WorldWideScience

Sample records for deep-sea fish order

  1. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Kwang-Tsao Shao

    2014-12-01

    Full Text Available The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  2. Predictive modeling of deep-sea fish distribution in the Azores

    Science.gov (United States)

    Parra, Hugo E.; Pham, Christopher K.; Menezes, Gui M.; Rosa, Alexandra; Tempera, Fernando; Morato, Telmo

    2017-11-01

    Understanding the link between fish and their habitat is essential for an ecosystem approach to fisheries management. However, determining such relationship is challenging, especially for deep-sea species. In this study, we applied generalized additive models (GAMs) to relate presence-absence and relative abundance data of eight economically-important fish species to environmental variables (depth, slope, aspect, substrate type, bottom temperature, salinity and oxygen saturation). We combined 13 years of catch data collected from systematic longline surveys performed across the region. Overall, presence-absence GAMs performed better than abundance models and predictions made for the observed data successfully predicted the occurrence of the eight deep-sea fish species. Depth was the most influential predictor of all fish species occurrence and abundance distributions, whereas other factors were found to be significant for some species but did not show such a clear influence. Our results predicted that despite the extensive Azores EEZ, the habitats available for the studied deep-sea fish species are highly limited and patchy, restricted to seamounts slopes and summits, offshore banks and island slopes. Despite some identified limitations, our GAMs provide an improved knowledge of the spatial distribution of these commercially important fish species in the region.

  3. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.

    Science.gov (United States)

    Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan

    2018-05-24

    High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.

  4. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  5. Far red bioluminescence from two deep-sea fishes.

    Science.gov (United States)

    Widder, E A; Latz, M I; Herring, P J; Case, J F

    1984-08-03

    Spectral measurements of red bioluminescence were obtained from the deep-sea stomiatoid fishes Aristostomias scintillans (Gilbert) and Malacosteus niger (Ayres). Red luminescence from suborbital light organs extends to the near infrared, with peak emission at approximately 705 nanometers in the far red. These fishes also have postorbital light organs that emit blue luminescence with maxima between 470 and 480 nanometers. The red bioluminescence may be due to an energy transfer system and wavelength-selective filtering.

  6. Trace elements and stable isotope ratios (δ13C and δ15N) in fish from deep-waters of the Sulu Sea and the Celebes Sea

    International Nuclear Information System (INIS)

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Kubota, Reiji; Mochizuki, Hiroko; Ramu, Karri; Nishida, Shuhei; Ohta, Suguru; Yeh, Hsin-ming; Subramanian, Annamalai; Tanabe, Shinsuke

    2010-01-01

    Trace elements (TEs) and stable isotope ratios (δ 15 N and δ 13 C) were analyzed in fish from deep-water of the Sulu Sea, the Celebes Sea and the Philippine Sea. Concentrations of V and Pb in pelagic fish from the Sulu Sea were higher than those from the Celebes Sea, whereas the opposite trend was observed for δ 13 C. High concentrations of Zn, Cu and Ag were found in non-migrant fish in deep-water, while Rb level was high in fish which migrate up to the epipelagic zone, probably resulting from differences in background levels of these TEs in each water environment or function of adaptation to deep-water by migrant and non-migrant species. Arsenic level in the Sulu Sea fish was positively correlated with δ 15 N, indicating biomagnification of arsenic. To our knowledge, this is the first study on relationship between diel vertical migration and TE accumulation in deep-water fish.

  7. Vertical migrations of a deep-sea fish and its prey.

    Directory of Open Access Journals (Sweden)

    Pedro Afonso

    Full Text Available It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL. This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel as well as long-term (seasonal scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.

  8. Species distribution models of two critically endangered deep-sea octocorals reveal fishing impacts on vulnerable marine ecosystems in central Mediterranean Sea.

    Science.gov (United States)

    Lauria, V; Garofalo, G; Fiorentino, F; Massi, D; Milisenda, G; Piraino, S; Russo, T; Gristina, M

    2017-08-14

    Deep-sea coral assemblages are key components of marine ecosystems that generate habitats for fish and invertebrate communities and act as marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to human impacts such as fishing. They are an indicator of vulnerable marine ecosystems (VMEs), therefore their conservation is essential to preserve marine biodiversity. In the Mediterranean Sea deep-sea coral habitats are associated with commercially important crustaceans, consequently their abundance has dramatically declined due to the effects of trawling. Marine spatial planning is required to ensure that the conservation of these habitats is achieved. Species distribution models were used to investigate the distribution of two critically endangered octocorals (Funiculina quadrangularis and Isidella elongata) in the central Mediterranean as a function of environmental and fisheries variables. Results show that both species exhibit species-specific habitat preferences and spatial patterns in response to environmental variables, but the impact of trawling on their distribution differed. In particular F. quadrangularis can overlap with fishing activities, whereas I. elongata occurs exclusively where fishing is low or absent. This study represents the first attempt to identify key areas for the protection of soft and compact mud VMEs in the central Mediterranean Sea.

  9. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  10. Precision-cut liver slices to investigate responsiveness of deep-sea fish to contaminants at high pressure.

    Science.gov (United States)

    Lemaire, Benjamin; Debier, Cathy; Calderon, Pedro Buc; Thomé, Jean Pierre; Stegeman, John; Mork, Jarle; Rees, Jean François

    2012-09-18

    While deep-sea fish accumulate high levels of persistent organic pollutants (POPs), the toxicity associated with this contamination remains unknown. Indeed, the recurrent collection of moribund individuals precludes experimental studies to investigate POP effects in this fauna. We show that precision-cut liver slices (PCLS), an in vitro tool commonly used in human and rodent toxicology, can overcome such limitation. This technology was applied to individuals of the deep-sea grenadier Coryphaenoides rupestris directly upon retrieval from 530-m depth in Trondheimsfjord (Norway). PCLS remained viable and functional for 15 h when maintained in an appropriate culture media at 4 °C. This allowed experimental exposure of liver slices to the model POP 3-methylcholanthrene (3-MC; 25 μM) at levels of hydrostatic pressure mimicking shallow (0.1 megapascal or MPa) and deep-sea (5-15 MPa; representative of 500-1500 m depth) environments. As in shallow water fish, 3-MC induced the transcription of the detoxification enzyme cytochrome P4501A (CYP1A; a biomarker of exposure to POPs). This induction was diminished at elevated pressure, suggesting a limited responsiveness of C. rupestris toward POPs in its native environment. This very first in vitro toxicological investigation on a deep-sea fish opens the route for understanding pollutants effects in this highly exposed fauna.

  11. Deep sea radionuclides

    International Nuclear Information System (INIS)

    Kanisch, G.; Vobach, M.

    1993-01-01

    Every year since 1979, either in sping or in summer, the fishing research vessel 'Walther Herwig' goes to the North Atlantic disposal areas of solid radioactive wastes, and, for comparative purposes, to other areas, in order to collect water samples, plankton and nekton, and, from the deep sea bed, sediment samples and benthos organisms. In addition to data on the radionuclide contents of various media, information about the plankton, nekton and benthos organisms living in those areas and about their biomasses could be gathered. The investigations are aimed at acquiring scientifically founded knowledge of the uptake of radioactive substances by microorganisms, and their migration from the sea bottom to the areas used by man. (orig.) [de

  12. Fish food in the deep sea: revisiting the role of large food-falls.

    Directory of Open Access Journals (Sweden)

    Nicholas D Higgs

    Full Text Available The carcasses of large pelagic vertebrates that sink to the seafloor represent a bounty of food to the deep-sea benthos, but natural food-falls have been rarely observed. Here were report on the first observations of three large 'fish-falls' on the deep-sea floor: a whale shark (Rhincodon typus and three mobulid rays (genus Mobula. These observations come from industrial remotely operated vehicle video surveys of the seafloor on the Angola continental margin. The carcasses supported moderate communities of scavenging fish (up to 50 individuals per carcass, mostly from the family Zoarcidae, which appeared to be resident on or around the remains. Based on a global dataset of scavenging rates, we estimate that the elasmobranch carcasses provided food for mobile scavengers over extended time periods from weeks to months. No evidence of whale-fall type communities was observed on or around the carcasses, with the exception of putative sulphide-oxidising bacterial mats that outlined one of the mobulid carcasses. Using best estimates of carcass mass, we calculate that the carcasses reported here represent an average supply of carbon to the local seafloor of 0.4 mg m(-2d(-1, equivalent to ∼ 4% of the normal particulate organic carbon flux. Rapid flux of high-quality labile organic carbon in fish carcasses increases the transfer efficiency of the biological pump of carbon from the surface oceans to the deep sea. We postulate that these food-falls are the result of a local concentration of large marine vertebrates, linked to the high surface primary productivity in the study area.

  13. [Taxonomic composition and zoogeographical aspects of deep sea fishes (90-540m) from the Gulf of California, Mexico].

    Science.gov (United States)

    López-Martínez, Juana; Acevedo-Cervantes, Alejandro; Herrera-Valdivia, Eloisa; Rodríguez-Romero, Jesús; Palacios-Salgado, Deivis S

    2012-03-01

    The Gulf of California has a high variety of ecosystems that allow different services and the fishery resources play a prominent role in its ecology, evolution and economics. Fish coastal species have been previously reported for most coastal areas, especially those species that are subject to fishing, however, little is known on the species from deep sea zones, due to sampling difficulties. We studied the deep sea fishes collected with trawl nets during three research surveys in the Gulf of California, Mexico in 2004-2005. We provide a systematic checklist and some notes on biogeographical aspects. For this, 74 fishing hauls were done, and a total of 9 898 fishes were captured, belonging to two classes, 15 orders, 35 families, 53 genera and 70 species. The best represented families in number of species were: Paralichthyidae (eight), Serranidae (six), and Scorpaenidae and Triglidae with five species each one. The typical families from deep waters were: Ophidiidae, Moridae, Lophiidae, Scorpaenidae, Triglidae, Paralichthydae, Pleuronectidae and Cynoglossidae. Size range varied from 13cm for the Splinose searobin (Bellator xenisma) to 234cm in the Pacific Cutlassfish (Trichiurus nitens). The biogeographical affinity showed that species with affinity to the East Tropical Pacific (ETP) dominated, followed by species from San Diego-Panamic, San Diego-Panamic-Peruvian-Chilean and Oregonian-Cortes provinces, respectively. A biogeographic overlap was found in the fauna, which reflects the Gulf of California's geographical position, with distribution limits of species from temperate, tropical and warm-temperature transition affinities, divisions that characterize the Gulf of California. Taxonomic status of fish with a focus on composition, location, characterization and zoogeography are fundamental to any subject of biodiversity and fisheries management actions.

  14. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro

    Science.gov (United States)

    Solé, Montserrat; Porte, Cinta; Albaigés, Joan

    2001-02-01

    Data on aliphatic and polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDTs in the deep-sea fish Mora moro are reported in relation to the animal's weight/size and tissues (muscle, liver, digestive tube and gills). Fish samples were collected in the Gulf of Lions (NW Mediterranean) at an approximate depth of 1000 m. The concentrations of these organic pollutants followed the trend musclelipid content of the organs. No clear bioaccumulation dependence on fish weight/size was observed for gills, digestive tube and liver when the fat contents of these tissues were taken into account. However, the concentrations in muscle decreased with size, possibly implying a simple dilution effect by the increase of body weight. Hydrocarbons, and particularly PAHs, were strongly depleted in all tissues with respect to organochlorinated compounds if compared with the amounts present in bottom waters and sediment. Smaller specimens displayed for most pollutants qualitatively different patterns than larger fish, which could be attributed to their particular habitat/diet. The aliphatic hydrocarbon profiles suggested that Mora moro was exposed to a more predominant intake of biogenic rather than petrogenic hydrocarbons. The entrance and storage organs exhibited characteristic PAH and PCB distributions, reflecting different bioaccumulation and metabolic pathways. Compared with the profiles currently found in surface fish species, a relatively higher contribution of heavier components, namely hepta- and octochlorinated PCBs, and 4-6-ringed PAHs, was found in the deep-sea fish.

  15. Ploughing the deep sea floor.

    Science.gov (United States)

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  16. Organohalogen compounds in deep-sea fishes from the western North Pacific, off-Tohoku, Japan: Contamination status and bioaccumulation profiles

    International Nuclear Information System (INIS)

    Takahashi, Shin; Oshihoi, Tomoko; Ramu, Karri; Isobe, Tomohiko; Ohmori, Koji; Kubodera, Tsunemi; Tanabe, Shinsuke

    2010-01-01

    Twelve species of deep-sea fishes collected in 2005 from the western North Pacific, off-Tohoku, Japan were analyzed for organohalogen compounds. Among the compounds analyzed, concentrations of DDTs and PCBs (up to 23,000 and 12,400 ng/g lipid wt, respectively) were the highest. The present study is the foremost to report the occurrence of brominated flame retardants such as PBDEs and HBCDs in deep-sea organisms from the North Pacific region. Significant positive correlations found between δ 15 N ( per mille ) and PCBs, DDTs and PBDEs suggest the high biomagnification potential of these contaminants in food web. The large variation in δ 13 C ( per mille ) values observed between the species indicate multiple sources of carbon in the food web and specific accumulation of hydrophobic organohalogen compounds in benthic dwelling carnivore species like snubnosed eel. The results obtained in this study highlight the usefulness of deep-sea fishes as sentinel species to monitor the deep-sea environment.

  17. The economics of fishing the high seas.

    Science.gov (United States)

    Sala, Enric; Mayorga, Juan; Costello, Christopher; Kroodsma, David; Palomares, Maria L D; Pauly, Daniel; Sumaila, U Rashid; Zeller, Dirk

    2018-06-01

    While the ecological impacts of fishing the waters beyond national jurisdiction (the "high seas") have been widely studied, the economic rationale is more difficult to ascertain because of scarce data on the costs and revenues of the fleets that fish there. Newly compiled satellite data and machine learning now allow us to track individual fishing vessels on the high seas in near real time. These technological advances help us quantify high-seas fishing effort, costs, and benefits, and assess whether, where, and when high-seas fishing makes economic sense. We characterize the global high-seas fishing fleet and report the economic benefits of fishing the high seas globally, nationally, and at the scale of individual fleets. Our results suggest that fishing at the current scale is enabled by large government subsidies, without which as much as 54% of the present high-seas fishing grounds would be unprofitable at current fishing rates. The patterns of fishing profitability vary widely between countries, types of fishing, and distance to port. Deep-sea bottom trawling often produces net economic benefits only thanks to subsidies, and much fishing by the world's largest fishing fleets would largely be unprofitable without subsidies and low labor costs. These results support recent calls for subsidy and fishery management reforms on the high seas.

  18. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  19. Impact of deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) on non-commercial fish species off West Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Ole A; Bastardie, Francois; Eigaard, Ole Ritzau

    2014-01-01

    Since the late 1980s, a deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) has been developing gradually in West Greenland. Deep-sea fish species are generally long-lived and characterized by late age of maturity, low fecundity, and slow growth, features that probably cause low....... During the period 1988–2011, population abundance and size composition changed as catch and effort in the Greenland halibut fishery increased. Two species showed a significant decrease in abundance, and four populations showed a significant reduction in mean weight of individuals (p , 0.05). Correlation...... analyses show that most of the observed trends in abundance are probably not related to increasing fishing effort for Greenland halibut. The analysis did, however, show that most of the observed decreases in mean weight were significantly correlated with fishing effort during the 24-year period...

  20. 'Yellow lens' eyes of a stomiatoid deep-sea fish, Malacosteus niger.

    Science.gov (United States)

    Somiya, H

    1982-07-22

    Bright yellow lenses were found in the eyes of the stomiatoid deep-sea fish, Malacosteus niger Ayres. The optical properties of the yellow lens and the retinal specializations in the eyes were examined. Absorption spectra of the yellow lens revealed two peaks at wavelengths 425 and 460 nm. The photoreceptors were all rods and were arranged in two superimposed layers. An astaxanthin-type retinal tapetum was observed in the pigment epithelium. Some chemical evidence is presented showing that the tapetal material is an astaxanthin ester. The ecological significance of the yellow lens is discussed in connection with that of Malacosteus' orbital light organ which has a reddish filter.

  1. Vision in the deep sea.

    Science.gov (United States)

    Warrant, Eric J; Locket, N Adam

    2004-08-01

    The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the

  2. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  3. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  4. Pathological alterations typical of human Tay-Sachs disease, in the retina of a deep-sea fish

    Science.gov (United States)

    Fishelson, L.; Delarea, Yacov; Galil, Bella S.

    Micrographs of retinas from the deep-sea fish Cataetyx laticeps revealed visual cells containing membranous whorls in the ellipsoids of the inner segments resulting from stretching and modifications of the mitochondria membranes and their cristae. These pathological structures seem to be homologous to the whorls observed in retinas of human carriers of Tay-Sachs disease. This disease, a genetic disorder, is found in humans and some mammals. Our findings in fish suggest that the gene responsible can be found throughout the vertebrate evolutionary tree, possibly dormant in most taxa.

  5. Baselines and Comparison of Coral Reef Fish Assemblages in the Central Red Sea

    KAUST Repository

    Kattan, Alexander

    2014-12-01

    In order to properly assess human impacts and appropriate restoration goals, baselines of pristine conditions on coral reefs are required. In Saudi Arabian waters of the central Red Sea, widespread and heavy fishing pressure has been ongoing for decades. To evaluate this influence, we surveyed the assemblage of offshore reef fishes in both this region as well as those of remote and largely unfished southern Sudan. At comparable latitudes, of similar oceanographic influence, and hosting the same array of species, the offshore reefs of southern Sudan provided an ideal location for comparison. We found that top predators (jacks, large snappers, groupers, and others) dominated the reef fish community biomass in Sudan’s deep south region, resulting in an inverted (top-heavy) biomass pyramid. In contrast, the Red Sea reefs of central Saudi Arabia exhibited the typical bottom-heavy pyramid and show evidence for trophic cascades in the form of mesopredator release. Biomass values from Sudan’s deep south are quite similar to those previously reported in the remote and uninhabited Northwest Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other remote Pacific islands and atolls. The findings of this study suggest that heavy fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia while simultaneously making a strong case for protection in the form of marine protected areas in the southern Sudanese Red Sea.

  6. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    Science.gov (United States)

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  7. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea

    Directory of Open Access Journals (Sweden)

    Beth L. Mindel

    2016-09-01

    Full Text Available Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300–2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  8. The dynamics of biogeographic ranges in the deep sea.

    Science.gov (United States)

    McClain, Craig R; Hardy, Sarah Mincks

    2010-12-07

    Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.

  9. Genomic and Phylogenetic Characterization of Luminous Bacteria Symbiotic with the Deep-Sea Fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae)

    OpenAIRE

    Dunlap, Paul V.; Ast, Jennifer C.

    2005-01-01

    Bacteria forming light-organ symbiosis with deep-sea chlorophthalmid fishes (Aulopiformes: Chlorophthalmidae) are considered to belong to the species Photobacterium phosphoreum. The identification of these bacteria as P. phosphoreum, however, was based exclusively on phenotypic traits, which may not discriminate between phenetically similar but evolutionarily distinct luminous bacteria. Therefore, to test the species identification of chlorophthalmid symbionts, we carried out a genomotypic (r...

  10. Deep-sea disposal: Protecting fish and man

    International Nuclear Information System (INIS)

    Hagen, A.

    1988-01-01

    The definition of radioactive waste unsuitable for dumping at sea is based on the protection of man. See IAEA Safety Series No. 78. The development of criteria for assessing the impact on deep sea marine organisms at the population level has been attempted in a report recently published by the IAEA. See IAEA Technical Reports Series, No. 228 (1988). The report indicates that certain radionuclides may give rise to high dose rates to marine organisms if dumping is carried out with the assumptions of instantaneous release at the sea floor and dumping over long periods of time. In the report, a hypothetical dose rate to molluscs from zinc-65, which poses no significant harm to man, has the potential for giving high doses to bottom-dwelling molluscs

  11. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea

    OpenAIRE

    Tecchio, Samuele; Coll, Marta; Christensen, Villy; Company, Joan B.; Ramirez-Llodra, Eva; Sarda, Francisco

    2013-01-01

    There is increasing fishing pressure on the continental margins of the oceans, and this raises concerns about the vulnerability of the ecosystems thriving there. The current knowledge of the biology of deep-water fish species identifies potential reduced resilience to anthropogenic disturbance. However, there are extreme difficulties in sampling the deep sea, resulting in poorly resolved and indirectly obtained food-web relationships. Here, we modelled the flows and biomasses of a Mediterrane...

  12. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  13. Call to protect deep-sea coral, sponge ecosystems

    Science.gov (United States)

    Showstack, Randy

    2004-03-01

    More than 1100 scientists are signatories to a 15 February consensus statement calling for the protection of deep sea coral and sponge ecosystems. The statement indicates that ``the greatest human threat'' to these ecosystems ``is commercial fishing, especially bottom trawling.''

  14. Scientific Encounters of the Mysterious Sea. Reading Activities That Explore the Mysterious Creatures of the Deep Blue Sea. Grades 4-7.

    Science.gov (United States)

    Embry, Lynn

    This activity book presents reading activities for grades 4-7 exploring the mysterious creatures of the deep sea. The creatures include: angel sharks; argonauts; barberfish; comb jelly; croakers; electric rays; flying fish; giganturid; lantern fish; narwhals; northern basket starfish; ocean sunfish; Portuguese man-of-war; sea cucumbers; sea…

  15. 75 FR 27219 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-05-14

    .... Whereas a limited market has been responsible for the shortfall in landings compared to the target TAC... final specifications for the 2010 Atlantic deep- sea red crab fishery, including a target total... specify the target TAC and other management measures in order to manage the red crab resource for fishing...

  16. Pineal organs of deep-sea fish: photopigments and structure.

    Science.gov (United States)

    Bowmaker, James K; Wagner, Hans-Joachim

    2004-06-01

    We have examined the morphology and photopigments of the pineal organs from a number of mesopelagic fish, including representatives of the hatchet fish (Sternoptychidae), scaly dragon-fish (Chauliodontidae) and bristlemouths (Gonostomidae). Although these fish were caught at depths of between 500 and 1000 m, the morphological organisation of their pineal organs is remarkably similar to that of surface-dwelling fish. Photoreceptor inner and outer segments protrude into the lumen of the pineal vesicle, and the outer segment is composed of a stack of up to 20 curved disks that form a cap-like cover over the inner segment. In all species, the pineal photopigment was spectrally distinct from the retinal rod pigment, with lambdamax displaced to longer wavelengths, between approximately 485 and 503 nm. We also investigated the pineal organ of the deep demersal eel, Synaphobranchus kaupi, caught at depths below 2000 m, which possesses a rod visual pigment with lambdamax at 478 nm, but the pineal pigment has lambdamax at approximately 515 nm. In one species of hatchet fish, Argyropelecus affinis, two spectral classes of pinealocyte were identified, both spectrally distinct from the retinal rod photopigment.

  17. Genomic and phylogenetic characterization of luminous bacteria symbiotic with the deep-sea fish Chlorophthalmus albatrossis (Aulopiformes: Chlorophthalmidae).

    Science.gov (United States)

    Dunlap, Paul V; Ast, Jennifer C

    2005-02-01

    Bacteria forming light-organ symbiosis with deep-sea chlorophthalmid fishes (Aulopiformes: Chlorophthalmidae) are considered to belong to the species Photobacterium phosphoreum. The identification of these bacteria as P. phosphoreum, however, was based exclusively on phenotypic traits, which may not discriminate between phenetically similar but evolutionarily distinct luminous bacteria. Therefore, to test the species identification of chlorophthalmid symbionts, we carried out a genomotypic (repetitive element palindromic PCR genomic profiling) and phylogenetic analysis on strains isolated from the perirectal light organ of Chlorophthalmus albatrossis. Sequence analysis of the 16S rRNA gene of 10 strains from 5 fish specimens placed these bacteria in a cluster related to but phylogenetically distinct from the type strain of P. phosphoreum, ATCC 11040(T), and the type strain of Photobacterium iliopiscarium, ATCC 51760(T). Analysis of gyrB resolved the C. albatrossis strains as a strongly supported clade distinct from P. phosphoreum and P. iliopiscarium. Genomic profiling of 109 strains from the 5 C. albatrossis specimens revealed a high level of similarity among strains but allowed identification of genomotypically different types from each fish. Representatives of each type were then analyzed phylogenetically, using sequence of the luxABFE genes. As with gyrB, analysis of luxABFE resolved the C. albatrossis strains as a robustly supported clade distinct from P. phosphoreum. Furthermore, other strains of luminous bacteria reported as P. phosphoreum, i.e., NCIMB 844, from the skin of Merluccius capensis (Merlucciidae), NZ-11D, from the light organ of Nezumia aequalis (Macrouridae), and pjapo.1.1, from the light organ of Physiculus japonicus (Moridae), grouped phylogenetically by gyrB and luxABFE with the C. albatrossis strains, not with ATCC 11040(T). These results demonstrate that luminous bacteria symbiotic with C. albatrossis, together with certain other strains of

  18. The "pseudo-craniovertebral articulation" in the deep-sea fish Stomias boa (Teleostei: Stomiidae).

    Science.gov (United States)

    Schnell, Nalani K; Bernstein, Peter; Maier, Wolfgang

    2008-05-01

    Many predatory deep-sea fishes show highly specialized modifications of their feeding apparatus, e.g., elongate jaws studded with long daggerlike teeth, often combined with a very distensible stomach, to be capable of swallowing relatively large prey. These striking features can be observed in members of the marine teleost family Stomiidae. The present study gives a detailed morphological description of the mesopelagic predatory fish, Stomias boa, based on a combined approach of clearing and double staining, serial sections and dissection. In this genus, large pads made of dense connective tissue extend from the first enlarged neural arch to the ventral side of the chordal sheath, embracing the prominent exoccipitals and thus constituting a kind of double ball- and socket joint for the head. The notochordal occipito-vertebral gap is enlarged, probably not by loss of vertebral centra as is proposed for other genera of the stomiid family, e.g., in Astronesthes or Photostomias. We conclude that this "pseudo-craniovertebral articulation" serves as a functional substitute for the absent vertebrae and strengthens the flexible, anterior part of the vertebral column during extreme dorsal expansion of the gape during prey capture and swallowing. (c) 2007 Wiley-Liss, Inc.

  19. Species distribution models of tropical deep-sea snappers.

    Directory of Open Access Journals (Sweden)

    Céline Gomez

    Full Text Available Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna. Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and

  20. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    OpenAIRE

    Tecchio, S.; Coll, Marta; Sarda, F.

    2015-01-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloo...

  1. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  2. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    Science.gov (United States)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  3. Comparing deep-sea fish fauna between coral and non-coral "megahabitats" in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Gianfranco D'Onghia

    Full Text Available Two experimental longline surveys were carried out in the Santa Maria di Leuca (SML cold-water coral province (Mediterranean Sea during May-June and September-October 2010 to investigate the effect of corals on fish assemblages. Two types of "megahabitat" characterized by the virtual absence of fishing were explored. One was characterized by complex topography including mesohabitats with carbonate mounds and corals. The other type of megahabitat, although characterized by complex topographic features, lacks carbonate mounds and corals. The fishing vessel was equipped with a 3,000 m monofilament longline with 500 hooks and snoods of 2.5 m in length. A total of 9 hauls, using about 4,500 hooks, were carried out both in the coral megahabitat and in the non-coral megahabitat during each survey. The fish Leucoraja fullonica and Pteroplatytrygon violacea represent new records for the SML coral province. The coral by-catch was only obtained in the coral megahabitat in about 55% of the stations investigated in both surveys. The total catches and the abundance indices of several species were comparable between the two habitat typologies. The species contributing most to the dissimilarity between the two megahabitat fish assemblages were Pagellus bogaraveo, Galeus melastomus, Etmopterus spinax and Helicolenus dactylopterus for density and P. bogaraveo, Conger conger, Polyprion americanus and G. melastomus for biomass. P. bogaraveo was exclusively collected in the coral megahabitat, whereas C. conger, H. dactylopterus and P. americanus were found with greater abundance in the coral than in the non-coral megahabitat. Differences in the sizes between the two megahabitats were detected in E. spinax, G. melastomus, C. conger and H. dactylopterus. Although these differences most probably related to the presence-absence of corals, both megahabitats investigated play the role of attraction-refuge for deep-sea fish fauna, confirming the important role of the whole

  4. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  5. Rhodopsin in the Dark Hot Sea: Molecular Analysis of Rhodopsin in a Snailfish, Careproctus rhodomelas, Living near the Deep-Sea Hydrothermal Vent.

    Directory of Open Access Journals (Sweden)

    Rie Sakata

    Full Text Available Visual systems in deep-sea fishes have been previously studied from a photobiological aspect; however, those of deep-sea fish inhabiting the hydrothermal vents are far less understood due to sampling difficulties. In this study, we analyzed the visual pigment of a deep-sea snailfish, Careproctus rhodomelas, discovered and collected only near the hydrothermal vents of oceans around Japan. Proteins were solubilized from the C. rhodomelas eyeball and subjected to spectroscopic analysis, which revealed the presence of a pigment characterized by an absorption maximum (λmax at 480 nm. Immunoblot analysis of the ocular protein showed a rhodopsin-like immunoreactivity. We also isolated a retinal cDNA encoding the entire coding sequence of putative C. rhodomelas rhodopsin (CrRh. HEK293EBNA cells were transfected with the CrRh cDNA and the proteins extracted from the cells were subjected to spectroscopic analysis. The recombinant CrRh showed the absorption maximum at 480 nm in the presence of 11-cis retinal. Comparison of the results from the eyeball extract and the recombinant CrRh strongly suggests that CrRh has an A1-based 11-cis-retinal chromophore and works as a photoreceptor in the C. rhodomelas retina, and hence that C. rhodomelas responds to dim blue light much the same as other deep-sea fishes. Because hydrothermal vent is a huge supply of viable food, C. rhodomelas likely do not need to participate diel vertical migration and may recognize the bioluminescence produced by aquatic animals living near the hydrothermal vents.

  6. Assemblages of deep-sea fishes on the middle slope off Northwest Africa (26°-33° N, eastern Atlantic)

    Science.gov (United States)

    Pajuelo, J. G.; Seoane, J.; Biscoito, M.; Freitas, M.; González, J. A.

    2016-12-01

    The structure and composition of deep-sea fish assemblages living on the middle slope off NW Africa (26-33° N) were investigated. Data were collected by six commercial trawlers during experimental fishing (1027 hauls) at depths between 800 and 1515 m. A total of 1,115,727 fish specimens, belonging to 37 families and 96 species (24 Elasmobranchii, 5 Holocephali, and 67 Actinopteri) were collected with bottom trawls. The deep-sea demersal fish fauna off NW Africa is dominated by fishes of the family Macrouridae, followed by the Moridae and Alepocephalidae families. The main abundant species were Trachyrincus scabrus, Bathygadus favosus, Mora moro, Alepocephalus productus, Nezumia aequalis and Bathygadus melanobranchus. PERMANOVA analysis showed differences in demersal fish assemblages among bottom types, depth strata and between areas (north and south of parallel 30° N), with the area being the most influential factor followed by the type of substrate. PERMANOVAs computed separately for each area showed significant differences among the bottom types and depths in both areas. SIMPER analysis revealed that B. melanobranchus and B. favosus, which occurred at higher abundances in the area ≥30° N, were the species that were best discriminated between areas; whilst T. scabrus and M. moro occurred at higher abundances in the area <30° N. N. aequalis, B. favosus, B. melanobranchus, Deania hystricosa, Aphanopus intermedius, Coelorinchus labiatus and Halosaurus johnsonianus were restricted or more abundant in the area ≥30° N, and functioned as the discriminating species that most contributed to the average dissimilarity between areas. T. scabrus, M. moro, Alepocephalus productus and Alepocephalus bairdii were more abundant in the area <30° N. The standardized mean abundance (in number of individuals/km2) showed a decreasing pattern: i) with depth in both areas, north and south of parallel 30° N, and ii) with depth on each type of substrate, except on cold coral

  7. Factors affecting the fishing impact on cartilaginous fishes in southeastern Spain (western Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Manuel Mendoza

    2014-03-01

    Full Text Available We propose a global index of impact based on the relative vulnerability of the local population of every species and the further application of regression trees globally optimized with evolutionary algorithms to study the fishing impact on the cartilaginous fish in southeastern Spain. The fishing impact is much higher in areas of less than 40 m depth within 11 km of the Cape Palos marine reserve. The impact also depends on the state of the sea and the kind of habitat. Deep-sea habitats associated with hard substrata and sandy beds show the highest impact, and sublittoral muds and habitats associated with circa littoral rocks with moderate energy show the lowest impact. The fishing impact changes throughout the moon cycle, showing different day-scale patterns associated with different habitats and different species compositions. Finally, we show that the global optimization of the regression trees can be essential to find some important patterns and that these trees are a useful tool for determining which areas are considered to be more important in terms of protection, taking into account specifically the vulnerability of the local populations.

  8. Ecosystem function and services provided by the deep sea

    Science.gov (United States)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In

  9. Deep-sea Hexactinellida (Porifera) of the Weddell Sea

    Science.gov (United States)

    Janussen, Dorte; Tabachnick, Konstantin R.; Tendal, Ole S.

    2004-07-01

    New Hexactinellida from the deep Weddel Sea are described. This moderately diverse hexactinellid fauna includes 14 species belonging to 12 genera, of which five species and one subgenus are new to science: Periphragella antarctica n. sp., Holascus pseudostellatus n. sp., Caulophacus (Caulophacus) discohexactinus n. sp., C. ( Caulodiscus) brandti n. sp., C. ( Oxydiscus) weddelli n. sp., and C. ( Oxydiscus) n. subgen. So far, 20 hexactinellid species have been reported from the deep Weddell Sea, 15 are known from the northern part and 10 only from here, while 10 came from the southern area, and five of these only from there. However, this apparent high "endemism" of Antarctic hexactinellid sponges is most likely the result of severe undersampling of the deep-sea fauna. We find no reason to believe that a division between an oceanic and a more continental group of species exists. The current poor database indicates that a substantial part of the deep hexactinellid fauna of the Weddell Sea is shared with other deep-sea regions, but it does not indicate a special biogeographic relationship with any other ocean.

  10. Age-dependent mixing of deep-sea sediments

    International Nuclear Information System (INIS)

    Smith, C.R.; Maggaard, L.; Pope, R.H.; DeMaster, D.J.

    1993-01-01

    Rates of bioturbation measured in deep-sea sediments commonly are tracer dependent; in particular, shorter lived radiotracers (such as 234 Th) often yield markedly higher diffusive mixing coefficients than their longer-lived counterparts (e.g., 210 Pb). At a single station in the 1,240-m deep Santa Catalina Basin, the authors document a strong negative correlation between bioturbation rate and tracer half-life. Sediment profiles of 234 Th (half-life = 24 days) yield an average mixing coefficient (60 cm 2 y -1 ) two orders of magnitude greater than that for 210 Pb (half-life = 22 y, mean mixing coefficient = 0.4 cm 2 y -1 ). A similar negative relationship between mixing rate and tracer time scale is observed at thirteen other deep-sea sites in which multiple radiotracers have been used to assess diffusive mixing rates. This relationship holds across a variety of radiotracer types and time scales. The authors hypothesize that this negative relationship results from age-dependent mixing, a process in which recently sedimented, food-rich particles are ingested and mixed at higher rates by deposit feeders than are older, food-poor particles. Results from an age-dependent mixing model demonstrate that this process indeed can yield the bioturbation-rate vs. tracer-time-scale correlations observed in deep-sea sediments. Field data on mixing rates of recently sedimented particles, as well as the radiotracer activity of deep-sea deposit feeders, provide strong support for the age-dependent mixing model. The presence of age-dependent mixing in deep-sea sediments may have major implications for diagenetic modeling, requiring a match between the characteristic time scales of mixing tracers and modeled reactants. 102 refs., 6 figs., 5 tabs

  11. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  12. Change in fish community structure in the Barents Sea.

    Directory of Open Access Journals (Sweden)

    Michaela Aschan

    Full Text Available Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992-2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996-1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.

  13. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  14. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  15. Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure

    KAUST Repository

    Kattan, Alexander; Coker, Darren James; Berumen, Michael L.

    2017-01-01

    In order to assess human impacts and develop rational restoration goals for corals reefs, baseline estimates of fish communities are required. In Saudi Arabian waters of the Red Sea, widespread unregulated fishing is thought to have been ongoing for decades, but there is little direct evidence of the impact on reef communities. To contextualize this human influence, reef-associated fish assemblages on offshore reefs in Saudi Arabia and Sudan in the central Red Sea were investigated. These reefs have comparable benthic environments, experience similar oceanographic influences, and are separated by less than 300 km, offering an ideal comparison for identifying potential anthropogenic impacts such as fishing pressure. This is the first study to assess reef fish biomass in both these regions, providing important baselines estimates. We found that biomass of top predators on offshore Sudanese reefs was on average almost three times that measured on comparable reefs in Saudi Arabia. Biomass values from some of the most remote reefs surveyed in Sudan’s far southern region even approach those previously reported in the Northwestern Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other isolated Pacific islands and atolls. The findings suggest that fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs, most conspicuously in the form of top predator removal. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia, while making a strong case for protection in the form of no-take marine protected areas to maintain preservation of the relatively intact southern Sudanese Red Sea.

  16. Reef fish communities in the central Red Sea show evidence of asymmetrical fishing pressure

    KAUST Repository

    Kattan, Alexander

    2017-03-09

    In order to assess human impacts and develop rational restoration goals for corals reefs, baseline estimates of fish communities are required. In Saudi Arabian waters of the Red Sea, widespread unregulated fishing is thought to have been ongoing for decades, but there is little direct evidence of the impact on reef communities. To contextualize this human influence, reef-associated fish assemblages on offshore reefs in Saudi Arabia and Sudan in the central Red Sea were investigated. These reefs have comparable benthic environments, experience similar oceanographic influences, and are separated by less than 300 km, offering an ideal comparison for identifying potential anthropogenic impacts such as fishing pressure. This is the first study to assess reef fish biomass in both these regions, providing important baselines estimates. We found that biomass of top predators on offshore Sudanese reefs was on average almost three times that measured on comparable reefs in Saudi Arabia. Biomass values from some of the most remote reefs surveyed in Sudan’s far southern region even approach those previously reported in the Northwestern Hawaiian Islands, northern Line Islands, Pitcairn Islands, and other isolated Pacific islands and atolls. The findings suggest that fishing pressure has significantly altered the fish community structure of Saudi Arabian Red Sea reefs, most conspicuously in the form of top predator removal. The results point towards the urgent need for enhanced regulation and enforcement of fishing practices in Saudi Arabia, while making a strong case for protection in the form of no-take marine protected areas to maintain preservation of the relatively intact southern Sudanese Red Sea.

  17. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  18. Metazoan parasites of deep-sea fishes from the South Eastern Pacific: Exploring the role of ecology and host phylogeny

    Science.gov (United States)

    Ñacari, Luis A.; Oliva, Marcelo E.

    2016-09-01

    We studied the parasite fauna of five deep-sea fish species (>1000 m depth), Three members of Macrouridae (Macrourus holotrachys, Coryphaenoides ariommus and Coelorhynchus sp.), the Morid Antimora rostrata and the Synaphobranchidae Diaptobranchus capensis caught as by-catch of the Patagonian toothfish (Dissostichus eleginoides) from central and northern Chile at depths between 1000 and 2000 m. The parasite fauna of M. holotrachys was the most diverse, with 32 species (The higher reported for Macrourus spp.) and the lower occur in the basketwork eel D. capensis (one species). Trophically transmitted parasites, mainly Digenea and Nematoda explain 59.1% of the total number of species obtained (44 species) and the 81.1% of the 1020 specimens collected. Similarity analysis based on prevalence as well as a Correspondence analysis shows that higher similitude in parasite fauna occurs in members of Macrouridae. The importance of diet and phylogeny is discussed as forces behind the characteristics of the endoparasite and ectoparasite communities found in the studied fish species.

  19. New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications

    International Nuclear Information System (INIS)

    Koenig, Samuel; Solé, Montserrat; Fernández-Gómez, Cristal; Díez, Sergi

    2013-01-01

    A number of studies have found high levels of mercury (Hg) in deep-sea organisms throughout the world's oceans, but the underlying causes are not clear as there is no consensus on the origin and cycling of Hg in the ocean. Recent findings suggested that Hg accumulation may increase with increasing forage depth and pointed to the deep-water column as the origin of most Hg in marine biota, especially its organic methylmercury (MeHg) form. In the present study, we determined the total mercury (THg) levels in 12 deep-sea fish species and a decapod crustacean and investigated their relationship with the species' nitrogen stable isotope ratio (δ 15 N) as an indicator of their trophic level, average weight and habitat depth. THg levels ranged from 0.27 to 4.42 μg/g w.w. and exceeded in all, except one species, the recommended 0.5 μg/g w.w. guideline value. While THg levels exhibited a strong relationship with δ 15 N values and to a lesser extent with weight, the habitat depth, characterized as the species' depth of maximum abundance (DMA), had also a significant effect on Hg accumulation. The fish species with a shallower depth range exhibited lower THg values than predicted by their trophic level (δ 15 N) and body mass, while measured THg values were higher than predicted in deeper-dwelling fish. Overall, the present results point out a potential risk for human health from the consumption of deep-sea fish. In particular, for both, the red shrimp Aristeus antennatus, which is one of the most valuable fishing resources of the Mediterranean, as well as the commercially exploited fish Mora moro, THg levels considerably exceeded the recommended 0.5 μg/g w.w. limit and should be consumed with caution. -- Highlights: ► High total mercury (THg) levels were detected in Mediterranean deep-sea organisms. ► Uniform contamination pattern was observed across the Mediterranean basin. ► All except one species exceeded recommended consumption limit of 0.5 μg/g w.w. ► THg

  20. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Directory of Open Access Journals (Sweden)

    Itsumi Nakamura

    Full Text Available We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes, indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  1. Development of temporal trends of radioactivity in benthic organisms and in water from the deep sea (Atlantic)

    International Nuclear Information System (INIS)

    Kanisch, G.; Kellermann, H.-J.; Vobach, M.; Krueger, A.

    2003-01-01

    Since 20 years the Federal Research Centre for Fisheries is performing radioecological studies in the deep sea of the Northeast Atlantic, especially in the area north-west of Spain used for dumping of radioactive waste until 1982. Until 1998/2000, in Benthos some decrease was observed for 137 Cs, however, almost not for 238 Pu, 239,240 Pu and 241 Am. In the dumpsite area the ratio 238 Pu/ 239,240 Pu, about 0.072, showed higher values than in comparison sites, about 0,044. Alpha spectrometric measurements of the atom based ratio 240 Pu/ 239 Pu in Benthos, due to slight deviations from the global fallout value of 0.18, indicated a special impact of the ''Nevada Test Site'' fallout. In rat-tailed fish (Macrouridae) from the deep sea 137Cs decreased since 1989 with an effective half-live of 14.5 years, comparable to that of 16.2 years in the surface water. Related to the concentration in the surface water a 137 Cs concentration factor of 83 was obtained. It is concluded that the dominant source for 137 Cs in deep sea fish is the global fallout. For plutonium isotopes measured in sea water samples from the deep the values of 238 Pu/ 239,240 Pu and 238 Pu, being higher for the dumpsite area, were interpreted as impact of leaking radioactive drums. For this leakage acting as a plutonium source a 238 Pu/ 239,240 Pu ratio of 0.17 was estimated. However, the total plutonium inventory in the deep sea thereby increased by only about 20 %. (orig.)

  2. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    Directory of Open Access Journals (Sweden)

    John M Guinotte

    Full Text Available Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington. Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH and identify suitable habitat within U.S. National Marine Sanctuaries (NMS. Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  3. A taste of the deep-sea: The roles of gustatory and tactile searching behaviour in the grenadier fish Coryphaenoides armatus

    Science.gov (United States)

    Bailey, David M.; Wagner, Hans-Joachim; Jamieson, Alan J.; Ross, Murray F.; Priede, Imants G.

    2007-01-01

    The deep-sea grenadier fishes ( Coryphaenoides spp.) are among the dominant predators and scavengers in the ocean basins that cover much of Earth's surface. Baited camera experiments were used to study the behaviour of these fishes. Despite the apparent advantages of rapidly consuming food, grenadiers attracted to bait spend a large proportion of their time in prolonged periods of non-feeding activity. Video analysis revealed that fish often adopted a head-down swimming attitude (mean of 21.3° between the fish and seafloor), with swimming velocity negatively related to attitude. The fish also swam around and along vertical and horizontal structures of the lander with their head immediately adjacent to the structure. We initially hypothesised that this behaviour was associated with the use of the short chin barbel in foraging. Barbel histology showed numerous taste buds in the skin, and a barbel nerve with about 20,000 axons in adult fish. A tracing experiment in one undamaged animal revealed the termination fields of the barbel neurons in the trigeminal and rhombencephalic regions, indicating both a mechanoreceptory and a gustatory role for the barbel. Our conclusion was that olfactory foraging becomes ineffective at close ranges and is followed by a search phase using tactile and gustatory sensing by the barbel. The development of this sensory method probably co-evolved alongside behavioural changes in swimming mechanics to allow postural stability at low swimming speeds.

  4. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  5. Assessing Deep Sea Communities Through Seabed Imagery

    Science.gov (United States)

    Matkin, A. G.; Cross, K.; Milititsky, M.

    2016-02-01

    The deep sea still remains virtually unexplored. Human activity, such as oil and gas exploration and deep sea mining, is expanding further into the deep sea, increasing the need to survey and map extensive areas of this habitat in order to assess ecosystem health and value. The technology needed to explore this remote environment has been advancing. Seabed imagery can cover extensive areas of the seafloor and investigate areas where sampling with traditional coring methodologies is just not possible (e.g. cold water coral reefs). Remotely operated vehicles (ROVs) are an expensive option, so drop or towed camera systems can provide a more viable and affordable alternative, while still allowing for real-time control. Assessment of seabed imagery in terms of presence, abundance and density of particular species can be conducted by bringing together a variety of analytical tools for a holistic approach. Sixteen deep sea transects located offshore West Africa were investigated with a towed digital video telemetry system (DTS). Both digital stills and video footage were acquired. An extensive data set was obtained from over 13,000 usable photographs, allowing for characterisation of the different habitats present in terms of community composition and abundance. All observed fauna were identified to the lowest taxonomic level and enumerated when possible, with densities derived after the seabed area was calculated for each suitable photograph. This methodology allowed for consistent assessment of the different habitat types present, overcoming constraints, such as specific taxa that cannot be enumerated, such as sponges, corals or bryozoans, the presence of mobile and sessile species, or the level of taxonomic detail. Although this methodology will not enable a full characterisation of a deep sea community, in terms of species composition for instance, itt will allow a robust assessment of large areas of the deep sea in terms of sensitive habitats present and community

  6. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  7. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  8. New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Samuel, E-mail: koenig@icm.csic.es [Institut de Ciencies del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Catalunya (Spain); Institut de Diagnosi Ambiental i Estudis de l' Aigua (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona, Catalunya (Spain); Sole, Montserrat [Institut de Ciencies del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Catalunya (Spain); Fernandez-Gomez, Cristal; Diez, Sergi [Institut de Diagnosi Ambiental i Estudis de l' Aigua (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona, Catalunya (Spain)

    2013-01-01

    A number of studies have found high levels of mercury (Hg) in deep-sea organisms throughout the world's oceans, but the underlying causes are not clear as there is no consensus on the origin and cycling of Hg in the ocean. Recent findings suggested that Hg accumulation may increase with increasing forage depth and pointed to the deep-water column as the origin of most Hg in marine biota, especially its organic methylmercury (MeHg) form. In the present study, we determined the total mercury (THg) levels in 12 deep-sea fish species and a decapod crustacean and investigated their relationship with the species' nitrogen stable isotope ratio ({delta}{sup 15}N) as an indicator of their trophic level, average weight and habitat depth. THg levels ranged from 0.27 to 4.42 {mu}g/g w.w. and exceeded in all, except one species, the recommended 0.5 {mu}g/g w.w. guideline value. While THg levels exhibited a strong relationship with {delta}{sup 15}N values and to a lesser extent with weight, the habitat depth, characterized as the species' depth of maximum abundance (DMA), had also a significant effect on Hg accumulation. The fish species with a shallower depth range exhibited lower THg values than predicted by their trophic level ({delta}{sup 15}N) and body mass, while measured THg values were higher than predicted in deeper-dwelling fish. Overall, the present results point out a potential risk for human health from the consumption of deep-sea fish. In particular, for both, the red shrimp Aristeus antennatus, which is one of the most valuable fishing resources of the Mediterranean, as well as the commercially exploited fish Mora moro, THg levels considerably exceeded the recommended 0.5 {mu}g/g w.w. limit and should be consumed with caution. -- Highlights: Black-Right-Pointing-Pointer High total mercury (THg) levels were detected in Mediterranean deep-sea organisms. Black-Right-Pointing-Pointer Uniform contamination pattern was observed across the Mediterranean

  9. Taxonomic research on deep-sea macrofauna in the South China Sea using the Chinese deep-sea submersible Jiaolong.

    Science.gov (United States)

    Li, Xinzheng

    2017-07-01

    This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong. To date, 6 new species have been described, including the sponges Lophophysema eversa, Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae, Uroptychus spinulosus and Globospongicola jiaolongi; some newly recorded species from the South China Sea have also been reported. The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li (2015), as has the mitochondrial genome of the glass sponge L. eversa by Zhang et al. (2016). The population structures of two dominant species, the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons, from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough, were compared using molecular analysis. The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences. © 2017 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  10. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    Science.gov (United States)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  11. Spatio-temporal modelling of zero-inflated deep-sea shrimp data by Tweedie generalized additive

    Directory of Open Access Journals (Sweden)

    Simona Arcuti

    2013-10-01

    Full Text Available In theMediterrean Sea the population features of demersal resources fluctuate over spatial and temporal scales due to the variability of abiotic and biotic factors as well as to human activities. The two shrimps Parapenaeus longirostris and Aristaeomorpha foliacea are among the most important deep-sea demersal resources in the North-Western Ionian Sea. Their changes in terms of density, biomass andmedian length induced by anthropogenic and environmental variables (fishing effort, sea surface temperature, precipitations, Winter North Atlantic Oscillation (NAO and Annual MediterraneanOscillation (MO indices were investigated. Biological data were collected during trawl surveys carried out from 1995 to 2006 as part of the international program MEDITS (International Bottom Trawl Survey in the Mediterranean. Generalized AdditiveModels were used to evaluate the spatio-temporal variation of both species, together with the possible nonlinear effects of biotic and abiotic factors. Density and biomass were assumed to be distributed according to a member of the Tweedie family in order to account for zero-inflation in the relative data. Spacetime interaction was consideredwithin a non-separablemodel with smooth spatio-temporal component based on tensor product splines. The results show significant spatio-temporal and depth effects in the three population parameters of these resources. Winter NAO index significantly influenced the density, biomass and length of P. longirostris. Sea surface temperature significantly influenced the size of this species and the three population features of A. foliacea. The size of this shrimp resulted also influenced negatively by fishing effort and positively by the MO index.

  12. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  13. Authigenic gypsum in a deep sea core from Southeastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.

    Authigenic gypsum has been encountered in a deep sea core RC9-157 from the southeastern Arabian Sea at a depth of 4111 m which is a zone of lysocline. The formation of gypsum in the deep sea region is attributed to the prevailing sulphate rich...

  14. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    Craig, Jessica; Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G.

    2011-01-01

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  15. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  16. Deep-sea geohazards in the South China Sea

    Science.gov (United States)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  17. Deep-sea benthic community and environmental impact assessment at the Atlantic Frontier

    Science.gov (United States)

    Gage, John D.

    2001-05-01

    The seabed community provides a sensitive litmus for environmental change. North Sea analysis of benthic populations provides an effective means for monitoring impacts from man's interventions, such as offshore oil exploitation and fishing, against baseline knowledge of the environment. Comparable knowledge of the benthic biology in the deep waters of the Atlantic Frontier beyond the N.E. Atlantic shelf edge is poorly developed. But uncertainties should not encourage assumptions and extrapolations from the better-known conditions on the continental shelf. While sampling at present still provides the best means to assess the health of the deepwater benthic habitat, protocols developed for deep-sea fauna should be applied. These are necessary because of (a) lower faunal densities, (b) higher species richness, (c) smaller body size, and (d) to ensure comparability with other deep-sea data. As in the North Sea, species richness and relative abundance can be analysed from quantitative samples in order to detect impacts. But analysis based on taxonomic sufficiency above species level is premature, even if arguably possible for coastal communities. Measures also need to ensure identifications are not forced to more familiar coastal species without proper study. Species-level analysis may be applied to seabed photographs of megafauna in relation to data on bottom environment, such as currents and the sediment, to monitor the health of the deep-water community. Although the composition of higher taxa in the benthic community is broadly similar to soft sediments on the shelf, concordance in sensitivities is speculative. Moreover, new organisms occur, such as giant protozoan xenophyophores, unknown on the continental shelf, whose sensitivities remain conjectural. Past knowledge of the benthic biology of the deep-water areas off Scotland is based on scattered stations and some more focussed, multidisciplinary studies, and should be significantly augmented by the results from

  18. Dioxin compounds in the deep-sea rose shrimp Aristeus antennatus (Risso, 1816) throughout the Mediterranean Sea

    Science.gov (United States)

    Rotllant, Guiomar; Abad, Esteban; Sardà, Francisco; Ábalos, Manuela; Company, Joan B.; Rivera, Josep

    2006-12-01

    Polychlorodibenzo- p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) are among the more toxic anthropogenic contaminants. They are fat-soluble and accumulate in animal tissues. Exposure to PCDD/Fs can cause several endocrine, reproductive and developmental problems in animals, including human beings. Several studies have demonstrated that fish and invertebrates living in association with sediments are exposed to and accumulate contaminants, but to date there have been no studies of PCDD/Fs contamination in deep-sea regions. Specimens of Aristeus antennatus (Risso, 1816) were collected from depths of 600-2500 m at different points in the Mediterranean Sea, from the western basin off the coast of Barcelona to the central basin off the Peloponnesian Peninsula, with otter trawl gear. Amounts of PCDD/Fs were measured in different animal tissues by high resolution gas chromatography coupled to high resolution mass spectrometry (HRGC-HRMS). This is the first study to report the presence of PCDD/Fs in deep-sea organisms dwelling at depths below 600 m. A. antennatus presented levels of PCDD/Fs of the same order of magnitude, or slightly higher, as those found in shallow-water species ( Melicertus kerathurus) with respect to land-generated contamination. This highlights the widespread distribution of these pollutants and the potential threat posed to the biodiversity of fragile and vulnerable ecosystems such as the deep-sea. PCDD/F levels detected in the edible parts (muscle) of the commercial shrimp A. antennatus were clearly below the toxic limit value established by European legislation. Levels followed the trend muscle

  19. U.V. repair in deep-sea bacteria

    International Nuclear Information System (INIS)

    Lutz, L.; Yayanos, A.A.

    1986-01-01

    Exposure of cells to light of less than 320 nanometers wavelengths may lead to lethal lesions and perhaps carcinogenesis. Many organisms have evolved mechanisms to repair U.V. light-induced damage. Organisms such as deep-sea bacteria are presumably never exposed to U.V. light and perhaps occasionally to visible from bioluminescence. Thus, the repair of U.V. damage in deep-sea bacterial DNA might be inefficient and repair by photoreactivation unlikely. The bacteria utilized in this investigation are temperature sensitive and barophilic. Four deep-sea isolates were chosen for this study: PE-36 from 3584 m, CNPT-3 from 5782 m, HS-34 from 5682 m, and MT-41 from 10,476 m, all are from the North Pacific ocean. The deep-sea extends from 1100 m to depths greater than 7000 m. It is a region of relatively uniform conditions. The temperature ranges from 5 to -1 0 C. There is no solar light in the deep-sea. Deep-sea bacteria are sensitive to U.V. light; in fact more sensitive than a variety of terrestrial and sea-surface bacteria. All four isolates demonstrate thymine dimer repair. Photoreactivation was observed in only MT-41. The other strains from shallower depths displayed no photoreactivation. The presence of DNA sequences homologous to the rec A, uvr A, B, and C and phr genes of E. coli have been examined by Southern hybridization techniques

  20. In Brief: Deep-sea observatory

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    The first deep-sea ocean observatory offshore of the continental United States has begun operating in the waters off central California. The remotely operated Monterey Accelerated Research System (MARS) will allow scientists to monitor the deep sea continuously. Among the first devices to be hooked up to the observatory are instruments to monitor earthquakes, videotape deep-sea animals, and study the effects of acidification on seafloor animals. ``Some day we may look back at the first packets of data streaming in from the MARS observatory as the equivalent of those first words spoken by Alexander Graham Bell: `Watson, come here, I need you!','' commented Marcia McNutt, president and CEO of the Monterey Bay Aquarium Research Institute, which coordinated construction of the observatory. For more information, see http://www.mbari.org/news/news_releases/2008/mars-live/mars-live.html.

  1. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  2. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1986-01-01

    This report reviews the present knowledge of oceanic processes by which substances might be transferred from a deep-sea dump site back to man or his food chain and recommends pragmatic ways to calculate such transfers in order that deep-sea dumping of contaminants may be regulated effectively. The recommendations as to the currently most appropriate models are given

  3. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    Full Text Available Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth, including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components

  4. Evolutionary process of deep-sea bathymodiolus mussels.

    Science.gov (United States)

    Miyazaki, Jun-Ichi; de Oliveira Martins, Leonardo; Fujita, Yuko; Matsumoto, Hiroto; Fujiwara, Yoshihiro

    2010-04-27

    Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) and NADH dehydrogenase subunit 4 (ND4) genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of symbiosis in that nutritional adaptation to the deep sea proceeded from extracellular

  5. Indicator polychlorinated biphenyl residues in muscle tissue of fish from Black Sea coast of Bulgaria

    Directory of Open Access Journals (Sweden)

    S. Georgieva

    2016-06-01

    Full Text Available Abstract. Polychlorinated biphenyls (PCBs are characterized by high lipophilicity and persistence in the environment and will therefore bioaccumulate and biomagnify in the food chain. PCBs were determined in muscle tissue of four fish species: goby (Neogobius melanostomus, horse mackerel (Trachurus Mediterraneus ponticus, shad (Alosa pontica pontica and turbot (Psetta maxima maeotica. Samples were collected from Bulgarian Black Sea coast during 2007 – 2011. The PCBs were analyzed in order to examine the time trends of PCB concentrations in fish from Black Sea. The six individual PCBs congeners were determined by capillary gas chromatography system with mass spectrometry detection. PCBs were found in all fish species at concentrations ranging between 2.32 ng/g ww (wet weight and 32.87 ng/g ww in goby and shad, respectively. PCB profiles have been found to be similar in all the fish species tested. The most abundant PCB congeners in fish species were hexa- and heptachlorinated PCBs 138, 153 and 180. PCB 153 was the dominant congener in all fish studied and were found in the range from 0.95 ng/g ww (horse mackerel 2011 to 11.67 ng/g ww (shad 2010. The sum of six indicator PCBs in all fish species did not exceed the European maximum limit of 75 ng/g ww. The levels of PCBs in fish from Bulgarian Black Sea coast were found lower than in fish species from other seas – the Aegean Sea and the Mediterranean Sea.

  6. A Eulerian nutrient to fish model of the Baltic Sea — A feasibility-study

    Science.gov (United States)

    Radtke, Hagen; Neumann, Thomas; Fennel, Wolfgang

    2013-09-01

    A nutrient-to-fish-model with an explicit two-way interaction between a biogeochemical model of the lower food web and a fish model component is presented for the example of the Baltic Sea, demonstrating the feasibility of a consistent coupling of the upper and lower parts of the food web in a Eulerian model system. In the Baltic Sea, the fish stock is dominated by two prey species (sprat and herring) and one predator (cod). The dynamics of the fish model is driven by size (mass-class) dependent predator-prey interactions while the interaction between the biogeochemical and Fish model component is established through feeding of prey fish on zooplankton and recycling of fish biomass to nutrients and detritus. The fish model component is coupled to an advanced three dimensional biogeochemical model (ERGOM, Neumann et al., 2002). A horizontally explicit representation of fish requires the implementation of fish behavior. As a first step, we propose an algorithm to stimulate fish migration by letting the fish follow the food. Moreover, fish species are guided to their respective spawning areas. Results of first three-dimensional simulations are presented with emphasis on the transport of matter by moving fish. The spawning areas of cod and sprat are in the deep basins, which are not well reached by advective transport. Hence the deposition of matter in these areas by spawning fish could play some role in the distribution of matter. The approach is not limited to applications for the Baltic and the model can be transferred also to other systems.

  7. The biomass of the deep-sea benthopelagic plankton

    Science.gov (United States)

    Wishner, K. F.

    1980-04-01

    Deep-sea benthopelagic plankton samples were collected with a specially designed opening-closing net system 10 to 100 m above the bottom in five different oceanic regions at depths from 1000 to 4700 m. Benthopelagic plankton biomasses decrease exponentially with depth. At 1000 m the biomass is about 1% that of the surface zooplankton, at 5000 m about 0.1%. Effects of differences in surface primary productivity on deep-sea plankton biomass are much less than the effect of depth and are detectable only in a few comparisons of extreme oceanic regions. The biomass at 10 m above the bottom is greater than that at 100 m above the bottom (in a three-sample comparison), which could be a consequence of an enriched near-bottom environment. The deep-sea plankton biomass in the Red Sea is anomalously low. This may be due to increased decomposition rates in the warm (22°C) deep Red Sea water, which prevent much detritus from reaching the deep sea. A model of organic carbon utilization in the benthic boundary layer (bottom 100 m), incorporating results from deep-sea sediment trap and respiration studies, indicates that the benthopelagic plankton use only a small amount of the organic carbon flux. A large fraction of the flux is unaccounted for by present estimates of benthic and benthopelagic respiration.

  8. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  9. Repeated and Widespread Evolution of Bioluminescence in Marine Fishes.

    Directory of Open Access Journals (Sweden)

    Matthew P Davis

    Full Text Available Bioluminescence is primarily a marine phenomenon with 80% of metazoan bioluminescent genera occurring in the world's oceans. Here we show that bioluminescence has evolved repeatedly and is phylogenetically widespread across ray-finned fishes. We recover 27 independent evolutionary events of bioluminescence, all among marine fish lineages. This finding indicates that bioluminescence has evolved many more times than previously hypothesized across fishes and the tree of life. Our exploration of the macroevolutionary patterns of bioluminescent lineages indicates that the present day diversity of some inshore and deep-sea bioluminescent fish lineages that use bioluminescence for communication, feeding, and reproduction exhibit exceptional species richness given clade age. We show that exceptional species richness occurs particularly in deep-sea fishes with intrinsic bioluminescent systems and both shallow water and deep-sea lineages with luminescent systems used for communication.

  10. Contested Space of Transborder Fishing in Timor and Arafura Seas

    Directory of Open Access Journals (Sweden)

    Shiskha Prabawaningtyas

    2017-06-01

    Full Text Available The continuity of Indonesian transborder fishing activities into Australian Fishing Zone (AFZ highlights the rooted dispute of maritime border when contested space of boundary shared by local, state and international actor is confronted. Therefore, the prevailing of multilayer perspective of maritime boundary should not be easily neglected. The colonial project in early 19th century in Southeast Asia that initiated the foundation of modern state-formation had challenged the prior-political and economic construction of the region, specifically on the issue of territoriality. The modernization of shipping and fishing activities of which relied on technology and capitals had generated political and economic competitions and later persuaded state’s actors of applying the strategy of the territorialisation of the sea in order to ensure control. Unavoidably, securitization of transborder fishing became preferable solution. Transborder fishings are further subjected into state control relied on territorial sovereignty. This paper examines the transformation of transborder fishing in Timor and Arafura Sea to demonstrated the contested space of which interplayed by local, state and international actor. State regulations had transformed transborder fishing into political space of authority competition relied on territorial sovereignty, while socio-cultural heritage reminds exploited within fluid space of livelihood survival when state function is just absent.

  11. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  12. The role of carrion supply in the abundance of deep-water fish off California.

    Science.gov (United States)

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.

  13. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    Science.gov (United States)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  14. Major impacts of climate change on deep-sea benthic ecosystems

    Directory of Open Access Journals (Sweden)

    Andrew K. Sweetman

    2017-02-01

    Full Text Available The deep sea encompasses the largest ecosystems on Earth. Although poorly known, deep seafloor ecosystems provide services that are vitally important to the entire ocean and biosphere. Rising atmospheric greenhouse gases are bringing about significant changes in the environmental properties of the ocean realm in terms of water column oxygenation, temperature, pH and food supply, with concomitant impacts on deep-sea ecosystems. Projections suggest that abyssal (3000–6000 m ocean temperatures could increase by 1°C over the next 84 years, while abyssal seafloor habitats under areas of deep-water formation may experience reductions in water column oxygen concentrations by as much as 0.03 mL L–1 by 2100. Bathyal depths (200–3000 m worldwide will undergo the most significant reductions in pH in all oceans by the year 2100 (0.29 to 0.37 pH units. O2 concentrations will also decline in the bathyal NE Pacific and Southern Oceans, with losses up to 3.7% or more, especially at intermediate depths. Another important environmental parameter, the flux of particulate organic matter to the seafloor, is likely to decline significantly in most oceans, most notably in the abyssal and bathyal Indian Ocean where it is predicted to decrease by 40–55% by the end of the century. Unfortunately, how these major changes will affect deep-seafloor ecosystems is, in some cases, very poorly understood. In this paper, we provide a detailed overview of the impacts of these changing environmental parameters on deep-seafloor ecosystems that will most likely be seen by 2100 in continental margin, abyssal and polar settings. We also consider how these changes may combine with other anthropogenic stressors (e.g., fishing, mineral mining, oil and gas extraction to further impact deep-seafloor ecosystems and discuss the possible societal implications.

  15. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  16. A Moessbauer study of deep sea sediments

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Furuta, T.; Kobayashi, K.

    1981-01-01

    In order to determine the chemical states of iron in deep sea sediments, Moessbauer spectra of the sediments collected from various areas of the Pacific have been measured. The Moessbauer spectra were composed of paramagnetic ferric, high-spin ferrous, and magnetic components. The correlation of their relative abundance to the sampling location and the kind of sediments may afford clues to infer the origin of each iron-bearing phase. (author)

  17. Combining telephone surveys and fishing catches self-report: the French sea bass recreational fishery assessment.

    Science.gov (United States)

    Rocklin, Delphine; Levrel, Harold; Drogou, Mickaël; Herfaut, Johanna; Veron, Gérard

    2014-01-01

    Fisheries statistics are known to be underestimated, since they are mainly based on information about commercial fisheries. However, various types of fishing activities exist and evaluating them is necessary for implementing effective management plans. This paper assesses the characteristics and catches of the French European sea bass recreational fishery along the Atlantic coasts, through the combination of large-scale telephone surveys and fishing diaries study. Our results demonstrated that half of the total catches (mainly small fish) were released at sea and that the mean length of a kept sea bass was 46.6 cm. We highlighted different patterns of fishing methods and type of gear used. Catches from boats were greater than from the shore, both in abundance and biomass, considering mean values per fishing trip as well as CPUE. Spearfishers caught the highest biomass of sea bass per fishing trip, but the fishing rod with lure was the most effective type of gear in terms of CPUE. Longlines had the highest CPUE value in abundance but not in biomass: they caught numerous but small sea bass. Handlines were less effective, catching few sea bass in both abundance and biomass. We estimated that the annual total recreational sea bass catches was 3,173 tonnes of which 2,345 tonnes were kept. Since the annual commercial catches landings were evaluated at 5,160 tonnes, recreational landings represent 30% of the total fishing catches on the Atlantic coasts of France. Using fishers' self-reports was a valuable way to obtain new information on data-poor fisheries. Our results underline the importance of evaluating recreational fishing as a part of the total amount of fisheries catches. More studies are critically needed to assess overall fish resources caught in order to develop effective fishery management tools.

  18. Combining telephone surveys and fishing catches self-report: the French sea bass recreational fishery assessment.

    Directory of Open Access Journals (Sweden)

    Delphine Rocklin

    Full Text Available Fisheries statistics are known to be underestimated, since they are mainly based on information about commercial fisheries. However, various types of fishing activities exist and evaluating them is necessary for implementing effective management plans. This paper assesses the characteristics and catches of the French European sea bass recreational fishery along the Atlantic coasts, through the combination of large-scale telephone surveys and fishing diaries study. Our results demonstrated that half of the total catches (mainly small fish were released at sea and that the mean length of a kept sea bass was 46.6 cm. We highlighted different patterns of fishing methods and type of gear used. Catches from boats were greater than from the shore, both in abundance and biomass, considering mean values per fishing trip as well as CPUE. Spearfishers caught the highest biomass of sea bass per fishing trip, but the fishing rod with lure was the most effective type of gear in terms of CPUE. Longlines had the highest CPUE value in abundance but not in biomass: they caught numerous but small sea bass. Handlines were less effective, catching few sea bass in both abundance and biomass. We estimated that the annual total recreational sea bass catches was 3,173 tonnes of which 2,345 tonnes were kept. Since the annual commercial catches landings were evaluated at 5,160 tonnes, recreational landings represent 30% of the total fishing catches on the Atlantic coasts of France. Using fishers' self-reports was a valuable way to obtain new information on data-poor fisheries. Our results underline the importance of evaluating recreational fishing as a part of the total amount of fisheries catches. More studies are critically needed to assess overall fish resources caught in order to develop effective fishery management tools.

  19. The visual ecology of a deep-sea fish, the escolar Lepidocybium flavobrunneum (Smith, 1843)†

    Science.gov (United States)

    Landgren, Eva; Fritsches, Kerstin; Brill, Richard; Warrant, Eric

    2014-01-01

    Escolar (Lepidocybium flavobrunneum, family Gempylidae) are large and darkly coloured deep-sea predatory fish found in the cold depths (more than 200 m) during the day and in warm surface waters at night. They have large eyes and an overall low density of retinal ganglion cells that endow them with a very high optical sensitivity. Escolar have banked retinae comprising six to eight layers of rods to increase the optical path length for maximal absorption of the incoming light. Their retinae possess two main areae of higher ganglion cell density, one in the ventral retina viewing the dorsal world above (with a moderate acuity of 4.6 cycles deg−1), and the second in the temporal retina viewing the frontal world ahead. Electrophysiological recordings of the flicker fusion frequency (FFF) in isolated retinas indicate that escolar have slow vision, with maximal FFF at the highest light levels and temperatures (around 9 Hz at 23°C) which fall to 1–2 Hz in dim light or cooler temperatures. Our results suggest that escolar are slowly moving sit-and-wait predators. In dim, warm surface waters at night, their slow vision, moderate dorsal resolution and highly sensitive eyes may allow them to surprise prey from below that are silhouetted in the downwelling light. PMID:24395966

  20. Bottom-up and top-down triggers of diversification: A new look at the evolutionary ecology of scavenging amphipods in the deep sea

    Science.gov (United States)

    Havermans, Charlotte; Smetacek, Victor

    2018-05-01

    The initial, anthropocentric view of the deep ocean was that of a hostile environment inhabited by organisms rendered lethargic by constant high pressure, low temperature and sparse food supply, hence evolving slowly. This conceptual framework of a spatially and temporally homogeneous, connected, strongly bottom-up controlled habitat implied a strong constraint on, or poor incentive for, speciation. Hence, the discovery in the late 1960s of high species diversity of abyssal benthic invertebrates came as a surprise. Since then, the slow-motion view of deep-sea ecology and evolution has speeded up and diversified in the light of increasing evidence accumulating from in situ visual observations complemented by molecular and other tools. The emerging picture is that of a much livelier, highly diversified and more complex deep-sea fauna than previously assumed. In this review we examine the consequences of the incoming information for developing a broader view of evolutionary ecology in the deep sea, and for scavenging amphipods in particular. We revisit the food supply to the deep-sea floor and hypothesize that the dead bodies of animals, ranging from zooplankton to large fish are likely to be a more important source of food than their friable faeces. Camera observations of baited traps indicate that amphipod carrion-feeders arrive within hours at the bait which continues to draw new individuals for days to months later, presumably by scent trails in tidal currents. We explore the different stages of food acquisition upon which natural selection may have acted, from detection to ingestion, and discuss the possibility of a broader range of food acquisition strategies, including predation and specializations. Although currently neglected in deep-sea ecology, top-down factors are likely to play a more important role in the evolution of deep-sea organisms. Predation on amphipods at baits by bathyal and abyssal fishes, and large predatory crustaceans in the hadal zone, is

  1. NOAA's efforts to map extent, health and condition of deep sea corals and sponges and their habitat on the banks and island slopes of Southern California

    Science.gov (United States)

    Etnoyer, P. J.; Salgado, E.; Stierhoff, K.; Wickes, L.; Nehasil, S.; Kracker, L.; Lauermann, A.; Rosen, D.; Caldow, C.

    2015-12-01

    Southern California's deep-sea corals are diverse and abundant, but subject to multiple stressors, including corallivory, ocean acidification, and commercial bottom fishing. NOAA has surveyed these habitats using a remotely operated vehicle (ROV) since 2003. The ROV was equipped with high-resolution cameras to document deep-water groundfish and their habitat in a series of research expeditions from 2003 - 2011. Recent surveys 2011-2015 focused on in-situ measures of aragonite saturation and habitat mapping in notable habitats identified in previous years. Surveys mapped abundance and diversity of fishes and corals, as well as commercial fisheries landings and frequency of fishing gear. A novel priority setting algorithm was developed to identify hotspots of diversity and fishing intensity, and to determine where future conservation efforts may be warranted. High density coral aggregations identified in these analyses were also used to guide recent multibeam mapping efforts. The maps suggest a large extent of unexplored and unprotected hard-bottom habitat in the mesophotic zone and deep-sea reaches of Channel Islands National Marine Sanctuary.

  2. Demersal and larval fish assemblages in the Chukchi Sea

    Science.gov (United States)

    Norcross, Brenda L.; Holladay, Brenda A.; Busby, Morgan S.; Mier, Kathryn L.

    2010-01-01

    A multidisciplinary research cruise was conducted in the Chukchi Sea in summer 2004 during which we investigated assemblages of small demersal fishes and ichthyoplankton and the water masses associated with these assemblages. This study establishes a baseline of 30 demersal fish and 25 ichthyoplankton taxa in US and Russian waters of the Chukchi Sea. Presence/absence of small demersal fish clustered into four assemblages: Coastal Fishes, Western Chukchi Fishes, South Central Chukchi Fishes, and North Central Chukchi Fishes. Habitats occupied by small demersal fishes were characterized by sediment type, bottom salinity, and bottom temperature. Abundance of ichthyoplankton grouped into three assemblages with geographical extent similar to that of the bottom assemblages, except that there was a single assemblage for Central Chukchi Fishes. Water-column temperature and salinity characterized ichthyoplankton habitats. Three water masses, Alaska Coastal Water, Bering Sea Water, and Winter Water, were identified from both bottom and depth-averaged water-column temperature and salinity. A fourth water mass, Resident Chukchi Water, was identified only in the bottom water. The water mass and habitat characteristics with which demersal and larval fish assemblages were associated create a baseline to measure anticipated effects of climate change that are expected to be most severe at high latitudes. Monitoring fish assemblages could be a tool for assessing the effects of climate change. Climate-induced changes in distributions of species would result in a restructuring of fish assemblages in the Chukchi Sea.

  3. Biodiversity loss from deep-sea mining

    OpenAIRE

    C. L. Van Dover; J. A. Ardron; E. Escobar; M. Gianni; K. M. Gjerde; A. Jaeckel; D. O. B. Jones; L. A. Levin; H. Niner; L. Pendleton; C. R. Smith; T. Thiele; P. J. Turner; L. Watling; P. P. E. Weaver

    2017-01-01

    The emerging deep-sea mining industry is seen by some to be an engine for economic development in the maritime sector. The International Seabed Authority (ISA) – the body that regulates mining activities on the seabed beyond national jurisdiction – must also protect the marine environment from harmful effects that arise from mining. The ISA is currently drafting a regulatory framework for deep-sea mining that includes measures for environmental protection. Responsible mining increasingly stri...

  4. Stable isotope geochemistry of deep sea cherts

    Energy Technology Data Exchange (ETDEWEB)

    Kolodny, Y; Epstein, S [California Inst. of Tech., Pasadena (USA). Div. of Geological Sciences

    1976-10-01

    Seventy four samples of DSDP (Deep Sea Drilling Project) recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. delta/sup 18/0 of chert ranges between 27 and 39 parts per thousand relative to SMOW, delta/sup 18/0 of porcellanite - between 30 and 42 parts per thousand. The consistent enrichment of opal-CT in porcellanites in /sup 18/0 with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. delta/sup 18/0 of deep sea cherts generally decrease with increasing age, indicating an overall cooling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas et al., Initial Reports of the Deep Sea Drilling Project; 32:509(1975)) indicates the possibility of delta/sup 18/0 in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of delta/sup 18/0 values, increasing diagenesis being reflected in a lowering of delta/sup 18/0. Drusy quartz has the lowest delta/sup 18/0 values. On land exposed cherts are consistently depleted in /sup 18/0 in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt%. deltaD of this water ranges between -78 and -95 parts per thousand and is not a function of delta/sup 18/0 of the cherts (or the temperature of their formation).

  5. Food web functioning of the benthopelagic community in a deep-sea seamount based on diet and stable isotope analyses

    Science.gov (United States)

    Preciado, Izaskun; Cartes, Joan E.; Punzón, Antonio; Frutos, Inmaculada; López-López, Lucía; Serrano, Alberto

    2017-03-01

    Trophic interactions in the deep-sea fish community of the Galicia Bank seamount (NE Atlantic) were inferred by using stomach contents analyses (SCA) and stable isotope analyses (SIA) of 27 fish species and their main prey items. Samples were collected during three surveys performed in 2009, 2010 and 2011 between 625 and 1800 m depth. Three main trophic guilds were determined using SCA data: pelagic, benthopelagic and benthic feeders, respectively. Vertically migrating macrozooplankton and meso-bathypelagic shrimps were identified to play a key role as pelagic prey for the deep sea fish community of the Galicia Bank. Habitat overlap was hardly detected; as a matter of fact, when species coexisted most of them evidenced a low dietary overlap, indicating a high degree of resource partitioning. A high potential competition, however, was observed among benthopelagic feeders, i.e.: Etmopterus spinax, Hoplostethus mediterraneus and Epigonus telescopus. A significant correlation was found between δ15N and δ13C for all the analysed species. When calculating Trophic Levels (TLs) for the main fish species, using both the SCA and SIA approaches, some discrepancies arose: TLs calculated from SIA were significantly higher than those obtained from SCA, probably indicating a higher consumption of benthic-suprabenthic prey in the previous months. During the summer, food web functioning in the Galicia Bank was more influenced by the assemblages dwelling in the water column than by deep-sea benthos, which was rather scarce in the summer samples. These discrepancies demonstrate the importance of using both approaches, SCA (snapshot of diet) and SIA (assimilated food in previous months), when attempting trophic studies, if an overview of food web dynamics in different compartments of the ecosystem is to be obtained.

  6. Exploring Archaeal Communities And Genomes Across Five Deep-Sea Brine Lakes Of The Red Sea With A Focus On Methanogens

    KAUST Repository

    Guan, Yue

    2015-12-15

    The deep-sea hypersaline lakes in the Red Sea are among the most challenging, extreme, and unusual environments on the planet Earth. Despite their harshness to life, they are inhabited by diverse and novel members of prokaryotes. Methanogenesis was proposed as one of the main metabolic pathways that drive microbial colonization in similar habitats. However, not much is known about the identities of the methane-producing microbes in the Red Sea, let alone the way in which they could adapt to such poly extreme environments. Combining a range of microbial community assessment, cultivation and omics (genomics, transcriptomics, and single amplified genomics) approaches, this dissertation seeks to fill these gaps in our knowledge by studying archaeal composition, particularly methanogens, their genomic capacities and transcriptomic characteristics in order to elucidate their diversity, function, and adaptation to the deep-sea brines of the Red Sea. Although typical methanogens are not abundant in the samples collected from brine pool habitats of the Red Sea, the pilot cultivation experiment has revealed novel halophilic methanogenic species of the domain Archaea. Their physiological traits as well as their genomic and transcriptomic features unveil an interesting genetic and functional adaptive capacity that allows them to thrive in the unique deep-sea hypersaline environments in the Red Sea.

  7. Late Eocene impact events recorded in deep-sea sediments

    Science.gov (United States)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  8. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    Science.gov (United States)

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  9. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren

    2017-07-19

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  10. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren; Baumgarten, Sebastian; Rö thig, Till; Roder, Cornelia; Roik, Anna Krystyna; Michell, Craig; Voolstra, Christian R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  11. Taxonomy, distribution and ecology of the order Phyllodocida (Annelida, Polychaeta) in deep-sea habitats around the Iberian margin

    Science.gov (United States)

    Ravara, Ascensão; Ramos, Diana; Teixeira, Marcos A. L.; Costa, Filipe O.; Cunha, Marina R.

    2017-03-01

    The polychaetes of the order Phyllodocida (excluding Nereidiformia and Phyllodociformia incertae sedis) collected from deep-sea habitats of the Iberian margin (Bay of Biscay, Horseshoe continental rise, Gulf of Cadiz and Alboran Sea), and Atlantic seamounts (Gorringe Bank, Atlantis and Nameless) are reported herein. Thirty-six species belonging to seven families - Acoetidae, Pholoidae, Polynoidae, Sigalionidae, Glyceridae, Goniadidae and Phyllodocidae, were identified. Amended descriptions and/or new illustrations are given for the species Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Lepidasthenia brunnea and Polynoe sp. Relevant taxonomical notes are provided for other seventeen species. Allmaniella setubalensis, Anotochaetonoe michelbhaudi, Harmothoe evei, Eumida longicirrata and Glycera noelae, previously known only from their type localities were found in different deep-water places of the studied areas and constitute new records for the Iberian margin. The geographic distributions and the bathymetric range of thirteen and fifteen species, respectively, are extended. The morphology-based biodiversity inventory was complemented with DNA sequences of the mitochondrial barcode region (COI barcodes) providing a molecular tag for future reference. Twenty new sequences were obtained for nine species in the families Acoetidae, Glyceridae and Polynoidae and for three lineages within the Phylodoce madeirensis complex (Phyllodocidae). A brief analysis of the newly obtained sequences and publicly available COI barcode data for the genera herein reported, highlighted several cases of unclear taxonomic assignments, which need further study.

  12. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  13. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  14. Zooplankton at deep Red Sea brine pools

    KAUST Repository

    Kaartvedt, Stein

    2016-03-02

    The deep-sea anoxic brines of the Red Sea comprise unique, complex and extreme habitats. These environments are too harsh for metazoans, while the brine–seawater interface harbors dense microbial populations. We investigated the adjacent pelagic fauna at two brine pools using net tows, video records from a remotely operated vehicle and submerged echosounders. Waters just above the brine pool of Atlantis II Deep (2000 m depth) appeared depleted of macrofauna. In contrast, the fauna appeared to be enriched at the Kebrit Deep brine–seawater interface (1466 m).

  15. Echinoid associations with coral habitats differ with taxon in the deep sea and the influence of other echinoids, depth, and fishing history on their distribution

    Science.gov (United States)

    Stevenson, Angela; Davies, Jaime S.; Williams, Alan; Althaus, Franziska; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.; Mitchell, Fraser J. G.

    2018-03-01

    Patterns of habitat use by animals and knowledge of the environmental factors affecting these spatial patterns are important for understanding the structure and dynamics of ecological communities. Both aspects are poorly known for deep-sea habitats. The present study investigates echinoid distributions within cold water coral (CWC) habitats on continental margins off France, Australia, and New Zealand. It further examines the influence of habitat-related variables that might help explain the observed distribution of echinoid taxa. Six echinoid taxa were examined from video and photographic transects to reveal taxon-specific distribution patterns and habitat-related influences. The Echinoidea were found in all habitats studied, but tended to aggregate in architecturally complex habitats associated with living cold-water corals. However, a taxon-specific investigation found that such associations were largely an artefact of the dominant taxa observed in a specific region. Despite the food and shelter resources offered to echinoids by matrix-forming coral habitats, not all taxa were associated with these habitats, and some had a random association with the habitats examined, while others displayed non-random associations. Echinoid distribution was correlated with several variables; the presence of other echinoids, depth, and fishing history were the most influential factors. This study indicates that image data can be a useful tool to detect trends in echinoid habitat associations. It also suggests that refinement of the methods, in particular with studies conducted at a more precise taxon and habitat scale, would facilitate better quantitative analyses of habitat associations and paint a more realistic picture of a population's ecology. Most deep-sea ecological studies to date have been conducted at a relatively coarse taxonomic and habitat resolution, and lack sufficient resolution to provide useful information for the conservation of vulnerable deep-sea habitats.

  16. Biomagnification of persistent organic pollutants in a deep-sea, temperate food web.

    Science.gov (United States)

    Romero-Romero, Sonia; Herrero, Laura; Fernández, Mario; Gómara, Belén; Acuña, José Luis

    2017-12-15

    Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ 15 N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ 15 N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Diversity of deep-sea fishes of the Easter Island Ecoregion

    Science.gov (United States)

    Easton, Erin E.; Sellanes, Javier; Gaymer, Carlos F.; Morales, Naiti; Gorny, Matthias; Berkenpas, Eric

    2017-03-01

    The Easter Island Ecoregion is in the center of the South Pacific gyre and experiences ultra-oligotrophic conditions that could make it highly susceptible to global change and anthropogenic activities, so it is imperative that these regions are characterized and studied so that conservation and sustainable management strategies can be developed. From the few studies from the region, we know that the coastal areas are relatively depauperate and have relatively high rates of endemism. Here, we present a brief report from the first video observations from this region of the deep-dwelling fishes from ROV exploration of benthic communities from 157 to 281 m and baited drop-camera videos from 150 to 1850 m. We observed a total of 55 fish species from the ROV and Drop-Cam surveys; nine could not be assigned family level or lower, 26 were observed in the ROV surveys, 29 were observed in the Drop-Cam surveys, nine were observed with both survey methods, at least six species are potentially new to science, and nine species were observed at deeper depths than previously reported. These new reports may be indicative of the unique oceanographic conditions in the area and the relative isolation of the communities that have provided opportunity for the evolution of new species and favorable conditions for range expansion. In contrast, these new reports may be indicative of the severe undersampling in the south Pacific at mesopelagic depths. The prevalence of potentially new species suggests that the region likely harbors a wealth of undiscovered biodiversity.

  18. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management

    Science.gov (United States)

    Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.

    2017-07-01

    The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.

  19. First quantification of subtidal community structure at Tristan da Cunha Islands in the remote South Atlantic: from kelp forests to the deep sea.

    Science.gov (United States)

    Caselle, Jennifer E; Hamilton, Scott L; Davis, Kathryn; Thompson, Christopher D H; Turchik, Alan; Jenkinson, Ryan; Simpson, Doug; Sala, Enric

    2018-01-01

    Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan's marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future monitoring

  20. First quantification of subtidal community structure at Tristan da Cunha Islands in the remote South Atlantic: from kelp forests to the deep sea

    Science.gov (United States)

    Hamilton, Scott L.; Davis, Kathryn; Thompson, Christopher D. H.; Turchik, Alan; Jenkinson, Ryan; Simpson, Doug; Sala, Enric

    2018-01-01

    Tristan da Cunha Islands, an archipelago of four rocky volcanic islands situated in the South Atlantic Ocean and part of the United Kingdom Overseas Territories (UKOTs), present a rare example of a relatively unimpacted temperate marine ecosystem. We conducted the first quantitative surveys of nearshore kelp forests, offshore pelagic waters and deep sea habitats. Kelp forests had very low biodiversity and species richness, but high biomass and abundance of those species present. Spatial variation in assemblage structure for both nearshore fish and invertebrates/algae was greatest between the three northern islands and the southern island of Gough, where sea temperatures were on average 3-4o colder. Despite a lobster fishery that provides the bulk of the income to the Tristan islands, lobster abundance and biomass are comparable to or greater than many Marine Protected Areas in other parts of the world. Pelagic camera surveys documented a rich biodiversity offshore, including large numbers of juvenile blue sharks, Prionace glauca. Species richness and abundance in the deep sea is positively related to hard rocky substrate and biogenic habitats such as sea pens, crinoids, whip corals, and gorgonians were present at 40% of the deep camera deployments. We observed distinct differences in the deep fish community above and below ~750 m depth. Concurrent oceanographic sampling showed a discontinuity in temperature and salinity at this depth. While currently healthy, Tristan’s marine ecosystem is not without potential threats: shipping traffic leading to wrecks and species introductions, pressure to increase fishing effort beyond sustainable levels and the impacts of climate change all could potentially increase in the coming years. The United Kingdom has committed to protection of marine environments across the UKOTs, including Tristan da Cunha and these results can be used to inform future management decisions as well as provide a baseline against which future

  1. CURRENT STATE OF FISHERIES AND ASSESSMENT OF FISH STOCKS IN THE WESTERN MIDDLE OF THE CASPIAN SEA. PROSPECTS FOR THE USE OF THE FISH RESOURCES

    Directory of Open Access Journals (Sweden)

    A. S. Abdusamadov

    2016-01-01

    Full Text Available Aim. To aim is to assess stocks and the fisheries of aquatic biological resources in the western part of the middle Caspian Sea and perspectives for the use of their resource potential.Methods. On the basis of the literature sources and our own data on the fish inventory in the western part of the Middle Caspian, we discuss possible reasons for emerging environmental, economic and other problems in the use of biological resources.Results. The main negative factors are the large-scale poaching, resulting in a catastrophic reduction in stocks of sturgeon and other valuable fish species of the Caspian Sea, a natural penetration of alien organisms (Mnemiopsis and overfishing of some species. The potential danger is large-scale development of oil and gas fields in the Caspian Sea, which can lead to even worse situation for the biological resources of the sea.Conclusions. In order to preserve the biological resources of the sea it is necessary to create conditions for steadily developing fishing and fish processing enterprises, thus ensuring the satisfaction of the constant demand for fish products and an increase in the revenue base of the budget and the well-being of the Russian population.

  2. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  3. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    Science.gov (United States)

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  4. Deep-sea ciliates: Recorded diversity and experimental studies on pressure tolerance

    Science.gov (United States)

    Schoenle, Alexandra; Nitsche, Frank; Werner, Jennifer; Arndt, Hartmut

    2017-10-01

    Microbial eukaryotes play an important role in biogeochemical cycles not only in productive surface waters but also in the deep sea. Recent studies based on metagenomics report deep-sea protistan assemblages totally different from continental slopes and shelf waters. To give an overview about the ciliate fauna recorded from the deep sea we summarized the available information on ciliate occurrence in the deep sea. Our literature review revealed that representatives of the major phylogenetic groups of ciliates were recorded from the deep sea (> 1000 m depth): Karyorelictea, Heterotrichea, Spirotrichea (Protohypotrichia, Euplotia, Oligotrichia, Choreotrichia, Hypotrichia), Armophorea (Armophorida), Litostomatea (Haptoria), Conthreep (Phyllopharyngea incl. Cyrtophoria, Chonotrichia, Suctoria; Nassophorea incl. Microthoracida, Synhymeniida, Nassulida; Colpodea incl. Bursariomorphida, Cyrtolophosidida; Prostomatea; Plagiopylea incl. Plagiopylida, Odontostomatida; Oligohymenophorea incl. Peniculia, Scuticociliatia, Hymenostomatia, Apostomatia, Peritrichia, Astomatia). Species occurring in both habitats, deep sea and shallow water, are rarely found to our knowledge to date. This indicates a high deep-sea specific ciliate fauna. Our own studies of similar genotypes (SSU rDNA and cox1 gene) revealed that two small scuticociliate species (Pseudocohnilembus persalinus and Uronema sp.) could be isolated from surface as well as deep waters (2687 m, 5276 m, 5719 m) of the Pacific. The adaptation to deep-sea conditions was investigated by exposing the ciliate isolates directly or stepwise to different hydrostatic pressures ranging from 1 to 550 atm at temperatures of 2 °C and 13 °C. Although the results indicated no general barophilic behavior, all four isolated strains survived the highest established pressure. A better survival at 550 atm could be observed for the lower temperature. Among microbial eukaryotes, ciliates should be considered as a diverse and potentially

  5. A new classification scheme of European cold-water coral habitats: Implications for ecosystem-based management of the deep sea

    Science.gov (United States)

    Davies, J. S.; Guillaumont, B.; Tempera, F.; Vertino, A.; Beuck, L.; Ólafsdóttir, S. H.; Smith, C. J.; Fosså, J. H.; van den Beld, I. M. J.; Savini, A.; Rengstorf, A.; Bayle, C.; Bourillet, J.-F.; Arnaud-Haond, S.; Grehan, A.

    2017-11-01

    Cold-water corals (CWC) can form complex structures which provide refuge, nursery grounds and physical support for a diversity of other living organisms. However, irrespectively from such ecological significance, CWCs are still vulnerable to human pressures such as fishing, pollution, ocean acidification and global warming Providing coherent and representative conservation of vulnerable marine ecosystems including CWCs is one of the aims of the Marine Protected Areas networks being implemented across European seas and oceans under the EC Habitats Directive, the Marine Strategy Framework Directive and the OSPAR Convention. In order to adequately represent ecosystem diversity, these initiatives require a standardised habitat classification that organises the variety of biological assemblages and provides consistent and functional criteria to map them across European Seas. One such classification system, EUNIS, enables a broad level classification of the deep sea based on abiotic and geomorphological features. More detailed lower biotope-related levels are currently under-developed, particularly with regards to deep-water habitats (>200 m depth). This paper proposes a hierarchical CWC biotope classification scheme that could be incorporated by existing classification schemes such as EUNIS. The scheme was developed within the EU FP7 project CoralFISH to capture the variability of CWC habitats identified using a wealth of seafloor imagery datasets from across the Northeast Atlantic and Mediterranean. Depending on the resolution of the imagery being interpreted, this hierarchical scheme allows data to be recorded from broad CWC biotope categories down to detailed taxonomy-based levels, thereby providing a flexible yet valuable information level for management. The CWC biotope classification scheme identifies 81 biotopes and highlights the limitations of the classification framework and guidance provided by EUNIS, the EC Habitats Directive, OSPAR and FAO; which largely

  6. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  7. A Deep-Sea Simulation.

    Science.gov (United States)

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  8. Indian deep-sea environment experiment (INDEX): Monitoring the restoration of marine enviroment after artificial disturbance to simulate deep-sea mining in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin Guest Editor Rahul Sharma Note from guest editor A special issue on Indian Deep-sea Environment Experiment (INDEX) conducted by the scientists... in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. Nagender Nath, G. Parthiban, S. Banaulikar, and Subhadeep Sarkar Marine Georesources and Geotechnology, 24:61–62, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1064-119X print/1521...

  9. The KM3NeT deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Margiotta, Annarita

    2014-12-01

    KM3NeT is a deep-sea research infrastructure being constructed in the Mediterranean Sea. It will host the next generation Cherenkov neutrino telescope and nodes for a deep sea multidisciplinary observatory, providing oceanographers, marine biologists, and geophysicists with real time measurements. The neutrino telescope will complement IceCube in its field of view and exceed it substantially in sensitivity. Its main goal is the detection of high energy neutrinos of astrophysical origin. The detector will have a modular structure with six building blocks, each consisting of about 100 Detection Units (DUs). Each DU will be equipped with 18 multi-PMT digital optical modules. The first phase of construction has started and shore and deep-sea infrastructures hosting the future KM3NeT detector are being prepared in offshore Toulon, France and offshore Capo Passero on Sicily, Italy. The technological solutions for the neutrino detector of KM3NeT and the expected performance of the neutrino telescope are presented and discussed. - Highlights: • A deep-sea research infrastructure is being built in the Mediterranean Sea. • It will host a km{sup 3}-size neutrino telescope and a deep-sea multidisciplinary observatory. • The main goal of the neutrino telescope is the search for Galactic neutrino sources. • A major innovation is adopted in the design of the optical module. • 31 3 in. photomultiplier tubes (PMTs) will be hosted in the same glass sphere.

  10. Stickleback increase in the Baltic Sea - A thorny issue for coastal predatory fish

    Science.gov (United States)

    Bergström, Ulf; Olsson, Jens; Casini, Michele; Eriksson, Britas Klemens; Fredriksson, Ronny; Wennhage, Håkan; Appelberg, Magnus

    2015-09-01

    In the Baltic Sea, the mesopredator three-spined stickleback (Gasterosteus aculeatus) spends a large part of its life cycle in the open sea, but reproduces in shallow coastal habitats. In coastal waters, it may occur in high abundances, is a potent predator on eggs and larvae of fish, and has been shown to induce trophic cascades with resulting eutrophication symptoms through regulation of invertebrate grazers. Despite its potential significance for the coastal food web, little is known about its life history and population ecology. This paper provides a description of life history traits, migration patterns and spatiotemporal development of the species in the Baltic Sea during the past decades, and tests the hypothesis that stickleback may have a negative impact on populations of coastal predatory fish. Offshore and coastal data during the last 30 years show that stickleback has increased fourfold in the Bothnian Sea, 45-fold in the Central Baltic Sea and sevenfold in the Southern Baltic Sea. The abundances are similar in the two northern basins, and two orders of magnitude lower in the Southern Baltic Sea. The coastward spawning migration of sticklebacks from offshore areas peaks in early May, with most spawners being two years of age at a mean length of 65 mm. The early juvenile stage is spent at the coast, whereafter sticklebacks perform a seaward feeding migration in early autumn at a size of around 35 mm. A negative spatial relation between the abundance of stickleback and early life stages of perch and pike at coastal spawning areas was observed in spatial survey data, indicating strong interactions between the species. A negative temporal relationship was observed also between adult perch and stickleback in coastal fish monitoring programmes supporting the hypothesis that stickleback may have negative population level effects on coastal fish predators. The recent increase in stickleback populations in different basins of the Baltic Sea in combination with

  11. A Modeling Study of Deep Water Renewal in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  12. Observations of Deep-Sea Coral and Sponge Occurrences from the NOAA National Deep-Sea Coral and Sponge Database, 1842-Present (NCEI Accession 0145037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA’s Deep-Sea Coral Research and Technology Program (DSC-RTP) compiles a national database of the known locations of deep-sea corals and sponges in U.S....

  13. Measurement of fish movements at depths to 6000 m using a deep-ocean lander incorporating a short base-line sonar utilizing miniature code-activated transponder technology

    Science.gov (United States)

    Bagley, P. M.; Bradley, S.; Priede, I. G.; Gray, P.

    1999-12-01

    Most research on animal behaviour in the deep ocean (to depths of 6000 m) is restricted to the capture of dead specimens or viewing activity over small areas of the sea floor by means of cameras or submersibles. This paper describes the use of a miniature acoustic code-activated transponder (CAT) tag and short base-line sonar to track the movements of deep-sea fish in two dimensions over an area 1 km in diameter centred on a lander platform. The CAT tags and sonar are transported to the deep-sea floor by means of a subsea mooring which is ballasted so that it lands and remains on the sea floor for the duration of the tracking experiment (the lander). A description of the CAT, lander and short base-line sonar is given. Results are presented to illustrate the operation of the system.

  14. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents.

    Science.gov (United States)

    Miroshnichenko, Margarita L; Bonch-Osmolovskaya, Elizaveta A

    2006-04-01

    The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.

  15. Certified reference material for radionuclides in fish flesh sample IAEA-414 (mixed fish from the Irish Sea and North Sea)

    DEFF Research Database (Denmark)

    Pham, M.K.; Sanchez-Cabeza, J.A.; Povinec, P.P.

    2006-01-01

    A certified reference material (CRM) for radionuclides in fish sample IAEA-414 (mixed fish from the Irish Sea and North Seas) is described and the results of the certification process are presented. Nine radionuclides (K-40, Cs-137, Th-232, U-234, U-235, U-238, Pu-238, Pu239+240 and Am-241) were...... ratios are also included. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in fish sample, for the development and validation of analytical methods and for training purposes. The material is available from IAEA, Vienna, in 100 g units. (c) 2006 Elsevier Ltd. All...

  16. Compilation of selected deep-sea biological data for the US subseabed disposal project

    International Nuclear Information System (INIS)

    Gomez, L.S.; Marietta, M.G.; Jackson, D.W.

    1987-03-01

    The US Subseabed Disposal Project (SDP) has compiled an extensive deep-sea biological data base to be used in calculating biological parameters of state and rate included in mathematical models of oceanographic transport of radionuclides. The data base is organized around a model deep-sea ecosystem which includes the following components: zooplankton, fish and other nekton, invertebrate benthic megafauna, benthic macrofauna, benthic meiofauna, heterotrophic microbiota, as well as suspended and sediment particulate organic carbon. Measurements of abundance and activity rates (e.g., respiration, production, sedimentation, etc.) reported in the international oceanographic literature are summarized in 23 tables. Included in these tables are the latitudinal position of the studies, as well as information describing sampling techniques and any special notes needed to better assess the data presented. This report has been prepared primarily as a resource document to be used in calculating parameter values for various modeling applications, and for preparing historical data reviews for other SDP reports. Depending on the intended use, these data will require further reduction and unit conversion

  17. Changes in the North Sea fish community: evidence of indirect effects of fishing?

    NARCIS (Netherlands)

    Daan, N.; Gislason, H.; Pope, J.G.; Rice, J.C.

    2005-01-01

    We investigate changes in the North Sea fish community with particular reference to possible indirect effects of fishing, mediated through the ecosystem. In the past, long-term changes in the slope of size spectra of research vessel catches have been related to changes in fishing effort, but such

  18. Alchemy or Science? Compromising Archaeology in the Deep Sea

    Science.gov (United States)

    Adams, Jonathan

    2007-06-01

    In the torrid debate between archaeology and treasure hunting, compromise is often suggested as the pragmatic solution, especially for archaeology carried out either in deep water or beyond the constraints that commonly regulate such activities in territorial seas. Both the wisdom and the need for such compromise have even been advocated by some archaeologists, particularly in forums such as the internet and conferences. This paper argues that such a compromise is impossible, not in order to fuel confrontation but simply because of the nature of any academic discipline. We can define what archaeology is in terms of its aims, theories, methods and ethics, so combining it with an activity founded on opposing principles must transform it into something else. The way forward for archaeology in the deep sea does not lie in a contradictory realignment of archaeology’s goals but in collaborative research designed to mesh with emerging national and regional research and management plans.

  19. Monitoring the impact of simulated deep-sea mining in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Jaisankar, S.

    Monitoring the Impact of Simulated Deep-sea Mining in Central Indian Basin R. SHARMA, B. NAGENDER NATH, AND S. JAI SANKAR National Institute of Oceanography, Dona Paula, Goa, India Monitoring of deep-sea disturbances, natural or man-made, has gained... has shown a partial recovery of the benthic ecosystem, with indications of restoration and recolonization. Keywords deep-sea mining, environmental impact, Central Indian Basin Deep-sea mineral deposits such as the polymetallic nodules and crusts...

  20. Deep-Sea Corals: A New Oceanic Archive

    National Research Council Canada - National Science Library

    Adkins, Jess

    1998-01-01

    Deep-sea corals are an extraordinary new archive of deep ocean behavior. The species Desmophyllum cristagalli is a solitary coral composed of uranium rich, density banded aragonite that I have calibrated for several paleoclimate tracers...

  1. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    Science.gov (United States)

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  2. Radioactivity concentrations in fish from the Irish Sea in Becquerels per kilogram (wet)

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This publication contains the statistical data for Northern Ireland for a wide range of topics from population and vital statistics, law and order, tourism to earnings and income, agriculture, food and fishing. The section on environment and climate includes data on the radioactivity concentration in fish from the Irish sea (whiting, herring, cod, dog fish, nephrops and winkles) and in seaweeds from the Northern Ireland shoreline, over the years 1982-1989. Gamma dose rates in air measured at one metre above intertidal sediments (sand and mud) are given for 1984-1989. (UK)

  3. A new procedure for deep sea mining tailings disposal

    NARCIS (Netherlands)

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal

  4. Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes.

    Science.gov (United States)

    Ast, Jennifer C; Cleenwerck, Ilse; Engelbeen, Katrien; Urbanczyk, Henryk; Thompson, Fabiano L; De Vos, Paul; Dunlap, Paul V

    2007-09-01

    Six representatives of a luminous bacterium commonly found in association with deep, cold-dwelling marine fishes were isolated from the light organs and skin of different fish species. These bacteria were Gram-negative, catalase-positive, and weakly oxidase-positive or oxidase-negative. Morphologically, cells of these strains were coccoid or coccoid-rods, occurring singly or in pairs, and motile by means of polar flagellation. After growth on seawater-based agar medium at 22 degrees C for 18 h, colonies were small, round and white, with an intense cerulean blue luminescence. Analysis of 16S rRNA gene sequence similarity placed these bacteria in the genus Photobacterium. Phylogenetic analysis based on seven housekeeping gene sequences (16S rRNA gene, gapA, gyrB, pyrH, recA, rpoA and rpoD), seven gene sequences of the lux operon (luxC, luxD, luxA, luxB, luxF, luxE and luxG) and four gene sequences of the rib operon (ribE, ribB, ribH and ribA), resolved the six strains as members of the genus Photobacterium and as a clade distinct from other species of Photobacterium. These strains were most closely related to Photobacterium phosphoreum and Photobacterium iliopiscarium. DNA-DNA hybridization values between the designated type strain, Photobacterium kishitanii pjapo.1.1(T), and P. phosphoreum LMG 4233(T), P. iliopiscarium LMG 19543(T) and Photobacterium indicum LMG 22857(T) were 51, 43 and 19 %, respectively. In AFLP analysis, the six strains clustered together, forming a group distinct from other analysed species. The fatty acid C(17 : 0) cyclo was present in these bacteria, but not in P. phosphoreum, P. iliopiscarium or P. indicum. A combination of biochemical tests (arginine dihydrolase and lysine decarboxylase) differentiates these strains from P. phosphoreum and P. indicum. The DNA G+C content of P. kishitanii pjapo.1.1(T) is 40.2 %, and the genome size is approximately 4.2 Mbp, in the form of two circular chromosomes. These strains represent a novel species, for

  5. Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida

    Directory of Open Access Journals (Sweden)

    Thomas W Kelley

    2010-12-01

    Full Text Available Abstract Background Nematodes represent the most abundant benthic metazoa in one of the largest habitats on earth, the deep sea. Characterizing major patterns of biodiversity within this dominant group is a critical step towards understanding evolutionary patterns across this vast ecosystem. The present study has aimed to place deep-sea nematode species into a phylogenetic framework, investigate relationships between shallow water and deep-sea taxa, and elucidate phylogeographic patterns amongst the deep-sea fauna. Results Molecular data (18 S and 28 S rRNA confirms a high diversity amongst deep-sea Enoplids. There is no evidence for endemic deep-sea lineages in Maximum Likelihood or Bayesian phylogenies, and Enoplids do not cluster according to depth or geographic location. Tree topologies suggest frequent interchanges between deep-sea and shallow water habitats, as well as a mixture of early radiations and more recently derived lineages amongst deep-sea taxa. This study also provides convincing evidence of cosmopolitan marine species, recovering a subset of Oncholaimid nematodes with identical gene sequences (18 S, 28 S and cox1 at trans-Atlantic sample sites. Conclusions The complex clade structures recovered within the Enoplida support a high global species richness for marine nematodes, with phylogeographic patterns suggesting the existence of closely related, globally distributed species complexes in the deep sea. True cosmopolitan species may additionally exist within this group, potentially driven by specific life history traits of Enoplids. Although this investigation aimed to intensively sample nematodes from the order Enoplida, specimens were only identified down to genus (at best and our sampling regime focused on an infinitesimal small fraction of the deep-sea floor. Future nematode studies should incorporate an extended sample set covering a wide depth range (shelf, bathyal, and abyssal sites, utilize additional genetic loci (e

  6. Erbium-doped fiber lasers as deep-sea hydrophones

    International Nuclear Information System (INIS)

    Bagnoli, P.E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-01-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos

  7. Uptake and distribution of organo-iodine in deep-sea corals.

    Science.gov (United States)

    Prouty, Nancy G; Roark, E Brendan; Mohon, Leslye M; Chang, Ching-Chih

    2018-07-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon ( 14 C) measurements. These results hold promise for developing chronologies independent of 14 C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129 I/ 127 I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129 I composition provides further evidence that iodine composition and isotope

  8. Uptake and distribution of organo-iodine in deep-sea corals

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Mohon, Leslye M.; Chang, Ching-Chih

    2018-01-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope

  9. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    OpenAIRE

    Yum, L. K.; Baumgarten, S.; Röthig, T.; Roder, C.; Roik, Anna; Michell, C.; Voolstra, C. R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20??C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studie...

  10. 40Ar/39Ar studies of deep sea igneous rocks

    International Nuclear Information System (INIS)

    Seidemann, D.

    1978-01-01

    An attempt to date deep-sea igneous rocks reliably was made using the 40 Ar/ 39 Ar dating technique. It was determined that the 40 Ar/ 39 Ar incremental release technique could not be used to eliminate the effects of excess radiogenic 40 Ar in deep-sea basalts. Excess 40 Ar is released throughout the extraction temperature range and cannot be distinguished from 40 Ar generated by in situ 40 K decay. The problem of the reduction of K-Ar dates associated with sea water alteration of deep-sea igneous rocks could not be resolved using the 40 Ar/ 39 Ar technique. Irradiation induced 39 Ar loss and/or redistribution in fine-grained and altered igneous rocks results in age spectra that are artifacts of the experimental procedure and only partly reflect the geologic history of the sample. Therefore, caution must be used in attributing significance to age spectra of fine grained and altered deep-sea igneous rocks. Effects of 39 Ar recoil are not important for either medium-grained (or coarser) deep-sea rocks or glasses because only a small fraction of the 39 Ar recoils to channels of easy diffusion, such as intergranular boundaries or cracks, during the irradiation. (author)

  11. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  12. The complete mitochondrial genome of the deep-sea sponge Poecillastra laminaris (Astrophorida, Vulcanellidae).

    Science.gov (United States)

    Zeng, Cong; Thomas, Leighton J; Kelly, Michelle; Gardner, Jonathan P A

    2016-05-01

    The complete mitochondrial genome of a New Zealand specimen of the deep-sea sponge Poecillastra laminaris (Sollas, 1886) (Astrophorida, Vulcanellidae), from the Colville Ridge, New Zealand, was sequenced using the 454 Life Science pyrosequencing system. To identify homologous mitochondrial sequences, the 454 reads were mapped to the complete mitochondrial genome sequence of Geodia neptuni (GeneBank No. NC_006990). The P. laminaris genome is 18,413 bp in length and includes 14 protein-coding genes, 24 transfer RNA genes and 2 ribosomal RNA genes. Gene order resembled that of other demosponges. The base composition of the genome is A (29.1%), T (35.2%), C (14.0%) and G (21.7%). This is the second published mitogenome for a sponge of the order Astrophorida and will be useful in future phylogenetic analysis of deep-sea sponges.

  13. Deep sea biophysics

    International Nuclear Information System (INIS)

    Yayanos, A.A.

    1982-01-01

    A collection of deep-sea bacterial cultures was completed. Procedures were instituted to shelter the culture collection from accidential warming. A substantial data base on the rates of reproduction of more than 100 strains of bacteria from that collection was obtained from experiments and the analysis of that data was begun. The data on the rates of reproduction were obtained under conditions of temperature and pressure found in the deep sea. The experiments were facilitated by inexpensively fabricated pressure vessels, by the streamlining of the methods for the study of kinetics at high pressures, and by computer-assisted methods. A polybarothermostat was used to study the growth of bacteria along temperature gradients at eight distinct pressures. This device should allow for the study of microbial processes in the temperature field simulating the environment around buried HLW. It is small enough to allow placement in a radiation field in future studies. A flow fluorocytometer was fabricated. This device will be used to determine the DNA content per cell in bacteria grown in laboratory culture and in microorganisms in samples from the ocean. The technique will be tested for its rapidity in determining the concentration of cells (standing stock of microorganisms) in samples from the ocean

  14. NOAA National Deep-Sea Coral and Sponge Database 1842-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's Deep-Sea Coral Research and Technology Program (DSC-RTP) is compiling a national geodatabase of the known locations of deep-sea corals and sponges in U.S....

  15. Plastic microfibre ingestion by deep-sea organisms

    Science.gov (United States)

    Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.

    2016-09-01

    Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

  16. Potential impact of global climate change on benthic deep-sea microbes.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. [Mercury concentration of fish in Tokyo Bay and the surrounding sea area].

    Science.gov (United States)

    Zhang, R; Kashima, Y; Matsui, M; Okabe, T; Doi, R

    2001-07-01

    Total mercury in the muscles of three fish species was analyzed in fish caught in Tokyo Bay and the surrounding sea areas, Sagami Bay and Choshi. Tokyo Bay is a semi-closed sea area surrounded by Tokyo, Kanagawa and Chiba prefectures. Sagami Bay and Choshi are open to the Pacific Ocean. A total of 412 fish consisting of northern whiting (Sillago japonica), flatfish (Limanda yokohamae) and sardine (Sardinops melanosticta) were caught in these areas over a 6 months period from November 1998 to April 1999. Total mercury concentration ranged from 0.008-0.092 microgram/g (wet wt.) in northern whiting, 0.006-0.065 microgram/g in flatfish and 0.001-0.045 microgram/g in sardine. All concentrations were below the restriction limit of fish mercury in Japan, 0.4 microgram/g of total mercury concentration. A significant correlation was found between mercury concentrations and body length or body weight in northern whiting and flatfish, irrespective of the sea area. A correlation was also found between mercury concentration in fish and their feeding habits: among the 3 species caught in the same area, crustacean feeding northern whiting had the highest, polychaete feeding flatfish moderate, and plankton feeding sardine had the lowest mercury concentration. In a comparison of mercury concentration in the same species caught in different sea areas, a higher concentration was noted in fish caught in the semi-closed sea area of Tokyo Bay, than in fish caught in the open sea areas of Sagami Bay and Choshi. This difference was most marked in fish caught at the bottom of Tokyo Bay and we considered that the mercury concentration of seawater and sediment in these areas was the cause of mercury accumulation in fish. These findings suggest that improved water quality control and environmental monitoring is necessary in semi-closed sea areas such as Tokyo Bay.

  18. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  19. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    Science.gov (United States)

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Effective ecological half-lives of Cs-137 for fishes controlled by their surrounding sea-waters

    International Nuclear Information System (INIS)

    Morita, T.; Yoshida, K.

    2004-01-01

    National Research Institute of Fisheries Science (NRIFS) has carried out the long term monitoring program for radioactive pollution in marine organisms caught around Japan in order to confirm the safety of marine organisms as food source. Main radionuclide in our monitoring program is Cs-137 because it has the relatively high radiotoxicity and the long term physical half-life (about 30.1 y), and tends to accumulate in the muscle. Recently, the effective ecological half-lives have been introduced to estimate the recovery time from radioactive pollution, and been applicable to various ecosystems. In this study, effective ecological half-lives of Cs-137 for some fishes were calculated from our long term monitoring data. It is known that fish species have each effective ecological half-lives. However, it has been unclear what change the effective ecological half-lives of Cs-137 for fishes. Fishes intake Cs-137 through food chain and directly from their surrounding sea-waters. Accordingly, the effective ecological half-lives of Cs-137 for some fishes would be controlled by the effective environment half-lives of Cs-137 for their surrounding sea-waters. There is difference in effective environment half-lives of Cs-137 between the open ocean and the coastal sea-waters because they have the different input sources of Cs-137. Some fishes move between the open ocean and the coastal areas, and therefore their effective ecological half-lives of Cs-137 are influenced by the effective environment half-lives of Cs-137 for sea-waters of both areas. Consequently, the differences in effective ecological half-lives of Cs-137 among fish species would depend the rate of coastal area in their lives. (author)

  1. The diet and feeding ecology of Conger conger (L. 1758 in the deep waters of the Eastern Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. ANASTASOPOULOU

    2013-06-01

    Full Text Available The diet of the European conger eel Conger conger was investigated for the first time in the Eastern Mediterranean. Fish dominated the European conger eel diet in the deep waters of E. Ionian Sea. All other prey taxa were identified as accidental preys. However, intestine analysis showed that Natantia, Brachyura and Cephalopoda might have a more important contribution in the diet of the species. C. conger exhibited a benthopelagic feeding behavior as it preyed upon both demersal and mesopelagic taxa. The high vacuity index and the low stomach and intestine fullness indicated that the feeding intensity of the species in the deep waters of Eastern Ionian Sea was quite low. C. conger feeding strategy was characterised by specialisation in various resource items. A between-phenotype contribution to niche width was observed for some prey categories. European Conger eel feeding specialisation seemed to be an adaptation to a food-scarce environment, as typified in deep-water habitats

  2. Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes

    Science.gov (United States)

    Tubau, Xavier; Canals, Miquel; Lastras, Galderic; Rayo, Xavier; Rivera, Jesus; Amblas, David

    2015-05-01

    Marine litter represents a widespread type of pollution in the World's Oceans. This study is based on direct observation of the seafloor by means of Remotely Operated Vehicle (ROV) dives and reports litter abundance, type and distribution in three large submarine canyons of the NW Mediterranean Sea, namely Cap de Creus, La Fonera and Blanes canyons. Our ultimate objective is establishing the links between active hydrodynamic processes and litter distribution, thus going beyond previous, essentially descriptive studies. Litter was monitored using the Liropus 2000 ROV. Litter items were identified in 24 of the 26 dives carried out in the study area, at depths ranging from 140 to 1731 m. Relative abundance of litter objects by type, size and apparent weight, and distribution of litter in relation to depth and canyon environments (i.e. floor and flanks) were analysed. Plastics are the dominant litter component (72%), followed by lost fishing gear, disregarding their composition (17%), and metal objects (8%). Most of the observed litter seems to be land-sourced. It reaches the ocean through wind transport, river discharge and after direct dumping along the coastline. While coastal towns and industrial areas represent a permanent source of litter, tourism and associated activities relevantly increase litter production during summer months ready to be transported to the deep sea by extreme events. After being lost, fishing gear such as nets and long-lines has the potential of being harmful for marine life (e.g. by ghost fishing), at least for some time, but also provides shelter and a substrate on which some species like cold-water corals are capable to settle and grow. La Fonera and Cap de Creus canyons show the highest mean concentrations of litter ever seen on the deep-sea floor, with 15,057 and 8090 items km-2, respectively, and for a single dive litter observed reached 167,540 items km-2. While most of the largest concentrations were found on the canyon floors at

  3. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti

    OpenAIRE

    Tavormina, Patricia L.; Kellermann, Matthias Y.; Antony, Chakkiath Paul; Tocheva, Elitza I.; Dalleska, Nathan F.; Jensen, Ashley J.; Valentine, David L.; Hinrichs, Kai-Uwe; Jensen, Grant J.; Dubilier, Nicole; Orphan, Victoria J.

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid...

  4. Reef fish and coral assemblages at Maptaput, Rayong Province

    Directory of Open Access Journals (Sweden)

    Voravit Cheevaporn

    2007-06-01

    Full Text Available This study describes the structure of coral and fish assemblages of a group of small islands and pinnacles in the vicinity of Maptaput deep sea port, Rayong Province, Thailand during 2002. The coral and fish assemblages at Saket Island and nearby pinnacle, Hin-Yai, which are located less than 1 km from the deep sea port, had changed. Living coral cover in 2002 was 8% at Hin-Yai and 4% at Saket Island which decreased from 33% and 64%, respectively in the previous report in 1992. Numbers of coral species at Saket Island decreased from 41 species to 13 species. Acropora spp. that previously dominated the area had nearly disappeared. For fishes, a total of 40 species were found in 2002 the numbers decreased to only 6 species at Saket Island and 36 species at Hin-Yai. Fishes that dominated the area are small pomacentrids. After 1997, the conditions of coral and fish assemblages at Saket Island and Hin-Yai had markedly changed, whereas, the conditions found in the nearby area are much better. Sediment load from port construction was the primary cause of the degradation. This should indicate the adverse effect of sedimentation on coral and reef fish assemblages at Maptaput. Coral communities developed on rock pinnacles west of Maptaput deep-sea port are reported and described herein for the first time.

  5. Dynamic and static elastic moduli of North Sea and deep sea chalk

    DEFF Research Database (Denmark)

    Gommesen, Lars; Fabricius, Ida Lykke

    2001-01-01

    We have established an empirical relationship between the dynamic and the static mechanical properties of North Sea and deep sea chalk for a large porosity interval with respect to porosity, effective stress history and textural composition. The chalk investigated is from the Tor and Hod Formatio...

  6. Warming shelf seas drive the subtropicalization of European pelagic fish communities.

    Science.gov (United States)

    Montero-Serra, Ignasi; Edwards, Martin; Genner, Martin J

    2015-01-01

    Pelagic fishes are among the most ecologically and economically important fish species in European seas. In principle, these pelagic fishes have potential to demonstrate rapid abundance and distribution shifts in response to climatic variability due to their high adult motility, planktonic larval stages, and low dependence on benthic habitat for food or shelter during their life histories. Here, we provide evidence of substantial climate-driven changes to the structure of pelagic fish communities in European shelf seas. We investigated the patterns of species-level change using catch records from 57,870 fisheries-independent survey trawls from across European continental shelf region between 1965 and 2012. We analysed changes in the distribution and rate of occurrence of the six most common species, and observed a strong subtropicalization of the North Sea and Baltic Sea assemblages. These areas have shifted away from cold-water assemblages typically characterized by Atlantic herring and European sprat from the 1960s to 1980s, to warmer-water assemblages including Atlantic mackerel, Atlantic horse mackerel, European pilchard and European anchovy from the 1990s onwards. We next investigated if warming sea temperatures have forced these changes using temporally comprehensive data from the North Sea region. Our models indicated the primary driver of change in these species has been sea surface temperatures in all cases. Together, these analyses highlight how individual species responses have combined to result in a dramatic subtropicalization of the pelagic fish assemblage of the European continental shelf. © 2014 John Wiley & Sons Ltd.

  7. Analyses of organic and inorganic contaminants in Salton Sea fish.

    Science.gov (United States)

    Riedel, Ralf; Schlenk, Daniel; Frank, Donnell; Costa-Pierce, Barry

    2002-05-01

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthulus (orangemouth corvina), and Oreochromis spp. (tilapia) were sampled from two river mouths and two nearshore areas of the Salton Sea. Muscle tissues were analyzed for a complete suite of 14 trace metals and 53 pesticides. Fish muscle tissues had concentrations of selenium ranging between 1.89 and 2.73 microg/g wet weight. 4,4'-DDE accounted for 94% of the total DDT metabolites. Total DDTs ranged between 17.1 and 239.0 and total PCBs between 2.5 and 18.6 ng/g wet weight. PCB congeners 132, 138, 153, 168, and 180 comprised over 50% of the total PCBs. Given the potential implementation of a commercial fishing at the Salton Sea in the future, the presence of persistent organic pollutants and selenium warrants further research into the effects of these mixtures on fish populations, and on wildlife and humans consuming fish.

  8. Identification of new deep sea sinuous channels in the eastern Arabian Sea.

    Science.gov (United States)

    Mishra, Ravi; Pandey, D K; Ramesh, Prerna; Clift, Peter D

    2016-01-01

    Deep sea channel systems are recognized in most submarine fans worldwide as well as in the geological record. The Indus Fan is the second largest modern submarine fan, having a well-developed active canyon and deep sea channel system. Previous studies from the upper Indus Fan have reported several active channel systems. In the present study, deep sea channel systems were identified within the middle Indus Fan using high resolution multibeam bathymetric data. Prominent morphological features within the survey block include the Raman Seamount and Laxmi Ridge. The origin of the newly discovered channels in the middle fan has been inferred using medium resolution satellite bathymetry data. Interpretation of new data shows that the highly sinuous deep sea channel systems also extend to the east of Laxmi Ridge, as well as to the west of Laxmi Ridge, as previously reported. A decrease in sinuosity southward can be attributed to the morphological constraints imposed by the elevated features. These findings have significance in determining the pathways for active sediment transport systems, as well as their source characterization. The geometry suggests a series of punctuated avulsion events leading to the present array of disconnected channels. Such channels have affected the Laxmi Basin since the Pliocene and are responsible for reworking older fan sediments, resulting in loss of the original erosional signature supplied from the river mouth. This implies that distal fan sediments have experienced significant signal shredding and may not represent the erosion and weathering conditions within the onshore basin at the time of sedimentation.

  9. Microhabitat Association of Cryptobenthic Reef Fishes (Teleostei: Gobiidae) in the Central Red Sea

    KAUST Repository

    Troyer, Emily

    2018-05-01

    Knowledge of biodiversity within an ecosystem is essential when trying to understand the function and importance of that ecosystem. A challenge when assessing biodiversity of reef habitats is cryptobenthic fishes, which encompass many groups that have close associations with the substrate. These fishes can be behaviorally cryptic, by seeking refuge within the reef matrix, or visually cryptic, using cryptic coloration to match the surrounding habitat. These factors make visual surveys inadequate for sampling these fishes. One such group of cryptobenthic fishes are the gobies, family Gobiidae, which currently represent over 1600 species, although new species are continually being discovered. Gobies are often small (less than 5 cm), and many species will be associated with a very specific microhabitat type. Due to the understudied nature of the Red Sea, little is known about habitat preferences of gobies within the region. In order to determine the differences in goby community structure within the central Red Sea, fishes were sampled at one reef using 1 m² enclosed rotenone stations from three distinct microhabitats: hard coral, rubble, and sand. Following collection, specimens were photographed and sequenced using COI, to aid in species identification. 232 individuals were collected representing 31 species of goby. Rubble microhabitats were found to host the majority of collected gobies (69%), followed by hard coral (20.6%), then sand (9.9%). Goby assemblages in the three microhabitats were significantly different from each other, and evidence of habitat-specialists was found. These results provide essential baseline information about the ecology of understudied cryptobenthic fishes that can be used in future large-scale studies in the Red Sea region.

  10. Deep-sea benthic footprint of the deepwater horizon blowout.

    Directory of Open Access Journals (Sweden)

    Paul A Montagna

    Full Text Available The Deepwater Horizon (DWH accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km(2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km(2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.

  11. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege; Kaartvedt, Stein

    2015-01-01

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013

  12. Seawater Carbonate Chemistry of Deep-sea Coral Beds off the Northwestern Hawaiian Islands

    Science.gov (United States)

    Brooks, J.; Shamberger, K.; Roark, E. B.; Miller, K.; Baco-Taylor, A.

    2016-02-01

    Many species of deep-sea octocorals produce calcium carbonate (CaCO3) skeletons and form coral beds that support diverse ecosystems crucial to fisheries. The geochemistry of deep-sea coral skeletons can provide valuable paleoceanographic information on ocean circulation and nutrient cycling. Deep-sea corals in the older bottom waters of the Pacific are naturally exposed to higher carbon dioxide (CO2) concentrations and lower pH than in the Atlantic where much of the previous deep-sea coral work has occurred. Therefore, some Pacific deep-sea corals may live and calcify in waters that are corrosive to their skeletons, but there have been few current seawater carbonate chemistry measurements of the waters surrounding deep-sea coral beds to assess this. The input of anthropogenic atmospheric CO2 known as ocean acidification (OA) lowers ocean pH and causes an expansion of these corrosive waters. Seawater carbonate chemistry must be characterized before accurate predictions can be made for the effects of OA on these important ecosystems. Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) samples were collected in the fall of 2014 and 2015 from the surface to 1450 m depth off the Northwestern Hawaiian Island chain where deep-sea octocorals are found. The partial pressure of CO2 increased and pH, calcite saturation state (Ωca) and aragonite saturation state (Ωar) decreased with increasing latitude and depth. Notably, waters were undersaturated with respect to calcite and aragonite (Ωca and Ωar less than 1) below 800 m and 500 m, respectively. Therefore, deep-sea corals below these depths must calcify in waters that are thermodynamically favorable for CaCO3 dissolution. How deep-sea octocorals cope with such adverse seawater chemistry is critical to understanding future effects of OA. It is not known whether OA is currently negatively impacting deep-sea octocorals, but their naturally acidified environments could make them particularly susceptible to OA.

  13. Long-Term Observations of Epibenthic Fish Zonation in the Deep Northern Gulf of Mexico

    Science.gov (United States)

    Wei, Chih-Lin; Rowe, Gilbert T.; Haedrich, Richard L.; Boland, Gregory S.

    2012-01-01

    A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964–1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983–1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m−2), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient. PMID:23056412

  14. Long-term observations of epibenthic fish zonation in the deep northern Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Chih-Lin Wei

    Full Text Available A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth from three deep-sea studies, R/V Alaminos cruises (1964-1973, Northern Gulf of Mexico Continental Slope (NGoMCS study (1983-1985 and Deep Gulf of Mexico Benthos (DGoMB program (2000 to 2002, were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared consistently reoccurred over time on the shelf-break (ca. 200 m, upper-slope (ca. 300 to 500 m and upper-to-mid slope (ca. 500 to 1500 m depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05. Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m(-2, suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient.

  15. Long-term observations of epibenthic fish zonation in the deep northern Gulf of Mexico.

    Science.gov (United States)

    Wei, Chih-Lin; Rowe, Gilbert T; Haedrich, Richard L; Boland, Gregory S

    2012-01-01

    A total of 172 bottom trawl/skimmer samples (183 to 3655-m depth) from three deep-sea studies, R/V Alaminos cruises (1964-1973), Northern Gulf of Mexico Continental Slope (NGoMCS) study (1983-1985) and Deep Gulf of Mexico Benthos (DGoMB) program (2000 to 2002), were compiled to examine temporal and large-scale changes in epibenthic fish species composition. Based on percent species shared among samples, faunal groups (≥10% species shared) consistently reoccurred over time on the shelf-break (ca. 200 m), upper-slope (ca. 300 to 500 m) and upper-to-mid slope (ca. 500 to 1500 m) depths. These similar depth groups also merged when the three studies were pooled together, suggesting that there has been no large-scale temporal change in depth zonation on the upper section of the continental margin. Permutational multivariate analysis of variance (PERMANOVA) also detected no significant species changes on the limited sites and areas that have been revisited across the studies (P>0.05). Based on the ordination of the species shared among samples, species replacement was a continuum along a depth or macrobenthos biomass gradient. Despite the well-known, close, negative relationship between water depth and macrofaunal biomass, the fish species changed more rapidly at depth shallower than 1,000 m, but the rate of change was surprisingly slow at the highest macrofaunal biomass (>100 mg C m(-2)), suggesting that the composition of epibenthic fishes was not altered in response to the extremely high macrofaunal biomass in the upper Mississippi and De Soto Submarine Canyons. An alternative is that the pattern of fish species turnover is related to the decline in macrofaunal biomass, the presumptive prey of the fish, along the depth gradient.

  16. Infectious diseases of fishes in the Salish Sea

    Science.gov (United States)

    Hershberger, Paul; Rhodes, Linda; Kurath, Gael; Winton, James

    2013-01-01

    As in marine regions throughout other areas of the world, fishes in the Salish Sea serve as hosts for many pathogens, including nematodes, trematodes, protozoans, protists, bacteria, viruses, and crustaceans. Here, we review some of the better-documented infectious diseases that likely contribute to significant losses among free-ranging fishes in the Salish Sea and discuss the environmental and ecological factors that may affect the population-level impacts of disease. Demonstration of these diseases and their impacts to critical and endangered resources provides justification to expand pathogen surveillance efforts and to incorporate disease forecasting and mitigation tools into ecosystem restoration efforts.

  17. Ancient deep-sea sponge grounds on the Flemish Cap and Grand Bank, northwest Atlantic.

    Science.gov (United States)

    Murillo, F J; Kenchington, E; Lawson, J M; Li, G; Piper, D J W

    Recent studies on deep-sea sponges have focused on mapping contemporary distributions while little work has been done to map historical distributions; historical distributions can provide valuable information on the time frame over which species have co-evolved and may provide insight into the reasons for their persistence or decline. Members of the sponge family Geodiidae are dominant members of deep-sea sponge assemblages in the northwestern Atlantic. They possess unique spicules called sterrasters, which undergo little transport in sediment and can therefore indicate the Geodiidae sponge historical presence when found in sediment cores. This study focuses on the slopes of Flemish Cap and Grand Bank, important fishing grounds off the coast of Newfoundland, Canada, in international waters. Sediment cores collected in 2009 and 2010 were visually inspected for sponge spicules. Cores containing spicules were sub-sampled and examined under a light microscope for the presence of sterrasters. These cores were also dated using X-radiographs and grouped into five time categories based on known sediment horizons, ranging from 17,000 years BP to the present. Chronological groupings identified Geodiidae sponges in four persistent sponge grounds. The oldest sterrasters were concentrated in the eastern region of the Flemish Cap and on the southeastern slope of the Grand Bank. Opportunistic sampling of a long core in the southeastern region of the Flemish Cap showed the continuous presence of sponge spicules to more than 130 ka BP. Our results indicate that the geodiids underwent a significant range expansion following deglaciation, and support a contemporary distribution that is not shaped by recent fishing activity.

  18. Essential coastal habitats for fish in the Baltic Sea

    Science.gov (United States)

    Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf; Florin, Ann-Britt; Lehikoinen, Annukka; Mattila, Johanna; Arula, Timo; Briekmane, Laura; Brown, Elliot John; Celmer, Zuzanna; Dainys, Justas; Jokinen, Henri; Kääriä, Petra; Kallasvuo, Meri; Lappalainen, Antti; Lozys, Linas; Möller, Peter; Orio, Alessandro; Rohtla, Mehis; Saks, Lauri; Snickars, Martin; Støttrup, Josianne; Sundblad, Göran; Taal, Imre; Ustups, Didzis; Verliin, Aare; Vetemaa, Markus; Winkler, Helmut; Wozniczka, Adam; Olsson, Jens

    2018-05-01

    Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utilized by fish across many life history stages including spawning, juvenile development, feeding and migration. Although there is general consensus about the critical importance of these essential fish habitats (EFH) for fish production along the coast, direct quantitative evidence for their specific roles in population growth and maintenance is still scarce. Nevertheless, for some coastal species, indirect evidence exists, and in many cases, sufficient data are also available to carry out further quantitative analyses. As coastal EFH in the Baltic Sea are often found in areas that are highly utilized and valued by humans, they are subjected to many different pressures. While cumulative pressures, such as eutrophication, coastal construction and development, climate change, invasive species and fisheries, impact fish in coastal areas, the conservation coverage for EFH in these areas remains poor. This is mainly due to the fact that historically, fisheries management and nature conservation are not integrated neither in research nor in management in Baltic Sea countries. Setting joint objectives for fisheries management and nature conservation would hence be pivotal for improved protection of EFH in the Baltic Sea. To properly inform management, improvements in the development of monitoring strategies and mapping methodology for EFH are also needed. Stronger international cooperation between Baltic Sea states will facilitate improved management outcomes across ecologically arbitrary boundaries. This is especially important for successful implementation of international agreements and legislative directives such as the Baltic Sea Action Plan, the Marine Strategy Framework

  19. Factors governing the deep ventilation of the Red Sea

    KAUST Repository

    Papadopoulos, Vassilis P.

    2015-11-19

    A variety of data based on hydrographic measurements, satellite observations, reanalysis databases, and meteorological observations are used to explore the interannual variability and factors governing the deep water formation in the northern Red Sea. Historical and recent hydrographic data consistently indicate that the ventilation of the near-bottom layer in the Red Sea is a robust feature of the thermohaline circulation. Dense water capable to reach the bottom layers of the Red Sea can be regularly produced mostly inside the Gulfs of Aqaba and Suez. Occasionally, during colder than usual winters, deep water formation may also take place over coastal areas in the northernmost end of the open Red Sea just outside the Gulfs of Aqaba and Suez. However, the origin as well as the amount of deep waters exhibit considerable interannual variability depending not only on atmospheric forcing but also on the water circulation over the northern Red Sea. Analysis of several recent winters shows that the strength of the cyclonic gyre prevailing in the northernmost part of the basin can effectively influence the sea surface temperature (SST) and intensify or moderate the winter surface cooling. Upwelling associated with periods of persistent gyre circulation lowers the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme heat loss by the sea surface. In addition, the occasional persistence of the cyclonic gyre feeds the surface layers of the northern Red Sea with nutrients, considerably increasing the phytoplankton biomass.

  20. Studies of the reproductive biology of deep sea megabenthos VIII. Biochemical and calorific content of the reproductive organs of deep sea holothurians

    International Nuclear Information System (INIS)

    Tyler, P.A.; Walker, M.

    1987-01-01

    The data for protein, lipid, carbohydrate and ash content of the ovary, testes, gut and body wall of a variety of deep sea holothurians are presented. The dominant biochemical is insoluble protein in all tissues followed by lipid in the ovary. The ash content was lowest in the gonads and highest in the body wall of most species. The mean calorific content of the species studied is 25.08Jmg -1 thus representing a significant energy store in the deep sea. The data suggest active metabolic pathways in these species which may pass radionuclides to the developing gametes and after spawning to dispersal in deep waters. (author)

  1. New eastern Pacific Ocean record of the rare deep-water fish, Psychrolutes phrictus (Scorpaeniformes: Psychrolutidae)

    OpenAIRE

    Aguirre-Villaseñor, Hugo; Cruz-Acevedo, Edgar; Salas-Singh, Carolina

    2016-01-01

    Abstract: Psychrolutes phrictus is a benthic deep sea fish known from the eastern North Pacific. On 30 March 2008, a specimen of the blob sculpin P. phrictus (297 mm LT) was caught off the Guerrero coast, Mexico (17°45′24″N, 101°59′04″W). The blob sculpin was taken at a depth of 1,100 m within a temperature range of 3.88-4.25 °C, where hypoxic (0.57-0.39 mg/l) conditions prevailed; the specimen was captured over a muddy bottom using a benthic sledge. Representatives of this species had never ...

  2. Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter

    KAUST Repository

    De Busserolles, Fanny; Hart, Nathan S.; Hunt, David M.; Davies, Wayne I.; Marshall, N. Justin; Clarke, Michael W.; Hahne, Dorothee; Collin, Shaun P.

    2015-01-01

    Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field. © 2015 S. Karger AG, Basel.

  3. Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter

    KAUST Repository

    De Busserolles, Fanny

    2015-03-06

    Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world\\'s most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species\\' visual field. © 2015 S. Karger AG, Basel.

  4. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  5. Investigating the link between fish community structure and environmental state in deep-time

    Science.gov (United States)

    Sibert, E. C.

    2017-12-01

    In the modern ocean, a bottom-up ecological viewpoint posits that the composition of plankton communities is often a function of ambient oceanographic conditions, including nutrient concentrations and water temperature. Thus, certain plankton species or communities can be associated with specific oceanographic conditions, giving them potential as carriers of paleoceanographic information. Furthermore, consumer groups, such as fish, depend on the structure and composition of these plankton, and therefore different plankton communities will support different types of fish. In addition, fish have their own physiological constraints for surviving in particular environments, such as oxygen demand, and metabolic rate, causing certain clades to be selectively associated with different water mass characteristics. Thus, the relative or absolute abundances of different fish species or groups could shed light on shifting oxygen concentrations, temperature, or primary productivity in the past. To assess whether fish communities have sufficient environmental control to provide paleoceanographic insights, I use a variety of morphological, phylogenetic, and ecological statistical approaches, to correlate modern fish communities from around the world with environmental variables. I then apply these principles to a series of ichthyolith assemblages from the Cretaceous and Cenozoic, across both space and time, to assess whether fish community composition, abundance, or other characteristics can be predictive of ocean temperature or export productivity. I find that while the abundance of fish fossils in deep-sea cores is often, though not always, correlated with certain export production and temperature proxies, community composition appears to vary independently of these variables on long timescales, driven more by evolutionary processes. However, there are distinct differences in contemporary communities in different locations, suggesting that there is potential in using fish

  6. Recovery of atypical Aeromonas salmonicida from ulcerated fish from the Baltic Sea

    DEFF Research Database (Denmark)

    Wiklund, T.; Tabolina, I; Bezgachina, T.V.

    1999-01-01

    Ulcerated fish of six different species were collected during the BMB/ICES Sea-going Workshop "Fish Diseases and Parasites in the Baltic Sea", 25 November to 8 December 1994, and examined for bacteriological infections. Atypical Aeromonas salmonicida strains were isolated from the majority...

  7. Man and the last great wilderness: human impact on the deep sea.

    Directory of Open Access Journals (Sweden)

    Eva Ramirez-Llodra

    Full Text Available The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008. A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past to exploitation (present. We predict that from now and into the future, increases in atmospheric CO(2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this

  8. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Science.gov (United States)

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  9. Growth of a deep-water, predatory fish is influenced by the productivity of a boundary current system.

    Science.gov (United States)

    Nguyen, Hoang Minh; Rountrey, Adam N; Meeuwig, Jessica J; Coulson, Peter G; Feng, Ming; Newman, Stephen J; Waite, Anya M; Wakefield, Corey B; Meekan, Mark G

    2015-03-12

    The effects of climate change on predatory fishes in deep shelf areas are difficult to predict because complex processes may govern food availability and temperature at depth. We characterised the net impact of recent environmental changes on hapuku (Polyprion oxygeneios), an apex predator found in continental slope habitats (>200 m depth) by using dendrochronology techniques to develop a multi-decadal record of growth from otoliths. Fish were sampled off temperate south-western Australia, a region strongly influenced by the Leeuwin Current, a poleward-flowing, eastern boundary current. The common variance among individual growth records was relatively low (3.4%), but the otolith chronology was positively correlated (r = 0.61, p < 0.02) with sea level at Fremantle, a proxy for the strength of the Leeuwin Current. The Leeuwin Current influences the primary productivity of shelf ecosystems, with a strong current favouring growth in hapuku. Leeuwin Current strength is predicted to decline under climate change models and this study provides evidence that associated productivity changes may flow through to higher trophic levels even in deep water habitats.

  10. Recent changes in the deep-water fish populations of Lake Michigan

    Science.gov (United States)

    Moffett, James W.

    1957-01-01

    The deep-water fish fauna of Lake Michigan consisted of lake trout (Salvelinus namaycush), burbot (Lota lota maculosa), seven species of chubs or deep-water ciscoes (Leucichthys spp.), and the deep-water sculpin (Myoxocephalus quadricornis). Other species occupied the deep-water zone but were not typically part of the fauna.

  11. 'Fish' (Actinopterygii and Elasmobranchii) diversification patterns through deep time.

    Science.gov (United States)

    Guinot, Guillaume; Cavin, Lionel

    2016-11-01

    Actinopterygii (ray-finned fishes) and Elasmobranchii (sharks, skates and rays) represent more than half of today's vertebrate taxic diversity (approximately 33000 species) and form the largest component of vertebrate diversity in extant aquatic ecosystems. Yet, patterns of 'fish' evolutionary history remain insufficiently understood and previous studies generally treated each group independently mainly because of their contrasting fossil record composition and corresponding sampling strategies. Because direct reading of palaeodiversity curves is affected by several biases affecting the fossil record, analytical approaches are needed to correct for these biases. In this review, we propose a comprehensive analysis based on comparison of large data sets related to competing phylogenies (including all Recent and fossil taxa) and the fossil record for both groups during the Mesozoic-Cainozoic interval. This approach provides information on the 'fish' fossil record quality and on the corrected 'fish' deep-time phylogenetic palaeodiversity signals, with special emphasis on diversification events. Because taxonomic information is preserved after analytical treatment, identified palaeodiversity events are considered both quantitatively and qualitatively and put within corresponding palaeoenvironmental and biological settings. Results indicate a better fossil record quality for elasmobranchs due to their microfossil-like fossil distribution and their very low diversity in freshwater systems, whereas freshwater actinopterygians are diverse in this realm with lower preservation potential. Several important diversification events are identified at familial and generic levels for elasmobranchs, and marine and freshwater actinopterygians, namely in the Early-Middle Jurassic (elasmobranchs), Late Jurassic (actinopterygians), Early Cretaceous (elasmobranchs, freshwater actinopterygians), Cenomanian (all groups) and the Paleocene-Eocene interval (all groups), the latter two

  12. Bipolar gene flow in deep-sea benthic foraminifera

    DEFF Research Database (Denmark)

    Pawlowski, J.; Fahrni, J.; Lecroq, B.

    2007-01-01

    Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic leve...

  13. Economic Situation of Fish Farming in Southeastern Coast of the Black Sea

    Directory of Open Access Journals (Sweden)

    Ştefan Mihai Petrea

    2012-10-01

    Full Text Available Aquaculture industry, like most other industries, has a very powerfull correlation with the economical domain. Being an economic activity that generates profit, practicing fish farming aims profit maximization. The present study gives information regarding the economical indicators and also makes a cost structure analysis of five groups of fish farms from Southeastern Coast of the Black Sea: homestead fish farms, small scale fish farms, middle scale fish farms, big scale fish farms and floating cages. The fish farms were classified in this way by their production capacity. In order to collect data, the most representative fish farms for each group were selected and face to face interviews were made for every one of them. Data related to their source of financing, initial investment, labour costs, selling prices, feed costs and other operational costs were collected, arranged, structured and analyzed and a series of economic indicators as gross production value, gross margin, breakeven quantity, specific investment, profit, profitability ratio, rate of return or labour productivity were calculated. As a result, it was observed that fish production capacity has a big influence over the rate of return, middle scale fish farms being the most profitable, followed closely by small scale fish farms.

  14. Deep sea mega-geomorphology: Progress and problems

    Science.gov (United States)

    Bryan, W. B.

    1985-01-01

    Historically, marine geologists have always worked with mega-scale morphology. This is a consequence both of the scale of the ocean basins and of the low resolution of the observational remote sensing tools available until very recently. In fact, studies of deep sea morphology have suffered from a serious gap in observational scale. Traditional wide-beam echo sounding gave images on a scale of miles, while deep sea photography has been limited to scales of a few tens of meters. Recent development of modern narrow-beam echo sounding coupled with computer-controlled swath mapping systems, and development of high-resolution deep-towed side-scan sonar, are rapidly filling in the scale gap. These technologies also can resolve morphologic detail on a scale of a few meters or less. As has also been true in planetary imaging projects, the ability to observe phenomena over a range of scales has proved very effective in both defining processes and in placing them in proper context.

  15. A new procedure for deep sea mining tailings disposal

    OpenAIRE

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal methods which exist in on-land mining and the coastal mining fields, a new tailings disposal procedure, i.e., the submarine–backfill–dam–reuse (SBDR) tailings disposal procedure, is proposed. It com...

  16. Acanthocotyle gurgesiella n. sp. (Monogenea: Acanthocotylidae) from the deep-sea skate Gurgesiella furvescens (Rajidae) in the south-eastern Pacific.

    Science.gov (United States)

    Ñacari, L A; Sepulveda, F A; Escribano, R; Oliva, M E

    2018-03-01

    Little is known about the diversity of parasites of the deep-sea fish of the world's oceans. Here, a new species of monogenean parasite of the deep-sea skate Gurgesiella furvescens is described. Specimens of parasites were obtained from the skin of two specimens of the dusky finless skate, G. furvescens (Rajidae), in the vicinity of Valparaiso (33°S, 72°W), central Chile, from midwater trawl fishing at depths of 350-450 m. Both morphological and molecular analyses were conducted to provide a full description of the new species, named Acanthocotyle gurgesiella. For the molecular analyses, nuclear large subunit (LSU) rDNA and the mitochondrial gene cytochrome c oxidase 1 (COI) were used. From the morphological analysis and a comparison with the known species of the genus, A. gurgesiella can be identified by a combination of morphological characteristics, including the number of testes, number of radial rows of sclerites in the pseudohaptor, aperture of the genital pore and shape of the vitelline follicles. The results from the DNA analysis indicated that A. gurgesiella has a genetic divergence of 3.2-3.7% (LSU rDNA gene) from A. urolophi, the only congener species for which molecular data are available.

  17. Certified reference material for radionuclides in fish flesh sample IAEA-414 (mixed fish from the Irish Sea and North Sea)

    International Nuclear Information System (INIS)

    Pham, M.K.; Sanchez-Cabeza, J.A.; Povinec, P.P.; Arnold, D.; Benmansour, M.; Bojanowski, R.; Carvalho, F.P.; Kim, C.K.; Esposito, M.; Gastaud, J.; Gasco, C.L.; Ham, G.J.; Hegde, A.G.; Holm, E.; Jaskierowicz, D.; Kanisch, G.; Llaurado, M.; La Rosa, J.; Lee, S.-H.; Liong Wee Kwong, L.; Le Petit, G.; Maruo, Y.; Nielsen, S.P.; Oh, J.-S.; Oregioni, B.; Palomares, J.; Pettersson, H.B.L.; Rulik, P.; Ryan, T.P.; Sato, K.; Schikowski, J.; Skwarzec, B.; Smedley, P.A.; Tarjan, S.; Vajda, N.; Wyse, E.

    2006-01-01

    A certified reference material (CRM) for radionuclides in fish sample IAEA-414 (mixed fish from the Irish Sea and North Seas) is described and the results of the certification process are presented. Nine radionuclides ( 4 K, 137 Cs, 232 Th, 234 U, 235 U, 238 U, 238 Pu, 239+24 Pu and 241 Am) were certified for this material. Information on massic activities with 95% confidence intervals is given for six other radionuclides ( 9 Sr, 21 Pb( 21 Po), 226 Ra, 239 Pu, 24 Pu 241 Pu). Less frequently reported radionuclides ( 99 Tc, 129 I, 228 Th, 23 Th and 237 Np) and information on some activity and mass ratios are also included. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in fish sample, for the development and validation of analytical methods and for training purposes. The material is available from IAEA, Vienna, in 100 g units

  18. Ecomorphology as a predictor of fish diet: a case study on the North Sea benthic fish community

    NARCIS (Netherlands)

    Diderich, W.P.

    2006-01-01

    A methodological approach based on fish ecomorphology was chosen to predict potential fish diet. This study tests a method used in earlier research on a marine ecosystem containing phylogenetically diverse organisms: the North Sea. Fish feeding morphology imposes constraints on feeding options. A

  19. Behavioral Response of Reef Fish and Green Sea Turtles to Midfrequency Sonar.

    Science.gov (United States)

    Watwood, Stephanie L; Iafrate, Joseph D; Reyier, Eric A; Redfoot, William E

    2016-01-01

    There is growing concern over the potential effects of high-intensity sonar on wild fish populations and commercial fisheries. Acoustic telemetry was employed to measure the movements of free-ranging reef fish and sea turtles in Port Canaveral, FL, in response to routine submarine sonar testing. Twenty-five sheepshead (Archosargus probatocephalus), 28 gray snapper (Lutjanus griseus), and 29 green sea turtles (Chelonia mydas) were tagged, with movements monitored for a period of up to 4 months using an array of passive acoustic receivers. Baseline residency was examined for fish and sea turtles before, during, and after the test event. No mortality of tagged fish or sea turtles was evident from the sonar test event. There was a significant increase in the daily residency index for both sheepshead and gray snapper at the testing wharf subsequent to the event. No broad-scale movement from the study site was observed during or immediately after the test.

  20. Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria

    NARCIS (Netherlands)

    Hermsen, E.; Pompe, R.; Besseling, E.; Koelmans, A.A.

    2017-01-01

    We investigated 400 individual fish of four North Sea species: Atlantic Herring, Sprat, Common Dab, and Whiting on ingestion of > 20 μm microplastic. Strict quality assurance criteria were followed in order to control contamination during the study. Two plastic particles were found in only 1 (a

  1. Nematode assemblages in the deep-sea benthos of the Norwegian Sea

    Science.gov (United States)

    Jensen, Preben

    1988-07-01

    The deep-sea benthos of the Norwegian Sea contains 20-204 nematodes per 10 cm 2 down to 3 cm depth at seven stations sampled between 970 and 3294 m water depth. The majority of nematodes occur in the uppermost cm. Biomass varies from 3 to 73 μg C per 10 cm 2. Individual adult weight of the most dominant species differs by a factor of almost 1000, i.e. from 3-4 ng C to 3400 ng C; however, the majority of the nematodes is small-sized. Species diversity and evenness are high at all stations and each station harbours its specific fauna with little overlap between stations. Analysis of trophic group composition suggests that microbial feeding types (deposit and epistrate feeders) prevail in the deep-sea benthos; predators and scavengers are scarce. It is concluded that the nematode assemblage at each station consists of a mosaic of many microhabitats. The small nematode body weight probably results from limited food supply and/or poor food quality.

  2. Deep-sea environment and biodiversity of the West African Equatorial margin

    OpenAIRE

    Sibuet, Myriam; Vangriesheim, Annick

    2009-01-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites...

  3. Exploring the Hg pollution in global marginal seas by trophic biomagnification in demersal fishes

    Science.gov (United States)

    Tseng, C. M.; Hsieh, Y. C.; Chiang, C. Y.; Lamborg, C. H.; Chang, N. N.; Shiao, J. C.

    2017-12-01

    Limited knowledge still exists concerning the effects of size composition and trophic level (TL) on mercury levels in the demersal fishes associated with human activities in the marginal seas. In this study, we found evidence of strong control of TL on the Hg in fish and its biomagnification via food webs in the ECS. Total Hg in seven selected fish species, collected during the cruise OR1- 890 in July 2009, ranged from 2.6 and 256.2 ng g-1 (n=72). There were good linear relationships between Hg concentrations and fish body length (R2 = 0.79) and weight (R2 = 0.82), respectively, other than environmental variables (R2 = 0 0.03). It indicates that the Hg concentration in fish is mainly controlled by the growth mechanism of the fish itself through food chain transfer. In order to investigate how Hg levels in fish through trophic magnification associated with environmental changes, we hence developed the empirical method to calculate Hg accumulation rate (MAR) via the relationship of Hg concentration with the fish age for each fish species. The results further showed a significantly positive correlation of MAR with trophic levels, which relationship is Ln MAR =6.1 TL-15.8 (R2 = 0.89) in the ECS shelf. The magnitude of the slope (δMAR/δTL) as a biomagnification index of demersal fish shall provide the feasibility to compare Hg pollution situation among different marine ecosystems. Globally, the biomagnification indicator in the demersal fishes of the ECS is much greater than those in other marginal seas, suggesting high regional Hg pollution impacts from Mainland China.

  4. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    -tolerant enzymes, natural products of potential use in human health management and environmental bioremediation using solvent-tolerant microorganisms are some of the potential biotechnological applications of these deep-sea microbes....

  5. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos

    DEFF Research Database (Denmark)

    Sinniger, Frédéric; Pawlowski, Jan; Harii, Saki

    2016-01-01

    in 39 deep-sea sediment samples from bathyal and abyssal depths worldwide. The eDNA dataset was dominated by meiobenthic taxa and we identified all animal phyla commonly found in the deep-sea benthos; yet, the diversity within these phyla remains largely unknown. The large numbers of taxonomically...... for pure and applied deep-sea environmental research but also emphasizes the necessity to integrate such new approaches with traditional morphology-based examination of deep-sea organisms....

  6. Precise Th/U-dating of small and heavily coated samples of deep sea corals

    Science.gov (United States)

    Lomitschka, Michael; Mangini, Augusto

    1999-07-01

    Marine carbonate skeletons like deep-sea corals are frequently coated with iron and manganese oxides/hydroxides which adsorb additional thorium and uranium out of the sea water. A new cleaning procedure has been developed to reduce this contamination. In this further cleaning step a solution of Na 2EDTA (Na 2H 2T B) and ascorbic acid is used which composition is optimised especially for samples of 20 mg of weight. It was first tested on aliquots of a reef-building coral which had been artificially contaminated with powdered ferromanganese nodule. Applied on heavily contaminated deep-sea corals (scleractinia), it reduced excess 230Th by another order of magnitude in addition to usual cleaning procedures. The measurement of at least three fractions of different contamination, together with an additional standard correction for contaminated carbonates results in Th/U-ages corrected for the authigenic component. A good agreement between Th/U- and 14C-ages can be achieved even for extremely coated corals.

  7. Detection of low numbers of microplastics in North Sea fish using strict quality assurance criteria.

    Science.gov (United States)

    Hermsen, Enya; Pompe, Renske; Besseling, Ellen; Koelmans, Albert A

    2017-09-15

    We investigated 400 individual fish of four North Sea species: Atlantic Herring, Sprat, Common Dab, and Whiting on ingestion of >20μm microplastic. Strict quality assurance criteria were followed in order to control contamination during the study. Two plastic particles were found in only 1 (a Sprat) out of 400 individuals (0.25%, with a 95% confidence interval of 0.09-1.1%). The particles were identified to consist of polymethylmethacrylate (PMMA) through FTIR spectroscopy. No contamination occurred during the study, showing the method applied to be suitable for microplastic ingestion studies in biota. We discuss the low particle count for North Sea fish with those in other studies and suggest a relation between reported particle count and degree of quality assurance applied. Microplastic ingestion by fish may be less common than thought initially, with low incidence shown in this study, and other studies adhering to strict quality assurance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Close the high seas to fishing?

    Science.gov (United States)

    White, Crow; Costello, Christopher

    2014-03-01

    The world's oceans are governed as a system of over 150 sovereign exclusive economic zones (EEZs, ∼42% of the ocean) and one large high seas (HS) commons (∼58% of ocean) with essentially open access. Many high-valued fish species such as tuna, billfish, and shark migrate around these large oceanic regions, which as a consequence of competition across EEZs and a global race-to-fish on the HS, have been over-exploited and now return far less than their economic potential. We address this global challenge by analyzing with a spatial bioeconomic model the effects of completely closing the HS to fishing. This policy both induces cooperation among countries in the exploitation of migratory stocks and provides a refuge sufficiently large to recover and maintain these stocks at levels close to those that would maximize fisheries returns. We find that completely closing the HS to fishing would simultaneously give rise to large gains in fisheries profit (>100%), fisheries yields (>30%), and fish stock conservation (>150%). We also find that changing EEZ size may benefit some fisheries; nonetheless, a complete closure of the HS still returns larger fishery and conservation outcomes than does a HS open to fishing.

  9. Studies of the reproductive biology of deep-sea megabenthos

    International Nuclear Information System (INIS)

    Tyler, P.A.

    1987-07-01

    The final report describes the general biology and ecology of the 15 holothurians, 3 asteroids, 2 zoanthids and 1 crustacea species studied in Reports I-XIII, the sampling methods used and the station data. A summary of the histological, histochemical and biochemical results for the species examined is given. The data suggest that the reproductive processes in the deep-sea species examined are highly unlikely to be part of a pathway for the transfer of radionuclides from the deep-sea back to man. (author)

  10. The National Deep-Sea Coral and Sponge Database: A Comprehensive Resource for United States Deep-Sea Coral and Sponge Records

    Science.gov (United States)

    Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.

    2014-12-01

    Research on deep-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA Deep Sea Coral Research and Technology Program's National Database for Deep-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 deep-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible observations with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution observational data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.

  11. How deep-sea wood falls sustain chemosynthetic life.

    Directory of Open Access Journals (Sweden)

    Christina Bienhold

    Full Text Available Large organic food falls to the deep sea--such as whale carcasses and wood logs--are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals.

  12. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    Science.gov (United States)

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  13. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    Science.gov (United States)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear

  14. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.

    Science.gov (United States)

    Taylor, M L; Roterman, C N

    2017-10-01

    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  15. Deep Coherent Vortices and Their Sea Surface Expressions

    Science.gov (United States)

    Ienna, Federico; Bashmachnikov, Igor; Dias, Joaquim; Peliz, Alvaro

    2017-04-01

    Mediterranean Water eddies, known as Meddies, are an important dynamic process occurring at depths of 1000-meters in the Northeast Atlantic Ocean. Meddies occur as a direct result of the Mediterranean Outflow exiting through the Gibraltar Strait, and represent a prevalent mechanism that can be found extensively throughout the ocean. Moreover, Meddy cores are known to produce measurable expressions at the sea surface in the form of rotating coherent vortices, not only affecting the sea surface from beneath, but also allowing for the possibility to remotely study these deep phenomena through data gathered at the sea surface. While many past studies have focused on the properties of Meddy cores, only a handful of studies focus on the physical characteristics and behavior of the surface expressions produced. Are Meddy surface expressions different from other like vortices that dominate the physical ocean surface? What are the relationships between deep and surface mechanisms, and do any feedbacks exist? To shed light on these questions, we investigate the relationship between Meddies and their sea-surface expressions through observations using in-situ float and drifter profiles and satellite altimetry. A total of 782 Meddy cores were examined in the Northeast Atlantic using temperature and salinity data obtained by CTD and Argo during the Mecanismos de transporte e de dispersão da Água Mediterrânica no Atlântico Nordeste (MEDTRANS) project, and their corresponding sea-level expressions were geo-temporally matched in satellite altimetry data. We report several statistical properties of the sea-surface expressions of Meddies, including their mean diameter and vertical magnitude, and compare the properties of their surface features to the underlying Meddy cores. We investigate how the deep core affects the surface, and whether surface expressions may in return yield information about the underlying cores. Additionally, we examine the variability of the surface

  16. An interactive end-user software application for a deep-sea photographic database

    Digital Repository Service at National Institute of Oceanography (India)

    Jaisankar, S.; Sharma, R.

    . The software is the first of its kind in deep-sea applications and it also attempts to educate the user about deep-sea photography. The application software is developed by modifying established routines and by creating new routines to save the retrieved...

  17. Microbial ecology of deep-sea hypersaline anoxic basins

    KAUST Repository

    Merlino, Giuseppe

    2018-05-09

    Deep hypersaline anoxic basins (DHABs) are unique water bodies occurring within fractures at the bottom of the sea, where the dissolution of anciently buried evaporites created dense anoxic brines that are separated by a chemocline/pycnocline from the overlying oxygenated deep-seawater column. DHABs have been described in the Gulf of Mexico, the Mediterranean Sea, the Black Sea and the Red Sea. They are characterized by prolonged historical separation of the brines from the upper water column due to lack of mixing and by extreme conditions of salinity, anoxia, and relatively high hydrostatic pressure and temperatures. Due to these combined selection factors, unique microbial assemblages thrive in these polyextreme ecosystems. The topological localization of the different taxa in the brine-seawater transition zone coupled with the metabolic interactions and niche adaptations determine the metabolic functioning and biogeochemistry of DHABs. In particular, inherent metabolic strategies accompanied by genetic adaptations have provided insights on how prokaryotic communities can adapt to salt-saturated condition. Here, we review the current knowledge on the diversity, genomics, metabolisms and ecology of prokaryotes in DHABs.

  18. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    Science.gov (United States)

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  19. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  20. A review on deep-sea fungi: Occurrence, diversity and adaptions

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.R.; Singh, P.

    soil. In contrast to land, however, most studies on deep-sea sediments have focused exclusively on bacteria and have demonstrated their intense metabolic activities therein (Turley and Dixon 2002). The fungi and their role in the deep-sea sediments... polymerization and form brown-coloured products, constituting humus (Tisdall and Oades 1982). The humic material combines with soil particles to form microaggregates. Fungal hyphae further act as binding agents to form macroaggregates by trapping fine particles...

  1. Fish protein hydrolysates: application in deep-fried food and food safety analysis.

    Science.gov (United States)

    He, Shan; Franco, Christopher; Zhang, Wei

    2015-01-01

    Four different processes (enzymatic, microwave-intensified enzymatic, chemical, and microwave-intensified chemical) were used to produce fish protein hydrolysates (FPH) from Yellowtail Kingfish for food applications. In this study, the production yield and oil-binding capacity of FPH produced from different processes were evaluated. Microwave intensification significantly increased the production yields of enzymatic process from 42% to 63%. It also increased the production yields of chemical process from 87% to 98%. The chemical process and microwave-intensified chemical process produced the FPH with low oil-binding capacity (8.66 g oil/g FPH and 6.25 g oil/g FPH), whereas the microwave-intensified enzymatic process produced FPH with the highest oil-binding capacity (16.4 g oil/g FPH). The FPH from the 4 processes were applied in the formulation of deep-fried battered fish and deep-fried fish cakes. The fat uptake of deep-fried battered fish can be reduced significantly from about 7% to about 4.5% by replacing 1% (w/w) batter powder with FPH, and the fat uptake of deep-fried fish cakes can be significantly reduced from about 11% to about 1% by replacing 1% (w/w) fish mince with FPH. Food safety tests of the FPH produced by these processes demonstrated that the maximum proportion of FPH that can be safely used in food formulation is 10%, due to its high content of histamine. This study demonstrates the value of FPH to the food industry and bridges the theoretical studies with the commercial applications of FPH. © 2015 Institute of Food Technologists®

  2. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction

    Science.gov (United States)

    Harden-Davies, Harriet

    2017-03-01

    The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.

  3. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  4. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  5. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    Directory of Open Access Journals (Sweden)

    Premila D. Thongbam

    2011-04-01

    Full Text Available Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  6. Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39

    International Nuclear Information System (INIS)

    Smethie, W.M. Jr.; Ostlund, H.G.; Loosli, H.H.

    1986-01-01

    On leg 5 of the TTO expedition, the distributions of 85 Kr, tritium, 14 C, 39 Ar, temperature, salinity, oxygen, carbon dioxide and nutrients were measured in the Greenland and Norwegian seas. These observations support previous observations that Greenland Sea Deep Water is formed by a deep convective process within the Greenland gyre. They also support AAGAARD et al.'s (1985, Journal of Geophysical Research, 90, 4833-4846) new hypothesis that Norwegian Sea Deep Water forms from a mixture of Greenland Sea Deep Water and Eurasian Basin Deep Water. Volume transports estimated from the distributions of 85 Kr, tritium, 14 C and 39 Ar range from 0.53 to 0.74 Sv for exchange between the surface and deep Greenland Sea and from 0.9 to 1.47 Sv for exchange between the deep Greenland and deep Norwegian Seas. The residence time of water and the deep Greenland Sea with respect to exchange with surface water ranges from 24 to 34 years reported by PETERSON and ROOTH (1976, Deep-Sea Research, 23, 273-283) and 35-42 years reported by BULLISTER and WEISS (1983, Science, 221, 265-268). The residence time of water in the deep Norwegian Sea with respect to exchange with the deep Greenland Sea ranges from 19 to 30 years compared to 97-107 years reported by PETERSON and ROOTH (1976) and 10-28 years reported by BULLISTER and WEISS (1983). The oxygen consumption rate was estimated to be at most 1.04 μM kg -1 y -1 for the deep Greenland Sea and to be between 0.47 and 0.79 μM kg -1 y -1 for the deep Norwegian Sea. (author)

  7. Diversity and community structure of epibenthic invertebrates and fish in the North Sea

    DEFF Research Database (Denmark)

    Callaway, R.; Alsväg, J.; de Boois, I.

    2002-01-01

    The structure of North Sea benthic invertebrate and fish communities is an important indicator of anthropogenic and environmental impacts. Although North Sea fish stocks are monitored regularly, benthic fauna are not. Here, we report the results of a survey carried out in 2000, in which five...

  8. Testing deep-sea biodiversity paradigms on abyssal nematode genera and Acantholaimus species

    Science.gov (United States)

    Lins, Lidia; da Silva, Maria Cristina; Neres, Patrícia; Esteves, André Morgado; Vanreusel, Ann

    2018-02-01

    Biodiversity patterns in the deep sea have been extensively studied in the last decades. In this study, we investigated whether reputable concepts in deep-sea ecology also explain diversity and distribution patterns of nematode genera and species in the abyss. Among them, three paradigms were tackled: (1) the deep sea is a highly diverse environment at a local scale, while on a regional and even larger geographical scale, species and genus turnover is limited; (2) the biodiversity of deep-sea nematode communities changes with the nature and amount of organic matter input from the surface; and (3) patch-mosaic dynamics of the deep-sea environment drive local diversity. To test these hypotheses, diversity and density of nematode assemblages and of species of the genus Acantholaimus were studied along two abyssal E-W transects. These two transects were situated in the Southern Ocean ( 50°S) and the North Atlantic ( 10°N). Four different hierarchical scales were used to compare biodiversity: at the scale of cores, between stations from the same region, and between regions. Results revealed that the deep sea harbours a high diversity at a local scale (alpha diversity), but that turnover can be shaped by different environmental drivers. Therefore, these results question the second part of the paradigm about limited species turnover in the deep sea. Higher surface primary productivity was correlated with greater nematode densities, whereas diversity responses to the augmentation of surface productivity showed no trend. Areas subjected to a constant and low food input revealed similar nematode communities to other oligotrophic abyssal areas, while stations under high productivity were characterized by different dominant genera and Acantholaimus species, and by a generally low local diversity. Our results corroborate the species-energy hypothesis, where productivity can set a limit to the richness of an ecosystem. Finally, we observed no correlation between sediment

  9. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  10. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  11. Type C botulism in pelicans and other fish-eating birds at the Salton Sea

    Science.gov (United States)

    Rocke, T.E.; Nol, P.; Pelizza, C.; Sturm, K.K.

    2004-01-01

    In 1996, type C avian botulism killed over 10,000 pelicans and nearly 10,000 other fish-eating birds at the Salton Sea in southern California. Although botulism had been previously documented in waterbirds at the Sea, this die-off was unusual in that it involved primarily fish-eating birds. The American White Pelican (Pelecanus erythrorynchos) was the species with the greatest mortality in 1996. Since 1996, mortality has recurred every year but losses have declined (Salton Sea, but the source of toxin for fish is unknown.

  12. Close the high seas to fishing?

    Directory of Open Access Journals (Sweden)

    Crow White

    2014-03-01

    Full Text Available The world's oceans are governed as a system of over 150 sovereign exclusive economic zones (EEZs, ∼42% of the ocean and one large high seas (HS commons (∼58% of ocean with essentially open access. Many high-valued fish species such as tuna, billfish, and shark migrate around these large oceanic regions, which as a consequence of competition across EEZs and a global race-to-fish on the HS, have been over-exploited and now return far less than their economic potential. We address this global challenge by analyzing with a spatial bioeconomic model the effects of completely closing the HS to fishing. This policy both induces cooperation among countries in the exploitation of migratory stocks and provides a refuge sufficiently large to recover and maintain these stocks at levels close to those that would maximize fisheries returns. We find that completely closing the HS to fishing would simultaneously give rise to large gains in fisheries profit (>100%, fisheries yields (>30%, and fish stock conservation (>150%. We also find that changing EEZ size may benefit some fisheries; nonetheless, a complete closure of the HS still returns larger fishery and conservation outcomes than does a HS open to fishing.

  13. Methods in mooring deep sea sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Fernando, V.; Rajaraman, V.S.; Janakiraman, G.

    The experience gained during the process of deployment and retrieval of nearly 39 sets of deep sea sediment trap moorings on various ships like FS Sonne, ORV Sagarkanya and DSV Nand Rachit are outlined. The various problems encountered...

  14. High Acidification Rate of Norwegian Sea Revealed by Boron Isotopes in the Deep-Sea Coral Madrepora Oculata

    Science.gov (United States)

    Gonzalez, C.; Douville, E.; Hall-Spencer, J.; Montagna, P.; Louvat, P.; Gaillardet, J.; Frank, N.; Bordier, L.; Juillet-Leclerc, A.

    2012-12-01

    Ocean acidification and global warming due to the increase of anthropogenic CO2 are major threats for marine calcifying organisms, such as deep-sea corals, particularly in high-latitude regions. In order to evaluate the current anthropogenic perturbation and to properly assess the impacts and responses of calcifiers to previous changes in pH it is critical to investigate past changes of the seawater carbonate system. Unfortunately, current instrumental records of oceanic pH are limited, covering only a few decades. Scleractinian coral skeletons record chemical parameters of the seawater in which they grow. However, pH variability over multidecadal timescales remains largely unknown in intermediate and deep seawater masses. Here we present a study that highlights the potential of deep-sea-corals to overcome the lack of long-term pH records and that emphasizes a rapid acidification of high latitude subsurface waters of Norwegian Sea during the past decades. We have reconstructed seawater pH and temperature from a well dated deep-sea coral specimen Madrepora oculata collected alive from Røst reef in Norwegian Sea (67°N, 9°E, 340 m depth). This large branching framework forming coral species grew its skeleton over more than four decades determined using AMS 14C and 210Pb dating (Sabatier et al. 2012). B-isotopes and Li/Mg ratios yield an acidification rate of about -0.0030±0.0008 pH-unit.year-1 and a warming of 0.3°C during the past four decades (1967-2007). Overall our reconstruction technique agrees well with previous pH calculations (Hönisch et al., 2007 vs. Trotter et al., 2011 and McCulloch et al., 2012, i.e. the iterative method), but additional corrections are here applied using stable isotope correlations (O, C, B) to properly address kinetic fractionation of boron isotopes used for pH reconstruction. The resulting pH curve strongly anti-correlates with the annual NAO index, which further strengthens our evidence for the ocean acidification rate

  15. Relationships between fish, sea urchins and macroalgae: The structure of shallow rocky sublittoral communities in the Cyclades, Eastern Mediterranean

    Science.gov (United States)

    Giakoumi, Sylvaine; Cebrian, Emma; Kokkoris, Giorgos D.; Ballesteros, Enric; Sala, Enric

    2012-08-01

    Historical overfishing is the most likely explanation for the depletion of the shallow sublittoral communities in many areas not least in the Cyclades Archipelago, Greece. The present study is the first quantitative study of the shallow rocky sublittoral of the Cyclades based on in situ underwater surveys of algal cover, and fish and sea urchin abundance at 181 sampling sites in 25 islands to provide a baseline and investigate the relationship between these communities. Algal turf was the most abundant algal functional group, and canopy algae of the genus Cystoseira were more abundant at the northern islands. A range in fish biomass of almost two orders of magnitude was found across islands, but overall the Cyclades displayed much lower values than fished areas of the Western Mediterranean. We observed apex predators only in 25% of our sampling sites, and their biomass was uncorrelated to total fish biomass, indicating a depleted ecosystem. Sea urchin biomass was also low but similar to values found in other Mediterranean islands and was positively correlated with barrens. We observed a gradient of benthic community complexity from sea urchin barrens to communities dominated by Cystoseira spp. There was no correlation between sea urchins and their predators Diplodus spp., which presented extremely low densities.

  16. Productivity and recovery of forage fish under climate change and fishing: North Sea sandeel as a case study

    DEFF Research Database (Denmark)

    Lindegren, Martin; van Deurs, Mikael; MacKenzie, Brian

    2018-01-01

    -east Atlantic, acting as a key prey for predatory fish and sea birds, as well as supporting a large commercial fishery. In this case study, we investigate the underlying factors affecting recruitment and how these in turn affect productivity of the North Sea sandeel using long-term data and modelling. Our...... results demonstrate how sandeel productivity in the central North Sea (Dogger Bank) depends on a combination of external and internal regulatory factors, including fishing and climate effects, as well as density dependence and food availability of the preferred zooplankton prey (Calanus finmarchicus...... and Temora longicornis). Furthermore, our model scenarios suggest that while fishing largely contributed to the abrupt stock decline during the late 1990s and the following period of low biomass, a complete recovery of the stock to the highly productive levels of the early 1980s would only be possible...

  17. An abyssal mobilome: viruses, plasmids and vesicles from deep-sea hydrothermal vents.

    Science.gov (United States)

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-12-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here we focus on the abyssal mobilome by reviewing accumulating data on viruses, plasmids and vesicles associated with thermophilic and hyperthermophilic Bacteria and Archaea present in deep-sea hydrothermal vents. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  18. Effects of electro-fishing on galvano-taxis and carcass quality characteristics in sea bass (Dicentrarchus labrax

    Directory of Open Access Journals (Sweden)

    Edo D’Agaro

    2010-01-01

    Full Text Available The aim of this study was to investigate the effects of electro-fishing in sea water. We evaluated the feasibility of an electro-fishing system using numerical simulations for laboratory tanks and the open sea and performing a laboratory experiment. A non-homogeneous bi-dimensional electric-field model for marine water and fish based on discrete formulation of electro-magnetic field equations was developed using GAME (geometric approach for Maxwell equations software. Voltage gradients inside the fish and close to the body were determined. Re- sults showed that fish in the open sea and in groups had greater internal voltage differences than did fish in tanks and single fish. Sea bass (length:10 and 30 cm were exposed in laboratory tanks to pulsed direct current (PDC, 25-125 Hz and duty cycle (5-40%. We measured the electro-taxis and tetanus thresholds after electrical exposure. It is significant that these values decreased with increasing the size of fish. No differences were found after electro-fishing on overall appearance, internal and external haemorrhage, standard freshness scoring techniques and carcass quality characteristics

  19. Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents.

    Science.gov (United States)

    Burgaud, Gaëtan; Hué, Nguyen Thi Minh; Arzur, Danielle; Coton, Monika; Perrier-Cornet, Jean-Marie; Jebbar, Mohamed; Barbier, Georges

    2015-11-01

    Hydrostatic pressure plays a significant role in the distribution of life in the biosphere. Knowledge of deep-sea piezotolerant and (hyper)piezophilic bacteria and archaea diversity has been well documented, along with their specific adaptations to cope with high hydrostatic pressure (HHP). Recent investigations of deep-sea microbial community compositions have shown unexpected micro-eukaryotic communities, mainly dominated by fungi. Molecular methods such as next-generation sequencing have been used for SSU rRNA gene sequencing to reveal fungal taxa. Currently, a difficult but fascinating challenge for marine mycologists is to create deep-sea marine fungus culture collections and assess their ability to cope with pressure. Indeed, although there is no universal genetic marker for piezoresistance, physiological analyses provide concrete relevant data for estimating their adaptations and understanding the role of fungal communities in the abyss. The present study investigated morphological and physiological responses of fungi to HHP using a collection of deep-sea yeasts as a model. The aim was to determine whether deep-sea yeasts were able to tolerate different HHP and if they were metabolically active. Here we report an unexpected taxonomic-based dichotomic response to pressure with piezosensitve ascomycetes and piezotolerant basidiomycetes, and distinct morphological switches triggered by pressure for certain strains. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. North Sea Scyphomedusae; summer distribution, estimated biomass and significance particularly for 0-group Gadoid fish

    Science.gov (United States)

    Hay, S. J.; Hislop, J. R. G.; Shanks, A. M.

    Data on the by-catch of Scyphomedusae from pelagic trawls was collected during the routine ICES International 0-group Gadoid Surveys of the North Sea, in June and July of the years 1971-1986 (except 1984). These data are used to describe the distributions, abundances and biomasses of three common North Sea Scyphomedusae: Aurelia aurita (L.), Cyanea capillata (L.) and C. lamarckii (Péron & Lesuer). Information is also presented on inter-annual variability, size (umbrella diameter) frequencies and, for the Cyanea species, umbrella diameter: wet weight relationships. The general role and ecological significance of Scyphomedusae is discussed and, given the well known 'shelter' relationships between Scyphomedusae and certain 0-group fish, whiting ( Merlangius merlangus) and haddock ( Melanogrammus aeglefinus), in particular. The data were examined for evidence of such relationships. Aurelia aurita, although fairly widespread in the northern North Sea was virtually absent from the central North Sea but very abundant in coastal waters. This species was particularly abundant off the Scottish east coast and especially in the Moray Firth. Cyanea lamerckii was most abundant in the southern and eastern North Sea. More widespread than Aurelia, this species was also most abundant in coastal regions, particularly off the Danish west coast. Cyanea capillata, with a more northern distribution was also more widely distributed and abundant offshore. This species was most abundant in the area between the Orkney/Shetland Isles and the Norwegian Deep and in shelf waters of the north west approaches to the North Sea. As with C. lamarckii it was also, in some years, abundant off the Scottish east coast and west of Denmark. The abundance and the size frequency of the jellyfish show considerable inter-annual variability, and variability between regions of the North Sea. It is considered that hydrographic variability and differences in food supply to both medusae and to their sessile

  1. Fungi and macroaggregation in deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.

    Whereas fungi in terrestrial soils have been well studied, little is known of them in deep-sea sediments. Recent studies have demonstrated the presence of fungal hyphae in such sediments but in low abundance. We present evidence in this study...

  2. Fishing cod in the Baltic Sea - Gambling with the ecosystem services

    Science.gov (United States)

    Björkman, Sven; Nordlöf, Anders

    2014-05-01

    The population of cod in the Baltic sea has over the last decades decreased due to overfishing. To make the students aware of this problem and also to find a solution they are introduced to a game. The purpose of the game is to let the students know how to use renewable natural resources in these aspects; 1 Fishing cod without using it up 2 That solidarity is needed if you are sharing a resource 3 That cooperation is the key to keeping a natural resource healthy. The students are fishermen in group of four and are equipped with a boat. The playing board is a map over the Baltic sea. The rules of the game include the carrying capacity of the sea, how much fish one fishing boat is allowed to pick up, how much it costs to have a boat, and possibilities to buy a bigger boat. The game has two rounds: In round one the students in the group are competing against each other, they are not allowed to talk to each other and they are supposed to get as much fish as they can. As a consequence after round one the sea will become empty. In round two the groups compete with each other and they are coworking within the group. After this round the result is different from the first round. The catches are bigger than in round one and still there are cod left in the sea, which will generate a good fishing in the future.. The discussions after the game can be about why the two rounds ended so different, general discussion about "tragedy of the commons", sustainable use of ecosystem services and discussions about resources in common.

  3. Trophic ecology of deep-sea Asteroidea (Echinodermata) from eastern Canada

    Science.gov (United States)

    Gale, Katie S. P.; Hamel, Jean-François; Mercier, Annie

    2013-10-01

    Asteroids (sea stars) can be important predators in benthic communities and are often present in ecologically important and vulnerable deep-sea coral and sponge habitats. However, explicit studies on the trophic ecology of deep-sea asteroids are rare. We investigated the diets of seven species of deep-sea asteroid from the bathyal zone of Newfoundland and Labrador, eastern Canada. A multifaceted approach including live animal observations, stomach content analysis, and stable isotope analysis revealed the asteroids to be either top predators of megafauna or secondary consumers (mud ingesters, infaunal predators, and suspension feeders). The stable isotope signatures of Ceramaster granularis, Hippasteria phrygiana, and Mediaster bairdi are characteristic of high-level predators, having δ15N values 4.4‰ (more than one trophic level) above Ctenodiscus crispatus, Leptychaster arcticus, Novodinia americana, and Zoroaster fulgens. We present strong evidence that corals and sponges are common food items for two of the predatory species, C. granularis and H. phrygiana. During laboratory feeding trials, live H. phrygiana fed on several species of soft coral and C. granularis fed on sponges. Stomach content analysis of wild-caught individuals revealed sclerites from sea pens (e.g. Pennatula sp.) in the stomachs of both asteroid species; H. phrygiana also contained sclerites from at least two other species of octocoral and siliceous sponge spicules were present in the stomachs of C. granularis. The stomach contents of the secondary consumers contained a range of invertebrate material. Leptychaster arcticus and Ctenodiscus crispatus feed infaunally on bulk sediment and molluscs, Zoroaster fulgens is a generalist infaunal predator, and the brisingid Novodinia americana is a specialist suspension feeder on benthopelagic crustaceans. This study provides a foundation for understanding the ecological roles of bathyal asteroids, and suggests that some species may have the

  4. Cosmopolitanism and Biogeography of the Genus Manganonema (Nematoda: Monhysterida in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2011-09-01

    Full Text Available Spatial patterns of species diversity provide information about the mechanisms that regulate biodiversity and are important for setting conservation priorities. Present knowledge of the biogeography of meiofauna in the deep sea is scarce. This investigation focuses on the distribution of the deep-sea nematode genus Manganonema, which is typically extremely rare in deep-sea sediment samples. Forty-four specimens of eight different species of this genus were recorded from different Atlantic and Mediterranean regions. Four out of the eight species encountered are new to science. We report here that this genus is widespread both in the Atlantic and in the Mediterranean Sea. These new findings together with literature information indicate that Manganonema is a cosmopolitan genus, inhabiting a variety of deep-sea habitats and oceans. Manganonema shows the highest diversity at water depths >4,000 m. Our data, therefore, indicate that this is preferentially an abyssal genus that is able, at the same time, to colonize specific habitats at depths shallower than 1,000 m. The analysis of the distribution of the genus Manganonema indicates the presence of large differences in dispersal strategies among different species, ranging from locally endemic to cosmopolitan. Lacking meroplanktonic larvae and having limited dispersal ability due to their small size, it has been hypothesized that nematodes have limited dispersal potential. However, the investigated deep-sea nematodes were present across different oceans covering macro-scale distances. Among the possible explanations (hydrological conditions, geographical and geological pathways, long-term processes, specific historical events, their apparent preference of colonizing highly hydrodynamic systems, could suggest that these infaunal organisms are transported by means of deep-sea benthic storms and turbidity currents over long distances.

  5. Unveiling the Biodiversity of Deep-Sea Nematodes through Metabarcoding: Are We Ready to Bypass the Classical Taxonomy?

    Science.gov (United States)

    Dell'Anno, Antonio; Carugati, Laura; Corinaldesi, Cinzia; Riccioni, Giulia; Danovaro, Roberto

    2015-01-01

    Nematodes inhabiting benthic deep-sea ecosystems account for >90% of the total metazoan abundances and they have been hypothesised to be hyper-diverse, but their biodiversity is still largely unknown. Metabarcoding could facilitate the census of biodiversity, especially for those tiny metazoans for which morphological identification is difficult. We compared, for the first time, different DNA extraction procedures based on the use of two commercial kits and a previously published laboratory protocol and tested their suitability for sequencing analyses of 18S rDNA of marine nematodes. We also investigated the reliability of Roche 454 sequencing analyses for assessing the biodiversity of deep-sea nematode assemblages previously morphologically identified. Finally, intra-genomic variation in 18S rRNA gene repeats was investigated by Illumina MiSeq in different deep-sea nematode morphospecies to assess the influence of polymorphisms on nematode biodiversity estimates. Our results indicate that the two commercial kits should be preferred for the molecular analysis of biodiversity of deep-sea nematodes since they consistently provide amplifiable DNA suitable for sequencing. We report that the morphological identification of deep-sea nematodes matches the results obtained by metabarcoding analysis only at the order-family level and that a large portion of Operational Clustered Taxonomic Units (OCTUs) was not assigned. We also show that independently from the cut-off criteria and bioinformatic pipelines used, the number of OCTUs largely exceeds the number of individuals and that 18S rRNA gene of different morpho-species of nematodes displayed intra-genomic polymorphisms. Our results indicate that metabarcoding is an important tool to explore the diversity of deep-sea nematodes, but still fails in identifying most of the species due to limited number of sequences deposited in the public databases, and in providing quantitative data on the species encountered. These aspects

  6. 75 FR 49420 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-08-13

    .... 100513223-0289-02] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine...-sea (DAS) allocation for the Atlantic deep- sea red crab fishery that were implemented in May 2010...

  7. Starvation and recovery in the deep-sea methanotroph Methyloprofundus sedimenti.

    Science.gov (United States)

    Tavormina, Patricia L; Kellermann, Matthias Y; Antony, Chakkiath Paul; Tocheva, Elitza I; Dalleska, Nathan F; Jensen, Ashley J; Valentine, David L; Hinrichs, Kai-Uwe; Jensen, Grant J; Dubilier, Nicole; Orphan, Victoria J

    2017-01-01

    In the deep ocean, the conversion of methane into derived carbon and energy drives the establishment of diverse faunal communities. Yet specific biological mechanisms underlying the introduction of methane-derived carbon into the food web remain poorly described, due to a lack of cultured representative deep-sea methanotrophic prokaryotes. Here, the response of the deep-sea aerobic methanotroph Methyloprofundus sedimenti to methane starvation and recovery was characterized. By combining lipid analysis, RNA analysis, and electron cryotomography, it was shown that M. sedimenti undergoes discrete cellular shifts in response to methane starvation, including changes in headgroup-specific fatty acid saturation levels, and reductions in cytoplasmic storage granules. Methane starvation is associated with a significant increase in the abundance of gene transcripts pertinent to methane oxidation. Methane reintroduction to starved cells stimulates a rapid, transient extracellular accumulation of methanol, revealing a way in which methane-derived carbon may be routed to community members. This study provides new understanding of methanotrophic responses to methane starvation and recovery, and lays the initial groundwork to develop Methyloprofundus as a model chemosynthesizing bacterium from the deep sea. © 2016 John Wiley & Sons Ltd.

  8. Deep-sea environment and biodiversity of the West African Equatorial margin

    Science.gov (United States)

    Sibuet, Myriam; Vangriesheim, Annick

    2009-12-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.

  9. 75 FR 35435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-06-22

    .... 100513223-0254-01] RIN 0648-AY88 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications In- season Adjustment AGENCY: National Marine... deep-sea red crab fishery, including a target total allowable catch (TAC) and a fleet-wide days-at-sea...

  10. Patterns of deep-sea genetic connectivity in the New Zealand region: implications for management of benthic ecosystems.

    Directory of Open Access Journals (Sweden)

    Eleanor K Bors

    Full Text Available Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ, deep-sea communities at upper bathyal depths (<2000 m are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand's EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.

  11. Clean and safe supply of fish and shellfish to clear the HACCP regulation by use of clean and cold deep ocean water in Rausu, Hokkaido, Japan

    Science.gov (United States)

    Mac Takahashi, Masayuki; Yamashita, Kazunori

    2005-07-01

    For the supply of fish and shellfish to consumers in fresh condition, clean handling after catch from the sea is essential. According to HACCP (Hazard Analysis and Critical Control Points), it is important to meet such requirement by keeping fish and shellfish under a certain low temperature and clean conditions after catching. The deep ocean water (DOW) characterized by low temperature and cleanliness has been chosen for fish and shellfish handlings, particularly for salmon, cod, and sea urchin in Town ‘Rausu’ in Hokkaido, Japan. DOW below 2.9’C of an amount of nearly 5 000m3 is planned to be pumped up every day from a depth of about 350 m, and temporarily stored in a large simulated tank on land. DOW is then supplied to fish boats through hydrants distributed throughout the harbor and used for keeping salmon in clean and cold conditions. Ice made from DOW is also used for lowering temperature if necessary. DOW and ice made from DOW are also used during the transportation of fish and shellfish. The entire system is scheduled to be completed by the summer of 2005.

  12. Characterization of bacterial diversity associated with deep sea ferromanganese nodules from the South China Sea.

    Science.gov (United States)

    Zhang, De-Chao; Liu, Yan-Xia; Li, Xin-Zheng

    2015-09-01

    Deep sea ferromanganese (FeMn) nodules contain metallic mineral resources and have great economic potential. In this study, a combination of culture-dependent and culture-independent (16S rRNA genes clone library and pyrosequencing) methods was used to investigate the bacterial diversity in FeMn nodules from Jiaolong Seamount, the South China Sea. Eleven bacterial strains including some moderate thermophiles were isolated. The majority of strains belonged to the phylum Proteobacteria; one isolate belonged to the phylum Firmicutes. A total of 259 near full-length bacterial 16S rRNA gene sequences in a clone library and 67,079 valid reads obtained using pyrosequencing indicated that members of the Gammaproteobacteria dominated, with the most abundant bacterial genera being Pseudomonas and Alteromonas. Sequence analysis indicated the presence of many organisms whose closest relatives are known manganese oxidizers, iron reducers, hydrogen-oxidizing bacteria and methylotrophs. This is the first reported investigation of bacterial diversity associated with deep sea FeMn nodules from the South China Sea.

  13. Large-Scale Genotyping-by-Sequencing Indicates High Levels of Gene Flow in the Deep-Sea Octocoral Swiftia simplex (Nutting 1909 on the West Coast of the United States.

    Directory of Open Access Journals (Sweden)

    Meredith V Everett

    Full Text Available Deep-sea corals are a critical component of habitat in the deep-sea, existing as regional hotspots for biodiversity, and are associated with increased assemblages of fish, including commercially important species. Because sampling these species is so difficult, little is known about the connectivity and life history of deep-sea octocoral populations. This study evaluates the genetic connectivity among 23 individuals of the deep-sea octocoral Swiftia simplex collected from Eastern Pacific waters along the west coast of the United States. We utilized high-throughput restriction-site associated DNA (RAD-tag sequencing to develop the first molecular genetic resource for the deep-sea octocoral, Swiftia simplex. Using this technique we discovered thousands of putative genome-wide SNPs in this species, and after quality control, successfully genotyped 1,145 SNPs across individuals sampled from California to Washington. These SNPs were used to assess putative population structure across the region. A STRUCTURE analysis as well as a principal coordinates analysis both failed to detect any population differentiation across all geographic areas in these collections. Additionally, after assigning individuals to putative population groups geographically, no significant FST values could be detected (FST for the full data set 0.0056, and no significant isolation by distance could be detected (p = 0.999. Taken together, these results indicate a high degree of connectivity and potential panmixia in S. simplex along this portion of the continental shelf.

  14. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  15. Cucullanid nematodes (Nematoda: Cucullanidae) from deep-sea marine fishes off New Caledonia, including Dichelyne etelidis n. sp.

    Science.gov (United States)

    Moravec, František; Justine, Jean-Lou

    2011-02-01

    Three nematode species of the family Cucullanidae, intestinal parasites of marine perciform fishes, are reported from off New Caledonia: Cucullanus bourdini Petter & Le Bel, 1992 from the crimson jobfish Pristipomoides filamentosus (Valenciennes) and the goldflag jobfish Pristipomoides auricilla (Jordan, Evermann & Tanaka) (new host record) (both Lutjanidae); Dichelyne etelidis n. sp. from the deep-water red snapper Etelis carbunculus Cuvier (type-host) and the deep-water longtail red snapper Etelis coruscans Valenciennes (both Lutjanidae); and Dichelyne sp. (only one female) from the trumpet emperor Lethrinus miniatus (Forster) (Lethrinidae). Detailed light and electron microscopical studies revealed in C. bourdini some taxonomically important, previously unreported features, such as the location of the excretory pore, nature of the vulva and the size of fully-developed eggs. The new species, D. etelidis, is characterised mainly by the length of the spicules (462-748 μm), a single intestinal caecum, the location of the deirids and excretory pore, the arrangement of the genital papillae and the host group.

  16. Restoration of deep-sea macrofauna after simulated benthic disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Pavithran, S.; Ansari, Z.A.

    feeding by holoyhurians in the deep sea: some observations and comments. Progress in Oceanography 50, 407-421. Glasby, G.P., 1977. Marine manganese deposits. Elsevier, Amsterdam, pp.523. Grassle, J.F. and Sanders, H.L., 1973. Life histories and role... gesamten Hydrobiologie 77, 331-339. Thiel, H., 2001. Use and protection of the deep sea - an introduction. Deep-Sea Research II 48, (17-18), 3427-3431. Trueblood, D., Ozturgut, E., Pilipchuk, M., Gloumov, I. 1997. The ecological impacts of the joint U...

  17. A comparison of genetic connectivity in two deep sea corals to examine whether seamounts are isolated islands or stepping stones for dispersal

    Science.gov (United States)

    Miller, Karen J.; Gunasekera, Rasanthi M.

    2017-04-01

    Ecological processes in the deep sea are poorly understood due to the logistical constraints of sampling thousands of metres below the ocean’s surface and remote from most land masses. Under such circumstances, genetic data provides unparalleled insight into biological and ecological relationships. We use microsatellite DNA to compare the population structure, reproductive mode and dispersal capacity in two deep sea corals from seamounts in the Southern Ocean. The solitary coral Desmophyllum dianthus has widespread dispersal consistent with its global distribution and resilience to disturbance. In contrast, for the matrix-forming colonial coral Solenosmilia variabilis asexual reproduction is important and the dispersal of sexually produced larvae is negligible, resulting in isolated populations. Interestingly, despite the recognised impacts of fishing on seamount communities, genetic diversity on fished and unfished seamounts was similar for both species, suggesting that evolutionary resilience remains despite reductions in biomass. Our results provide empirical evidence that a group of seamounts can function either as isolated islands or stepping stones for dispersal for different taxa. Furthermore different strategies will be required to protect the two sympatric corals and consequently the recently declared marine reserves in this region may function as a network for D. dianthus, but not for S. variabilis.

  18. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    Science.gov (United States)

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  19. Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal.

    Science.gov (United States)

    Robison, Bruce; Seibel, Brad; Drazen, Jeffrey

    2014-01-01

    Octopuses typically have a single reproductive period and then they die (semelparity). Once a clutch of fertilized eggs has been produced, the female protects and tends them until they hatch. In most shallow-water species this period of parental care can last from 1 to 3 months, but very little is known about the brooding of deep-living species. In the cold, dark waters of the deep ocean, metabolic processes are often slower than their counterparts at shallower depths. Extrapolations from data on shallow-water octopus species suggest that lower temperatures would prolong embryonic development periods. Likewise, laboratory studies have linked lower temperatures to longer brooding periods in cephalopods, but direct evidence has not been available. We found an opportunity to directly measure the brooding period of the deep-sea octopus Graneledone boreopacifica, in its natural habitat. At 53 months, it is by far the longest egg-brooding period ever reported for any animal species. These surprising results emphasize the selective value of prolonged embryonic development in order to produce competitive hatchlings. They also extend the known boundaries of physiological adaptations for life in the deep sea.

  20. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  1. Has eutrophication promoted forage fish production in the Baltic Sea?

    DEFF Research Database (Denmark)

    Eero, Margit; Andersson, Helén C; Almroth-Rosell, Elin

    2016-01-01

    Reducing anthropogenic nutrient inputs is a major policy goal for restoring good environmental status of coastal marine ecosystems. However, it is unclear to what extent reducing nutrients would also lower fish production and fisheries yields. Empirical examples of changes in nutrient loads...... and concurrent fish production can provide useful insights to this question. In this paper, we investigate to what extent a multi-fold increase in nutrient loads from the 1950s to 1980s enhanced forage fish production in the Baltic Sea. We use monitoring data on fish stock dynamics covering the period...

  2. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.

    Science.gov (United States)

    Olsen, Gro Harlaug; Coquillé, Nathalie; Le Floch, Stephane; Geraudie, Perrine; Dussauze, Matthieu; Lemaire, Philippe; Camus, Lionel

    2016-04-01

    In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50% of test individuals (LC50) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC50 (24 h) was 101 and 24 mg L(-1) after 72 h and 12 mg L(-1) at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC50 (96 h) of 12 mg L(-1) indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC50 value in this study was similar to the LC50 value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental

  3. Sorption of americium and neptunium by deep-sea sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.

    1983-01-01

    The sorption and desorption of americium and neptunium by a wide range of deep-sea sediments from natural sea water at 4 0 C has been studied using a carefully controlled batch technique. All the sediments studied should form an excellent barrier to the migration of americium since distribution coefficients were uniformly greater than 10 5 and the sorption-desorption reaction may not be reversible. The sorption of neptunium was reversible and, except for one red clay, the distribution coefficients were greater than 10 3 for all the sediments investigated. Nevertheless the migration of neptunium should also be effectively retarded by most deep-sea sediments even under relatively oxidizing conditions. The neptunium in solution remained in the V oxidation state throughout the experiments. Under the experimental conditions used colloidal americium was trapped by the sediment and solubility did not seem to be the controlling factor in the desorption of americium. (Auth.)

  4. Molecular approach to the identification of fish in the South China Sea.

    Directory of Open Access Journals (Sweden)

    Junbin Zhang

    Full Text Available BACKGROUND: DNA barcoding is one means of establishing a rapid, accurate, and cost-effective system for the identification of species. It involves the use of short, standard gene targets to create sequence profiles of known species against sequences of unknowns that can be matched and subsequently identified. The Fish Barcode of Life (FISH-BOL campaign has the primary goal of gathering DNA barcode records for all the world's fish species. As a contribution to FISH-BOL, we examined the degree to which DNA barcoding can discriminate marine fishes from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: DNA barcodes of cytochrome oxidase subunit I (COI were characterized using 1336 specimens that belong to 242 species fishes from the South China Sea. All specimen provenance data (including digital specimen images and geospatial coordinates of collection localities and collateral sequence information were assembled using Barcode of Life Data System (BOLD; www.barcodinglife.org. Small intraspecific and large interspecific differences create distinct genetic boundaries among most species. In addition, the efficiency of two mitochondrial genes, 16S rRNA (16S and cytochrome b (cytb, and one nuclear ribosomal gene, 18S rRNA (18S, was also evaluated for a few select groups of species. CONCLUSIONS/SIGNIFICANCE: The present study provides evidence for the effectiveness of DNA barcoding as a tool for monitoring marine biodiversity. Open access data of fishes from the South China Sea can benefit relative applications in ecology and taxonomy.

  5. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea

    International Nuclear Information System (INIS)

    Garcia-Orellana, J.; Pates, J.M.; Masque, P.; Bruach, J.M.; Sanchez-Cabeza, J.A.

    2009-01-01

    Artificial radionuclides enter the Mediterranean Sea mainly through atmospheric deposition following nuclear weapons tests and the Chernobyl accident, but also through the river discharge of nuclear facility effluents. Previous studies of artificial radionuclides impact of the Mediterranean Sea have focussed on shallow, coastal sediments. However, deep sea sediments have the potential to store and accumulate pollutants, including artificial radionuclides. Deep sea marine sediment cores were collected from Mediterranean Sea abyssal plains (depth > 2000 m) and analysed for 239,240 Pu and 137 Cs to elucidate the concentrations, inventories and sources of these radionuclides in the deepest areas of the Mediterranean. The activity - depth profiles of 210 Pb, together with 14 C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2.5 cm of the sedimentary column. The excess 210 Pb inventory was used to normalize 239,240 Pu and 137 Cs inventories for variable sediment fluxes. The 239,240 Pu/ 210 Pb xs ratio was uniform across the entire sea, with a mean value of 1.24 x 10 -3 , indicating homogeneous fallout of 239,240 Pu. The 137 Cs/ 210 Pb xs ratio showed differences between the eastern (0.049) and western basins (0.030), clearly significant impact of deep sea sediments from the Chernobyl accident. The inventory ratios of 239,240 Pu/ 137 Cs were 0.041 and 0.025 in the western and eastern basins respectively, greater than the fallout ratio, 0.021, showing more efficient scavenging of 239,240 Pu in the water column and major sedimentation of 137 Cs in the eastern basin. Although areas with water depths of > 2000 m constitute around 40% of the entire Mediterranean basin, the sediments in these regions only contained 2.7% of the 239,240 Pu and 0.95% of the 137 Cs deposited across the Sea in 2000. These data show that the accumulation of artificial radionuclides in deep Mediterranean environments is much lower than predicted by

  6. The distribution of deep-sea sponge aggregations in the North Atlantic and implications for their effective spatial management

    Science.gov (United States)

    Howell, Kerry-Louise; Piechaud, Nils; Downie, Anna-Leena; Kenny, Andrew

    2016-09-01

    Sponge aggregations have been recognised as key component of shallow benthic ecosystems providing several important functional roles including habitat building and nutrient recycling. Within the deep-sea ecosystem, sponge aggregations may be extensive and available evidence suggests they may also play important functional roles, however data on their ecology, extent and distribution in the North Atlantic is lacking, hampering conservation efforts. In this study, we used Maximum Entropy Modelling and presence data for two deep-sea sponge aggregation types, Pheronema carpenteri aggregations and ostur aggregations dominated by geodid sponges, to address the following questions: 1) What environmental factors drive the broad-scale distribution of these selected sponge grounds? 2) What is the predicted distribution of these grounds in the northern North Atlantic, Norwegian and Barents Sea? 3) How are these sponge grounds distributed between Exclusive Economic Zones (EEZs) and High Seas areas? 4) What percentage of these grounds in High Seas areas are protected by the current High Seas MPA network? Our results suggest that silicate concentration, temperature, depth and amount of particulate organic carbon are the most important drivers of sponge distribution. Most of the sponge grounds are located within national EEZs rather than in the High Seas. Coordinated conservation planning between nations with significant areas of sponge grounds such as Iceland, Greenland and Faroes (Denmark), Norway (coastal Norway and Svalbard), Portugal and the UK, should be implemented in order to effectively manage these communities in view of the increasing level of human activity within the deep-sea environment.

  7. Shifts in North Sea forage fish productivity and potential fisheries yield

    DEFF Research Database (Denmark)

    Worsøe Clausen, Lotte; Rindorf, Anna; van Deurs, Mikael

    2018-01-01

    productivity. Furthermore, from an ecosystem-based fisheries management perspective, a link between functional complementarity and productivity, indicates that ecosystem resilience may decline with productivity. Based on this, we advise that system productivity, perhaps monitored as forage fish growth, becomes......1. Forage fish populations support large scale fisheries and are key components of marine ecosystems across the world, linking secondary production to higher trophic levels. While climate-induced changes in the North Sea zooplankton community are described and documented in literature......, the associated bottom-up effects and consequences for fisheries remain largely unidentified. 2. We investigated the temporal development in forage fish productivity and the associated influence on fisheries yield of herring, sprat, Norway pout and sandeel in the North Sea. Using principal component analysis, we...

  8. 75 FR 7435 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic...

    Science.gov (United States)

    2010-02-19

    .... 100105009-0053-01] RIN 0648-AY51 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab Fisheries; 2010 Atlantic Deep-Sea Red Crab Specifications AGENCY: National Marine Fisheries Service (NMFS... comments. SUMMARY: NMFS proposes 2010 specifications for the Atlantic deep-sea red crab fishery, including...

  9. Deep Sea Coral National Observation Database, Northeast Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The national database of deep sea coral observations. Northeast version 1.0. * This database was developed by the NOAA NOS NCCOS CCMA Biogeography office as part of...

  10. New Fisheries-related data from the Mediterranean Sea (November, 2016

    Directory of Open Access Journals (Sweden)

    A. ANASTASOPOULOU

    2016-11-01

    Full Text Available In this fourth Collective Article, with fisheries-related data from the Mediterranean, we present weight-length relationships for eight deep-sea fish species (Brama brama, Conger conger, Etmopterus spinax, Molva macrophthalma, Mora moro, Pagellus bogaraveo, Phycis blennoides from the Eastern Ionian Sea; Scyliorhinus canicula from various locations in the Mediterranean Sea and weight-length relationships and condition factor of five Mugilidae species (Liza aurata, Liza saliens, Liza ramada, Mugil cephalus, Chelon labrosus from a Mediterranean lagoon in the Ionian Sea. Moreover, we present otolith weight, fish length and otolith length relationships of the red mullet (Mullus barbatus in the Aegean and Ionian Sea and otolith weight relationships in European hake (Merluccius merluccius from the Greek Seas.

  11. GEOSTAR deep sea floor missions: magnetic data analysis and 1D geo electric structure underneath the Southern Tyrrhenian Sea

    International Nuclear Information System (INIS)

    Vitale, S.; De Santis, A.; Di Mauro, D.; Cafarella, L.; Palangio, P.; Beranzoli, L.; Favali, P.

    2009-01-01

    From 2000 to 2005 two geophysical exploration missions were undertaken in the Tyrrenian deep sea floor at depth between -2000 and -3000 m in the framework of the European-funded GEOSTAR Projects. The considered missions in this work are GEOSTAR-2 and ORION-GEOSTAR-3 with the main scientific objective of investigating the deep-sea floor by means of an automatic multiparameter benthic observatory station working continuously from around 5 to 12 months each time. During the two GEOSTAR deep sea floor missions, scalar and vector magnetometers acquired useful magnetic data both to improve global and regional geomagnetic reference models and to infer specific geo electric information about the two sites of magnetic measurements by means of a forward modelling.

  12. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre

    2015-10-31

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  13. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; Simoes, Marta; Daniels, Camille Arian; Ferreira, Ari J.S.; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B.

    2015-01-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  14. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  15. Matching Deep Tow Camera study and Sea Floor geochemical characterization of gas migration at the Tainan Ridge, South China Sea

    Science.gov (United States)

    Fan, L. F.; Lien, K. L.; Hsieh, I. C.; Lin, S.

    2017-12-01

    Methane seep in deep sea environment could lead to build up of chemosynthesis communities, and a number of geological and biological anomalies as compare to the surrounding area. In order to examine the linkage between seep anomalies and those at the vicinity background area, and to detail mapping those spatial variations, we used a deep towed camera system (TowCam) to survey seafloor on the Tainan Ridge, Northeastern South China Sea (SCS). The underwater sea floor pictures could provide better spatial variations to demonstrate impact of methane seep on the sea floor. Water column variations of salinity, temperature, dissolved oxygen were applied to delineate fine scale variations at the study area. In addition, sediment cores were collected for chemical analyses to confirm the existence of local spatial variations. Our results show large spatial variations existed as a result of differences in methane flux. In fact, methane is the driving force for the observed biogeochemical variations in the water column, on the sea floor, and in the sediment. Of the area we have surveyed, there are approximately 7% of total towcam survey data showing abnormal water properties. Corresponding to the water column anomalies, underwater sea floor pictures taken from those places showed that chemosynthetic clams and muscles could be identified, together with authigenic carbonate buildups, and bacterial mats. Moreover, sediment cores with chemical anomalies also matched those in the water column and on the sea floor. These anomalies, however, represent only a small portion of the area surveyed and could not be identified with typical (random) coring method. Methane seep, therefore, require tedious and multiple types of surveys to better understand the scale and magnitude of seep and biogeochemical anomalies those were driven by gas migrations.

  16. Microplastic pollution in deep-sea sediments

    International Nuclear Information System (INIS)

    Van Cauwenberghe, Lisbeth; Vanreusel, Ann; Mees, Jan; Janssen, Colin R.

    2013-01-01

    Microplastics are small plastic particles ( 3 was observed. •The depths from where these microplastics were recovered range from 1176 to 4843 m. •The sizes of the particles range from 75 to 161 μm at their largest cross-section. -- Here, we demonstrate that microplastics have invaded the marine environment to an extent that they appear to even be present in the remote deep sea

  17. The circulation of deep water in the Tasman and Coral seas

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-07-01

    The physical oceanography of the Tasman and Coral Seas is reviewed with an emphasis on the deep currents. There are many uncertainties in the deep circulation pattern. The available data are used to develop an idealised circulation to estimate the likely path taken by water flowing from a depth of 5000 m in the Tasman Sea. The model suggests that the water would finally reach the surface layers south of the Antarctic Convergence with a median delay of 600 years. (author)

  18. Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides

    KAUST Repository

    Busserolles, Fanny de

    2017-11-09

    Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, Maurolicus spp., have such a pure rod retina, their behavior is at odds with this simplex visual system. Contrary to other deep-sea fishes, pearlsides are mostly active during dusk and dawn close to the surface, where light levels are intermediate (twilight or mesopic) and require the use of both rod and cone photoreceptors. This study elucidates this paradox by demonstrating that the pearlside retina does not have rod photoreceptors only; instead, it is composed almost exclusively of transmuted cone photoreceptors. These transmuted cells combine the morphological characteristics of a rod photoreceptor with a cone opsin and a cone phototransduction cascade to form a unique photoreceptor type, a rod-like cone, specifically tuned to the light conditions of the pearlsides\\' habitat (blue-shifted light at mesopic intensities). Combining properties of both rods and cones into a single cell type, instead of using two photoreceptor types that do not function at their full potential under mesopic conditions, is likely to be the most efficient and economical solution to optimize visual performance. These results challenge the standing paradigm of the function and evolution of the vertebrate duplex retina and emphasize the need for a more comprehensive evaluation of visual systems in general.

  19. Life history variation in Barents Sea fish: implications for sensitivity to fishing in a changing environment.

    Science.gov (United States)

    Wiedmann, Magnus A; Primicerio, Raul; Dolgov, Andrey; Ottesen, Camilla A M; Aschan, Michaela

    2014-09-01

    Under exploitation and environmental change, it is essential to assess the sensitivity and vulnerability of marine ecosystems to such stress. A species' response to stress depends on its life history. Sensitivity to harvesting is related to the life history "fast-slow" continuum, where "slow" species (i.e., large, long lived, and late maturing) are expected to be more sensitive to fishing than "fast" ones. We analyze life history traits variation for all common fish species in the Barents Sea and rank fishes along fast-slow gradients obtained by ordination analyses. In addition, we integrate species' fast-slow ranks with ecosystem survey data for the period 2004-2009, to assess life history variation at the community level in space and time. Arctic fishes were smaller, had shorter life spans, earlier maturation, larger offspring, and lower fecundity than boreal ones. Arctic fishes could thus be considered faster than the boreal species, even when body size was corrected for. Phylogenetically related species possessed similar life histories. Early in the study period, we found a strong spatial gradient, where members of fish assemblages in the southwestern Barents Sea displayed slower life histories than in the northeast. However, in later, warmer years, the gradient weakened caused by a northward movement of boreal species. As a consequence, the northeast experienced increasing proportions of slower fish species. This study is a step toward integrating life history traits in ecosystem-based areal management. On the basis of life history traits, we assess the fish sensitivity to fishing, at the species and community level. We show that climate warming promotes a borealization of fish assemblages in the northeast, associated with slower life histories in that area. The biology of Arctic species is still poorly known, and boreal species that now establish in the Arctic are fishery sensitive, which calls for cautious ecosystem management of these areas.

  20. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre; Alam, Intikhab; El Dorry, Hamza; Siam, Rania; Robertson, Anthony J.; Bajic, Vladimir B.; Stingl, Ulrich

    2011-01-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  1. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  2. Spatial heterogeneity in fishing creates de facto refugia for endangered Celtic Sea elasmobranchs.

    Directory of Open Access Journals (Sweden)

    Samuel Shephard

    Full Text Available The life history characteristics of some elasmobranchs make them particularly vulnerable to fishing mortality; about a third of all species are listed by the IUCN as Threatened or Near Threatened. Marine Protected Areas (MPAs have been suggested as a tool for conservation of elasmobranchs, but they are likely to be effective only if such populations respond to fishing impacts at spatial-scales corresponding to MPA size. Using the example of the Celtic Sea, we modelled elasmobranch biomass (kg h(-1 in fisheries-independent survey hauls as a function of environmental variables and 'local' (within 20 km radius fishing effort (h y(-1 recorded from Vessel Monitoring Systems data. Model selection using AIC suggested strongest support for linear mixed effects models in which the variables (i fishing effort, (ii geographic location and (iii demersal fish assemblage had approximately equal importance in explaining elasmobranch biomass. In the eastern Celtic Sea, sampling sites that occurred in the lowest 10% of the observed fishing effort range recorded 10 species of elasmobranch including the critically endangered Dipturus spp. The most intensely fished 10% of sites had only three elasmobranch species, with two IUCN listed as Least Concern. Our results suggest that stable spatial heterogeneity in fishing effort creates de facto refugia for elasmobranchs in the Celtic Sea. However, changes in the present fisheries management regime could impair the refuge effect by changing fisher's behaviour and displacing effort into these areas.

  3. Impact on demersal fish of a large-scale and deep sand extraction site with ecosystem-based landscaped sandbars

    Science.gov (United States)

    de Jong, Maarten F.; Baptist, Martin J.; van Hal, Ralf; de Boois, Ingeborg J.; Lindeboom, Han J.; Hoekstra, Piet

    2014-06-01

    For the seaward harbour extension of the Port of Rotterdam in the Netherlands, approximately 220 million m3 sand was extracted between 2009 and 2013. In order to decrease the surface area of direct impact, the authorities permitted deep sand extraction, down to 20 m below the seabed. Biological and physical impacts of large-scale and deep sand extraction are still being investigated and largely unknown. For this reason, we investigated the colonization of demersal fish in a deep sand extraction site. Two sandbars were artificially created by selective dredging, copying naturally occurring meso-scale bedforms to increase habitat heterogeneity and increasing post-dredging benthic and demersal fish species richness and biomass. Significant differences in demersal fish species assemblages in the sand extraction site were associated with variables such as water depth, median grain size, fraction of very fine sand, biomass of white furrow shell (Abra alba) and time after the cessation of sand extraction. Large quantities of undigested crushed white furrow shell fragments were found in all stomachs and intestines of plaice (Pleuronectes platessa), indicating that it is an important prey item. One and two years after cessation, a significant 20-fold increase in demersal fish biomass was observed in deep parts of the extraction site. In the troughs of a landscaped sandbar however, a significant drop in biomass down to reference levels and a significant change in species assemblage was observed two years after cessation. The fish assemblage at the crests of the sandbars differed significantly from the troughs with tub gurnard (Chelidonichthys lucerna) being a Dufrêne-Legendre indicator species of the crests. This is a first indication of the applicability of landscaping techniques to induce heterogeneity of the seabed although it remains difficult to draw a strong conclusion due the lack of replication in the experiment. A new ecological equilibrium is not reached after 2

  4. Deep-sea impact experiments and their future requirements

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    In recent years, several experiments to assess the potential impacts due to deep-sea mining in the Pacific as well as the Indian Oceans have indicated the immediate changes and restoration patterns of environmental conditions in the marine ecosystem...

  5. [Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the Middle Atlantic Ridge].

    Science.gov (United States)

    Cui, Zhisong; Shao, Zongze

    2009-07-01

    In order to identify the predominant strains of polycyclic aromatic hydrocarbon (PAH)-degrading consortia harboring in sea water and surface sediment collected from deep sea of the Middle Atlantic Ridge. We employed enrichment method and spread-plate method to isolate cultivable bacteria and PAHs degraders from deep sea samples. Phylogenetic analysis was conducted by 16S rRNA gene sequencing of the bacteria. Then we analyzed the dominant bacteria in the PAHs-degrading consortia by denaturing gradient gel electrophoresis (DGGE) combined with DNA sequencing. Altogether 16 cultivable bacteria were obtained, including one PAHs degrader Novosphingobium sp. 4D. Phylogenetic analysis showed that strains closely related to Alcanivorax dieselolei NO1A (5/16) and Tistrella mobilis TISTR 1108T (5/16) constituted two biggest groups among the cultivable bacteria. DGGE analysis showed that strain 4L (also 4M and 4N, Alcanivorax dieselolei NO1A, 99.21%), 4D (Novosphingobium pentaromativorans US6-1(T), 97.07%) and 4B (also 4E, 4H and 4K, Tistrella mobilis TISTR 1108T, > 99%) dominated the consortium MC2D. While in consortium MC3CO, the predominant strains were strain 5C (also 5H, Alcanivorax dieselolei NO1A, > 99%), uncultivable strain represented by band 5-8 (Novosphingobium aromaticivorans DSM 12444T, 99.41%), 5J (Tistrella mobilis TISTR 1108T, 99.52%) and 5F (also 5G, Thalassospira lucentensis DSM 14000T, degrading consortia in sea water and surface sediment of Middle Atlantic Ridge deep sea, with Novosphingobium spp. as their main PAHs degraders.

  6. An abyssal mobilome: Viruses, plasmids and vesicles from deep-sea hydrothermal vents

    OpenAIRE

    Lossouarn, Julien; Dupont, Samuel; Gorlas, Aurore; Mercier, Coraline; Bienvenu, Nadege; Marguet, Evelyne; Forterre, Patrick; Geslin, Claire

    2015-01-01

    Mobile genetic elements (MGEs) such as viruses, plasmids, vesicles, gene transfer agents (GTAs), transposons and transpovirions, which collectively represent the mobilome, interact with cellular organisms from all three domains of life, including those thriving in the most extreme environments. While efforts have been made to better understand deep-sea vent microbial ecology, our knowledge of the mobilome associated with prokaryotes inhabiting deep-sea hydrothermal vents remains limited. Here...

  7. Parasites of forage fishes in the vicinity of Steller sea lion (Eumetopias jubatus) habitat in Alaska.

    Science.gov (United States)

    Moles, A; Heintz, R A

    2007-07-01

    Fish serve as intermediate hosts for a number of larval parasites that have the potential of maturing in marine mammals such as Steller sea lions (Eumetopias jubatus). We examined the prevalence of parasites from 229 fish collected between March and July 2002 near two islands used by Steller sea lions in Southeast Alaska and island habitats in the Aleutian Islands. Sea lion populations have remained steady in Southeast Alaska but have been declining over the last 30 yr in the Aleutian Islands. Even though the fish samples near the Southeast Alaska haul-outs were composed of numerous small species of fish and the Aleutian Islands catch was dominated by juveniles of commercially harvested species, the parasite fauna was similar at all locations. Eleven of the 20 parasite taxa identified were in their larval stage in the fish hosts, several of which have been described from mammalian final hosts. Four species of parasite were more prevalent in Southeast Alaska fish samples, and seven parasite species, including several larval forms capable of infecting marine mammals, were more prevalent in fish from the Aleutian Islands. Nevertheless, parasites available to Steller sea lions from common fish prey are not likely to be a major factor in the decline of this marine mammal species.

  8. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana

    2015-07-09

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  9. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana; Gonzá lez-Gordillo, J. I.; Vaqué , D.; Estrada, M.; Cerezo, M. I.; Salazar, G.; Gasol, J. M.; Duarte, Carlos M.

    2015-01-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  10. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

    Science.gov (United States)

    Salvo, Flora; Hamoutene, Dounia; Hayes, Vonda E. Wareham; Edinger, Evan N.; Parrish, Christopher C.

    2018-03-01

    The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals ( Stauropathes arctica) differed significantly from the stony-cup corals ( Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

  11. Body Size Regression Formulae, Proximate Composition and Energy Density of Eastern Bering Sea Mesopelagic Fish and Squid.

    Science.gov (United States)

    Sinclair, Elizabeth H; Walker, William A; Thomason, James R

    2015-01-01

    The ecological significance of fish and squid of the mesopelagic zone (200 m-1000 m) is evident by their pervasiveness in the diets of a broad spectrum of upper pelagic predators including other fishes and squids, seabirds and marine mammals. As diel vertical migrators, mesopelagic micronekton are recognized as an important trophic link between the deep scattering layer and upper surface waters, yet fundamental aspects of the life history and energetic contribution to the food web for most are undescribed. Here, we present newly derived regression equations for 32 species of mesopelagic fish and squid based on the relationship between body size and the size of hard parts typically used to identify prey species in predator diet studies. We describe the proximate composition and energy density of 31 species collected in the eastern Bering Sea during May 1999 and 2000. Energy values are categorized by body size as a proxy for relative age and can be cross-referenced with the derived regression equations. Data are tabularized to facilitate direct application to predator diet studies and food web models.

  12. Food web transport of trace metals and radionuclides from the deep sea: a review

    International Nuclear Information System (INIS)

    Young, J.S.

    1979-06-01

    This report summarizes aspects of the potential distribution pathways of metals and radionuclides, particularly Co and Ni, through a biological trophic framework after their deposition at 4000 to 5000 meters in the North Atlantic or North Pacific. It discusses (a) the basic, deep-sea trophic structure of eutrophic and oligotrophic regions; (b) the transport pathways of biologically available energy to and from the deep sea, pathways that may act as accumulators and vectors of radionuclide distribution, and (c) distribution routes that have come into question as potential carriers of radionuclides from the deep-sea bed to man

  13. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea.

    Science.gov (United States)

    Dang, Hongyue; Luan, Xi-Wu; Chen, Ruipeng; Zhang, Xiaoxia; Guo, Lizhong; Klotz, Martin G

    2010-06-01

    The ecological characteristics of amoA-encoding archaea (AEA) in deep-sea sediments are largely unsolved. This paper aimed to study the diversity, structure, distribution and abundance of the archaeal community and especially its AEA components in the cold seep surface sediments of the Okhotsk Sea, a marginal sea harboring one of the largest methane hydrate reservoirs in the world. Diverse archaeal 16S rRNA gene sequences were identified, with the majority being related to sequences from other cold seep and methane-rich sediment environments. However, the AEA diversity and abundance were quite low as revealed by amoA gene analyses. Correlation analysis indicates that the abundance of the archaeal amoA genes was correlated with the sediment organic matter content. Thus, it is possible that the amoA-carrying archaea here might utilize organic matter for a living. The affiliation of certain archaeal amoA sequences to the GenBank sequences originally obtained from deep-sea hydrothermal vent environments indicated that the related AEA either have a wide range of temperature adaptation or they have a thermophilic evolutionary history in the modern cold deep-sea sediments of the Okhotsk Sea. The dominance of ammonia-oxidizing bacteria over AEA may indicate that bacteria play a significant role in nitrification in the Okhotsk Sea cold seep sediments.

  14. Persistence of forage fish ‘hot spots’ and its association with foraging Steller sea lions (Eumetopias jubatus) in southeast Alaska

    Science.gov (United States)

    Gende, Scott M.; Sigler, Michael F.

    2006-02-01

    Whereas primary and secondary productivity at oceanic 'hotspots' may be a function of upwelling and temperature fronts, the aggregation of higher-order vertebrates is a function of their ability to search for and locate these areas. Thus, understanding how predators aggregate at these productive foraging areas is germane to the study of oceanic hot spots. We examined the spatial distribution of forage fish in southeast Alaska for three years to better understand Steller sea lion ( Eumetopias jubatus) aggregations and foraging behavior. Energy densities (millions KJ/km 2) of forage fish were orders of magnitude greater during the winter months (November-February), due to the presence of schools of overwintering Pacific herring ( Clupea pallasi). Within the winter months, herring consistently aggregated at a few areas, and these areas persisted throughout the season and among years. Thus, our study area was characterized by seasonally variable, highly abundant but highly patchily distributed forage fish hot spots. More importantly, the persistence of these forage fish hot spots was an important characteristic in determining whether foraging sea lions utilized them. Over 40% of the variation in the distribution of sea lions on our surveys was explained by the persistence of forage fish hot spots. Using a simple spatial model, we demonstrate that when the density of these hot spots is low, effort necessary to locate these spots is minimized when those spots persist through time. In contrast, under similar prey densities but lower persistence, effort increases dramatically. Thus an important characteristic of pelagic hot spots is their persistence, allowing predators to predict their locations and concentrate search efforts accordingly.

  15. Contested Space of Transborder Fishing in Timor and Arafura Seas

    Directory of Open Access Journals (Sweden)

    Shiskha Prabawaningtyas

    2017-06-01

    This paper examines the transformation of transborder fishing in Timor and Arafura Sea to demonstrated the contested space of which interplayed by local, state and international actor. State regulations had transformed transborder fishing into political space of authority competition relied on territorial sovereignty, while socio-cultural heritage reminds exploited within fluid space of livelihood survival when state function is just absent.

  16. Deep Sea Coral voucher sequence dataset - Identification of deep-sea corals collected during the 2009 - 2014 West Coast Groundfish Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data for this project resides in the West Coast Groundfish Bottom Trawl Survey Database. Deep-sea corals are often components of trawling bycatch, though their...

  17. Water transparency measurements in the deep Ionian Sea

    CERN Document Server

    Anassontzis, E G; Belias, A; Fotiou, A; Grammatikakis, G; Kontogiannis, H; Koske, P; Koutsoukos, S; Lykoussis, V; Markopoulos, E; Psallidas, A; Resvanis, L K; Siotis, I; Stavrakakis, S; Stavropoulos, G; Zhukov, V A

    2010-01-01

    A long optical base line spectrophotometer designed to measure light transmission in deep sea waters is described. The variable optical path length allows measurements without the need for absolute or external calibration. The spectrophotometer uses eight groups of uncollimated light sources emitting in the range 370–530 nm and was deployed at various depths at two locations in the Ionian Sea that are candidate sites for a future underwater neutrino telescope. Light transmission spectra at the two locations are presented and compared.

  18. The deep-sea hub of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Anghinolfi, M. [INFN Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Calzas, A. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Dinkespiler, B. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Cuneo, S. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Favard, S. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Hallewell, G. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France)]. E-mail: gregh@cppm.in2p3.fr; Jaquet, M. [Centre de Physique des Particules de Marseille (CNRS/IN2P3), Universite de la Mediterranee, 13288 Marseille (France); Musumeci, M. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Papaleo, R. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Raia, G. [INFN Laboratori Nazionali del Sud, Via S. Sofia 44, I-95123 Catania (Italy); Valdy, P. [IFREMER - Institut francais de recherche pour l' exploitation de la mer, Centre de La Seyne, 83500 La Seyne sur mer (France); Vernin, P. [DSM-DAPNIA, CEA SACLAY, 91191 Gif sur Yvette Cedex (France)

    2006-11-15

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub.

  19. The deep-sea hub of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    Anghinolfi, M.; Calzas, A.; Dinkespiler, B.; Cuneo, S.; Favard, S.; Hallewell, G.; Jaquet, M.; Musumeci, M.; Papaleo, R.; Raia, G.; Valdy, P.; Vernin, P.

    2006-01-01

    The ANTARES neutrino telescope, currently under construction at 2500 m depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply redundant power management and slow control system is based on two identical AC-powered systems, communicating with the shore through 160 Mb/s fibre G-links and a third battery-powered system using a slower link. We describe the power and slow control systems of the underwater hub

  20. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  1. Silicon Isotope Variations in Giant Spicules of the Deep-sea Sponge Monorhaphis chuni

    Science.gov (United States)

    Jochum, K. P.; Schuessler, J. A.; Wang, X.; Müller, W. E.; Andreae, M. O.

    2012-12-01

    The astonishing longevity of the deep-sea sponge Monorhaphis chuni and the stability of their spicules (Wang et al. 2009) provide the potential that single giant basal spicules can be used as paleoenvironmental archives spanning the entire Holocene (Jochum et al. 2012). According to Wille et al. (2010), the Si isotope fractionation is influenced by seawater Si concentration with lower values associated with sponges collected from waters high in Si. In order to track possible secular variations during the last 10000 years in the deep sea, we have therefore determined Si isotope ratios and trace element ratios along center-to-surface sections at a high resolution by femtosecond LA-(MC)-ICP-MS. Samples came from different locations of the East and South China Sea as well as the South Pacific Ocean (near New Caledonia) and were collected at depths between 1100 m and 2100 m. The external reproducibility of the fs LA-(MC)-ICP-MS method was found to be 0.14 ‰ and 0.27 ‰ (2 SD) for δ29Si and δ30Si, respectively. The relative uncertainty on trace element abundance ratios, such as Mg/Ca, is about 5 % (RSD). Significant variations in Si isotope ratios were observed in the giant spicules Q-B and SCS-4 from the East and South China Sea, respectively. The δ30Si values for the largest spicule collected so far (SCS-4, 2.5 m long) from a depth of 2100 m in the South China Sea, span a large range from -1.9 to -3.7 ‰. No obvious trend in Si isotope variability outside external reproducibility could be identified in smaller and presumably younger spicules; average δ30Si values of 4 different segments of the spicule MC from the South China Sea are about -1.3 ‰. Low δ30Si values of about -0.88 ‰ are found in the giant spicule V from the South Pacific. Mg/Ca ratios of most spicules show small, but significant trends from higher values at the rim to lower values in the core, which can be interpreted as an increase in seawater temperature of several degrees Celsius during

  2. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea.

    Science.gov (United States)

    Antunes, André; Alam, Intikhab; Simões, Marta Filipa; Daniels, Camille; Ferreira, Ari J S; Siam, Rania; El-Dorry, Hamza; Bajic, Vladimir B

    2015-10-01

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  3. Deep-sea fungi as a source of alkaline and cold-tolerant proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.; Muraleedharan, U.; Raghukumar, S.

    ,5]. Fungi and their enzymes from the deep-sea environment have received scant attention. Proteins and peptides constitute a substantial portion of the organic nutrients present in the deep-sea sediments as well as suspended particulate matter [6... alkaline protease using a qualitative plate assay on Czapek Dox agar (CDA) supplemented with 1% skimmed milk powder (Trade name Sagar, India). Clearance zone produced around the fungal colonies in plates indicated protease positive reaction [19...

  4. Exponential Decline of Deep-Sea Ecosystem Functioning Linked to Benthic Biodiversity Loss

    OpenAIRE

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Fraschetti, Simonetta; Vanreusel, Ann; Vincx, Magda; Gooday, Andrew J.

    2008-01-01

    BackgroundRecent investigations suggest that biodiversity loss might impair the functioning and sustainability of ecosystems. Although deep-sea ecosystems are the most extensive on Earth, represent the largest reservoir of biomass, and host a large proportion of undiscovered biodiversity, the data needed to evaluate the consequences of biodiversity loss on the ocean floor are completely lacking.ResultsHere, we present a global-scale study based on 116 deep-sea sites that relates benthic biodi...

  5. Research on the usage of a deep sea fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira; Kowata, Yasuki [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-09-01

    Many new types of fast reactors have been studied in PNC. A deep sea fast reactor has the highest realization probability of the reactors studied because its development is desired by many specialists of oceanography, meteorology, deep sea bottom oil field, seismology and so on and because the development does not cost big budget and few technical problems remain to be solved. This report explains the outline and the usage of the reactor of 40 kWe and 200 to 400 kWe. The reactor can be used as a power source at an unmanned base for long term climate prediction and the earth science and an oil production base in a deep sea region. On the other hand, it is used for heat and electric power supply to a laboratory in the polar region. In future, it will be used in the space. At the present time, a large FBR development plan does not proceed successfully and a realization goal time of FBR has gone later and later. We think that it is the most important to develop the reactor as fast as possible and to plant a fast reactor technique in our present society. (author)

  6. Microfabric of illitic clays from the Pacific deep-sea basin

    International Nuclear Information System (INIS)

    Burkett, D.J.; Bennett, R.H.; Bryant, W.R.

    1990-01-01

    The microfabric of deep-sea illitic clays was investigated using electron microscopy in support of the In-Situ Heat Transfer Experiment (ISHTE) Simulation test (ISIMU) and the Subseabed Disposal Program (SDP). Sandia National Laboratories, ISHTE and the field exercises were designed to investigate the thermal, fluid, and mechanical response of the sediment to the emplacement of radioactive waste in the seabed. Clay fabric of an undisturbed core sample, designated RAMA, was compared to dredge, remolded, reconsolidated material in order to investigate the effects of mechanical disturbances from sediment remolding and heater probe insertion and effects of induced thermal gradients caused by heating of the sediment

  7. Grey seal predation on forage fish in the Baltic Sea

    DEFF Research Database (Denmark)

    Eero, Aro; Neuenfeldt, Stefan; Aho, Teija

    The mean annual growth rate of grey seal stock in the Baltic has been on average 7.5% annually during the last decade. In 2010, a total of approximately 23 100 grey seals were counted. The increase in stock size was highest in the northern areas and the predation pressure of grey seals on clupeoids...... has increased accordingly. The diet of grey seal in the Baltic consists of ca. 20 fish species. The most abundant prey items in the Baltic proper are Baltic herring, sprat, and cod, and in the Bothnian Sea and Bothnian Bay Baltic herring, Coregonus sp., Baltic salmon, and sea trout. An adult seal...... consumes on average round 4.5 kg fish per day, of which 55% are clupeoids in the Baltic Main basin and 70% in the Bothnian Sea and Bothnian Bay. According to acoustic estimates, predator– prey distribution patterns, migration patterns, and multispecies analysis (SMS), the predation effect of grey seals...

  8. Chronicles of the deep : ageing deep-sea corals in New Zealand waters

    International Nuclear Information System (INIS)

    Tracey, D.; Neil, H.; Gordon, D.; O'Shea, S.

    2003-01-01

    How old is a coral? Finding the answer requires some rather complex steps. We need to understand: the source of carbonate; the effects of climatic events; how to interpret growth zones; the effect of 14 C and biological processes such as feeding and reproduction; and how to overcome the lack of deep-sea environmental data records. We also need to find out where on the coral we should be sampling to get the best estimates of age. At the moment we know little about how deep-sea corals deposit their calcite, but we will be exploring this further so that we can have greater confidence in our age estimates. To confirm and validate age and growth, it will be necessary to use a combination of some of the the possible methods for ageing coral. In addition to ageing the corals, this work should yield a high-resolution record of ocean temperature during the past 100 years by using stable-isotope signatures preserved in the corals' carbonate skeletons. (author). 4 figs

  9. Deep-Sea Trench Microbiology Down to 10.9 Kilometers Below the Surface

    Science.gov (United States)

    Bartlett, D. H.

    2012-12-01

    Deep-sea trenches, extending to more than 10.9 km below the sea surface, are among the most remote and infrequently sampled habitats. As a result a global perspective of microbial diversity and adaptation is lacking in these extreme settings. I will present the results of studies of deep-sea trench microbes collected in the Puerto Rico Trench (PRT), Tonga Trench, New Britain Trench and Mariana Trench. The samples collected include sediment, seawater and animals in baited traps. The analyses to be described include microbial community activity and viability measurements as a function of hydrostatic pressure, microbial culturing at high pressure under various physiological conditions, phylogenetics and metagenome and single-cell genome characterizations. Most of the results to date stem from samples recovered from the PRT. The deep-sea PRT Trench microbes have more in common at the species level with other deep-sea microbial communities previously characterized in the Pacific Ocean and the Mediterranean Sea than with the microbial populations above them in shallow waters. They also harbor larger genomes with more genes assigned to signal transduction, transcription, replication, recombination and repair and inorganic ion transport. The overrepresented transporters in the PRT metagenome include di- and tri-carboxylate transporters that correspond to the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. But, perhaps the most dramatic adaptational feature of the PRT microbes is heavy metal resistance, as reflected in the high numbers of metal efflux systems present. Single-cell genomics approaches have proven particularly useful for placing PRT metagenomic data into context.

  10. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  11. Fish production and climate: Sprat in the Baltic Sea

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Köster, Fritz

    2004-01-01

    Processes controlling the production of new fish (recruitment) are poorly understood and therefore challenge population ecologists and resource managers. Sprat in the Baltic Sea is no exception: recruitment varies widely between years and is virtually independent of the biomass of mature sprat......-scale climate variability (North Atlantic Oscillation), Baltic Sea ice coverage, and water temperature. These relationships increase our understanding of sprat population dynamics and enable a desirable integration of fisheries ecology and management with climatology and oceanography....

  12. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Khadge, N.H.; Nabar, S.; Raghukumar, C.; Ingole, B.S.; Valsangkar, A.B.; Sharma, R.; Srinivas, K.

    1 Author version: Environ. Monit. Assess., vol.184; 2012; 2829-2844 Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment B. Nagender Nath * , N.H. Khadge, Sapana Nabar, C. Raghu Kumar, B.S. Ingole... community two years after an artificial rapid deposition event. Publication of Seto Marine Biological Laboratory, 39(1), 17-27. Gage, J.D. (1978). Animals in deep-sea sediments. Proceedings of Royal Society of Edinburgh, 768, 77-93. Gage, J.D., & Tyler...

  13. Monsoon control on trace metal fluxes in the deep Arabian Sea

    Indian Academy of Sciences (India)

    Monsoon control on trace metal fluxes in the deep Arabian Sea ... at marine boundaries and surface ocean processes: Forcings and feedbacks Volume 115 ... Annual Al fluxes at shallow and deep trap depths were 0.47 and 0.46 gm−2 in the ...

  14. Abundance and tidal behaviour of pelagic fish in the gateway to the Wadden Sea

    NARCIS (Netherlands)

    Couperus, B.; Gastauer, S.; Fässler, S.M.M.; Tulp, I.; van der Veer, H.W.; Poos, J.J.

    2016-01-01

    The shallow coast of The Netherlands is an important habitat for small pelagic fish. They form one of the major links between plankton and the higher trophic levels. Predatory fish, sea mammals and birds rely on small pelagic fish as a major food source. Currently, monitoring of fish in the Dutch

  15. Methylmercury in fish from the South China Sea: Geographical distribution and biomagnification

    International Nuclear Information System (INIS)

    Zhu, Aijia; Zhang, Wei; Xu, Zhanzhou; Huang, Liangmin; Wang, Wen-Xiong

    2013-01-01

    Highlights: • A large-scale investigation of MeHg in 46 species of marine wild fish from South China Sea. • Log 10 MeHg concentration was significantly related to their length and wet weight. • Feeding habit and habitat were the primary factors influencing MeHg bioaccumulation. • Demersal fish were more likely to be contaminated with MeHg than the epipelagic and mesopelagic species. • Biomagnification of MeHg was site-specific. -- Abstract: We conducted a large-scale investigation of methylmercury (MeHg) in a total of 628 marine wild fish covering 46 different species collected from the South China Sea between 2008 and 2009. Biological and ecological characteristics such as size (length and wet weight), feeding habit, habitat, and stable isotope (δ 15 N) were examined to explain MeHg bioaccumulation in marine fish and their geographical distribution. MeHg levels in the muscle tissues of the 628 individuals ranged from 0.010 to 1.811 μg/g dry wt. Log 10 MeHg concentration was significantly related to their length and wet weight. Feeding habit and habitat were the primary factors influencing MeHg bioaccumulation. Demersal fish were more likely to be contaminated with MeHg than the epipelagic and mesopelagic varieties. Linear relationships were obtained between Log 10 (MeHg) and δ 15 N only for one location, indicating that biomagnification was site-specific. Results from this study suggest that dietary preference and trophic structure were the main factors affecting MeHg bioaccumulation in marine fish from the South China Sea

  16. Distribution Species Composition And Size Of Flying Fish Exocoetidae In The Ceram Sea

    Directory of Open Access Journals (Sweden)

    Friesland Tuapetel

    2015-03-01

    Full Text Available Abstract Ceram Sea is new resources area of catching flying fish. The purpose of study is to determine the species composition size and distribution of flying fish caught by drifting baits. Flying fish data collection was conducted in June until October 2013 in three locations i.e Kaimana East Ceram and Fak-Fak. There are three flying fish species collected namely Hirundichthys oxycephalus Torani Cypselurus poecilopterus Banggulung and Chellopogon abeia yellow wing. The results was showed that in Fak-Fak and Kaimana there are two types of fly fishing that H. oxycephalus andC. poecilopterus whereas in East Ceram found three types including H. oxycephalus C. poecilopterus and C. abeia. The dominant type of flying fish in three locations is H. oxycephalus. Flying fish has a variety size range of body size from 195.6 to 243.6 mm in Kaimana East Ceram range from 206.3 to 284.3 mm while Fak-Fak range from 187.1 to 243.1 mm. The result is expected to be a reference literature as basic data for the management and sustainable utilization of flyling fish in Ceram sea.

  17. Experimental studies on the geochemical behaviour of 54-Mn considering coastal and deep sea sediments

    International Nuclear Information System (INIS)

    Guegueniat, P.; Boust, D.; Dupont, J.P.; Aprosi, G.

    1985-01-01

    In order to study the geochemical behaviour of 54-Mn in the marine environment (Mn/sup 2+/) 200 sediments gathered in deep sea and in coastal waters were contaminated experimentally. To correlate the various results, the oxidation processes occurring with or without sediments should be specified. During this experimental work, the geochemical behaviour of manganese is dealt with using a radioactive tracer (54-Mn) in the divalent state and sediments collected on french littoral (160) in deep sea (30). The latest data published offer an excellent assessment of research findings on manganese in marine and estuary environments and testify to the interest constantly generated by this subject. It is difficult to establish a priori any predictions on the behaviour of manganese based on the properties of a given environment, notably as concerns redox conditions. The oxidation of manganese was found to be governed by a very slow autocatalysis mechanism capable of being concealed by surface catalyses on mineral phases in suspension or oxidation due to bacteria. The residence time in sea water vary considerably depending on the case from a few days to some tens of years

  18. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea

    KAUST Repository

    Coker, Darren James; DiBattista, Joseph; Sinclair-Taylor, Tane; Berumen, Michael L.

    2017-01-01

    Surveys to document coral-reef fish assemblages are often limited to visually conspicuous species, thus excluding a significant proportion of the biodiversity. Through standardized collections of cryptobenthic reef fishes in the central and southern Red Sea, a total of 238 species and operational taxonomic units (OTUs) from 35 families were collected. Abundance and species richness increased by 60 and 30%, respectively, from north to south, and fish community composition differed between the two regions and with proximity to shore in the central region. Models suggest regional influences in fish communities, with latitudinal patterns influenced by key coral groups (Acropora, Pocilloporidae) and variation in environmental parameters (chlorophyll a, sea surface temperature, salinity). This study illustrates the limited taxonomic resolution in this group and in this region, and the need to expand baseline data for this under-studied assemblage. To assist in advancing this initiative, we have produced a catalogue of specimens, archived photographs, and established a DNA sequence library based on cytochrome-c oxidase subunit-I barcodes for all OTUs.

  19. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea

    Science.gov (United States)

    Coker, Darren J.; DiBattista, Joseph D.; Sinclair-Taylor, Tane H.; Berumen, Michael L.

    2018-03-01

    Surveys to document coral-reef fish assemblages are often limited to visually conspicuous species, thus excluding a significant proportion of the biodiversity. Through standardized collections of cryptobenthic reef fishes in the central and southern Red Sea, a total of 238 species and operational taxonomic units (OTUs) from 35 families were collected. Abundance and species richness increased by 60 and 30%, respectively, from north to south, and fish community composition differed between the two regions and with proximity to shore in the central region. Models suggest regional influences in fish communities, with latitudinal patterns influenced by key coral groups ( Acropora, Pocilloporidae) and variation in environmental parameters (chlorophyll a, sea surface temperature, salinity). This study illustrates the limited taxonomic resolution in this group and in this region, and the need to expand baseline data for this under-studied assemblage. To assist in advancing this initiative, we have produced a catalogue of specimens, archived photographs, and established a DNA sequence library based on cytochrome-c oxidase subunit-I barcodes for all OTUs.

  20. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea

    KAUST Repository

    Coker, Darren James

    2017-11-23

    Surveys to document coral-reef fish assemblages are often limited to visually conspicuous species, thus excluding a significant proportion of the biodiversity. Through standardized collections of cryptobenthic reef fishes in the central and southern Red Sea, a total of 238 species and operational taxonomic units (OTUs) from 35 families were collected. Abundance and species richness increased by 60 and 30%, respectively, from north to south, and fish community composition differed between the two regions and with proximity to shore in the central region. Models suggest regional influences in fish communities, with latitudinal patterns influenced by key coral groups (Acropora, Pocilloporidae) and variation in environmental parameters (chlorophyll a, sea surface temperature, salinity). This study illustrates the limited taxonomic resolution in this group and in this region, and the need to expand baseline data for this under-studied assemblage. To assist in advancing this initiative, we have produced a catalogue of specimens, archived photographs, and established a DNA sequence library based on cytochrome-c oxidase subunit-I barcodes for all OTUs.

  1. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  2. A Novel Morphometry-Based Protocol of Automated Video-Image Analysis for Species Recognition and Activity Rhythms Monitoring in Deep-Sea Fauna

    Directory of Open Access Journals (Sweden)

    Paolo Menesatti

    2009-10-01

    Full Text Available The understanding of ecosystem dynamics in deep-sea areas is to date limited by technical constraints on sampling repetition. We have elaborated a morphometry-based protocol for automated video-image analysis where animal movement tracking (by frame subtraction is accompanied by species identification from animals’ outlines by Fourier Descriptors and Standard K-Nearest Neighbours methods. One-week footage from a permanent video-station located at 1,100 m depth in Sagami Bay (Central Japan was analysed. Out of 150,000 frames (1 per 4 s, a subset of 10.000 was analyzed by a trained operator to increase the efficiency of the automated procedure. Error estimation of the automated and trained operator procedure was computed as a measure of protocol performance. Three displacing species were identified as the most recurrent: Zoarcid fishes (eelpouts, red crabs (Paralomis multispina, and snails (Buccinum soyomaruae. Species identification with KNN thresholding produced better results in automated motion detection. Results were discussed assuming that the technological bottleneck is to date deeply conditioning the exploration of the deep-sea.

  3. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific.

    Directory of Open Access Journals (Sweden)

    Sayaka eMino

    2013-04-01

    Full Text Available Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 P. hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough. Although the strains share > 98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types, indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.

  4. Competition for the fish - fish extraction from the Baltic Sea by humans, aquatic mammals and birds

    DEFF Research Database (Denmark)

    Hansson, Sture; Bergström, Ulf; Bonsdorff, E.

    2018-01-01

    Populations of fish eating mammals (primarily seals) and birds have increased in the Baltic Sea and there is concern that their consumption reduces fish stocks and has negative impact on the fishery. Based primarily on published data on fisheries’ landings and abundances, consumption and diets...... to be addressed in basic ecosystem research, management and conservation. This requires improved quantitative data on wildlife diets, abundances and fish production...... of birds and seals around year 2010, we compare consumption of commercial fish species by seals (1*105 metric tons per year) and birds (1*105 tons) to the catch in the commercial and recreational fishery (7*105 tons), and when applicable at the geographical resolution of ICES subdivisions. The large...

  5. Marine recreational fishing: resource usage, management and research

    CSIR Research Space (South Africa)

    Van der Elst, R

    1990-01-01

    Full Text Available This report contains papers presented at a symposium on marine recreational fishing: resource usage, management and research held on 22 and 23 May 1989 in the East London Museum under the auspices of the South African Deep Sea Angling Association...

  6. Abundance and tidal behaviour of pelagic fish in the gateway to the Wadden Sea

    NARCIS (Netherlands)

    Couperus, Bram; Gastauer, Sven; Fässler, Sascha M.M.; Tulp, Ingrid; Veer, van der Henk W.; Poos, Jan Jaap

    2016-01-01

    The shallow coast of The Netherlands is an important habitat for small pelagic fish. They form one of the major links between plankton and the higher trophic levels. Predatory fish, sea mammals and birds rely on small pelagic fish as a major food source. Currently, monitoring of fish in the Dutch

  7. The current threat level of fish in river network of individual sea-drainage areas in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Lusk Stanislav

    2015-12-01

    Full Text Available The assessment of changes in the population spread of individual ichthyofauna species (lampreys and fishes as well as the identification of unfavourable impacts is the necessary prerequisite for the correct selection of corrective measures. The river network in the Czech Republic belongs to the three sea-drainage areas (North Sea, Baltic Sea, and Black Sea. The species composition of the original ichthyofauna and the extent of the threat to some species differs in the individual sea-drainage areas. The original ichthyofauna in the Czech Republic consists of 4 lamprey species and 55 fish species. Out of this, only one lamprey species and 31 fish species originate in all three sea-drainage areas. There are 37 fish species considered as the original ones in the North Sea drainage area, there of 4 species are EX, 1 species EW, and 11 species (29.7% are threatened. In the Baltic Sea drainage area, there are 4 species EX, 1 species EW, and 8 species (22.8% threatened out of the total 35 assessed species. Out of 49 species in the Black Sea drainage area, there are 4 species EX and 23 species (46.9 % threatened.

  8. Modelling Potential Consequences of Different Geo-Engineering Treatments for the Baltic Sea Ecosystem

    Science.gov (United States)

    Schrum, C.; Daewel, U.

    2017-12-01

    From 1950 onwards, the Baltic Sea ecosystem suffered increasingly from eutrophication. The most obvious reason for the eutrophication is the huge amount of nutrients (nitrogen and phosphorus) reaching the Baltic Sea from human activities. However, although nutrient loads have been decreasing since 1980, the hypoxic areas have not decreased accordingly. Thus, geo-engineering projects were discussed and evaluated to artificially ventilate the Baltic Sea deep water and suppress nutrient release from the sediments. Here, we aim at understanding the consequences of proposed geo-engineering projects in the Baltic Sea using long-term scenario modelling. For that purpose, we utilize a 3d coupled ecosystem model ECOSMO E2E, a novel NPZD-Fish model approach that resolves hydrodynamics, biogeochemical cycling and lower and higher trophic level dynamics. We performed scenario modelling that consider proposed geo-engineering projects such as artificial ventilation of Baltic Sea deep waters and phosphorus binding in sediments with polyaluminium chlorides. The model indicates that deep-water ventilation indeed suppresses phosphorus release in the first 1-4 years of treatment. Thereafter macrobenthos repopulates the formerly anoxic bottom regions and nutrients are increasingly recycled in the food web. Consequently, overall system productivity and fish biomass increases and toxic algae blooms decrease. However, deep-water ventilation has no long-lasting effect on the ecosystem: soon after completion of the ventilation process, the system turns back into its original state. Artificial phosphorus binding in sediments in contrast decreases overall ecosystem productivity through permanent removal of phosphorus. As expected it decreases bacterial production and toxic algae blooms, but it also decreases fish production substantially. Contrastingly to deep water ventilation, artificial phosphorus binding show a long-lasting effect over decades after termination of the treatment.

  9. Global latitudinal species diversity gradient in deep-sea benthic foraminifera

    Science.gov (United States)

    Culver, Stephen J.; Buzas, Martin A.

    2000-02-01

    Global scale patterns of species diversity for modern deep-sea benthic foraminifera, an important component of the bathyal and abyssal meiofauna, are examined using comparable data from five studies in the Atlantic, ranging over 138° of latitude from the Norwegian Sea to the Weddell Sea. We show that a pattern of decreasing diversity with increasing latitude characterises both the North and South Atlantic. This pattern is confirmed for the northern hemisphere by independent data from the west-central North Atlantic and the Arctic basin. Species diversity in the North Atlantic northwards from the equator is variable until a sharp fall in the Norwegian Sea (ca. 65°N). In the South Atlantic species diversity drops from a maximum in latitudes less than 30°S and then decreases slightly from 40 to 70°S. For any given latitude, North Atlantic diversity is generally lower than in the South Atlantic. Both ecological and historical factors related to food supply are invoked to explain the formation and maintenance of the latitudinal gradient of deep-sea benthic foraminiferal species diversity. The gradient formed some 36 million years ago when global climatic cooling led to seasonally fluctuating food supply in higher latitudes.

  10. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water masses, suggesting a high dispersal......Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial...... communities in three basins of the eastern South Atlantic Ocean to determine diversity and biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521 phylotypes with 98% identity...

  11. Potential contribution of surface-dwelling Sargassum algae to deep-sea ecosystems in the southern North Atlantic

    Science.gov (United States)

    Baker, Philip; Minzlaff, Ulrike; Schoenle, Alexandra; Schwabe, Enrico; Hohlfeld, Manon; Jeuck, Alexandra; Brenke, Nils; Prausse, Dennis; Rothenbeck, Marcel; Brix, Saskia; Frutos, Inmaculada; Jörger, Katharina M.; Neusser, Timea P.; Koppelmann, Rolf; Devey, Colin; Brandt, Angelika; Arndt, Hartmut

    2018-02-01

    Deep-sea ecosystems, limited by their inability to use primary production as a source of carbon, rely on other sources to maintain life. Sedimentation of organic carbon into the deep sea has been previously studied, however, the high biomass of sedimented Sargassum algae discovered during the VEMA Transit expedition in 2014/2015 to the southern North Atlantic, and its potential as a regular carbon input, has been an underestimated phenomenon. To determine the potential for this carbon flux, a literature survey of previous studies that estimated the abundance of surface water Sargassum was conducted. We compared these estimates with quantitative analyses of sedimented Sargassum appearing on photos taken with an autonomous underwater vehicle (AUV) directly above the abyssal sediment during the expedition. Organismal communities associated to Sargassum fluitans from surface waters were investigated and Sargassum samples collected from surface waters and the deep sea were biochemically analyzed (fatty acids, stable isotopes, C:N ratios) to determine degradation potential and the trophic significance within deep-sea communities. The estimated Sargassum biomass (fresh weight) in the deep sea (0.07-3.75 g/m2) was several times higher than that estimated from surface waters in the North Atlantic (0.024-0.84 g/m2). Biochemical analysis showed degradation of Sargassum occurring during sedimentation or in the deep sea, however, fatty acid and stable isotope analysis did not indicate direct trophic interactions between the algae and benthic organisms. Thus, it is assumed that components of the deep-sea microbial food web form an important link between the macroalgae and larger benthic organisms. Evaluation of the epifauna showed a diverse nano- micro-, meio, and macrofauna on surface Sargassum and maybe transported across the Atlantic, but we had no evidence for a vertical exchange of fauna components. The large-scale sedimentation of Sargassum forms an important trophic link

  12. Food-web and ecosystem structure of the open-ocean and deep-sea environments of the Azores, NE Atlantic

    Directory of Open Access Journals (Sweden)

    Telmo Morato

    2016-12-01

    Full Text Available The Marine Strategy Framework Directive intends to adopt ecosystem-based management for resources, biodiversity and habitats that puts emphasis on maintaining the health of the ecosystem alongside appropriate human use of the marine environment, for the benefit of current and future generations. Within the overall framework of ecosystem-based management, ecosystem models are tools to evaluate and gain insights in ecosystem properties. The low data availability and complexity of modelling deep-water ecosystems has limited the application of ecosystem models to few deep-water ecosystems. Here, we aim to develop an ecosystem model for the deep-sea and open ocean in the Azores exclusive economic zone with the overarching objective of characterising the food-web and ecosystem structure of the ecosystem. An ecosystem model with 45 functional groups, including a detritus group, two primary producer groups, eight invertebrate groups, 29 fish groups, three marine mammal groups, a turtle and a seabird group was built. Overall data quality measured by the pedigree index was estimated to be higher than the mean value of all published models. Therefore, the model was built with source data of an overall reasonable quality, especially considering the normally low data availability for deep-sea ecosystems. The total biomass (excluding detritus of the modelled ecosystem for the whole area was calculated as 24.7 t km-². The mean trophic level for the total marine catch of the Azores was estimated to be 3.95, similar to the trophic level of the bathypelagic and medium-size pelagic fish. Trophic levels for the different functional groups were estimated to be similar to those obtained with stable isotopes and stomach contents analyses, with some exceptions on both ends of the trophic spectra. Omnivory indices were in general low, indicating prey speciation for the majority of the groups. Cephalopods, pelagic sharks and toothed whales were identified as groups with

  13. Ion transport in deep-sea sediments

    International Nuclear Information System (INIS)

    Heath, G.R.

    1979-01-01

    Initial assessment of the ability of deep-sea clays to contain nuclear waste is optimistic. Yet, the investigators have no delusions about the complexity of the natural geochemical system and the perturbations that may result from emplacement of thermally-hot waste cannisters. Even though they may never be able to predict the exact nature of all these perturbations, containment of the nuclides by the waste form/cannister system until most of the heat has decayed, and burial of the waste to a sufficient depth that the altered zone can be treated as a black box source of dissolved nuclides to the enclosing unperturbed sediment, encourage them to believe that ion migration in the deep seabed can be modeled accurately and that our preliminary estimates of migration rates are likely to be reasonably realistic

  14. Some heavy metals in fishes from the Andaman sea

    Digital Repository Service at National Institute of Oceanography (India)

    Kureishy, T.W.; Sanzgiri, S.; Braganca, A.

    Muscles, liver, gills and heart of several fishes and some zooplankton(whole sample) collected from the Andaman Sea were analysed for Cu, Mn, Zn, Fe, Ni and Co. The concentrations of practically all the metals were highest in the liver. The edible...

  15. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  16. The distribution of seabirds and fish in relation to ocean currents in the southeastern Chukchi Sea

    Science.gov (United States)

    Piatt, John F.; Wells, John L.; MacCharles, Andrea; Fadely, Brian S.; Montevecchi, W.A.; Gaston, A.J.

    1991-01-01

    In late August 1988, we studied the distribution of seabirds in the southeastern Chukchi Sea, particularly in waters near a major seabird colony at Cape Thompson. Foraging areas were characterized using hydrographic data obtained from hydroacoustic surveys for fish. Murres (Uria spp.) and Black-legged Kitttiwakes Rissa tridactyla breeding at Cape Thompson fed mostly on Arctic cod, which are known from previous studies to be the most abundant pelagic fish in the region. Our hydroacoustic surveys revealed that pelagic fish were distributed widely, but densities were estimated to be low (e.g., 0.1-10 g∙m-3) throughout the study area and a few schools were recorded. Large feeding flocks of murres and kittiwakes were observed over fish schools with densities estimated to exceed 15 g∙m-3. Fish densities were higher in shallow Alaska Coastal Current waters than offshore in Bering Sea waters, and most piscivorous seabirds foraged in coastal waters. Poor kittiwake breeding success and a low frequency of fish in murre and kittiwake stomachs in late August suggested that fish densities were marginal for sustaining breeding seabirds at that time. Planktivorous Least Auklets Aethia pusilla and Parakeet Auklets Cyclorrhynchus psittacula foraged almost exclusively in Bering Sea waters. Short-tailed Shearwaters Puffinus tenuirostris and Tufted Puffins Fratercula cirrhata foraged in transitional waters at the front between Coastal and Bering Sea currents.

  17. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  18. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  19. Age, growth rates, and paleoclimate studies of deep sea corals

    Science.gov (United States)

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  20. Deep-water fisheries at the Atlantic Frontier

    Science.gov (United States)

    Gordon, J. D. M.

    2001-05-01

    The deep sea is often thought of as a cold, dark and uniform environment with a low-fish biomass, much of which is highly adapted for life in a food-poor environment. While this might be true of the pelagic fish living in the water column, it is certainly not true of the demersal fish which live on or close to the bottom on the continental slopes around the British Isles (the Atlantic Frontier). These fish are currently being commercially exploited. There is growing evidence to support the view that success of the demersal fish assemblages depends on the pelagic or benthopelagic food sources that impinge both vertically and horizontally onto the slope. There are several quite separate and distinct deep-water fisheries on the Atlantic Frontier. It is a physical barrier, the Wyville-Thomson Ridge, which results in the most significant division of the fisheries. The Ridge, which has a minimum depth of about 500 m, separates the warmer deep Atlantic waters from the much colder Norwegian Sea water and as a result, the deep-water fisheries to the west of the Hebrides and around the offshore banks are quite different from those of the Faroe-Shetland Channel (West of Shetland). The fisheries to the West of the Hebrides can be further divided by the fishing method used into bottom trawl, semipelagic trawl and longline. The bottom-trawl fisheries extend from the shelf-slope break down to about 1700 m and the target species varies with depth. The smallest vessels in the fleet fish on the upper slope, where an important target species is the anglerfish or monkfish ( Lophius spp.). On the mid-slope the main target species are blue ling ( Molva dypterygia) and roundnose grenadier ( Coryphaenoides rupestris), with bycatches of black scabbardfish ( Aphanopus carbo) and deep-water sharks. On the lower slope orange roughy ( Hoplostethus atlanticus) is an important target species. The major semipelagic trawl fishery is a seasonal fishery on spawning aggregations of blue whiting

  1. The MEUST deep sea infrastructure in the Toulon site

    Directory of Open Access Journals (Sweden)

    Lamare Patrick

    2016-01-01

    Full Text Available The MEUST infrastructure (Mediterranean Eurocentre for Underwater Sciences and Technologies is a permanent deep sea cabled infrastructure currently being deployed off shore of Toulon, France. The design and the status of the infrastructure are presented.

  2. DDT residues in fishes from the eastern Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Shailaja, M.S.; SenGupta, R.

    degrees E) were obtained from the commercial jetty within 2 h of landing while those from the open sea (16 degrees 30'N 69 degrees E-19 degrees 30'N 67 degrees E) such as Tylosurus sp. (longtom), Coryphaena hippurus (dolphin fish), Loligo sp. (squid...

  3. Species diversity variations in Neogene deep-sea benthic

    Indian Academy of Sciences (India)

    Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is ...

  4. Severe fish mortality associated with 'red tide' observed in the sea off Cochin

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.; George, M; Narvekar, P.V.; Jayakumar, D.A.; Shailaja, M; Sardessai, S.; Sarma, V.V.S.S.; Shenoy, D.M; Naik, H.; Maheswaran, P.A.; KrishnaKumari, L.; Rajesh, G.; Sudhir, A.K.; Binu, M

    Severe fish mortality associated with the "red tide" phenomenon caused by Noctiluca blooms was observed in the sea off Cochin, Kerala, India at depths less than 40 m. The dead fish, almost entirely comprised of the threadfin bream (Nemipterus...

  5. Feeding in deep-sea demosponges: Influence of abiotic and biotic factors

    Science.gov (United States)

    Robertson, Leah M.; Hamel, Jean-François; Mercier, Annie

    2017-09-01

    In shallow benthic communities, sponges are widely recognized for their ability to contribute to food webs by cycling nutrients and mediating carbon fluxes through filter feeding. In comparison, little is known about filter feeding in deep-sea species and how it may be modulated by environmental conditions. Here, a rare opportunity to maintain live healthy deep-sea sponges for an extended period led to a preliminary experimental study of their feeding metrics. This work focused on demosponges collected from the continental slope of eastern Canada at 1000 m depth. Filtration rates (as clearance of phytoplankton cells) at holding temperature (6 °C) were positively correlated with food particle concentration, ranging on average from 18.8 to 160.6 cells ml-1 h-1 at nominal concentrations of 10,000-40,000 cells ml-1. Cell clearance was not significantly affected by decreasing seawater temperature, from 6 °C to 3 °C or 0 °C, although two of the sponges showed decreased filtration rates. Low pH ( 7.5) and the presence of a predatory sea star markedly depressed or inhibited feeding activity in all sponges tested. While performed under laboratory conditions on a limited number of specimens, this work highlights the possible sensitivity of deep-sea demosponges to various types and levels of biotic and abiotic factors, inferring a consequent vulnerability to natural and anthropogenic disturbances.

  6. Spatial patterns of infauna, epifauna and demersal fish communities in the North Sea.

    NARCIS (Netherlands)

    Reiss, H.; Degraer, S.; Duineveld, G.C.A.; Craeymeersch, J.A.M.

    2010-01-01

    Understanding the structure and interrelationships of North Sea benthic invertebrate and fish communities and their underlying environmental drivers is an important prerequisite for conservation and spatial ecosystem management on scales relevant to ecological processes. Datasets of North Sea

  7. Fossil manganese nodules from Timor: geochemical and radiochemical evidence for deep-sea origin

    International Nuclear Information System (INIS)

    Margolis, S.V.; Fein, C.D.; Glasby, G.P.; Audley-Charles, M.G.

    1978-01-01

    Fossil Mn nodules of Cretaceous age from western Timor exhibit chemical, structural and radioisotope compositions consistent with their being of deep-sea origin. These nodules show characteristics similar to nodules now found at depths of 3,500-5,000 m in the Pacific and Indian Oceans. Slight differences in the fine structure and chemistry of these nodules and modern deep-sea nodules are attributed to diagenetic alteration after uplift of enclosing sediments

  8. Assessment of metal contamination in water, sediment, and tissues of Arius thalassinus fish from the Red Sea coast of Yemen and the potential human risk assessment.

    Science.gov (United States)

    Saleh, Yousef S; Marie, Mohamed-Assem S

    2015-04-01

    Heavy metal pollution is one of the most serious environmental issues globally. To evaluate the metal pollution in the Red Sea coast of Hodeida, Yemen Republic, the concentrations of Fe, Cu, Ni, Pb, and Cd in water, sediment, and some vital organs of sea catfish, Arius thalassinus collected from polluted and unpolluted sites, were determined. The risk of these metals to humans through fish consumption was then assessed. The results showed that the concentration order of metals in water, sediment, and fish tissues were Fe > Cu > Ni > Pb > Cd. The levels of studied metals in water, sediment, and fish tissues were significantly higher in the polluted site than those of the unpolluted site, with few exceptions. Linear correlation incorporating paired variables (water-sediment, water-fish, and fish-fish) exhibited several significant correlations indicating a common metal pollution. The risk assessment performed revealed that fish consumption was safe for consumers. This field investigation provides a baseline data on metal pollution in this region.

  9. In situ radionuclide transfers in the deep-sea Lysianassidae amphipod Eurythenes gryllus

    International Nuclear Information System (INIS)

    Calmet, D.; Charmasson, S.

    1989-01-01

    Previous studies at the NEA dumpsite confirmed the existence of the scavenging amphipod Eurythenes gryllus. The aim of this study was to inquire if, under deep-sea conditions of low temperature and high pressure, this species of crustacean would retain artificial radionuclides in the same organ as those observed in similar coastal species of the same family. This necrophagous species is easily attracted by bait. It can ingest 30 to 60% of its body weight in 30 ± 10 min. In addition, this species can store ingested food for several weeks. Thus, the ingestion of radiolabelled food over a period of several days could be considered as a single-meal contamination experiment. For all these reasons Eurythenes gryllus appeared to be a good test animal to compare laboratory experiments on coastal species with in situ radionuclide retention studies on deep-sea fauna. In order to prevent any disturbance of their physiological conditions, a special device was used to attract and feed the animals with radiolabelled baits, in situ at a depth of 4000 m, rather than recovering amphipods without decompression and keeping them alive aboard ship. Qualitatively speaking results yielded by in situ experiments support those obtained from laboratory studies with coastal animals and the same radionuclides

  10. Photobiology of the deep twilight zone and beyond

    Science.gov (United States)

    Waterman, Talbot H.

    1997-02-01

    Photobiology in the twilight zone of the deep sea depends on faint light of two, or possibly three, origins: sunlight, bioluminescence and some visible radiation near the bottom associated with hydrothermal vents. The deep twilight zone also contains two quite distinct ecosystems: the vast open ocean pelagic regime far from the shore and the bottom as well as the far less expansive benthic regime with quite different characteristic animals that live on, in or near the sea bo10 Most of the whole ocean's benthic regime with a mean depth over 3000m is well below the twilight zone, which eliminates sunlight as a light source there. Many of the most familiar deepsea animals with their spectacular arrays of dennal light organs and remarkable eyes are from the pelagic 19, 25 The less familiar benthic fishes and crustaceans sometimes have curious internal light organs powered by bacteria13 and occasional incredibly modified eyes.30 With the exception of those on the fishing rods of most female deepsea anglerfish, where the light is produced by symbiotic bacteria, all the numerous light organs of pelagic deepsea fishes are generally believed to manage their own chemiluminescence independent of luminous bacteria.17

  11. Revised estimate for the radiocarbon age of North Atlantic deep water

    International Nuclear Information System (INIS)

    Broecker, W.S.

    1979-01-01

    The extent to which the admixture of water of Antarctic origin influences the 14 C/C ratio in North Atlantic deep water (NADW) has been heretofore underestimated. When this correction is properly made, a ventilation time for the deep western Atlantic is reduced to only about 100 years. The production rate of the northern component of NADW entering the western basin must be of the order of 30 Sv. If this northern component water is assumed to be the major supplier of new 14 C to the deep sea, the carbon isotope ventilation time of the world deep ocean must be of the order of 900 years. However, since the new deep waters formed around the perimeter of the Antarctic are thought to enter the deep sea at a rate of about 20 Sv, the water ventilation time for the deep sea is of the order of 550 years

  12. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  13. Essential coastal habitats for fish in the Baltic Sea

    DEFF Research Database (Denmark)

    Kraufvelin, Patrik; Pekcan-Hekim, Zeynep; Bergström, Ulf

    2018-01-01

    Many coastal and offshore fish species are highly dependent on specific habitat types for population maintenance. In the Baltic Sea, shallow productive habitats in the coastal zone such as wetlands, vegetated flads/lagoons and sheltered bays as well as more exposed rocky and sandy areas are utili...

  14. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea.

    Science.gov (United States)

    Arai, Takaomi; Amalina, Razikin; Bachok, Zainudin

    2015-02-22

    In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. Proportions of saturated fatty acids (SAFA) ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA) ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA) was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  15. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  16. Sources of the deep water masses in the northern Red Sea

    OpenAIRE

    Said, M.A.

    1998-01-01

    The hydrographic structure of the northern Red Sea indicated that, the surface waters of temperature around 22°C, salinity of 40.1OO%o and dt = 28.1 might sink to depths between 400-500 m by convective overturn, contributing to the formation of the mid-deep Red Sea waters. Below the 500 db depth down to the bottom the water column is stable. The geostrophic circulation clearly indicated an inflow of water from the Red Sea towards NNW, along the main axis of the sea. Arriving at the nort...

  17. Trace element and stable isotope analyses of deep sea fish from the ...

    African Journals Online (AJOL)

    Comparing results from this study to the dietary standards and guidelines for Hg, Pb, Cu and Zn in fish and shellfish of the Ministry of Agriculture, Fisheries and Food of the United Kingdom, these levels were not high to warrant concern if they were to be consumed by humans. However, 16.7% of the fish samples had high Cr ...

  18. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment.

    Science.gov (United States)

    Röthig, Till; Yum, Lauren K; Kremb, Stephan G; Roik, Anna; Voolstra, Christian R

    2017-03-17

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at 90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L -1 ) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.

  19. Microbial community composition of deep-sea corals from the Red Sea provides insight into functional adaption to a unique environment

    KAUST Repository

    Röthig, Till

    2017-03-17

    Microbes associated with deep-sea corals remain poorly studied. The lack of symbiotic algae suggests that associated microbes may play a fundamental role in maintaining a viable coral host via acquisition and recycling of nutrients. Here we employed 16 S rRNA gene sequencing to study bacterial communities of three deep-sea scleractinian corals from the Red Sea, Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. We found diverse, species-specific microbiomes, distinct from the surrounding seawater. Microbiomes were comprised of few abundant bacteria, which constituted the majority of sequences (up to 58% depending on the coral species). In addition, we found a high diversity of rare bacteria (taxa at <1% abundance comprised >90% of all bacteria). Interestingly, we identified anaerobic bacteria, potentially providing metabolic functions at low oxygen conditions, as well as bacteria harboring the potential to degrade crude oil components. Considering the presence of oil and gas fields in the Red Sea, these bacteria may unlock this carbon source for the coral host. In conclusion, the prevailing environmental conditions of the deep Red Sea (>20 °C, <2 mg oxygen L−1) may require distinct functional adaptations, and our data suggest that bacterial communities may contribute to coral functioning in this challenging environment.

  20. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  1. Borders of life: lessons from Microbiology of deep-sea hydrothermal vents

    Science.gov (United States)

    Prieur, D.

    Thirty years ago, the deep-sea was known as a low density biotope due to coldness, darkness and famine-like conditions. The discovery of deep-sea hydrothermal vents in the Eastern Pacific in 1977 and the associated black smokers in 1979 considerably changed our views about life on Earth. For the first time, an ecosystem almost independent (at least for tens of years) of solar nergy was discovered. Besides the spectacular and unexpected communities of invertebrates based on symbiotic associations with chemo-litho-autotrophic bacteria, prokaryotic communities associated with high temperature black smokers fascinated microbiologists of extreme environments. Within mineral structures where temperature gradients may fluctuate from ambient seawater temperatures (2°C) up to 350°C, thermophilic (optimal growth above 60°C) and hyperthermophilic (optimal growth above 80°C) microorganisms thrived under very severe conditions due to elevated hydrostatic pressure, toxic compounds or strong ionizing radiations. These organisms belong to both domains of Bacteria and Archaea and live aerobically but mostly anaerobically, using a variety of inorganic and organic carbon sources, and a variety of electron donnors and acceptors as well. The most thermophilic organism known on Earth was isolated from a mid-Atlantic-Ridge hydrotermal vent: Pyrolobus fumarii grows optimally at 110°c and its upper temperature limit for life is 113°C. Such an organism survived to autoclaving conditions currently used for sterilization procedures. Many other hyperthermophilic organisms were isolated and described, including fermenters, sulphate and sulphur reducers, hydrogen oxidizers, nitrate reducers, methanogens, etc. Although most of anaerobes are killed when exposed to oxygen, several deep-sea hyperthermophiles appeared to survive to both oxygen and starvation exposures, indicating that they probably can colonize rather distant environments Because of elevated hydrostatic pressure that exists at

  2. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem

    2015-08-07

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean\\'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  3. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem; Cornejo-Castillo, Francisco M.; Bení tez-Barrios, Veró nica; Fraile-Nuez, Eugenio; Á lvarez-Salgado, X. Antó n; Duarte, Carlos M.; Gasol, Josep M.; Acinas, Silvia G.

    2015-01-01

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  4. RADIOECOLOGICAL STUDIES IN MARINE ENVIRONMENT. A STUDY ON THE CONCENTRATION OF MIXED FISSION PRODUCTS IN GREEK SEA WATERS AND OF 137CS IN FISH AND SEA PLANTS

    International Nuclear Information System (INIS)

    DANALI-KOTSAKI, S.; FLOROU-GAZI, H.

    1982-12-01

    Full text: The concentrations of mixed fission products in sea water and of 137 Cs in fish and sea plants are different for samples collected from different sampling areas. This difference is more remarkable the year where the level of the world wide fall-out is higher, especially with regards to M. F. P. concentrations in sea water samples. Increases or decreases to M.F.P. concentrations in sea water samples result to increases or decreases of 137 Cs in fish and sea plants. (author)

  5. Environmental studies for mining of deep-sea polymetallic nodules - Accomplishments and future plans

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    on marine ecosystem, the project on ‘EIA studies for nodule mining in CIB’ was initiated in 1996, under the national programme on polymetallic nodules funded by the Dept. of Ocean Development. Mining of the deep-sea minerals [1] is expected to alter... for the future • Development of predictive ecosystem models • Creation of environmental database • Evaluating the biogeochemical coupling of biota with deep-sea ecosystem • Development of environment management plan for nodule mining References...

  6. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

    KAUST Repository

    Antunes, Andre

    2011-05-30

    Summary: The Red Sea harbours approximately 25 deep-sea anoxic brine pools. They constitute extremely unique and complex habitats with the conjugation of several extreme physicochemical parameters rendering them some of the most inhospitable environments on Earth. After 50 years of research mostly driven by chemists, geophysicists and geologists, the microbiology of the brines has been receiving increased interest in the last decade. Recent molecular and cultivation-based studies have provided us with a first glimpse on the enormous biodiversity of the local microbial communities, the identification of several new taxonomic groups, and the isolation of novel extremophiles that thrive in these environments. This review presents a general overview of these unusual biotopes and compares them with other similar environments in the Mediterranean Sea and the Gulf of Mexico, with a focus on their microbial ecology. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.

    Directory of Open Access Journals (Sweden)

    Jon M Yearsley

    Full Text Available BACKGROUND: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. PRINCIPAL FINDINGS: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore larvae of polyplacophoran molluscs (chitons, we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. CONCLUSIONS/SIGNIFICANCE: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.

  8. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  9. Deep-sea Lebensspuren of the Australian continental margins

    Science.gov (United States)

    Przeslawski, Rachel; Dundas, Kate; Radke, Lynda; Anderson, Tara J.

    Much of the deep sea comprises soft-sediment habitats dominated by comparatively low abundances of species-rich macrofauna and meiofauna. Although often not observed, these animals bioturbate the sediment during feeding and burrowing, leaving signs of their activities called Lebensspuren ('life traces'). In this study, we use still images to quantify Lebensspuren from the eastern (1921 images, 13 stations, 1300-2200 m depth) and western (1008 images, 11 stations, 1500-4400 m depth) Australian margins using a univariate measure of trace richness and a multivariate measure of Lebensspuren assemblages. A total of 46 Lebensspuren types were identified, including those matching named trace fossils and modern Lebensspuren found elsewhere in the world. Most traces could be associated with waste, crawling, dwellings, organism tests, feeding, or resting, but the origin of 15% of trace types remains unknown. Assemblages were significantly different between the two regions and depth profiles, with five Lebensspuren types accounting for over 95% of the differentiation (ovoid pinnate trace, crater row, spider trace, matchstick trace, mesh trace). Lebensspuren richness showed no strong relationships with depth, total organic carbon, or mud, although there was a positive correlation to chlorin index (i.e., organic freshness) in the eastern margin, with richness increasing with organic freshness. Lebensspuren richness was not related to epifauna either, indicating that epifauna may not be the primary source of Lebensspuren. Despite the abundance and distinctiveness of several traces both in the current and previous studies (e.g., ovoid pinnate, mesh, spider), their origin and distribution remains a mystery. We discuss this and several other considerations in the identification and quantification of Lebensspuren. This study represents the first comprehensive catalogue of deep-sea Lebensspuren in Australian waters and highlights the potential of Lebensspuren as valuable and often

  10. Biodiversity of deep-sea demersal megafauna in western and central Mediterranean basins

    Directory of Open Access Journals (Sweden)

    Samuele Tecchio

    2011-06-01

    Full Text Available Abundance, biomass and diversity patterns of bathyal and abyssal Mediterranean megafauna (fishes and invertebrates were analyzed in the western Balearic Sea, the western Ionian Sea and the eastern Ionian Sea. Sampling was conducted with a Otter-trawl Maireta System (OTMS at depths ranging from 600 to 4000 m. A series of ecological indicators were computed: total abundance and biomass, Margalef species richness, Shannon-Wiener diversity and Pielou’s index of evenness. A multidimensional scaling was applied, indicating that the megafauna communities were grouped by depth, while geographic area had a less defined influence. Margalef richness declined with depth in all three areas, but more steeply in the western Ionian Sea. Pielou’s evenness behaved differently in the three zones, showing a V-shaped curve in the eastern Ionian while showing a decreasing pattern in the other two areas. At lower slope depths, massive presence of the fishes Alepocephalus rostratus in the western basin and Bathypterois mediterraneus in the central basin caused a sharp reduction in evenness.

  11. 50 CFR Table 12 to Part 679 - Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Steller Sea Lion Protection Areas, 3nm No... EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 12 Table 12 to Part 679—Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites Steller Sea Lion Protection Areas, 3nm No Groundfish Fishing Sites...

  12. Implementing ecosystem-based fisheries management: from single-species to integrated ecosystem assessment and advice for Baltic Sea fish stocks

    DEFF Research Database (Denmark)

    Möllmann, Christian; Lindegren, Martin; Blenckner, Thorsten

    2014-01-01

    -economic factors, in relation to specified management objectives. Here, we focus on implementing the IEA approach for Baltic Sea fish stocks. We combine both tactical and strategic management aspects into a single strategy that supports the present Baltic Sea fish stock advice, conducted by the International...... Council for the Exploration of the Sea (ICES). We first review the state of the art in the development of IEA within the current management framework. We then outline and discuss an approach that integrates fish stock advice and IEAs for the Baltic Sea. We intentionally focus on the central Baltic Sea...... and its three major fish stocks cod (Gadus morhua), herring (Clupea harengus), and sprat (Sprattus sprattus), but emphasize that our approach may be applied to other parts and stocks of the Baltic, as well as other ocean areas...

  13. Impact of 21st century climate change on the Baltic Sea fish community and fisheries

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Gislason, Henrik; Möllmann, C.

    2007-01-01

    reviewed. We then use recent regional - scale climate - ocean modelling results to consider how climate change during this century will affect the fish community of the Baltic and fisheries management. Expected climate changes in northern Europe will likely affect both the temperature and salinity...... some of the uncertainties and complexities associated with forecasting how fish populations, communities and industries dependent on an estuarine ecosystem might respond to future climate change.......The Baltic Sea is a large brackish semienclosed sea whose species-poor fish community supports important commercial and recreational fisheries. Both the fish species and the fisheries are strongly affected by climate variations. These climatic effects and the underlying mechanisms are briefly...

  14. Harpacticoid copepod diversity at two physically reworked sites in the deep sea

    Science.gov (United States)

    Thistle, David

    1998-01-01

    Grassle's and Jumars' theories of diversity maintenance in the quiescent deep sea view millimeter-to-meter-scale patchiness (mostly of biological origin) as crucial. In other deep-sea regions, episodes of strong near-bottom flow put the surficial sediment layers into motion, obliterating the biologically produced, millimeter-to-meter-scale patchiness. Under these theories, sites eroded so frequently that such patchiness is eliminated almost as soon as it is created should have lower diversities than sites where the time between erosive events is sufficient for this type of patchiness to be produced and exploited. I tested this prediction by comparing the diversities of harpacticoid copepods at two sites on Fieberling Guyot to determine whether Grassle's and Jumars' theories can be extended to the portion of the deep sea that experiences episodic erosive flows. At White Sand Swale (=WSS) (32°27.581'N, 127°47.839'W), strong near-bottom flows erode the surficial sediment daily. At Sea Pen Rim (=SPR) (32°27.631'N, 127°49.489'W), strong near-bottom flows erode the surficial sediment a few times annually. Contrary to expectation, the diversity of harpacticoid copepods was significantly greater at WSS than at SPR. However, the erosion regime at WSS may create small-scale patchiness that promotes harpacticoid diversity.

  15. Warming impacts on fish species composition in the Kattegat-Belt Sea

    DEFF Research Database (Denmark)

    Bryndum, Karoline Minna; MacKenzie, Brian

    Sea temperatures have been rising in the waters near Denmark during the past 1-2 decades and are expected to affect marine populations, species, communities and foodwebs. Here we investigate whether and how the species richness and composition of the marine fish community in the Kattegat and Belt...... of the southern range limits of all species captured in the surveys shows that the mean southern latitudinal limit of the fish community has been decreasing and is also corrrelated with bottom temperatures; these patterns are consistent with immigration of fish from southerly zoogeographic regions. Warm...

  16. The fish and fisheries of Jones Bank and the wider Celtic Sea

    Science.gov (United States)

    Martinez, I.; Ellis, J. R.; Scott, B.; Tidd, A.

    2013-10-01

    The Celtic Sea is a diverse fishing ground that supports important commercial fisheries for a range of demersal fish, large and small-bodied pelagic fish and a variety of cephalopods and other shellfish. A regional overview of the main commercial fish stocks of the Celtic Sea and of the fish that occur in the vicinity of Jones Bank are provided through analyses of landings data from English and Welsh vessels, and from scientific trawl surveys. Dedicated smaller scale sampling via trawl surveys combined with baited cameras on and around the Jones Bank were also analysed to investigate the importance of sandbank habitats with attention paid to the differences in the species occurring on the top of the bank in comparison to adjacent off-bank habitats. Official landing statistics for UK (English and Welsh) vessels indicated that the predominant commercial demersal species in ICES Divisions VIIg,h (in terms of quantities landed) were anglerfish, megrim, pollack and skates (Rajidae). There were, however, regional differences in the distribution of fish and fisheries, and the area surrounding Jones Bank (ICES Rectangles 28E1 and 28E2) supports fisheries for megrim, anglerfish, skates, hake, ling and turbot, with otter trawl, gillnet and beam trawl the main gears used. Recent survey data collected with GOV (Grande Ouverture Verticale) trawl from the Celtic Sea (ICES Divisions VIIe-h, 2007-2010) were used to highlight the broad scale distribution of the main fish assemblages in the Celtic Sea. Analyses of the fish and cephalopod catches from these surveys indicated that there were four broad assemblages in the area, including (i) a region around the Cornwall (which will also be partly influenced by the necessity to use rockhopper ground gear on these rough grounds), (ii) the shallower regions of the north-western Celtic Sea (including parts of the Bristol Channel), (iii) the deeper parts of the outer shelf and (iv) the central Celtic Sea. These data also provided

  17. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1983-06-01

    The report presents results of IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine pollution (GESAMP) to provide advice on the most suitable oceanographic modelling techniques to be applied to the deep-sea dumping of both radioactive and non-radioactive substances. There are four main parts of the work: the present knowledge of oceanic processes that may transfer substances from a deep-sea dump site back to man or his food chain, methods and models presently available for estimating or calculating concentration distributions of contaminants arising from releases from deep-sea dump sites and recommendations as to the presently most appropriate models, the reliability of the concentration distributions obtained using these models and recommended areas for further improvements including research needs

  18. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.

    Science.gov (United States)

    Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  19. From Exploration to Exploitation? Opportunities and Imperatives in the Deep Sea

    KAUST Repository

    Van Dover, Cindy Lee

    2017-01-16

    We may think of the depths of the ocean as unseen, unfathomable, but there have been breakthroughs in technology that allow scientists access to the deep sea and that bring the deep sea directly to the public through live video feeds and data links. We can now map the seafloor to resolve features the size of a football and smaller using sound waves, while at the same time, sensors report to us the chemical nature of the surrounding environment. We will look at examples of robots and other assets that we use to explore the seafloor and at some of the discoveries that arise from our expanding capabilities. We will look at some of the blank places on the map and wonder what might be located there. And finally, we will explore the growing interest in mining the seabed and the potential for a Blue Economy in the deep ocean.

  20. A review on mesopelagic fishes belonging to family Myctophidae

    Digital Repository Service at National Institute of Oceanography (India)

    Catul, V.; Gauns, M.; Karuppasamy, P.K.

    Jr (1991) Life histories of three species of lanternfishes (Pisces: Myctophidae) from the eastern Gulf of Mexico. II- Age and growth patterns. Mar Biol 111:21-27 Gjөsæter J (1984) Mesopelagic fish, a large potential resource in the Arabian Sea. Deep...

  1. Study of physiological and genotoxic status of fish populations of Azerbaijan shore of the Caspian sea

    International Nuclear Information System (INIS)

    Kasimov, R.Yu.; Palatnikov, G.M.; Mekhtiev, A.A.

    2005-01-01

    Full text : According to the studies conducted on Ecotox program of Caspian Ecological program, littoral waters of Azerbaijan and Iran are characterized with high content of heavy metals and organic compounds. Actually, all these substances are not just toxicants but mutagens as well. Taking into account these considerations, it appears important to be aware of physiological and genotoxic status of fish populations dwelling along Azerbaijan shore of the Caspian Sea for present time. The purpose of proposed project is collecting data concerning actual physiological and genotoxic status of fish populations dwelling in the littoral zone of Azerbaijan shore of the Caspian Sea. That will present the real picture of ecological status of ichtyofauna in Azerbaijan sector of the Caspian Sea and give grounds to conduct comparative analysis of changes while conducting all kinds of activities in the sea with the data provided within this project's frames. For this purpose we offer to conduct studies of fish populations along Azerbaijan littoral zone of the Caspian Sea beginning from north ones, sharing all shore into 5-6 points where fish catches should be done. Not less than 5 specimens of attached-dwelling fish, for instance gobies, are planned to catch in each of defined points. Blood samples for genotoxic analysis and samples of muscles, livers and gills for immunochemical and histopathological analysis will be taken. Along with this in these points the analysis of water - oxygen content, ph, salinity, temperature will be realized. Physiological status of fish will be evaluated by determination of serotonin-modulating protein content in ELISA-test. This analysis gives precise estimation of serotonergic system status that is very sensitive to adverse conditions. The second test - histopathological tissue studies gives grounds to determine functional status of internal organs of caught fish. The third test - micronuclei counting in erythrocytes. This technique allows

  2. Ecosystem Services: a Framework for Environmental Management of the Deep Sea

    Science.gov (United States)

    Le, J. T.; Levin, L. A.; Carson, R. T.

    2016-02-01

    As demand for deep-sea resources rapidly expands in the food, energy, mineral, and pharmaceutical sectors, it has become increasingly clear that a regulatory structure for extracting these resources is not yet in place. There are jurisdictional gaps and a lack of regulatory consistency regarding what aspects of the deep sea need protection and what requirements might help guarantee that protection. Given the mining sector's intent to exploit seafloor massive sulphides, Mn nodules, cobalt crusts, and phosphorites in the coming years, there is an urgent need for deep-ocean environmental management. Here, we propose an ecosystem services-based framework to inform decisions and best practices regarding resource exploitation, and to guide baseline studies, preventative actions, monitoring, and remediation. With policy in early stages of development, an ecosystem services approach has the potential to serve as an overarching framework that takes protection of natural capital provided by the environment into account during the decision-making process. We show how an ecosystem services approach combined with economic tools, such as benefit transfer techniques, should help illuminate issues where there are direct conflicts among different industries, and between industry and conservation. We argue for baseline and monitoring measurements and metrics that inform about deep-sea ecosystem services that would be impaired by mining, and discuss ways to incorporate the value of those losses into decision making, mitigation measures, and ultimately product costs. This proposal is considered relative to current International Seabed Authority recommendations and contractor practices, and new actions are proposed. An ecosystem services-based understanding of how these systems work and their value to society can improve sustainability and stewardship of the deep ocean.

  3. Filling regulatory gaps in high seas fisheries: discrete high seas fish stocks, deep-sea fisheries and vulnerable marine ecosystems

    NARCIS (Netherlands)

    Takei, Y.

    2008-01-01

    The present study examines the legal regime of high seas fisheries with a view to identifying regulatory gaps. The main research questions are as follows: 1. What general principles are applicable to high seas fisheries?; 2. What implications do these general principles have for new challenges in

  4. Strontium-90 and cesium-137 in sea fish (from Oct. 1981 to Jun. 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in sea fishes (from Oct. 1981 to Jun. 1982) were determined. Fish was collected from eight sampling locations. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. The results are shown in a table. (Namekawa, K.)

  5. Strontium-90 and cesium-137 in sea fish (from Jun. 1982 to Dec. 1982)

    International Nuclear Information System (INIS)

    1982-01-01

    Strontium-90 and cesium-137 in sea fish (from Jun. to Dec. 1982) were determined. Fish was collected from 22 sampling locations. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. The results are sown in a table. (Namekawa, K.)

  6. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  7. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  8. Fishing effects in northeast Atlantic shelf seas : patterns in fishing effort, diversity and community structure. III. International trawling effort in the North Sea : an analysis of spatial and temporal trends

    DEFF Research Database (Denmark)

    Jennings, S.; Alsväg, J.; Cotter, A.J.R.

    1999-01-01

    of beam trawling effort increases from north to south. Plots of annual fishing effort by ICES statistical rectangle (211 boxes of 0.5 degrees latitude x 1 degrees longitude) indicate that the majority of fishing effort in the North Sea are concentrated in a very few rectangles. Thus mean annual total...

  9. Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (horizon 2030) scenarios.

    Science.gov (United States)

    Macias, Diego; Garcia-Gorriz, Elisa; Stips, Adolf

    2018-04-26

    Deep water convection (DC) in winter is one of the major processes driving open-ocean primary productivity in the Northwestern Mediterranean Sea. DC is highly variable in time, depending on the specific conditions (stratification, circulation and ocean-atmosphere interactions) of each specific winter. This variability also drives the interannual oscillations of open-ocean primary productivity in this important region for many commercially-important fish species. We use a coupled model system to 1) understand to what extent DC impacts phytoplankton seasonality in the present-day and 2) to explore potential changes in future scenarios (~2030). Our model represents quite accurately the present-day characteristics of DC and its importance for open-ocean phytoplankton blooms. However, for the future scenarios the importance of deep nutrients in fertilizing the euphotic layer of the NW Mediterranean decreases. The model simulates changes in surface density and on the levels of kinetic energy that make mesoscale activity associated with horizontal currents to become a more important fertilization mechanism, inducing subsequently phenological changes in seasonal plankton cycles. Because of our focus on the open-sea, an exact quantification of the impact of those changes on the overall biological production of the NW Mediterranean cannot be made at the moment.

  10. Dispersal of volcaniclasts during deep-sea eruptions: Settling velocities and entrainment in buoyant seawater plumes

    Science.gov (United States)

    Barreyre, Thibaut; Soule, S. Adam; Sohn, Robert A.

    2011-08-01

    We use tank experiments to measure settling rates of deep-sea volcaniclastic material recovered from the Arctic (85°E Gakkel Ridge) and Pacific (Juan de Fuca Ridge, Loihi seamount) Oceans. We find that clast size and shape exert a strong influence on settling velocity, with velocities of ~ 30 cm/s for large (~ 8 mm), blocky clasts, compared to velocities of ~ 2.5 cm/s for small (Pele) entrained in a megaplume could be advected as far as a few kilometers from a source region. These results indicate that entrainment in buoyant seawater plumes during an eruption may play an important role in clast dispersal, but it is not clear if this mechanism can explain the distribution of volcaniclastic material at the sites on the Gakkel and Juan de Fuca Ridges where our samples were acquired. In order to understand the dispersal of volcaniclastic material in the deep-sea it will be necessary to rigorously characterize existing deposits, and develop models capable of incorporating explosive gas phases into the eruption plume.

  11. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    Science.gov (United States)

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  12. Evolution in the deep sea: biological traits, ecology and phylogenetics of pelagic copepods.

    Science.gov (United States)

    Laakmann, Silke; Auel, Holger; Kochzius, Marc

    2012-11-01

    Deep-sea biodiversity has received increasing interest in the last decade, mainly focusing on benthic communities. In contrast, studies of zooplankton in the meso- to bathypelagic zones are relatively scarce. In order to explore evolutionary processes in the pelagic deep sea, the present study focuses on copepods of two clausocalanoid families, Euchaetidae and Aetideidae, which are abundant and species-rich in the deep-sea pelagic realm. Molecular phylogenies based on concatenated-portioned data on 18S, 28S and internal transcribed spacer 2 (ITS2), as well as mitochondrial cytochrome c oxidase subunit I (COI), were examined on 13 species, mainly from Arctic and Antarctic regions, together with species-specific biological traits (i.e. vertical occurrence, feeding behaviour, dietary preferences, energy storage, and reproductive strategy). Relationships were resolved on genus, species and even sub-species levels, the latter two established by COI with maximum average genetic distances ranging from ≤5.3% at the intra-specific, and 20.6% at the inter-specific level. There is no resolution at a family level, emphasising the state of Euchaetidae and Aetideidae as sister families and suggesting a fast radiation of these lineages, a hypothesis which is further supported by biological parameters. Euchaetidae were similar in lipid-specific energy storage, reproductive strategy, as well as feeding behaviour and dietary preference. In contrast, Aetideidae were more diverse, comprising a variety of characteristics ranging from similar adaptations within Paraeuchaeta, to genera consisting of species with completely different reproductive and feeding ecologies. Reproductive strategies were generally similar within each aetideid genus, but differed between genera. Closely related species (congeners), which were similar in the aforementioned biological and ecological traits, generally occurred in different depth layers, suggesting that vertical partitioning of the water column

  13. The Inhibitor Pathogen Bacteria’s of Sea Grape Caulerpa lentillifera Applies on Fresh Fish

    Directory of Open Access Journals (Sweden)

    Alfonsina M.Tapotubun

    2016-12-01

    Full Text Available Contamination of pathogen bacteries at the fresh fish may occur during the post harvesting to the consuming period, and endanger human health. One of simple and safe way to protect secureness of fresh fish food is the use of Caulerpa lentillifera to push down pathogen bacteries activity. The aims of this research to investigate lability of sea grape (Caulerpa lentillifera against the activity of pathogen bacteries Escherichia coli, Vibrio cholerae and Salmonella sp., in fresh fish, during storage phase, at ambient and ice temperatures. Method used in this research is experimental laboratories method, that is, 10%, 20% and 30% blended sea grapes applied on fresh fishes, Selar crumenopthalmus during storage of 1, 2 and 3 days at ambient and ice temperatures. All the applied of blended of Caulerpa lentillifera, shows the ability to obstruct the activity of bactery group coliform and Escherichia coli on fresh fish Selar crumenopthalmus up to 2x 24 hours, at ambient temperature, and 3x24 hours at ice temperature. During storage period, the occurance and grows of Salmonella sp. and Vibrio cholerae bacteries is undetected. Fresh sea grapes concentration of 10% is sufficient to be applied on fresh fish to obstruct the activity of pathogen bacteries Escherichia coli during storage time of 2 x 24 hours at room temperature, and 3 x 24 hours at ice temperature, and to block the occurance of Vibrio cholerae and Salmonella sp. during storage period. .

  14. Deep-Sea Microbes: Linking Biogeochemical Rates to -Omics Approaches

    Science.gov (United States)

    Herndl, G. J.; Sintes, E.; Bayer, B.; Bergauer, K.; Amano, C.; Hansman, R.; Garcia, J.; Reinthaler, T.

    2016-02-01

    Over the past decade substantial progress has been made in determining deep ocean microbial activity and resolving some of the enigmas in understanding the deep ocean carbon flux. Also, metagenomics approaches have shed light onto the dark ocean's microbes but linking -omics approaches to biogeochemical rate measurements are generally rare in microbial oceanography and even more so for the deep ocean. In this presentation, we will show by combining metagenomics, -proteomics and biogeochemical rate measurements on the bulk and single-cell level that deep-sea microbes exhibit characteristics of generalists with a large genome repertoire, versatile in utilizing substrate as revealed by metaproteomics. This is in striking contrast with the apparently rather uniform dissolved organic matter pool in the deep ocean. Combining the different -omics approaches with metabolic rate measurements, we will highlight some major inconsistencies and enigmas in our understanding of the carbon cycling and microbial food web structure in the dark ocean.

  15. Ciguatera fish poisoning and sea surface temperatures in the Caribbean Sea and the West Indies.

    Science.gov (United States)

    Tester, Patricia A; Feldman, Rebecca L; Nau, Amy W; Kibler, Steven R; Wayne Litaker, R

    2010-10-01

    Ciguatera fish poisoning (CFP) is a circumtropical disease caused by ingestion of a variety of reef fish that bioaccumulate algal toxins. Distribution and abundance of the organisms that produce these toxins, chiefly dinoflagellates of the genus Gambierdiscus, are reported to correlate positively with water temperature. Consequently, there is growing concern that increasing temperatures associated with climate change could increase the incidence of CFP. This concern prompted experiments on the growth rates of six Gambierdiscus species at temperatures between 18 degrees C and 33 degrees C and the examination of sea surface temperatures in the Caribbean and West Indies for areas that could sustain rapid Gambierdiscus growth rates year-round. The thermal optimum for five of six Gambierdiscus species tested was >/=29 degrees C. Long-term SST data from the southern Gulf of Mexico indicate the number of days with sea surface temperatures >/=29 degrees C has nearly doubled (44 to 86) in the last three decades. To determine how the sea surface temperatures and Gambierdiscus growth data correlate with CFP incidences in the Caribbean, a literature review and a uniform, region-wide survey (1996-2006) of CFP cases were conducted. The highest CFP incidence rates were in the eastern Caribbean where water temperatures are warmest and least variable. Published by Elsevier Ltd.

  16. AFSC/RACE/GAP/Rooper: Deep sea coral and sponge distribution

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of a series of ongoing research projects, the AFSC has been mapping and modeling the distribution of deep-sea coral and sponge communities throughout Alaska....

  17. Strontium-90 and cesium-137 in sea fish (from Jun. 1981 to Dec. 1981)

    International Nuclear Information System (INIS)

    1981-01-01

    90 Sr and 137 Cs in sea fish were determined. Fish was rinsed with water and blotted with a filter paper. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. The results from June to December 1981 are shown in a table. (Namekawa, K.)

  18. Strontium-90 and cesium-137 in sea fish (from Nov. 1982 to Jun. 1983)

    International Nuclear Information System (INIS)

    1983-01-01

    Strontium-90 and cesium-137 in sea fish (from Nov. 1982 to Jun. 1983) were determined. Fishes were collected from eight sampling locations. Only the edible part was used in case of larger sized fish, and the whole part was used in case of smaller ones. The results are shown in a table. (J.P.N.)

  19. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    KAUST Repository

    Roik, Anna Krystyna

    2015-01-20

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  20. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    KAUST Repository

    Roik, Anna Krystyna; Rö thig, Till; Roder, Cornelia; Muller, Paul Joachim; Voolstra, Christian R.

    2015-01-01

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  1. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity.

    Science.gov (United States)

    Roik, Anna; Röthig, Till; Roder, Cornelia; Müller, Paul J; Voolstra, Christian R

    2015-01-01

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  2. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    Directory of Open Access Journals (Sweden)

    Anna Roik

    2015-01-01

    Full Text Available The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C, oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G as well as respiration rates (R were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  3. Scientific Considerations for the Assessment and Management of Mine Tailings Disposal in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Lindsay L. Vare

    2018-02-01

    Full Text Available Deep-sea tailings disposal (DSTD and its shallow water counterpart, submarine tailings disposal (STD, are practiced in many areas of the world, whereby mining industries discharge processed mud- and rock-waste slurries (tailings directly into the marine environment. Pipeline discharges and other land-based sources of marine pollution fall beyond the regulatory scope of the London Convention and the London Protocols (LC/LP. However, guidelines have been developed in Papua New Guinea (PNG to improve tailings waste management frameworks in which mining companies can operate. DSTD can impact ocean ecosystems in addition to other sources of stress, such as from fishing, pollution, energy extraction, tourism, eutrophication, climate change and, potentially in the future, from deep-seabed mining. Environmental management of DSTD may be most effective when placed in a broader context, drawing expertise, data and lessons from multiple sectors (academia, government, society, industry, and regulators and engaging with international deep-ocean observing programs, databases and stewardship consortia. Here, the challenges associated with DSTD are identified, along with possible solutions, based on the results of a number of robust scientific studies. Also highlighted are the key issues, trends of improved practice and techniques that could be used if considering DSTD (such as increased precaution if considering submarine canyon locations, likely cumulative impacts, and research needed to address current knowledge gaps.

  4. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John; Cedhagen, Tomas

    2009-01-01

    Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubu......Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between...... suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea....

  5. Not Simply a Matter of Fish Intake.

    Science.gov (United States)

    Scherr, Carlos; Figueiredo, Valeria N; Moura, Filipe A; Sposito, Andrei C

    2015-01-01

    Recent findings have highlighted enhanced fish consumption as a potential measure to increase intake of healthy fatty acids, particularly omega-3. The generalizability of this recommendation, however, may fall short of differences in fish species and cooking techniques. Hence, we investigated how these 2 variables affect the lipid content in fish flesh. Nine species of freshwater, deep sea or shore fish were grilled, steamed or fried with or without the addition of soybean oil, olive oil or butter. The lipid composition was analysed and a significant difference was observed in cholesterol, saturated fatty acids, polyunsaturated fatty acids, omega-3 fatty acids and omega-6 fatty acids contents between species (pfish species and cooking techniques.

  6. Installation of deep water sub-sea equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Jack; Demian, Nabil [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    Offshore oil developments are being planned in water depths exceeding 2000 m. Lowering and positioning large, heavy sub sea hardware, using conventional methods, presents new technical challenges in these ultra deep waters. In 3000 m a safe lift using conventional steel cables will require more capacity to support the cable self weight than the static payload. Adding dynamic loads caused by the motions of the surface vessel can quickly cause the safe capacity of the wire to be exceeded. Synthetic ropes now exist to greatly reduce the lowering line weight. The lower stiffness of these synthetic ropes aggravate the dynamic line tensions due to vessel motions and relatively little is known about the interaction of these ropes on the winches and sheaves required for pay-out and haul-in of these lines under dynamic load. Usage of conventional winches would damage the synthetic rope and risk the hardware being deployed. Reliable and economic installation systems that can operate from existing installation vessels are considered vital for ultra deep-water oil development. The paper describes a Deep Water Sub-Sea Hardware Deployment system consisting of a buoy with variable, pressure-balanced buoyancy, which is used to offset most of the payload weight as it is lowered. The buoyant capacity is controlled by air pumped into the tank from the surface vessel through a reinforced hose. The buoy and payload motion are isolated from the deployment line surface dynamics using a simple passive heave compensator mounted between the buoy and the bottom of the deployment rope. The system components, functionality and dynamic behavior are presented in the paper. (author)

  7. 76 FR 36511 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-06-22

    ...-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3 AGENCY... the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP) (Amendment 3), incorporating a draft... current trap limit regulations state that red crab may not be harvested from gear other than a marked red...

  8. Diet compositions and trophic guild structure of the eastern Chukchi Sea demersal fish community

    Science.gov (United States)

    Whitehouse, George A.; Buckley, Troy W.; Danielson, Seth L.

    2017-01-01

    Fishes are an important link in Arctic marine food webs, connecting production of lower trophic levels to apex predators. We analyzed 1773 stomach samples from 39 fish species collected during a bottom trawl survey of the eastern Chukchi Sea in the summer of 2012. We used hierarchical cluster analysis of diet dissimilarities on 21 of the most well sampled species to identify four distinct trophic guilds: gammarid amphipod consumers, benthic invertebrate generalists, fish and shrimp consumers, and zooplankton consumers. The trophic guilds reflect dominant prey types in predator diets. We used constrained analysis of principal coordinates (CAP) to determine if variation within the composite guild diets could be explained by a suite of non-diet variables. All CAP models explained a significant proportion of the variance in the diet matrices, ranging from 7% to 25% of the total variation. Explanatory variables tested included latitude, longitude, predator length, depth, and water mass. These results indicate a trophic guild structure is present amongst the demersal fish community during summer in the eastern Chukchi Sea. Regular monitoring of the food habits of the demersal fish community will be required to improve our understanding of the spatial, temporal, and interannual variation in diet composition, and to improve our ability to identify and predict the impacts of climate change and commercial development on the structure and functioning of the Chukchi Sea ecosystem.

  9. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation

    Directory of Open Access Journals (Sweden)

    Mariana E. Campeão

    2017-06-01

    Full Text Available One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C. We collected deep-sea samples in the field (about 2570 m below the sea surface, transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae, archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae, and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  10. Velocity and Attenuation Profiles in the Monterey Deep-Sea Fan

    Science.gov (United States)

    1987-12-01

    a. 11 o n i n and depth. Sol ’^ a 11 e i"i u a 11 o >) a i::> 1 n Ci sediment for each of the f i...i. n c t ion o f f r e q u e n c; y...estimate of sea floor depth was obtained from an oceano - graphic map of the Monterey fan (’Oceanographic Data of the Monterey Deep Sea Fan’, 1st

  11. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  12. NESTOR Deep Sea Neutrino Telescope

    International Nuclear Information System (INIS)

    Aggouras, G.; Anassontzis, E.G.; Ball, A.E.; Bourlis, G.; Chinowsky, W.; Fahrun, E.; Grammatikakis, G.; Green, C.; Grieder, P.; Katrivanos, P.; Koske, P.; Leisos, A.; Markopoulos, E.; Minkowsky, P.; Nygren, D.; Papageorgiou, K.; Przybylski, G.; Resvanis, L.K.; Siotis, I.; Sopher, J.; Staveris-Polikalas, A.; Tsagli, V.; Tsirigotis, A.; Tzamarias, S.; Zhukov, V.A.

    2006-01-01

    One module of NESTOR, the Mediterranean deep-sea neutrino telescope, was deployed at a depth of 4000m, 14km off the Sapienza Island, off the South West coast of Greece. The deployment site provides excellent environmental characteristics. The deployed NESTOR module is constructed as a hexagonal star like latticed titanium star with 12 Optical Modules and an one-meter diameter titanium sphere which houses the electronics. Power and data were transferred through a 30km electro-optical cable to the shore laboratory. In this report we describe briefly the detector and the detector electronics and discuss the first physics data acquired and give the zenith angular distribution of the reconstructed muons

  13. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system

    Science.gov (United States)

    Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.

    2008-01-01

    The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO . The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking terrigenous input of

  14. Marine environmental monitoring related to sea disposal of radioactive waste in the NE Atlantic Ocean

    International Nuclear Information System (INIS)

    Bettencourt, A.O.; Elias, M.D.T.; Ferrador, G.C.

    1988-01-01

    Reference is made to the sea disposal of packaged radioactive waste in the NE Atlantic and to the role of the OCDE Nuclear Energy Agency (NEA) since 1967, in the dumping operations. The objectives of marine environmental monitoring in relation to sea disposal of radioactive wastes are described as well as the coordinated research and environmental surveillance programme (CRESP) developed within NEA frame. The Portuguese on-going programme in this field is presented and the results concerning measurements of 239+240 Pu, 238 Pu, 241 Am and 137 Cs in samples of water, sediments and fish collected at Madeira and Continental Portuguese coasts, are discussed. It was observed that these radionuclides concentrations are lower for deep-sea fishes than for the shallow-water ones. The obtained results are compared with those found in the literature. From the observation of the large spectrum of results available, it can be concluded that no generalized contamination of the marine environment due to the sea dumping of radioactive wastes if observed at present. On the other hand, there is an interest in pursuing analyses of deep-sea fish with the aim of early detection of any possible modifications in the actual levels of radioactivity in the marine environment. (author) [pt

  15. High-seas fish wars generate marine reserves.

    Science.gov (United States)

    Herrera, Guillermo E; Moeller, Holly V; Neubert, Michael G

    2016-04-05

    The effective management of marine fisheries is an ongoing challenge at the intersection of biology, economics, and policy. One way in which fish stocks-and their habitats-can be protected is through the establishment of marine reserves, areas that are closed to fishing. Although the potential economic benefits of such reserves have been shown for single-owner fisheries, their implementation quickly becomes complicated when more than one noncooperating harvester is involved in fishery management, which is the case on the high seas. How do multiple self-interested actors distribute their fishing effort to maximize their individual economic gains in the presence of others? Here, we use a game theoretic model to compare the effort distributions of multiple noncooperating harvesters with the effort distributions in the benchmark sole owner and open access cases. In addition to comparing aggregate rent, stock size, and fishing effort, we focus on the occurrence, size, and location of marine reserves. We show that marine reserves are a component of many noncooperative Cournot-Nash equilibria. Furthermore, as the number of harvesters increases, (i) both total unfished area and the size of binding reserves (those that actually constrain behavior) may increase, although the latter eventually asymptotically decreases; (ii) total rents and stock size both decline; and (iii) aggregate effort used (i.e., employment) can either increase or decrease, perhaps nonmonotonically.

  16. Fatty acid composition indicating diverse habitat use in coral reef fishes in the Malaysian South China Sea

    Directory of Open Access Journals (Sweden)

    Takaomi Arai

    2015-01-01

    Full Text Available BACKGROUND: In order to understand feeding ecology and habitat use of coral reef fish, fatty acid composition was examined in five coral reef fishes, Thalassoma lunare, Lutjanus lutjanus, Abudefduf bengalensis, Scarus rivulatus and Scolopsis affinis collected in the Bidong Island of Malaysian South China Sea. RESULTS: Proportions of saturated fatty acids (SAFA ranged 57.2% 74.2%, with the highest proportions in fatty acids, the second highest was monounsaturated fatty acids (MUFA ranged from 21.4% to 39.0% and the proportion of polyunsaturated fatty acids (PUFA was the lowest ranged from 2.8% to 14.1%. Each fatty acid composition differed among fishes, suggesting diverse feeding ecology, habitat use and migration during the fishes' life history in the coral reef habitats. CONCLUSIONS: Diets of the coral fish species might vary among species in spite of that each species are living sympatrically. Differences in fatty acid profiles might not just be considered with respect to the diets, but might be based on the habitat and migration.

  17. Waste disposal in the deep ocean: An overview

    International Nuclear Information System (INIS)

    O'Connor, T.P.; Kester, D.R.; Burt, W.V.; Capuzzo, J.M.; Park, P.K.; Duedall, I.W.

    1985-01-01

    Incineration at sea, industrial and sewage waste disposal in the surface mixing zone, and disposal of low-level nuclear wastes, obsolete munitions, and nerve gas onto the seafloor have been the main uses of the deep sea for waste management. In 1981 the wastes disposed of in the deep sea consisted of 48 X 10/sup 4/ t of liquid industrial wastes and 2 X 10/sup 4/ t of sewage sludge by the United States; 1.5 X 10/sup 4/ t (solids) of sewage sludge by the Federal Republic of German; 5300 t of liquid industrial wastes by Denmark; 99 t of solid industrial wastes by the United Kingdom; and 9400 t of low-level radioactive wastes by several European countries. Also in 1981 at-sea incineration of slightly more than 10/sup 5/ t of organic wastes from Belgium, France, the Federal Republic of Germany, the Netherlands, Norway, Sweden, and the United Kingdom was carried out in the North Sea. Unique oceanographic features of the deep sea include its large dilution capacity; the long residence time of deep-sea water (on the order of 10/sup 2/ y); low biological productivity in the surface water of the open ocean (≅50 g m/sup -2/ of carbon per year); the existence of an oxygen minimum zone at several hundred meters deep in the mid-latitudes; and the abyssal-clay regions showing sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay. Any deep-sea waste disposal strategy must take into account oceanic processes and current scientific knowledge in order to attain a safe solution that will last for centuries

  18. Improvement in grade of minerals using simultaneous Bio-oxidation of invisible gold concentrate and deep-sea manganese crust

    Science.gov (United States)

    Myung, EunJi; Cho, Kang Hee; Kim, Hyun Soo; Park, Cheon Young

    2016-04-01

    Many sulfides of metal such as galena, sphalerite, chalcopyrite, and pyrite, are semiconductors. When two kinds of such minerals contact each other in an electrolyte, a galvanic couple, where the mineral of lower rest potential as anode, and that of higher rest potential as cathode forms. Manganese dioxide is also a semiconductor with much higher rest potential than all sulfides mentioned above, so that a galvanic couple in which both the minerals would dissolve simultaneously can form, when it contacts with any of the sulfides. The aim of this study was to investigate the improvement in grade of minerals using the simultaneous bio-oxidation of deep-sea manganese crust and invisible gold concentrate. The samples(deep-sea manganese crust and invisible gold concentrate) were characterized by chemical and XRD analysis. The primary components of the invisible gold concentrate was pyrite and quartz and the deep-sea manganese crust was amorphous material, as detected using XRD. The result of chemical analysis showed that Au, Ag, Te contents in the invisible gold concentrate 130.2, 954.1 and 1,043.6 mg/kg, respectively. and that Mn, Ni, Co contents in the deep-sea manganese crust 19,501.5, 151.9, 400.4 mg/kg, respectively. In order to increase the bacteria's tolerance of heavy metals, the bacteria using bio-oxidation experiments were repeatedly subcultured in an Cu adaptation-medium containing of 382.98 mg/l for 20 periods of 21 days. The improvement in grade of samples of in present adapted bacteria condition was greater than another conditions(control and in present non-adapted bacteria). The Au-Ag-Te contents in the invisible gold concentrate was enhanced in the order of physical oxidation, simultaneous/non-adaptive bio-oxidation, adaptive/bio-oxidation, simultaneous/adaptive bio-oxidation. If the bacteria is adapted to heavy metal ions and an optimization of conditions is found in future bio-oxidation-leaching processes. Acknowledgment : "This research was supported

  19. Stickleback increase in the Baltic Sea : A thorny issue for coastal predatory fish

    NARCIS (Netherlands)

    Bergstrom, Ulf; Olsson, Jens; Casini, Michele; Eriksson, Britas Klemens; Fredriksson, Ronny; Wennhage, Hakan; Appelberg, Magnus

    2015-01-01

    In the Baltic Sea, the mesopredator three-spined stickleback (Gasterosteus aculeatus) spends a large part of its life cycle in the open sea, but reproduces in shallow coastal habitats. In coastal waters, it may occur in high abundances, is a potent predator on eggs and larvae of fish, and has been

  20. A vertical wall dominated by Acesta excavata and Neopycnodonte zibrowii, part of an undersampled group of deep-sea habitats.

    Directory of Open Access Journals (Sweden)

    Mark P Johnson

    Full Text Available We describe a novel biotope at 633 to 762 m depth on a vertical wall in the Whittard Canyon, an extensive canyon system reaching from the shelf to the deep sea on Ireland's continental margin. We explored this wall with an ROV and compiled a photomosaic of the habitat. The assemblage contributing to the biotope was dominated by large limid bivalves, Acesta excavata (mean shell height 10.4 cm, and deep-sea oysters, Neopycnodonte zibrowii, at high densities, particularly at overhangs. Mean density of N. zibrowii increased with depth, with densities of the most closely packed areas of A. excavata also increasing with depth. Other taxa associated with the assemblage included the solitary coral Desmophyllum dianthus, cerianthid anemones, comatulid crinoids, the trochid gastropod Margarites sp., the portunid crab Bathynectes longispina and small fish of the family Bythitidae. The scleractinian coral Madrepora oculata, the pencil urchin Cidaris cidaris and a species of Epizoanthus were also common. Prominent but less abundant species included the flytrap anemone Actinoscyphia saginata, the carrier crab Paramola cuvieri, and the fishes Lepidion eques and Conger conger. Observations of the hydrography of the canyon system identified that the upper 500 m was dominated by Eastern North Atlantic Water, with Mediterranean Outflow Water beneath it. The permanent thermocline is found between 600 and 1000 m depth, i.e., in the depth range of the vertical wall and the dense assemblage of filter feeders. Beam attenuation indicated nepheloid layers present in the canyon system with the greatest amounts of suspended material at the ROV dive site between 500 and 750 m. A cross-canyon CTD transect indicated the presence of internal waves between these depths. We hypothesise that internal waves concentrate suspended sediment at high concentrations at the foot of the vertical wall, possibly explaining the large size and high density of filter-feeding molluscs.

  1. Methylmercury in fish from the South China Sea: geographical distribution and biomagnification.

    Science.gov (United States)

    Zhu, Aijia; Zhang, Wei; Xu, Zhanzhou; Huang, Liangmin; Wang, Wen-Xiong

    2013-12-15

    We conducted a large-scale investigation of methylmercury (MeHg) in a total of 628 marine wild fish covering 46 different species collected from the South China Sea between 2008 and 2009. Biological and ecological characteristics such as size (length and wet weight), feeding habit, habitat, and stable isotope (δ(15)N) were examined to explain MeHg bioaccumulation in marine fish and their geographical distribution. MeHg levels in the muscle tissues of the 628 individuals ranged from 0.010 to 1.811 μg/g dry wt. Log10MeHg concentration was significantly related to their length and wet weight. Feeding habit and habitat were the primary factors influencing MeHg bioaccumulation. Demersal fish were more likely to be contaminated with MeHg than the epipelagic and mesopelagic varieties. Linear relationships were obtained between Log10(MeHg) and δ(15)N only for one location, indicating that biomagnification was site-specific. Results from this study suggest that dietary preference and trophic structure were the main factors affecting MeHg bioaccumulation in marine fish from the South China Sea. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Rare parasitic copepods (Siphonostomatoida: Lernanthropidae) from Egyptian Red Sea fishes.

    Science.gov (United States)

    El-Rashidy, Hoda Hassan; Boxshall, Geoffrey Allan

    2016-10-01

    Two rare species of parasitic copepods belonging to the genus Lernanthropus de Blainville, 1822 (Siphonostomatoida: Lernanthropidae) are redescribed in detail, based on material collected from Red Sea fishes, caught at El-Tor, near Sharm El-Sheikh on the Red Sea coast of Egypt. Adult females of Lernanthropus sanguineus Song & Chen, 1976 were found on the gills of snapper Lutjanus fulviflamma (Forsskål). This species was known only from its original description based on material from Chinese waters. Adult females of Lernanthropus triangularis Pillai, 1963 were obtained from the gills of mojarra Gerres oyena (Forsskål). Both parasite species are new records for Egyptian Red Sea waters and both host records are new.

  3. Systems analysis for disposal of radioactive wastes in deep sea bottom

    International Nuclear Information System (INIS)

    Karpf, A.D.

    1988-12-01

    Part I of the report outlines substantial fundamentals and results that impart sufficient knowledge to understand the resepctive calculations, the influence of essential parameters and to allow unambiguous conclusions as regards the potential riks of a repository in the deep sea bottom. In addition, significant features of the developed programme are described and an overview of international cooperation in this field is given. The more detailed parts II and III deal with the actual repository in the sea sediment layer and its sea biosphere, respectively. (orig./DG) [de

  4. Ecological role of bluefin tuna (Thunnus thynnus) fish farms for associated wild fish assemblages in the Mediterranean Sea.

    Science.gov (United States)

    Stagličić, Nika; Šegvić-Bubić, Tanja; Ugarković, Pero; Talijančić, Igor; Žužul, Iva; Tičina, Vjekoslav; Grubišić, Leon

    2017-12-01

    The ecological effects of tuna fish farms are largely undocumented. This study confirmed their high capacity to attract surrounding wild fish. The aggregation effect persisted year round, without detectable seasonal differences. Farm impact was restricted to close proximity of the sea cages, and was more prominent over the bottom than in the water column strata. Tuna fish farms proved to be high energy trophic resources, as indicated by the enhanced fitness status of two focal species, bogue and seabream. Under abundant food supply, seabream appear to allocate the majority of energy reserves to gonad development. Farm associated bogue had greater parasite loads, with no detrimental effect on fitness status. Overall, tuna fish farms can be regarded as population sources for aggregated wild fish, and under the no fishing conditions within the leasehold areas, can serve as functional marine protected areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 76 FR 60379 - Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab; Amendment 3

    Science.gov (United States)

    2011-09-29

    .... 100903433-1531-02] RIN 0648-BA22 Fisheries of the Northeastern United States; Atlantic Deep-Sea Red Crab... approved in Amendment 3 to the Atlantic Deep-Sea Red Crab Fishery Management Plan (FMP). The New England... ABC control rule.'' The NS1 guidelines further state that ``ABC may not exceed OFL,'' and that ``the...

  6. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    NARCIS (Netherlands)

    Tamburini, C.; Canals, M.; de Madron, X.D.; Houpert, L.; Lefevre, D.; Martini, V.; D'Ortenzio, F.; Robert, A.; Testor, P.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.L.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, P.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, H.Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.N.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, V.G.; Salesa, F.; Sanchez-Losa, A.; Sapienza, P.; Schock, F.; Schuller, J.P.; Schussler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.G.F.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June

  7. Toxic Marine Puffer Fish in Thailand Seas and Tetrodotoxin They Contained

    Directory of Open Access Journals (Sweden)

    Hisao Kurazono

    2011-10-01

    Full Text Available A total of 155 puffers caught from two of Thailand’s seas, the Gulf of Siam and the Andaman seas, during April to July 2010 were included in this study. Among 125 puffers from the Gulf of Siam, 18 were Lagocephalus lunaris and 107 were L. spadiceus which were the same two species found previously in 2000–2001. Thirty puffers were collected from the Andaman seas, 28 Tetraodon nigroviridis and two juvenile Arothron reticularis; the two new species totally replaced the nine species found previously in 1992–1993. Conventional mouse bioassay was used to determine the toxicity in all fish tissue extracts, i.e., liver, reproductive tissue, digestive tissue and muscle. One of each of the species L. lunaris and L. spadiceus (5.56 and 0.93%, respectively were toxic. All 28 T. nigroviridis and 2 A. reticularis (100% from the Andaman seas were toxic. The toxicity scores in T. nigroviridis tissues were much higher than in the respective tissues of the other three fish species. Liquid chromatography/tandem mass spectrometry (LC-MS/MS revealed that the main toxic principle was tetrodotoxin (TTX. This study is the first to report TTX in L. spadiceus. Our findings raised a concern for people, not only Thais but also inhabitants of other countries situated on the Andaman coast; consuming puffers of the Andaman seas is risky due to potential TTX intoxication.

  8. The secret to successful deep-sea invasion: does low temperature hold the key?

    Directory of Open Access Journals (Sweden)

    Kathryn E Smith

    Full Text Available There is a general consensus that today's deep-sea biodiversity has largely resulted from recurrent invasions and speciations occurring through homogenous waters during periods of the Phanerozoic eon. Migrations likely continue today, primarily via isothermal water columns, such as those typical of Polar Regions, but the necessary ecological and physiological adaptations behind them are poorly understood. In an evolutionary context, understanding the adaptations, which allow for colonisation to high-pressure environments, may enable us to predict future events. In this investigation, we examine pressure tolerance during development, in the shallow-water neogastropod Buccinum undatum using thermally acclimated egg masses from temperate and sub-polar regions across the species range. Fossil records indicate neogastropods to have a deep-water origin, suggesting shallow-water species may be likely candidates for re-emergence into the deep sea. Our results show population level differences in physiological thresholds, which indicate low temperature acclimation to increase pressure tolerance. These findings imply this species is capable of deep-sea penetration through isothermal water columns prevailing at high latitudes. This study gives new insight into the fundamentals behind past and future colonisation events. Such knowledge is instrumental to understand better how changes in climate envelopes affect the distribution and radiation of species along latitudinal as well as bathymetric temperature gradients.

  9. Postcolonial partnerships: deep sea research, media coverage and (inter)national narratives on the Galathea Deep Sea Expedition from 1950 to 1952.

    Science.gov (United States)

    Nielsen, Kristian Hvidtfelt

    2010-03-01

    The Danish Galathea Deep Sea Expedition between 1950 and 1952 combined scientific and official objectives with the production of national and international narratives distributed through the daily press and other media. Dispatched by the Danish government on a newly acquired naval ship, the expedition undertook groundbreaking deep sea research while also devoting efforts to showing the flag, public communication of science, and international cooperation. The expedition was conceived after the war as a way in which to rehabilitate Denmark's reputation internationally and to rebuild national pride. To this end, the expedition included an onboard press section reporting the expedition to the Danish public and to an international audience. The press section mediated the favourable, post-war and postcolonial image of Denmark as an internationalist, scientific, modernizing and civilizing nation for which the expedition planners and many others were hoping. The expedition, therefore, was highly relevant to, indeed fed on, the emerging internationalist agenda in Denmark's foreign policy. Bringing out these aspects of the historical context of the expedition, this paper adds important perspectives to our knowledge about the expedition in particular and, more generally, about scientific exploration in the immediate post-war and postcolonial period.

  10. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria.

    Science.gov (United States)

    Pérez-Rodríguez, Ileana; Bolognini, Marie; Ricci, Jessica; Bini, Elisabetta; Vetriani, Costantino

    2015-05-01

    Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.

  11. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  12. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  13. Derived concentration factors for caesium-137 in edible species of North Sea fish

    International Nuclear Information System (INIS)

    Steele, A.K.

    1990-01-01

    Concentration factor (CF=Bq kg -1 fillet/Bg kg -1 filtered sea water) values for 137 Cs in fillets of cod (Gadus morhua), haddock (Merlanogrammus aeglefinus), plaice (Pleuronectes platessa) and whiting (Merlangius merlangius), were derived from fish and filtered seawater concentrations. Samples were collected in twelve sampling boxes in the North Sea over an eight-year period - 1978-1985. The range of results with species, between species, and between surveys are discussed. Mean CF values of 92, 58, 39 and 150 were found in cod, haddock, plaice and whiting respectively. These support the International Atomic Energy Authority recommended CF value of 100 for fish in generalised dose assessments. (author)

  14. Deep and intermediate mediterranean water in the western Alboran Sea

    Science.gov (United States)

    Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.

    1986-01-01

    Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.

  15. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea.

    Science.gov (United States)

    Yu, Tiantian; Li, Meng; Niu, Mingyang; Fan, Xibei; Liang, Wenyue; Wang, Fengping

    2018-01-01

    In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.

  16. Experimental studies on the geochemical behaviour of 54-Mn considering coastal and deep sea sediments

    International Nuclear Information System (INIS)

    Guegueniat, P.; Boust, D.; Aprosi, G.

    1986-01-01

    In order to study the geochemical behaviour of 54-Mn in the marine environment (Mn 2+ ) 200 sediments gathered in deep sea and in coastal waters were contaminated experimentally. To correlate the various results, the oxidation processes occuring with or without sediments should be specified. Without sediments, in 'blanks', the deposition rate of 54-Mn on the walls brings into play oxidation developing approximately according to a single order linear function. Consequently, it is characterized by a half-life (time for half 54-Mn to be retained) very similar to a residence time (Tsub(R)). In our water samples, Tsub(R) ranged from 12 to 150 days. (author)

  17. Deep-Diving California Sea Lions: Are They Pushing Their Physiological Limit

    Science.gov (United States)

    2015-09-30

    highly variable. Venous oxygen content can actually increase during short duration dives. This suggests very little muscle blood flow and evven the use...the sea lion, the emperor penguin (Aptenodytes forsteri), another animal that dives on inspiration with a large respiratory O2 store, also can...in deep-diving emperor penguins (Wright et al. 2014), and in deep-diving bottlenose dolphins (Tursiops truncatus), which also dive on inspiration

  18. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    KAUST Repository

    DiBattista, Joseph; Coker, Darren James; Sinclair-Taylor, Tane; Stat, Michael; Berumen, Michael L.; Bunce, Michael

    2017-01-01

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  19. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    Science.gov (United States)

    DiBattista, Joseph D.; Coker, Darren J.; Sinclair-Taylor, Tane H.; Stat, Michael; Berumen, Michael L.; Bunce, Michael

    2017-12-01

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  20. Assessing the utility of eDNA as a tool to survey reef-fish communities in the Red Sea

    KAUST Repository

    DiBattista, Joseph D.

    2017-08-23

    Relatively small volumes of water may contain sufficient environmental DNA (eDNA) to detect target aquatic organisms via genetic sequencing. We therefore assessed the utility of eDNA to document the diversity of coral reef fishes in the central Red Sea. DNA from seawater samples was extracted, amplified using fish-specific 16S mitochondrial DNA primers, and sequenced using a metabarcoding workflow. DNA sequences were assigned to taxa using available genetic repositories or custom genetic databases generated from reference fishes. Our approach revealed a diversity of conspicuous, cryptobenthic, and commercially relevant reef fish at the genus level, with select genera in the family Labridae over-represented. Our approach, however, failed to capture a significant fraction of the fish fauna known to inhabit the Red Sea, which we attribute to limited spatial sampling, amplification stochasticity, and an apparent lack of sequencing depth. Given an increase in fish species descriptions, completeness of taxonomic checklists, and improvement in species-level assignment with custom genetic databases as shown here, we suggest that the Red Sea region may be ideal for further testing of the eDNA approach.

  1. The development of radioactive contamination of the North Sea fish and in the lower course of the rivers Elbe and Weser

    International Nuclear Information System (INIS)

    Feldt, W.; Kanisch, G.

    1985-01-01

    The discharge of radioactive waste water from radwaste treatment plants in England and in France has led to an increase in contamination of North Sea fish. In 1982, following water measurements, fish were caught in many places in the North Sea. The comparison similar measurements carried out in 1965 proves that in 1982 the contamination of North Sea fish with Cs-137 had increased by a factor of about 3. Subsequent developments of contamination of several kind of fish until 1984 are shown and the radiation exposure of the population from eating shrimps, mussels and fish is estimated. The radionuclides Cs-137, Ru-106 and Co-60 can be used to show to what extent the lower course of the rivers Elbe and Weser are affected by North Sea contamination, in particular by discharges from La Hague. (orig./HP) [de

  2. Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean

    Science.gov (United States)

    Coscia, Ilaria; Castilho, Rita; Massa-Gallucci, Alexia; Sacchi, Carlotta; Cunha, Regina L.; Stefanni, Sergio; Helyar, Sarah J.; Knutsen, Halvor; Mariani, Stefano

    2018-02-01

    Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean.

  3. Volcanism and Tectonics of the Central Deep Basin, Sea of Japan

    Science.gov (United States)

    Lelikov, E. P.; Emelyanova, T. A.; Pugachev, A. A.

    2018-01-01

    The paper presents the results of a study on the geomorphic structure, tectonic setting, and volcanism of the volcanoes and volcanic ridges in the deep Central Basin of the Sea of Japan. The ridges rise 500-600 m above the acoustic basement of the basin. These ridges were formed on fragments of thinned continental crust along deep faults submeridionally crossing the Central Basin and the adjacent continental part of the Primorye. The morphostructures of the basin began to submerge below sea level in the Middle Miocene and reached their contemporary positions in the Pliocene. Volcanism in the Central Basin occurred mostly in the Middle Miocene-Pliocene and formed marginal-sea basaltoids with OIB (ocean island basalt) geochemical signatures indicating the lower-mantle plume origin of these rocks. The OIB signatures of basaltoids tend to be expressed better in the eastern part of the Central Basin, where juvenile oceanic crust has developed. The genesis of this crust is probably related to rising and melting of the Pacific superplume apophyse.

  4. Status and perspectives of fish industry of Azerbaijan in conditions of increased oil and gas extraction in the Caspian Sea

    International Nuclear Information System (INIS)

    Gadjiev, R.V; Kasimov, R.Yu; Akhundov, M.M; Karaev, A.I.

    2002-01-01

    Full text:The Caspian Sea plays important role in supply of the population of Azerbaijan Republic with fish products. Furthermore, the Caspian Sea is the single pond where more than 70% of sturgeons are harvested all over the world. Besides, more than 80% of the big bony fishes harvested in the ponds of Azerbaijan, are caught in the Caspian Sea. On the other hand, the entrails of the Caspian Sea contain tremendous amounts of oil and gas deposits whose extraction disturbs partially the ecological equilibrium in this unique pond. It should be noticed that since 1973-1974 the increase of sturgeon harvest was observed. The special scientific Institute of Fish Industry in Astrakhan city with its branch in Azerbaijan was founded. In the same years top amount of oil was extracted in the Caspian Sea and simultaneously high pollution level of the sea with oil and oil products, having been clearly seen in the Sea-attached Boulevard, was fixed. However, in spite of these unfavorable conditions, the sturgeon harvests, due to their reproduction in the hatcheries and following release into the sea, increased not only in Azerbaijan, but also all over the whole Caspian Sea basin. It is impossible to keep serenity today owing to the fact that broadening of oil extraction in the Caspian Sea for new deposits are situated near to the fattening areas of juveniles of valuable fish species, in the estuary of the Kura river and other small rivers where sex-mature fishes migrate. Besides, the migration ways of sturgeons the North origin pass through these zones: in autumn- from the North to the South, while in early and middle spring- in opposite direction

  5. Polonium-210 in mussels and fish from the Baltic-North Sea estuary

    DEFF Research Database (Denmark)

    Dahlgaard, H.

    1996-01-01

    Polonium-210 has been measured in Danish fish meat caught in the North Sea, the Kattegat and the Baltic in 1991-1994. Average values of 0.35, 0.65 and 0.96 Bq Po-210 kg(-1) fresh weight were observed for cod, herring and plaice fillets, respectively. The difference between species is statistically...... in fish and mussels may represent a natural baseline. Copyright (C) 1996 Elsevier Science Ltd....

  6. Prey selection by North Sea herring (Clupea harengus) with special reference to fish eggs

    NARCIS (Netherlands)

    Segers, F.H.I.D.; Dickey-Collas, M.; Rijnsdorp, A.D.

    2007-01-01

    The herring stock in the North Sea in recent years has recovered to a relatively high biomass, and here we investigate prey selection of individual North Sea herring when population numbers are high. The diet composition, and specifically pelagic fish eggs, was investigated in February 2004. Samples

  7. Diversity, distribution and nature of faunal associations with deep-sea pennatulacean corals in the Northwest Atlantic.

    Directory of Open Access Journals (Sweden)

    Sandrine Baillon

    Full Text Available Anthoptilum grandiflorum and Halipteris finmarchica are two deep-sea corals (Octocorallia: Pennatulacea common on soft bottoms in the North Atlantic where they are believed to act as biogenic habitat. The former also has a worldwide distribution. To assist conservation efforts, this study examines spatial and temporal patterns in the abundance, diversity, and nature of their faunal associates. A total of 14 species were found on A. grandiflorum and 6 species on H. finmarchica during a multi-year and multi-site sampling campaign in eastern Canada. Among those, 7 and 5 species, respectively, were attached to the sea pens and categorized as close associates or symbionts. Rarefaction analyses suggest that the most common associates of both sea pens have been sampled. Biodiversity associated with each sea pen is analyzed according to season, depth and region using either close associates or the broader collection of species. Associated biodiversity generally increases from northern to southern locations and does not vary with depth (∼ 100-1400 m. Seasonal patterns in A. grandiflorum show higher biodiversity during spring/summer due to the transient presence of early life stages of fishes and shrimps whereas it peaks in fall for H. finmarchica. Two distinct endoparasitic species of highly modified copepods (families Lamippidae and Corallovexiidae commonly occur in the polyps of A. grandiflorum and H. finmarchica, and a commensal sea anemone frequently associates with H. finmarchica. Stable isotope analyses (δ(13C and δ(15N reveal potential trophic interactions between the parasites and their hosts. Overall, the diversity of obligate/permanent associates of sea pens is moderate; however the presence of mobile/transient associates highlights an ecological role that has yet to be fully elucidated and supports their key contribution to the enhancement of biodiversity in the Northwest Atlantic.

  8. Do larval supply and recruitment vary among chemosynthetic environments of the deep sea?

    Directory of Open Access Journals (Sweden)

    Anna Metaxas

    Full Text Available BACKGROUND: The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. METHODOLOGY/PRINCIPAL FINDINGS: WE USE DATA FROM THE PUBLISHED SCIENTIFIC LITERATURE TO: (1 compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2 explore factors that affect these life history processes, when information is available; and (3 explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm(-2 d(-1 across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood

  9. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    Science.gov (United States)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive

  10. Ship Track for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the Ronald H. Brown during the "Deep Sea Medicines 2003: Exploring the Gulf of Mexico" expedition sponsored by the National Oceanic and Atmospheric...

  11. Deep diving odontocetes foraging strategies and their prey field as determined by acoustic techniques

    Science.gov (United States)

    Giorli, Giacomo

    Deep diving odontocetes, like sperm whales, beaked whales, Risso's dolphins, and pilot whales are known to forage at deep depths in the ocean on squid and fish. These marine mammal species are top predators and for this reason are very important for the ecosystems they live in, since they can affect prey populations and control food web dynamics through top-down effects. The studies presented in this thesis investigate deep diving odontocetes. foraging strategies, and the density and size of their potential prey in the deep ocean using passive and active acoustic techniques. Ecological Acoustic Recorders (EAR) were used to monitor the foraging activity of deep diving odontocetes at three locations around the world: the Josephine Seamount High Sea Marine Protected Area (JHSMPA), the Ligurian Sea, and along the Kona coast of the island of Hawaii. In the JHSMPA, sperm whales. and beaked whales. foraging rates do not differ between night-time and day-time. However, in the Ligurian Sea, sperm whales switch to night-time foraging as the winter approaches, while beaked whales alternate between hunting mainly at night, and both at night and at day. Spatial differences were found in deep diving odontocetes. foraging activity in Hawaii where they forage most in areas with higher chlorophyll concentrations. Pilot whales (and false killer whales, clustered together in the category "blackfishes") and Risso's dolphins forage mainly at night at all locations. These two species adjust their foraging activity with the length of the night. The density and size of animals living in deep sea scattering layers was studied using a DIDSON imaging sonar at multiple stations along the Kona coast of Hawaii. The density of animals was affected by location, depth, month, and the time of day. The size of animals was influenced by station and month. The DIDSON proved to be a successful, non-invasive technique to study density and size of animals in the deep sea. Densities were found to be an

  12. California sea lion interactions with commercial passenger fishing vessel fisheries: a review of log book data from 1994, 1995, and 1996.

    OpenAIRE

    Fluharty, Marilyn J.

    1992-01-01

    Commercial Passenger Fishing Vessel (CPFV) logs were analyzed to determine the degree of sea lion interactions in the CPFV fishery. From 1994 to 1996, sea lions depredated over 152,000 fish representing more than 40 different species. Although the depredation total seems high, it is still less than 10% of the fish caught by anglers. In southern California, sea lions primarily depredated California barracuda and mackerels, while in central and northern California, they depredated salmonids. De...

  13. Shifts in North Sea forage fish productivity and potential fisheries yield

    NARCIS (Netherlands)

    Clausen, Lotte W.; Rindorf, Anna; Deurs, van Mikael; Dickey-Collas, Mark; Hintzen, Niels T.

    2018-01-01

    1. Forage fish populations support large scale fisheries and are key components of marine ecosystems across the world, linking secondary production to higher trophic levels. While climate-induced changes in the North Sea zooplankton community are described and documented in literature, the

  14. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  15. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Directory of Open Access Journals (Sweden)

    Niels Jobstvogt

    Full Text Available Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  16. Phosphate solubilizing bacteria: Comparison between coastal and deep sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Biche, S.; Pandey, S.; Gonsalves, M.J.B.D.; Das, A.; Mascarenhas-Pereira, M.B.L.; LokaBharathi, P.A.

    in the CIB sediments (r=0.59) than in the coastal sediments (r= 0.22). It is apparent that the enzyme activity in the coastal sediments could be more for P mobilization and in the oligotrophic deep sea it could be both for P and C mobilization....

  17. Biological responses to disturbance from simulated deep-sea polymetallic nodulemining

    NARCIS (Netherlands)

    Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.M.; Martinez Arbizu, P.; Radziejewska, T.; Singh, R.; Ingole, B.; Stratmann, T.; Simon-Lledó, E.; Durden, J.M.; Clack, M.R.

    2017-01-01

    Commercial-scale mining for polymetallic nodules could have a major impact on the deepseaenvironment, but the effects of these mining activities on deep-sea ecosystems are verypoorly known. The first commercial test mining for polymetallic nodules was carried out in1970. Since then a number of

  18. Turbidites and Benthic Faunal Succession in the Deep Sea: An Ecological Paradox

    National Research Council Canada - National Science Library

    Young, David

    2001-01-01

    Characteristics of benthic faunal succession following turbidity flows in the deep sea will vary according to the composition of turbidite materials, the spatial scales of deposition, the structure...

  19. Syllidae (Annelida: Phyllodocida) from the deep Mediterranean Sea, with the description of three new species.

    Science.gov (United States)

    Langeneck, Joachim; Musco, Luigi; Busoni, Giulio; Conese, Ilaria; Aliani, Stefano; Castelli, Alberto

    2018-01-03

    Despite almost two centuries of research, the diversity of Mediterranean deep-sea environments remain still largely unexplored. This is particularly true for the polychaete family Syllidae. We report herein 14 species; among them, we describe Erinaceusyllis barbarae n. sp., Exogone sophiae n. sp. and Prosphaerosyllis danovaroi n. sp. and report Parexogone wolfi San Martín, 1991, Exogone lopezi San Martín, Ceberio Aguirrezabalaga, 1996 and Anguillosyllis Day, 1963 for the first time from the Western Mediterranean, the latter based on a single individual likely belonging to an undescribed species. Moreover, we re-establish Syllis profunda Cognetti, 1955 based on type and new material. Present data, along with a critical analysis of available literature, show that Syllidae are highly diverse in deep Mediterranean environments, even though they are rarely reported, probably due to the scarce number of studies devoted to the size-fraction of benthos including deep-sea syllids. Most deep-sea Syllidae have wide distributions, which do not include shallow-waters. 100 m depth apparently represents the boundary between the assemblages dominated by generalist shallow water syllids like Exogone naidina Ørsted, 1843 and Syllis parapari San Martín López, 2000, and those deep-water assemblages characterised by strictly deep-water species like Parexogone campoyi San Martín, Ceberio Aguirrezabalaga, 1996, Parexogone wolfi San Martín, 1991 and Syllis sp. 1 (= Langerhansia caeca Katzmann, 1973).

  20. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    Science.gov (United States)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  1. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    Science.gov (United States)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  2. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: Literature review and own experiments

    Science.gov (United States)

    Živaljić, Suzana; Schoenle, Alexandra; Nitsche, Frank; Hohlfeld, Manon; Piechocki, Julia; Reif, Farina; Shumo, Marwa; Weiss, Alexandra; Werner, Jennifer; Witt, Madeleine; Voss, Janine; Arndt, Hartmut

    2018-02-01

    Although the abyssal seafloor represents the most common benthic environment on Earth, eukaryotic microbial life at abyssal depths is still an uncharted territory. This is in striking contrast to their potential importance regarding the material flux and bacteria consumption in the deep sea. Flagellate genotypes determined from sedimentary DNA deep-sea samples might originate from vital deep-sea populations or from cysts of organisms sedimented down from surface waters. The latter one may have never been active under deep-sea conditions. We wanted to analyze the principal ability of cultivable heterotrophic flagellates of different phylogenetic groups (choanoflagellates, ancyromonads, euglenids, kinetoplastids, bicosoecids, chrysomonads, and cercozoans) to survive exposure to high hydrostatic pressure (up to 670 bar). We summarized our own studies and the few available data from literature on pressure tolerances of flagellates isolated from different marine habitats. Our results demonstrated that many different flagellate species isolated from the surface waters and deep-sea sediments survived drastic changes in hydrostatic pressure. Barophilic behavior was also recorded for several species isolated from the deep sea indicating their possible genetic adaptation to high pressures. This is in accordance with records of heterotrophic flagellates present in environmental DNA surveys based on clone libraries established for deep-sea environments.

  3. Occurrence and Biological Fate of Persistent Organic Contaminants in Yellow Sea Fish

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2010-01-01

    Full Text Available Persistent Organic Pollutants (POPs, namely, Polychlorinated biphenyls (PCBs, DDTs, HCHs, HCB, aldrin, endrin, dieldrin, endosulfan, heptachlors, mirex and chlordane compounds were investigated in muscle and liver tissues of Yellow Sea croakers (Collichthys niveatus and Pseudosciaena crocea from 16 stations on the off shore waters of South Korea within the Yellow Sea Large Marine Ecosystem (YSLME. The sum concentration (minimum-maximum - ng/g lipid wt. was: PCBs: non-detectable to 21; Pesticides non-detectable to 63. Among the 26 individual pesticide compounds measured in fishes, except 1,2,4,5-tetrachlorobenzene (TCBZ, all the other compounds were determined in almost in all samples. The levels in Yellow Sea croakers were similar to levels reported in the Baltic fish. The differential ratios of isomers/congeners in biota in comparison to the original commercial mixtures suggest possible metabolism by cytochrome P450 isozymes. The induction of such drug metabolizing enzymes suggests an ecotoxicological stress. Principle Component Analysis identifies ‘hot spots’ within the sampled area including the Korean off shore sewage dumpsite.

  4. Iron oxide reduction in methane-rich deep Baltic Sea sediments

    DEFF Research Database (Denmark)

    Egger, Matthias; Hagens, Mathilde; Sapart, Celia J.

    2017-01-01

    /L transition. Our results reveal a complex interplay between production, oxidation and transport of methane showing that besides organoclastic Fe reduction, oxidation of downward migrating methane with Fe oxides may also explain the elevated concentrations of dissolved ferrous Fe in deep Baltic Sea sediments...... profiles and numerical modeling, we propose that a potential coupling between Fe oxide reduction and methane oxidation likely affects deep Fe cycling and related biogeochemical processes, such as burial of phosphorus, in systems subject to changes in organic matter loading or bottom water salinity....

  5. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    Science.gov (United States)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  6. Ceramic Spheres—A Novel Solution to Deep Sea Buoyancy Modules

    Science.gov (United States)

    Jiang, Bo; Blugan, Gurdial; Sturzenegger, Philip N.; Gonzenbach, Urs T.; Misson, Michael; Thornberry, John; Stenerud, Runar; Cartlidge, David; Kuebler, Jakob

    2016-01-01

    Ceramic-based hollow spheres are considered a great driving force for many applications such as offshore buoyancy modules due to their large diameter to wall thickness ratio and uniform wall thickness geometric features. We have developed such thin-walled hollow spheres made of alumina using slip casting and sintering processes. A diameter as large as 50 mm with a wall thickness of 0.5–1.0 mm has been successfully achieved in these spheres. Their material and structural properties were examined by a series of characterization tools. Particularly, the feasibility of these spheres was investigated with respect to its application for deep sea (>3000 m) buoyancy modules. These spheres, sintered at 1600 °C and with 1.0 mm of wall thickness, have achieved buoyancy of more than 54%. As the sphere’s wall thickness was reduced (e.g., 0.5 mm), their buoyancy reached 72%. The mechanical performance of such spheres has shown a hydrostatic failure pressure above 150 MPa, corresponding to a rating depth below sea level of 5000 m considering a safety factor of 3. The developed alumina-based ceramic spheres are feasible for low cost and scaled-up production and show great potential at depths greater than those achievable by the current deep-sea buoyancy module technologies. PMID:28773651

  7. Microplastic in the gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast

    KAUST Repository

    Baalkhuyur, Fadiyah M.

    2018-04-24

    This study assesses the presence of microplastic litter in the contents of the gastrointestinal tract of 26 commercial and non-commercial fish species from four difference habitats sampled along the Saudi Arabian coast of the Red Sea. A total of 178 individual were examined for microplastics. In total, 26 microplastic fragments were found. Of these, 16 being films (61.5%) and 10 being fishing thread (38.5%). FTIR analysis revealed that the most abundant polymers were polypropylene and polyethylene. The grouper (Epinephelus spp.) sampled at Jazan registered the highest number of ingested microplastics. This fish species is benthic and feeds on benthic invertebrates. Although differences in the abundance of microplastic ingestion among species were not statistically significant, a significant change was observed when the level of ingestion of microplastics particles was compared among the habitats. The higher abundance of microplastics particles may be related to the habitats of fish and the presence of microplastics debris near the seabed. The results of this study represent a first evidence that microplastic pollution represents an emerging threat to Red Sea fishes, their food web and human consumers.

  8. Sedimentologic and volcanologic investigation of the deep tyrrhenian sea: preliminary result of cruise VST02

    Directory of Open Access Journals (Sweden)

    A. Bertagnini

    2006-06-01

    Full Text Available The VST02 cruise carried out in the summer of 2002 was focused at sedimentologic and volcanologic researches over selected areas of the deep portion of the Tyrrhenian sea. Chirp lines and seafloor samples were collected from the Calabrian slope surrounding Stromboli island, in the Marsili deep sea fan, in the Vavilov basin and in the Vavilov seamount. Submarine volcanic activity, both explosive and effusive, is occuring in the Stromboli edifice. Explosive submarine volcanism affects also the shallowest areas of the Vavilov seamount. Submarine carbonate lithification has been observed on the sediment-starved flanks of the Vavilov seamount. Acoustic transparent layers make up the recentmost infill of the Gortani basin, the easternmost portion of the Vavilov basin. Channels comprised of a variety of architectural elements and depositional lobes are the main elements of the Marsili deep-sea fan where, apparently, sedimentation occurs mainly through debris flow processes.

  9. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    International Nuclear Information System (INIS)

    McCulloch, Malcolm; Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro; Montagna, Paolo; Mortimer, Graham

    2010-01-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short (∼ 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had Δ 14 C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 ± 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had Δ 14 C values falling significantly below the marine curve. Using a refined approach, isolation ages (T isol ) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low Δ 14 C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at ∼ 10, 900 years BP, with many of the coral-bearing mounds on the continental slopes being draped in

  10. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Malcolm [ARC Centre of Excellence for Coral Reef Studies, School of Earth and Environment, The University of Western Australian, Crawley, 6009, Western Australia (Australia); Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia); Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro [ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Montagna, Paolo [LSCE, Av. de la Terrasse, 91198 Gif-sur-Yvette, France, ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Mortimer, Graham [Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia)

    2010-07-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short ({approx} 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had {Delta}{sup 14}C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 {+-} 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had {Delta}{sup 14}C values falling significantly below the marine curve. Using a refined approach, isolation ages (T{sub isol}) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low {Delta}{sup 14}C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at {approx} 10, 900 years BP, with many of the coral-bearing mounds

  11. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    Science.gov (United States)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  12. Concentrations of heavy metals in marine wild fishes captured from the southern sea of Korea and associated health risk assessments

    Science.gov (United States)

    Hwang, Dong-Woon; Kim, Seong-Soo; Kim, Seong-Gil; Kim, Dong-Sun; Kim, Tae-Hoon

    2017-12-01

    Concentrations of heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) were determined in edible parts (muscle) of 34 marine wild fish caught from the southern sea of Korea in 2007 and 2008 in order to understand the accumulation pattern of heavy metals in wild fish and to assess the potential health risk posed by fish consumption. The highest concentrations in the muscle of 17 pelagic and 17 demersal fishes were Zn and As, respectively, while the lowest concentration in both fishes was Cd. The mean concentrations of all metals except As in wild fish were much lower than the regulatory limits for fish and fishery products applied in a number of countries. Unlike other metals, As concentration in wild fish of this study region was relatively higher than that found in other country. Estimated daily intake (EDI) of the metals was in the range of 0.05% to 22.5% of the provisional maximum tolerable daily intakes (PMTDI). Similarly, the target hazard quotient (THQ) was below 1.0 for each metal. These results imply that the consumption of the investigated wild fish do not cause significant adverse health effects.

  13. Frequency of Microplastics in Mesopelagic Fishes from the Northwest Atlantic

    Directory of Open Access Journals (Sweden)

    Alina M. Wieczorek

    2018-02-01

    Full Text Available Microplastics are a ubiquitous pollutant in our seas today and are known to have detrimental effects on a variety of organisms. Over the past decade numerous studies have documented microplastic ingestion by marine species with more recent investigations focussing on the secondary impacts of microplastic ingestion on ecosystem processes. However, few studies so far have examined microplastic ingestion by mesopelagic fish which are one of the most abundant pelagic groups in our oceans and through their vertical migrations are known to contribute significantly to the rapid transport of carbon and nutrients to the deep sea. Therefore, any ingestion of microplastics by mesopelagic fish may adversely affect this cycling and may aid in transport of microplastics from surface waters to the deep-sea benthos. In this study microplastics were extracted from mesopelagic fish under forensic conditions and analysed for polymer type utilising micro-Fourier Transform Infrared Spectroscopy (micro-FTIR analysis. Fish specimens were collected from depth (300–600 m in a warm-core eddy located in the Northwest Atlantic, 1,200 km due east of Newfoundland during April and May 2015. In total, 233 fish gut contents from seven different species of mesopelagic fish were examined. An alkaline dissolution of organic materials from extracted stomach contents was performed and the solution filtered over a 0.7 μm borosilicate filter. Filters were examined for microplastics and a subsample originating from 35 fish was further analysed for polymer type through micro-FTIR analysis. Seventy-three percent of all fish contained plastics in their gut contents with Gonostoma denudatum having the highest ingestion rate (100% followed by Serrivomer beanii (93% and Lampanyctus macdonaldi (75%. Overall, we found a much higher occurrence of microplastic fragments, mainly polyethylene fibres, in the gut contents of mesopelagic fish than previously reported. Stomach fullness, species and

  14. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge

    OpenAIRE

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-01-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched w...

  15. Decline of the North Sea houting: protective measures for an endangered anadromous fish

    DEFF Research Database (Denmark)

    Jepsen, Niels; Deacon, Michael; Koed, Anders

    2012-01-01

    Once an abundant fish species in the rivers of the Wadden Sea in northwest Europe, the North Sea houting Coregonus oxyrinchus (NSH) was at the brink of extinction 25 yr ago. The very last stronghold for this species was in the small Danish River Vidaa. In an attempt to preserve this anadromous...... whitefish species, juveniles were hatchery-reared and stocked in 6 Danish rivers flowing into the Wadden Sea. These stocking efforts were fairly successful, and the houting established populations in at least 2 of the rivers, but the underlying problem of habitat degradation and migration obstacles...... they reach sexual maturity, NSH grow relatively slowly (mean: 2.55 cm yr−1, ranging from 0 to 13.8 cm yr−1) and can reach an age of 10 to 12 yr. The number of repeated recaptures year after year indicates low mortality for adult fish. Six individuals were recaptured in rivers other than the one in which...

  16. Long-term viability of carbon sequestration in deep-sea sediments

    Science.gov (United States)

    Teng, Y.; Zhang, D.

    2017-12-01

    Sequestration of carbon dioxide in deep-sea sediments has been proposed for the long-term storage of anthropogenic CO2, due to the negative buoyancy effect and hydrate formation under conditions of high pressure and low temperature. However, the multi-physics process of injection and post-injection fate of CO2 and the feasibility of sub-seabed disposal of CO2 under different geological and operational conditions have not been well studied. On the basis of a detailed study of the coupled processes, we investigate whether storing CO2 into deep-sea sediments is viable, efficient, and secure over the long term. Also studied are the evolution of the multiphase and multicomponent flow and the impact of hydrate formation on storage efficiency during the upward migration of the injected CO2. It is shown that low buoyancy and high viscosity slow down the ascending plume and the forming of the hydrate cap effectively reduces the permeability and finally becomes an impermeable seal, thus limiting the movement of CO2 towards the seafloor. Different flow patterns at varied time scales are identified through analyzing the mass distribution of CO2 in different phases over time. Observed is the formation of a fluid inclusion, which mainly consists of liquid CO2 and is encapsulated by an impermeable hydrate film in the diffusion-dominated stage. The trapped liquid CO2 and CO2 hydrate finally dissolve into the pore water through diffusion of the CO2 component. Sensitivity analyses are performed on storage efficiency under variable geological and operational conditions. It is found that under a deep-sea setting, CO2 sequestration in intact marine sediments is generally safe and permanent.

  17. Marine litter in the Nordic Seas: Distribution composition and abundance.

    Science.gov (United States)

    Buhl-Mortensen, Lene; Buhl-Mortensen, Pål

    2017-12-15

    Litter has been found in all marine environments and is accumulating in seabirds and mammals in the Nordic Seas. These ecosystems are under pressure from climatic change and fisheries while the human population is small. The marine landscapes in the area range from shallow fishing banks to deep-sea canyons. We present density, distribution and composition of litter from the first large-scale mapping of sea bed litter in arctic and subarctic waters. Litter was registered from 1778 video transects, of which 27% contained litter. The background density of litter in the Barents Sea and Norwegian Sea is 202 and 279 items/km 2 respectively, and highest densities were found close to coast and in canyons. Most of the litter originated from the fishing industry and plastic was the second most common litter. Background levels were comparable to European records and areas with most littering had higher densities than in Europe. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Clay as indicator of sediment plume movement in deep-sea environment

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    artificially disturbed and resuspended 5 m above the seabed in 1997 during the Indian Deep-Sea Experiment. Initial studies have shown that the clay content during monitoring-1 phase significantly increased compared to post-disturbance, by 15 and 24...

  19. Reconciling the sea level record of the last deglaciation with the δ18O spectra from deep sea cores

    International Nuclear Information System (INIS)

    Bard, Edouard; Columbia Univ., Palisades, NY; Arnold, Maurice; Duplessy, J.-C.

    1991-01-01

    In this paper we use the oxygen isotope record as a transient tracer to study palaeoceanography during the last deglaciation. By using 14 C and 18 O data obtained on four deep sea sediment cores, we show the presence of a measurable lag between the deglacial δ 18 O signal observed in the deep Atlantic and the deep Indo-Pacific oceans. Our study confirms that the major meltwater discharge occurred via the North Atlantic and that the thermohaline circulation was operating during the deglacial transition. (Author)

  20. Sea turtle and artisanal cerco-fixo fishing interactions in Cananéia, south coast of São Paulo

    Directory of Open Access Journals (Sweden)

    Natália Cristina Fidelis Bahia

    2010-01-01

    Full Text Available Sea turtles are reptiles that occur on the Brazilian coast, mainly on nesting and feeding grounds. The consumption of turtle meat and eggs is an ancient habit in many coastal communities around the world. The main dangers that threaten these species are the increase in fishing and the drastic changes in the environment. This study aimed to elucidate the interaction between the artisanal fishermen and the sea turtles in Cananéia, São Paulo state, Brazil. Local fishermen had developed an artisanal trap to fish, the "cerco-fixo", and through interviews and illustrations, as well as by accompanying the fishermen' daily activities, three main aspects were verified: (i the perception of the fishermen about the sea turtles; (ii the identification of species and morphological characteristics of these animals; and (iii a description of the incidental bycatch of sea turtles in these traps. The data indicates that this fishing trap is not harmful to the sea turtles. Location of traps can influence the capture of these animals, particularly those traps placed on rocky shores and other similiar points.

  1. Sea turtle and artisanal cerco-fixo fishing interactions in Cananéia, south coast of São Paulo

    Directory of Open Access Journals (Sweden)

    Natália Cristina Fidelis Bahia

    2010-09-01

    Full Text Available Sea turtles are reptiles that occur on the Brazilian coast, mainly on nesting and feeding grounds. The consumption of turtle meat and eggs is an ancient habit in many coastal communities around the world. The main dangers that threaten these species are the increase in fishing and the drastic changes in the environment. This study aimed to elucidate the interaction between the artisanal fishermen and the sea turtles in Cananéia, São Paulo state, Brazil. Local fishermen had developed an artisanal trap to fish, the “cerco-fixo”, and through interviews and illustrations, as well as by accompanying the fishermen’ daily activities, three main aspects were verified: (i the perception of the fishermen about the sea turtles; (ii the identification of species and morphological characteristics of these animals; and (iii a description of the incidental bycatch of sea turtles in these traps. The data indicates that this fishing trap is not harmful to the sea turtles. Location of traps can influence the capture of these animals, particularly those traps placed on rocky shores and other similiar points.

  2. Magnetically tunable oil droplet lens of deep-sea shrimp

    Science.gov (United States)

    Iwasaka, M.; Hirota, N.; Oba, Y.

    2018-05-01

    In this study, the tunable properties of a bio-lens from a deep-sea shrimp were investigated for the first time using magnetic fields. The skin of the shrimp exhibited a brilliantly colored reflection of incident white light. The light reflecting parts and the oil droplets in the shrimp's skin were observed in a glass slide sample cell using a digital microscope that operated in the bore of two superconducting magnets (maximum strengths of 5 and 13 T). In the ventral skin of the shrimp, which contained many oil droplets, some comparatively large oil droplets (50 to 150 μm in diameter) were present. A distinct response to magnetic fields was found in these large oil droplets. Further, the application of the magnetic fields to the sample cell caused a change in the size of the oil droplets. The phenomena observed in this work indicate that the oil droplets of deep sea shrimp can act as lenses in which the optical focusing can be modified via the application of external magnetic fields. The results of this study will make it possible to fabricate bio-inspired soft optical devices in future.

  3. Occurrence of Ergasilus megaceros Wilson, 1916, in the sea lamprey and other fishes from North America

    Science.gov (United States)

    Muzzall, Patrick M.; Hudson, Patrick L.

    2004-01-01

    Ergasilus megaceros (Copepoda: Ergasilidae) was recovered from the nasal fossae (lamellae) of the olfactory sac in 1 (1.8%) of 56 sea lampreys, Petromyzon marinus Linne, 1758, collected in May 2002 from the Cheboygan River, Michigan. Although the sea lamprey is a new host record for E. megaceros, this fish species may not be a preferred host because of its low prevalence. Ergasilus megaceros is the second ergasilid species reported from the sea lamprey in North America. This is the third report of an ergasilid species infecting the nasal fossae of fishes in North America, with E. rhinos being the only other species reported from this site.

  4. Prevalence of Corynosoma caspicum infection in Gasterosteus aculeatus fish in Caspian Sea, Northern Iran.

    Science.gov (United States)

    Rahimi-Esboei, Bahman; Najm, Mahdi; Shaker, Morad; Fakhar, Mahdi; Mobedi, Iraj

    2017-09-01

    There is little information about the prevalence of Corynosoma caspicum in fish particularly Gasterosteus aculeatus in Iran and the world. The aim of the present study was to find out the prevalence of acanthocephalan infection in Babolsar district, southern coastal of Caspian Sea, Northern Iran. Between September 2012 and August 2014, a total of 360 G. aculeatus fishes were randomly collected by drift nets from coastal regions in Babolsar and then examined the intestine and body cavity for worm infections. A total of 360 G. aculeatus fishes, 109 (30.3%) were found infected with at least one Corynosoma capsicum , and there was no significant association between genders and the prevalence infection of acanthocephalan. Moreover, there was a significant difference in infected rate between summer (79%, 86/109) and spring (21%, 23/109) (paculeatus indicates the enzootic constancy status of the infection in the southern coastal of Caspian Sea, Northern Iran.

  5. ANALYSES OF ORGANIC AND INORGANIC CONTAMINANTS IN SALTON SEA FISH. (R826552)

    Science.gov (United States)

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthul...

  6. Biogeographic Patterns of Reef Fish Communities in the Saudi Arabian Red Sea

    KAUST Repository

    Roberts, May B.

    2014-12-01

    As a region renowned for high biodiversity, endemism and extreme temperature and salinity levels, the Red Sea is of high ecological interest. Despite this, there is relatively little literature on basic broad scale characteristics of the biodiversity or overall reef fish communities and how they change across latitude. We conducted visual transects recording the abundance of over 200 species of fish from 45 reefs spanning over 1000 km of Saudi Arabian coastline and used hierarchical cluster analysis to find that for combined depths from 0m-10m across this geographical range, the reef fish communities are relatively similar. However we find some interesting patterns both at the community level across depth and latitude as well as in endemic community distributions. We find that the communities, much like the environmental factors, shift gradually along latitude but do not show distinct clusters within the range we surveyed (from Al-Wajh in the north to the Farasan Banks in the south). Numbers of endemic species tend to be higher in the Thuwal region and further south. This type of baseline data on reef fish distribution and possible factors that may influence their ranges in the Red Sea are critical for future scientific studies as well as effective monitoring and in the face of the persistent anthropogenic influences such as coastal development, overfishing and climate change.

  7. 77 FR 28305 - Temporary Rule To Delay Start Date of 2012-2013 South Atlantic Black Sea Bass Commercial Fishing...

    Science.gov (United States)

    2012-05-14

    .... 120501426-2426-01] RIN 0648-BB98 Temporary Rule To Delay Start Date of 2012-2013 South Atlantic Black Sea... this temporary rule to delay the start date of the 2012-2013 fishing season for the commercial black... temporary rule delays the start date of the 2012-2013 commercial fishing season for black sea bass from June...

  8. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  9. Light at deep sea hydrothermal vents

    Science.gov (United States)

    Van Dover, Cindy Lee; Cann, J. R.; Cavanaugh, Colleen; Chamberlain, Steven; Delaney, John R.; Janecky, David; Imhoff, Johannes; Tyson, J. Anthony

    We usually think of the bottom of the sea as a dark environment, lit only by flashes of bioluminescent light. Discovery of light associated with geothermal processes at deep sea hydrothermal vents forces us to qualify our textbook descriptions of the seafloor as a uniformly dark environment. While a very dim glow emitted from high temperature (350°) vents (black smokers) at mid-oceanic ridge spreading centers has been documented [Van Dover et al, 1988], the source of this light and its role, if any, in the evolution and adaptation of photobiochemical processes have yet to be determined. Preliminary studies indicate that thermal radiation alone may account for the “glow” ]Smith and Delaney, 1989] and that a novel photoreceptor in shrimp-colonizing black smoker chimneys may detect this “glow” [Van Dover et al., 1989; Pelli and Chamberlain, 1989]. A more controversial question, posed by C. L. Van Dover, J. R. Cann, and J. R. Delaney at the 1993 LITE Workshop at the Woods Hole Oceanographic Institution in Massachusetts, is whether there may be sufficient light of appropriate wavelengths to support geothermally driven photosynthesis by microorganisms.

  10. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  11. 50 CFR 222.309 - Permits for listed species of sea turtles involving the Fish and Wildlife Service.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Permits for listed species of sea turtles... species of sea turtles involving the Fish and Wildlife Service. (a) This section establishes specific... survival of endangered or threatened species of sea turtles; zoological exhibition or educational purposes...

  12. Knorr 147 Leg V Hydrographic Data Report: Labrador Sea Deep Convection Experiment

    National Research Council Canada - National Science Library

    Zimmerman, Sarah

    2000-01-01

    Between 2 February and 20 March 1997, the first phase of the Labrador Sea Deep Convection Experiment was carried out on R/V Knorr, during which 127 hydrographic stations were occupied throughout the Labrador basin...

  13. WHATS-3: An improved flow-through multi-bottle fluid sampler for deep-sea geofluid research

    Science.gov (United States)

    Miyazaki, Junichi; Makabe, Akiko; Matsui, Yohei; Ebina, Naoya; Tsutsumi, Saki; Ishibashi, Jun-ichiro; Chen, Chong; Kaneko, Sho; Takai, Ken; Kawagucci, Shinsuke

    2017-06-01

    Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information towards elucidating the physical, chemical and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each) is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean and three in Okinawa Trough (max. depth 3,300 m). Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high-quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  14. SeaWiFS Deep Blue Aerosol Optical Thickness Monthly Level 3 Climatology Data Gridded at 0.5 Degrees V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The SeaWiFS Deep Blue Level 3 Monthly Climatology Product contains monthly global climatology gridded (0.5 x 0.5 deg) data derived from SeaWiFS Deep Blue Level 3...

  15. Studies of the reproductive biology of deep-sea megabenthos IV. The echinoderm species Peniagone azorica and P. diaphana (elasipodida: holothuroidea)

    International Nuclear Information System (INIS)

    Tyler, P.A.; Muirhead, A.

    1984-01-01

    This report is the fourth in a series from a study of the reproductive processes in deep-sea benthic megainvertebrates. The concept of this study is based on the premise that reproduction is the most sensitive physiological process of marine invertebrates and will therefore be the first to be affected by any undue stress. Benthic megainvertebrates were selected as these are readily visible in both deep-sea photographs and television. However studies of sublethal levels of contaminants in shallow water marine invertebrates have shown that when these organisms are exposed to stress, their general biology, e.g., respiration, growth, etc. may not be affected, whilst the gametogenic biology may be totally disrupted. Thus the present study of the gametogenic biology of deep-sea megainvertebrates provides a benchmark study against which 'post-disposal' specimens could be compared. This would provide a sensitive indicator of radioactive release that may not be determined from other studies of adult ecology. If the gametogenic process is not affected by the uptake of radionuclides it is possible that any dispersal of spawned eggs or larvae may transfer these radionuclides into another part of the deep-sea food chain or deep-sea environment. (author)

  16. Spreading Design of Radioactivity in Sea Water, Algae and Fish Samples inthe Coastal of Muria Peninsula Area

    International Nuclear Information System (INIS)

    Sutjipto; Muryono; Sumining

    2000-01-01

    Spreading design of radioactivity in sea water, brown algae (phaeopyceae)and kerapu fish (epeniphelus) samples in the coastal of Muria peninsula areahas been studied. This research was carried out with designed beside to knowspreading each radioactivity but also spreading design in relation to thecontent of Pu-239 and Cs-137. Samples taken, preparation and analysis basedon the procedures of environmental radioactivity analysis. The instrumentused for the analysis radioactivity were alpha counter with detector ZnS, lowlevel beta counter modified P3TM-BATAN with detector GM and spectrometergamma with detector Ge(Li). Alpha radioactivity obtained of sea water, algaeand fish were the fluctuation form of the natural background. Radionuclide ofPu-239 in samples not detect, because its concentration/radioactivity stillbelow the maximum concentration detection value of Pu-239 for algae and fishwas that 1.10 Bq/g, whereas for sea water was that 0.07 Bq/mL. Result for theradioactivity which give the highest alpha radioactivity obtained on thekerapu fish was that 1.56 x 10 -3 Bq/g, beta radioactivity on sea water wasthat 1.75 x 10 2 mBq/L, gamma radioactivity of K-40 on brown algae was that3.72 x 10 -2 Bq/g and gamma radioactivity of Tl-208 on fish as mentionedabove was that 1.35 x 10 -2 Bq/g. All the peak spectrum gamma energy ofCs-137 do not detect with gamma counter, so there are not the radionuclide ofCs-137 in the samples. Spreading design of radioactivity which occur in thecoastal of Muria peninsula area for alpha radioactivity was found on kerapufish, beta radioactivities on sea water and gamma radioactivity on brownalgae and kerapu fish. (author)

  17. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  18. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

    Science.gov (United States)

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I; Marini, Monica; Das, Gobind; Elshenawy, Mohamed M; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed A; Stingl, Ulrich; Merzaban, Jasmeen S; Di Fabrizio, Enzo; Hamdan, Samir M

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.-Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  19. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru; Takahashi, Etsuko; Joudeh, Luay I.; Marini, Monica; Das, Gobind; Elshenawy, Mohamed; Akal, Anastassja; Sakashita, Kosuke; Alam, Intikhab; Tehseen, Muhammad; Sobhy, Mohamed Abdelmaboud; Stingl, Ulrich; Merzaban, Jasmeen; Di Fabrizio, Enzo M.; Hamdan, Samir

    2018-01-01

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  20. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.