate reduction were thus related to the toluene content of the light and heavy oil (30 and 5 mM, respectively). Reduction of nitrate with sulfide by SO-NRB always preceded that with oil organics by hNRB, even though microbially catalyzed kinetics with either electron donor were similar. Inhibition of hNRB by sulfide is responsible for this phenomenon. Injected nitrate will thus initially be reduced with sulfide through the action of SO-NRB. However, once sulfide has been eliminated from the near-injection wellbore region, oil organics will be targeted by the action of hNRB. Hence, despite the kinetic advantage of SO-NRB, the nitrate dose required to eliminate sulfide from a reservoir depends on the concentration of hNRB-degradable oil organics, with toluene being the most important in the field under study. Because the toluene concentration is lower in heavy oilthan in light oil, nitrate injection into a heavy-oil-producing field of

  19. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    KAUST Repository

    Sana, Furrukh

    2016-06-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\\\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  20. A Sparse Bayesian Imaging Technique for Efficient Recovery of Reservoir Channels With Time-Lapse Seismic Measurements

    KAUST Repository

    Sana, Furrukh; Ravanelli, Fabio; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2016-01-01

    Subsurface reservoir flow channels are characterized by high-permeability values and serve as preferred pathways for fluid propagation. Accurate estimation of their geophysical structures is thus of great importance for the oil industry. The ensemble Kalman filter (EnKF) is a widely used statistical technique for estimating subsurface reservoir model parameters. However, accurate reconstruction of the subsurface geological features with the EnKF is challenging because of the limited measurements available from the wells and the smoothing effects imposed by the \\ell _{2} -norm nature of its update step. A new EnKF scheme based on sparse domain representation was introduced by Sana et al. (2015) to incorporate useful prior structural information in the estimation process for efficient recovery of subsurface channels. In this paper, we extend this work in two ways: 1) investigate the effects of incorporating time-lapse seismic data on the channel reconstruction; and 2) explore a Bayesian sparse reconstruction algorithm with the potential ability to reduce the computational requirements. Numerical results suggest that the performance of the new sparse Bayesian based EnKF scheme is enhanced with the availability of seismic measurements, leading to further improvement in the recovery of flow channels structures. The sparse Bayesian approach further provides a computationally efficient framework for enforcing a sparse solution, especially with the possibility of using high sparsity rates through the inclusion of seismic data.

  1. Assessment of Deep Seated Geothermal Reservoirs in Selected European Sedimentary Environments

    Science.gov (United States)

    Ungemach, Pierre; Antics, Miklos

    2014-05-01

    Europe at large enjoys a variety of sedimentary environments. They most often host dependable geothermal reservoirs thus favouring the farming of hot fluids, within the low to medium enthalpy range, among which geothermal district heating (GDH) and combined heat and power (CHP) undertakings hold a dominant share. Three selected reservoir settings, addressing carbonate and clastic deposits, the Central part of the Paris Basin, the Southern Germany Molasse Basin in the Münich area and the Netherland Basin respectively will be presented and the exploratory, modeling and development strategies discussed accordingly. Whereas 2D (reprocessed) and 3D seismics have become a standard in matching the distinctive (reef facies, an echelon faulting, carbonate platform layering) features of a deep buried karst and a key to drilling success in the Molasse Basin, thus emphasizing a leading exploratory rationale, the Netherland and Paris Basin instead benefit from a mature data base inherited from extensive hydrocarbon exploration campaigns, with concerns focused on reservoir modeling and sustainable management issues. As a result the lessons learned from the foregoing have enabled to build up a nucleus of expertise in the whole chain from resource identification to reservoir assessment and market penetration. The seismic risk, indeed a sensitive though somewhat emotional issue, which is requiring special attention and due microseismic monitoring from the geothermal community will also be commented.

  2. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Randall Seright

    2011-09-30

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be

  3. Studies on wide area deep geothermal resources reservoir

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-10-01

    In order to establish techniques for the exploitation of geothermal reservoirs of large extent and deep location, the Hachimandaira field was chosen as a model. Studies were carried out using the AFMT system, thermographic, remote sensing and geothermometric methods. In the AFMT study the equipment was custom manufactured. It included a five component receiver and a transmitter with an output current of 10 A. Calculations were made for the electromagnetic fields of each transmitting source using both electric and magnetic dipoles. In the thermographic study a thermo-camera was employed to survey springs in Fukushima prefecture as well as the Ofuka springs in Akita prefecture. These studies were made with the intention of deriving correlations between surface heat flow and subterranean structure.

  4. Molecular processes in the biodegradation of crude oils and crude oil products in the natural reservoir and in laboratory experiments

    International Nuclear Information System (INIS)

    Schalenbach, S.S.

    1993-10-01

    Two ains were pursued in the present study; first, to find positive indicators of the onset of biodegradation of reservoir oil wherever other parameters fail to give a clear picture; second, to establish a basic understanding of the molecular processes underlying the biodegradation of hydrocarbons and thus create a starting point for finding better criteria for valuating biological restoration methods for crude oil contaminated soils. (orig./HS) [de

  5. Compositional simulations of producing oil-gas ratio behaviour in low permeable gas condensate reservoir

    OpenAIRE

    Gundersen, Pål Lee

    2013-01-01

    Master's thesis in Petroleum engineering Gas condensate flow behaviour below the dew point in low permeable formations can make accurate fluid sampling a difficult challenge. The objective of this study was to investigate the producing oil-gas ratio behaviour in the infinite-acting period for a low permeable gas condensate reservoir. Compositional isothermal flow simulations were performed using a single-layer, radial and two-dimensional, gas condensate reservoir model with low permeabili...

  6. Quantitative monitoring of gas flooding in oil-bearing reservoirs using a pulsed neutron tool

    International Nuclear Information System (INIS)

    Ruhovets, N.; Wyatt, D.F. Jr.

    1991-01-01

    This paper reports on quantitative monitoring of gas flooding in oil bearing reservoirs which is unique in that saturations of three fluids (gas, oil and water) in the effective pore space have to be determined, while in most other applications saturation behind casing is determined only for two fluids: hydrocarbons and water. A new method has been developed to monitor gas flooding of oil reservoirs. The method is based on computing two porosities: true effective (base) porosity determined before gas flooding, and apparent effective (monitor) porosity determined after gas flooding. The base porosity is determined from open and/or cased hole porosity logs run before the flooding. When open hole logs are available, the cased hole porosity logs are calibrated against open hole log. The monitor porosity is determined from one of the cased hole porosity logs, such as a neutron log or count rate ratio curve from a pulsed neutron log run after the gas flooding. The base and monitor porosities provide determination of the hydrogen index of the reservoir fluid after the flooding. This hydrogen index is then used to determine saturation of the flood agent after flooding. Water saturation after flooding can be determined from the equation which relates neutron total cross section (Σm) to volumetric constituent cross sections, using Σm values from a monitor run (after flooding)

  7. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  8. Fundamentals of Reservoir Surface Energy as Related to Surface Properties, Wettability, Capillary Action, and Oil Recovery from Fractured Reservoirs by Spontaneous Imbibition

    Energy Technology Data Exchange (ETDEWEB)

    Norman Morrow; Herbert Fischer; Yu Li; Geoffrey Mason; Douglas Ruth; Siddhartha Seth; Zhengxin Tong; Evren Unsal; Siluni Wickramathilaka; Shaochang Wo; Peigui Yin

    2008-06-30

    The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the non-wetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed

  9. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    Energy Technology Data Exchange (ETDEWEB)

    Norman R. Morrow

    2004-05-01

    The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed

  10. FUNDAMENTALS OF RESERVOIR SURFACE ENERGY AS RELATED TO SURFACE PROPERTIES, WETTABILITY, CAPILLARY ACTION, AND OIL RECOVERY FROM FRACTURED RESERVOIRS BY SPONTANEOUS IMBIBITION

    Energy Technology Data Exchange (ETDEWEB)

    Norman R. Morrow

    2004-07-01

    The objective of this project is to increase oil recovery from fractured reservoirs through improved fundamental understanding of the process of spontaneous imbibition by which oil is displaced from the rock matrix into the fractures. Spontaneous imbibition is fundamentally dependent on the reservoir surface free energy but this has never been investigated for rocks. In this project, the surface free energy of rocks will be determined by using liquids that can be solidified within the rock pore space at selected saturations. Thin sections of the rock then provide a two-dimensional view of the rock minerals and the occupant phases. Saturations and oil/rock, water/rock, and oil/water surface areas will be determined by advanced petrographic analysis and the surface free energy which drives spontaneous imbibition will be determined as a function of increase in wetting phase saturation. The inherent loss in surface free energy resulting from capillary instabilities at the microscopic (pore level) scale will be distinguished from the decrease in surface free energy that drives spontaneous imbibition. A mathematical network/numerical model will be developed and tested against experimental results of recovery versus time over broad variation of key factors such as rock properties, fluid phase viscosities, sample size, shape and boundary conditions. Two fundamentally important, but not previously considered, parameters of spontaneous imbibition, the capillary pressure acting to oppose production of oil at the outflow face and the pressure in the nonwetting phase at the no-flow boundary versus time, will also be measured and modeled. Simulation and network models will also be tested against special case solutions provided by analytic models. In the second stage of the project, application of the fundamental concepts developed in the first stage of the project will be demonstrated. The fundamental ideas, measurements, and analytic/numerical modeling will be applied to mixed

  11. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    Science.gov (United States)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this

  12. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation

    Directory of Open Access Journals (Sweden)

    Mariana E. Campeão

    2017-06-01

    Full Text Available One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C. We collected deep-sea samples in the field (about 2570 m below the sea surface, transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae, archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae, and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  13. Modeling of CO2 migration injected in Weyburn oil reservoir

    International Nuclear Information System (INIS)

    Zhou Wei; Stenhouse, M.J.; Arthur, R.

    2008-01-01

    Injecting CO 2 into oil and gas field is a way to enhance oil recovery (EOR) as well as mitigate global warming effect by permanently storing the greenhouse gas into underground. This paper details the models and results of simulating the long-term migration of CO 2 injected into the Weyburn field for both Enhanced Oil Recovery operations and CO 2 sequestration. A System Model was established to define the spatial and temporal extents of the analysis. The Base Scenario was developed to identify key processes, features, and events (FEPs) for the expected evolution of the storage system. A compositional reservoir simulator with equations-of-states (EOS) was used as the modeling tool in order to simulate multiphase, multi-component flow and transport coupled with CO 2 mass partitioning into oil, gas, and water phases. We apply a deterministic treatment to CO 2 migration in the geosphere (natural pathways), whereas the variability of abandoned wells (man-made pathways) necessitates a stochastic treatment. The simulation result was then used to carry out consequence analysis to the local environment. (authors)

  14. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    Science.gov (United States)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  15. CO2 interfacial properties: application to multiphase flow at reservoir conditions

    International Nuclear Information System (INIS)

    Chalbaud, C.

    2007-07-01

    In this work we deal with the interfacial properties of CO 2 at reservoir conditions with a special interest on deep saline aquifers. Each chapter of this dissertation represents a different physical scale studied with different experimental devices and simulation tools. The results obtained in the first part of this study represent a complete data set of brine-CO 2 interfacial tension at reservoir conditions. A semi-analytical equation is proposed in order to facilitate the work of reservoir engineers. The second deals with the interfacial properties at the pore scale using glass micro-models at different wettability conditions. This part shows the wetting behavior of CO 2 on hydrophobic or oil-wet solid surfaces. A pore network model was used for the interpretation and exploitation of these results. The third part corresponds to two different experimental approaches at the core scale at different wettability conditions associated to a modelling at flue Darcy scale. This part is a significant contribution to the validation of COORES compositional reservoir simulator developed by IFP. It has also allow us to estimate multiphase properties, Pc and kr, for brine-CO 2 systems at reservoir conditions. This study presents the necessary scales to model CO 2 storage in deep saline aquifers. (author)

  16. Solar-generated steam for oil recovery: Reservoir simulation, economic analysis, and life cycle assessment

    International Nuclear Information System (INIS)

    Sandler, Joel; Fowler, Garrett; Cheng, Kris; Kovscek, Anthony R.

    2014-01-01

    Highlights: • Integrated assessment of solar thermal enhanced oil recovery (TEOR). • Analyses of reservoir performance, economics, and life cycle factors. • High solar fraction scenarios show economic viability for TEOR. • Continuous variable-rate steam injection meets the benchmarks set by conventional steam flood. - Abstract: The viability of solar thermal steam generation for thermal enhanced oil recovery (TEOR) in heavy-oil sands was evaluated using San Joaquin Valley, CA data. The effectiveness of solar TEOR was quantified through reservoir simulation, economic analysis, and life-cycle assessment. Reservoir simulations with continuous but variable rate steam injection were compared with a base-case Tulare Sand steamflood project. For equivalent average injection rates, comparable breakthrough times and recovery factors of 65% of the original oil in place were predicted, in agreement with simulations in the literature. Daily cyclic fluctuations in steam injection rate do not greatly impact recovery. Oil production rates do, however, show seasonal variation. Economic viability was established using historical prices and injection/production volumes from the Kern River oil field. For comparison, this model assumes that present day steam generation technologies were implemented at TEOR startup in 1980. All natural gas cogeneration and 100% solar fraction scenarios had the largest and nearly equal net present values (NPV) of $12.54 B and $12.55 B, respectively. Solar fraction refers to the steam provided by solar steam generation. Given its large capital cost, the 100% solar case shows the greatest sensitivity to discount rate and no sensitivity to natural gas price. Because there are very little emissions associated with day-to-day operations from the solar thermal system, life-cycle emissions are significantly lower than conventional systems even when the embodied energy of the structure is considered. We estimate that less than 1 g of CO 2 /MJ of refined

  17. Artificial Neural Network Model for Alkali-Surfactant-Polymer Flooding in Viscous Oil Reservoirs: Generation and Application

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-12-01

    Full Text Available Chemical flooding has been widely utilized to recover a large portion of the oil remaining in light and viscous oil reservoirs after the primary and secondary production processes. As core-flood tests and reservoir simulations take time to accurately estimate the recovery performances as well as analyzing the feasibility of an injection project, it is necessary to find a powerful tool to quickly predict the results with a level of acceptable accuracy. An approach involving the use of an artificial neural network to generate a representative model for estimating the alkali-surfactant-polymer flooding performance and evaluating the economic feasibility of viscous oil reservoirs from simulation is proposed in this study. A typical chemical flooding project was referenced for this numerical study. A number of simulations have been made for training on the basis of a base case from the design of 13 parameters. After training, the network scheme generated from a ratio data set of 50%-20%-30% corresponding to the number of samples used for training-validation-testing was selected for estimation with the total coefficient of determination of 0.986 and a root mean square error of 1.63%. In terms of model application, the chemical concentration and injection strategy were optimized to maximize the net present value (NPV of the project at a specific oil price from the just created ANN model. To evaluate the feasibility of the project comprehensively in terms of market variations, a range of oil prices from 30 $/bbl to 60 $/bbl referenced from a real market situation was considered in conjunction with its probability following a statistical distribution on the NPV computation. Feasibility analysis of the optimal chemical injection scheme revealed a variation of profit from 0.42 $MM to 1.0 $MM, corresponding to the changes in oil price. In particular, at the highest possible oil prices, the project can earn approximately 0.61 $MM to 0.87 $MM for a quarter

  18. Fortescue reservoir development and reservoir studies

    Energy Technology Data Exchange (ETDEWEB)

    Henzell, S.T.; Hicks, G.J.; Horden, M.J.; Irrgang, H.R.; Janssen, E.J.; Kable, C.W.; Mitchell, R.A.H.; Morrell, N.W.; Palmer, I.D.; Seage, N.W.

    1985-03-01

    The Fortescue field in the Gippsland Basin, offshore southeastern Australia is being developed from two platforms (Fortescue A and Cobia A) by Esso Australia Ltd. (operator) and BHP Petroleum. The Fortescue reservoir is a stratigraphic trap at the top of the Latrobe Group of sediments. It overlies the western flank of the Halibut and Cobia fields and is separated from them by a non-net sequence of shales and coals which form a hydraulic barrier between the two systems. Development drilling into the Fortescue reservoir commenced in April 1983 with production coming onstream in May 1983. Fortescue, with booked reserves of 44 stock tank gigalitres (280 million stock tank barrels) of 43/sup 0/ API oil, is the seventh major oil reservoir to be developed in the offshore Gippsland Basin by Esso/BHP. In mid-1984, after drilling a total of 20 exploration and development wells, and after approximately one year of production, a detailed three-dimensional, two-phase reservoir simulation study was performed to examine the recovery efficiency, drainage patterns, pressure performance and production rate potential of the reservoir. The model was validated by history matching an extensive suite of Repeat Formation Test (RFT) pressure data. The results confirmed the reserves basis, and demonstrated that the ultimate oil recovery from the reservoir is not sensitive to production rate. This result is consistent with studies on other high quality Latrobe Group reservoirs in the Gippsland Basin which contain undersaturated crudes and receive very strong water drive from the Basin-wide aquifer system. With the development of the simulation model during the development phase, it has been possible to more accurately define the optimal well pattern for the remainder of the development.

  19. Investigating the effect of steam, CO{sub 2}, and surfactant on the recovery of heavy oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.; He, S. [China Univ. of Petroleum, Beijing (China). MOE Key Laboratory of Petroleum Engineering; Qu, L. [Shengli Oil Field Co. (China)]|[SINOPEC, Shengli (China)

    2008-10-15

    This paper presented the results of a laboratory study and numerical simulation in which the mechanisms of steam injection with carbon dioxide (CO{sub 2}) and surfactant were investigated. The incremental recoveries of 4 different scenarios were compared and analyzed in terms of phase behaviour. The study also investigated the effect of CO{sub 2} dissolution in oil and water; variation of properties of CO{sub 2}-oil phase equilibrium and CO{sub 2}-water phase equilibrium; variation of viscosity; and, oil volume and interfacial tension (IFT) during the recovery process. The expansion of a steam and CO{sub 2} front was also examined. A field application case of a horizontal well in a heavy oil reservoir in Shengli Oilfield in China was used to determine the actual dynamic performance of the horizontal well and to optimize the injection parameters of the CO{sub 2} and surfactant. The study revealed that oil recovery with the simultaneous injection of steam, CO{sub 2} and surfactant was higher than that of steam injection, steam with CO{sub 2} and steam with surfactant. The improved flow performance in super heavy oil reservoirs could be attributed to CO{sub 2} dissolution in oil which can swell the oil and reduce oil viscosity significantly. The proportion of CO{sub 2} in the free gas phase, oil phase and water phase varies with changes in reservoir pressure and temperature. CO{sub 2} decreases the temperature of the steam slightly, while the surfactant decreases the interfacial tension and helps to improve oil recovery. The study showed that the amount of injected CO{sub 2} and steam has a large effect on heavy oil recovery. Although oil production was found to increase with an increase in injected amounts, the ratio of oil to injected fluids must be considered to achieve optimum recovery. High steam quality and temperature can also improve super heavy oil recovery. The oil recovery was less influenced by the effect of the surfactant than by the effect of CO{sub 2

  20. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which

  1. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo

    2017-01-01

    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  2. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    Science.gov (United States)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  3. Method of improving heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control

    Science.gov (United States)

    Zhao, Ling; Xia, Huifen

    2018-01-01

    The project of polymer flooding has achieved great success in Daqing oilfield, and the main oil reservoir recovery can be improved by more than 15%. But, for some strong oil reservoir heterogeneity carrying out polymer flooding, polymer solution will be inefficient and invalid loop problem in the high permeability layer, then cause the larger polymer volume, and a significant reduction in the polymer flooding efficiency. Aiming at this problem, it is studied the method that improves heterogeneous oil reservoir polymer flooding effect by positively-charged gel profile control. The research results show that the polymer physical and chemical reaction of positively-charged gel with the residual polymer in high permeability layer can generate three-dimensional network of polymer, plugging high permeable layer, and increase injection pressure gradient, then improve the effect of polymer flooding development. Under the condition of the same dosage, positively-charged gel profile control can improve the polymer flooding recovery factor by 2.3∼3.8 percentage points. Under the condition of the same polymer flooding recovery factor increase value, after positively-charged gel profile control, it can reduce the polymer volume by 50 %. Applying mechanism of positively-charged gel profile control technology is feasible, cost savings, simple construction, and no environmental pollution, therefore has good application prospect.

  4. A stochastic approach for model reduction and memory function design in hydrogeophysical inversion

    Science.gov (United States)

    Hou, Z.; Kellogg, A.; Terry, N.

    2009-12-01

    Geophysical (e.g., seismic, electromagnetic, radar) techniques and statistical methods are essential for research related to subsurface characterization, including monitoring subsurface flow and transport processes, oil/gas reservoir identification, etc. For deep subsurface characterization such as reservoir petroleum exploration, seismic methods have been widely used. Recently, electromagnetic (EM) methods have drawn great attention in the area of reservoir characterization. However, considering the enormous computational demand corresponding to seismic and EM forward modeling, it is usually a big problem to have too many unknown parameters in the modeling domain. For shallow subsurface applications, the characterization can be very complicated considering the complexity and nonlinearity of flow and transport processes in the unsaturated zone. It is warranted to reduce the dimension of parameter space to a reasonable level. Another common concern is how to make the best use of time-lapse data with spatial-temporal correlations. This is even more critical when we try to monitor subsurface processes using geophysical data collected at different times. The normal practice is to get the inverse images individually. These images are not necessarily continuous or even reasonably related, because of the non-uniqueness of hydrogeophysical inversion. We propose to use a stochastic framework by integrating minimum-relative-entropy concept, quasi Monto Carlo sampling techniques, and statistical tests. The approach allows efficient and sufficient exploration of all possibilities of model parameters and evaluation of their significances to geophysical responses. The analyses enable us to reduce the parameter space significantly. The approach can be combined with Bayesian updating, allowing us to treat the updated ‘posterior’ pdf as a memory function, which stores all the information up to date about the distributions of soil/field attributes/properties, then consider the

  5. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago

    2016-04-07

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie\\'s parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  6. Reservoir resistivity characterization incorporating flow dynamics

    KAUST Repository

    Arango, Santiago; Sun, Shuyu; Hoteit, Ibrahim; Katterbauer, Klemens

    2016-01-01

    Systems and methods for reservoir resistivity characterization are provided, in various aspects, an integrated framework for the estimation of Archie's parameters for a strongly heterogeneous reservoir utilizing the dynamics of the reservoir are provided. The framework can encompass a Bayesian estimation/inversion method for estimating the reservoir parameters, integrating production and time lapse formation conductivity data to achieve a better understanding of the subsurface rock conductivity properties and hence improve water saturation imaging.

  7. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    Energy Technology Data Exchange (ETDEWEB)

    Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)

    1997-08-01

    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  8. Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

    2007-09-30

    This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite

  9. Forecasting of reservoir pressures of oil and gas bearing complexes in northern part of West Siberia for safety oil and gas deposits exploration and development

    Science.gov (United States)

    Gorbunov, P. A.; Vorobyov, S. V.

    2017-10-01

    In the paper the features of reservoir pressures changes in the northern part of West Siberian oil-and gas province are described. This research is based on the results of hydrodynamic studies in prospecting and explorating wells in Yamal-Nenets Autonomous District. In the Cenomanian, Albian, Aptian and in the top of Neocomian deposits, according to the research, reservoir pressure is usually equal to hydrostatic pressure. At the bottom of the Neocomian and Jurassic deposits zones with abnormally high reservoir pressures (AHRP) are distinguished within Gydan and Yamal Peninsula and in the Nadym-Pur-Taz interfluve. Authors performed the unique zoning of the territory of the Yamal-Nenets Autonomous District according to the patterns of changes of reservoir pressures in the section of the sedimentary cover. The performed zoning and structural modeling allow authors to create a set of the initial reservoir pressures maps for the main oil and gas bearing complexes of the northern part of West Siberia. The results of the survey should improve the efficiency of exploration drilling by preventing complications and accidents during this operation in zones with abnormally high reservoir pressures. In addition, the results of the study can be used to estimate gas resources within prospective areas of Yamal-Nenets Autonomous District.

  10. Offset Risk Minimization for Open-loop Optimal Control of Oil Reservoirs

    DEFF Research Database (Denmark)

    Capolei, Andrea; Christiansen, Lasse Hjuler; Jørgensen, J. B.

    2017-01-01

    Simulation studies of oil field water flooding have demonstrated a significant potential of optimal control technology to improve industrial practices. However, real-life applications are challenged by unknown geological factors that make reservoir models highly uncertain. To minimize...... the associated financial risks, the oil literature has used ensemble-based methods to manipulate the net present value (NPV) distribution by optimizing sample estimated risk measures. In general, such methods successfully reduce overall risk. However, as this paper demonstrates, ensemble-based control strategies...... practices. The results suggest that it may be more relevant to consider the NPV offset distribution than the NPV distribution when minimizing risk in production optimization....

  11. Surface analogue outcrops of deep fractured basement reservoirs in extensional geological settings. Examples within active rift system (Uganda) and proximal passive margin (Morocco).

    Science.gov (United States)

    Walter, Bastien; Géraud, Yves; Diraison, Marc

    2014-05-01

    The important role of extensive brittle faults and related structures in the development of reservoirs has already been demonstrated, notably in initially low-porosity rocks such as basement rocks. Large varieties of deep-seated resources (e.g. water, hydrocarbons, geothermal energy) are recognized in fractured basement reservoirs. Brittle faults and fracture networks can develop sufficient volumes to allow storage and transfer of large amounts of fluids. Development of hydraulic model with dual-porosity implies the structural and petrophysical characterization of the basement. Drain porosity is located within the larger fault zones, which are the main fluid transfer channels. The storage porosity corresponds both to the matrix porosity and to the volume produced by the different fractures networks (e.g. tectonic, primary), which affect the whole reservoir rocks. Multi-scale genetic and geometric relationships between these deformation features support different orders of structural domains in a reservoir, from several tens of kilometers to few tens of meters. In subsurface, 3D seismic data in basement can be sufficient to characterize the largest first order of structural domains and bounding fault zones (thickness, main orientation, internal architecture, …). However, lower order structural blocks and fracture networks are harder to define. The only available data are 1D borehole electric imaging and are used to characterize the lowest order. Analog outcrop studies of basement rocks fill up this resolution gap and help the understanding of brittle deformation, definition of reservoir geometries and acquirement of reservoir properties. These geological outcrop studies give information about structural blocks of second and third order, getting close to the field scale. This allows to understand relationships between brittle structures geometry and factors controlling their development, such as the structural inheritance or the lithology (e.g. schistosity, primary

  12. Reservoir characteristics of middle pliocene deposits and their role in the formation of oil gas deposits of Azerbaijan shelf of the south Caspian

    International Nuclear Information System (INIS)

    Veliyeva, V.A.; Kabulova, A. Ya.

    2002-01-01

    Full text :Lithology-stratigraphical peculiarities of deposits of lower stage of productive series (P S) of Middle Pliocene their reservoir properties, correlation of individual horizons within the uplifts of the south Caspian was studied. Analysis of arenosity of lower stage of PS was studied. Azerbaijan shelf of South Caspian is located within depression zone of sedimentation basin generally, of Pliocene and post-Pliocene period of time, when sedimentation was mostly intensive and occurred in conditions of more deep sea basin. Azerbaijan shelf of south Caspian covers mainly two oil-gasp-bearing region as Absheron archipelago (north, north-eastern part of region) and Baku archipelago (southern part). Analysis of arenosity along the areas of the studied region showed, that in south-eastern direction and on the south eastern subsidence of each fold, as well as on the north-eastern wing their sand percent considerably increase whereas reservoir properties of sandy interbeds are improved

  13. Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs.

    Science.gov (United States)

    Hu, Ping; Tom, Lauren; Singh, Andrea; Thomas, Brian C; Baker, Brett J; Piceno, Yvette M; Andersen, Gary L; Banfield, Jillian F

    2016-01-19

    Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C) and 2,743 m (80 to 83°C) below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1), was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1) that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11), Atribacteria (OP9), candidate phyla TA06 and WS6, and Marinimicrobia (SAR406). The results presented here elucidate potential roles of organisms in oil reservoir biological processes. The activities of microorganisms in oil reservoirs impact petroleum resource quality and the global carbon cycle. We show that bacteria

  14. Isotopic and geochemical tools to assess the feasibility of methanogenesis as a way to enhance hydrocarbon recovery in oil reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, N.; Morris, B.E.L.; Richnow, H.H. [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; Cai, M.; Yao, Jun [Helmholtz-Zentrum fuer Umweltforschung (UFZ), Leipzig (Germany). Abt. Isotopenbiogeochemie; University of Sicence and Technology, Beijing (China). School of Civil and Environment Engineering; Straaten, N.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany). Fachbereich Geochemie

    2013-08-01

    In situ biotransformation of oil to methane was investigated in a thermophilic reservoir in Dagang, China using isotopic analyzes, chemical fingerprinting and molecular and biological methods. Our first results, which were already published, demonstrated that anaerobic oil degradation concomitant with methane production was occurring. The reservoir was highly methanogenic and the oil exhibited varying degrees of degradation between different parts of the reservoir, although it was mainly highly weathered, and nearly devoid of nalkanes, alkylbenzenes, alkyltoluenes, and light PAHs. In addition, the isotopic data from reservoir oil, water and gas was used to elucidate the origin of the methane. The average {delta}{sup 13}C for methane was around -47 permille and CO{sub 2} was highly enriched in {sup 13}C. The bulk isotopic discrimination ({Delta}{delta}{sup 13}C) between methane and CO{sub 2} was between 32 and 65 permille, in accordance with previously reported results for methane formation during hydrocarbon degradation. Subsequent microcosm experiments revealed that autochthonous microbiota are capable of degrading oil under methanogenic conditions and of producing methane and/or CO{sub 2} from {sup 13}C-labelled n-hexadecane, 2-methylnaphthalene or toluene ({delta}{sup 13}C values up to 550 permille). These results demonstrate that methanogenesis is linked to aliphatic and aromatic hydrocarbon degradation. Further experiments will elucidate the activation mechanisms for the different compounds. (orig.)

  15. Key seismic exploration technology for the Longwangmiao Fm gas reservoir in Gaoshiti–Moxi area, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Guangrong Zhang

    2016-10-01

    Full Text Available The dolomite reservoirs of the Lower Cambrian Longwangmiao Fm in the Gaoshiti–Moxi area, Sichuan Basin, are deeply buried (generally 4400–4900 m, with high heterogeneity, making reservoir prediction difficult. In this regard, key seismic exploration technologies were developed through researches. Firstly, through in-depth analysis on the existing geologic, drilling, seismic data and available research findings, basic surface and subsurface structures and geologic conditions within the study area were clarified. Secondly, digital seismic data acquisition technologies with wide azimuth, wide frequency band and minor bins were adopted to ensure even distribution of coverage of target formations through optimization of the 3D seismic geometry. In this way, high-accuracy 3D seismic data can be acquired through shallow, middle and deep formations. Thirdly, well-control seismic data processing technologies were applied to enhance the signal-to-noise ratio (SNR of seismic data for deep formations. Fourthly, a seismic response model was established specifically for the Longwangmiao Fm reservoir. Quantitative prediction of the reservoir was performed through pre-stack geo-statistics. In this way, plan distribution of reservoir thicknesses was mapped. Fifthly, core tests and logging data analysis were conducted to determine gas-sensitive elastic parameters, which were then used in pre-stack hydrocarbon detection to eliminate the multiple solutions in seismic data interpretation. It is concluded that application of the above-mentioned key technologies effectively promote the discovery of largescale marine carbonate gas reservoirs of the Longwangmiao Fm.

  16. ANALYSIS OF OIL-BEARING CRETACEOUS SANDSTONE HYDROCARBON RESERVOIRS, EXCLUSIVE OF THE DAKOTA SANDSTONE, ON THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO

    International Nuclear Information System (INIS)

    Jennie Ridgley

    2000-01-01

    An additional 450 wells were added to the structural database; there are now 2550 wells in the database with corrected tops on the Juana Lopez, base of the Bridge Creek Limestone, and datum. This completes the structural data base compilation. Fifteen oil and five gas fields from the Mancos-ElVado interval were evaluated with respect to the newly defined sequence stratigraphic model for this interval. The five gas fields are located away from the structural margins of the deep part of the San Juan Basin. All the fields have characteristics of basin-centered gas and can be considered as continuous gas accumulations as recently defined by the U.S. Geological Survey. Oil production occurs in thinly interbedded sandstone and shale or in discrete sandstone bodies. Production is both from transgressive and regressive strata as redefined in this study. Oil production is both stratigraphically and structurally controlled with production occurring along the Chaco slope or in steeply west-dipping rocks along the east margin of the basin. The ElVado Sandstone of subsurface usage is redefined to encompass a narrower interval; it appears to be more time correlative with the Dalton Sandstone. Thus, it was deposited as part of a regressive sequence, in contrast to the underlying rock units which were deposited during transgression

  17. Geometrical and hydrogeological impact on the behaviour of deep-seated rock slides during reservoir impoundment

    Science.gov (United States)

    Lechner, Heidrun; Zangerl, Christian

    2015-04-01

    Given that there are still uncertainties regarding the deformation and failure mechanisms of deep-seated rock slides this study concentrates on key factors that influence the behaviour of rock slides in the surrounding of reservoirs. The focus is placed on the slope geometry, hydrogeology and kinematics. Based on numerous generic rock slide models the impacts of the (i) rock slide geometry, (ii) reservoir impoundment and level fluctuations, (iii) seepage and buoyancy forces and (iv) hydraulic conductivity of the rock slide mass and the basal shear zone are examined using limit equilibrium approaches. The geometry of many deep-seated rock slides in metamorphic rocks is often influenced by geological structures, e.g. fault zones, joints, foliation, bedding planes and others. With downslope displacement the rock slide undergoes a change in shape. Several observed rock slides in an advanced stage show a convex, bulge-like topography at the foot of the slope and a concave topography in the middle to upper part. Especially, the situation of the slope toe plays an important role for stability. A potentially critical situation can result from a partially submerged flat slope toe because the uplift due to water pressure destabilizes the rock slide. Furthermore, it is essential if the basal shear zone daylights at the foot of the slope or encounters alluvial or glacial deposits at the bottom of the valley, the latter having a buttressing effect. In this study generic rock slide models with a shear zone outcropping at the slope toe are established and systematically analysed using limit equilibrium calculations. Two different kinematic types are modelled: (i) a translational or planar and (ii) a rotational movement behaviour. Questions concerning the impact of buoyancy and pore pressure forces that develop during first time impoundment are of key interest. Given that an adverse effect on the rock slide stability is expected due to reservoir impoundment the extent of

  18. The Researches on Reasonable Well Spacing of Gas Wells in Deep and low Permeability Gas Reservoirs

    Science.gov (United States)

    Bei, Yu Bei; Hui, Li; Lin, Li Dong

    2018-06-01

    This Gs64 gas reservoir is a condensate gas reservoir which is relatively integrated with low porosity and low permeability found in Dagang Oilfield in recent years. The condensate content is as high as 610g/m3. At present, there are few reports about the well spacing of similar gas reservoirs at home and abroad. Therefore, determining the reasonable well spacing of the gas reservoir is important for ensuring the optimal development effect and economic benefit of the gas field development. This paper discusses the reasonable well spacing of the deep and low permeability gas reservoir from the aspects of percolation mechanics, gas reservoir engineering and numerical simulation. considering there exist the start-up pressure gradient in percolation process of low permeability gas reservoir, this paper combined with productivity equation under starting pressure gradient, established the formula of gas well spacing with the formation pressure and start-up pressure gradient. The calculation formula of starting pressure gradient and well spacing of gas wells. Adopting various methods to calculate values of gas reservoir spacing are close to well testing' radius, so the calculation method is reliable, which is very important for the determination of reasonable well spacing in low permeability gas reservoirs.

  19. Different Diversity and Distribution of Archaeal Community in the Aqueous and Oil Phases of Production Fluid From High-Temperature Petroleum Reservoirs

    Directory of Open Access Journals (Sweden)

    Bo Liang

    2018-04-01

    Full Text Available To get a better knowledge on how archaeal communities differ between the oil and aqueous phases and whether environmental factors promote substantial differences on microbial distributions among production wells, we analyzed archaeal communities in oil and aqueous phases from four high-temperature petroleum reservoirs (55–65°C by using 16S rRNA gene based 454 pyrosequencing. Obvious dissimilarity of the archaeal composition between aqueous and oil phases in each independent production wells was observed, especially in production wells with higher water cut, and diversity in the oil phase was much higher than that in the corresponding aqueous phase. Statistical analysis further showed that archaeal communities in oil phases from different petroleum reservoirs tended to be more similar, but those in aqueous phases were the opposite. In the high-temperature ecosystems, temperature as an environmental factor could have significantly affected archaeal distribution, and archaeal diversity raised with the increase of temperature (p < 0.05. Our results suggest that to get a comprehensive understanding of petroleum reservoirs microbial information both in aqueous and oil phases should be taken into consideration. The microscopic habitats of oil phase, technically the dispersed minuscule water droplets in the oil could be a better habitat that containing the indigenous microorganisms.

  20. Chemical Flooding in Heavy-Oil Reservoirs: From Technical Investigation to Optimization Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Si Le Van

    2016-09-01

    Full Text Available Heavy-oil resources represent a large percentage of global oil and gas reserves, however, owing to the high viscosity, enhanced oil recovery (EOR techniques are critical issues for extracting this type of crude oil from the reservoir. According to the survey data in Oil & Gas Journal, thermal methods are the most widely utilized in EOR projects in heavy oil fields in the US and Canada, and there are not many successful chemical flooding projects for heavy oil reported elsewhere in the world. However, thermal methods such as steam injection might be restricted in cases of thin formations, overlying permafrost, or reservoir depths over 4500 ft, for which chemical flooding becomes a better option for recovering crude oil. Moreover, owing to the considerable fluctuations in the oil price, chemical injection plans should be employed consistently in terms of either technical or economic viewpoints. The numerical studies in this work aim to clarify the predominant chemical injection schemes among the various combinations of chemical agents involving alkali (A, surfactant (S and polymer (P for specific heavy-oil reservoir conditions. The feasibilities of all potential injection sequences are evaluated in the pre-evaluation stage in order to select the most efficient injection scheme according to the variation in the oil price which is based on practical market values. Finally, optimization procedures in the post-evaluation stage are carried out for the most economic injection plan by an effective mathematic tool with the purpose of gaining highest Net Present Value (NPV of the project. In technical terms, the numerical studies confirm the predominant performances of sequences in which alkali-surfactant-polymer (ASP solution is injected after the first preflushing water whereby the recovery factor can be higher than 47%. In particular, the oil production performances are improved by injecting a buffering viscous fluid right after the first chemical slug

  1. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  2. Differential Muon Tomography to Continuously Monitor Changes in the Composition of Subsurface Fluids

    Science.gov (United States)

    Coleman, Max; Kudryavtsev, Vitaly A.; Spooner, Neil J.; Fung, Cora; Gluyas, John

    2013-01-01

    Muon tomography has been used to seek hidden chambers in Egyptian pyramids and image subsurface features in volcanoes. It seemed likely that it could be used to image injected, supercritical carbon dioxide as it is emplaced in porous geological structures being used for carbon sequestration, and also to check on subsequent leakage. It should work equally well in any other application where there are two fluids of different densities, such as water and oil, or carbon dioxide and heavy oil in oil reservoirs. Continuous monitoring of movement of oil and/or flood fluid during enhanced oil recovery activities for managing injection is important for economic reasons. Checking on leakage for geological carbon storage is essential both for safety and for economic purposes. Current technology (for example, repeat 3D seismic surveys) is expensive and episodic. Muons are generated by high- energy cosmic rays resulting from supernova explosions, and interact with gas molecules in the atmosphere. This innovation has produced a theoretical model of muon attenuation in the thickness of rock above and within a typical sandstone reservoir at a depth of between 1.00 and 1.25 km. Because this first simulation was focused on carbon sequestration, the innovators chose depths sufficient for the pressure there to ensure that the carbon dioxide would be supercritical. This innovation demonstrates for the first time the feasibility of using the natural cosmic-ray muon flux to generate continuous tomographic images of carbon dioxide in a storage site. The muon flux is attenuated to an extent dependent on, amongst other things, the density of the materials through which it passes. The density of supercritical carbon dioxide is only three quarters that of the brine in the reservoir that it displaces. The first realistic simulations indicate that changes as small as 0.4% in the storage site bulk density could be detected (equivalent to 7% of the porosity, in this specific case). The initial

  3. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  4. MAJOR OIL PLAYS IN UTAH AND VICINITY

    International Nuclear Information System (INIS)

    Chidsey, Thomas C.; Morgan, Craig D.; McClure, Kevin; Willis, Grant C.

    2003-01-01

    found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site

  5. New Insight into the Kinetics of Deep Liquid Hydrocarbon Cracking and Its Significance

    Directory of Open Access Journals (Sweden)

    Wenzhi Zhao

    2017-01-01

    Full Text Available The deep marine natural gas accumulations in China are mainly derived from the cracking of liquid hydrocarbons with different occurrence states. Besides accumulated oil in reservoir, the dispersed liquid hydrocarbon in and outside source also is important source for cracking gas generation or relayed gas generation in deep formations. In this study, nonisothermal gold tube pyrolysis and numerical calculations as well as geochemical analysis were conducted to ascertain the expulsion efficiency of source rocks and the kinetics for oil cracking. By determination of light liquid hydrocarbons and numerical calculations, it is concluded that the residual bitumen or hydrocarbons within source rocks can occupy about 50 wt.% of total oil generated at oil generation peak. This implies that considerable amounts of natural gas can be derived from residual hydrocarbon cracking and contribute significantly to the accumulation of shale gas. Based on pyrolysis experiments and kinetic calculations, we established a model for the cracking of oil and its different components. In addition, a quantitative gas generation model was also established to address the contribution of the cracking of residual oil and expulsed oil for natural gas accumulations in deep formations. These models may provide us with guidance for gas resource evaluation and future gas exploration in deep formations.

  6. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.

    Science.gov (United States)

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick

    2016-03-10

    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  7. Reservoirs talk to pressure recorders

    Energy Technology Data Exchange (ETDEWEB)

    Pamenter, C B

    1968-02-01

    Keeping pace with increased demand for efficiency in secondary recovery schemes is the widening use of downhole tools charged with supplying data before and during the operation of the projects. One of the most important of these is the pressure recorder. This highly sensitive instrument, housed in a tough, slim steel case and lowered by drill pipe or cable, accurately measures the pressure of its downhole environment. This information is instantly available at the surface whenever a pressure reading is required. Typical applications of surface recorders often contribute are: (1) production practices such as checking surface and subsurface equipment, and special lifting problems; (2) well conditions including regular productivity indices, data observations and for interference studies; (3) secondary recovery projects, in both producing and injection wells; and (4) reservoir conditions where oil-water contacts and damaged zones need close attention.

  8. Digital Core Modelling for Clastic Oil and Gas Reservoir

    Science.gov (United States)

    Belozerov, I.; Berezovsky, V.; Gubaydullin, M.; Yur’ev, A.

    2018-05-01

    "Digital core" is a multi-purpose tool for solving a variety of tasks in the field of geological exploration and production of hydrocarbons at various stages, designed to improve the accuracy of geological study of subsurface resources, the efficiency of reproduction and use of mineral resources, as well as applying the results obtained in production practice. The actuality of the development of the "Digital core" software is that even a partial replacement of natural laboratory experiments with mathematical modelling can be used in the operative calculation of reserves in exploratory drilling, as well as in the absence of core material from wells. Or impossibility of its research by existing laboratory methods (weakly cemented, loose, etc. rocks). 3D-reconstruction of the core microstructure can be considered as a cheap and least time-consuming method for obtaining petrophysical information about the main filtration-capacitive properties and fluid motion in reservoir rocks.

  9. Effects of Subsurface Microbial Ecology on Geochemical Evolution of a Crude-Oil Contaminated Aquifer

    Science.gov (United States)

    Bekins, B. A.; Cozzarelli, I. M.; Godsy, E. M.; Warren, E.; Hostettler, F. D.

    2001-12-01

    We have identified several subsurface habitats for microorganisms in a crude oil contaminated located near Bemidji, Minnesota. These aquifer habitats include: 1) the unsaturated zone contaminated by hydrocarbon vapors, 2) the zones containing separate-phase crude oil, and 3) the aqueous-phase contaminant plume. The surficial glacial outwash aquifer was contaminated when a crude oil pipeline burst in 1979. We analyzed sediment samples from the contaminated aquifer for the most probable numbers of aerobes, iron reducers, fermenters, and three types of methanogens. The microbial data were then related to gas, water, and oil chemistry, sediment extractable iron, and permeability. The microbial populations in the various contaminated subsurface habitats each have special characteristics and these affect the aquifer and contaminant chemistry. In the eight-meter-thick, vapor-contaminated vadose zone, a substantial aerobic population has developed that is supported by hydrocarbon vapors and methane. Microbial numbers peak in locations where access to both hydrocarbons and nutrients infiltrating from the surface is maximized. The activity of this population prevents hydrocarbon vapors from reaching the land surface. In the zone where separate-phase crude oil is present, a consortium of methanogens and fermenters dominates the populations both above and below the water table. Moreover, gas concentration data indicate that methane production has been active in the oily zone since at least 1986. Analyses of the extracted separate-phase oil show that substantial degradation of C15 -C35 n-alkanes has occurred since 1983, raising the possibility that significant degradation of C15 and higher n-alkanes has occurred under methanogenic conditions. However, lab and field data suggest that toxic inhibition by crude oil results in fewer acetate-utilizing methanogens within and adjacent to the separate-phase oil. Data from this and other sites indicate that toxic inhibition of

  10. Numerical Simulation Study on Steam-Assisted Gravity Drainage Performance in a Heavy Oil Reservoir with a Bottom Water Zone

    Directory of Open Access Journals (Sweden)

    Jun Ni

    2017-12-01

    Full Text Available In the Pikes Peak oil field near Lloydminster, Canada, a significant amount of heavy oil reserves is located in reservoirs with a bottom water zone. The properties of the bottom water zone and the operation parameters significantly affect oil production performance via the steam-assisted gravity drainage (SAGD process. Thus, in order to develop this type of heavy oil resource, a full understanding of the effects of these properties is necessary. In this study, the numerical simulation approach was applied to study the effects of properties in the bottom water zone in the SAGD process, such as the initial gas oil ratio, the thickness of the reservoir, and oil saturation of the bottom water zone. In addition, some operation parameters were studied including the injection pressure, the SAGD well pair location, and five different well patterns: (1 two corner wells, (2 triple wells, (3 downhole water sink well, (4 vertical injectors with a horizontal producer, and (5 fishbone well. The numerical simulation results suggest that the properties of the bottom water zone affect production performance extremely. First, both positive and negative effects were observed when solution gas exists in the heavy oil. Second, a logarithmical relationship was investigated between the bottom water production ratio and the thickness of the bottom water zone. Third, a non-linear relation was obtained between the oil recovery factor and oil saturation in the bottom water zone, and a peak oil recovery was achieved at the oil saturation rate of 30% in the bottom water zone. Furthermore, the operation parameters affected the heavy oil production performance. Comparison of the well patterns showed that the two corner wells and the triple wells patterns obtained the highest oil recovery factors of 74.71% and 77.19%, respectively, which are almost twice the oil recovery factors gained in the conventional SAGD process (47.84%. This indicates that the optimized SAGD process

  11. A lithology identification method for continental shale oil reservoir based on BP neural network

    Science.gov (United States)

    Han, Luo; Fuqiang, Lai; Zheng, Dong; Weixu, Xia

    2018-06-01

    The Dongying Depression and Jiyang Depression of the Bohai Bay Basin consist of continental sedimentary facies with a variable sedimentary environment and the shale layer system has a variety of lithologies and strong heterogeneity. It is difficult to accurately identify the lithologies with traditional lithology identification methods. The back propagation (BP) neural network was used to predict the lithology of continental shale oil reservoirs. Based on the rock slice identification, x-ray diffraction bulk rock mineral analysis, scanning electron microscope analysis, and the data of well logging and logging, the lithology was divided with carbonate, clay and felsic as end-member minerals. According to the core-electrical relationship, the frequency histogram was then used to calculate the logging response range of each lithology. The lithology-sensitive curves selected from 23 logging curves (GR, AC, CNL, DEN, etc) were chosen as the input variables. Finally, the BP neural network training model was established to predict the lithology. The lithology in the study area can be divided into four types: mudstone, lime mudstone, lime oil-mudstone, and lime argillaceous oil-shale. The logging responses of lithology were complicated and characterized by the low values of four indicators and medium values of two indicators. By comparing the number of hidden nodes and the number of training times, we found that the number of 15 hidden nodes and 1000 times of training yielded the best training results. The optimal neural network training model was established based on the above results. The lithology prediction results of BP neural network of well XX-1 showed that the accuracy rate was over 80%, indicating that the method was suitable for lithology identification of continental shale stratigraphy. The study provided the basis for the reservoir quality and oily evaluation of continental shale reservoirs and was of great significance to shale oil and gas exploration.

  12. Unstructured grids and an element based conservative approach for a black-oil reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Regis Lopes; Fernandes, Bruno Ramon Batista [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Chemical Engineering; Araujo, Andre Luiz de Souza [Federal Institution of Education, Science and Technology of Ceara - IFCE, Fortaleza (Brazil). Industry Department], e-mail: andre@ifce.edu.br; Marcondes, Francisco [Federal University of Ceara, Fortaleza, CE (Brazil). Dept. of Metallurgical Engineering and Material Science], e-mail: marcondes@ufc.br

    2010-07-01

    Unstructured meshes presented one upgrade in modeling the main important features of the reservoir such as discrete fractures, faults, and irregular boundaries. From several methodologies available, the Element based Finite Volume Method (EbFVM), in conjunction with unstructured meshes, is one methodology that deserves large attention. In this approach, the reservoir, for 2D domains, is discretized using a mixed two-dimensional mesh using quadrilateral and triangle elements. After the initial step of discretization, each element is divided into sub-elements and the mass balance for each component is developed for each sub-element. The equations for each control-volume using a cell vertex construction are formulated through the contribution of different neighboured elements. This paper presents an investigation of an element-based approach using the black-oil model based on pressure and global mass fractions. In this approach, even when all gas phase is dissolved in oil phase the global mass fraction of gas will be different from zero. Therefore, no additional numerical procedure is necessary in order to treat the gas phase appear/disappearance. In this paper the above mentioned approach is applied to multiphase flows involving oil, gas, and water. The mass balance equations in terms of global mass fraction of oil, gas and water are discretized through the EbFVM and linearized by the Newton's method. The results are presented in terms of volumetric rates of oil, gas, and water and phase saturations. (author)

  13. Nagylengyel: an interesting reservoir. [Yugoslovia

    Energy Technology Data Exchange (ETDEWEB)

    Dedinszky, J

    1971-04-01

    The Nagylengyel oil field, discovered in 1951, has oil-producing formations mostly in the Upper-Triassic dolomites, in the Norian-Ractian transition formations, in the Upper-Cretaceous limestones and shales, and in the Miocene. The formation of the reservoir space occurred in many stages. A porous, cavernous fractured reservoir is developed in the Norian principal dolomite. A cavernous fractured reservoir exists in the Cretaceous limestone and in the Cretaceous shale and porous fractured reservoir is developed in the Miocene. The derivation of the model of the reservoir, and the conservative evaluation of the volume of the reservoir made it possible to use secondary recovery.

  14. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai

    2013-01-01

    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  15. Changes of Major Antioxidant Compounds and Radical Scavenging Activity of Palm Oil and Rice Bran Oil during Deep-Frying

    Directory of Open Access Journals (Sweden)

    Azizah Abdul Hamid

    2014-07-01

    Full Text Available Changes in antioxidant properties and degradation of bioactives in palm oil (PO and rice bran oil (RBO during deep-frying were investigated. The alpha (α-tocopherol, gamma (γ-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using high performance liquid chromatography, and antioxidant activity was determined using 2-diphenyl-1-picryl hydrazyl (DPPH radical scavenging activity. Results revealed that the antioxidant activity of PO decreased significantly (p < 0.05, while that of RBO was preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05 with increased frying. Results also showed that γ-tocotrienol was found to be more susceptible to degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no significant degradation of α-tocopherol was observed in RBO. It is suggested that the presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on α-tocopherol during deep-frying.

  16. Physical simulation of gas reservoir formation in the Liwan 3-1 deep-water gas field in the Baiyun sag, Pearl River Mouth Basin

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2015-01-01

    Full Text Available To figure out the process and controlling factors of gas reservoir formation in deep-waters, based on an analysis of geological features, source of natural gas and process of reservoir formation in the Liwan 3-1 gas field, physical simulation experiment of the gas reservoir formation process has been performed, consequently, pattern and features of gas reservoir formation in the Baiyun sag has been found out. The results of the experiment show that: ① the formation of the Liwan 3-1 faulted anticline gas field is closely related to the longstanding active large faults, where natural gas is composed of a high proportion of hydrocarbons, a small amount of non-hydrocarbons, and the wet gas generated during highly mature stage shows obvious vertical migration signs; ② liquid hydrocarbons associated with natural gas there are derived from source rock of the Enping & Zhuhai Formation, whereas natural gas comes mainly from source rock of the Enping Formation, and source rock of the Wenchang Formation made a little contribution during the early Eocene period as well; ③ although there was gas migration and accumulation, yet most of the natural gas mainly scattered and dispersed due to the stronger activity of faults in the early period; later as fault activity gradually weakened, gas started to accumulate into reservoirs in the Baiyun sag; ④ there is stronger vertical migration of oil and gas than lateral migration, and the places where fault links effective source rocks with reservoirs are most likely for gas accumulation; ⑤ effective temporal-spatial coupling of source-fault-reservoir in late stage is the key to gas reservoir formation in the Baiyun sag; ⑥ the nearer the distance from a trap to a large-scale fault and hydrocarbon source kitchen, the more likely gas may accumulate in the trap in late stage, therefore gas accumulation efficiency is much lower for the traps which are far away from large-scale faults and hydrocarbon source

  17. Advanced productivity forecast using petrophysical wireline data calibrated with MDT tests and numerical reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Carlos de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Low, Steven; Barreto, Wesley [Schlumberger, Houston, TX (United States)

    2004-07-01

    This paper describes an integrated and rigorous approach for viscous and middle oil reservoir productivity evaluation using petrophysical models calibrated with permeability derived from mini tests (Dual Packer) and Vertical Interference Tests (VIT) from open hole wire line testers (MDT SLB TM). It describes the process from Dual Packer Test and VIT pre-job design, evaluation via analytical and inverse simulation modeling, calibration and up scaling of petrophysical data into a numerical model, history matching of Dual Packer Tests and VIT with numerical simulation modeling. Finally, after developing a dynamic calibrated model, we perform productivity forecasts of different well configurations (vertical, horizontal and multilateral wells) for several deep offshore oil reservoirs in order to support well testing activities and future development strategies. The objective was to characterize formation static and dynamic properties early in the field development process to optimize well testing design, extended well test (EWT) and support the development strategies in deep offshore viscous oil reservoirs. This type of oil has limitations to flow naturally to surface and special lifting equipment is required for smooth optimum well testing/production. The integrated analysis gave a good overall picture of the formation, including permeability anisotropy and fluid dynamics. Subsequent analysis of different well configurations and lifting schemes allows maximizing formation productivity. The simulation and calibration results are compared to measured well test data. Results from this work shows that if the various petrophysical and fluid properties sources are integrated properly an accurate well productivity model can be achieved. If done early in the field development program, this time/knowledge gain could reduce the risk and maximize the development profitability of new blocks (value of the information). (author)

  18. Multicomponent seismic reservoir characterization of a steam-assisted gravity drainage (SAGD) heavy oil project, Athabasca oil sands, Alberta

    Science.gov (United States)

    Schiltz, Kelsey Kristine

    Steam-assisted gravity drainage (SAGD) is an in situ heavy oil recovery method involving the injection of steam in horizontal wells. Time-lapse seismic analysis over a SAGD project in the Athabasca oil sands deposit of Alberta reveals that the SAGD steam chamber has not developed uniformly. Core data confirm the presence of low permeability shale bodies within the reservoir. These shales can act as barriers and baffles to steam and limit production by prohibiting steam from accessing the full extent of the reservoir. Seismic data can be used to identify these shale breaks prior to siting new SAGD well pairs in order to optimize field development. To identify shale breaks in the study area, three types of seismic inversion and a probabilistic neural network prediction were performed. The predictive value of each result was evaluated by comparing the position of interpreted shales with the boundaries of the steam chamber determined through time-lapse analysis. The P-impedance result from post-stack inversion did not contain enough detail to be able to predict the vertical boundaries of the steam chamber but did show some predictive value in a spatial sense. P-impedance from pre-stack inversion exhibited some meaningful correlations with the steam chamber but was misleading in many crucial areas, particularly the lower reservoir. Density estimated through the application of a probabilistic neural network (PNN) trained using both PP and PS attributes identified shales most accurately. The interpreted shales from this result exhibit a strong relationship with the boundaries of the steam chamber, leading to the conclusion that the PNN method can be used to make predictions about steam chamber growth. In this study, reservoir characterization incorporating multicomponent seismic data demonstrated a high predictive value and could be useful in evaluating future well placement.

  19. Origins, characteristics, controls, and economic viabilities of deep- basin gas resources

    Science.gov (United States)

    Price, L.C.

    1995-01-01

    Dry-gas deposits (methane ???95% of the hydrocarbon (HC) gases) are thought to originate from in-reservoir thermal cracking of oil and C2+ HC gases to methane. However, because methanes from Anadarko Basin dry-gas deposits do not carry the isotopic signature characteristics of C15+ HC destruction, an origin of these methanes from this process is considered improbable. Instead, the isotopic signature of these methanes suggests that they were cogenerated with C15+ HC's. Only a limited resource of deep-basin gas deposits may be expected by the accepted model for the origin of dry-gas deposits because of a limited number of deep-basin oil deposits originally available to be thermally converted to dry gas. However, by the models of this paper (inefficient source-rock oil and gas expulsion, closed fluid systems in petroleum-basin depocenters, and most dry-gas methane cogenerated with C15+ HC's), very large, previously unrecognized, unconventional, deep-basin gas resources are expected. -from Author

  20. Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs

    Science.gov (United States)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    Audio-magnetotelluric (AMT) sounding is widely employed in rapid resistivity delineation of objective geometry in near surface exploration. According to reservoir patterns and electrical parameters obtained in Qinshui Basin, China, two-dimensional and three-dimensional synthetic "objective anomaly" models were designed and inverted with the availability of a modular system for electromagnetic inversion (ModEM). The results revealed that 3-D full impedance inversion yielded the subsurface models closest to synthetic models. One or more conductive targets were correctly recovered. Therefore, conductive aquifers in the study area, including hydrous coalbed methane (CBM) reservoirs, were suggested to be the interpretation signs for reservoir characterization. With the aim of dynamic monitoring of CBM reservoirs, the AMT surveys in continuous years (June 2013-May 2015) were carried out. 3-D inversion results demonstrated that conductive anomalies accumulated around the producing reservoirs at the corresponding depths if CBM reservoirs were in high water production rates. In contrast, smaller conductive anomalies were generally identical with rapid gas production or stopping production of reservoirs. These analyses were in accordance with actual production history of CBM wells. The dynamic traces of conductive anomalies revealed that reservoir water migrated deep or converged in axial parts and wings of folds, which contributed significantly to formations of CBM traps. Then the well spacing scenario was also evaluated based on the dynamic production analysis. Wells distributed near closed faults or flat folds, rather than open faults, had CBM production potential to ascertain stable gas production. Therefore, three-dimensional AMT sounding becomes an attractive option with the ability of dynamic monitoring of CBM reservoirs, and lays a solid foundation of quantitative evaluation of reservoir parameters.

  1. Discontinuities Characteristics of the Upper Jurassic Arab-D Reservoir Equivalent Tight Carbonates Outcrops, Central Saudi Arabia

    Science.gov (United States)

    Abdlmutalib, Ammar; Abdullatif, Osman

    2017-04-01

    Jurassic carbonates represent an important part of the Mesozoic petroleum system in the Arabian Peninsula in terms of source rocks, reservoirs, and seals. Jurassic Outcrop equivalents are well exposed in central Saudi Arabia and which allow examining and measuring different scales of geological heterogeneities that are difficult to collect from the subsurface due to limitations of data and techniques. Identifying carbonates Discontinuities characteristics at outcrops might help to understand and predict their properties and behavior in the subsurface. The main objective of this study is to identify the lithofacies and the discontinuities properties of the upper Jurassic carbonates of the Arab D member and the Jubaila Formation (Arab-D reservoir) based on their outcrop equivalent strata in central Saudi Arabia. The sedimentologic analysis revealed several lithofacies types that vary in their thickness, abundances, cyclicity and vertical and lateral stacking patterns. The carbonates lithofacies included mudstone, wackestone, packstone, and grainstone. These lithofacies indicate deposition within tidal flat, skeletal banks and shallow to deep lagoonal paleoenvironmental settings. Field investigations of the outcrops revealed two types of discontinuities within Arab D Member and Upper Jubaila. These are depositional discontinuities and tectonic fractures and which all vary in their orientation, intensity, spacing, aperture and displacements. It seems that both regional and local controls have affected the fracture development within these carbonate rocks. On the regional scale, the fractures seem to be structurally controlled by the Central Arabian Graben System, which affected central Saudi Arabia. While, locally, at the outcrop scale, stratigraphic, depositional and diagenetic controls appear to have influenced the fracture development and intensity. The fracture sets and orientations identified on outcrops show similarity to those fracture sets revealed in the upper

  2. Exploring for oil with nuclear physics

    Directory of Open Access Journals (Sweden)

    Mauborgne Marie-Laure

    2017-01-01

    Full Text Available Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.

  3. Exploring for oil with nuclear physics

    Science.gov (United States)

    Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa

    2017-09-01

    Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.

  4. Adaptive forward-inverse modeling of reservoir fluids away from wellbores; TOPICAL

    International Nuclear Information System (INIS)

    Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G

    1999-01-01

    This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques[Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by signal

  5. Investigation of biosurfactant-producing indigenous microorganisms that enhance residue oil recovery in an oil reservoir after polymer flooding.

    Science.gov (United States)

    She, Yue-Hui; Zhang, Fan; Xia, Jing-Jing; Kong, Shu-Qiong; Wang, Zheng-Liang; Shu, Fu-Chang; Hu, Ji-Ming

    2011-01-01

    Three biosurfactant-producing indigenous microorganisms (XDS1, XDS2, XDS3) were isolated from a petroleum reservoir in the Daqing Oilfield (China) after polymer flooding. Their metabolic, biochemical, and oil-degradation characteristics, as well as their oil displacement in the core were studied. These indigenous microorganisms were identified as short rod bacillus bacteria with white color, round shape, a protruding structure, and a rough surface. Strains have peritrichous flagella, are able to produce endospores, are sporangia, and are clearly swollen and terminal. Bacterial cultures show that the oil-spreading values of the fermentation fluid containing all three strains are more than 4.5 cm (diameter) with an approximate 25 mN/m surface tension. The hydrocarbon degradation rates of each of the three strains exceeded 50%, with the highest achieving 84%. Several oil recovery agents were produced following degradation. At the same time, the heavy components of crude oil were degraded into light components, and their flow characteristics were also improved. The surface tension and viscosity of the crude oil decreased after being treated by the three strains of microorganisms. The core-flooding tests showed that the incremental oil recoveries were 4.89-6.96%. Thus, XDS123 treatment may represent a viable method for microbial-enhanced oil recovery.

  6. New life in old reservoirs - the microbial conversion of oil to methane

    Science.gov (United States)

    Gründger, Friederike; Feisthauer, Stefan; Richnow, Hans Hermann; Siegert, Michael; Krüger, Martin

    2010-05-01

    Since almost 20 years it is known from stable isotope studies that large amounts of biogenic methane are formed in oil reservoirs. The investigation of this degradation process and of the underlying biogeochemical controls are of economical and social importance, since even under optimal conditions, not more than 30-40 % of the oil in a reservoir is actually recovered. The conversion of parts of this non-recoverable oil via an appropriate biotechnological treatment into easily recoverable methane would provide an extensive and ecologically sound energy resource. Laboratory mesocosm as well as high pressure autoclave experiments with samples from different geosystems showed high methane production rates after the addition of oils, single hydrocarbons or coals. The variation of parameters, like temperature, pressure or salinity, showed a broad tolerance to environmental conditions. The fingerprinting of the microbial enrichments with DGGE showed a large bacterial diversity while that of Archaea was limited to three to four dominant species. The Q-PCR results showed the presence of high numbers of Archaea and Bacteria. To analyse their function, we measured the abundances of genes indicative of metal reduction (16S rRNA gene for Geobacteraceae), sulphate reduction (sulphate reductase, dsr), and methanogenesis (methyl coenzyme M-reductase, mcrA). The methanogenic consortia will be further characterised to determine enzymatic pathways and the individual role of each partner. Degradation pathways for different compounds will be studied using 13C-labelled substrates and molecular techniques. Our stable isotope data from both, methane produced in our incubations with samples from various ecosystems and field studies, implies a common methanogenic biodegradation mechanism, resulting in consistent patterns of hydrocarbon alteration.

  7. Eos modeling and reservoir simulation study of bakken gas injection improved oil recovery in the elm coulee field, Montana

    Science.gov (United States)

    Pu, Wanli

    The Bakken Formation in the Williston Basin is one of the most productive liquid-rich unconventional plays. The Bakken Formation is divided into three members, and the Middle Bakken Member is the primary target for horizontal wellbore landing and hydraulic fracturing because of its better rock properties. Even with this new technology, the primary recovery factor is believed to be only around 10%. This study is to evaluate various gas injection EOR methods to try to improve on that low recovery factor of 10%. In this study, the Elm Coulee Oil Field in the Williston Basin was selected as the area of interest. Static reservoir models featuring the rock property heterogeneity of the Middle Bakken Member were built, and fluid property models were built based on Bakken reservoir fluid sample PVT data. By employing both compositional model simulation and Todd-Longstaff solvent model simulation methods, miscible gas injections were simulated and the simulations speculated that oil recovery increased by 10% to 20% of OOIP in 30 years. The compositional simulations yielded lower oil recovery compared to the solvent model simulations. Compared to the homogeneous model, the reservoir model featuring rock property heterogeneity in the vertical direction resulted in slightly better oil recovery, but with earlier CO2 break-through and larger CO2 production, suggesting that rock property heterogeneity is an important property for modeling because it has a big effect on the simulation results. Long hydraulic fractures shortened CO2 break-through time greatly and increased CO 2 production. Water-alternating-gas injection schemes and injection-alternating-shut-in schemes can provide more options for gas injection EOR projects, especially for gas production management. Compared to CO2 injection, separator gas injection yielded slightly better oil recovery, meaning separator gas could be a good candidate for gas injection EOR; lean gas generated the worst results. Reservoir

  8. Reservoir simulation with MUFITS code: Extension for double porosity reservoirs and flows in horizontal wells

    Science.gov (United States)

    Afanasyev, Andrey

    2017-04-01

    Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation

  9. Surrogate reservoir models for CSI well probabilistic production forecast

    Directory of Open Access Journals (Sweden)

    Saúl Buitrago

    2017-09-01

    Full Text Available The aim of this work is to present the construction and use of Surrogate Reservoir Models capable of accurately predicting cumulative oil production for every well stimulated with cyclic steam injection at any given time in a heavy oil reservoir in Mexico considering uncertain variables. The central composite experimental design technique was selected to capture the maximum amount of information from the model response with a minimum number of reservoir models simulations. Four input uncertain variables (the dead oil viscosity with temperature, the reservoir pressure, the reservoir permeability and oil sand thickness hydraulically connected to the well were selected as the ones with more impact on the initial hot oil production rate according to an analytical production prediction model. Twenty five runs were designed and performed with the STARS simulator for each well type on the reservoir model. The results show that the use of Surrogate Reservoir Models is a fast viable alternative to perform probabilistic production forecasting of the reservoir.

  10. Wave energy focusing to subsurface poroelastic formations to promote oil mobilization

    KAUST Repository

    Karve, P. M.

    2015-04-22

    We discuss an inverse source formulation aimed at focusing wave energy produced by ground surface sources to target subsurface poroelastic formations. The intent of the focusing is to facilitate or enhance the mobility of oil entrapped within the target formation. The underlying forward wave propagation problem is cast in two spatial dimensions for a heterogeneous poroelastic target embedded within a heterogeneous elastic semi-infinite host. The semi-infiniteness of the elastic host is simulated by augmenting the (finite) computational domain with a buffer of perfectly matched layers. The inverse source algorithm is based on a systematic framework of partial-differential-equation-constrained optimization. It is demonstrated, via numerical experiments, that the algorithm is capable of converging to the spatial and temporal characteristics of surface loads that maximize energy delivery to the target formation. Consequently, the methodology is well-suited for designing field implementations that could meet a desired oil mobility threshold. Even though the methodology, and the results presented herein are in two dimensions, extensions to three dimensions are straightforward.

  11. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth

    2004-01-01

    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  12. Survivability and growth kinetics of methanogenic archaea at various pHs and pressures: Implications for deep subsurface life on Mars

    Science.gov (United States)

    Sinha, Navita; Nepal, Sudip; Kral, Timothy; Kumar, Pradeep

    2017-02-01

    Life as we know it requires liquid water and sufficient liquid water is highly unlikely on the surface of present-day Mars. However, according to thermal models there is a possibility of liquid water in the deep subsurface of Mars. Thus, the martian subsurface, where the pressure and temperature is higher, could potentially provide a hospitable environment for a biosphere. Also, methane has been detected in the Mars' atmosphere. Analogous to Earth's atmospheric methane, martian methane could also be biological in origin. The carbon and energy sources for methanogenesis in the subsurface of Mars could be available by downwelling of atmospheric CO2 into the regolith and water-rock reactions such as serpentinization, respectively. Corresponding analogs of the martian subsurface on Earth might be the active sites of serpentinization at depths where methanogenic thermophilic archaea are the dominant species. Methanogens residing in Earth's hydrothermal environments are usually exposed to a variety of physiological stresses including a wide range of pressures, temperatures, and pHs. Martian geochemical models imply that the pH of probable groundwater varies from 4.96 to 9.13. In this work, we used the thermophilic methanogen, Methanothermobacter wolfeii, which grows optimally at 55oC. Therefore, a temperature of 55oC was chosen for these experiments, possibly simulating Mars' subsurface temperature. A martian geophysical model suggests depth and pressure corresponding to a temperature of 55 °C would be between 1-30 km and 100-3,000 atm respectively. Here, we have simulated Mars deep subsurface pH, pressure, and temperature conditions and have investigated the survivability, growth rate, and morphology of M. wolfeii after exposure to a wide range of pH 5-9) and pressure (1-1200 atm) at a temperature of 55 °C. Interestingly, in this study we have found that M. wolfeii was able to survive at all the pressures and pHs tested at 55 °C. In order to understand the effect of

  13. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  14. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir, Class I

    Energy Technology Data Exchange (ETDEWEB)

    Bou-Mikael, Sami

    2002-02-05

    This report demonstrates the effectiveness of the CO2 miscible process in Fluvial Dominated Deltaic reservoirs. It also evaluated the use of horizontal CO2 injection wells to improve the overall sweep efficiency. A database of FDD reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. The results of the information gained in this project is disseminated throughout the oil industry via a series of SPE papers and industry open forums.

  15. Characterization of the deep microbial life in the Altmark natural gas reservoir

    Science.gov (United States)

    Morozova, D.; Alawi, M.; Vieth-Hillebrand, A.; Kock, D.; Krüger, M.; Wuerdemann, H.; Shaheed, M.

    2010-12-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of approximately 3500 m, is characterised by high salinity (420 g/l) and temperatures up to 127°C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery), the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism), DGGE (Denaturing Gradient Gel Electrophoresis) and 16S rRNA cloning. First results of the baseline survey indicate the presence of microorganisms similar to representatives from other deep environments. The sequence analyses revealed the presence of several H2-oxidising bacteria (Hydrogenophaga sp

  16. Forming mechanism of the Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin

    Directory of Open Access Journals (Sweden)

    Heng Fu

    2017-07-01

    Full Text Available The Ordovician karst carbonate reservoirs on the northern slope of central Tarim Basin are important oil and gas exploration targets in the basin, but their dissolution mechanisms are in controversy. In this paper, based on the integrated study of sedimentation, sequence and reservoir, together with microscopic analysis and macroscopic seismic data analysis, the carbonate karst reservoirs in the study area were divided into three types: dissolved pore-cavity limestone reservoir, pore-cavity dolomite reservoir and fracture-cavity siliceous reservoir, and their forming mechanisms were discussed respectively. Some findings were obtained. First, dissolved pore-cavity limestone reservoirs are distributed in the upper Yingshan Fm and Yijianfang Fm of the Ordovician vertically, while pore-cavity dolomite reservoirs are mainly developed in the Penglai Fm and lower Yingshan Fm of the Ordovician with great thickness. Second, dissolved pore-cavity limestone reservoirs were formed by karstification on the third-order sequence boundary (lowstand tract, while pore-cavity dolomite reservoirs were formed by deep burial dolomitization controlled by karstification on the third-order sequence boundary, both of which are distributed in the highstand tract below the third-order sequence boundary. Third, siliceous reservoirs are developed under the control of faulting, as a result of reworking of deep hydrothermal fluids along faults to the limestone, and the siliceous reservoirs and their hydrothermal solution fracture-cavity systems are distributed near faults. It is further predicted that, in addition to the three types of reservoir above, platform-margin reef-flat reservoirs are developed in the Ordovician on the northern slope of central Tarim Basin.

  17. Archaeal Viruses Contribute to the Novel Viral Assemblage Inhabiting Oceanic, Basalt-Hosted Deep Subsurface Crustal Fluids

    Science.gov (United States)

    Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.

    2015-12-01

    Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.

  18. 30 CFR 250.1157 - How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? 250.1157 Section 250.1157 Mineral Resources... do I receive approval to produce gas-cap gas from an oil reservoir with an associated gas cap? (a...

  19. Geothermometry Mapping of Deep Hydrothermal Reservoirs in Southeastern Idaho: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, Earl D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Neupane, Ghanashayam [Idaho National Lab. (INL), Idaho Falls, ID (United States); McLing, Travis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wood, Thomas [Univ. of Idaho, Moscow, ID (United States); Cannon, Cody [Univ. of Idaho, Moscow, ID (United States)

    2016-08-01

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources. Numerous hot springs with temperatures up to 75 ºC are scattered along the margins of the plain. Similarly, several hot-water producing wells and few hot springs are also present within the plain. The geothermal reservoirs in the area are likely to be hosted at depth in the felsic volcanic rocks underneath the thick sequences of basalts within the plain and the Paleozoic rocks underneath both basalts and felsic volcanic rocks along the margins. The heat source to these geothermal resources is thought to be the mid-crustal sill complex which sustains high heat flow in the ESRP. Several thermal anomaly areas are believed to be associated with the local thermal perturbation because of the presence of favorable structural settings. However, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperatures are significant challenges for the evaluation of potential resource areas in the ESRP. To address this issue, this project, led by the Idaho National Laboratory (INL), aimed at applying advanced geothermometry tools including temperature-dependent mineral and isotopic equilibria with mixing models that account for processes such as boiling and dilution with shallow groundwater that could affect calculated temperatures of underlying deep thermal waters. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to the compositions of ESRP water samples

  20. MEOR (microbial enhanced oil recovery) data base and evaluation of reservoir characteristics for MEOR projects

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.

    1989-09-01

    One aspect of NIPER's microbial enhanced oil recovery (MEOR) research program has been focused on obtaining all available information regarding the use of microorganisms in enhanced oil recovery field projects. The data have been evaluated in order to construct a data base of MEOR field projects. The data base has been used in this report to present a list of revised reservoir screening criteria for MEOR field processes. This list is by no means complete; however, until more information is available from ongoing field tests, it represents the best available data to date. The data base has been studied in this report in order to determine any significant reports from MEOR field projects where the microbial treatment was unsuccessful. Such information could indicate limitations of MEOR processes. The types of reservoir information sought from these projects that could be limitations of microorganisms include reservoir permeability, salinity, temperature, and high concentrations of minerals in the rock such as selenium, arsenic, or mercury. Unfortunately, most of the MEOR field projects to date have not reported this type of information; thus we still cannot assess field limitations until more projects report these data. 7 refs., 1 fig., 7 tabs.

  1. Advances in carbonate exploration and reservoir analysis

    Science.gov (United States)

    Garland, J.; Neilson, J.; Laubach, S.E.; Whidden, Katherine J.

    2012-01-01

    The development of innovative techniques and concepts, and the emergence of new plays in carbonate rocks are creating a resurgence of oil and gas discoveries worldwide. The maturity of a basin and the application of exploration concepts have a fundamental influence on exploration strategies. Exploration success often occurs in underexplored basins by applying existing established geological concepts. This approach is commonly undertaken when new basins ‘open up’ owing to previous political upheavals. The strategy of using new techniques in a proven mature area is particularly appropriate when dealing with unconventional resources (heavy oil, bitumen, stranded gas), while the application of new play concepts (such as lacustrine carbonates) to new areas (i.e. ultra-deep South Atlantic basins) epitomizes frontier exploration. Many low-matrix-porosity hydrocarbon reservoirs are productive because permeability is controlled by fractures and faults. Understanding basic fracture properties is critical in reducing geological risk and therefore reducing well costs and increasing well recovery. The advent of resource plays in carbonate rocks, and the long-standing recognition of naturally fractured carbonate reservoirs means that new fracture and fault analysis and prediction techniques and concepts are essential.

  2. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    Energy Technology Data Exchange (ETDEWEB)

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  3. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  4. APPLICATION OF INTEGRATED RESERVOIR MANAGEMENT AND RESERVOIR CHARACTERIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant

    2000-03-01

    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  5. Elastic full-waveform inversion and parameterization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    Science.gov (United States)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-03-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density

  6. Elastic full-waveform inversion and parametrization analysis applied to walk-away vertical seismic profile data for unconventional (heavy oil) reservoir characterization

    Science.gov (United States)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-06-01

    Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density

  7. Predicting petrophysical properties by simultaneous inversion of seismic and reservoir engineering data

    Science.gov (United States)

    Mantilla, Andres Eduardo

    Porosity and permeability are the most difficult properties to determine in subsurface reservoir characterization, yet usually they have the largest impact on reserves and production forecasts, and consequently on the economy of a project. The difficulty of estimating them comes from the fact that porosity and permeability may vary significantly over the reservoir volume, but can only be sampled at well locations, often using different technologies at different scales of observation. An accurate estimation of the spatial distribution of porosity and permeability is of key importance, because it translates into higher success rates in infill drilling, and fewer wells required for draining the reservoir. The purpose of this thesis is to enhance the characterization of subsurface reservoirs by improving the prediction of petrophysical properties through the combination of reservoir geophysics and reservoir engineering observations and models. To fulfill this goal, I take advantage of the influence that petrophysical properties have on seismic and production data, and formulate, implement, and demonstrate the applicability of an inversion approach that integrates seismic and production-related observations with a-priori information about porosity and permeability. Being constrained by physical models and observations, the resulting estimates are appropriate for making reservoir management decisions. I use synthetic models to test the proposed inversion approach. Results from these tests show that, because of the excellent spatial coverage of seismic data, incorporating seismic-derived attributes related to petrophysical properties can significantly improve the estimates of porosity and permeability. The results also highlight the importance of using a-priori information about the relationship between porosity and permeability. The last chapters of this thesis describe a practical application of the proposed joint inversion approach. This application includes a rock

  8. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W. Lynn [University Of Kansas Center For Research, Inc. Lawrence, KS (United States); Rush, Jason [University Of Kansas Center For Research, Inc. Lawrence, KS (United States); Raney, Jennifer [University Of Kansas Center For Research, Inc. Lawrence, KS (United States)

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  9. Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir To Evaluate Regional CO2 Sequestration Potential of Ozark Plateau Aquifer System, South-Central Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Watney, W. Lynn [University Of Kansas Center For Research, Inc. Lawrence, KS (United States)

    2014-09-30

    1. Drilled, cored, and logged three wells to the basement and collecting more than 2,700 ft of conventional core; obtained 20 mi2 of multicomponent 3D seismic imaging and merged and reprocessed more than 125 mi2 of existing 3D seismic data for use in modeling CO2- EOR oil recovery and CO2 storage in five oil fields in southern Kansas. 2. Determined the technical feasibility of injecting and sequestering CO2 in a set of four depleted oil reservoirs in the Cutter, Pleasant Prairie South, Eubank, and Shuck fields in southwest Kansas; of concurrently recovering oil from those fields; and of quantifying the volumes of CO2 sequestered and oil recovered during the process. 3. Formed a consortium of six oil operating companies, five of which own and operate the four fields. The consortium became part of the Southwest Kansas CO2-EOR Initiative for the purpose of sharing data, knowledge, and interest in understanding the potential for CO2-EOR in Kansas. 4. Built a regional well database covering 30,000 mi2 and containing stratigraphic tops from ~90,000 wells; correlated 30 major stratigraphic horizons; digitized key wells, including wireline logs and sample logs; and analyzed more than 3,000 drill stem tests to establish that fluid levels in deep aquifers below the Permian evaporites are not connected to the surface and therefore pressures are not hydrostatic. Connectivity with the surface aquifers is lacking because shale aquitards and impermeable evaporite layers consist of both halite and anhydrite. 5. Developed extensive web applications and an interactive mapping system that do the following: a. Facilitate access to a wide array of data obtained in the study, including core descriptions and analyses, sample logs, digital (LAS) well logs, seismic data, gravity and magnetics maps, structural and stratigraphic maps, inferred fault traces, earthquakes, Class I and II disposal wells, and

  10. Microbial stowaways: Addressing oil spill impacts and the artificial reef effect on deep-sea microbiomes

    Science.gov (United States)

    Hamdan, L. J.; Salerno, J. L.; Blackwell, C. A.; Little, B.; McGown, C.; Fitzgerald, L. A.; Damour, M.

    2016-02-01

    Shipwrecks enhance macro-biological diversity in the deep ocean, but, to date, studies have not explored the reef effect on deep-sea microbiological diversity. This is an important concept to address in a restoration framework, as microbial biogeochemical function impacts recruitment and adhesion of higher trophic levels on artificial reefs. In addition, microbial biofilms influence the preservation of shipwrecks through biologically mediated corrosion. Oil and gas-related activities have potential to disrupt the base of the reef trophic web; therefore, bacterial diversity and gene function at six shipwrecks (3 steel-hulled; 3 wood-hulled) in the northern Gulf of Mexico was investigated as part of the GOM-SCHEMA (Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology) project. Sites were selected based on proximity to the Deepwater Horizon spill's subsurface plume, depth, hull type, and existing archaeological data. Classification of taxa in sediments adjacent to and at distance from wrecks, in water, and on experimental steel coupons was used to evaluate how the presence of shipwrecks and spill contaminants in the deep biosphere influenced diversity. At all sites, and in all sample types, Proteobacteria were most abundant. Biodiversity was highest in surface sediments and in coupon biofilms adjacent to two steel-hulled wrecks in the study (Halo and Anona) and decreased with sediment depth and distance from the wrecks. Sequences associated with the iron oxidizing Mariprofundus genus were elevated at steel-hulled sites, indicating wreck-specific environmental selection. Despite evidence of the reef effect on microbiomes, bacterial composition was structured primarily by proximity to the spill and secondarily by hull material at all sites. This study provides the first evidence of an artificial reef effect on deep-sea microbial communities and suggests that biodiversity and function of primary colonizers of shipwrecks may be impacted by the spill.

  11. Volume 5: An evaluation of known remaining oil resources in piercement salt dome reservoirs in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mohan, H.; Rogers, M.; Becker, A.; Biglarbigi, K.; Brashear, J. [ICF Kaiser-ICF Information Technology, Inc., Fairfax, VA (United States)

    1996-08-01

    The US Department of Energy, Office of Fossil Energy (DOE/FE) has among its missions the facilitation of the development of required technologies to maximize the potential economic recovery of domestic oil and gas resources--both offshore and onshore, especially from Federal lands. In planning its activities, the DOE/FE relies on a number of comprehensive analytical systems in order to target and prioritize its research and development (R and D) activities and to estimate the benefits of its programs. DOE/FE`s analytical system, however, lacks the capability to assess the potential of future technology advances on the exploration, development, and production of crude oil resources in the Federal offshore of the Gulf of Mexico. The objective of the present effort is to develop an analytical system to characterize a portion of the Gulf offshore resources--the remaining unrecovered mobile oil resource associated with piercement salt dome reservoirs (hereafter referred to as salt dome reservoirs), and to evaluate additional recovery potential and related economic benefits that could result from the application of improved technologies. As part of the present effort a comprehensive analytical system has been developed for the characterization and evaluation of unrecovered mobile oil associated with the salt dome reservoirs in Federal offshore Gulf of Mexico. The system consists of a comprehensive database containing detailed rock and fluid properties, geologic information, and production and development history for 1,289 major fields and reservoirs representing an estimated 60% of the salt dome resources in the region. In addition, two separate methodologies and related economic and predictive models have been developed for the evaluation of applicable recovery processes. The system is intended for use as part of DOE`s Tertiary Oil Recovery Information System (TORIS).

  12. An adaptive robust optimization scheme for water-flooding optimization in oil reservoirs using residual analysis

    NARCIS (Netherlands)

    Siraj, M.M.; Van den Hof, P.M.J.; Jansen, J.D.

    2017-01-01

    Model-based dynamic optimization of the water-flooding process in oil reservoirs is a computationally complex problem and suffers from high levels of uncertainty. A traditional way of quantifying uncertainty in robust water-flooding optimization is by considering an ensemble of uncertain model

  13. On an inverse source problem for enhanced oil recovery by wave motion maximization in reservoirs

    KAUST Repository

    Karve, Pranav M.; Kucukcoban, Sezgin; Kallivokas, Loukas F.

    2014-01-01

    to increase the mobility of otherwise entrapped oil. The goal is to arrive at the spatial and temporal description of surface sources that are capable of maximizing mobility in the target reservoir. The focusing problem is posed as an inverse source problem

  14. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ettehadtavakkol, Amin, E-mail: amin.ettehadtavakkol@ttu.edu [Texas Tech University (United States); Jablonowski, Christopher [Shell Exploration and Production Company (United States); Lake, Larry [University of Texas at Austin (United States)

    2017-04-15

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  15. Development Optimization and Uncertainty Analysis Methods for Oil and Gas Reservoirs

    International Nuclear Information System (INIS)

    Ettehadtavakkol, Amin; Jablonowski, Christopher; Lake, Larry

    2017-01-01

    Uncertainty complicates the development optimization of oil and gas exploration and production projects, but methods have been devised to analyze uncertainty and its impact on optimal decision-making. This paper compares two methods for development optimization and uncertainty analysis: Monte Carlo (MC) simulation and stochastic programming. Two example problems for a gas field development and an oilfield development are solved and discussed to elaborate the advantages and disadvantages of each method. Development optimization involves decisions regarding the configuration of initial capital investment and subsequent operational decisions. Uncertainty analysis involves the quantification of the impact of uncertain parameters on the optimum design concept. The gas field development problem is designed to highlight the differences in the implementation of the two methods and to show that both methods yield the exact same optimum design. The results show that both MC optimization and stochastic programming provide unique benefits, and that the choice of method depends on the goal of the analysis. While the MC method generates more useful information, along with the optimum design configuration, the stochastic programming method is more computationally efficient in determining the optimal solution. Reservoirs comprise multiple compartments and layers with multiphase flow of oil, water, and gas. We present a workflow for development optimization under uncertainty for these reservoirs, and solve an example on the design optimization of a multicompartment, multilayer oilfield development.

  16. A Reduced Order Model for Fast Production Prediction from an Oil Reservoir with a Gas Cap

    OpenAIRE

    Yang, Yichen

    2016-01-01

    Master's thesis in Petroleum geosciences engineering Economic evaluations are essential inputs for oil and gas field development decisions. These evaluations are critically dependent on the unbiased assessment of uncertainty in the future oil and gas production from wells. However, many production prediction techniques come at significant computational costs as they often require a very large number of highly detailed grid based reservoir simulations. In this study, we present an alter...

  17. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: birkle@iie.org.mx [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Cuernavaca 62490, Morelos (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico); Eglington, Bruce M. [Saskatchewan Isotope Laboratory, University of Saskatchewan, Saskatoon, Canada SK S7N 5E2 (Canada)

    2009-04-15

    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by {sup 14}C-concentrations from 2.15 to 31.86 pmC, and by {sup 87}Sr/{sup 86}Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest {delta}{sup 18}O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic {sup 87}Sr/{sup 86}Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of {sup 14}C in all sampled formation water, {sup 87}Sr/{sup 86}Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm{sup 3} (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a

  18. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    International Nuclear Information System (INIS)

    Birkle, Peter; Garcia, Bernardo Martinez; Milland Padron, Carlos M.; Eglington, Bruce M.

    2009-01-01

    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by 14 C-concentrations from 2.15 to 31.86 pmC, and by 87 Sr/ 86 Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest δ 18 O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic 87 Sr/ 86 Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of 14 C in all sampled formation water, 87 Sr/ 86 Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm 3 (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a successful method to distinguish four groundwater bodies

  19. Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  20. Metagenome sequencing and 98 microbial genomes from Juan de Fuca Ridge flank subsurface fluids

    Science.gov (United States)

    Jungbluth, Sean P.; Amend, Jan P.; Rappé, Michael S.

    2017-03-01

    The global deep subsurface biosphere is one of the largest reservoirs for microbial life on our planet. This study takes advantage of new sampling technologies and couples them with improvements to DNA sequencing and associated informatics tools to reconstruct the genomes of uncultivated Bacteria and Archaea from fluids collected deep within the Juan de Fuca Ridge subseafloor. Here, we generated two metagenomes from borehole observatories located 311 meters apart and, using binning tools, retrieved 98 genomes from metagenomes (GFMs). Of the GFMs, 31 were estimated to be >90% complete, while an additional 17 were >70% complete. Phylogenomic analysis revealed 53 bacterial and 45 archaeal GFMs, of which nearly all were distantly related to known cultivated isolates. In the GFMs, abundant Bacteria included Chloroflexi, Nitrospirae, Acetothermia (OP1), EM3, Aminicenantes (OP8), Gammaproteobacteria, and Deltaproteobacteria, while abundant Archaea included Archaeoglobi, Bathyarchaeota (MCG), and Marine Benthic Group E (MBG-E). These data are the first GFMs reconstructed from the deep basaltic subseafloor biosphere, and provide a dataset available for further interrogation.

  1. Thermally-enhanced oil recovery method and apparatus

    Science.gov (United States)

    Stahl, Charles R.; Gibson, Michael A.; Knudsen, Christian W.

    1987-01-01

    A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

  2. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    Science.gov (United States)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  3. Development and operation of Northern Natural's aquifer gas storage reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Martinson, E V

    1969-01-01

    There are no depleted (or nondepleted) oil and gas fields in Northern Natural Gas Co.'s market area. Consequently, when the search was started for a possible underground field, the company had to resort to the possibility of locating a water-filled, porous-rock formation (aquifer) in a geological structure which would form a suitable trap for gas storage. Geological research and exploratory drilling was carried on in S. Minnesota, E. Nebraska, and W.-central Iowa. An area located about 40 miles northwest of Des Moines, Iowa, near Redfield, appeared to have the most desirable characteristics for development of a gas-storage field. Drilling of deep developmental wells was started in late 1953 on a double- plunging anticline. The geological structure is similar to that of many oil and gas fields, but the porous formations contained only fresh water. To date, 2 major reservoirs and a minor reservoir have been developed in this structure. As much as 120 billion cu ft has been stored in the 3 reservoirs which supplied 43 billion cu ft gas withdrawals this past season from a total of 85 wells. A second aquifer gas-storage field is under development in N.-central Iowa about 15 miles northeast of Ft. Dodge.

  4. Deep Subsurface Microbial Communities Shaped by the Chicxulub Impactor

    Science.gov (United States)

    Cockell, C. S.; Coolen, M.; Schaefer, B.; Grice, K.; Gulick, S. P. S.; Morgan, J. V.; Kring, D. A.; Osinski, G.

    2017-12-01

    . These data show that the deep biosphere can preserve the imprint of catastrophe long after these events. In this case, the distribution of deep subsurface microbial communities reflects the lithological sequence established during the substantial impact-induced geological rearrangements that occurred in the first hours of the Cenozoic.

  5. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    International Nuclear Information System (INIS)

    Ahmad, M.; Rafique, M.; Tariq, J.A; Choudhry, M.A.; Hussain, Q.M.

    2008-10-01

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  6. Production Characteristics and Reservoir Quality at the Ivanić Oil Field (Croatia) Predicted by Machine Learning System

    OpenAIRE

    Hernitz, Zvonimir; Đureković, Miro; Crnički, Josip

    1996-01-01

    At the Ivanić oil field, hydrocarbons are accumulated in fine tomedium grained litharenits of the Ivanić-Grad Formation (Iva-sandstones member) of Upper Miocene age. Reservoir rocks are dividedinlo eight depositional (production) units (i1- i8). Deposits of eachunit are characterized by their own reservoir quality parameters(porosity, horizontal permeability, net pay ... ). Production characteristicsof 30 wells have been studied by a simple slatistical method. Twomajor production well ca...

  7. Nonlinear Model Predictive Control for Oil Reservoirs Management

    DEFF Research Database (Denmark)

    Capolei, Andrea

    expensive gradient computation by using high-order ESDIRK (Explicit Singly Diagonally Implicit Runge-Kutta) temporal integration methods and continuous adjoints. The high order integration scheme allows larger time steps and therefore faster solution times. We compare gradient computation by the continuous...... gradient-based optimization and the required gradients are computed by the adjoint method. We propose the use of efficient high order implicit time integration methods for the solution of the forward and the adjoint equations of the dynamical model. The Ensemble Kalman filter is used for data assimilation...... equivalent strategy is not justified for the particular case studied in this paper. The third contribution of this thesis is a mean-variance method for risk mitigation in production optimization of oil reservoirs. We introduce a return-risk bicriterion objective function for the profit-risk tradeoff...

  8. Integrated geomechanical modelling at TNO for assessement of deep subsurface risks

    NARCIS (Netherlands)

    Orlic, B.; Fokker, P.; Zijl, W.; Scheffers, B.

    2001-01-01

    Public authorities, E & P and the mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is

  9. Physical and chemical controls on habitats for life in the deep subsurface beneath continents and ice

    Science.gov (United States)

    Parnell, John; McMahon, Sean

    2016-01-01

    The distribution of life in the continental subsurface is likely controlled by a range of physical and chemical factors. The fundamental requirements are for space to live, carbon for biomass and energy for metabolic activity. These are inter-related, such that adequate permeability is required to maintain a supply of nutrients, and facies interfaces invite colonization by juxtaposing porous habitats with nutrient-rich mudrocks. Viable communities extend to several kilometres depth, diminishing downwards with decreasing porosity. Carbon is contributed by recycling of organic matter originally fixed by photosynthesis, and chemoautotrophy using crustal carbon dioxide and methane. In the shallow crust, the recycled component predominates, as processed kerogen or hydrocarbons, but abiotic carbon sources may be significant in deeper, metamorphosed crust. Hydrogen to fuel chemosynthesis is available from radiolysis, mechanical deformation and mineral alteration. Activity in the subcontinental deep biosphere can be traced through the geological record back to the Precambrian. Before the colonization of the Earth's surface by land plants, a geologically recent event, subsurface life probably dominated the planet's biomass. In regions of thick ice sheets the base of the ice sheet, where liquid water is stable and a sediment layer is created by glacial erosion, can be regarded as a deep biosphere habitat. This environment may be rich in dissolved organic carbon and nutrients accumulated from dissolving ice, and from weathering of the bedrock and the sediment layer. PMID:26667907

  10. Major Oil Plays in Utah and Vicinity

    Energy Technology Data Exchange (ETDEWEB)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31

    fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer

  11. How Specific Microbial Communities Benefit the Oil Industry: Case Study - Proof of Concept that Oil Entrained in Marginal Reservoirs Can Be Bioconverted to Methane Gas as a Green Energy Recovery Strategy

    Science.gov (United States)

    Gieg, Lisa

    Conventional oil recovery techniques such as water flooding typically remove only up to 40% of the oil present in reservoirs. Enhanced oil recovery (EOR) techniques are considered tertiary strategies that may be applied to recover a greater volume of oil. In particular, the use of microorganisms to aid in oil production (microbial-enhanced oil recovery or MEOR) is considered a green energy recovery strategy since microbial processes do not require large amounts of energy input and can potentially produce large amounts of useful byproducts from inexpensive and renewable resources (Youssef et al., 2008). These byproducts can include the generation of biosurfactants, emulsifiers, acids, alcohols, and/or gases that can serve as agents for oil recovery. Recent reviews have summarised MEOR efforts undertaken since the 1950's with varying degrees of success (e.g. Jack, 1993; Belyaev et al., 2004; McInerney et al., 2005; Youssef et al., 2008). In MEOR schemes, petroleum reservoirs may be either stimulated with nutrients or inoculated with microorganisms with known activity to achieve desired effects (Youssef et al., 2008).

  12. Physical and Numerical Modeling of the Stability of Deep Caverns in Tahe Oil Field in China

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-06-01

    Full Text Available Cave collapses emerge during the process of oil reservoir development, seriously affecting oil production. To reveal the collapse and failure mechanism of the carbonate cavern with a buried depth of 5600 m in Tahe Oil Field, using a self-developed ultra-high pressure model test system with the intelligent numerical control function, the model simulation material of carbonate rocks developed to carry out the 3D geo-mechanical model test. The model test and numerical results indicate that: (1 collapse and failure mechanism of the deep-buried caves mainly involve the failure mode of tensile shear. The rupture plane on the side wall is approximately parallel to the direction of maximum principal compressive stress. The V-type tension and split rupture plane then emerges. (2 In the process of forming holes in the model caverns, micro cracks are generated at the foot of the left and right side walls of the caverns, and the roof panels are constantly moving downward. The shorter the distance to the cave wall, the severer the destructiveness of the surrounding rocks will be. (3 The displacement of the top of the model cavern is relatively large and uniform, indicating that the cave roof moves downward as a whole. The area of the cavity suffering damage is 2.3 times as large as the cave span. The research results in this paper lay a solid test basis for revealing the cave collapse and failure mechanism in super depth.

  13. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Hickman, Scott T.; Justice James L.; Taylor, Archie R.

    1999-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs

  14. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.

    2015-01-01

    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... that the final temperature of black oil increases upon adiabatic decompression. In the case of the isenthalpic process at initial conditions of the reservoir, e.g. 150°C and 1000 bars, it is found that the final temperature can increase to 173.7°C. At non-isenthalpic conditions the final temperature increases...

  15. CO{sub 2} flooding performance prediction for Alberta oil pools

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.C. [Adams Pearson Associates Inc., Calgary, AB (Canada); Bachu, S. [Alberta Energy and Utilities Board, Calgary, AB (Canada)

    2002-06-01

    An advanced technical screening program was used to successfully screen and rank a very large number of Alberta oil pools for enhanced oil recovery using carbon dioxide (CO{sub 2}) flooding. This paper is a continuation paper describing the results of using the Microsoft Excel program with VBA to estimate production forecasts for several candidate pools in Alberta. A total of 6 ranking parameters were used, including API gravity of oil, residual oil saturation, ratio between reservoir pressure and minimum miscibility pressure, reservoir temperature, net pay thickness and porosity. The screening program provides a technical ranking of approximately 8,000 Alberta pools. After compilation of the Alberta oil pools, it was determined that most of the deep carbonate oil pools are excellent candidates for CO{sub 2} miscible flooding. Other Devonian carbonate pools are also ranked as having high potential for the process. An environmental benefit of CO{sub 2} miscible flooding process is that carbon sequestration has the potential to reduce anthropogenic carbon dioxide emissions from reaching the atmosphere. Ongoing studies are currently addressing CO{sub 2} capture and transportation, making EOR technology viable for maintaining light oil production in western Canada. 11 refs., 2 tabs., 2 figs.

  16. Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales

    International Nuclear Information System (INIS)

    Morea, Michael F.

    1999-01-01

    The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field

  17. Analysis of nitrogen injection as alternative fluid to steam in heavy oil reservoir; Analise da injecao de nitrogenio como fluido alternativo ao vapor em reservatorio de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Marcos Allyson Felipe; Galvao, Edney Rafael Viana Pinheiro; Barillas, Jennys Lourdes; Mata, Wilson da; Dutra Junior, Tarcilio Viana [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    Many of hydrocarbon reserves existing in the world are formed by heavy oils (deg API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steam flooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. In this paper, the use of N{sub 2} as an alternative fluid to the steam was investigated. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Potiguar Basin, Brazil. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that N{sub 2} injection after steam injection interruption achieved the highest net cumulative oil compared to others injection system. Moreover, it was observed that N2 as alternative fluid to steam did not present increase on oil recovery. (author)

  18. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in frio fluvial-deltaic sandstone reservoirs at South Texas. Annual report, October 1994--October 1995

    Energy Technology Data Exchange (ETDEWEB)

    Holtz, M.; Knox, P.; McRae, L. [and others

    1996-02-01

    The Frio Fluvial-Deltaic Sandstone oil play of South Texas has produced nearly 1 billion barrels of oil, yet it still contains about 1.6 billion barrels of unrecovered mobile oil and nearly the same amount of residual oil resources. Interwell-scale geologic facise models of Frio Fluvial-deltaic reservoirs are being combined with engineering assessments and geophysical evaluations in order to determine the controls that these characteristics exert on the location and volume or unrecovered mobile and residual oil. Progress in the third year centered on technology transfer. An overview of project tasks is presented.

  19. Sensitivity of transpiration to subsurface properties: Exploration with a 1-D model

    Science.gov (United States)

    Vrettas, Michail D.; Fung, Inez Y.

    2017-06-01

    The amount of moisture transpired by vegetation is critically tied to the moisture supply accessible to the root zone. In a Mediterranean climate, integrated evapotranspiration (ET) is typically greater in the dry summer when there is an uninterrupted period of high insolation. We present a 1-D model to explore the subsurface factors that may sustain ET through the dry season. The model includes a stochastic parameterization of hydraulic conductivity, root water uptake efficiency, and hydraulic redistribution by plant roots. Model experiments vary the precipitation, the magnitude and seasonality of ET demand, as well as rooting profiles and rooting depths of the vegetation. The results show that the amount of subsurface moisture remaining at the end of the wet winter is determined by the competition among abundant precipitation input, fast infiltration, and winter ET demand. The weathered bedrock retains ˜30% of the winter rain and provides a substantial moisture reservoir that may sustain ET of deep-rooted (>8 m) trees through the dry season. A small negative feedback exists in the root zone, where the depletion of moisture by ET decreases hydraulic conductivity and enhances the retention of moisture. Hence, hydraulic redistribution by plant roots is impactful in a dry season, or with a less conductive subsurface. Suggestions for implementing the model in the CESM are discussed.

  20. Tailor-made surfactants for optimized chemical EOR. Meeting oil reservoir conditions by applied knowledge of structure-performance relationship in extended surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, G.; Sorensen, W. [Sasol North America Inc., Westlake, LA (United States); Jakobs-Sauter, B. [Sasol Germany GmbH (Germany)

    2013-08-01

    Formulating the surfactant package for chemical EOR is a time consuming and expensive process - the formulation needs to fit the specific reservoir conditions (like oil type, temperature, salinity, etc.) to give optimum performance and the number of formulation variables is virtually endless. This paper studies the impact of surfactant structure on EOR formulation ability and performance and how to adjust the structure of the surfactant molecule to meet a specific reservoir's needs. Data from salinity phase boundary studies of alcohol propoxy sulfates illustrate how changes in alcohol structure as well as in propylene oxide level can shift optimum salinity and temperature to the desired range in a given model oil. From these data the impact of individual structural units was evaluated. Application of the HLD model (Hydrophilic-Lipophilic Deviation) shows how to extrapolate from the known data set to actual reservoir conditions. This is illustrated by studies on crude oil samples. Additional tests study how effective the selected surfactants perform. The HLD concept proves to be a valuable tool to select and tailor surfactants to individual reservoir needs, thus simplifying the surfactant screening process for EOR formulations by pre-selection of suitable structures and ultimately reducing cost and effort on the way to the most effective chemical EOR package. (orig.)

  1. Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery.

    Science.gov (United States)

    Wang, Zhenjun; Huang, Jiehao

    2018-04-01

    The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Deep-water northern Gulf of Mexico hydrocarbon plays

    International Nuclear Information System (INIS)

    Peterson, R.H.; Cooke, D.W.

    1995-01-01

    The geologic setting in the deep-water (depths greater than 1,500 feet) Gulf of Mexico is very favorable for the existence of large, commercial hydrocarbon accumulations. These areas have active salt tectonics that create abundant traps, underlying mature Mesozoic source rocks that can be observed expelling oil and gas to the ocean surface, and good quality reservoirs provided by turbidite sand deposits. Despite the limited amount of drilling in the deep-water Gulf of Mexico, 11 deep-water accumulations have been discovered which, when developed, will rank in the top 100 largest fields in the Gulf of Mexico. Proved field discoveries (those with announced development plans) have added over 1 billion barrels of oil equivalent to Gulf of Mexico reserves, and unproved field discoveries may add to additional billion barrels of oil equivalent. The Minerals Management Service, United States Department of the Interior, has completed a gulf-wide review of over 1,086 oil and gas fields and placed every pay sand in each field into a hydrocarbon play (plays are defined by chronostratigraphy, lithostratigraph, structure, and production). Seven productive hydrocarbon plays were identified in the deep-water northern Gulf of Mexico. Regional maps illustrate the productive limits of each play. In addition, field data, dry holes, and wells with sub-economic pay were added to define the facies and structural limits for each play. Areas for exploration potential are identified for each hydrocarbon play. A type field for each play is chosen to demonstrate the play's characteristics

  3. Using combinations of methods for evaluating capacity of fissured reservoirs of the upper Cretaceous Malgobek- Voznesensk oil deposit in Ch. I. ASSR

    Energy Technology Data Exchange (ETDEWEB)

    Vasilev, V.M.

    1968-01-01

    Ch.I.ASSR stands for the Chechen-Ingush Autonomous Soviet Socialist Republic (North Caucasus). The deposit is associated with practically impervious limestones (less than 1 md) with intergranular porosity; oil is found along fractures of various length and degree of openness. Amount of fluids contained in this type of reservoirs was evaluated by the following methods: (1) core analyses; (2) geophysical surveying of wells; (3) hydrodynamic techniques of well investigations; and (4) according to parts of the deposits where oil was already recovered. Statistical interpretation of combined data indicated that reservoir properties gradually become poorer with increasing depth and in the direction from the crest of the fold towards its flanks and periclinal ends. Application of some formulas used in this work is explained. It is concluded that by using combinations of methods it is possible to evaluate the absolute and effective values of secondary reservoir capacity and to establish approximately geological and retrievable oil reserves.

  4. GPU-Based Computation of Formation Pressure for Multistage Hydraulically Fractured Horizontal Wells in Tight Oil and Gas Reservoirs

    Directory of Open Access Journals (Sweden)

    Rongwang Yin

    2018-01-01

    Full Text Available A mathematical model for multistage hydraulically fractured horizontal wells (MFHWs in tight oil and gas reservoirs was derived by considering the variations in the permeability and porosity of tight oil and gas reservoirs that depend on formation pressure and mixed fluid properties and introducing the pseudo-pressure; analytical solutions were presented using the Newman superposition principle. The CPU-GPU asynchronous computing model was designed based on the CUDA platform, and the analytic solution was decomposed into infinite summation and integral forms for parallel computation. Implementation of this algorithm on an Intel i5 4590 CPU and NVIDIA GT 730 GPU demonstrates that computation speed increased by almost 80 times, which meets the requirement for real-time calculation of the formation pressure of MFHWs.

  5. Control of Microbial Sulfide Production with Biocides and Nitrate in Oil Reservoir Simulating Bioreactors.

    Directory of Open Access Journals (Sweden)

    Yuan eXue

    2015-12-01

    Full Text Available Oil reservoir souring by the microbial reduction of sulfate to sulfide is unwanted, because it enhances corrosion of metal infrastructure used for oil production and processing. Reservoir souring can be prevented or remediated by the injection of nitrate or biocides, although injection of biocides into reservoirs is not commonly done. Whether combined application of these agents may give synergistic reservoir souring control is unknown. In order to address this we have used up-flow sand-packed bioreactors injected with 2 mM sulfate and volatile fatty acids (VFA, 3 mM each of acetate, propionate and butyrate at a flow rate of 3 or 6 pore volumes per day. Pulsed injection of the biocides glutaraldehyde (Glut, benzalkonium chloride (BAC and cocodiamine was used to control souring. Souring control was determined as the recovery time (RT needed to re-establish an aqueous sulfide concentration of 0.8-1 mM (of the 1.7-2 mM before the pulse. Pulses were either for a long time (120 h at low concentration (long-low or for a short time (1 h at high concentration (short-high. The short-high strategy gave better souring control with Glut, whereas the long-low strategy was better with cocodiamine. Continuous injection of 2 mM nitrate alone was not effective, because 3 mM VFA can fully reduce both 2 mM nitrate to nitrite and N2 and, subsequently, 2 mM sulfate to sulfide. No synergy was observed for short-high pulsed biocides and continuously injected nitrate. However, use of continuous nitrate and long-low pulsed biocide gave synergistic souring control with BAC and Glut, as indicated by increased RTs in the presence, as compared to the absence of nitrate. Increased production of nitrite, which increases the effectiveness of souring control by biocides, is the most likely cause for this synergy.

  6. Screening and ranking Alberta oil pools for CO{sub 2} flooding and sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.C. [Adams Pearson Associates Inc., Calgary, AB (Canada); Bachu, S. [Alberta Energy and Utilities Board, Calgary, AB (Canada)

    2001-06-01

    This paper presented the results of a technical screening program using Excel VBA to successfully screen and rank a very large number of oil pools for enhanced oil recovery using carbon dioxide (CO{sub 2}) flooding. A total of 6 ranking parameters were used, including API gravity of oil, residual oil saturation, ratio between reservoir pressure and minimum miscibility pressure, reservoir temperature, net pay thickness and porosity. The screening program provided a technical ranking of approximately 8,800 Alberta pools in less than 2 minutes. After compilation of the Alberta oil pools, it was determined that most of the deep carbonate oil pools are excellent candidates for CO{sub 2} miscible flooding. Other Devonian carbonate pools were also ranked as having high potential for the process. An environmental benefit of CO{sub 2} miscible flooding process is that carbon sequestration has the potential to reduce anthropogenic carbon dioxide emissions from reaching the atmosphere. Ongoing studies are currently addressing CO{sub 2} capture and transportation, making EOR technology viable for maintaining light oil production in western Canada. 11 refs., 7 tabs., 1 fig.

  7. Simulation study of the VAPEX process in fractured heavy oil system at reservoir conditions

    Energy Technology Data Exchange (ETDEWEB)

    Azin, Reza; Ghotbi, Cyrus [Department of Chemical and Petroleum Engineering, Sharif Univ. Tech., Tehran (Iran); Kharrat, Riyaz; Rostami, Behzad [Petroleum University of Technology Research Center, Tehran (Iran); Vossoughi, Shapour [4132C Learned Hall, Department of Chemical and Petroleum Engineering, Kansas University, Lawrence, KS (United States)

    2008-01-15

    The Vapor Extraction (VAPEX) process, a newly developed Enhanced Oil Recovery (EOR) process to recover heavy oil and bitumen, has been studied theoretically and experimentally and is found a promising EOR method for certain heavy oil reservoirs. In this work, a simulation study of the VAPEX process was made on a fractured model, which consists of a matrix surrounded by horizontal and vertical fractures. The results show a very interesting difference in the pattern of solvent flow in fractured model compared with the conventional model. Also, in the fractured system, due to differences in matrix and fracture permeabilities, the solvent first spreads through the fractures and then starts diffusing into matrix from all parts of the matrix. Thus, the solvent surrounds the oil bank, and an oil rather than the solvent chamber forms and shrinks as the process proceeds. In addition, the recovery factor is higher at lower solvent injection rates for a constant pore volume of the solvent injected into the model. Also, the diffusion process becomes important and higher recoveries are obtained at low injection rates, provided sufficient time is given to the process. The effect of inter-connectivity of the surrounding fractures was studied by making the side vertical fractures shorter than the side length of the model. It was observed that inter-connectivity of the fractures affects the pattern of solvent distribution. Even for the case of side fractures being far apart from the bottom fracture, the solvent distribution in the matrix was significantly different than that in the model without fractures. Combination of diffusion phenomenon and gravity segregation was observed to be controlling factors in all VAPEX processes simulated in fractured systems. The early breakthrough of the solvent for the case of matrix surrounded by the fracture partially inhibited diffusion of the solvent into the oil and consequently the VAPEX process became the least effective. It is concluded

  8. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  9. Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin, NE China

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Jingkui; Zhang, Shuichang; Hu, Guoyi; He, Kun [State Key Laboratory for Enhanced Oil Recovery, Beijing (China); Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development, PetroChina (China); Key Laboratory for Petroleum Geochemistry, China National Petroleum Corp. (China)

    2010-12-01

    The natural gases developed in deep volcanic rock reservoirs of the Songliao Basin, NE China are characterized by enriched {delta}{sup 13}C value for methane and frequently reversal carbon isotopic distribution pattern. Although many researchers consider such gas type as an abiogenic origin, we believe the natural gases have a biogenic origin mainly except little inorganic gases and the reversal carbon isotopic distribution pattern of gases is caused by mixing of different origin gases. Methane carbon isotopic values for majority samples fall in the range from - 24 permille to - 32 permille, which is heavier than typical coal-type gases in other Chinese basins. There are several reasons caused heavy carbon isotope of methane: (1) Carbon isotopic values of source kerogen are 3-5 permille heavier than these from other basins; (2) Source rocks are at extremely high maturity stage with vitrinite reflectance mostly above 3.0%; (3) Portion of gas is derived from basement mudrock or slate with higher maturity. The observation on the organic from deep formation reveals that there is a relatively high content for liptinite, which reaches approximately 8 to 10%. The macerals component of source rock shows that the source rocks have some ability to generate oil. Small portion of oil was generated from high hydrogen content macerals in coals and shales as proof by oil found in microcrack and in micropore of coal and oil-bearing fluid inclusions grown in volcanic reservoir. The occurrence of pyrobitumen in volcanic reservoir indicates preexisted oil had been cracked into wet gas, and this kind of gas had also been found in gas pools. Heavy isotopic methane is derived from coal at extremely high maturity stage. There may be little inorganic alkane gases in deep layers for their geochemistry and special geological setting of Songliao Basin. Artificial mixing experiments of different origins gases confirm that inorganic gas such as gas from well FS1 mixed with other end members

  10. An Integrated Approach to Characterizing Bypassed Oil in Heterogeneous and Fractured Reservoirs Using Partitioning Tracers. Annual Report

    International Nuclear Information System (INIS)

    Akhil Datta-Gupta

    2006-01-01

    This report presents an efficient trajectory-based approach to integrate transient pressure data into high-resolution reservoir and aquifer models. The method involves alternating travel time and peak amplitude matching of pressure response using inverse modeling and is particularly well-suited for high resolution subsurface characterization using hydraulic tomography or pressure interference tests. Compared to travel time inversion only, our proposed approach results in a significantly improved match of the pressure response at the wells and also better estimates of subsurface properties. This is accomplished with very little increase in computational cost. Utilizing the concept of a ''diffusive'' time of flight derived from an asymptotic solution of the diffusivity equation, we develop analytical approaches to estimate the sensitivities for travel time and peak amplitude of pressure response to subsurface properties. The sensitivities are then used in an iterative least-squared minimization to match the pressure data. We illustrate our approach using synthetic and field examples. In the field application at a fractured limestone formation, the predominant fracture patterns emerging from the inversion are shown to be consistent with independent geophysical experiments and borehole data

  11. Analysis of multicriteria models application for selection of an optimal artificial lift method in oil production

    Directory of Open Access Journals (Sweden)

    Crnogorac Miroslav P.

    2016-01-01

    Full Text Available In the world today for the exploitation of oil reservoirs by artificial lift methods are applied different types of deep pumps (piston, centrifugal, screw, hydraulic, water jet pumps and gas lift (continuous, intermittent and plunger. Maximum values of oil production achieved by these exploitation methods are significantly different. In order to select the optimal exploitation method of oil well, the multicriteria analysis models are used. In this paper is presented an analysis of the multicriteria model's application known as VIKOR, TOPSIS, ELECTRE, AHP and PROMETHEE for selection of optimal exploitation method for typical oil well at Serbian exploration area. Ranking results of applicability of the deep piston pumps, hydraulic pumps, screw pumps, gas lift method and electric submersible centrifugal pumps, indicated that in the all above multicriteria models except in PROMETHEE, the optimal method of exploitation are deep piston pumps and gas lift.

  12. Modeling of Antenna for Deep Target Hydrocarbon Exploration

    Directory of Open Access Journals (Sweden)

    Nadeem Nasir

    2017-11-01

    Full Text Available Nowadays control source electromagnetic method is used for offshore hydrocarbon exploration. Hydrocarbon detection in sea bed logging (SBL is a very challenging task for deep target hydrocarbon reservoir. Response of electromagnetic (EM field from marine environment is very low and it is very difficult to predict deep target reservoir below 2km from the sea floor. This work premise deals with modeling of new antenna for deep water deep target hydrocarbon exploration. Conventional and new EM antennas at 0.125Hz frequency are used in modeling for the detection of deep target hydrocarbon  reservoir.  The  proposed  area  of  the  seabed model   (40km ´ 40km   was   simulated   by using CST (computer simulation technology EM studio based on Finite Integration Method (FIM. Electromagnetic field components were compared at 500m target depth and it was concluded that Ex and Hz components shows better resistivity contrast. Comparison of conventional and new antenna for different target  depths  was  done in  our  proposed  model.  From  the results, it was observed that conventional antenna at 0.125Hz shows 70% ,86% resistivity contrast at target depth of 1000m where   as   new   antenna   showed   329%, 355%   resistivity contrast at the same target depth for Ex and Hz field respectively.  It  was  also  investigated  that  at  frequency of0.125Hz, new antenna gave 46% better delineation of hydrocarbon at 4000m target depth. This is due to focusing of electromagnetic waves by using new antenna. New antenna design gave 125% more extra depth than straight antenna for deep target hydrocarbon detection. Numerical modeling for straight  and  new antenna  was also done to know general equation for electromagnetic field behavior with target depth. From this numerical model it was speculated that this new antenna can detect up to 4.5 km target depth. This new EM antenna may open new frontiers for oil and gas

  13. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  14. [Spatiotemporal succession of algae functional groups and the influence of environment change in a deep-water reservoir].

    Science.gov (United States)

    Lu, Jin-Suo; Hu, Ya-Pan

    2013-07-01

    Algae functional group has become an important theory and method of algae research in recent years. In order to explore the spatiotemporal succession of algae functional groups and the influence of environment change, water samples were collected in August, 2011 from a deep-water reservoir in Northwest China. The research combined the methods of on-line monitoring and laboratory analysis. The results showed that there were 10 functional groups of algae in the reservoir. They were designated as B, D, P, X1, X3, F, G, J, L(M) and MP. Wherein, the groups B, P, F, X1, MP, D and J were comparatively common functional groups, and the groups X3, G and L(M) were less common. The populations of groups B, D, P, X1 and X3 were larger than those of the others. Besides, the analysis of changes in the environment factors suggested that temperature was the most important factor influencing the spatiotemporal succession of algae functional groups. The strategy of algal growth followed the law: R/CR in spring --> CR/C in late spring and early summer C/CR/R/CS/S in late summer and early autumn --> CR/R in late autumn and winter. The purpose of this article is to provide theoretical support for water withdrawal safety in deep-water reservoirs.

  15. The deep processing of oil residues conjunction with shales

    Directory of Open Access Journals (Sweden)

    Anatoly Maloletnev

    2012-12-01

    Full Text Available The results of studies on the development of a new process of thermal cracking of tar oil as a slurry with crushed oil shale to obtain components of motor fuels. The results suggest doubtless advantages of the process before the industrial of thermo cracking, since the single-stage processing of raw materials in relatively in the mild conditions (5 MPa, 425ºC, volumetric feed rate 1.0 h-1 is achieved deep destruction of tar oil (the yield petrol fraction with a bp amounts to up to 180ºC - ~12 mass % of middle distillates with a bp 180-360ºC – 43-44 mass %, of raw material for catalytic cracking of a bp 360-520ºC – ~15-16%, based on the initial tar oil. Formed like coke products and raw materials contained in V and Ni is postponed on the mineral part of slate and removed from the reaction zone with the liquid products of the process.

  16. CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. 1994 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.

    1995-05-01

    It is anticipated that this project will show that the application of the CO{sub 2} Huff-n-Puff process in shallow shelf carbonates can be economically implemented to recover appreciable volumes of light oil. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. The selected site for the demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. Work is nearing completion on the reservoir characterization components of the project. The near-term emphasis is to, (1) provide an accurate distribution of original oil-in-place on a waterflood pattern entity level, (2) evaluate past recovery efficiencies, (3) perform parametric simulations, and (4) forecast performance for a site specific field demonstration of the proposed technology. Macro zonation now exists throughout the study area and cross-sections are available. The Oil-Water Contact has been defined. Laboratory capillary pressure data was used to define the initial water saturations within the pay horizon. The reservoir`s porosity distribution has been enhanced with the assistance of geostatistical software. Three-Dimensional kriging created the spatial distributions of porosity at interwell locations. Artificial intelligence software was utilized to relate core permeability to core porosity, which in turn was applied to the 3-D geostatistical porosity gridding. An Equation-of-State has been developed and refined for upcoming compositional simulation exercises. Options for local grid-refinement in the model are under consideration. These tasks will be completed by mid-1995, prior to initiating the field demonstrations in the second budget period.

  17. Thermal regime of the deep carbonate reservoir of the Po Plain (Italy)

    Science.gov (United States)

    Pasquale, V.; Chiozzi, P.; Verdoya, M.

    2012-04-01

    Italy is one of the most important countries in the world with regard to high-medium enthalpy geothermal resources, a large part of which is already extracted at relatively low cost. High temperatures at shallow to medium depth occur within a wide belt, several hundred kilometre long, west of the Apennines mountain chain. This belt, affected by recent lithosphere extension, includes several geothermal fields, which are largely exploited for electricity generation. Between the Alps and Apennines ranges, the deeper aquifer, occurring in carbonate rocks of the Po Plain, can host medium enthalpy fluids, which are exploited for district heating. Such a general picture of the available geothermal resources has been well established through several geophysical investigations and drillings. Nevertheless, additional studies are necessary to evaluate future developments, especially with reference to the deep carbonate aquifer of the Po Plain. In this paper, we focus on the eastern sector of the plain and try to gain a better understanding of the thermal regime by using synergically geothermal methodologies and geological information. The analysis of the temperatures recorded to about 6 km depth in hydrocarbon wells supplies basic constraints to outline the thermal regime of the sedimentary basin and to investigate the occurrence and importance of hydrothermal processes in the carbonate layer. After correction for drilling disturbance, temperatures were analysed, together with geological information, through an inversion technique based on a laterally constant thermal gradient model. The inferred thermal gradient changes with depth; it is quite low within the carbonate layer, while is larger in the overlying, practically impermeable formations. As the thermal conductivity variation does not justify such a thermal gradient difference, the vertical change can be interpreted as due to convective processes occurring in the carbonate layer, acting as thermal reservoir. The

  18. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    Energy Technology Data Exchange (ETDEWEB)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; William Raatz; Cari Breton; Stephen C. Ruppel; Charles Kerans; Mark H. Holtz

    2003-04-01

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest petroleum-producing basin in the US. Approximately 1300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl of oil through 2000. Of these major reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. On a preliminary basis, 32 geologic plays have been defined for Permian Basin oil reservoirs and assignment of each of the 1300 major reservoirs to a play has begun. The reservoirs are being mapped and compiled in a Geographic Information System (GIS) by play. Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonardian Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  19. An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins. Part 1. Evaluation of Phase 2 CO2 Injection Testing in the Deep Saline Gunter Sandstone Reservoir (Cambro-Ordovician Knox Group), Marvin Blan No. 1 Hancock County, Kentucky Part 2. Time-lapse Three-Dimensional Vertical Seismic Profile (3D-VSP) of Sequestration Target Interval with Injected Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Bowersox, Richard [Univ. of Illinois, Champaign, IL (United States); Hickman, John [Univ. of Illinois, Champaign, IL (United States); Leetaru, Hannes [Univ. of Illinois, Champaign, IL (United States)

    2012-12-20

    Part 1 of this report focuses on results of the western Kentucky carbon storage test, and provides a basis for evaluating injection and storage of supercritical CO2 in Cambro-Ordovician carbonate reservoirs throughout the U.S. Midcontinent. This test demonstrated that the Cambro- Ordovician Knox Group, including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite in stratigraphic succession from shallowest to deepest, had reservoir properties suitable for supercritical CO2 storage in a deep saline reservoir hosted in carbonate rocks, and that strata with properties sufficient for long-term confinement of supercritical CO2 were present in the deep subsurface. Injection testing with brine and CO2 was completed in two phases. The first phase, a joint project by the Kentucky Geological Survey and the Western Kentucky Carbon Storage Foundation, drilled the Marvin Blan No. 1 carbon storage research well and tested the entire Knox Group section in the open borehole – including the Beekmantown Dolomite, Gunter Sandstone, and Copper Ridge Dolomite – at 1152–2255 m, below casing cemented at 1116 m. During Phase 1 injection testing, most of the 297 tonnes of supercritical CO2 was displaced into porous and permeable sections of the lowermost Beekmantown below 1463 m and Gunter. The wellbore was then temporarily abandoned with a retrievable bridge plug in casing at 1105 m and two downhole pressure-temperature monitoring gauges below the bridge plug pending subsequent testing. Pressure and temperature data were recorded every minute for slightly more than a year, providing a unique record of subsurface reservoir conditions in the Knox. In contrast, Phase 2 testing, this study, tested a mechanically-isolated dolomitic-sandstone interval in the Gunter.

  20. Investigating the effects of rock porosity and permeability on the performance of nitrogen injection into a southern Iranian oil reservoirs through neural network

    Science.gov (United States)

    Gheshmi, M. S.; Fatahiyan, S. M.; Khanesary, N. T.; Sia, C. W.; Momeni, M. S.

    2018-03-01

    In this work, a comprehensive model for Nitrogen injection into an oil reservoir (southern Iranian oil fields) was developed and used to investigate the effects of rock porosity and permeability on the oil production rate and the reservoir pressure decline. The model was simulated and developed by using ECLIPSE300 software, which involved two scenarios as porosity change and permeability changes in the horizontal direction. We found that the maximum pressure loss occurs at a porosity value of 0.07, which later on, goes to pressure buildup due to reservoir saturation with the gas. Also we found that minimum pressure loss is encountered at porosity 0.46. Increases in both pressure and permeability in the horizontal direction result in corresponding increase in the production rate, and the pressure drop speeds up at the beginning of production as it increases. However, afterwards, this pressure drop results in an increase in pressure because of reservoir saturation. Besides, we determined the regression values, R, for the correlation between pressure and total production, as well as for the correlation between permeability and the total production, using neural network discipline.

  1. Subsurface waste disposal by means of wells - A selective annotated bibliography

    Science.gov (United States)

    Rima, Donald Robert; Chase, Edith B.; Myers, Beverly M.

    1971-01-01

    Subsurface waste disposal by means of wells is the practice of using drilled wells to inject unwanted substances into underground rock formations. The use of wells for this purpose is not a new idea. As long ago as the end of the last century, it was common practice to drill wells for the express purpose of draining swamps and small lakes to reclaim the land for agricultural purposes. A few decades later in the 1920's and 1930's many oil companies began using injection wells to dispose of oil-field brines and to repressurize oil reservoirs. During World War II, the Atomic Energy Commission began using injection wells to dispose of certain types of radioactive wastes. More recently, injection wells have been drilled to dispose of a variety of byproducts of industrial processes. The number of such wells has increased rapidly since Congress passed the Clean Streams Act of 1966, which restricted the discharge of waste into surface waters.Many scientists and public officials question the propriety of using the term "disposal" when referring to the underground injection of wastes. Their reasons are that underground injection is not, as many advocates claim, "a complete and final answer" to the waste-disposal problem. Rather, it is merely a process wherein the injected wastes are committed to the subsurface with uncertainty as to their ultimate fate or limits of confinement. In effect, the wastes, undiminished and unchanged, are removed from the custody of man and placed in the custody of nature.Although the concept of waste-injection wells is relatively simple, the effects of waste injection can be very complex, particularly when dealing with the exotic and complex components of some industrial wastes. Besides the physical forces of injection, there are many varied interactions between the injected wastes and the materials within the injection zone. Because these changes occur out of sight in the subsurface, they are difficult to assess and not generally understood. In

  2. Evaluation of microbial community composition in thermophilic methane-producing incubation of production water from a high-temperature oil reservoir.

    Science.gov (United States)

    Zhou, Fang; Mbadinga, Serge Maurice; Liu, Jin-Feng; Gu, Ji-Dong; Mu, Bo-Zhong

    2013-01-01

    Investigation of petroleum microbes is fundamental for the development and utilization of oil reservoirs' microbial resources, and also provides great opportunities for research and development of bio-energy. Production water from a high-temperature oil reservoir was incubated anaerobically at 55 degrees C for more than 400 days without amendment of any nutrients. Over the time of incubation, about 1.6 mmol of methane and up to 107 micromol of hydrogen (H2) were detected in the headspace. Methane formation indicated that methanogenesis was likely the predominant process in spite of the presence of 23.4 mM SO4(2-) in the production water. Microbial community composition of the incubation was characterized by means of 16S rRNA gene clone libraries construction. Bacterial composition changed from Pseudomonales as the dominant population initially to Hydrogenophilales-related microorganisms affiliated to Petrobacter spp. closely. After 400 days of incubation, other bacterial members detected were related to Anareolineales, beta-, gamma-, and delta-Proteobacteria. The archaeal composition of the original production water was essentially composed of obligate acetoclastic methanogens of the genus Methanosaeta, but the incubation was predominantly composed of CO2-reducing methanogens of the genus Methanothermobacter and Crenarchaeotes-related microorganisms. Our results suggest that methanogenesis could be more active than expected in oil reservoir environments and methane formation from CO2-reduction played a significant role in the methanogenic community. This conclusion is consistent with the predominant role played by H2-oxidizing methanogens in the methanogenic conversion of organic matter in high-temperature petroleum reservoirs.

  3. Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill.

    Science.gov (United States)

    Romero, Isabel C; Toro-Farmer, Gerardo; Diercks, Arne-R; Schwing, Patrick; Muller-Karger, Frank; Murawski, Steven; Hollander, David J

    2017-09-01

    The blowout of the Deepwater Horizon (DWH) drilling rig in 2010 released an unprecedented amount of oil at depth (1,500 m) into the Gulf of Mexico (GoM). Sedimentary geochemical data from an extensive area (∼194,000 km 2 ) was used to characterize the amount, chemical signature, distribution, and extent of the DWH oil deposited on the seafloor in 2010-2011 from coastal to deep-sea areas in the GoM. The analysis of numerous hydrocarbon compounds (N = 158) and sediment cores (N = 2,613) suggests that, 1.9 ± 0.9 × 10 4 metric tons of hydrocarbons (>C9 saturated and aromatic fractions) were deposited in 56% of the studied area, containing 21± 10% (up to 47%) of the total amount of oil discharged and not recovered from the DWH spill. Examination of the spatial trends and chemical diagnostic ratios indicate large deposition of weathered DWH oil in coastal and deep-sea areas and negligible deposition on the continental shelf (behaving as a transition zone in the northern GoM). The large-scale analysis of deposited hydrocarbons following the DWH spill helps understanding the possible long-term fate of the released oil in 2010, including sedimentary transformation processes, redistribution of deposited hydrocarbons, and persistence in the environment as recycled petrocarbon. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J.; Vogt, J.

    1996-09-01

    The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.

  5. Noble gas and hydrocarbon tracers in multiphase unconventional hydrocarbon systems: Toward integrated advanced reservoir simulators

    Science.gov (United States)

    Darrah, T.; Moortgat, J.; Poreda, R. J.; Muehlenbachs, K.; Whyte, C. J.

    2015-12-01

    Although hydrocarbon production from unconventional energy resources has increased dramatically in the last decade, total unconventional oil and gas recovery from black shales is still less than 25% and 9% of the totals in place, respectively. Further, the majority of increased hydrocarbon production results from increasing the lengths of laterals, the number of hydraulic fracturing stages, and the volume of consumptive water usage. These strategies all reduce the economic efficiency of hydrocarbon extraction. The poor recovery statistics result from an insufficient understanding of some of the key physical processes in complex, organic-rich, low porosity formations (e.g., phase behavior, fluid-rock interactions, and flow mechanisms at nano-scale confinement and the role of natural fractures and faults as conduits for flow). Noble gases and other hydrocarbon tracers are capably of recording subsurface fluid-rock interactions on a variety of geological scales (micro-, meso-, to macro-scale) and provide analogs for the movement of hydrocarbons in the subsurface. As such geochemical data enrich the input for the numerical modeling of multi-phase (e.g., oil, gas, and brine) fluid flow in highly heterogeneous, low permeability formations Herein we will present a combination of noble gas (He, Ne, Ar, Kr, and Xe abundances and isotope ratios) and molecular and isotopic hydrocarbon data from a geographically and geologically diverse set of unconventional hydrocarbon reservoirs in North America. Specifically, we will include data from the Marcellus, Utica, Barnett, Eagle Ford, formations and the Illinois basin. Our presentation will include geochemical and geological interpretation and our perspective on the first steps toward building an advanced reservoir simulator for tracer transport in multicomponent multiphase compositional flow (presented separately, in Moortgat et al., 2015).

  6. Genome Sequence of Aeribacillus pallidus Strain GS3372, an Endospore-Forming Bacterium Isolated in a Deep Geothermal Reservoir

    OpenAIRE

    Sevasti Filippidou; Marion Jaussi; Thomas Junier; Tina Wunderlin; Nicole Jeanneret; Simona Regenspurg; Po-E Li; Chien-Chi Lo; Shannon Johnson; Kim McMurry; Cheryl D. Gleasner; Momchilo Vuyisich; Patrick S. Chain; Pilar Junier

    2015-01-01

    The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera.

  7. Characterization and genome analysis of the first facultatively alkaliphilic Thermodesulfovibrio isolated from the deep terrestrial subsurface

    Directory of Open Access Journals (Sweden)

    Yulia Frank

    2016-12-01

    Full Text Available Members of the genus Thermodesulfovibrio belong to the Nitrospirae phylum and all isolates characterized to date are neutrophiles. They have been isolated from terrestrial hot springs and thermophilic methanogenic anaerobic sludges. Their molecular signatures have, however, also been detected in deep subsurface. The purpose of this study was to characterize and analyze the genome of a newly isolated, moderately alkaliphilic Thermodesulfovibrio from a 2 km deep aquifer system in Western Siberia, Russia. The new isolate, designated N1, grows optimally at pH 8.5-9.0 and at 65 ºC. It is able to reduce sulfate, thiosulfate or sulfite with a limited range of electron donors such as formate, pyruvate and lactate. Analysis of the 1.93 Mb draft genome of strain N1 revealed that it contains a set of genes for dissimilatory sulfate reduction, including sulfate adenyltransferase, adenosine-5'-phosphosulfate reductase AprAB, membrane-bound electron transfer complex QmoABC, dissimilatory sulfite reductase DsrABC and sulfite reductase-associated electron transfer complex DsrMKJOP. Hydrogen turnover is enabled by soluble cytoplasmic, membrane-linked, and soluble periplasmic hydrogenases and a periplasmic formate dehydrogenase. The use of thiosulfate as an electron acceptor is enabled by a membrane-linked molybdopterin oxidoreductase. The N1 requirement for organic carbon sources corresponds to the lack of the autotrophic C1-fixation pathways. Comparative analysis of the genomes of Thermodesulfovibrio (T. yellowstonii, T. islandicus, T. аggregans, T. thiophilus, and strain N1 revealed a low overall genetic diversity and several adaptive traits. Consistent with an alkaliphilic lifestyle, a multisubunit Na+/H+ antiporter of the Mnh family is encoded in the Thermodesulfovibrio strain N1 genome. Nitrogenase genes were found in T. yellowstonii, T. aggregans, and T. islandicus, nitrate reductase in T. islandicus, and cellulose synthetase in T. aggregans and strain N

  8. Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Neff, J.M.; Owens, E.H.; Stoker, S.W.; McCormick, D.M.

    1995-01-01

    Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurface oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m 2 to about 12,000 m 2 . Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs

  9. The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Ying-Chang; Wang, Yan-Zhong

    2016-01-01

    The relationships between permeability and dynamics in hydrocarbon accumulation determine oilbearing potential (the potential oil charge) of low permeability reservoirs. The evolution of porosity and permeability of low permeability turbidite reservoirs of the middle part of the third member...... facies A and diagenetic facies B do not develop accumulation conditions with low accumulation dynamics in the late accumulation period for very low permeability. At more than 3000 m burial depth, a larger proportion of turbidite reservoirs are oil charged due to the proximity to the source rock. Also...

  10. Using Polymer Alternating Gas to Enhance Oil Recovery in Heavy Oil

    Science.gov (United States)

    Yang, Yongzhi; Li, Weirong; Zhou, Tiyao; Dong, Zhenzhen

    2018-02-01

    CO2 has been used to recover oil for more than 40 years. Currently, about 43% of EOR production in U.S. is from CO2 flooding. CO2 flooding is a well-established EOR technique, but its density and viscosity nature are challenges for CO2 projects. Low density (0.5 to 0.8 g/cm3) causes gas to rise upward in reservoirs and bypass many lower portions of the reservoir. Low viscosity (0.02 to 0.08 cp) leads to poor volumetric sweep efficiency. So water-alternating-gas (WAG) method was used to control the mobility of CO2 and improve sweep efficiency. However, WAG process has some other problems in heavy oil reservoir, such as poor mobility ratio and gravity overriding. To examine the applicability of carbon dioxide to recover viscous oil from highly heterogeneous reservoirs, this study suggests a new EOR method--polymer-alternating gas (PAG) process. The process involves a combination of polymer flooding and CO2 injection. To confirm the effectiveness of PAG process in heavy oils, a reservoir model from Liaohe Oilfield is used to compare the technical and economic performance among PAG, WAG and polymer flooding. Simulation results show that PAG method would increase oil recovery over 10% compared with other EOR methods and PAG would be economically success based on assumption in this study. This study is the first to apply PAG to enhance oil recovery in heavy oil reservoir with highly heterogeneous. Besides, this paper provides detailed discussions and comparison about PAG with other EOR methods in this heavy oil reservoir.

  11. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal - Appendix)

    Energy Technology Data Exchange (ETDEWEB)

    Bou-Mikael, Sami

    2002-02-05

    The main objective of the Port Neches Project was to determine the feasibility and producibility of CO2 miscible flooding techniques enhanced with horizontal drilling applied to a Fluvial Dominated Deltaic reservoir. The second was to disseminate the knowledge gained through established Technology Transfer mechanisms to support DOE's programmatic objectives of increasing domestic oil production and reducing abandonment of oil fields.

  12. Application of natural antimicrobial compounds for reservoir souring and MIC prevention in offshore oil and gas production systems

    DEFF Research Database (Denmark)

    Thomsen, Mette Hedegaard; Skovhus, Torben Lund; Mashietti, Marco

    Offshore oil production facilities are subjectable to internal corrosion, potentially leading to human and environmental risk and significant economic losses. Microbiologically influenced corrosion (MIC) and reservoir souring - sulphide production by sulfate reducing microorganisms in the reservo...

  13. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Final report, August 1998

    Energy Technology Data Exchange (ETDEWEB)

    Banken, M.K.

    1998-11-01

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma have engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program included a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. The execution of this project was approached in phases. The first phase began in January, 1993 and consisted of planning, play identification and analysis, data acquisition, database development, and computer systems design. By the middle of 1994, many of these tasks were completed or nearly finished including the identification of all FDD reservoirs in Oklahoma, data collection, and defining play boundaries. By early 1995, a preliminary workshop schedule had been developed for project implementation and technology transfer activities. Later in 1995, the play workshop and publication series was initiated with the Morrow and the Booch plays. Concurrent with the initiation of the workshop series was the opening of a computer user lab that was developed for use by the petroleum industry. Industry response to the facility initially was slow, but after the first year lab usage began to increase and is sustaining. The remaining six play workshops were completed through 1996 and 1997, with the project ending on December 31, 1997.

  14. CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

    1999-02-24

    The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

  15. Microbial enhanced oil recovery and compositions therefor

    Science.gov (United States)

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  16. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  17. Investigation of spore forming bacterial flooding for enhanced oil recovery in a North Sea chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2015-01-01

    Little has been done to study microbial enhanced oil recovery (MEOR) in chalk reservoirs. The present study focuses on core flooding experiments designed to see microbial plugging and its effect on oil recovery. A pressure tapped core holder was used for this purpose. A spore forming bacteria...... Bacillus licheniformis 421 was used as it was shown to be a good candidate in a previous study. Bacterial spore can penetrate deeper into the chalk rock, squeezing through the pore throats. Our results showed that injection of B. licheniformis 421 as a tertiary oil recovery method, in the residual oil...... saturation state, was able to produce additionally 1.0-2.3% original oil in place (OOIP) in homogeneous cores and 6.9-8.8% OOIP in heterogeneous cores. In addition, the pressure gradient was much higher in the heterogeneous cores, which confirms that bacterial selective plugging plays an important role...

  18. Smart waterflooding in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zahid, A.

    2012-02-15

    During the last decade, smart waterflooding has been developed into an emerging EOR technology both for carbonate and sandstone reservoirs that does not require toxic or expensive chemicals. Although it is widely accepted that different salinity brines may increase the oil recovery for carbonate reservoirs, understanding of the mechanism of this increase is still developing. To understand this smart waterflooding process, an extensive research has been carried out covering a broad range of disciplines within surface chemistry, thermodynamics of crude oil and brine, as well as their behavior in porous media. The main conclusion of most previous studies was that it is the rock wettability alteration towards more water wetting condition that helps improving the oil recovery. In the first step of this project, we focused on verifying this conclusion. Coreflooding experiments were carried out using Stevens Klint outcrop chalk core plugs with brines without sulfate, as well as brines containing sulfate in different concentrations. The effects of temperature, injection rate, crude oil composition and different sulfate concentrations on the total oil recovery and the recovery rate were investigated. Experimental results clearly indicate improvement of the oil recovery without wettability alteration. At the second step of this project, we studied crude oil/brine interactions under different temperatures, pressures and salinity conditions in order to understand mechanisms behind the high salinity waterflooding. Our results show, in particular that sulfate ions may help decreasing the crude oil viscosity or formation of, seemingly, an emulsion phase between sulfate-enriched brine and oil at high temperature and pressure. Experimental results indicate that crude oils interact differently with the same brine solutions regarding phase behavior and viscosity measurements. This difference is attributed to the difference in composition of the different crude oils. More experiments

  19. Potential Physiologies of Deep Branches on the Tree of Life with Deep Subsurface Samples from IODP Leg 347: Baltic Sea Paleoenvironment

    Science.gov (United States)

    Lloyd, K. G.; Bird, J. T.; Shumaker, A.

    2014-12-01

    Very little is known about how evolutionary branches that are distantly related to cultured microorganisms make a living in the deep subsurface marine environment. Here, sediments are cut-off from surface inputs of organic substrates for tens of thousands of years; yet somehow support a diverse population of microorganisms. We examined the potential metabolic and ecological roles of uncultured archaea and bacteria in IODP Leg 347: Baltic Sea Paleoenvironment samples, using quantitative PCR holes 60B, 63E, 65C, and 59C and single cell genomic analysis for hole 60B. We quantified changes in total archaea and bacteria, as well as deeply-branching archaeal taxa with depth. These sediment cores alternate between high and low salinities, following a glacial cycle. This allows changes in the quantities of these groups to be placed in the context of potentially vastly different organic matter sources. In addition, single cells were isolated, and their genomes were amplified and sequenced to allow a deeper look into potential physiologies of uncultured deeply-branching organisms found up to 86 meters deep in marine sediments. Together, these data provide deeper insight into the relationship between microorganisms and their organic matter substrates in this extreme environments.

  20. Genome-Resolved Metagenomic Analysis Reveals Roles for Candidate Phyla and Other Microbial Community Members in Biogeochemical Transformations in Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ping Hu

    2016-01-01

    Full Text Available Oil reservoirs are major sites of methane production and carbon turnover, processes with significant impacts on energy resources and global biogeochemical cycles. We applied a cultivation-independent genomic approach to define microbial community membership and predict roles for specific organisms in biogeochemical transformations in Alaska North Slope oil fields. Produced water samples were collected from six locations between 1,128 m (24 to 27°C and 2,743 m (80 to 83°C below the surface. Microbial community complexity decreased with increasing temperature, and the potential to degrade hydrocarbon compounds was most prevalent in the lower-temperature reservoirs. Sulfate availability, rather than sulfate reduction potential, seems to be the limiting factor for sulfide production in some of the reservoirs under investigation. Most microorganisms in the intermediate- and higher-temperature samples were related to previously studied methanogenic and nonmethanogenic archaea and thermophilic bacteria, but one candidate phylum bacterium, a member of the Acetothermia (OP1, was present in Kuparuk sample K3. The greatest numbers of candidate phyla were recovered from the mesothermic reservoir samples SB1 and SB2. We reconstructed a nearly complete genome for an organism from the candidate phylum Parcubacteria (OD1 that was abundant in sample SB1. Consistent with prior findings for members of this lineage, the OD1 genome is small, and metabolic predictions support an obligately anaerobic, fermentation-based lifestyle. At moderate abundance in samples SB1 and SB2 were members of bacteria from other candidate phyla, including Microgenomates (OP11, Atribacteria (OP9, candidate phyla TA06 and WS6, and Marinimicrobia (SAR406. The results presented here elucidate potential roles of organisms in oil reservoir biological processes.

  1. Review of flow rate estimates of the Deepwater Horizon oil spill

    Science.gov (United States)

    McNutt, Marcia K.; Camilli, Rich; Crone, Timothy J.; Guthrie, George D.; Hsieh, Paul A.; Ryerson, Thomas B.; Savas, Omer; Shaffer, Frank

    2012-01-01

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ~50,000–70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ~5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.

  2. Review of flow rate estimates of the Deepwater Horizon oil spill.

    Science.gov (United States)

    McNutt, Marcia K; Camilli, Rich; Crone, Timothy J; Guthrie, George D; Hsieh, Paul A; Ryerson, Thomas B; Savas, Omer; Shaffer, Frank

    2012-12-11

    The unprecedented nature of the Deepwater Horizon oil spill required the application of research methods to estimate the rate at which oil was escaping from the well in the deep sea, its disposition after it entered the ocean, and total reservoir depletion. Here, we review what advances were made in scientific understanding of quantification of flow rates during deep sea oil well blowouts. We assess the degree to which a consensus was reached on the flow rate of the well by comparing in situ observations of the leaking well with a time-dependent flow rate model derived from pressure readings taken after the Macondo well was shut in for the well integrity test. Model simulations also proved valuable for predicting the effect of partial deployment of the blowout preventer rams on flow rate. Taken together, the scientific analyses support flow rates in the range of ∼50,000-70,000 barrels/d, perhaps modestly decreasing over the duration of the oil spill, for a total release of ∼5.0 million barrels of oil, not accounting for BP's collection effort. By quantifying the amount of oil at different locations (wellhead, ocean surface, and atmosphere), we conclude that just over 2 million barrels of oil (after accounting for containment) and all of the released methane remained in the deep sea. By better understanding the fate of the hydrocarbons, the total discharge can be partitioned into separate components that pose threats to deep sea vs. coastal ecosystems, allowing responders in future events to scale their actions accordingly.

  3. Geochemical controls of the oils acidity in petroleum reservoirs; Controles geochimiques de l'acidite des huiles dans les reservoirs petroliers

    Energy Technology Data Exchange (ETDEWEB)

    Rouquette, N.

    2004-12-01

    Within the framework of this thesis, we were interested in the study of acid oils. Thus, after having developed an analytical method to separate acids from crude oils, this one was applied to the analysis of several series of acid oils presenting various degrees of biodegradation. In the first chapter devoted to their molecular study, it was shown that the alteration of the organic matter proceeds according to a quasi-stepwise order and that the major part of the carboxylic acids appeared as an Unresolved Complex Mixture. The only identified resolved compounds were apparently not formed by biodegradation of the oil in place but rather seem either to have been incorporated during oil migration, or to correspond to compounds initially present in the reservoir rock. Among those, we isolated and identified by NMR a new higher plant tri-terpenic derivative, the 24-nor,28-lupanoic acid. In the second chapter, a new method to evaluate acidity, applicable to small quantities of oil, was developed. This one is based on the methylation of the acid species by iodo-methane marked with carbon 13. In the case of a series from the Gulf of Guinea tested initially, the enrichment after labelling presents a perfect correlation with the values of acidity measured by the TAN method (for 'Total Acid Number'). The isotopic labelling method was applied later to a broader range of oil samples. As a whole, a linear correlation seems to exist between {sup 13}C labelling and TAN index, which lets consider that this method could represent an interesting alternative to the measurement of the TAN index in oil exploration. (author)

  4. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    International Nuclear Information System (INIS)

    Taylor, Archie R.

    1996-01-01

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three dimensional (3-D) seismic; (3) Cross-well bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO 2 ) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents

  5. Marine controlled source electromagnetic (mCSEM) detects hydrocarbon reservoirs in the Santos Basin - Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Buonora, Marco Polo Pereira; Rodrigues, Luiz Felipe [PETROBRAS, Rio de Janeiro, RJ (Brazil); Zerilli, Andrea; Labruzzo, Tiziano [WesternGeco, Houston, TX (United States)

    2008-07-01

    In recent years marine Controlled Source Electromagnetic (mCSEM) has driven the attention of an increasing number of operators due to its sensitivity to map resistive structures, such as hydrocarbon reservoirs beneath the ocean floor and successful case histories have been reported. The Santos basin mCSEM survey was performed as part of a technical co-operation project between PETROBRAS and Schlumberger to assess the integration of selected deep reading electromagnetic technologies into the full cycle of oil field exploration and development. The survey design was based on an in-depth sensitivity study, built on known reservoirs parameters, such as thickness, lateral extent, overburden and resistivities derived from seismic and well data. In this context, the mCSEM data were acquired to calibrate the technology over the area's known reservoirs, quantify the resistivity anomalies associated with those reservoirs, with the expectation that new prospective locations could be found. We show that the mCSEM response of the known reservoirs yields signatures that can be clearly imaged and accurately quantified and there are evident correlations between the mCSEM anomalies and the reservoirs. (author)

  6. Bones and oil reservoirs : bioengineers use oilpatch technology to study fluid flow in bones

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2003-06-01

    The fact that porosity and the presence of channels are qualities that are common to oil reservoirs and bones, led to the use of reservoir modelling technology in investigating bone disorders and to the discovery of dramatic changes in the structure and blood supply of osteoarthritic bones that lie under degenerating cartilage. CMG (Computer Modelling Group) Ltd., developers of reservoir simulation software claim that their software packages can help with the modelling of cellular responses to strains and deformations that occur as fluid flows through bone after a traumatic event such as a tear in the anterior cruciate ligament, a common sports-related injury. Researchers at the University of Calgary expect that by looking at the changes in blood and fluid flow within the bone, they can attain a better understanding of the chain of events that leads to osteoarthritis. Better understanding of the progression of the disease could eventually lead to more precise administration of drugs to deal with osteoarthritic pain, and even to the prevention of painful arthritic joints.

  7. Stress management skills in the subsurface: H2 stress on thermophilic heterotrophs and methanogens

    Science.gov (United States)

    Topcuoglu, B. D.; Holden, J. F.

    2017-12-01

    Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in subsurface environments such as coal and shale beds, marine sediments, and oil reservoirs where they encounter H2 stress conditions. It is important to study the H2 stress survival strategies of these organisms and their cooperation with one another for survival to better understand their biogeochemical impact in hot subsurface environments. In this study, we have shown that H2 inhibition changed the growth kinetics and the transcriptome of Thermococcus paralvinellae. We observed a significant decrease in batch phase growth rates and cell concentrations with high H2 background. Produced metabolite production measurements, RNA-seq analyses of differentially expressed genes and in silico experiments we performed with the T. paralvinellae metabolic model showed that T. paralvinellae produces formate by a formate hydrogenlyase to survive H2 inhibition. We have also shown that H2 limitation caused a significant decrease in batch phase growth rates and methane production rates of the methanogen, Methanocaldococcus jannaschii. H2 stress of both organisms can be ameliorated by syntrophic growth. H2 syntrophy was demonstrated in microcosm incubations for a natural assemblage of Thermococcus and hyperthermophilic methanogens present in hydrothermal fluid samples. This project aims to describe how a hyperthermophilic heterotroph and a hyperthermophilic methanogen eliminate H2 stress and explore cooperation among thermophiles in the hot subsurface.

  8. Well and Inflow Performance Relationship for Heavy Oil Reservoir under Heating Treatment

    KAUST Repository

    Hakiki, Farizal

    2017-10-17

    Well and Inflow Performance Relationship, termed TPR and IPR, respectively have been the unfailing methods to predict well performance. It is further to determine the schemes on optimising production. The main intention of the study is to explore TPR and IPR under heating treatment for heavy oil well. Klamono is a mature field which mostly has depleted wells, it produces heavy oil within 18.5 °API (>0.95 g/cc oil density), and therefore, artificial lifting method is necessary. Sucker Road Pump (SRP) and Electrical Submersible Pump (ESP) are the most deployed artificial lifting method in this reservoir. To boost the heavy oil production, the application of Electric Downhole Heater (EDH) in Well KLO-X1 is being studied. Whole Klamono\\'s production is more than 100,000 blpd within 97-99% water cut. By installing EDH, oil viscosity is decreased hence oil mobility ratio will play a role to decrease water cut. EDH is installed together with the tubing joint to simplify its application in the wellbore. The study shows that EDH application can elevate fluid (mixed oil and brine) temperature. Oil viscosity confirms a reduction from 68 to 46 cP. The gross well production is up to 12.2 bopd due optimising its outflow performance and reducing 97.5 to 96.9% water cut. The field data gives an incremental of 4.9 bopd. The computational results only show an attainment of net oil production up to 8.3 bopd (2 bopd incremental). The EDH works to lessen both density and viscosity as we hypothesised for the mechanism of thermally induced oil production improvement. The evaluation study on its economics aspect exhibits good result that is 1.4 USD/bbl additional profit margin according to field data despite the challenging annual rig rent cost. Following the field data, the expected net income through analytical model revealed that this project is financially promising.

  9. Well and Inflow Performance Relationship for Heavy Oil Reservoir under Heating Treatment

    KAUST Repository

    Hakiki, Farizal; Aditya, A.; Ulitha, D. T.; Shidqi, M.; Adi, W. S.; Wibowo, K. H.; Barus, M.

    2017-01-01

    Well and Inflow Performance Relationship, termed TPR and IPR, respectively have been the unfailing methods to predict well performance. It is further to determine the schemes on optimising production. The main intention of the study is to explore TPR and IPR under heating treatment for heavy oil well. Klamono is a mature field which mostly has depleted wells, it produces heavy oil within 18.5 °API (>0.95 g/cc oil density), and therefore, artificial lifting method is necessary. Sucker Road Pump (SRP) and Electrical Submersible Pump (ESP) are the most deployed artificial lifting method in this reservoir. To boost the heavy oil production, the application of Electric Downhole Heater (EDH) in Well KLO-X1 is being studied. Whole Klamono's production is more than 100,000 blpd within 97-99% water cut. By installing EDH, oil viscosity is decreased hence oil mobility ratio will play a role to decrease water cut. EDH is installed together with the tubing joint to simplify its application in the wellbore. The study shows that EDH application can elevate fluid (mixed oil and brine) temperature. Oil viscosity confirms a reduction from 68 to 46 cP. The gross well production is up to 12.2 bopd due optimising its outflow performance and reducing 97.5 to 96.9% water cut. The field data gives an incremental of 4.9 bopd. The computational results only show an attainment of net oil production up to 8.3 bopd (2 bopd incremental). The EDH works to lessen both density and viscosity as we hypothesised for the mechanism of thermally induced oil production improvement. The evaluation study on its economics aspect exhibits good result that is 1.4 USD/bbl additional profit margin according to field data despite the challenging annual rig rent cost. Following the field data, the expected net income through analytical model revealed that this project is financially promising.

  10. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    Science.gov (United States)

    Annewandter, R.

    2013-12-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic

  11. SeiVis: An interactive visual subsurface modeling application

    KAUST Repository

    Hollt, Thomas; Freiler, Wolfgang; Gschwantner, Fritz M.; Doleisch, Helmut; Heinemann, Gabor F.; Hadwiger, Markus

    2012-01-01

    The most important resources to fulfill today’s energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches. © 2012 IEEE.

  12. SeiVis: An interactive visual subsurface modeling application

    KAUST Repository

    Hollt, Thomas

    2012-12-01

    The most important resources to fulfill today’s energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches. © 2012 IEEE.

  13. SeiVis: An Interactive Visual Subsurface Modeling Application.

    Science.gov (United States)

    Hollt, T; Freiler, W; Gschwantner, F; Doleisch, H; Heinemann, G; Hadwiger, M

    2012-12-01

    The most important resources to fulfill today's energy demands are fossil fuels, such as oil and natural gas. When exploiting hydrocarbon reservoirs, a detailed and credible model of the subsurface structures is crucial in order to minimize economic and ecological risks. Creating such a model is an inverse problem: reconstructing structures from measured reflection seismics. The major challenge here is twofold: First, the structures in highly ambiguous seismic data are interpreted in the time domain. Second, a velocity model has to be built from this interpretation to match the model to depth measurements from wells. If it is not possible to obtain a match at all positions, the interpretation has to be updated, going back to the first step. This results in a lengthy back and forth between the different steps, or in an unphysical velocity model in many cases. This paper presents a novel, integrated approach to interactively creating subsurface models from reflection seismics. It integrates the interpretation of the seismic data using an interactive horizon extraction technique based on piecewise global optimization with velocity modeling. Computing and visualizing the effects of changes to the interpretation and velocity model on the depth-converted model on the fly enables an integrated feedback loop that enables a completely new connection of the seismic data in time domain and well data in depth domain. Using a novel joint time/depth visualization, depicting side-by-side views of the original and the resulting depth-converted data, domain experts can directly fit their interpretation in time domain to spatial ground truth data. We have conducted a domain expert evaluation, which illustrates that the presented workflow enables the creation of exact subsurface models much more rapidly than previous approaches.

  14. Genome Sequence of Aeribacillus pallidus Strain GS3372, an Endospore-Forming Bacterium Isolated in a Deep Geothermal Reservoir.

    Science.gov (United States)

    Filippidou, Sevasti; Jaussi, Marion; Junier, Thomas; Wunderlin, Tina; Jeanneret, Nicole; Regenspurg, Simona; Li, Po-E; Lo, Chien-Chi; Johnson, Shannon; McMurry, Kim; Gleasner, Cheryl D; Vuyisich, Momchilo; Chain, Patrick S; Junier, Pilar

    2015-08-27

    The genome of strain GS3372 is the first publicly available strain of Aeribacillus pallidus. This endospore-forming thermophilic strain was isolated from a deep geothermal reservoir. The availability of this genome can contribute to the clarification of the taxonomy of the closely related Anoxybacillus, Geobacillus, and Aeribacillus genera. Copyright © 2015 Filippidou et al.

  15. Fracture-network analysis of the Latemar Platform (northern Italy): integrating outcrop studies to constrain the hydraulic properties of fractures in reservoir models

    NARCIS (Netherlands)

    Boro, H.; Rosero, E.; Bertotti, G.V.

    2014-01-01

    Fractures in subsurface reservoirs are known to have significant impacts on reservoir productivity. Quantifying their importance, however, is challenged by limited subsurface observations, and intense computations for modelling and upscaling. In this paper, we present a workflow to construct and

  16. Reservoir Characterization using geostatistical and numerical modeling in GIS with noble gas geochemistry

    Science.gov (United States)

    Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.

    2013-12-01

    The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or

  17. Identification of carbonate reservoirs based on well logging data for boreholes drilled using oil base muds

    International Nuclear Information System (INIS)

    Abdukhalikov, Ya.N; Serebrennikov, V.S.

    1979-01-01

    Experiment on carbonate reservoir identification according to well logging data for boreholes drilled using oil base muds is described. Pulse neutron-neutron logging (PNNL) was widely used at the territory of Pripyat' hole to solve the task. To evaluate volumetric clayiness of carbonate rocks the dependence of gamma-logging, that is data of gamma-logging against clayey rocks built for every hollow, is used. Quantitative estimation of clayiness of dense and clayey carbonate rocks-non-reservoirs is carried out on the basis of the data of neutron-gamma and acoustic logging. Porosity coefficient and lithological characteristic of rocks are also determined according to the data of acoustic and neutron gamma-logging

  18. Optimization of Spore Forming Bacteria Flooding for Enhanced Oil Recovery in North Sea Chalk Reservoir

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Nielsen, Sidsel Marie; Eliasson Lantz, Anna

    2015-01-01

    .2-3.8 cm) during bacteria injection. Further seawater flooding after three days shut in period showed that permeability gradually increased in the first two sections of the core and started to decrease in the third section of the core (3.8-6.3 cm). Complete plugging was never observed in our experiments.......Little has been done to study microbial enhanced oil recovery (MEOR) in chalk reservoirs. The present study focused on core flooding experiments to see microbial plugging and its effect on oil recovery. A pressure tapped core holder with pressure ports at 1.2 cm, 3.8 cm, and 6.3 cm from the inlet...

  19. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal - Appendix); FINAL

    International Nuclear Information System (INIS)

    Bou-Mikael, Sami

    2002-01-01

    The main objective of the Port Neches Project was to determine the feasibility and producibility of CO2 miscible flooding techniques enhanced with horizontal drilling applied to a Fluvial Dominated Deltaic reservoir. The second was to disseminate the knowledge gained through established Technology Transfer mechanisms to support DOE's programmatic objectives of increasing domestic oil production and reducing abandonment of oil fields

  20. Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela

    Directory of Open Access Journals (Sweden)

    Maura Lina Rojas Pirela

    2014-07-01

    Full Text Available Título en ingles: Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela Título corto: Antibiotic and metal resistance in bacteria from deep subsurface Título en español: Resistencia a antibioticos y metals pesados en bacterias aisladas de subsuelo en la región El Callao, Venezuela Resumen:  Se investigó el efecto de la contaminación con mercurio (Hg en las comunidades bacterianas del subsuelo profundo en la región de El Callao (Estado Bolívar, Venezuela. Se estudiaron comunidades bacterianas de dos niveles de profundidad (-288 m y -388 m en una mina de oro con el propósito de describir las características más relevantes de las bacterias indígenas cultivables que colonizaban esta mina. Se evaluaron los patrones de resistencia a antibióticos y metales pesados, presencia del gen merA y plásmidos en aislados resistentes. Se encontró una elevada frecuencia de bacterias indígenas resistentes al Hg y otros metales pesados. De 76 aislados Hg-resistentes probados 73.7 % fueron adicionalmente resistentes a ampicilina; 86.8 % a cloranfenicol; 67.1 % a tetraciclina; 56.6 % a estreptomicina y 51.3 % a kanamicina. Además, se encontró que 40.74 % (-328 m y 26.53 % (-388 m de las bacterias Hg-resistentes fueron simultáneamente resistentes tanto a cuatro como a cinco de estos antibióticos. Se detectó la presencia de plásmidos de alto y bajo peso molecular y, a pesar de que los aislados mostraban resistencia a compuestos mercuriales, la presencia del gen merA fue detectada solo en 71.05 % de los cepas. Estos resultados sugieren que la exposición a Hg podría ser una presión selectiva en la proliferación de bacterias resistentes a antibióticos y promover el mantenimiento y propagación de estos genes de resistencia. Sin embargo, la existencia de tales resistencias a estas profundidades podría también apoyar la idea de que la resistencia a antibióticos en estas bacterias es