WorldWideScience

Sample records for deep water technologies

  1. An overview of latest deep water technologies

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The 8th Deep Offshore Technology Conference (DOT VIII, Rio de Janeiro, October 30 - November 3, 1995) has brought together renowned specialists in deep water development projects, as well as managers from oil companies and engineering/service companies to discuss state-of-the-art technologies and ongoing projects in the deep offshore. This paper is a compilation of the session summaries about sub sea technologies, mooring and dynamic positioning, floaters (Tension Leg Platforms (TLP) and Floating Production Storage and Off loading (FPSO)), pipelines and risers, exploration and drilling, and other deep water techniques. (J.S.)

  2. Subsea innovative boosting technologies on deep water scenarios -- Impacts and demands

    International Nuclear Information System (INIS)

    Caetano, E.F.; Mendonca, J.E.; Pagot, P.R.; Cotrim, M.L.; Camargo, R.M.T.; Assayag, M.I.

    1995-01-01

    This paper presents the importance of deep water scenario for Brazil, the PETROBRAS Deep and Ultra-Deep Water R and D Program (PROCAP-2000) and the candidate fields for the deployment of subsea innovative boosting technologies (ESPS -- electrical submersible pump in subsea wells, SSS -- subsea separation systems and SBMS -- subsea multiphase flow pumping system) as well as the problems associated with the flow assurance in such conditions. The impact of those innovative systems, their technological stage and remaining demands to make them available for deployment in offshore subsea areas, mainly in giant deepwater fields, are discussed and predicted

  3. Succeeding in deep water by combining technology qualification and production forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Oiungen, B.; Raposo, C. [Det Norske Veritas (DNV), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    All the easy oil and gas is gone, and, as a result the Oil and Gas industry is continuously targeting deeper and more remote fields. The exploration and development of deep water oil and gas fields is associated with enormous costs and multiple uncertainties with regard to equipment reliability and performance. Proper risk management can be used to evaluate the impact of these uncertainties thereby helping to ensure optimal business performance of the future assets, as well as helping the decision maker target investment towards areas where the financial impact will be the greatest. This paper reviews the principles of Technology Qualification and Production Forecasting methodology, both of which are risk management solutions with a proven track record for deep water field developments. (author)

  4. Technology strategy for deepwater and subsea production systems 2008 update; Technology Target Areas; TTA7 - Deep water and subsea prodution technology

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    Executive summary 'Deepwater and Subsea Production Systems' has been identified as one of the eight new Technology Target Areas (TTAs) in Norway's technology strategy for the Oil and Gas sector. This TTA covers deepwater floating production systems, subsea systems (except subsea processing technologies which are addressed by TTA6) and arctic development systems (in both shallow and deepwater). The total hydrocarbon reserves worldwide, which are enabled by the technologies under this TTA exceed 400 billion boe which, itself exceeds the proven reserves of Saudi Arabia. For deepwater developments the long term technical challenge is to develop flexible and adaptive systems which are better able to cope with subsurface uncertainties e.g. compartmentalisation and provide required access to the reservoir to enable successful recovery. More specific medium term challenges relate to developing solutions for harsh environmental conditions such as those offshore Norway and to develop cost effective methods of installing subsea hardware in deep and ultra deep water without requiring expensive crane vessels. For subsea systems the challenge is to develop solutions for ultra deepwater without increasing costs, so that Norway's leading export position in this area can be maintained and strengthened. Considering developments in the arctic, Norwegian industry is already well placed through its familiarity with arctic climate, close relationship with Russia and involvement in Sakhalin II. As we move to water depth beyond about 150m use of Gravity Base Structures (GBS) becomes very expensive or non-feasible and we need to consider other solutions. Subsea-to-beach could be an attractive solution but we need to resolve challenges related to long distance tie backs, flow assurance, uneven terrain, etc. There is also a specific need to develop floating systems capable of drilling and production in an arctic environment. To address the above technical challenges the

  5. Producing deep-water hydrocarbons

    International Nuclear Information System (INIS)

    Pilenko, Thierry

    2011-01-01

    Several studies relate the history and progress made in offshore production from oil and gas fields in relation to reserves and the techniques for producing oil offshore. The intention herein is not to review these studies but rather to argue that the activities of prospecting and producing deep-water oil and gas call for a combination of technology and project management and, above all, of devotion and innovation. Without this sense of commitment motivating men and women in this industry, the human adventure of deep-water production would never have taken place

  6. Deep lake water cooling a renewable technology

    Energy Technology Data Exchange (ETDEWEB)

    Eliadis, C.

    2003-06-01

    In the face of increasing electrical demand for air conditioning, the damage to the ozone layer by CFCs used in conventional chillers, and efforts to reduce the greenhouse gases emitted into the atmosphere by coal-fired power generating stations more and more attention is focused on developing alternative strategies for sustainable energy. This article describes one such strategy, namely deep lake water cooling, of which the Enwave project recently completed on the north shore of Lake Ontario is a prime example. The Enwave Deep Lake Water Cooling (DLWC) project is a joint undertaking by Enwave and the City of Toronto. The $180 million project is unique in design and concept, using the coldness of the lake water from the depths of Lake Ontario (not the water itself) to provide environmentally friendly air conditioning to office towers. Concurrently, the system also provides improved quality raw cold water to the city's potable water supply. The plant has a rated capacity of 52,200 tons of refrigeration. The DLWC project is estimated to save 75-90 per cent of the electricity that would have been generated by a coal-fired power station. Enwave, established over 20 years ago, is North America's largest district energy system, delivering steam, hot water and chilled water to buildings from a central plant via an underground piping distribution network. 2 figs.

  7. Applying ultrasonic in-line inspection technology in a deep water environment: exploring the challenges

    Energy Technology Data Exchange (ETDEWEB)

    Thielager, N.; Nadler, M.; Pieske, M.; Beller, M. [NDT Systems and Services AG, Stutensee (Germany)

    2009-12-19

    The demand for higher inspection accuracies of in-line inspection tools (ILI tools) is permanently growing. As integrity assessment procedures are being refined, detection performances, sizing accuracies and confidence levels regarding detection and sizing play an ever increasing role. ILI tools utilizing conventional ultrasound technology are at the forefront of technology and fulfill the market requirements regarding sizing accuracies and the ability to provide quantitative measurements of wall thickness as well as crack inspection capabilities. Data from ultrasonic tools is ideally suited for advanced integrity assessment applications and run comparisons. Making this technology available for a deep-water environment of heavy wall, high pressures and temperatures comes with a wide range of challenges which have to be addressed. This paper will introduce developments recently made in order to adapt and modify ultrasonic in-line inspection tools for the application in a heavy wall, high pressure and high temperature environment as encountered in deep offshore pipelines. The paper will describe necessary design modifications and new conceptual approaches especially regarding tool electronics, cables, connectors and the sensor carrier. A tool capable of deep-water inspection with a pressure bearing capability of 275 bar will be introduced and data from inspection runs will be presented. As an outlook, the paper will also discuss future inspection requirements for offshore pipelines with maximum pressure values of up to 500 bar. (author)

  8. New optimized drill pipe size for deep-water, extended reach and ultra-deep drilling

    Energy Technology Data Exchange (ETDEWEB)

    Jellison, Michael J.; Delgado, Ivanni [Grant Prideco, Inc., Hoston, TX (United States); Falcao, Jose Luiz; Sato, Ademar Takashi [PETROBRAS, Rio de Janeiro, RJ (Brazil); Moura, Carlos Amsler [Comercial Perfuradora Delba Baiana Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    A new drill pipe size, 5-7/8 in. OD, represents enabling technology for Extended Reach Drilling (ERD), deep water and other deep well applications. Most world-class ERD and deep water wells have traditionally been drilled with 5-1/2 in. drill pipe or a combination of 6-5/8 in. and 5-1/2 in. drill pipe. The hydraulic performance of 5-1/2 in. drill pipe can be a major limitation in substantial ERD and deep water wells resulting in poor cuttings removal, slower penetration rates, diminished control over well trajectory and more tendency for drill pipe sticking. The 5-7/8 in. drill pipe provides a significant improvement in hydraulic efficiency compared to 5-1/2 in. drill pipe and does not suffer from the disadvantages associated with use of 6-5/8 in. drill pipe. It represents a drill pipe assembly that is optimized dimensionally and on a performance basis for casing and bit programs that are commonly used for ERD, deep water and ultra-deep wells. The paper discusses the engineering philosophy behind 5-7/8 in. drill pipe, the design challenges associated with development of the product and reviews the features and capabilities of the second-generation double-shoulder connection. The paper provides drilling case history information on significant projects where the pipe has been used and details results achieved with the pipe. (author)

  9. Water Treatment Technology - Wells.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on wells provides instructional materials for five competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: dug, driven, and chilled wells, aquifer types, deep well…

  10. Diverless pipeline repair system for deep water

    Energy Technology Data Exchange (ETDEWEB)

    Spinelli, Carlo M. [Eni Gas and Power, Milan (Italy); Fabbri, Sergio; Bachetta, Giuseppe [Saipem/SES, Venice (Italy)

    2009-07-01

    SiRCoS (Sistema Riparazione Condotte Sottomarine) is a diverless pipeline repair system composed of a suite of tools to perform a reliable subsea pipeline repair intervention in deep and ultra deep water which has been on the ground of the long lasting experience of Eni and Saipem in designing, laying and operating deep water pipelines. The key element of SiRCoS is a Connection System comprising two end connectors and a repair spool piece to replace a damaged pipeline section. A Repair Clamp with elastomeric seals is also available for pipe local damages. The Connection System is based on pipe cold forging process, consisting in swaging the pipe inside connectors with suitable profile, by using high pressure seawater. Three swaging operations have to be performed to replace the damaged pipe length. This technology has been developed through extensive theoretical work and laboratory testing, ending in a Type Approval by DNV over pipe sizes ranging from 20 inches to 48 inches OD. A complete SiRCoS system has been realised for the Green Stream pipeline, thoroughly tested in workshop as well as in shallow water and is now ready, in the event of an emergency situation.The key functional requirements for the system are: diverless repair intervention and fully piggability after repair. Eni owns this technology and is now available to other operators under Repair Club arrangement providing stand-by repair services carried out by Saipem Energy Services. The paper gives a description of the main features of the Repair System as well as an insight into the technological developments on pipe cold forging reliability and long term duration evaluation. (author)

  11. Composite risers for deep-water offshore technology: Problems and prospects. 1. Metal-composite riser

    Science.gov (United States)

    Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.

    1997-09-01

    Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.

  12. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2005-06-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies conducted a study to evaluate the stimulation of deep wells. The objective of the project was to review U.S. deep well drilling and stimulation activity, review rock mechanics and fracture growth in deep, high-pressure/temperature wells and evaluate stimulation technology in several key deep plays. This report documents results from this project.

  13. Economic considerations for deep water Gulf of Mexico development

    International Nuclear Information System (INIS)

    Brown, R.; O'Sullivan, J.; Bayazitoglu, Y.O.

    1994-01-01

    This paper examines the economic drivers behind deep water development in the Gulf of Mexico. Capital costs are also examined versus water depth and required system. Cost categories are compared. The cost analysis was carried out by using the SEAPLAN computer program. The program is an expert system that identifies, conceptually defines, and economically compares technically feasible approaches for developing offshore oil and gas fields. The program's sizing logic and cost data base create physical and cost descriptions of systems representative of developments being planned in the deep water GOM. The examination was done separately for oil and gas developments. The material presented here is for only oil, it serves as a useful framework for viewing development economics and technology trends

  14. Stimulation Technologies for Deep Well Completions

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-09-30

    The Department of Energy (DOE) is sponsoring the Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a study to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. An assessment of historical deep gas well drilling activity and forecast of future trends was completed during the first six months of the project; this segment of the project was covered in Technical Project Report No. 1. The second progress report covers the next six months of the project during which efforts were primarily split between summarizing rock mechanics and fracture growth in deep reservoirs and contacting operators about case studies of deep gas well stimulation.

  15. Deep Water Acoustics

    Science.gov (United States)

    2016-06-28

    the Deep Water project and participate in the NPAL Workshops, including Art Baggeroer (MIT), J. Beron- Vera (UMiami), M. Brown (UMiami), T...Kathleen E . Wage. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea. J. Acoust. Soc. Am., 134(4...estimate of the angle α during PhilSea09, made from ADCP measurements at the site of the DVLA. Sim. A B1 B2 B3 C D E F Prof. # 0 4 4 4 5 10 16 20 α

  16. Clean subglacial access: prospects for future deep hot-water drilling

    Science.gov (United States)

    Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John

    2016-01-01

    Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913

  17. STIMULATION TECHNOLOGIES FOR DEEP WELL COMPLETIONS

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Wolhart

    2003-06-01

    The Department of Energy (DOE) is sponsoring a Deep Trek Program targeted at improving the economics of drilling and completing deep gas wells. Under the DOE program, Pinnacle Technologies is conducting a project to evaluate the stimulation of deep wells. The objective of the project is to assess U.S. deep well drilling & stimulation activity, review rock mechanics & fracture growth in deep, high pressure/temperature wells and evaluate stimulation technology in several key deep plays. Phase 1 was recently completed and consisted of assessing deep gas well drilling activity (1995-2007) and an industry survey on deep gas well stimulation practices by region. Of the 29,000 oil, gas and dry holes drilled in 2002, about 300 were drilled in the deep well; 25% were dry, 50% were high temperature/high pressure completions and 25% were simply deep completions. South Texas has about 30% of these wells, Oklahoma 20%, Gulf of Mexico Shelf 15% and the Gulf Coast about 15%. The Rockies represent only 2% of deep drilling. Of the 60 operators who drill deep and HTHP wells, the top 20 drill almost 80% of the wells. Six operators drill half the U.S. deep wells. Deep drilling peaked at 425 wells in 1998 and fell to 250 in 1999. Drilling is expected to rise through 2004 after which drilling should cycle down as overall drilling declines.

  18. Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Michael Batzle

    2006-04-30

    During this last period of the ''Seismic Evaluation of Hydrocarbon Saturation in Deep-Water Reservoirs'' project (Grant/Cooperative Agreement DE-FC26-02NT15342), we finalized integration of rock physics, well log analysis, seismic processing, and forward modeling techniques. Most of the last quarter was spent combining the results from the principal investigators and come to some final conclusions about the project. Also much of the effort was directed towards technology transfer through the Direct Hydrocarbon Indicators mini-symposium at UH and through publications. As a result we have: (1) Tested a new method to directly invert reservoir properties, water saturation, Sw, and porosity from seismic AVO attributes; (2) Constrained the seismic response based on fluid and rock property correlations; (3) Reprocessed seismic data from Ursa field; (4) Compared thin layer property distributions and averaging on AVO response; (5) Related pressures and sorting effects on porosity and their influence on DHI's; (6) Examined and compared gas saturation effects for deep and shallow reservoirs; (7) Performed forward modeling using geobodies from deepwater outcrops; (8) Documented velocities for deepwater sediments; (9) Continued incorporating outcrop descriptive models in seismic forward models; (10) Held an open DHI symposium to present the final results of the project; (11) Relations between Sw, porosity, and AVO attributes; (12) Models of Complex, Layered Reservoirs; and (14) Technology transfer Several factors can contribute to limit our ability to extract accurate hydrocarbon saturations in deep water environments. Rock and fluid properties are one factor, since, for example, hydrocarbon properties will be considerably different with great depths (high pressure) when compared to shallow properties. Significant over pressure, on the other hand will make the rocks behave as if they were shallower. In addition to the physical properties, the scale and

  19. Deep water recycling through time.

    Science.gov (United States)

    Magni, Valentina; Bouilhol, Pierre; van Hunen, Jeroen

    2014-11-01

    We investigate the dehydration processes in subduction zones and their implications for the water cycle throughout Earth's history. We use a numerical tool that combines thermo-mechanical models with a thermodynamic database to examine slab dehydration for present-day and early Earth settings and its consequences for the deep water recycling. We investigate the reactions responsible for releasing water from the crust and the hydrated lithospheric mantle and how they change with subduction velocity ( v s ), slab age ( a ) and mantle temperature (T m ). Our results show that faster slabs dehydrate over a wide area: they start dehydrating shallower and they carry water deeper into the mantle. We parameterize the amount of water that can be carried deep into the mantle, W (×10 5 kg/m 2 ), as a function of v s (cm/yr), a (Myrs), and T m (°C):[Formula: see text]. We generally observe that a 1) 100°C increase in the mantle temperature, or 2) ∼15 Myr decrease of plate age, or 3) decrease in subduction velocity of ∼2 cm/yr all have the same effect on the amount of water retained in the slab at depth, corresponding to a decrease of ∼2.2×10 5 kg/m 2 of H 2 O. We estimate that for present-day conditions ∼26% of the global influx water, or 7×10 8 Tg/Myr of H 2 O, is recycled into the mantle. Using a realistic distribution of subduction parameters, we illustrate that deep water recycling might still be possible in early Earth conditions, although its efficiency would generally decrease. Indeed, 0.5-3.7 × 10 8 Tg/Myr of H 2 O could still be recycled in the mantle at 2.8 Ga. Deep water recycling might be possible even in early Earth conditions We provide a scaling law to estimate the amount of H 2 O flux deep into the mantle Subduction velocity has a a major control on the crustal dehydration pattern.

  20. Deep-water oilfield development cost analysis and forecasting —— Take gulf of mexico for example

    Science.gov (United States)

    Shi, Mingyu; Wang, Jianjun; Yi, Chenggao; Bai, Jianhui; Wang, Jing

    2017-11-01

    Gulf of Mexico (GoM) is the earliest offshore oilfield which has ever been developed. It tends to breed increasingly value of efficient, secure and cheap key technology of deep-water development. Thus, the analyze of development expenditure in this area is significantly important the evaluation concept of deep-water oilfield all over the world. This article emphasizes on deep-water development concept and EPC contract value in GoM in recent 10 years in case of comparison and selection to the economic efficiency. Besides, the QUETOR has been put into use in this research processes the largest upstream cost database to simulate and calculate the calculating examples’ expenditure. By analyzing and forecasting the deep-water oilfield development expenditure, this article explores the relevance between expenditure index and oil price.

  1. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  2. Key technologies and risk management of deep tunnel construction at Jinping II hydropower station

    Directory of Open Access Journals (Sweden)

    Chunsheng Zhang

    2016-08-01

    Full Text Available The four diversion tunnels at Jinping II hydropower station represent the deepest underground project yet conducted in China, with an overburden depth of 1500–2000 m and a maximum depth of 2525 m. The tunnel structure was subjected to a maximum external water pressure of 10.22 MPa and the maximum single-point groundwater inflow of 7.3 m3/s. The success of the project construction was related to numerous challenging issues such as the stability of the rock mass surrounding the deep tunnels, strong rockburst prevention and control, and the treatment of high-pressure, large-volume groundwater infiltration. During the construction period, a series of new technologies was developed for the purpose of risk control in the deep tunnel project. Nondestructive sampling and in-situ measurement technologies were employed to fully characterize the formation and development of excavation damaged zones (EDZs, and to evaluate the mechanical behaviors of deep rocks. The time effect of marble fracture propagation, the brittle–ductile–plastic transition of marble, and the temporal development of rock mass fracture and damage induced by high geostress were characterized. The safe construction of deep tunnels was achieved under a high risk of strong rockburst using active measures, a support system comprised of lining, grouting, and external water pressure reduction techniques that addressed the coupled effect of high geostress, high external water pressure, and a comprehensive early-warning system. A complete set of technologies for the treatment of high-pressure and large-volume groundwater infiltration was developed. Monitoring results indicated that the Jinping II hydropower station has been generally stable since it was put into operation in 2014.

  3. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    Science.gov (United States)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  4. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    International Nuclear Information System (INIS)

    Sant, T; Buhagiar, D; Farrugia, R N

    2014-01-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units

  5. Characterizing Natural Gas Hydrates in the Deep Water Gulf of Mexico: Applications for Safe Exploration and Production Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bent, Jimmy

    2014-05-31

    In 2000 Chevron began a project to learn how to characterize the natural gas hydrate deposits in the deep water portion of the Gulf of Mexico (GOM). Chevron is an active explorer and operator in the Gulf of Mexico and is aware that natural gas hydrates need to be understood to operate safely in deep water. In August 2000 Chevron worked closely with the National Energy Technology Laboratory (NETL) of the United States Department of Energy (DOE) and held a workshop in Houston, Texas to define issues concerning the characterization of natural gas hydrate deposits. Specifically, the workshop was meant to clearly show where research, the development of new technologies, and new information sources would be of benefit to the DOE and to the oil and gas industry in defining issues and solving gas hydrate problems in deep water.

  6. The development of a subsea power transmission system for deep water boosting applications

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, C.A.F. [Pirelli Cabos S.A. (Brazil); Campagnac, L.A. [Siemens S.A. (Brazil); Nicholson, A. [Tronic Electronics Services Ltd. (WEC); Magalhaes, W.M. de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    1996-12-31

    This paper presents the development of a sub sea power transmission in medium voltage and variable frequency, as a key system for application of Boosting technology and for electrical submersible Pumping in deep water wells. This work focuses on the design and manufacture of sub sea power cables and transformers for 1,000 m water depth. 8 refs., 6 figs.

  7. Deep Water Survey Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The deep water biodiversity surveys explore and describe the biodiversity of the bathy- and bentho-pelagic nekton using Midwater and bottom trawls centered in the...

  8. Environmental challenges of deep water activities

    International Nuclear Information System (INIS)

    Sande, Arvid

    1998-01-01

    In this presentation there are discussed the experiences of petroleum industry, and the projects that have been conducted in connection with the planning and drilling of the first deep water wells in Norway. There are also presented views on where to put more effort in the years to come, so as to increase the knowledge of deep water areas. Attention is laid on exploration drilling as this is the only activity with environmental potential that will take place during the next five years or so. The challenges for future field developments in these water depths are briefly discussed. 7 refs

  9. Opportunities and constraints of deep water projects

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    While oil output from deep water areas still is scarce, it however has become a reality in water depths over 300 m. Specific constraints linked to these developments lead to the selection of appropriate concepts for production supports. First deep water developments occurred off Brazil (see other articles in this issue) and the Gulf of Mexico and now expand to other areas worldwide, such as the West of Shetland discoveries, the Northern part of the Norwegian waters and potentially West Africa, the Barents sea and South-East Asia. Fixed platforms and compliant towers have shown their limits (in terms of water depth capacity) and new deep water projects mainly rely on tension leg platforms (TLP) and floaters, either FPSOs or semi-sub based. Research is at work on alternative materials for lighter flexible risers and mooring systems. Operators and manufacturers are eager to develop for the 300 m range systems and equipments that could be used with little modification for oil fields located in deeper waters. (author). 1 fig., 1 tab

  10. Recent changes in the deep-water fish populations of Lake Michigan

    Science.gov (United States)

    Moffett, James W.

    1957-01-01

    The deep-water fish fauna of Lake Michigan consisted of lake trout (Salvelinus namaycush), burbot (Lota lota maculosa), seven species of chubs or deep-water ciscoes (Leucichthys spp.), and the deep-water sculpin (Myoxocephalus quadricornis). Other species occupied the deep-water zone but were not typically part of the fauna.

  11. Deep-water subsea lifting operations

    Energy Technology Data Exchange (ETDEWEB)

    Nestegaard, Arne; Boee, Tormod

    2010-07-01

    Significant costs are related to marine operations in the installation phase of deep water subsea field developments. In order to establish safe operational criteria and procedures for the installation, detailed planning is necessary, including numerical modelling and analysis of the environmental conditions and hydrodynamic loads on the installed object as well as the installation equipment. This paper presents recommendations for modelling and analysis of deep water subsea lifting operations developed for the new DNV RP-H103 [1]. During installation of subsea structures, the highest dynamic forces are most often encountered in the splash zone. Recommendations for estimation of maximum forces will be presented. For small structures and tools, installation through the moon pool of a small installation vessel is often preferred. Calculation methods for loading on structures installed through a moon pool will be presented. During intervention or installation in deep water a significant amplification of amplitude and forces can be experienced when the frequency range of vertical crane tip motion coincides with the natural vertical oscillation of the lift wire and load. Vertical resonance may reduce the operability of the operation. Simplified calculation methods for such operations are presented. (Author)

  12. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  13. A Modeling Study of Deep Water Renewal in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.

    2016-02-01

    Deep water renewal processes in the Red Sea are examined in this study using a 50-year numerical simulation from 1952-2001. The deep water in the Red Sea below the thermocline ( 200 m) exhibits a near-uniform vertical structure in temperature and salinity, but geochemical tracer distributions, such as 14C and 3He, and dissolved oxygen concentrations indicate that the deep water is renewed on time scales as short as 36 years. The renewal process is accomplished through a deep overturning cell that consists of a southward bottom current and a northward returning current at depths of 400-600 m. Three sources regions are proposed for the formation of the deep water, including two deep outflows from the Gulfs of Aqaba and Suez and winter deep convections in the northern Red Sea. The MITgcm (MIT general circulation model), which has been used to simulate the shallow overturning circulations in the Red Sea, is configured in this study with increased resolutions in the deep water. During the 50 years of simulation, artificial passive tracers added in the model indicate that the deep water in the Red Sea was only episodically renewed during some anomalously cold years; two significant episodes of deep water renewal are reproduced in the winters of 1983 and 1992, in accordance with reported historical hydrographic observations. During these renewal events, deep convections reaching the bottom of the basin occurred, which further facilitated deep sinking of the outflows from the Gulfs of Aqaba and Suez. Ensuing spreading of the newly formed deep water along the bottom caused upward displacements of thermocline, which may have profound effects on the water exchanges in the Strait of Bab el Mandeb between the Red Sea and the Gulf of Aden and the functioning of the ecosystem in the Red Sea by changing the vertical distributions of nutrients.

  14. Exploration in the Deep water Niger Delta: Technical to Business Perspectives

    International Nuclear Information System (INIS)

    Feeley, M.H.

    2002-01-01

    Prolific source rocks, high quality deep water reservoirs and a high technical success rate in finding hydrocarbons make the Nigeria deep water one of the top exploration opportunities in the world. Several major discoveries have resulted from exploration on blocks awarded in 1993. Enthusiastic participation by industry in the 2000 Tender Round clearly indicates the continuing appeal of deep water exploration in Nigeria.Commercially, challenges still exist in the Nigerian deep water. Industry has spent more than $2 Billion USD on exploration and appraisal, yet only a handful of developments are moving forward to development. First oil from the deep water is not expected until 2004, 11 years after acreage award and 8 years after discovery. Tougher economic terms, OPEC quota constraints, an abundance of deep water gas, lengthy approval processes and high up-front bonus and exploration costs challenge the economic returns on deep water gas, lengthy approval processes and high up-front bonus and exploration costs challenge the economic returns on deep water investments. Will deep water exploration, development and production deliver the financial returns industry expected when it signed up for the blocks 10 years ago? What are the indications for the 2000 Tender Round blocks?A good explorer learns form experience. What can be learned technically and commercially by looking back over the results of the last 10 years of exploration in Nigeria's deep water? A perspective is provided on the successes, the failures and the challenges to be overcome in realizing the commercial potential of the basin

  15. Barbabos Deep-Water Sponges

    NARCIS (Netherlands)

    Soest, van R.W.M.; Stentoft, N.

    1988-01-01

    Deep-water sponges dredged up in two locations off the west coast of Barbados are systematically described. A total of 69 species is recorded, among which 16 are new to science, viz. Pachymatisma geodiformis, Asteropus syringiferus, Cinachyra arenosa, Theonella atlantica. Corallistes paratypus,

  16. Revised estimate for the radiocarbon age of North Atlantic deep water

    International Nuclear Information System (INIS)

    Broecker, W.S.

    1979-01-01

    The extent to which the admixture of water of Antarctic origin influences the 14 C/C ratio in North Atlantic deep water (NADW) has been heretofore underestimated. When this correction is properly made, a ventilation time for the deep western Atlantic is reduced to only about 100 years. The production rate of the northern component of NADW entering the western basin must be of the order of 30 Sv. If this northern component water is assumed to be the major supplier of new 14 C to the deep sea, the carbon isotope ventilation time of the world deep ocean must be of the order of 900 years. However, since the new deep waters formed around the perimeter of the Antarctic are thought to enter the deep sea at a rate of about 20 Sv, the water ventilation time for the deep sea is of the order of 550 years

  17. Experience with water treatment and restoration technologies during and after uranium mining

    International Nuclear Information System (INIS)

    Benes, V.; Mitas, J.; Rihak, I.

    2002-01-01

    DIAMO, state owned enterprise, has a wide experience in uranium mining with the use of classical deep mining, acid in situ leaching and uranium ore processing. The sandstone deposits in Straz block have been exploited since 1968. Geological and hydrogeological conditions of the deposits and the short distance between the deep mine and ISL wellfields requires pumping huge amounts of fresh and/or acid mine water, their treatment and subsequent discharge into streams. DIAMO developed and applied several technologies for different types of wastewater treatment from the start of mining. Practically all of these technologies are used in the current phase of uranium deposit restoration after mining. It is possible to apply these technologies both in the production phase and during the restoration of underground water. In some cases, it is very desirable to combine two or several of them. (author)

  18. Deep challenges for China's war on water pollution.

    Science.gov (United States)

    Han, Dongmei; Currell, Matthew J; Cao, Guoliang

    2016-11-01

    China's Central government has released an ambitious plan to tackle the nation's water pollution crisis. However, this is inhibited by a lack of data, particularly for groundwater. We compiled and analyzed water quality classification data from publicly available government sources, further revealing the scale and extent of the crisis. We also compiled nitrate data in shallow and deep groundwater from a range of literature sources, covering 52 of China's groundwater systems; the most comprehensive national-scale assessment yet. Nitrate pollution at levels exceeding the US EPA's maximum contaminant level (10 mg/L NO 3 N) occurs at the 90th percentile in 25 of 36 shallow aquifers and 10 out of 37 deep or karst aquifers. Isotopic compositions of groundwater nitrate (δ 15 N and δ 18 O NO3 values ranging from -14.9‰ to 35.5‰ and -8.1‰ to 51.0‰, respectively) indicate many nitrate sources including soil nitrogen, agricultural fertilizers, untreated wastewater and/or manure, and locally show evidence of de-nitrification. From these data, it is clear that contaminated groundwater is ubiquitous in deep aquifers as well as shallow groundwater (and surface water). Deep aquifers contain water recharged tens of thousands of years before present, long before widespread anthropogenic nitrate contamination. This groundwater has therefore likely been contaminated due to rapid bypass flow along wells or other conduits. Addressing the issue of well condition is urgently needed to stop further pollution of China's deep aquifers, which are some of China's most important drinking water sources. China's new 10-point Water Pollution Plan addresses previous shortcomings, however, control and remediation of deep groundwater pollution will take decades of sustained effort. Copyright © 2016. Published by Elsevier Ltd.

  19. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  20. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    Science.gov (United States)

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Deep and intermediate mediterranean water in the western Alboran Sea

    Science.gov (United States)

    Parrilla, Gregorio; Kinder, Thomas H.; Preller, Ruth H.

    1986-01-01

    Hydrographic and current meter data, obtained during June to October 1982, and numerical model experiments are used to study the distribution and flow of Mediterranean waters in the western Alboran Sea. The Intermediate Water is more pronounced in the northern three-fourths of the sea, but its distribution is patchy as manifested by variability of the temperature and salinity maxima at scales ≤10 km. Current meters in the lower Intermediate Water showed mean flow toward the Strait at 2 cm s -1. A reversal of this flow lasted about 2 weeks. A rough estimate of the mean westward Intermediate Water transport was 0.4 × 10 6 m 3 s -1, about one-third of the total outflow, so that the best estimates of the contributions of traditionally defined Intermediate Water and Deep Water account for only about one-half of the total outflow. The Deep Water was uplifted against the southern continental slope from Alboran Island (3°W) to the Strait. There was also a similar but much weaker banking against the Spanish slope, but a deep current record showed that the eastward recirculation implied by this banking is probably intermittent. Two-layer numerical model experiments simulated the Intermediate Water flow with a flat bottom and the Deep Water with realistic bottom topography. Both experiments replicated the major circulation features, and the Intermediate Water flow was concentrated in the north because of rotation and the Deep Water flow in the south because of topographic control.

  2. Pressured drilling riser design for drilling in ultra deep water with surface bop

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Morrison, D.; Efthymiou, M.; Lo, K.H. [Shell Global Solutions, 78 - Velizy Villacoublay (France); Magne, E.; Leach, C. [Shell Internationale Exploration and Production (Netherlands)

    2002-12-01

    In conventional drilling with a semi-submersible rig valuable rig time is used to run and retrieve the BOP and its accessories on the seabed, and this time increases with water depth. Furthermore, use of the conventional sub-sea BOP requires a large-diameter riser, which requires substantial rig storage and deck load capacity prior to installation. It also requires high riser-tensioning capacity or additional buoyancy. Thus as the water depth increases, it leads to a need for heavy duty 4. and 5. generation rigs with escalation in costs. The high cost of deep-water drill rigs is leading to the development of Surface BOP technology. In this development, the BOP is placed above sea level and the riser is simply a continuation of the casing (typical diameter 13-3/8''). This eliminates the need for a heavy 21'' riser and for running the BOP to the sea bed and retrieving it. Moreover, the reduced tension requirement for the smaller riser extends the water depth capability of 3. generation drilling semi-submersibles, enabling them to drill in deeper waters. A critical success factor for this development is the ability to design the riser/casing to withstand high internal pressures due to well kicks, in addition to environmental loads, and to restrict vessel offsets within certain limits so as not to overload the riser under the prevailing weather conditions. This paper addresses the design considerations of a pressured drilling riser that can be used with a surface BOP in deep-water. Key design issues that are sensitive to ultra-deep-water applications are discussed. The technical aspects of using (disposable) standard casing with threaded connector for the drilling riser are discussed, with a particular emphasis on the connector fatigue-testing program to quantify the stress concentration factor for fatigue design. Emerging composite material offers some alternatives to the steel riser when drilling in ultra-deep water Design issues related to the

  3. Offshore support vessel developments for deep water oil and gas E and P

    Energy Technology Data Exchange (ETDEWEB)

    Dielen, Baldo A.M. [SMIT, Rotterdam (Netherlands)

    2008-07-01

    The worldwide trend to move towards more exposed locations and deeper waters for O and G exploration and production activities resulted in an increased need for larger and more powerful tugs and offshore support vessels. These vessels must meet higher operational requirements under higher wind and sea-state conditions. This market-driven need, together with technological developments, is leading towards a new generation of powerful and sophisticated offshore support vessels (OSV's). This paper will describe the actual and future trends in OSV design for deep water offshore use. (author)

  4. DeepBlow - a Lagrangian plume model for deep water blowouts

    International Nuclear Information System (INIS)

    Johansen, Oeistein

    2000-01-01

    This paper presents a sub-sea blowout model designed with special emphasis on deep-water conditions. The model is an integral plume model based on a Lagrangian concept. This concept is applied to multiphase discharges in the formation of water, oil and gas in a stratified water column with variable currents. The gas may be converted to hydrate in combination with seawater, dissolved into the plume water, or leaking out of the plume due to the slip between rising gas bubbles and the plume trajectory. Non-ideal behaviour of the gas is accounted for by the introduction of pressure- and temperature-dependent compressibility z-factor in the equation of state. A number of case studies are presented in the paper. One of the cases (blowout from 100 m depth) is compared with observations from a field experiment conducted in Norwegian waters in June 1996. The model results are found to compare favourably with the field observations when dissolution of gas into seawater is accounted in the model. For discharges at intermediate to shallow depths (100-250 m), the two major processes limiting plume rise will be: (a) dissolution of gas into ambient water, or (b) bubbles rising out of the inclined plume. These processes tend to be self-enforcing, i.e., when a gas is lost by either of these processes, plume rise tends to slow down and more time will be available for dissolution. For discharges in deep waters (700-1500 m depth), hydrate formation is found to be a dominating process in limiting plume rise. (Author)

  5. North Atlantic deep water formation and AMOC in CMIP5 models

    Directory of Open Access Journals (Sweden)

    C. Heuzé

    2017-07-01

    Full Text Available Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5 models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  6. Survey and analysis of deep water mineral deposits using nuclear methods

    International Nuclear Information System (INIS)

    Staehle, C.M.; Noakes, J.E.; Spaulding, J.

    1991-01-01

    Present knowledge of the location, quality, quantity and recoverability of sea floor minerals is severely limited, particularly in the abyssal depths and deep water within the 200 mile Exclusion Economic Zone (EEZ) surrounding the U.S. Pacific Islands. To improve this understanding and permit exploitation of these mineral reserves much additional data is needed. This paper will discuss a sponsored program for extending existing proven nuclear survey methods currently used on the shallow continental margins of the Atlantic and Gulf of Mexico into the deeper waters of the Pacific. This nuclear technology can be readily integrated and extended to depths of 2000 m using the existing RCV-150 remotely operated vehicle (ROV) and the PISCESE V manned deep submersible vehicle (DSV) operated by The University of Hawaii's, Hawaii Underseas Research Laboratory (HURL). Previous papers by the authors have also proposed incorporating these nuclear analytical methods for survey of the deep ocean through the use of Autonomous Underwater Vehicle (AUX). Such a vehicle could extend the use of passive nuclear instrument operation, in addition to conventional analytical methods, into the abyssal depths and do so with speed and economy not otherwise possible. The natural radioactivity associated with manganese nodules and crustal deposits is sufficiently above normal background levels to allow discrimination and quantification in near real time

  7. Impressed current cathodic protection of deep water structures

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.

    that the cathodic protection design approaches for shallow water may not be adequate for deeper water. This paper discusses on environmental factors encountered in deep water and their effect on cathodic protection behaviour of steel. Further, current CP design...

  8. Deep water overflow in the Faroe Bank Channel; modelling, processes, and impact

    DEFF Research Database (Denmark)

    Rullyanto, Arief

    , creating new water masses with distinct temperature, salinity and density characteristics. The change of water mass characteristics not only affects the local environment, but also far distant regions. The Faroe Bank Channel, which is located in the southern part of Faroe Islands, is one of the most...... under different circumstances. The focus is on the Faroe Bank Channel, a relatively small region, which has a significant impact on the global ocean circulation and marine organisms that live in its environment....... or tides, but also deep beneath the surface, where deep-water currents circulate waters throughout the world’s oceans. In certain very-localized regions, the flow of the deep-water has to travel over a sill in a narrow submarine channel. This overflow process mixes the deep water with overlying waters...

  9. Manned underwater intervention during deep-water operations

    Energy Technology Data Exchange (ETDEWEB)

    Lothe, Mikal Sjur

    2010-07-01

    The focus for deep and remote areas operations are Remote Operated systems. Manned intervention is generally first choice when looking for intervention methods in most areas of the world. As an industry we need to focus on the most cost effective and safe method for construction, Maintenance and Repair. The focus is on advances in diving methods related to surface oriented and saturation diving, such as shallow water tie-ins of risers and umbilicals, inspection and evaluations of FPSOs including thruster change-out and wet docking. Also, the options for efficient repair scenarios utilizing man's ability to work in low visibility areas by feel etc. Finally the presentation will show new technology in Saturation Diving based on the 24 man saturation systems onboard the 3rd generation Divex systems used by Technip and Subsea 7. (Author)

  10. Advances in technology for the construction of deep-underground facilities

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-31

    The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

  11. Deep glass etched microring resonators based on silica-on-silicon technology

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rottwitt, Karsten; Philipp, Hugh Taylor

    2006-01-01

    Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented.......Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented....

  12. Natural deep eutectic solvents as new potential media for green technology

    International Nuclear Information System (INIS)

    Dai, Yuntao; Spronsen, Jaap van; Witkamp, Geert-Jan; Verpoorte, Robert; Choi, Young Hae

    2013-01-01

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  13. Natural deep eutectic solvents as new potential media for green technology

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yuntao [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Spronsen, Jaap van; Witkamp, Geert-Jan [Laboratory for Process Equipment, Delft University of Technology, Delft (Netherlands); Verpoorte, Robert [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands); Choi, Young Hae, E-mail: y.choi@chem.leidenuniv.nl [Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden (Netherlands)

    2013-03-05

    Highlights: ► Natural products were used as a source for deep eutectic solvents and ionic liquids. ► We define own chemical and physical properties of natural deep eutectic solvents. ► Interaction between natural deep eutectic solvents and solutes was confirmed by NMR. ► The developed natural deep eutectic solvents were applied as green media. - Abstract: Developing new green solvents is one of the key subjects in Green Chemistry. Ionic liquids (ILs) and deep eutectic solvents, thus, have been paid great attention to replace current harsh organic solvents and have been applied to many chemical processing such as extraction and synthesis. However, current ionic liquids and deep eutectic solvents have still limitations to be applied to a real chemical industry due to toxicity against human and environment and high cost of ILs and solid state of most deep eutectic solvents at room temperature. Recently we discovered that many plant abundant primary metabolites changed their state from solid to liquid when they were mixed in proper ratio. This finding made us hypothesize that natural deep eutectic solvents (NADES) play a role as alternative media to water in living organisms and tested a wide range of natural products, which resulted in discovery of over 100 NADES from nature. In order to prove deep eutectic feature the interaction between the molecules was investigated by nuclear magnetic resonance spectroscopy. All the tested NADES show clear hydrogen bonding between components. As next step physical properties of NADES such as water activity, density, viscosity, polarity and thermal properties were measured as well as the effect of water on the physical properties. In the last stage the novel NADES were applied to the solubilization of wide range of biomolecules such as non-water soluble bioactive natural products, gluten, starch, and DNA. In most cases the solubility of the biomolecules evaluated in this study was greatly higher than water. Based on the

  14. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  15. Development of deep silicon plasma etching for 3D integration technology

    Directory of Open Access Journals (Sweden)

    Golishnikov А. А.

    2014-02-01

    Full Text Available Plasma etch process for thought-silicon via (TSV formation is one of the most important technological operations in the field of metal connections creation between stacked circuits in 3D assemble technology. TSV formation strongly depends on parameters such as Si-wafer thickness, aspect ratio, type of metallization material, etc. The authors investigate deep silicon plasma etch process for formation of TSV with controllable profile. The influence of process parameters on plasma etch rate, silicon etch selectivity to photoresist and the structure profile are researched in this paper. Technology with etch and passivation steps alternation was used as a method of deep silicon plasma etching. Experimental tool «Platrane-100» with high-density plasma reactor based on high-frequency ion source with transformer coupled plasma was used for deep silicon plasma etching. As actuation gases for deep silicon etching were chosen the following gases: SF6 was used for the etch stage and CHF3 was applied on the polymerization stage. As a result of research, the deep plasma etch process has been developed with the following parameters: silicon etch rate 6 µm/min, selectivity to photoresist 60 and structure profile 90±2°. This process provides formation of TSV 370 µm deep and about 120 µm in diameter.

  16. Industrial automation in floating production vessels for deep water oil and gas fields

    International Nuclear Information System (INIS)

    de Garcia, A.L.; Ferrante, A.J.

    1990-01-01

    The process supervision in offshore platforms was performed in the past through the use of local pneumatic instrumentation, based on relays, semi-graphic panels and button operated control panels. Considering the advanced technology used in the new floating production projects for deep water, it became mandatory to develop supervision systems capable of integrating different control panels, increasing the level of monitorization and reducing the number of operators and control rooms. From the point of view of field integration, a standardized architecture makes the communication between different production platforms and the regional headquarters, where all the equipment and support infrastructure for the computerized network is installed, possible. This test paper describes the characteristics of the initial systems, the main problems observed, the studies performed and the results obtained in relation to the design and implementation of computational systems with open architecture for automation of process control in floating production systems for deep water in Brazil

  17. Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico

    Science.gov (United States)

    DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.

    2016-02-01

    The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.

  18. Deep-water fisheries at the Atlantic Frontier

    Science.gov (United States)

    Gordon, J. D. M.

    2001-05-01

    The deep sea is often thought of as a cold, dark and uniform environment with a low-fish biomass, much of which is highly adapted for life in a food-poor environment. While this might be true of the pelagic fish living in the water column, it is certainly not true of the demersal fish which live on or close to the bottom on the continental slopes around the British Isles (the Atlantic Frontier). These fish are currently being commercially exploited. There is growing evidence to support the view that success of the demersal fish assemblages depends on the pelagic or benthopelagic food sources that impinge both vertically and horizontally onto the slope. There are several quite separate and distinct deep-water fisheries on the Atlantic Frontier. It is a physical barrier, the Wyville-Thomson Ridge, which results in the most significant division of the fisheries. The Ridge, which has a minimum depth of about 500 m, separates the warmer deep Atlantic waters from the much colder Norwegian Sea water and as a result, the deep-water fisheries to the west of the Hebrides and around the offshore banks are quite different from those of the Faroe-Shetland Channel (West of Shetland). The fisheries to the West of the Hebrides can be further divided by the fishing method used into bottom trawl, semipelagic trawl and longline. The bottom-trawl fisheries extend from the shelf-slope break down to about 1700 m and the target species varies with depth. The smallest vessels in the fleet fish on the upper slope, where an important target species is the anglerfish or monkfish ( Lophius spp.). On the mid-slope the main target species are blue ling ( Molva dypterygia) and roundnose grenadier ( Coryphaenoides rupestris), with bycatches of black scabbardfish ( Aphanopus carbo) and deep-water sharks. On the lower slope orange roughy ( Hoplostethus atlanticus) is an important target species. The major semipelagic trawl fishery is a seasonal fishery on spawning aggregations of blue whiting

  19. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  20. Deep and shallow water effects on developing preschoolers' aquatic skills.

    Science.gov (United States)

    Costa, Aldo M; Marinho, Daniel A; Rocha, Helena; Silva, António J; Barbosa, Tiago M; Ferreira, Sandra S; Martins, Marta

    2012-05-01

    The aim of the study was to assess deep and shallow water teaching methods in swimming lessons for preschool children and identify variations in the basic aquatic skills acquired. The study sample included 32 swimming instructors (16 from deep water programs and 16 from shallow water programs) and 98 preschool children (50 from deep water swimming pool and 48 from shallow water swimming pool). The children were also studied regarding their previous experience in swimming (6, 12 and 18 months or practice). Chi-Square test and Fisher's exact test were used to compare the teaching methodology. A discriminant analysis was conducted with Λ wilk's method to predict under what conditions students are better or worse (aquatic competence). Results suggest that regardless of the non-significant variations found in teaching methods, the water depth can affect aquatic skill acquisition - shallow water lessons seem to impose greater water competence particularly after 6 months of practice. The discriminant function revealed a significant association between groups and all predictors for 6 months of swimming practice (pdeep and shallow water programs for preschoolers is not significantly different. However, shallow water lessons could be preferable for the development of basic aquatic skills.

  1. Rapid and accurate intraoperative pathological diagnosis by artificial intelligence with deep learning technology.

    Science.gov (United States)

    Zhang, Jing; Song, Yanlin; Xia, Fan; Zhu, Chenjing; Zhang, Yingying; Song, Wenpeng; Xu, Jianguo; Ma, Xuelei

    2017-09-01

    Frozen section is widely used for intraoperative pathological diagnosis (IOPD), which is essential for intraoperative decision making. However, frozen section suffers from some drawbacks, such as time consuming and high misdiagnosis rate. Recently, artificial intelligence (AI) with deep learning technology has shown bright future in medicine. We hypothesize that AI with deep learning technology could help IOPD, with a computer trained by a dataset of intraoperative lesion images. Evidences supporting our hypothesis included the successful use of AI with deep learning technology in diagnosing skin cancer, and the developed method of deep-learning algorithm. Large size of the training dataset is critical to increase the diagnostic accuracy. The performance of the trained machine could be tested by new images before clinical use. Real-time diagnosis, easy to use and potential high accuracy were the advantages of AI for IOPD. In sum, AI with deep learning technology is a promising method to help rapid and accurate IOPD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cardiovascular responses during deep water running versus shallow water running in school children

    Directory of Open Access Journals (Sweden)

    Anerao Urja M, Shinde Nisha K, Khatri SM

    2014-03-01

    Full Text Available Overview: As the school going children especially the adolescents’ need workout routine; it is advisable that the routine is imbibed in the school’s class time table. In India as growing number of schools provide swimming as one of the recreational activities; school staff often fails to notice the boredom that is caused by the same activity. Deep as well as shallow water running can be one of the best alternatives to swimming. Hence the present study was conducted to find out the cardiovascular response in these individuals. Methods: This was a Prospective Cross-Sectional Comparative Study done in 72 healthy school going students (males grouped into 2 according to the interventions (Deep water running and Shallow water running. Cardiovascular parameters such as Heart rate (HR, Saturation of oxygen (SpO2, Maximal oxygen consumption (VO2max and Rate of Perceived Exertion (RPE were assessed. Results: Significant improvements in cardiovascular parameters were seen in both the groups i.e. by both the interventions. Conclusion: Deep water running and Shallow water running can be used to improve cardiac function in terms of various outcome measures used in the study.

  3. Deep water characteristics and circulation in the South China Sea

    Science.gov (United States)

    Wang, Aimei; Du, Yan; Peng, Shiqiu; Liu, Kexiu; Huang, Rui Xin

    2018-04-01

    This study investigates the deep circulation in the South China Sea (SCS) using oceanographic observations combined with results from a bottom layer reduced gravity model. The SCS water, 2000 m below the surface, is quite different from that in the adjacent Pacific Ocean, and it is characterized by its low dissolved oxygen (DO), high temperature and low salinity. The horizontal distribution of deep water properties indicates a basin-scale cyclonic circulation driven by the Luzon overflow. The results of the bottom layer reduced gravity model are consistent with the existence of the cyclonic circulation in the deep SCS. The circulation is stronger at the northern/western boundary. After overflowing the sill of the Luzon Strait, the deep water moves broadly southwestward, constrained by the 3500 m isobath. The broadening of the southward flow is induced by the downwelling velocity in the interior of the deep basin. The main deep circulation bifurcates into two branches after the Zhongsha Islands. The southward branch continues flowing along the 3500 m isobath, and the eastward branch forms the sub-basin scale cyclonic circulation around the seamounts in the central deep SCS. The returning flow along the east boundary is fairly weak. The numerical experiments of the bottom layer reduced gravity model reveal the important roles of topography, bottom friction, and the upwelling/downwelling pattern in controlling the spatial structure, particularly the strong, deep western boundary current.

  4. Water Technology Lecture 1: Introducing Water Technology

    OpenAIRE

    Gray, Nicholas Frederick

    2017-01-01

    This is a full set of PowerPoint lectures for a course in Water Technology currently given at Trinity College, University of Dublin by professor N.F. Gray. The lectures cover all aspects of water and wastewater treatment and are available for use to lecturers or those interested in the subject. The lecture series is to be used in conjunction with the new textbook ?Water Science and Technology? (4th edition) published by CRC Press in 2017. Lecture 1 is an introduction to the water indust...

  5. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  6. Deep-water northern Gulf of Mexico hydrocarbon plays

    International Nuclear Information System (INIS)

    Peterson, R.H.; Cooke, D.W.

    1995-01-01

    The geologic setting in the deep-water (depths greater than 1,500 feet) Gulf of Mexico is very favorable for the existence of large, commercial hydrocarbon accumulations. These areas have active salt tectonics that create abundant traps, underlying mature Mesozoic source rocks that can be observed expelling oil and gas to the ocean surface, and good quality reservoirs provided by turbidite sand deposits. Despite the limited amount of drilling in the deep-water Gulf of Mexico, 11 deep-water accumulations have been discovered which, when developed, will rank in the top 100 largest fields in the Gulf of Mexico. Proved field discoveries (those with announced development plans) have added over 1 billion barrels of oil equivalent to Gulf of Mexico reserves, and unproved field discoveries may add to additional billion barrels of oil equivalent. The Minerals Management Service, United States Department of the Interior, has completed a gulf-wide review of over 1,086 oil and gas fields and placed every pay sand in each field into a hydrocarbon play (plays are defined by chronostratigraphy, lithostratigraph, structure, and production). Seven productive hydrocarbon plays were identified in the deep-water northern Gulf of Mexico. Regional maps illustrate the productive limits of each play. In addition, field data, dry holes, and wells with sub-economic pay were added to define the facies and structural limits for each play. Areas for exploration potential are identified for each hydrocarbon play. A type field for each play is chosen to demonstrate the play's characteristics

  7. Flood frequency matters: Why climate change degrades deep-water quality of peri-alpine lakes

    Science.gov (United States)

    Fink, Gabriel; Wessels, Martin; Wüest, Alfred

    2016-09-01

    Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects climate conditions, the effects of climate variability on the water quality of deep lakes is largely unknown. We quantified the effects of climate variability on the potential shifts in the flood regime of the Alpine Rhine, the main catchment of Lake Constance, and determined the intrusion depths of riverine density-driven underflows and the subsequent effects on water exchange rates in the lake. A simplified hydrodynamic underflow model was developed and validated with observed river inflow and underflow events. The model was implemented to estimate underflow statistics for different river inflow scenarios. Using this approach, we integrated present and possible future flood frequencies to underflow occurrences and intrusion depths in Lake Constance. The results indicate that more floods will increase the number of underflows and the intensity of deep-water renewal - and consequently will cause higher deep-water dissolved oxygen concentrations. Vice versa, fewer floods weaken deep-water renewal and lead to lower deep-water dissolved oxygen concentrations. Meanwhile, a change from glacial nival regime (present) to a nival pluvial regime (future) is expected to decrease deep-water renewal. While flood frequencies are not expected to change noticeably for the next decades, it is most likely that increased winter discharge and decreased summer discharge will reduce the number of deep density-driven underflows by 10% and favour shallower riverine interflows in the upper hypolimnion. The renewal in the deepest layers is expected to be reduced by nearly 27%. This study underlines potential consequences of climate change on the occurrence of deep river underflows and water residence times in deep lakes.

  8. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  9. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  10. A new data transmission system for deep water applications

    International Nuclear Information System (INIS)

    Brown, Gerald K.

    2000-01-01

    A novel data transmission system is now available. Conventional data transmission methods include systems that require satellites, hard wires, fiber optics and other methods that do not lend themselves to buried, remote, or deep water applications. The Data Transmission System (DTS) induces a signal into a structure such as the transmission line and retrieving the signal at a distant point. In deep water applications the power required comes from an anode array that generates its own power. In addition to deep water applications, the DTS can be used in onshore, drilling, and downhole applications. With repeater stations, most lengths of gathering and transmission lines can be used. Therefore data from control valves, strain gauges, corrosion monitoring, sand monitoring, valve position and other process variables can all be transmitted. Comparisons are made between the different data transmission systems showing the advantages and disadvantages of each type with comparative costs showing the advantages of the new DTS system. (author)

  11. Sustainable development of deep-water seaport: the case of Lithuania.

    Science.gov (United States)

    Burskyte, Vilma; Belous, Olga; Stasiskiene, Zaneta

    2011-06-01

    In 2003, the Japan International Cooperation Agency carried out a development feasibility study of Klaipeda Seaport (Lithuania). The focus in this study was the evaluation of environmental impacts of the port expansion because it is located in an ecologically sensitive area. While the Japanese researchers focused on the environmental impact analysis, they did not provide unambiguous conclusions. The problems remained unresolved and required further, more detailed consideration and deeper analysis. Environmental sustainability in seaports is an issue of timely importance in many countries given the rapid increase in port-to-port traffic and harbor capacity. This paper explores the situation in Klaipeda Seaport (Lithuania) which is the northernmost ice-free port on the Eastern coast of the Baltic Sea and its challenges in terms of environmental aspects and current pollution situation. This port plays an important role in the economic development of the region and in creating a sustainable society, i.e., a society that continues to develop economically without increasing its impact on our living environment and where the possible reduction of its current impact can be huge due to the fact that the seaport is a place where transport and logistics intersect and constitute large-scale industrial estates. Increasingly, they also turn towards sustainability. Society faces the need for radical change because of increasing technological progress and increasing environmental impact. Environmental and public issues must be addressed by a systemic approach to find harmony among all the subsystems. Therefore, the authors of the article performed an assessment of the deep-water port of Klaipeda sustainable development opportunities tackling the following tasks: (1) Assessing Klaipeda port and the projected deep-water port of the current environment state; (2) Assessing the impact of the water quality of Klaipeda port, depending on the intensity of activity; (3) Assessing the

  12. Angola. Petroleum discovery by Elf on the block number 17 in deep water

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This article describes the petroleum discovery in deep water in Angola. The drilling was executed by 1365 meters deep and gave a petroleum of good quality. The Elf company emphasizes that it is its third discovery in deep water in the Guinea gulf after Nkossa and Moho in Congo. (N.C.)

  13. Sense Things in the Big Deep Water Bring the Big Deep Water to Computers so People can understand the Deep Water all the Time without getting wet

    Science.gov (United States)

    Pelz, M.; Heesemann, M.; Scherwath, M.; Owens, D.; Hoeberechts, M.; Moran, K.

    2015-12-01

    Senses help us learn stuff about the world. We put sense things in, over, and under the water to help people understand water, ice, rocks, life and changes over time out there in the big water. Sense things are like our eyes and ears. We can use them to look up and down, right and left all of the time. We can also use them on top of or near the water to see wind and waves. As the water gets deep, we can use our sense things to see many a layer of different water that make up the big water. On the big water we watch ice grow and then go away again. We think our sense things will help us know if this is different from normal, because it could be bad for people soon if it is not normal. Our sense things let us hear big water animals talking low (but sometimes high). We can also see animals that live at the bottom of the big water and we take lots of pictures of them. Lots of the animals we see are soft and small or hard and small, but sometimes the really big ones are seen too. We also use our sense things on the bottom and sometimes feel the ground shaking. Sometimes, we get little pockets of bad smelling air going up, too. In other areas of the bottom, we feel hot hot water coming out of the rock making new rocks and we watch some animals even make houses and food out of the hot hot water that turns to rock as it cools. To take care of the sense things we use and control water cars and smaller water cars that can dive deep in the water away from the bigger water car. We like to put new things in the water and take things out of the water that need to be fixed at least once a year. Sense things are very cool because you can use the sense things with your computer too. We share everything for free on our computers, which your computer talks to and gets pictures and sounds for you. Sharing the facts from the sense things is the best part about having the sense things because we can get many new ideas about understanding the big water from anyone with a computer!

  14. Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment.

    Science.gov (United States)

    Skoglund, Sigrid; Siwertsson, Anna; Amundsen, Per-Arne; Knudsen, Rune

    2015-08-01

    Morphological divergence was evident among three sympatric morphs of Arctic charr (Salvelinus alpinus (L.)) that are ecologically diverged along the shallow-, deep-water resource axis in a subarctic postglacial lake (Norway). The two deep-water (profundal) spawning morphs, a benthivore (PB-morph) and a piscivore (PP-morph), have evolved under identical abiotic conditions with constant low light and temperature levels in their deep-water habitat, and were morphologically most similar. However, they differed in important head traits (e.g., eye and mouth size) related to their different diet specializations. The small-sized PB-morph had a paedomorphic appearance with a blunt head shape, large eyes, and a deep body shape adapted to their profundal lifestyle feeding on submerged benthos from soft, deep-water sediments. The PP-morph had a robust head, large mouth with numerous teeth, and an elongated body shape strongly related to their piscivorous behavior. The littoral spawning omnivore morph (LO-morph) predominantly utilizes the shallow benthic-pelagic habitat and food resources. Compared to the deep-water morphs, the LO-morph had smaller head relative to body size. The LO-morph exhibited traits typical for both shallow-water benthic feeding (e.g., large body depths and small eyes) and planktivorous feeding in the pelagic habitat (e.g., streamlined body shape and small mouth). The development of morphological differences within the same deep-water habitat for the PB- and PP-morphs highlights the potential of biotic factors and ecological interactions to promote further divergence in the evolution of polymorphism in a tentative incipient speciation process. The diversity of deep-water charr in this study represents a novelty in the Arctic charr polymorphism as a truly deep-water piscivore morph has to our knowledge not been described elsewhere.

  15. Installation of deep water sub-sea equipment

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Jack; Demian, Nabil [SBM-IMODCO Inc., Houston, TX (UNited States)

    2004-07-01

    Offshore oil developments are being planned in water depths exceeding 2000 m. Lowering and positioning large, heavy sub sea hardware, using conventional methods, presents new technical challenges in these ultra deep waters. In 3000 m a safe lift using conventional steel cables will require more capacity to support the cable self weight than the static payload. Adding dynamic loads caused by the motions of the surface vessel can quickly cause the safe capacity of the wire to be exceeded. Synthetic ropes now exist to greatly reduce the lowering line weight. The lower stiffness of these synthetic ropes aggravate the dynamic line tensions due to vessel motions and relatively little is known about the interaction of these ropes on the winches and sheaves required for pay-out and haul-in of these lines under dynamic load. Usage of conventional winches would damage the synthetic rope and risk the hardware being deployed. Reliable and economic installation systems that can operate from existing installation vessels are considered vital for ultra deep-water oil development. The paper describes a Deep Water Sub-Sea Hardware Deployment system consisting of a buoy with variable, pressure-balanced buoyancy, which is used to offset most of the payload weight as it is lowered. The buoyant capacity is controlled by air pumped into the tank from the surface vessel through a reinforced hose. The buoy and payload motion are isolated from the deployment line surface dynamics using a simple passive heave compensator mounted between the buoy and the bottom of the deployment rope. The system components, functionality and dynamic behavior are presented in the paper. (author)

  16. Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand

    Science.gov (United States)

    Radloff, K. A.; Zheng, Y.; Michael, H. A.; Stute, M.; Bostick, B. C.; Mihajlov, I.; Bounds, M.; Huq, M. R.; Choudhury, I.; Rahman, M. W.; Schlosser, P.; Ahmed, K. M.; van Geen, A.

    2011-11-01

    The consumption of shallow groundwater with elevated concentrations of arsenic is causing widespread disease in many parts of South and Southeast Asia. In the Bengal Basin, a growing reliance on groundwater sourced below 150-m depth--where arsenic concentrations tend to be lower--has reduced exposure. Groundwater flow simulations have suggested that these deep waters are at risk of contamination due to replenishment with high-arsenic groundwater from above, even when deep water pumping is restricted to domestic use. However, these simulations have neglected the influence of sediment adsorption on arsenic migration. Here, we inject arsenic-bearing groundwater into a deep aquifer zone in Bangladesh, and monitor the reduction in arsenic levels over time following stepwise withdrawal of the water. Arsenic concentrations in the injected water declined by 70% after 24h in the deep aquifer zone, owing to adsorption on sediments; concentrations of a co-injected inert tracer remain unchanged. We incorporate the experimentally determined adsorption properties of sands in the deep aquifer zone into a groundwater flow and transport model covering the Bengal Basin. Simulations using present and future scenarios of water-use suggest that arsenic adsorption significantly retards transport, thereby extending the area over which deep groundwater can be used with low risk of arsenic contamination. Risks are considerably lower when deep water is pumped for domestic use alone. Some areas remain vulnerable to arsenic intrusion, however, and we suggest that these be prioritized for monitoring.

  17. Persistence profile of polyaromatic hydrocarbons in shallow and deep Gulf waters and sediments: Effect of water temperature and sediment–water partitioning characteristics

    International Nuclear Information System (INIS)

    Tansel, B.; Fuentes, C.; Sanchez, M.; Predoi, K.; Acevedo, M.

    2011-01-01

    Highlights: ► The half-lives of PAHs in the deep waters (over 1000 m) are about twice longer than the shallow areas (100–150 m). ► In the water column, anthracene levels can decrease by 50% within 1–2 days. ► The half-lives of the PAHs in the sediments are significantly longer than those in the water column. ► The half-life of pyrene in the shallow and deep sediments is 9 and 16 years, respectively. - Abstract: Persistence profiles of selected polyaromatic hydrocarbons (PAHs) were analyzed depending on temperature variations in the water column and water–sediment interactions in the Gulf of Mexico. The PAHs studied include anthracene, fluoranthene, pyrene, and chrysene. The half-lives of PAHs in the deep waters (over 1000 m) are about twice as long as those in the shallow areas (100–150 m), and almost 2.5 times as long as those in the top layer (0–10 m) of the water column. The half-lives of the PAHs in the sediments are significantly longer. Among the PAHs studied, chrysene is the most persistent in the water column, and pyrene is the most persistent in the sediments. The half-life of chrysene in the shallow and deep waters is over 2.5 and about 5 years, respectively. For pyrene, the half-life in the shallow and deep sediments is about 9 and 16 years, respectively.

  18. Deep Water Horizon (HB1006, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Monitor and measure the biological, chemical, and physical environment in the area of the oil spill from the deep water horizon oil rig in the Gulf of Mexico. A wide...

  19. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  20. Deep Water Coral (HB1402, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The cruise will survey and collect samples of deep-sea corals and related marine life in the canyons in the northern Gulf of Maine in U.S. and Canadian waters. The...

  1. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    Science.gov (United States)

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Closed loop deep brain stimulation: an evolving technology.

    Science.gov (United States)

    Hosain, Md Kamal; Kouzani, Abbas; Tye, Susannah

    2014-12-01

    Deep brain stimulation is an effective and safe medical treatment for a variety of neurological and psychiatric disorders including Parkinson's disease, essential tremor, dystonia, and treatment resistant obsessive compulsive disorder. A closed loop deep brain stimulation (CLDBS) system automatically adjusts stimulation parameters by the brain response in real time. The CLDBS continues to evolve due to the advancement in the brain stimulation technologies. This paper provides a study on the existing systems developed for CLDBS. It highlights the issues associated with CLDBS systems including feedback signal recording and processing, stimulation parameters setting, control algorithm, wireless telemetry, size, and power consumption. The benefits and limitations of the existing CLDBS systems are also presented. Whilst robust clinical proof of the benefits of the technology remains to be achieved, it has the potential to offer several advantages over open loop DBS. The CLDBS can improve efficiency and efficacy of therapy, eliminate lengthy start-up period for programming and adjustment, provide a personalized treatment, and make parameters setting automatic and adaptive.

  3. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    Science.gov (United States)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  4. Key technologies for well drilling and completion in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jiaxiang Xia

    2016-12-01

    Full Text Available The Yuanba Gasfield is a large gas field discovered by Sinopec in the Sichuan Basin in recent years, and another main exploration area for natural gas reserves and production increase after the Puguang Gasfield. The ultra-deep sour gas reservoir in the Yuanba Gasfield is characterized by complicated geologic structure, deep reservoirs and complex drilled formation, especially in the continental deep strata which are highly abrasive with low ROP (rate of penetration and long drilling period. After many years of drilling practice and technical research, the following six key drilling and completion technologies for this type reservoir are established by introducing new tools and technologies, developing specialized drill bits and optimizing drilling design. They are: casing program optimization technology for ROP increasing and safe well completion; gas drilling technology for shallow continental strata and high-efficiency drilling technology for deep high-abrasion continental strata; drilling fluid support technologies of gas–liquid conversion, ultra-deep highly-deviated wells and horizontal-well lubrication and drag reduction, hole stability control and sour gas contamination prevention; well cementing technologies for gas medium, deep-well long cementing intervals and ultra-high pressure small space; horizontal-well trajectory control technologies for measuring instrument, downhole motor optimization and bottom hole assembly design; and liner completion modes and completion string optimization technologies suitable for this gas reservoir. Field application shows that these key technologies are contributive to ROP increase and efficiency improvement of 7000 m deep horizontal wells and to significant operational cycle shortening.

  5. Environmental isotopes as early warning tools to control the abstraction of deep ground waters

    International Nuclear Information System (INIS)

    Seiler, K.P.; Maloszewski, P.; Weise, S.M.; Loosli, H.H.

    1999-01-01

    Early warning system for the exploitation of ground water from the passive zone can not be based on the measurement of pollutant concentrations itself. The environmental tracer data are suggested to be used as indicators for changes in conservative mass transport processes from shallow to deep or very deep to deep ground waters

  6. Water Technology Lecture 3: Water Distribution

    OpenAIRE

    Gray, Nicholas Frederick

    2017-01-01

    This is the third lecture in the course Water Technology dealing with water distribution. This is a PowerPoint lecture which is free to use and modify. It was designed to be used in conjunction with the course text Gray, N.F. (2017) Water Science and Technology: An Introduction, published by CRC Press, Oxford. The basis of water distribution is explored including water pipe materials, distribution systems, leakage, water quality problems, pressure issue, water hydrants, effect of floods,...

  7. Cost reduction in deep water production systems

    International Nuclear Information System (INIS)

    Beltrao, R.L.C.

    1995-01-01

    This paper describes a cost reduction program that Petrobras has conceived for its deep water field. Beginning with the Floating Production Unit, a new concept of FPSO was established where a simple system, designed to long term testing, can be upgraded, on the location, to be the definitive production unit. Regarding to the subsea system, the following projects will be considered. (1) Subsea Manifold: There are two 8-well-diverless manifolds designed for 1,000 meters presently under construction and after a value analysis, a new design was achieved for the next generation. Both projects will be discussed and a cost evaluation will also be provided. (2) Subsea Pipelines: Petrobras has just started a large program aiming to reduce cost on this important item. There are several projects such as hybrid (flexible and rigid) pipes for large diameter in deep water, alternatives laying methods, rigid riser on FPS, new material...etc. The authors intend to provide an overview of each project

  8. Deep water challenges for drilling rig design

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M [Transocean Sedco Forex, Houston, TX (United States)

    2001-07-01

    Drilling rigs designed for deep water must meet specific design considerations for harsh environments. The early lessons for rig design came from experiences in the North Sea. Rig efficiency and safety considerations must include structural integrity, isolated/redundant ballast controls, triple redundant DP systems, enclosed heated work spaces, and automated equipment such as bridge cranes, pipe handling gear, offline capabilities, subsea tree handling, and computerized drill floors. All components must be designed to harmonize man and machine. Some challenges which are unique to Eastern Canada include frequent storms and fog, cold temperature, icebergs, rig ice, and difficult logistics. This power point presentation described station keeping and mooring issues in terms of dynamic positioning issues. The environmental influence on riser management during forced disconnects was also described. Design issues for connected deep water risers must insure elastic stability, and control deflected shape. The design must also keep stresses within acceptable limits. Codes and standards for stress limits, flex joints and tension were also presented. tabs., figs.

  9. Assessment of Suitable Areas for Home Gardens for Irrigation Potential, Water Availability, and Water-Lifting Technologies

    Directory of Open Access Journals (Sweden)

    Tewodros Assefa

    2018-04-01

    Full Text Available The study was conducted in Lake Tana Basin of Ethiopia to assess potentially irrigable areas for home gardens, water availability, and feasibility of water-lifting technologies. A GIS-based Multi-Criteria Evaluation (MCE technique was applied to access the potential of surface and groundwater sources for irrigation. The factors affecting irrigation practice were identified and feasibility of water-lifting technologies was evaluated. Pairwise method and expert’s opinion were used to assign weights for each factor. The result showed that about 345,000 ha and 135,000 ha of land were found suitable for irrigation from the surface and groundwater sources, respectively. The rivers could address about 1–1.2% of the irrigable land during dry season without water storage structure whereas groundwater could address about 2.2–2.4% of the irrigable land, both using conventional irrigation techniques. If the seven major dams within the basin were considered, surface water potential would be increased and satisfy about 21% of the irrigable land. If rainwater harvesting techniques were used, about 76% of the basin would be suitable for irrigation. The potential of surface and groundwater was evaluated with respect to water requirements of dominant crops in the region. On the other hand, rope pump and deep well piston hand pump were found with relatively the most (26% and the least (9% applicable low-cost water-lifting technologies in the basin.

  10. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  11. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  12. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  13. Status and prospects of exploration and exploitation key technologies of the deep petroleum resources in onshore China

    Directory of Open Access Journals (Sweden)

    Genshun Yao

    2018-02-01

    Full Text Available In recent years, China's deep oil and gas exploration and exploitation have developed rapidly. Technological advancements have played an important role in the rapid exploration and highly efficient development. Aimed at the complex engineering geological environment of deep oil and gas in China, this paper has combined the four technological systems that have made significant progress, mainly including: (1 seismic imaging and reservoir prediction techniques for deep–burial complex structures, includign “2W1S” technique (wide-band, wide azimuth, and small bin, RTM (Reverse Time Migration, integrated modeling technology for complex structures and variable velocity mapping technique, improving structural interpretation accuracy, ensuring high precision ofimaging, and prediction for deep geological bodies; (2 deep speed raising and efficiency drilling technology series, which significantly improved the drilling speed, in turn reduced the drilling cost and drilling risk; (3 development of a deep high-temperature and high-pressure logging technology series, which provided a guarantee for the accurate identification of reservoir properties and fluid properties; (4 the efficient development technology for deep reservoirs, especially the development and maturity of the reconstruction volume technology, improve the production of single well and the benefit of deep oil and gas development. This paper further points out the improvement direction of the four major technology series of deep oil based on the analysis of the current development of the four major technological systems. Moreover, the development of applicability and economy for technical system is the key to realize high efficiency and low-cost exploration and development of deep oil and gas. Keywords: Deep oil & gas, Exploration and exploitation technologies, Seismic, Logging, Drilling, Petroleum reservoir stimulation

  14. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  15. FY 1998 report on the verification survey of geothermal exploration technology, etc. 2/2. Survey of deep geothermal resource; 1998 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 2/2. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    For the purpose of commercializing deep geothermal resource, a deep exploration well of 4000m class was drilled in the existing geothermal development area to survey the situation of deep geothermal resource existence and the availability. Concretely, the deep geothermal exploration well was drilled for study in the Kakkonda area, Shizukuishi town, Iwate prefecture, to clarify the situation of deep geothermal resource existence and the whole image of geothermal system. Consideration was made of the deep geothermal exploration method, systematization of deep high temperature drilling technology, and availability of deep geothermal resource. The results of the survey were summed up as follows: 1) general remarks; 2) deep exploration well drilling work; 3) details of the study. This report contained 3). In 3), the items were as follows: heightening of accuracy of the deep geothermal resource exploration method, making of a geothermal model in the Kakkonda area, study of deep drilling technology, study of deep fluid utilization technology, and making of a guide for deep geothermal resource exploration/development in the Kakkonda area. As to the technology of high temperature deep geothermal well drilling, studies were made of the borehole cooling method, mud water cooling method, survey of deterioration of casing with age, etc. (NEDO)

  16. A New Calculation Method of Dynamic Kill Fluid Density Variation during Deep Water Drilling

    Directory of Open Access Journals (Sweden)

    Honghai Fan

    2017-01-01

    Full Text Available There are plenty of uncertainties and enormous challenges in deep water drilling due to complicated shallow flow and deep strata of high temperature and pressure. This paper investigates density of dynamic kill fluid and optimum density during the kill operation process in which dynamic kill process can be divided into two stages, that is, dynamic stable stage and static stable stage. The dynamic kill fluid consists of a single liquid phase and different solid phases. In addition, liquid phase is a mixture of water and oil. Therefore, a new method in calculating the temperature and pressure field of deep water wellbore is proposed. The paper calculates the changing trend of kill fluid density under different temperature and pressure by means of superposition method, nonlinear regression, and segment processing technique. By employing the improved model of kill fluid density, deep water kill operation in a well is investigated. By comparison, the calculated density results are in line with the field data. The model proposed in this paper proves to be satisfactory in optimizing dynamic kill operations to ensure the safety in deep water.

  17. The circulation of deep water in the Tasman and Coral seas

    International Nuclear Information System (INIS)

    Harries, J.R.

    1976-07-01

    The physical oceanography of the Tasman and Coral Seas is reviewed with an emphasis on the deep currents. There are many uncertainties in the deep circulation pattern. The available data are used to develop an idealised circulation to estimate the likely path taken by water flowing from a depth of 5000 m in the Tasman Sea. The model suggests that the water would finally reach the surface layers south of the Antarctic Convergence with a median delay of 600 years. (author)

  18. From deep water to deep rock: MWD/LWD technology advancing

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, D.

    2004-01-01

    Measurement-while-drilling (MWD) and logging-while-drilling (LWD) tools that help operators learn about the geological formations they drill while drilling them, are discussed. New MWD and LWD systems are quickly being developed for both offshore and onshore applications, even though both services are relatively expensive. For the offshore market a new seismic-while-drilling LWD tool has just been introduced by Schlumberger. The seismicVision tool acquires and transmits traditional borehole seismic data without interrupting drilling operations. Similarly, Baker-Atlas also introduced a new LWD system for onshore applications that uses advanced downhole sensing technology in a shorter, lighter, reliable instrument package to carry out well logging with accuracy and precision at up to twice the speed of conventional technology. Precision Drilling Inc. also has a new MWD system out, called HEL (hostile environment logging) which is designed to address shortcomings of currently available deepwater MWD systems. The HEL MWD is rated to operate at downhole pressures of up to 30,000 psi and temperatures of up to 180 degrees C. The entire system, including telemetry tools, environmental severity measurement sensors, and other sophisticated measuring tools are housed in one drill collar. photos.

  19. Technological and profitable analysis of airlifting in deep sea mining systems

    NARCIS (Netherlands)

    Ma, W.; van Rhee, C.; Schott, D.L.

    2017-01-01

    Airlifting technology utilized in deep-sea mining (DSM) industry was proposed in the 70s of last century, which was triggered by the discovery of vast amounts of mineral resources on the seabed. The objective of this paper is to assess the technological feasibility and profitability analyses in

  20. Deep waters : the Ottawa River and Canada's nuclear adventure

    International Nuclear Information System (INIS)

    Krenz, F.H.K.

    2004-01-01

    Deep Waters is an intimate account of the principal events and personalities involved in the successful development of the Canadian nuclear power system (CANDU), an achievement that is arguably one of Canada's greatest scientific and technical successes of the twentieth century. The author tells the stories of the people involved and the problems they faced and overcame and also relates the history of the development of the town of Deep River, built exclusively for the scientists and employees of the Chalk River Project and describes the impact of the Project on the traditional communities of the Ottawa Valley. Public understanding of nuclear power has remained confused, yet decisions about whether and how to use it are of vital importance to Canadians today - and will increase in importance as we seek to maintain our standard of living without doing irreparable damage to the environment around us. Deep Waters examines the issues involved in the use of nuclear power without over-emphasizing its positive aspects or avoiding its negative aspects.

  1. Bermuda Deep Water Caves 2011: Dives of Discovery between 20110607 and 20110627

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During the three week NOAA Ocean Exploration project, Bermuda Deep Water Caves 2011: Dives of Discovery, our four member deep team, aided by numerous assistants,...

  2. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  3. Control of fjordic deep water renewal by runoff modification

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, A; Edelsten, D J

    1976-09-01

    Loch Etive is a Scottish fjord subject to fresh-water run off which renders it markedly brackish. This paper considers the frequency of deep water renewal, developing a model which relates the timing of all such renewals to runoff records. Using the model one can examine the effect of changes caused by interference with the natural runoff pattern.

  4. Deep water dissolution in Marine Isotope Stage 3 from the northern South China Sea

    Science.gov (United States)

    Huang, B.

    2015-12-01

    The production, transport, deposition, and dissolution of carbonate profoundly implicate the global carbon cycle affect the inventory and distribution of dissolved organic carbon (DIC) and alkalinity (ALK), which drive atmospheric CO2 change on glacial-interglacial timescale. the process may provide significant clues for improved understanding of the mechanisms that control the global climate system. In this study, we calculate and analyze the foraminiferal dissolution index (FDX) and the fragmentation ratios of planktonic foraminifera over 60-25 ka based on samples from 17924 and ODP 1144 in the northeastern South China Sea (SCS) to reconstruct the deep water carbonate dissolution during Marine Isotope Stage 3 (MIS 3). Result shows that the dissolution of carbonate increases gradually at 17924 but keeps stable at ODP 1144. The changes of FDX coincidence with that of fragmentation ratios at 17924 and ODP 1144 suggest both indexes can be used as reliable dissolving proxies of planktonic foraminifera. Comparing FDX and fragmentation ratios at both sites, we find the FDX and fragmentation ratios at 17924 are higher than those at 1144, indicating that carbonate dissolution is intenser in 17924 core during MIS 3. The increasing total percentage of both N. dutertrei and G. bulloides during MIS 3 reveals the rising primary productivity that may lead to deep water [CO32-] decrease. The slow down of thermohaline circulation may increase deep water residence time and accelerate carbonate dissolution. In addition, the covering of ice caps, iron supply and increased surface-water stratification also contribute to atmosphere CO2 depletion and [CO32-] decrease in deep water. In the meanwhile, regression result from colder temperature increases the input of ALK and DIC to the deep ocean and deepens the carbonate saturation depth, which makes the deep water [CO32-] rise. In ODP Site 1144, the decrease in [CO32-] caused by more CO2 restored in deep water is equal to the increase in

  5. THE OPTIMAL RATIO OF NILE TILAPIA (Oreochromis niloticus AND COMMON CARP (Cyprinus carpio FOR IMPROVING PRODUCTIVITY ON DEEP WATER POND

    Directory of Open Access Journals (Sweden)

    Imam Taufik

    2013-06-01

    Full Text Available Pond productivity can be increased by applied polyculture system in the deep pond. The purpose of this experiment is to examine the optimal ratio between nile tilapia and common carp, in order to increase the productivity. Nine concrete tanks (15 m2 with water depth of 2.2 m and were completed by water inlet, water outlet, and aeration. Both of nile tilapia and common carp with size ranging of 5-8 cm in total length were used. Stock density was 150 ind./m2. The difference ratio of both fish tilapia and carp of fish stocked as a treatment. The fish ratio this experiment were as followed: A 100%; B 80%:20%; C 60%:40%. Fish fed by pellet until at ad libitum. The duration of experiment was 100 days. Parameters such as survival, growth, and productivity were observed every ten days during the experiment period. Water quality parameters were also periodically observed. The results showed that survival of nile tilapia among the treatments were not significantly different (P>0.05 where survival of common carp at B treatment was better than C treatment (P<0.05. The highest of growth of absolute weight (94.86±2.85 g and total length (14.71±1 cm of nile tilapia at B treatment was found (P<0.05 where the best of growth of absolute weight (106.52±10.47 g and total length (11.57±1.78 cm of common carp was also found at B treatment (P<0.05. Biomass productivity at B treatment was the highest compared with A treatment (P<0.05. Combination between polyculture and the deep water pond technology could increase productivity. The polyculture system and the deep water pond technology would be able to keep constant water quality within in the threshold accordance with the regulation for fish culture.

  6. Real time wave measurements and wave hindcasting in deep waters

    Digital Repository Service at National Institute of Oceanography (India)

    Anand, N.M.; Mandal, S.; SanilKumar, V.; Nayak, B.U.

    Deep water waves off Karwar (lat. 14~'45.1'N, long. 73~'34.8'E) at 75 m water depth pertaining to peak monsoon period have been measured using a Datawell waverider buoy. Measured wave data show that the significant wave height (Hs) predominantly...

  7. Achievement report for fiscal 2000 on New Sunshine Project aiding program. Development of hot water utilizing power generation plant (Development of deep seated geothermal resource collection technologies - development of deep seated geothermal resource production technologies); 2000 nendo nessui riyo hatsuden plant to kaihatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu (Shinbu chinetsu shigen seisan gijutu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Items of information about deep seated geothermal resource production technologies were collected, and tests and studies were performed using actual wells. This paper summarizes the achievements in fiscal 2000. In developing the PTDS logging technology, it was verified in the actual well tests that the measured density of a D probe is consistent with the theoretical density, and the accuracy is satisfactory. The extended time measurement at fixed points on temperatures of fluids in the wells, pressures, flow rates, and fluid densities has identified chronological change of the characteristics of the fluids in the wells, including the enthalpy, proving them to be effective in well control. In developing the PTC monitoring technology, a fluid extracting machine for the downhole fluid sampler was fabricated, which has collected hot water successfully in the actual well twice out of seven attempts. In developing the high temperature tracer monitoring technology, experiments were performed using vapor phase and liquid phase tracers, whereas re-discharge of all the tracer materials was identified. In developing the scale preventing and removing technology, a silica recovering device capable of treating hot water at 0.6 ton per hour as maximum was fabricated, and the site tests were performed by using cation-based coagulant. (NEDO)

  8. Deep Corals, Deep Learning: Moving the Deep Net Towards Real-Time Image Annotation

    OpenAIRE

    Lea-Anne Henry; Sankha S. Mukherjee; Neil M. Roberston; Laurence De Clippele; J. Murray Roberts

    2016-01-01

    The mismatch between human capacity and the acquisition of Big Data such as Earth imagery undermines commitments to Convention on Biological Diversity (CBD) and Aichi targets. Artificial intelligence (AI) solutions to Big Data issues are urgently needed as these could prove to be faster, more accurate, and cheaper. Reducing costs of managing protected areas in remote deep waters and in the High Seas is of great importance, and this is a realm where autonomous technology will be transformative.

  9. Geometrical constraint on the localization of deep water formation

    Science.gov (United States)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and

  10. Hydrophobic deep eutectic solvents as water-immiscible extractants

    NARCIS (Netherlands)

    Osch, van D.J.G.P.; Zubeir, L.F.; Bruinhorst, van den A.; Alves da Rocha, M.A.; Kroon, M.C.

    2015-01-01

    Hydrophobic deep eutectic solvents (DESs) are presented for the first time. They consist of decanoic acid and various quaternary ammonium salts. The effect of the alkyl chains on the hydrophobicity and the equilibrium of the two-phase DES–water system were investigated. These new DESs were

  11. Chronobiology of deep-water decapod crustaceans on continental margins.

    Science.gov (United States)

    Aguzzi, Jacopo; Company, Joan B

    2010-01-01

    Species have evolved biological rhythms in behaviour and physiology with a 24-h periodicity in order to increase their fitness, anticipating the onset of unfavourable habitat conditions. In marine organisms inhabiting deep-water continental margins (i.e. the submerged outer edges of continents), day-night activity rhythms are often referred to in three ways: vertical water column migrations (i.e. pelagic), horizontal displacements within benthic boundary layer of the continental margin, along bathymetric gradients (i.e. nektobenthic), and endobenthic movements (i.e. rhythmic emergence from the substrate). Many studies have been conducted on crustacean decapods that migrate vertically in the water column, but much less information is available for other endobenthic and nektobenthic species. Also, the types of displacement and major life habits of most marine species are still largely unknown, especially in deep-water continental margins, where steep clines in habitat factors (i.e. light intensity and its spectral quality, sediment characteristics, and hydrography) take place. This is the result of technical difficulties in performing temporally scheduled sampling and laboratory testing on living specimens. According to this scenario, there are several major issues that still need extensive research in deep-water crustacean decapods. First, the regulation of their behaviour and physiology by a biological clock is almost unknown compared to data for coastal species that are easily accessible to direct observation and sampling. Second, biological rhythms may change at different life stages (i.e. size-related variations) or at different moments of the reproductive cycle (e.g. at egg-bearing) based on different intra- and interspecific interactions. Third, there is still a major lack of knowledge on the links that exist among the observed bathymetric distributions of species and selected autoecological traits that are controlled by their biological clock, such as the

  12. Exploring deep potential aquifer in water scarce crystalline rocks

    Indian Academy of Sciences (India)

    out to explore deep groundwater potential zone in a water scarce granitic area. As existing field condi- ... Decision support tool developed in granitic ter- .... cially in terms of fracture system, the aquifer char- acteristics ... Methodologies used.

  13. Property changes of deep and bottom waters in the Western Tropical Atlantic

    Science.gov (United States)

    Herrford, Josefine; Brandt, Peter; Zenk, Walter

    2017-06-01

    The flow of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) contributes to the Atlantic meridional overturning circulation. Changes in the associated water mass formation might impact the deep ocean's capacity to take up anthropogenic CO2 while a warming of the deep ocean significantly contributes to global sea level rise. Here we compile historic and recent shipboard measurements of hydrography and velocity to provide a comprehensive view of water mass distribution, pathways, along-path transformation and long-term temperature changes of NADW and AABW in the western South and Equatorial Atlantic. We confirm previous results which show that the northwest corner of the Brazil Basin represents a splitting point for the southward/northward flow of NADW/AABW. The available measurements sample water mass transformation along the two major routes for deep and bottom waters in the tropical to South Atlantic - along the deep western boundary and eastward, parallel to the equator - as well as the hot-spots of extensive mixing. We find lower NADW and lighter AABW to form a highly interactive transition layer in the northern Brazil Basin. The AABW north of 5°S is relatively homogeneous with only lighter AABW being able to pass through the Equatorial Channel (EQCH) into the North Atlantic. Spanning a period of 26 years, our data also allow an estimation of long-term temperature trends in abyssal waters. We find a warming of 2.5±0.7•10-3 °C yr-1 of the waters in the northern Brazil Basin at temperatures colder than 0.6 °C throughout the period 1989-2014 and can relate this warming to a thinning of the dense AABW layer. Whereas isopycnal heave is the dominant effect which defines the vertical distribution of temperature trends on isobars, we also find temperature changes on isopycnals in the lower NADW and AABW layers. There temperatures on isopycnals exhibit decadal variations with warming in the 1990s and cooling in the 2000s - the contributions to the

  14. Design of a water-powered DTH hammer for deep drilling application

    Science.gov (United States)

    Cho, Min Jae; Kim, Donguk; Oh, Joo Young; Yook, Se-Jin; Kim, Young Won

    2017-11-01

    A DTH (Down-the-hole) hammer powered by highly pressurized fluid is a drilling tool using the motion of percussion of a drill bit. In retrospect, a DTH by using compressed air as a power source has been widely used in drilling industries such as applications of mining, geothermal etc. On the other hand, another type of a DTH that uses pressurized water, called a water hammer, has recently seen deep drilling applications, while it has been rarely investigated. In this study, we designed a water-powered DTH hammer which mainly consists of several components such as a piston, a poppet valve, a cap and a bit for deep drilling applications. We optimized the components of the hammer on the basis of the results of 1D analysis using commercial software of AMESIM. An experimental study has been also conducted to investigate a performance of the designed water hammer. We measured a pressure distribution inside the hammer system as a function of time, and it thus estimates a frequency of impaction of the bit, which has been also analyzed in frequency domain. In addition, some important parameters have been discussed in conjunction with a limitation of impaction frequency as input pressure. We believe that this study provides design rules of a water-based DTH for deep drilling applications. This work is supported by KITECH of Korean government.

  15. Technologies in deep and ultra-deep well drilling: Present status, challenges and future trend in the 13th Five-Year Plan period (2016–2020

    Directory of Open Access Journals (Sweden)

    Haige Wang

    2017-09-01

    Full Text Available During the 12th Five-Year Plan period (2011–2015, CNPC independently developed a series of new drilling equipment, tools and chemical materials for deep and ultra-deep wells, including six packages of key drilling equipment: rigs for wells up to 8000 m deep, quadruple-joint-stand rigs, automatic pipe handling devices for rigs for wells being 5000/7000 m deep, managed pressure drilling systems & equipment, gas/fuel alternative combustion engine units, and air/gas/underbalanced drilling systems; seven sets of key drilling tools: automatic vertical well drilling tools, downhole turbine tools, high-performance PDC bits, hybrid bits, bit jet pulsation devices, no-drilling-surprise monitoring system, & casing running devices for top drive; and five kinds of drilling fluids and cementing slurries: high temperature and high density water-based drilling fluids, oil-based drilling fluids, high temperature and large temperature difference cementing slurry, and ductile cement slurry system. These new development technologies have played an important role in supporting China's oil and gas exploration and development business. During the following 13th Five-Year Plan period (2016–2020, there are still many challenges to the drilling of deep and ultra-deep wells, such as high temperatures, high pressures, narrow pressure window, wellbore integrity and so on, as well as the enormous pressure on cost reduction and efficiency improvement. Therefore, the future development trend will be focused on the development of efficient and mobile rigs, high-performance drill bits and auxiliary tools, techniques for wellbore integrity and downhole broadband telemetry, etc. In conclusion, this study will help improve the ability and level of drilling ultra-deep wells and provide support for oil and gas exploration and development services in China. Keywords: Deep well, Ultra-deep well, Drilling techniques, Progress, Challenge, Strategy, CNPC

  16. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    Science.gov (United States)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  17. Application of a water balance model for estimating deep infiltration in a karstic watershed

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Calijuri

    2011-12-01

    Full Text Available The current scenario of water scarcity evidences the need for an adequate management of water resources. In karstic regions, the water flow through fractures significantly increases the water infiltration rate, which explains the small number of rivers and the importance of groundwater for urban supply. Therefore, the water balance is necessary since it may aid decision making processes and guide water management projects. The objective of this paper was to perform the water balance of a watershed situated in a karstic region quantifying infiltration, runoff and evapotranspiration. The study area is located near the Tancredo Neves International Airport in Confins, in the state of Minas Gerais, Brazil. Most of the area consists of forest formations (40.9%, and pastures (34.5%. In order to estimate deep infiltration, the BALSEQ model was used. BALSEQ is a numeric model of sequential water balance in which deep infiltration at the end of the day is given by the difference between daily precipitation and the sum of surface runoff, evapotranspiration and the variation of the amount of water stored in the soil. The results show that approximately 60% of total annual precipitation result in deep infiltration, considering the recharge period from September to March. After the dry period, the areas with no vegetal cover present higher deep infiltration. However, over the months, the contribution of the vegetated areas becomes greater, showing the importance of these areas to aquifer recharge.

  18. Low water FGD technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-11-15

    Conventional flue gas desulphurisation (FGD) systems require large supplies of water. Technologies which reduce water usage are becoming more important with the large number of FGD systems being installed in response to ever tightening emission regulations. Reducing water loss is particularly important in arid regions of the world. This report reviews commercial and near commercial low water FGD processes for coal-fired power plants, including dry, semi-dry and multi-pollutant technologies. Wet scrubbers, the most widely deployed FGD technology, account for around 10–15% of the water losses in power plants with water cooling systems. This figure is considerably higher when dry/air cooling systems are employed. The evaporative water losses can be reduced by some 40–50% when the flue gas is cooled before it enters the wet scrubber, a common practice in Europe and Japan. Technologies are under development to capture over 20% of the water in the flue gas exiting the wet scrubber, enabling the power plant to become a water supplier instead of a consumer. The semi-dry spray dry scrubbers and circulating dry scrubbers consume some 60% less water than conventional wet scrubbers. The commercial dry sorbent injection processes have the lowest water consumption, consuming no water, or a minimal amount if the sorbent needs hydrating or the flue gas is humidified to improve performance. Commercial multi-pollutant systems are available that consume no water.

  19. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim; Yang, J. K.; Lee, O. O.; Wang, Y.; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, P. Y.

    2013-01-01

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  20. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  1. Weldability prequalification of steels for deep water service

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Michael D. [Acute Technological Services, Inc., Houston, TX (United States); Ibarra, S. Jim [BP America (United States); Fazackerley, W.J. [EWI Microalloying, Houston, TX (United States)

    2004-07-01

    The weldability of steels for deep water applications must be determined long before welding procedures are qualified. The weldments of deep water equipment such as steel Catenary risers (SCRs) are subjected to currents which result in high cyclic stresses. It is imperative that steels selected for such service have high CTOD fracture toughness values after welding to ensure good defect tolerance. Through fracture mechanics analyses, these CTOD values are used to determine the defect acceptance criteria that is used for inspection of such weldments. The base metal and weld metal are more easily obtained, but because the weld joint design changes the position of the HAZs, the CTOD value for the HAZ is usually a combination of the base, weld consumable, and HAZ. The value obtained from such a test is suspect, and may give an optimistic value if the weld metal or base metal have high CTOD values. This paper discusses the various strategies for determining the true weldability long before construction commences, using API RP 2Z (1) Type tests for prequalification of base materials. (author)

  2. Analyses of the deep borehole drilling status for a deep borehole disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Choi, Heui Joo; Lee, Min Soo; Kim, Geon Young; Kim, Kyung Su [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of disposal for radioactive wastes is not only to isolate them from humans, but also to inhibit leakage of any radioactive materials into the accessible environment. Because of the extremely high level and long-time scale radioactivity of HLW(High-level radioactive waste), a mined deep geological disposal concept, the disposal depth is about 500 m below ground, is considered as the safest method to isolate the spent fuels or high-level radioactive waste from the human environment with the best available technology at present time. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general status of deep drilling technologies was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, very preliminary applicability of deep drilling technology for deep borehole disposal analyzed. In this paper, as one of key technologies of deep borehole disposal system, the general status of deep drilling technologies in oil industry, geothermal industry and geo scientific field was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, the very preliminary applicability of deep drilling technology for deep borehole disposal such as relation between depth and diameter, drilling time and feasibility classification was analyzed.

  3. Basic Aspects of Deep Soil Mixing Technology Control

    Science.gov (United States)

    Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław

    2017-10-01

    Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.

  4. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    Science.gov (United States)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  5. The Search for Eight Glacial Cycles of Deep-Water Temperatures and Global ice Volume From the Southern Hemisphere

    Science.gov (United States)

    Ferretti, P.; Elderfield, H.; Greaves, M.; McCave, N.

    2007-12-01

    It has been recently suggested "a substantial portion of the marine 100-ky cycle that has been object of so much attention over the past quarter of a century is, in reality, a deep-water temperature signal and not an ice volume signal" (Shackleton, 2000). There are currently few records available of deep-water temperature variations during the Pleistocene and most of our understanding is inferred from the oxygen isotopic composition (δ18O) of benthic foraminifera from deep-sea sediments. However, variations in benthic δ18O reflect some combination of local to regional changes in water mass properties (largely deep- water temperature) as well as global changes in seawater δ18O (δ18Osw) resulting from the growth and decay of continental ice. Recent studies suggest that benthic foraminiferal Mg/Ca may be useful in reconstructing deep-water temperature changes, but the application of this method to benthic species has been hampered by a number of unresolved issues, such as uncertainties related to the calibration for benthic Mg at the coldest temperatures. Here we present deep-sea Mg/Ca and δ18O records for the past eight glacial cycles in benthic foraminiferal ( Uvigerina spp.) calcite from a marine sediment core recovered in the mid Southern latitudes. Ocean Drilling Program Site 1123 was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (3290 m water depth). This site lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. Temperatures derived via pore fluid modeling of the last glacial maximum are available from Site 1123 and represent an important tool to constrain deep-water temperatures estimates using Mg/Ca. In selected time slices, we measured B/Ca ratios in Uvigerina in order to gain information on the deep-water carbonate saturation state and have data of Mg

  6. Modification of deep waters in Marguerite Bay, western Antarctic Peninsula, caused by topographic overflows

    Science.gov (United States)

    Venables, Hugh J.; Meredith, Michael P.; Brearley, J. Alexander

    2017-05-01

    Circumpolar Deep Water (CDW) intrudes from the mid-layers of the Antarctic Circumpolar Current onto the shelf of the western Antarctic Peninsula, providing a source of heat and nutrients to the regional ocean. It is well known that CDW is modified as it flows across the shelf, but the mechanisms responsible for this are not fully known. Here, data from underwater gliders with high spatial resolution are used to demonstrate the importance of detailed bathymetry in inducing multiple local mixing events. Clear evidence for overflows is observed in the glider data as water flows along a deep channel with multiple transverse ridges. The ridges block the densest waters, with overflowing water descending several hundred metres to fill subsequent basins. This vertical flow leads to entrainment of overlying colder and fresher water in localised mixing events. Initially this process leads to an increase in bottom temperatures due to the temperature maximum waters descending to greater depths. After several ridges, however, the mixing is sufficient to remove the temperature maximum completely and the entrainment of colder thermocline waters to depth reduces the bottom temperature, to approximately the same as in the source region of Marguerite Trough. Similarly, it is shown that deep waters of Palmer Deep are warmer than at the same depth at the shelf break. The exact details of the transformations observed are heavily dependent on the local bathymetry and water column structure, but glacially-carved troughs and shallow sills are a common feature of the bathymetry of polar shelves, and these types of processes may be a factor in determining the hydrographic conditions close to the coast across a wider area.

  7. Experimental study on the influence of chemical sensitizer on pressure resistance in deep water of emulsion explosives

    Science.gov (United States)

    Liu, Lei; zhang, Zhihua; Wang, Ya; Qin, hao

    2018-03-01

    The study on the pressure resistance performance of emulsion explosives in deep water can provide theoretical basis for underwater blasting, deep-hole blasting and emulsion explosives development. The sensitizer is an important component of emulsion explosives. By using reusable experimental devices to simulate the charge environment in deep water, the influence of the content of chemical sensitizer on the deep-water pressure resistance performance of emulsion explosives was studied. The experimental results show that with the increasing of the content of chemical sensitizer, the deep-water pressure resistance performance of emulsion explosives gradually improves, and when the pressure is fairly large, the effect is particularly pronounced; in a certain range, with the increase of the content of chemical sensitizer, that emulsion explosives’ explosion performance also gradually improve, but when the content reaches a certain value, the explosion properties declined instead; under the same emulsion matrix condition, when the content of NANO2 is 0.2%, that the emulsion explosives has good resistance to water pressure and good explosion properties. The correctness of the results above was testified in model blasting.

  8. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  9. Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation

    Science.gov (United States)

    Wu, Peili; Haines, Keith

    1996-03-01

    This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for

  10. Simulation of Deep Water Renewal in Crater Lake, Oregon, USA under Current and Future Climate Conditions

    Science.gov (United States)

    Piccolroaz, S.; Wood, T. M.; Wherry, S.; Girdner, S.

    2015-12-01

    We applied a 1-dimensional lake model developed to simulate deep mixing related to thermobaric instabilities in temperate lakes to Crater Lake, a 590-m deep caldera lake in Oregon's Cascade Range known for its stunning deep blue color and extremely clear water, in order to determine the frequency of deep water renewal in future climate conditions. The lake model was calibrated with 6 years of water temperature profiles, and then simulated 10 years of validation data with an RMSE ranging from 0.81°C at 50 m depth to 0.04°C at 350-460 m depth. The simulated time series of heat content in the deep lake accurately captured extreme years characterized by weak and strong deep water renewal. The lake model uses wind speed and lake surface temperature (LST) as boundary conditions. LST projections under six climate scenarios from the CMIP5 intermodel comparison project (2 representative concentration pathways X 3 general circulation models) were evaluated with air2water, a simple lumped model that only requires daily values of downscaled air temperature. air2water was calibrated with data from 1993-2011, resulting in a RMSE between simulated and observed daily LST values of 0.68°C. All future climate scenarios project increased water temperature throughout the water column and a substantive reduction in the frequency of deepwater renewal events. The least extreme scenario (CNRM-CM5, RCP4.5) projects the frequency of deepwater renewal events to decrease from about 1 in 2 years in the present to about 1 in 3 years by 2100. The most extreme scenario (HadGEM2-ES, RCP8.5) projects the frequency of deepwater renewal events to be less than 1 in 7 years by 2100 and lake surface temperatures never cooling to less than 4°C after 2050. In all RCP4.5 simulations the temperature of the entire water column is greater than 4°C for increasing periods of time. In the RCP8.5 simulations, the temperature of the entire water column is greater than 4°C year round by the year 2060 (HadGEM2

  11. Evidence for the bioerosion of deep-water corals by echinoids in the Northeast Atlantic

    Science.gov (United States)

    Stevenson, Angela; Rocha, Carlos

    2013-01-01

    In situ video observations of echinoids interacting with deep-sea coral are common in the deep-sea, but paradoxically the deep-sea literature is devoid of reports of bioerosion by extant echinoids. Here we present evidence of contemporary bioerosion of cold-water coral by four species of deep-sea echinoids, Gracilechinus elegans, Gracilechinus alexandri, Cidaris cidaris, and Araeosoma fenestratum, showing that they actively predate on the living framework of reef building corals, Lophelia pertusa and Madrepora oculata, in the NE Atlantic. Echinoid specimens were collected in six canyons located in the Bay of Biscay, France and two canyons on the north side of the Porcupine Bank and Goban Spur, Ireland. A total of 44 live specimens from the four taxa (9 of G. elegans, 4 of G. alexandri, 21 of C. cidaris and 10 of A. fenestratum) showed recent ingestion of the coral infrastructure. Upon dissection, live coral skeleton was observed encased in a thick mucus layer within the gastrointestinal tract of G. elegans and G. alexandri while both live and dead coral fragments were found in C. cidaris and A. fenestratum. Echinoid bioerosion limits the growth of shallow-water reefs. Our observations suggest that echinoids may also play an important role in the ecology of deep-water coral reefs.

  12. Development and verification of deep-water blowout models

    International Nuclear Information System (INIS)

    Johansen, Oistein

    2003-01-01

    Modeling of deep-water releases of gas and oil involves conventional plume theory in combination with thermodynamics and mass transfer calculations. The discharges can be understood in terms of multiphase plumes, where gas bubbles and oil droplets may separate from the water phase of the plume and rise to the surface independently. The gas may dissolve in the ambient water and/or form gas hydrates--a solid state of water resembling ice. All these processes will tend to deprive the plume as such of buoyancy, and in stratified water the plume rise will soon terminate. Slick formation will be governed by the surfacing of individual oil droplets in a depth and time variable current. This situation differs from the conditions observed during oil-and-gas blowouts in shallow and moderate water depths. In such cases, the bubble plume has been observed to rise to the surface and form a strong radial flow that contributes to a rapid spreading of the surfacing oil. The theories and behaviors involved in deepwater blowout cases are reviewed and compared to those for the shallow water blowout cases

  13. Northrop Grumman TR202 LOX/LH2 Deep Throttling Engine Technology Project Status

    Science.gov (United States)

    Gromski, Jason; Majamaki, Annik; Chianese, Silvio; Weinstock, Vladimir; Kim, Tony S.

    2010-01-01

    NASA's Propulsion and Cryogenic Advanced Development (PCAD) project is currently developing enabling propulsion technologies in support of future lander missions. To meet lander requirements, several technical challenges need to be overcome, one of which is the ability for the descent engine(s) to operate over a deep throttle range with cryogenic propellants. To address this need, PCAD has enlisted Northrop Grumman Aerospace Systems (NGAS) in a technology development effort associated with the TR202 engine. The TR202 is a LOX/LH2 expander cycle engine driven by independent turbopump assemblies and featuring a variable area pintle injector similar to the injector used on the TR200 Apollo Lunar Module Descent Engine (LMDE). Since the Apollo missions, NGAS has continued to mature deep throttling pintle injector technology. The TR202 program has completed two series of pintle injector testing. The first series of testing used ablative thrust chambers and demonstrated igniter operation as well as stable performance at discrete points throughout the designed 10:1 throttle range. The second series was conducted with calorimeter chambers and demonstrated injector performance at discrete points throughout the throttle range as well as chamber heat flow adequate to power an expander cycle design across the throttle range. This paper provides an overview of the TR202 program, describing the different phases and key milestones. It describes how test data was correlated to the engine conceptual design. The test data obtained has created a valuable database for deep throttling cryogenic pintle technology, a technology that is readily scalable in thrust level.

  14. A long history of equatorial deep-water upwelling in the Pacific Ocean

    Science.gov (United States)

    Zhang, Yi Ge; Pagani, Mark; Henderiks, Jorijntje; Ren, Haojia

    2017-06-01

    Cold, nutrient- and CO2-rich waters upwelling in the eastern equatorial Pacific (EEP) give rise to the Pacific cold tongue. Quasi-periodic subsidence of the thermocline and attenuation in wind strength expressed by El Niño conditions decrease upwelling rates, increase surface-water temperatures in the EEP, and lead to changes in regional climates both near and far from the equatorial Pacific. EEP surface waters have elevated CO2 concentrations during neutral (upwelling) or La Niña (strong upwelling) conditions. In contrast, approximate air-sea CO2 equilibrium characterizes El Niño events. One hypothesis proposes that changes in physical oceanography led to the establishment of a deep tropical thermocline and expanded mixed-layer prior to 3 million years ago. These effects are argued to have substantially reduced deep-water upwelling rates in the EEP and promoted a "permanent El Niño-like" climate state. For this study, we test this supposition by reconstructing EEP "excess CO2" and upwelling history for the past 6.5 million years using the alkenone-pCO2 methodology. Contrary to previous assertions, our results indicate that average temporal conditions in the EEP over the past ∼6.5 million years were characterized by substantial CO2 disequilibrium and high nutrient delivery to surface waters - characteristics that imply strong upwelling of deep waters. Upwelling appears most vigorous between ∼6.5 to 4.5 million years ago coinciding with high accumulation rates of biogenic material during the late Miocene - early Pliocene "biogenic bloom".

  15. Development of technologies for utilizing geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In verifying the effectiveness of the deep geothermal resource exploration technology, development is being carried out on a fracture-type reservoir exploration method. The seismic exploration method investigates detailed structures of underground fracture systems by using seismic waves generated on the ground surface. Verification experiments for fiscal 1994 were carried out by selecting the Kakkonda area in which small fracture networks form reservoir beds. Geothermal resources in deep sections (deeper than 2000 m with temperatures higher than 350{degree}C) are promising in terms of amount of the resources, but anticipated with difficulty in exploration and impediments in drilling. To avoid these risks, studies are being progressed on the availability of resources in deep sections, their utilization possibility, and technologies of effective exploration and drilling. This paper summarizes the results of deep resource investigations during fiscal 1994. It also describes such technological development as hot water utilizing power generation. Development is performed on a binary cycle power generation plant which pumps and utilizes hot water of 150 to 200{degree}C by using a downhole pump. The paper also reports development on element technologies for hot rock power generation systems. It also dwells on development of safe and effective drilling and production technologies for deep geothermal resources.

  16. Turbidite Systems in Brazil: From Outcrops to Deep Waters

    Science.gov (United States)

    ´Avila, R. S. F.; Arienti, L. M.; Vesely, F. F.; Santos, S. F.; Voelcker, H. E.

    2012-04-01

    Reliable depositional models depend on careful observation of rocks, to allow the correct description and interpretation of facies and facies associations and their formative processes. They are of paramount importance to characterize deep water depositional systems, which still are the most important siliciclastic reservoirs for the oil industry. Turbidite sandstone reservoirs are responsible for almost 80% of petroleum produced from Brazilian Basins. A comprehensive characterization of these systems, depicting the main differences in terms of their geometries and facies will be presented. In Brazilian basins most of the turbidites were originated from extremely catastrophic flows, essentially linked to fluvio-deltaic influx that generates very dense hyperpycnal flows. Based on outcrop and subsurface data, two main zones with characteristic geometries and facies associations are commonly identified in turbidite systems: the transference zone and the depositional zone. Erosion and bypass dominate in the transference zone, which frequently occur as submarine canyons and channels. Turbidite channels can contain residual conglomeratic facies and coarser sandstone facies. The depositional area comprises lobes that constitute a major exploratory target because of their greater lateral continuity and the concentration of clean reservoirs. Turbidite lobes can be tabular or lenticular deposits associated with channelized bodies. Taking into account outcrop and subsurface data we can distinguish five main turbidite systems: foredeep turbidite systems, prodelta turbidite systems, mixed turbidite systems, meandering channels turbidite systems and channel-levee turbidite systems. In the Brazilian margin, deep water turbidites and other gravity-flow deposits are commonly associated with bottom current deposits, largely in Tertiary strata. Such bottom current deposits, often called contourites, are also important petroleum reservoirs, commonly mistaken as turbidites. Integration

  17. Evidence of Enhanced Respired Carbon in Eastern Equatorial Pacific Deep-Waters over the last 30,000 years

    Science.gov (United States)

    Umling, N. E.; Thunell, R.

    2016-12-01

    Rapid decreases in glacial deep water reservoir ages have been observed in the Eastern Equatorial Pacific (EEP; this study), North Pacific (Rae et al., 2014), Southwest Pacific (Sikes et al., 2016), and North Atlantic (Skinner et al., 2013). It has been hypothesized that release of a deep ocean 14C-depleted, respired-carbon reservoir to the surface ocean and atmosphere is the most likely mechanism for the observed increases in atmospheric CO2 concentrations recorded in ice cores during the last glacial-interglacial transition (Broecker and Barker, 2007). This study examines whether oxygenation, organic carbon flux, and carbonate chemistry in the EEP deep-waters reflect an increase in respired carbon associated with recorded 14C-depletions using isotopic and trace element records from three Panama Basin cores (2,650-3,200 m water-depth). An increase in glacial deep-water respired carbon storage would result in a shift of DIC speciation towards lower carbonate ion concentrations along with deoxygenation of bottom waters. Specifically, we use the boron to calcium (B/Ca) and uranium to calcium (U/Ca) ratios of the benthic foraminifera Cibicidoides wuellerstorfi to reconstruct deep-water carbonate ion concentration (Yu and Elderfield, 2007; Raizsch et al., 2011). Additionally, bottom water oxygenation is estimated from the difference in δ13C of benthic foraminifera living in pore waters at the anoxic boundary and of those living in bottom water (Δ δ13C; Hoogakker et al., 2015, 2016), while carbon flux was assessed from the U/Ca and Cd/Ca of foraminiferal authigenic coatings.

  18. Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models

    Directory of Open Access Journals (Sweden)

    Hans Burchard

    2006-06-01

    Full Text Available The ventilation of the Baltic Sea deep wateris driven by either gale-forced barotropic or baroclinic salt water inflows.During the past two decades, the frequency of large barotropic inflows(mainly in winter has decreased and the frequency of medium-intensity baroclinic inflows(observed in summer has increased. As a result of entrainment of ambient oxygen-rich water,summer inflows are also important for the deep water ventilation.Recent process studies of salt water plumes suggest that the entrainmentrates are generally smaller than those predicted by earlier entrainment models.In addition to the entrance area, the Słupsk Sill andthe Słupsk Furrow are important locations for the transformation of water masses. Passing the Słupsk Furrow, both gravity-driven dense bottom flows and sub-surface cyclonic eddies,which are eroded laterally by thermohaline intrusions,ventilate the deep water of the eastern Gotland Basin.A recent study of the energy transfer from barotropic to baroclinicwave motion using a two-dimensional shallow water model suggests thatabout 30% of the energy needed below the halocline for deep water mixingis explained by the breaking of internal waves.In the deep water decade-long stagnation periods with decreasingoxygen and increasing hydrogen sulphide concentrations might be caused by anomalously largefreshwater inflows and anomalously high mean zonal wind speeds. In differentstudies the typical response time scale of average salinity was estimated tobe between approximately 20 and 30 years.The review summarizes recent research resultsand ends with a list of open questions and recommendations.

  19. Developmental plasticity of shell morphology of quagga mussels from shallow and deep-water habitats of the Great Lakes.

    Science.gov (United States)

    Peyer, Suzanne M; Hermanson, John C; Lee, Carol Eunmi

    2010-08-01

    The invasive zebra mussel (Dreissena polymorpha) has quickly colonized shallow-water habitats in the North American Great Lakes since the 1980s but the quagga mussel (Dreissena bugensis) is becoming dominant in both shallow and deep-water habitats. While quagga mussel shell morphology differs between shallow and deep habitats, functional causes and consequences of such difference are unknown. We examined whether quagga mussel shell morphology could be induced by three environmental variables through developmental plasticity. We predicted that shallow-water conditions (high temperature, food quantity, water motion) would yield a morphotype typical of wild quagga mussels from shallow habitats, while deep-water conditions (low temperature, food quantity, water motion) would yield a morphotype present in deep habitats. We tested this prediction by examining shell morphology and growth rate of quagga mussels collected from shallow and deep habitats and reared under common-garden treatments that manipulated the three variables. Shell morphology was quantified using the polar moment of inertia. Of the variables tested, temperature had the greatest effect on shell morphology. Higher temperature (approximately 18-20 degrees C) yielded a morphotype typical of wild shallow mussels regardless of the levels of food quantity or water motion. In contrast, lower temperature (approximately 6-8 degrees C) yielded a morphotype approaching that of wild deep mussels. If shell morphology has functional consequences in particular habitats, a plastic response might confer quagga mussels with a greater ability than zebra mussels to colonize a wider range of habitats within the Great Lakes.

  20. Spawning period and first maturity size of deep water rose shrimp ...

    African Journals Online (AJOL)

    Administrator

    2011-11-02

    Nov 2, 2011 ... index (GSI), ranged throughout the year, reaching its peak two times; first peak occurred in autumn ... The deep water rose shrimp, Parapenaeus longirostris .... macroscopic examination of the gonads (development and.

  1. Deep-sea mining: Economic, technical, technological, and environmental considerations for sustainable development

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    investment of $1.95 billion as capital expenditure and $9 billion as operating expenditure for a single deep-sea mining venture. In view of high investment, technological challenges and economic considerations, private-public cooperation could be an effective...

  2. Development and Improvement of Devices for Hydrogen Generation and Oxidation in Water Detritiation Facility Based on CECE Technology

    International Nuclear Information System (INIS)

    Rozenkevich, M.; Andreev, B.; Magomedbekov, E.; Park, Yu.; Sakharovsky, Yu.; Perevezentsev, A.

    2005-01-01

    Water detritiation facility based on CECE (Combined Electrolysis and Catalytic Exchange) technology needs an electrolyser for water conversion to hydrogen. Use of a conventional alkali electrolyser requires a very deep purification of hydrogen stream from alkali prior to injection to LPCE (Liquid Phase Catalytic Exchange) column. In some applications conversion of detritiated hydrogen back into water is required. This is usually performed via hydrogen catalytic oxidation in a recombiner. This paper presents results of study to improve hydrogen and oxygen purification for alkali electrolysers and develop a hydrogen recombiner based on use of hydrophobic catalyst

  3. Key Technology Research on the Efficient Exploitation and Comprehensive Utilization of Resources in the Deep Jinchuan Nickel Deposit

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yang

    2017-08-01

    Full Text Available To understand the resource features and geology in the deep Jinchuan nickel deposit, difficult geological conditions were systematically analyzed, including high stress, fragmentized ore rock, prevalent deformation, difficult tunnel support, complicated rock mechanics, and low mining recovery. An integrated technology package was built for safe, efficient, and continuous mining in a deep, massive, and complex nickel and cobalt mine. This was done by the invention of a large-area continuous mining method with honeycomb drives; the establishment of ground control theory and a technology package for high-stress and fragmented ore rock; and the development of a new type of backfilling cement material, along with a deep backfilling technology that comprises the pipeline transport of high-density slurry with coarse aggregates. In this way, good solutions to existing problems were found to permit the efficient exploitation and comprehensive utilization of the resources in the deep Jinchuan nickel mine. In addition, a technological demonstration in an underground mine was performed using the cemented undercut-and-fill mining method for stressful, fragmented, and rheological rock.

  4. Technological Advances in Deep Brain Stimulation.

    Science.gov (United States)

    Ughratdar, Ismail; Samuel, Michael; Ashkan, Keyoumars

    2015-01-01

    Functional and stereotactic neurosurgery has always been regarded as a subspecialty based on and driven by technological advances. However until recently, the fundamentals of deep brain stimulation (DBS) hardware and software design had largely remained stagnant since its inception almost three decades ago. Recent improved understanding of disease processes in movement disorders as well clinician and patient demands has resulted in new avenues of development for DBS technology. This review describes new advances both related to hardware and software for neuromodulation. New electrode designs with segmented contacts now enable sophisticated shaping and sculpting of the field of stimulation, potentially allowing multi-target stimulation and avoidance of side effects. To avoid lengthy programming sessions utilising multiple lead contacts, new user-friendly software allows for computational modelling and individualised directed programming. Therapy delivery is being improved with the next generation of smaller profile, longer-lasting, re-chargeable implantable pulse generators (IPGs). These include IPGs capable of delivering constant current stimulation or personalised closed-loop adaptive stimulation. Post-implantation Magnetic Resonance Imaging (MRI) has long been an issue which has been partially overcome with 'MRI conditional devices' and has enabled verification of DBS lead location. Surgical technique is considering a shift from frame-based to frameless stereotaxy or greater role for robot assisted implantation. The challenge for these contemporary techniques however, will be in demonstrating equivalent safety and accuracy to conventional methods. We also discuss potential future direction utilising wireless technology allowing for miniaturisation of hardware.

  5. Sources of the deep water masses in the northern Red Sea

    OpenAIRE

    Said, M.A.

    1998-01-01

    The hydrographic structure of the northern Red Sea indicated that, the surface waters of temperature around 22°C, salinity of 40.1OO%o and dt = 28.1 might sink to depths between 400-500 m by convective overturn, contributing to the formation of the mid-deep Red Sea waters. Below the 500 db depth down to the bottom the water column is stable. The geostrophic circulation clearly indicated an inflow of water from the Red Sea towards NNW, along the main axis of the sea. Arriving at the nort...

  6. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Kwang-Tsao Shao

    2014-12-01

    Full Text Available The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  7. Practices and prospect of petroleum engineering technologies in ultra-deep sour gas reservoirs, Yuanba Gasfield, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-12-01

    Full Text Available Located in the Sichuan Basin, the Yuanba Gasfield is the deepest marine sour gas field among those developed in China so far. Its biohermal gas reservoir of the Upper Permian Changxing Fm is characterized by ultra depth, high content of hydrogen sulfide, medium–low porosity and permeability, and small reservoir thickness. Economic evaluation on it shows that horizontal well drilling is the only way to develop this gas reservoir efficiently and to reduce the total development investment. At present, the petroleum engineering technology for this type of ultra-deep sour gas reservoir is less applied in the world, so an ultra-deep horizontal well is subject to a series of petroleum engineering technology difficulties, such as safe and fast well drilling and completion, mud logging, well logging, downhole operation, safety and environmental protection. Based on the successful development experience of the Puguang Gasfield, therefore, Sinopec Southwest Petroleum Engineering Co., Ltd. took the advantage of integrated engineering geology method to carry out specific technical research and perform practice diligently for 7 years. As a result, 18 key items of technologies for ultra-deep sour gas reservoirs were developed, including horizontal-well drilling speed increasing technology, horizontal-well mud logging and well logging technology, downhole operation technology, and safety and environmental protection technology. These technologies were applied in 40 wells during the first and second phases of productivity construction of the Yuanba Gasfield. All the 40 wells have been built into commercial gas wells, and the productivity construction goal of 3.4 billion m3 purified gas has also been achieved. These petroleum engineering technologies for ultra-deep sour gas fields play a reference role in exploring and developing similar gas reservoirs at home and abroad.

  8. Sustainability evaluation of water supply technologies

    DEFF Research Database (Denmark)

    Godskesen, Berit

    Sustainability evaluation of water supply systems is important to include in the decision making process when planning new technologies or resources for water supply. In Denmark the motivations may be many and different for changing technology, but since water supply is based on groundwater...... the main driver is the limitations of the available resource from the groundwater bodies. The environmental impact of products and systems can be evaluated by life-cycle assessment (LCA) which is a comprehensive and dominant decision support tool capable of evaluating a water system from the cradle......-criteria decision analysis method was used to develop a decision support system and applied to the study. In this thesis a standard LCA of the drinking water supply technology of today (base case) and 4 alternative cases for water supply technologies is conducted. The standard LCA points at the case rain...

  9. Dalia integrated production bundle (IPB): an innovative riser solution for deep water fields

    Energy Technology Data Exchange (ETDEWEB)

    Reals, Th Boscals de; Gloaguen, M.; Roche, F. [Total E and P (Angola); Marion, A.; Poincheval, A. [Technip, Paris (France)

    2008-07-01

    The Dalia field is located 210 km north west of Luanda (Angola), about 140 km from shore in 1400 meter water-depth. It was the second major discovery out of 15 made in the block 17 operated by Total. The Dalia Umbilical, Flow lines and Risers EPCI Contract was awarded in 2003. The sea-line network to connect and control the 71 wells and 9 manifolds consist of the following: 40 km of insulated pipe in pipe (12 inches into 17 inches) production flow lines; 45 km of 12 inches water and gas injection lines; 6 off 1.7 km flexible water and gas injection risers; 8 off 1.65 km flexible Integrated Production Bundle (IPB) risers; 75 km of control umbilicals. The flow assurance and associated insulation requirement of the production transport system was one of the main challenges of the project. With a crude temperature of 45 deg C at the wellhead and the required minimum temperature of 35 deg C on arrival at the FPSO, this problem was complex. Understanding that, due to the Joule Thompson effect of the riser gas lift, a 'built in' loss of about 5 deg C is induced and together with further losses through the sub sea pipelines, some up to 6 km long, the agreed solution was 'pipe in pipe' for the production flow lines. The innovative flexible IPB riser, incorporating gas lift and heating to keep the fluid temperature above hydrate formation zone, was the selected riser solution. The IPB is new technology for deep water, developed by Technip for Dalia, and consists of a 12 inches nominal central flexible, surrounded by layers of heat tracing cables, small bore gas lift lines, optical fibres and many insulation layers with an Overall Heat Transfer Coefficient of approximately 3,4 W/m{sup 2}K. After an earlier research and development programme, a further extensive qualification programme was conducted during the course of the project, culminating with the deep water testing phase offshore Brazil. The IPB was then approved for fabrication and installation

  10. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The

  11. Near-bottom pelagic bacteria at a deep-water sewage sludge disposal site

    Energy Technology Data Exchange (ETDEWEB)

    Takizawa, M.; Straube, W.L.; Hill, R.T.; Colwell, R.R.

    1994-01-01

    The epibenthic bacterial community at deep-ocean sewage sludge disposal site DWD-106, located approximately 106 miles (ca. 196 km) off the coast of New Jersey, was assessed for changes associated with the introduction of large amounts of sewage sludge. Mixed cultures and bacterial isolates obtained from water overlying sediment core samples collected at the deep-water (2,500 m) municipal sewage disposal site were tested for the ability to grow under in situ conditions of temperature and pressure. The responses of cultures collected at a DWD-106 station heavily impacted by sewage sludge were compared with those of samples collected from a station at the same depth which was not contaminated by sewage sludge. Significant differences were observed in the ability of mixed bacterial cultures and isolates from the two sites to grow under deep-sea pressure and temperature conditions. The levels of sludge contamination were established by enumerating Clostridium perfringens, a sewage indicator bacterium, in sediment samples from the two sites. (Copyright (c) 1993, American Society for Microbiology.)

  12. Distribution of Quercus agrifolia mycorrhizae deep within weathered bedrock: a potential mechanism for transport of stored water

    Science.gov (United States)

    M. Bornyasz; R. Graham; M. Allen

    2002-01-01

    In southwestern California, Quercus agrifolia distribution closely matches regions of granitic regolith. High annual evapotranspiration demand and inherent shallow soil conditions lead to a dependence on a deep rooting system and an ability to access water from deep within the regolith. Most of the plant available water in weathered granitic rock is...

  13. Analysis on shock wave speed of water hammer of lifting pipes for deep-sea mining

    Science.gov (United States)

    Zhou, Zhi-jin; Yang, Ning; Wang, Zhao

    2013-04-01

    Water hammer occurs whenever the fluid velocity in vertical lifting pipe systems for deep-sea mining suddenly changes. In this work, the shock wave was proven to play an important role in changing pressures and periods, and mathematical and numerical modeling technology was presented for simulated transient pressure in the abnormal pump operation. As volume concentrations were taken into account of shock wave speed, the experiment results about the pressure-time history, discharge-time history and period for the lifting pipe system showed that: as its concentrations rose up, the maximum transient pressure went down, so did its discharges; when its volume concentrations increased gradually, the period numbers of pressure decay were getting less and less, and the corresponding shock wave speed decreased. These results have highly coincided with simulation results. The conclusions are important to design lifting transporting system to prevent water hammer in order to avoid potentially devastating consequences, such as damage to components and equipment and risks to personnel.

  14. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  15. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  16. [Effects of deep plowing time during the fallow period on water storage-consumption characteristics and wheat yield in dry-land soil.

    Science.gov (United States)

    Dang, Jian You; Pei, Xue Xia; Zhang, Ding Yi; Wang, Jiao Ai; Zhang, Jing; Wu, Xue Ping

    2016-09-01

    Through a three-year field trail, effects of deep plowing time during the fallow period on water storage of 0-200 cm soil before sowing, water consumption of growth period, and growth and development of wheat were investigated. Results demonstrated that soil water storage (SWS) of the fallow period was influenced by deep plowing time, precipitation, and rainfall distribution. With postponing the time of deep plowing in the fallow period, SWS was increased firstly, and then decreased. SWS with deep plowing in early or middle of August was 23.9-45.8 mm more than that with deep plowing in mid-July. It would benefit SWS when more precipitation occurred in the fallow period or more rainfall was distributed in August and September. Deep plowing at a proper time could facilitate SWS, N and P absorption of wheat, and the number of stems before winter and the spike number. The yield of wheat with deep plowing in early or middle August was 3.67%-18.2% higher than that with deep plowing in mid-July, and it was positively correlated with water storage of 0-200 cm soil during the fallow period and SWS of each soil layer during the wheat growth period. However, this correlation coefficient would be weakened by adequate rainfall in spring, the critical growing period for wheat. The time of deep plowing mainly affected the water consumption at soil layer of 60-140 cm during wheat growth. Under current farming conditions of south Shanxi, the increased grain yield of wheat could be achieved by combining the measures of high wheat stubble and wheat straw covering for holding soil water and deep plowing between the Beginning of Autumn (August 6th) and the Limit of Heat (August 21st) for promoting soil water penetration characteristics to improve the number of stems before winter and spike.

  17. Water transparency measurements in the deep Ionian Sea

    CERN Document Server

    Anassontzis, E G; Belias, A; Fotiou, A; Grammatikakis, G; Kontogiannis, H; Koske, P; Koutsoukos, S; Lykoussis, V; Markopoulos, E; Psallidas, A; Resvanis, L K; Siotis, I; Stavrakakis, S; Stavropoulos, G; Zhukov, V A

    2010-01-01

    A long optical base line spectrophotometer designed to measure light transmission in deep sea waters is described. The variable optical path length allows measurements without the need for absolute or external calibration. The spectrophotometer uses eight groups of uncollimated light sources emitting in the range 370–530 nm and was deployed at various depths at two locations in the Ionian Sea that are candidate sites for a future underwater neutrino telescope. Light transmission spectra at the two locations are presented and compared.

  18. The deep-water spiny lobster Palinurus gilchristi is one of five ...

    African Journals Online (AJOL)

    spamer

    The deep-water spiny lobster Palinurus gilchristi is one of five ... conditions because all features that can be used to determine the ... growth as a function of CL were calculated for each ..... (>85 mm CL) may bear eggs more than once per year.

  19. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  20. Channel Extension in Deep-Water Distributive Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  1. Degradation of CMOS image sensors in deep-submicron technology due to γ-irradiation

    Science.gov (United States)

    Rao, Padmakumar R.; Wang, Xinyang; Theuwissen, Albert J. P.

    2008-09-01

    In this work, radiation induced damage mechanisms in deep submicron technology is resolved using finger gated-diodes (FGDs) as a radiation sensitive tool. It is found that these structures are simple yet efficient structures to resolve radiation induced damage in advanced CMOS processes. The degradation of the CMOS image sensors in deep-submicron technology due to γ-ray irradiation is studied by developing a model for the spectral response of the sensor and also by the dark-signal degradation as a function of STI (shallow-trench isolation) parameters. It is found that threshold shifts in the gate-oxide/silicon interface as well as minority carrier life-time variations in the silicon bulk are minimal. The top-layer material properties and the photodiode Si-SiO2 interface quality are degraded due to γ-ray irradiation. Results further suggest that p-well passivated structures are inevitable for radiation-hard designs. It was found that high electrical fields in submicron technologies pose a threat to high quality imaging in harsh environments.

  2. Soil Desiccation Techniques Strategies For Immobilization Of Deep Vadose Contaminants At The Hanford Central Plateau

    International Nuclear Information System (INIS)

    Benecke, M.W.; Chronister, G.B.; Truex, M.J.

    2012-01-01

    Deep vadose zone contamination poses some of the most difficult remediation challenges for the protection of groundwater at the Hanford Site where processes and technologies are being developed and tested for use in the on-going effort to remediate mobile contamination in the deep vadose zone, the area deep beneath the surface. Historically, contaminants were discharged to the soil along with significant amounts of water, which continues to drive contaminants deeper in the vadose zone toward groundwater. Soil desiccation is a potential in situ remedial technology well suited for the arid conditions and the thick vadose zone at the Hanford Site. Desiccation techniques could reduce the advance of contaminants by removing the pore water to slow the rate of contaminants movement toward groundwater. Desiccation technologies have the potential to halt or slow the advance of contaminants in unsaturated systems, as well as aid in reduction of contaminants from these same areas. Besides reducing the water flux, desiccation also establishes capillary breaks that would require extensive rewetting to resume pore water transport. More importantly, these techniques have widespread application, whether the need is to isolate radio nuclides or address chemical contaminant issues. Three different desiccation techniques are currently being studied at Hanford.

  3. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  4. A Plane Target Detection Algorithm in Remote Sensing Images based on Deep Learning Network Technology

    Science.gov (United States)

    Shuxin, Li; Zhilong, Zhang; Biao, Li

    2018-01-01

    Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.

  5. Feasibility evaluation of downhole oil/water separator (DOWS) technology.

    Energy Technology Data Exchange (ETDEWEB)

    Veil, J. A.; Langhus, B. G.; Belieu, S.

    1999-01-31

    The largest volume waste stream associated with oil and gas production is produced water. A survey conducted by the American Petroleum Institute estimated that 20.9 billion barrels of produced water were disposed of in 1985 (Wakim 1987). Of this total, 91% was disposed of through disposal wells or was injected for enhanced oil recovery projects. Treatment and disposal of produced water represents a significant cost for operators. A relatively new technology, downhole oil/water separators (DOWS), has been developed to reduce the cost of handling produced water. DOWS separate oil and gas from produced water at the bottom of the well and reinject some of the produced water into another formation or another horizon within the same formation, while the oil and gas are pumped to the surface. Since much of the produced water is not pumped to the surface, treated, and pumped from the surface back into a deep formation, the cost of handling produced water is greatly reduced. When DOWS are used, additional oil may be recovered as well. In cases where surface processing or disposal capacity is a limiting factor for further production within a field, the use of DOWS to dispose of some of the produced water can allow additional production within that field. Simultaneous injection using DOWS minimizes the opportunity for contamination of underground sources of drinking water (USDWs) through leaks in tubing and casing during the injection process. This report uses the acronym 'DOWS' although the technology may also be referred to as DHOWS or as dual injection and lifting systems (DIALS). Simultaneous injection using DOWS has the potential to profoundly influence the domestic oil industry. The technology has been shown to work in limited oil field applications in the United States and Canada. Several technical papers describing DOWS have been presented at oil and gas industry conferences, but for the most part, the information on the DOWS technology has not been widely

  6. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  7. Cable-Based Water Leak Detection Technology

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Water leaks can be considered as a serious problem from many sources such as water supply and return chains, air conditioning units, cold-water chillers, clogged drains, damaged skylights or windows, or even construction errors. The new water leak detection technologies can provide significant advantages in cost, reliability, and easy adoption have continued since the traditional technology mainly focusing on a spot detector revealed several limitations.

  8. Astronomically paced changes in deep-water circulation in the western North Atlantic during the middle Eocene

    Science.gov (United States)

    Vahlenkamp, Maximilian; Niezgodzki, Igor; De Vleeschouwer, David; Bickert, Torsten; Harper, Dustin; Kirtland Turner, Sandra; Lohmann, Gerrit; Sexton, Philip; Zachos, James; Pälike, Heiko

    2018-02-01

    North Atlantic Deep Water (NADW) currently redistributes heat and salt between Earth's ocean basins, and plays a vital role in the ocean-atmosphere CO2 exchange. Despite its crucial role in today's climate system, vigorous debate remains as to when deep-water formation in the North Atlantic started. Here, we present datasets from carbonate-rich middle Eocene sediments from the Newfoundland Ridge, revealing a unique archive of paleoceanographic change from the progressively cooling climate of the middle Eocene. Well-defined lithologic alternations between calcareous ooze and clay-rich intervals occur at the ∼41-kyr beat of axial obliquity. Hence, we identify obliquity as the driver of middle Eocene (43.5-46 Ma) Northern Component Water (NCW, the predecessor of modern NADW) variability. High-resolution benthic foraminiferal δ18O and δ13C suggest that obliquity minima correspond to cold, nutrient-depleted, western North Atlantic deep waters. We thus link stronger NCW formation with obliquity minima. In contrast, during obliquity maxima, Deep Western Boundary Currents were weaker and warmer, while abyssal nutrients were more abundant. These aspects reflect a more sluggish NCW formation. This obliquity-paced paleoceanographic regime is in excellent agreement with results from an Earth system model, in which obliquity minima configurations enhance NCW formation.

  9. A system of automated processing of deep water hydrological information

    Science.gov (United States)

    Romantsov, V. A.; Dyubkin, I. A.; Klyukbin, L. N.

    1974-01-01

    An automated system for primary and scientific analysis of deep water hydrological information is presented. Primary processing of the data in this system is carried out on a drifting station, which also calculates the parameters of vertical stability of the sea layers, as well as their depths and altitudes. Methods of processing the raw data are described.

  10. Fiscal 1996 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the deep geothermal resource collecting technology (development of the deep geothermal resource producing technology); 1996 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen seisan gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper reported the results of the fiscal 1996 R and D of the deep geothermal resource collecting/producing technology. In the design of the total development, characteristics of the well mouth of the deep reservoir were examined to evaluate properties of deep geothermal resource, and the necessity of the pressure design, etc. were clarified. As to PTSD logging technology, conducted were improvement of PT probe, manufacture of a sonde of which S probe was integrated with memory/battery modules, and the actual well experiment. Concerning PTC monitoring technology, an experiment was carried out on a high temperature use optical fiber GI type, and it was shown that the type was on a commercial level. Further, a prototype sampler with 300degC heat resistance was trially manufactured, and a test to confirm its work was conducted in the well in the Corn Wall area of the U.K. As to the production control technology, studied was the arrangement of the production control technology for deep geothermal resource. Moreover, an experiment was made to examine the effect of metal ions coexisting when silica in the deep fluid precipitates. 46 refs., 107 figs., 38 tabs.

  11. Aquatek introduces new oily water technology

    International Nuclear Information System (INIS)

    Anon.

    2006-01-01

    Many conventional oily water separators cause clogged filters on marine vessels, which has led some operators to illegally discharge oily wastes into lakes and oceans. This article presented details of a simple and reliable technology to separate chemically emulsified and mechanically suspended oil particles from water. Designed by Newfoundland entrepreneurs and commercialized by Aquatek Environmental Inc., the Aquatek separator does not require membranes or chemicals and can be configured to function without moving parts or external energy. The small size of the separator has made it the subject of considerable interest at marine technology shows. The technology is able to treat highly variable concentrations of oily water without clogging, and works on low oil concentrations as well as fluids consisting of all-free oil. The Aquatek has the ability to separate oil from water as well as water from oil. Tests have indicated that the technology can also be used to treat produced water at oilfields. It was concluded that the separator is a major improvement over other available products. 2 figs

  12. Calculations of Asteroid Impacts into Deep and Shallow Water

    Science.gov (United States)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent

  13. Technological challenges for manganese nodule mining

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    The major technological challenges of deep-sea mining venture involve delineation of mine site and development of mining technology to bring out the minerals from extreme conditions (more than 5 km water depth, 0-3 degrees C temperature and 500 bars...

  14. Geochemical records of salt-water inflows into the deep basins of the Baltic Sea

    DEFF Research Database (Denmark)

    Neumann, T.; Christiansen, C.; Clasen, S.

    1997-01-01

    The estuarine circulation system of the Baltic Sea promotes stable stratification and bottom water anoxia in sedimentary basins of the Baltic proper. Ingressions of saline, oxygen-rich waters from the North Sea replace the oxygen depleted deep water. Timing and extent of the ingressions vary...... on time-scales of years to decades, and are largely determined by wind-strength and storm frequency over the North Atlantic Ocean and Europe. Mn/Fe-ratios in sediments from a dated sediment core of the Gotland Deep (250 m water depth) record variations in redox conditions that can be linked to historical......-pressure areas over the North Atlantic in more recent times. The last three events have also been observed by hydrographic measurements. During the long time stagnation periods, Fe and Mn will be segregated into a particulate phase (iron sulfide) which accumulates at the seafloor and a dissolved phase (Mn2...

  15. Occurrence and biogeography of hydroids (Cnidaria: Hydrozoa) from deep-water coral habitats off the southeastern United States

    Science.gov (United States)

    Henry, Lea-Anne; Nizinski, Martha S.; Ross, Steve W.

    2008-06-01

    Deep-water coral habitats off the southeastern USA (SEUS) support diverse fish and invertebrate assemblages, but are poorly explored. This study is the first to report on the hydroids collected from these habitats in this area. Thirty-five species, including two species that are likely new to science, were identified from samples collected primarily by manned submersible during 2001-2005 from deep-water coral habitats off North Carolina to east-central Florida. Eleven of the species had not been reported since the 19th to mid-20th century. Ten species, and one family, the Rosalindidae, are documented for the first time in the SEUS. Latitudinal ranges of 15 species are extended, and the deepest records in the western North Atlantic for 10 species are reported. A species accumulation curve illustrated that we continue to add to our knowledge of hydroid diversity in these habitats. Sexually mature individuals were collected for 19 species during the summer to early autumn months. Most of the observed species (89%) liberate planula larvae as part of their life cycles, suggesting that these species exhibit a reproductive strategy that reduces the risk of dispersal to sub-optimal habitats. Hydroids occurred across various substrata including coral rubble, live corals, rock and other animal hosts including hydroids themselves. All observed species were regionally widespread with typically deep-neritic to bathyal sub-tropical/tropical distributions. Hydroid assemblages from deep-water SEUS coral habitats were most similar to those from adjacent deep-water habitats off the SEUS (17 shared species), and those in the Straits of Florida/Bahamas and Caribbean/West Indian regions (14 and 8 shared species, respectively). The similarity to sub-tropical and tropical assemblages and the richness of plumularioids in the SEUS deep-water coral habitats support the idea of a Pleistocene intrusion of tropical species northwards following an intensification of the Gulf Stream from the

  16. Effects of a deep-water running program on muscle function and functionality in elderly women community dwelling

    Directory of Open Access Journals (Sweden)

    Daisy Alberti

    2017-12-01

    Full Text Available Abstract AIMS The aim of the study was to determine the effects of deep-water running on muscle function and functionality in community dwelling old women. METHODS Older women (n=19 were randomly assigned to one of the two groups: deep-water running (DWR: n=09, 64.33±4.24 years, 75.15±12.53 kg, 160.45±7.52 cm; or control group CG: n=10, 64.40±4.22 years, 74.46±12.39 kg, 158.88±5.48 cm. The DWR group carried out 18 weeks of deep-water running, twice/week 50 min sessions. Dynamic isokinetic strength for the lower limb and functionality was assessed before and after intervention. RESULTS DWR group increased peak torque, total work and average power of the knee and hip flexors and extensors. Additionally showed better performance on gait speed, timed up and go test, five-times-sit-to-stand-test repetitions from a chair as well as the six-minute walk test. CONCLUSION The deep-water running program was effective to improve muscle function and functionality.

  17. Numerical Simulation and Experimental Study of Deep Bed Corn Drying Based on Water Potential

    Directory of Open Access Journals (Sweden)

    Zhe Liu

    2015-01-01

    Full Text Available The concept and the model of water potential, which were widely used in agricultural field, have been proved to be beneficial in the application of vacuum drying model and have provided a new way to explore the grain drying model since being introduced to grain drying and storage fields. Aiming to overcome the shortcomings of traditional deep bed drying model, for instance, the application range of this method is narrow and such method does not apply to systems of which pressure would be an influential factor such as vacuum drying system in a way combining with water potential drying model. This study established a numerical simulation system of deep bed corn drying process which has been proved to be effective according to the results of numerical simulation and corresponding experimental investigation and has revealed that desorption and adsorption coexist in deep bed drying.

  18. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  19. Biogenic Properties of Deep Waters from the Black Sea Reduction (Hydrogen Sulphide) Zone for Marine Algae

    OpenAIRE

    Polikarpov, Gennady G.; Lazorenko, Galina Е.; Тereschenko, Natalya N.

    2015-01-01

    Abstract Generalized data of biogenic properties investigations of the Black Sea deep waters from its reduction zone for marine algae are presented. It is shown on board and in laboratory that after pre-oxidation of hydrogen sulphide by intensive aeration of the deep waters lifted to the surface of the sea, they are ready to be used for cultivation of the Black Sea unicellular, planktonic, and multicellular, benthic, algae instead of artificial medium. Naturally balanced micro- and macroeleme...

  20. Bottom Backscattering Strengths Measured in Shallow and Deep Water

    Science.gov (United States)

    2017-01-18

    Reverberation Experiment 2005 (OREX-05); 0.6−5 kHz • Deep Water o Scotian Continental Rise, August 1993 (19 sites)  Low -Frequency Active 11 (LFA 11...reprocessed cross-CST- experiment results are shown (along with some physics -based model comparisons) in Figs. 9.A-2 and 9.A-3 (Gauss et al., 2008...Backscattering Measured Off the Carolina Coast During Littoral Warfare Advanced Development 98-4 Experiment ,” NRL Memorandum Report 7140- -98-8339

  1. Markov chains and entropy tests in genetic-based lithofacies analysis of deep-water clastic depositional systems

    Directory of Open Access Journals (Sweden)

    Borka Szabolcs

    2016-01-01

    Full Text Available The aim of this study was to examine the relationship between structural elements and the so-called genetic lithofacies in a clastic deep-water depositional system. Process-sedimentology has recently been gaining importance in the characterization of these systems. This way the recognized facies attributes can be associated with the depositional processes establishing the genetic lithofacies. In this paper this approach was presented through a case study of a Tertiary deep-water sequence of the Pannonian-basin.

  2. Water Treatment Technology - Filtration.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on filtration provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: purposes of sedimentation basins and flocculation…

  3. Final disposal of high-level radioactive waste in deep boreholes. An evaluation based on recent research on the bedrock at great depths

    International Nuclear Information System (INIS)

    Aahaell, Karl-Inge

    2006-05-01

    New knowledge in hydrogeology and boring technology have opened the possibility to use deep boreholes as a repository for the Swedish high-level radioactive wastes. The determining property is that the repository can be housed in the stable bedrock at levels where the ground water has no contact with the biosphere and disposal and sealing can take place without disturbing the ground water stratification outside the disposal area. An advantage compared to a shallow repository of KBS-3 type, that is now being planned in Sweden, is that a borehole repository is likely to be technologically more robust, since the concept 'deep boreholes' seems to admit such a deep disposal that the entire disposal area would be surrounded by stable density-layered ground water, while a KBS-3 repository would be surrounded by moving ground water in contact with level close to the surface. This hydrological difference is of great importance for the safety in scenarios with leaching of radioactive substances. A deep repository is also less vulnerable for effects from natural events such as glaciation and earthquakes as well as from technological mishaps and terrorist actions. A crucial factor is, however, that the radioactive waste can be disposed of, in a secure way, at the intended depth, which will require new research and technology development

  4. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    pertusa as a case study (Rengstorf et al., 2014). The study shows that predictive models incorporating hydrodynamic variables perform significantly better than models based on terrain parameters only. They are a potentially powerful tool to improve our understanding of deep-sea ecosystem functioning......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et...

  5. Simulation technology used for risky assessment in deep exploration project in China

    Science.gov (United States)

    jiao, J.; Huang, D.; Liu, J.

    2013-12-01

    Deep exploration has been carried out in China for five years in which various heavy duty instruments and equipments are employed for gravity, magnetic, seismic and electromagnetic data prospecting as well as ultra deep drilling rig established for obtaining deep samples, and so on. The deep exploration is a large and complex system engineering crossing multiple subjects with great investment. It is necessary to employ advanced technical means technology for verification, appraisal, and optimization of geographical prospecting equipment development. To reduce risk of the application and exploration, efficient and allegeable management concept and skills have to be enhanced in order to consolidate management measure and workflow to benefit the ambitious project. Therefore, evidence, prediction, evaluation and related decision strategies have to be taken into accouter simultaneously to meet practical scientific requests and technique limits and extendable attempts. Simulation technique is then proposed as a tool that can be used to carry out dynamic test on actual or imagined system. In practice, it is necessary to combine the simulation technique with the instruments and equipment to accomplish R&D tasks. In this paper, simulation technique is introduced into the R&D process of heavy-duty equipment and high-end engineering project technology. Based on the information provided by a drilling group recently, a digital model is constructed by combination of geographical data, 3d visualization, database management, and visual reality technologies together. It result in push ahead a R&D strategy, in which data processing , instrument application, expected result and uncertainty, and even operation workflow effect environment atmosphere are simulated systematically or simultaneously, in order to obtain an optimal consequence as well as equipment updating strategy. The simulation technology is able to adjust, verify, appraise and optimize the primary plan due to changing in

  6. Deep subsurface drip irrigation using coal-bed sodic water: part II. geochemistry

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.

    2013-01-01

    Waters with low salinity and high sodium adsorption ratios (SARs) present a challenge to irrigation because they degrade soil structure and infiltration capacity. In the Powder River Basin of Wyoming, such low salinity (electrical conductivity, EC 2.1 mS cm-1) and high-SAR (54) waters are co-produced with coal-bed methane and some are used for subsurface drip irrigation(SDI). The SDI system studied mixes sulfuric acid with irrigation water and applies water year-round via drip tubing buried 92 cm deep. After six years of irrigation, SAR values between 0 and 30 cm depth (0.5-1.2) are only slightly increased over non-irrigated soils (0.1-0.5). Only 8-15% of added Na has accumulated above the drip tubing. Sodicity has increased in soil surrounding the drip tubing, and geochemical simulations show that two pathways can generate sodic conditions. In soil between 45-cm depth and the drip tubing, Na from the irrigation water accumulates as evapotranspiration concentrates solutes. SAR values >12, measured by 1:1 water-soil extracts, are caused by concentration of solutes by factors up to 13. Low-EC (-1) is caused by rain and snowmelt flushing the soil and displacing ions in soil solution. Soil below the drip tubing experiences lower solute concentration factors (1-1.65) due to excess irrigation water and also contains relatively abundant native gypsum (2.4 ± 1.7 wt.%). Geochemical simulations show gypsum dissolution decreases soil-water SAR to 14 and decreasing EC in soil water to 3.2 mS cm-1. Increased sodicity in the subsurface, rather than the surface, indicates that deep SDI can be a viable means of irrigating with sodic waters.

  7. Water Technology Innovation: 10 Market Opportunities

    Science.gov (United States)

    The Water Technology Innovation Blueprint offers an overview of market opportunities that include conserving and recovering energy, recovering nutrients, improving water infrastructure, reducing costs for water monitoring, and improving water quality.

  8. Catwell and Sherdaps for deep-water production fields

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, H.P.; Rey, R. [Cameron, 34 - Beziers (France)

    2000-07-01

    The names Catwell and SherDaps are derived from: - Catenary Well - Subsea Horizontal Extended Reach Drilling And Production System. Both systems use the technique of being able to drill a well in deep-water either through a platform catenary carrier pipe or a catenary drilling riser. They also offer, in addition, significant advantages when drilling into shallow reservoirs and the ability to enhance production using platform artificial lift systems or easily serviceable pumps either in the well or at the mud-line. Catwell is a platform system with surface wellheads/trees whereas SherDaps uses a group of subsea wellheads/trees/BOP's that are accessible from one permanent catenary drilling riser. Both systems allow drilling/completing and future well intervention from a central location that otherwise would have required several drilling centres (i.e. platforms or subsea) if the conventional approach was followed. It is envisaged that well targets close to a platform will use well conductors possibly with mud-line wellheads, then Catwell to reach the medium range well targets and SherDaps for long range wells. It is considered that this arrangement would allow a single surface drilling/ production centre to have access to well targets giving a foot print range of up to a 20 km diameter. The total Capex savings on a Deep-water Field Development could be in the region of $200 m on a $1 billion development. Opex will be lower with the ability from the drilling center to quickly access any problem well and rectify any faults, minimising lost production. (authors)

  9. Effect of body biasing on single-event induced charge collection in deep N-well technology

    International Nuclear Information System (INIS)

    Ding Yi; Hu Jian-Guo; Tan Hong-Zhou; Qin Jun-Rui

    2015-01-01

    As the device size decreases, the soft error induced by space ions is becoming a great concern for the reliability of integrated circuits (ICs). At present, the body biasing technique is widely used in highly scaled technologies. In the paper, using the three-dimensional technology computer-aided design (TCAD) simulation, we analyze the effect of the body biasing on the single-event charge collection in deep N-well technology. Our simulation results show that the body biasing mainly affects the behavior of the source, and the effect of body biasing on the charge collection for the nMOSFET and pMOSFET is quite different. For the nMOSFET, the RBB will increase the charge collection, while the FBB will reduce the charge collection. For the pMOSFET, the effect of RBB on the SET pulse width is small, while the FBB has an adverse effect. Moreover, the differenceof the effect of body biasing on the charge collection is compared in deep N-well and twin well. (paper)

  10. Deep-sea geohazards in the South China Sea

    Science.gov (United States)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  11. Cutting the Umbilical: New Technological Perspectives in Benthic Deep-Sea Research

    Directory of Open Access Journals (Sweden)

    Angelika Brandt

    2016-05-01

    Full Text Available Many countries are very active in marine research and operate their own research fleets. In this decade, a number of research vessels have been renewed and equipped with the most modern navigation systems and tools. However, much of the research gear used for biological sampling, especially in the deep-sea, is outdated and dependent on wired operations. The deployment of gear can be very time consuming and, thus, expensive. The present paper reviews wire-dependent, as well as autonomous research gear for biological sampling at the deep seafloor. We describe the requirements that new gear could fulfil, including the improvement of spatial and temporal sampling resolution, increased autonomy, more efficient sample conservation methodologies for morphological and molecular studies and the potential for extensive in situ real-time studies. We present applicable technologies from robotics research, which could be used to develop novel autonomous marine research gear, which may be deployed independently and/or simultaneously with traditional wired equipment. A variety of technological advancements make such ventures feasible and timely. In proportion to the running costs of modern research vessels, the development of such autonomous devices might be already paid off after a discrete number of pioneer expeditions.

  12. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  13. Deep-water anoxygenic photosythesis in a ferruginous chemocline

    DEFF Research Database (Denmark)

    Crowe, Sean; Maresca, J. A.; Jones, CarriAyne

    2014-01-01

    information suggests that deep-water GSB can be supported by a S-cycle, even under ferruginous conditions. The constraints we place on the metabolic capacity and physiology of GSB have important geobiological implications. Biomarkers diagnostic of GSB would be a good proxy for anoxic conditions but could...... not discriminate between euxinic and ferruginous states, and though GSB biomarkers could indicate a substantial GSB community, such a community may exist with very little metabolic activity. The light requirements of GSB indicate that at light levels comparable to those in the OAB of Lake Matano or the Black Sea...

  14. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  15. Chemistry and origin of deep ground water in crystalline rocks; Kemi och genes av djupa grundvatten i kristallint berg

    Energy Technology Data Exchange (ETDEWEB)

    Lagerblad, B [Swedish Cement and Concrete Research Inst., Stockholm (Sweden)

    1995-11-01

    This report discusses the interactions between water and crystalline rocks and its consequences for the chemical composition of the water. It also treats how flows of different types of water are modified by the rock, and the possible consequences for the ground water near a nuclear waste repository. The focus of the work is the changes in composition that ground water gets at deep levels in the rock. Data from Finnsjoen and Aespoe in Sweden show higher salinity in deep rock, which has been interpreted as a result of marine inflow of water during glaciation. Data from other, deeper boreholes in Finland, Canada, Russia, England and Sweden show that the increasing salinity is a rule and very high at great depths, higher than marine water can produce. Therefore, the deep waters from Finnsjoen and Aespoe are probably very old, and the high salinity a result from geological processes. Differing cation and isotopic composition than seawater also indicate geologic water. Differing theories on the origin of the ground water should be regarded in the safety analysis for a repository. 36 refs, 3 figs, 1 tab.

  16. Decontamination technology of contaminated water with flocculating and settling technology

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Adachi, Toshihiro; Watanabe, Noriyuki; Hosobuchi, Shigeki

    2012-01-01

    In the joint research and development of treatment systems of cooling water for cutting asphalt pavement surface with our authors' group, the liquid-solid separation technology by flocculating and settling technology, and the flocculants for the use of systems were developed. In this paper, the developed flocculating and settling technology and the flocculants are discussed first. Next, the demonstration tests of decontamination technology on the contaminated water in swimming pools in an elementary school located at Motomiya City, Fukushima Prefecture had been conducted by use of the stationary purification system of contaminated water and the flocculants compounding with or without iron ferrocianide developed by the preliminary test. It was clarified from the results that ionized cesium (Cs) rarely exists in the stagnant water in pools, ponds, lakes and so on at the time when nine months have passed since Fukushima Dai-ichi nuclear power plant accidents. Further, it is necessary to use the flocculants compounding iron ferrocianide in the case where ionized Cs exists in water. From the above-mentioned results, the following problems were pointed out: One problem was cyanide dissolution in the purified water and the other one was the dissolution from the dehydration sludge. Finally, the high-performance mobile purification units of contaminated water which is capable for carrying with trucks have been developed, and the demonstration test was performed in Minami-soma City, Fukushima Prefecture to purify the contaminated water in a pond and generated by the high-pressure water washing in a Public Hall. From the test results, it was made clear that the dehydration sludge separated by liquid-solid settling of the contaminated water of around 1,000Bq/l became a high radiation dose of about 185,000Bq/l. (author)

  17. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  18. Manipulators in deep ocean environments, needs versus technology

    International Nuclear Information System (INIS)

    Mackey, L.A.; Stenovec, G.M.

    1984-01-01

    As exploration and production proceed into deeper water, remotely operated vehicles (ROVs) and their manipulators acquire many of the tasks now performed by divers in shallower water. The resulting increased complexity of work tasks requires more dexterious manipulators. Even the most sophisticated of the manipulators today cannot perform many of the work tasks now performed by divers in shallower waters. Manipulators cannot yet duplicate the functions of the human hand. How much technology must be improved to perform the desired tasks, and how much adapting of the work task or equipment must be done to achieve a workable underwater robotics environment?

  19. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.; Afonso, Pedro; Fontes, Jorge; Braun, Camrin D.; Santos, Ricardo S.; Skomal, Gregory B.; Berumen, Michael L.

    2014-01-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite

  20. [Phylogenetic diversity of microorganisms associated with the deep-water sponge Baikalospongia intermedia].

    Science.gov (United States)

    Kalyzhnaya, O V; Itskovich, V B

    2014-07-01

    The diversity of bacteria associated with deep-water sponge Baikalospongia intermedia was evaluated by sequence analysis of 16S rRNA genes from two sponge samples collected in Lake Baikal from depths of 550 and 1204 m. A total of 64 operational taxonomic units, belonging to nine bacterial phyla, Proteobacteria (classes Alphaproteobacteria,. Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria), Actinobacteria, Planctomycetes, Cloroflexi, Verrucomicrobia, Acidobacteria, Chlorobi, and Nitrospirae, including candidate phylum WS5, were identified. Phylogenetic analysis showed that the examined communities contained phylotypes exhibiting homology to uncultured bacteria from different lake ecosystems, freshwater sediments, soil and geological formations. Moreover, a number of phylotypes were relative to psychrophilic, methane-oxidizing, sulfate-reducing bacteria, and to microorganisms resistant to the influence of heavy metals. It seems likely that the unusual habitation conditions of deep-water sponges contribute to the taxonomic diversity of associated bacteria and have an influence on the presence of functionally important microorganisms in bacterial communities.

  1. Elements of a decision support system for real-time management ofdissolved oxygen in the San Joaquin River deep water ship channel

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, N.W.T.; Jacobs, Karl; Chen, Carl W.; Stringfellow, WilliamT.

    2004-07-15

    A decision support system (DSS) has been designed and will be implemented over the next three years to assist in the control and management of episodes of low dissolved oxygen (DO) in a Deep Water Ship Channel (DWSC), located near Stockton, California. The DSS integrates three information technology functions. The first part is the collection and management of data on flow, pollution loads and water quality. The second part is the simulation model which can forecast the dissolved oxygen sag in the DWSC and determine management actions necessary to improve dissolved oxygen concentrations. The third part is the graphical user interface, which facilitates the computer simulations and posting of the forecasted dissolved oxygen and remedial measures to a stakeholder group for implementations.

  2. Novel techniques and insights into the deployment of pop-up satellite archival tags on a small-bodied deep-water chondrichthyan

    Science.gov (United States)

    Shipley, Oliver N.; Howey, Lucy A.; Tolentino, Emily R.; Jordan, Lance K. B.; Brooks, Edward J.

    2017-01-01

    Acquiring movement data for small-bodied, deep-water chondrichthyans is challenged by extreme effects of capture and handling stress, and post-release predation, however, it is urgently required to examine important fisheries interactions and assess the ecological role of these species within deep-water food webs. Here we suggest a novel release-cage mechanism to deploy pop-up satellite archival tags, as well as present vertical habitat data for a data-deficient, small-bodied, deep-water bycatch species, the Cuban dogfish (Squalus cubensis). Data were gathered from seven of eight High Rate X-Tags deployed on mature Cuban dogfish in the Exuma Sound, The Bahamas. Recovery periods appeared variable between individuals and are likely driven by capture-and-handling stress and tag burden. Application of the cross-correlation function to time-series depth and temperature data indicated three of the seven individuals suffered mortality through predation, which occurred during daytime, and suggests Cuban dogfish may constitute a proportion of deep-water apex predator diet in the Exuma Sound. Two animals were successfully released via a novel release-cage mechanism and displayed either no, or rapid (<15 mins) vertically stationary recovery periods and were not consumed by predators; data for these individuals were recorded for the entire deployment duration (14 days). Vertical habitat data suggests Cuban dogfish are diel-vertical migrators, similar to other deep-water taxa, and exhibit a relatively broad temperature and depth range, which may be driven by preference for specific bathymetric structures. These techniques provide an important first step into acquiring and presenting vertical habitat data for small-bodied, deep-water chondrichthyans, which can be directly applied to fisheries and ecosystem-based management approaches.

  3. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  4. Insights into the radial water jet drilling technology – Application in a quarry

    Directory of Open Access Journals (Sweden)

    Thomas Reinsch

    2018-04-01

    Full Text Available In this context, we applied the radial water jet drilling (RJD technology to drill five horizontal holes into a quarry wall of the Gildehaus quarry close to Bad Bentheim, Germany. For testing the state-of-the-art jetting technology, a jetting experiment was performed to investigate the influence of geological heterogeneity on the jetting performance and the hole geometry, the influence of nozzle geometry and jetting pressure on the rate of penetration, and the possibility of localising the jetting nozzle utilizing acoustic activity. It is observed that the jetted holes can intersect fractures under varying angles, and the jetted holes do not follow a straight path when jetting at ambient surface condition. Cuttings from the jetting process retrieved from the holes can be used to estimate the reservoir rock permeability. Within the quarry, we did not observe a change in the rate of penetration due to jetting pressure variations. Acoustic monitoring was partially successful in estimating the nozzle location. Although the experiments were performed at ambient surface conditions, the results can give recommendations for a downhole application in deep wells. Keywords: Acoustic monitoring, Drilling performance, Trajectory, Permeability, Rock properties, Radial water jet drilling (RJD

  5. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    Science.gov (United States)

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. 224Ra distribution in surface and deep water of Long Island Sound: sources and horizontal transport rates

    International Nuclear Information System (INIS)

    Torgersen, T.; O'Donnell, J.; DeAngelo, E.; Turekian, K.K.; Turekian, V.C.; Tanaka, N.

    1997-01-01

    Measurements of surface water and deep water 224 Ra(half-life 3.64 days) distributions in Long Island Sound (LIS) were conducted in July 1991. Because the pycnocline structure of LIS had been in place for about 50 days in July (long compared to the half-life of 224 Ra) in the surface water and the deep water operate as separate systems. In the surface water, the fine-grain sediments of nearshore and saltmarsh environments provide a strong source of 224 Ra, which is horizontally mixed away from the short to central LIS. A one-dimensional model of 224 Ra distribution suggests a cross-LIS horizontal eddy dispersivity of 5-50 m 2 s -1 . In the deep water, the mid-LIS sediment flux of 224 Ra is enhanced by ∼ 2x relative to the periphery, and the horizontal eddy flux is from central LIS to the periphery. A second one-dimensional model suggests a cross-LIS horizontal eddy dispersivity below the thermocline of 5-50 m 2 -1 . 224 Ra fluxes into the deep water of the central LIS are likely enhanced by (1) inhomogeneous sediment or (2) a reduced scavenging of 224 Ra in the sediments of central LIS brought about by low oxygen conditions (hypoxia) and the loss of the MnO 2 scavenging layer in the sediments. These rates of horizontal eddy dispersivity are significantly less than the estimate of 100-650 m 2 s -1 (Riley, 1967) but are consistent with the transport necessary to explain the dynamics of oxygen depletion in summer LIS. These results demonstrate the use of 224 Ra for quantifying the parameters needed to describe estuarine mixing and transport. (Author)

  7. Dilemmas in the Analysis of Technological Change. A Cognitive Approach to Understand Innovation and Change in the Water Sector

    Directory of Open Access Journals (Sweden)

    Dino Borri

    2014-05-01

    Full Text Available In this paper we argue for the need to apply a cognitive approach to understand deep dynamics and determinants of technological evolutions. After examining main contributions from innovation studies to the conceptualization of innovation and change in complex socio-technical environments, we highlight the contribution coming from the application of the cognitive approach to evolutionary studies on technologies and we introduce the concept of technological memory as an interpretative tool to understand those changes. We discuss our hypothesis with reference to several observations carried out in different local contexts – Mexico, India and Italy – in relation to technological change in the water sector. In those cases deliberate attempts to substitute traditional technologies with modern ones led to interesting trajectories of change ranging from the collapse of old technologies to the development of multifaceted hybridization patterns.

  8. A fast complex domain-matching pursuit algorithm and its application to deep-water gas reservoir detection

    Science.gov (United States)

    Zeng, Jing; Huang, Handong; Li, Huijie; Miao, Yuxin; Wen, Junxiang; Zhou, Fei

    2017-12-01

    The main emphasis of exploration and development is shifting from simple structural reservoirs to complex reservoirs, which all have the characteristics of complex structure, thin reservoir thickness and large buried depth. Faced with these complex geological features, hydrocarbon detection technology is a direct indication of changes in hydrocarbon reservoirs and a good approach for delimiting the distribution of underground reservoirs. It is common to utilize the time-frequency (TF) features of seismic data in detecting hydrocarbon reservoirs. Therefore, we research the complex domain-matching pursuit (CDMP) method and propose some improvements. First is the introduction of a scale parameter, which corrects the defect that atomic waveforms only change with the frequency parameter. Its introduction not only decomposes seismic signal with high accuracy and high efficiency but also reduces iterations. We also integrate jumping search with ergodic search to improve computational efficiency while maintaining the reasonable accuracy. Then we combine the improved CDMP with the Wigner-Ville distribution to obtain a high-resolution TF spectrum. A one-dimensional modeling experiment has proved the validity of our method. Basing on the low-frequency domain reflection coefficient in fluid-saturated porous media, we finally get an approximation formula for the mobility attributes of reservoir fluid. This approximation formula is used as a hydrocarbon identification factor to predict deep-water gas-bearing sand of the M oil field in the South China Sea. The results are consistent with the actual well test results and our method can help inform the future exploration of deep-water gas reservoirs.

  9. Deep Space Telecommunications

    Science.gov (United States)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  10. Structural setting and evolution of the Mensa and Thunder Horse intraslope basins, northern deep-water Gulf of Mexico: A case study

    NARCIS (Netherlands)

    Weimer, P.; Bouroullec, R.; Berg, A.A. van den; Lapinski, T.G.; Roesink, J.G.; Adson, J.

    2017-01-01

    The Mensa and Thunder Horse intraslope minibasins in southcentralMississippi Canyon, northern deep-water Gulf ofMexico, had a linked structural evolution from the Early Cretaceous through the late Miocene. Analysis of the two minibasins illustrates the complexities of deep-water sedimentation and

  11. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  12. The Evolution of Technology in the Deep Space Network: A History of the Advanced Systems Program

    Science.gov (United States)

    Layland, J. W.; Rauch, L. L.

    1994-01-01

    The Deep Space Network (DSN) of 1995 might be described as the evolutionary result of 45 years of deep space communication and navigation, together with the synergistic activities of radio science and radar and radio astronomy. But the evolution of the DSN did not just happen - it was carefully planned and created. The evolution of the DSN has been an ongoing engineering activity, and engineering is a process of problem solving under constraints, one of which is technology. In turn, technology is the knowledge base providing the capability and experience for practical application of various areas of science, when needed. The best engineering solutions result from optimization under the fewest constraints, and if technology needs are well anticipated (ready when needed), then the most effective engineering solution is possible. Throughout the history of the DSN it has been the goal and function of DSN advanced technology development (designated the DSN Advanced Systems Program from 1963 through 1994) to supply the technology needs of the DSN when needed, and thus to minimize this constraint on DSN engineering. Technology often takes considerable time to develop, and when that happens, it is important to have anticipated engineering needs; at times, this anticipation has been by as much as 15 years. Also, on a number of occasions, mission malfunctions or emergencies have resulted in unplanned needs for technology that has, in fact, been available from the reservoir of advanced technology provided by the DSN Advanced Systems Program. Sometimes, even DSN engineering personnel fail to realize that the organization of JPL permits an overlap of DSN advanced technology activities with subsequent engineering activities. This can result in the flow of advanced technology into DSN engineering in a natural and sometimes almost unnoticed way. In the following pages, we will explore some of the many contributions of the DSN Advanced Systems Program that were provided to DSN

  13. Deep learning with Python

    CERN Document Server

    Chollet, Francois

    2018-01-01

    DESCRIPTION Deep learning is applicable to a widening range of artificial intelligence problems, such as image classification, speech recognition, text classification, question answering, text-to-speech, and optical character recognition. Deep Learning with Python is structured around a series of practical code examples that illustrate each new concept introduced and demonstrate best practices. By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects. KEY FEATURES • Practical code examples • In-depth introduction to Keras • Teaches the difference between Deep Learning and AI ABOUT THE TECHNOLOGY Deep learning is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more. AUTHOR BIO Francois Chollet is the author of Keras, one of the most widely used libraries for deep learning in Python. He has been working with deep neural ...

  14. Determination of the costs of the nuclear desalination using the DEEP code from IAEA; Determinacion de los costos de la desalacion nuclear utilizando el codigo DEEP del OIEA

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Palacios H, J.C.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2005-07-01

    The desalination of seawater is being an important solution to satisfy the demands of drinking water to population's centers that have hydric resources very limited, like it is the case of some Arab countries and arid regions of the planet, in where they have settled desalination plants that use as energy source to those fossil fuels or nuclear energy plants. Taking into account that the desalination of seawater is a process that consumes a lot of thermal and/or electric energy, it is necessary to quantify the costs of the supply and that of the desalination plant for different options and technologies, looking for this way the but appropriate for the specific conditions of the region where it has planned the desalination of seawater. In this report the three technologies but promising for the desalination are described and by means of the DEEP code the costs of production of water and energy are evaluated, using as thermal source different types of power nuclear reactors. It was obtained according to DEEP that the costs of the electricity generation for the considered reactors are around 40 USD/MWh. With these costs of electric power generation and using the DEEP code is obtained that the costs of production of drinking water are around 1 USD/m{sup 3}. (Author)

  15. Technologies for climate change adaptation. The water sector

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, T De [ed.; UNEP Risoe Centre, Roskilde (Denmark); Elliott, M; Armstrong, A; Lobuglio, J; Bartram, J [The Water Institute at the Univ. of North Carolina at Chapel Hill, Chapel Hill, NC (United States)

    2011-04-15

    This guidebook aims to provide expert information on the technologies most relevant for climate change adaptation in the water sector in developing countries. It is meant to be a practical tool for use by a broad range of stakeholders, including those in governmental agencies, water utilities, community water boards, non-governmental organizations, and private sector companies. Adaptation is an essential element of human response to climate change. The adverse impacts of climate change on the water sector will be experienced worldwide and are often projected to be most severe in resource-poor countries. Therefore, it is necessary to have access to a diverse array of adaptation technologies and practices that are appropriate and affordable in various contexts. The scale of these adaptation technologies/practices should range from the individual household level (e.g. household water treatment), to the community scale (e.g. rainwater collection in small reservoirs), to large facilities that can benefit a city or region (e.g. a desalination plant). The guidebook first reviews the projected impacts of climate change on the water sector. It then addresses the role of adaptation in the water sector and six typologies under which available strategies are categorized. Eleven technologies and practices are given detailed treatment in this guidebook and four others are covered briefly. While these do not constitute all of the adaptation technologies available in the water sector, they do represent many of the most important adaptation technologies for developing countries. For each of the 11 adaptation technologies and practices, the following are addressed: basic description, contribution to climate change and development, institutional and capacity building requirements, costs, barriers and opportunities for implementation, and extensive reference to external resources and case studies. The practical steps and appropriate contexts for implementation are covered in the

  16. Context and Deep Learning Design

    Science.gov (United States)

    Boyle, Tom; Ravenscroft, Andrew

    2012-01-01

    Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…

  17. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  18. Horizontal single-trip gravel pack and selective simulation system for deep water extended reach wells

    Energy Technology Data Exchange (ETDEWEB)

    Pineda, Francisco [BJ Services Company, Houston, TX (United States); Vilela, Alvaro; Montanha, Roberto; Acosta, Marco; Farias, Rodrigo [BJ Services do Brasil Ltda., Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Most of the reservoirs located in the deep water and ultra-deep water offshore South America are described as unconsolidated sandstone that require sand control on both producers and water injection wells. Horizontal Open Hole Gravel Pack completions are the preferred method of development. If completing heavy oil reservoirs, there is a necessity of longer horizontal open hole sections. Low fracture gradients may limit the length of gravel pack in the open hole section because of the pressure increase during the Beta wave proppant deposition phase. This system allows the gravel pack assembly to be installed and the gravel pack to be pumped during the alpha and beta wave deposition phases without the limitation of high pressures that could fracture the well. The benefits of the Horizontal Single-Trip Gravel Pack and Selective Stimulation System (HSTSSS) using the differential valve include the ability to complete longer horizontal intervals, valuable rig-time savings and, efficient mechanical diversion of the stimulation fluid. This paper outlines the application of the HSTSSS system using a differential valve to complete a horizontal well in offshore deep waters. The need for a differential valve is primarily in horizontal gravel packing operations when normal circulating rates and pressures around the open hole would exceed formation break down pressure. The valve is intended to be easily spaced out and run in the wash pipe. At a predetermined differential pressure the valve opens and the return flow path distance around the bottom of the tailpipe is shortened, thus reducing back pressure preventing filter cake damage without slowing the pump rate. In addition the said valve has to close to allow the selective stimulation to take place. Economic considerations along with completion efficiencies are especially important on deep water, subsea completions. The utilization of differential valves allows completion of extended-reach open hole wells and/or low fracture

  19. 30 CFR 203.60 - Who may apply for royalty relief on a case-by-case basis in deep water in the Gulf of Mexico or...

    Science.gov (United States)

    2010-07-01

    ...-case basis in deep water in the Gulf of Mexico or offshore of Alaska? 203.60 Section 203.60 Mineral... basis in deep water in the Gulf of Mexico or offshore of Alaska? You may apply for royalty relief under... REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Royalty Relief for Pre-Act Deep Water Leases and...

  20. Approximate Stokes Drift Profiles in Deep Water

    Science.gov (United States)

    Breivik, Øyvind; Janssen, Peter A. E. M.; Bidlot, Jean-Raymond

    2014-09-01

    A deep-water approximation to the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, viz the Stokes transport and the surface Stokes drift velocity. Comparisons with parametric spectra and profiles under wave spectra from the ERA-Interim reanalysis and buoy observations reveal much better agreement than the monochromatic profile even for complex sea states. That the profile gives a closer match and a more correct shear has implications for ocean circulation models since the Coriolis-Stokes force depends on the magnitude and direction of the Stokes drift profile and Langmuir turbulence parameterizations depend sensitively on the shear of the profile. The alternative profile comes at no added numerical cost compared to the monochromatic profile.

  1. Development of Pixel Front-End Electronics using Advanced Deep Submicron CMOS Technologies

    CERN Document Server

    Havránek, Miroslav; Dingfelder, Jochen

    The content of this thesis is oriented on the R&D; of microelectronic integrated circuits for processing the signal from particle sensors and partially on the sensors themselves. This work is motivated by ongoing upgrades of the ATLAS Pixel Detector at CERN laboratory and by exploration of new technologies for the future experiments in particle physics. Evolution of technologies for the fabrication of microelectronic circuits follows Moore’s laws. Transistors become smaller and electronic chips reach higher complexity. Apart from this, silicon foundries become more open to smaller customers and often provide non-standard process options. Two new directions in pixel technologies are explored in this thesis: design of pixel electronics using ultra deep submicron (65 nm) CMOS technology and Depleted Monolithic Active Pixel Sensors (DMAPS). An independent project concerning the measurement of pixel capacitance with a dedicated measurement chip is a part of this thesis. Pixel capacitance is one of the key pa...

  2. Molecular dynamics simulations of the Nip7 proteins from the marine deep- and shallow-water Pyrococcus species.

    Science.gov (United States)

    Medvedev, Kirill E; Alemasov, Nikolay A; Vorobjev, Yuri N; Boldyreva, Elena V; Kolchanov, Nikolay A; Afonnikov, Dmitry A

    2014-10-15

    The identification of the mechanisms of adaptation of protein structures to extreme environmental conditions is a challenging task of structural biology. We performed molecular dynamics (MD) simulations of the Nip7 protein involved in RNA processing from the shallow-water (P. furiosus) and the deep-water (P. abyssi) marine hyperthermophylic archaea at different temperatures (300 and 373 K) and pressures (0.1, 50 and 100 MPa). The aim was to disclose similarities and differences between the deep- and shallow-sea protein models at different temperatures and pressures. The current results demonstrate that the 3D models of the two proteins at all the examined values of pressures and temperatures are compact, stable and similar to the known crystal structure of the P. abyssi Nip7. The structural deviations and fluctuations in the polypeptide chain during the MD simulations were the most pronounced in the loop regions, their magnitude being larger for the C-terminal domain in both proteins. A number of highly mobile segments the protein globule presumably involved in protein-protein interactions were identified. Regions of the polypeptide chain with significant difference in conformational dynamics between the deep- and shallow-water proteins were identified. The results of our analysis demonstrated that in the examined ranges of temperatures and pressures, increase in temperature has a stronger effect on change in the dynamic properties of the protein globule than the increase in pressure. The conformational changes of both the deep- and shallow-sea protein models under increasing temperature and pressure are non-uniform. Our current results indicate that amino acid substitutions between shallow- and deep-water proteins only slightly affect overall stability of two proteins. Rather, they may affect the interactions of the Nip7 protein with its protein or RNA partners.

  3. Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies

    Directory of Open Access Journals (Sweden)

    Erik E. Cordes

    2016-09-01

    Full Text Available The industrialization of the deep sea is expanding worldwide. Expanding oil and gas exploration activities in the absence of sufficient baseline data in these ecosystems has made environmental management challenging. Here, we review the types of activities that are associated with global offshore oil and gas development in water depths over 200 m, the typical impacts of these activities, some of the more extreme impacts of accidental oil and gas releases, and the current state of management in the major regions of offshore industrial activity including 18 exclusive economic zones. Direct impacts of infrastructure installation, including sediment resuspension and burial by seafloor anchors and pipelines, are typically restricted to a radius of approximately 100 m on from the installation on the seafloor. Discharges of water-based and low-toxicity oil-based drilling muds and produced water can extend over 2 km, while the ecological impacts at the population and community levels on the seafloor are most commonly on the order of 200-300 m from their source. These impacts may persist in the deep sea for many years and likely longer for its more fragile ecosystems, such as cold-water corals. This synthesis of information provides the basis for a series of recommendations for the management of offshore oil and gas development. An effective management strategy, aimed at minimizing risk of significant environmental harm, will typically encompass regulations of the activity itself (e.g. discharge practices, materials used, combined with spatial (e.g. avoidance rules and marine protected areas and temporal measures (e.g. restricted activities during peak reproductive periods. Spatial management measures that encompass representatives of all of the regional deep-sea community types is important in this context. Implementation of these management strategies should consider minimum buffer zones to displace industrial activity beyond the range of typical

  4. Modern Deep-sea Sponges as Recorders of Bottom Water Silicon Isotopes

    Science.gov (United States)

    Hendry, K. R.; Georg, R. B.; Rickaby, R. E.; Robinson, L. F.; Halliday, A. N.

    2008-12-01

    Major zones of opal accumulation in the world oceans have experienced geographical shifts during the Cenozoic coincident with times of transition in oceanic circulation and climate. The global marine silica cycle is likely to respond to various large-scale changes including the distillation of Si and other nutrients in ocean basins; weathering and continental inputs; and biological productivity in surface waters. These processes could potentially be distinguished by their impact on the isotopic composition of dissolved silica in the world oceans. Although diatoms dominate uptake of silica in surface waters, box-modelling (de la Rocha and Bickle, 2005) suggests that sponges spicules have a greater potential to reflect whole ocean changes in the silica cycle, by recording deep-water silicon isotopes. Here, we introduce a new calibration study of modern deep- sea sponges collected on a transect cruise across the Drake Passage, in the Southern Ocean, from a range of depths and seawater silicic acid concentrations. Sponges were collected by benthic trawling, and dried immediately. The spicules were later isolated from cellular material and cleaned for surface contaminants, before dissolution and analysis by NuPlasma HR MC-ICP-MS in medium resolution mode. We discuss our preliminary data, the extent to which inter and intraspecies variations reflect environmental conditions, and the implications for palaeoreconstructions of the marine silicon cycle. de la Rocha, C. and M. Bickle (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology 217, 267-282.

  5. Salinity of deep groundwater in California: Water quantity, quality, and protection

    Science.gov (United States)

    Kang, Mary; Jackson, Robert B.

    2016-01-01

    Deep groundwater aquifers are poorly characterized but could yield important sources of water in California and elsewhere. Deep aquifers have been developed for oil and gas extraction, and this activity has created both valuable data and risks to groundwater quality. Assessing groundwater quantity and quality requires baseline data and a monitoring framework for evaluating impacts. We analyze 938 chemical, geological, and depth data points from 360 oil/gas fields across eight counties in California and depth data from 34,392 oil and gas wells. By expanding previous groundwater volume estimates from depths of 305 m to 3,000 m in California’s Central Valley, an important agricultural region with growing groundwater demands, fresh [groundwater volume is almost tripled to 2,700 km3, most of it found shallower than 1,000 m. The 3,000-m depth zone also provides 3,900 km3 of fresh and saline water, not previously estimated, that can be categorized as underground sources of drinking water (USDWs; freshwater zones and USDWs, respectively, in the eight counties. Deeper activities, such as wastewater injection, may also pose a potential threat to groundwater, especially USDWs. Our findings indicate that California’s Central Valley alone has close to three times the volume of fresh groundwater and four times the volume of USDWs than previous estimates suggest. Therefore, efforts to monitor and protect deeper, saline groundwater resources are needed in California and beyond. PMID:27354527

  6. Diversity-based acoustic communication with a glider in deep water.

    Science.gov (United States)

    Song, H C; Howe, Bruce M; Brown, Michael G; Andrew, Rex K

    2014-03-01

    The primary use of underwater gliders is to collect oceanographic data within the water column and periodically relay the data at the surface via a satellite connection. In summer 2006, a Seaglider equipped with an acoustic recording system received transmissions from a broadband acoustic source centered at 75 Hz deployed on the bottom off Kauai, Hawaii, while moving away from the source at ranges up to ∼200 km in deep water and diving up to 1000-m depth. The transmitted signal was an m-sequence that can be treated as a binary-phase shift-keying communication signal. In this letter multiple receptions are exploited (i.e., diversity combining) to demonstrate the feasibility of using the glider as a mobile communication gateway.

  7. Determination of the costs of the nuclear desalination using the DEEP code from IAEA

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Palacios H, J.C.; Alonso V, G.

    2005-01-01

    The desalination of seawater is being an important solution to satisfy the demands of drinking water to population's centers that have hydric resources very limited, like it is the case of some Arab countries and arid regions of the planet, in where they have settled desalination plants that use as energy source to those fossil fuels or nuclear energy plants. Taking into account that the desalination of seawater is a process that consumes a lot of thermal and/or electric energy, it is necessary to quantify the costs of the supply and that of the desalination plant for different options and technologies, looking for this way the but appropriate for the specific conditions of the region where it has planned the desalination of seawater. In this report the three technologies but promising for the desalination are described and by means of the DEEP code the costs of production of water and energy are evaluated, using as thermal source different types of power nuclear reactors. It was obtained according to DEEP that the costs of the electricity generation for the considered reactors are around 40 USD/MWh. With these costs of electric power generation and using the DEEP code is obtained that the costs of production of drinking water are around 1 USD/m 3 . (Author)

  8. Reuse of urban waste water, recovered by deep on in farms; Reutilizacion de aguas residuales urbanas, regeneradas mediante lagunaje profundo, en riego de praderas forrajeras

    Energy Technology Data Exchange (ETDEWEB)

    Arauzo Sanchez, M.; Colmenarejo Morcillo, M.F.; Bustos Aragon, A.; Hernaiz Algarra, P.J.; Martinez Alavarez, E.

    1998-10-01

    The reuse of regenerated urban wastewater in agriculture irrigation is a practice that is having an increasing leading role in Mediterranean Countries. it is, therefore, fundamental to safeguard the chemical and sanitary qualities of the regenerated wastewater by regeneration technologies improvement, as well as storing-regulation flow systems. The Research Group has started up a deep wastewater stabilization pond and a nearby experimental agricultural system, to study the reuse of regenerated wastewater in agriculture irrigation. The deep stabilization pond, 4,75 m deep and 2161 m``3 volume, is supplied continuously with urban wastewater from the secondary effluent of a conventional purifying plant. Hydraulic retention time is about 9 days. The experimental agricultural system consists of 6 plots (12.5x8 m each) sown with Festuca arundianacea Schreber, next to the deep stabilization pond. Plots were surface flooding irrigated from spring to autumn, and corp was cut 2 times, in July and October. Two treatments have been established; the irrigation with the deep stabilization pond effluent, and the second, irrigation with water from the Jarama river (which is normally used by farmers nearby the experimental area). Our intention is to compare both treatments in order to verify the suitability of wastewater reuse, stabilised and stored in a deep pond, in surface flooding irrigation of pastures. (Author) 13 refs.

  9. Ground-water quality at the site of a proposed deep-well injection system for treated wastewater, West Palm Beach, Florida

    Science.gov (United States)

    Pitt, William A.; Meyer, Frederick W.

    1976-01-01

    The U.S. Geological Survey collected scientific and technical information before, during, and after construction of a deep test well at the location of a future regional waste-water treatment plant to be built for the city of West Palm Beach, Florida. Data from the test well will be used by the city in the design of a proposed deep-well injection system for disposal of effluent from the treatment plant. Shallow wells in the vicinity of the drilling site were inventoried and sampled to provide a data base for detecting changes in ground water quality during construction and later operation of the deep wells. In addition, 16 small-diameter monitor wells, ranging in depth from 10 to 162 feet, were drilled at the test site. During the drilling of the deep test well, water samples were collected weekly from the 16 monitor wells for determination of chloride content and specific conductance. Evidence of small spills of salt water were found in monitor wells ranging in depth from 10 to 40 feet. Efforts to remove the salt water from the shallow unconfined aquifer by pumping were undertaken by the drilling contractor at the request of the city of West Palm Beach. The affected area is small and there has been a reduction of chloride concentration.

  10. A critical reflection on the technological development of deep brain stimulation (DBS

    Directory of Open Access Journals (Sweden)

    Christian eIneichen

    2014-09-01

    Full Text Available Since the translational research findings of Benabid and colleagues, which partly led to their seminal paper regarding the treatment of mainly tremor-dominant Parkinson patients through thalamic high-frequency-stimulation (HFS in 1987, we still struggle with identifying a satisfactory mechanistic explanation of the underlying principles of Deep Brain Stimulation. Furthermore, the technological advance of DBS devices (electrodes and implantable pulse generators, IPG's has shown a distinct lack of dynamic progression. In light of this we argue that it is time to leave the paleolithic age and enter hellenistic times: the device-manufacturing industry and the medical community together should put more emphasis on advancing the technology rather than resting on their laurels.

  11. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.

    2014-07-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 ms-1 to depths of almost 2,000 m and water temperatures <4 C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. 2014 Macmillan Publishers Limited. All rights reserved.

  12. Water Science and Technology Board. Annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1991. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Restoration of aquatic ecosystems - science, technologies and public policy; Water transfers in the West - efficiency, equity and the environment; Opportunities in the hydrologic sciences; and Ground water models - scientific and regulatory applications. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  13. Development of temporal trends of radioactivity in benthic organisms and in water from the deep sea (Atlantic)

    International Nuclear Information System (INIS)

    Kanisch, G.; Kellermann, H.-J.; Vobach, M.; Krueger, A.

    2003-01-01

    Since 20 years the Federal Research Centre for Fisheries is performing radioecological studies in the deep sea of the Northeast Atlantic, especially in the area north-west of Spain used for dumping of radioactive waste until 1982. Until 1998/2000, in Benthos some decrease was observed for 137 Cs, however, almost not for 238 Pu, 239,240 Pu and 241 Am. In the dumpsite area the ratio 238 Pu/ 239,240 Pu, about 0.072, showed higher values than in comparison sites, about 0,044. Alpha spectrometric measurements of the atom based ratio 240 Pu/ 239 Pu in Benthos, due to slight deviations from the global fallout value of 0.18, indicated a special impact of the ''Nevada Test Site'' fallout. In rat-tailed fish (Macrouridae) from the deep sea 137Cs decreased since 1989 with an effective half-live of 14.5 years, comparable to that of 16.2 years in the surface water. Related to the concentration in the surface water a 137 Cs concentration factor of 83 was obtained. It is concluded that the dominant source for 137 Cs in deep sea fish is the global fallout. For plutonium isotopes measured in sea water samples from the deep the values of 238 Pu/ 239,240 Pu and 238 Pu, being higher for the dumpsite area, were interpreted as impact of leaking radioactive drums. For this leakage acting as a plutonium source a 238 Pu/ 239,240 Pu ratio of 0.17 was estimated. However, the total plutonium inventory in the deep sea thereby increased by only about 20 %. (orig.)

  14. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  15. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... DEVELOPING TENDENCY OF MODERN WATER-. SAVING AGRICULTURAL TECHNOLOGY. Excavation of the own water-saving potential using biotechnology. The biological water-saving technology that uses crop physiology control and modern breeding techniques to increase production and water ...

  16. An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column

    KAUST Repository

    Scoma, Alberto; Barbato, Marta; Borin, Sara; Daffonchio, Daniele; Boon, Nico

    2016-01-01

    Alcanivorax borkumensis is an ubiquitous model organism for hydrocarbonoclastic bacteria, which dominates polluted surface waters. Its negligible presence in oil-contaminated deep waters (as observed during the Deepwater Horizon accident) raises

  17. Decentralised water and wastewater treatment technologies to produce functional water for irrigation

    DEFF Research Database (Denmark)

    Battilani, Adriano; Steiner, Michele; Andersen, Martin

    2010-01-01

    The EU project SAFIR aimed to help farmers solve problems related to the use of low quality water for irrigation in a context of increasing scarcity of conventional freshwater resources. New decentralised water treatment devices (prototypes) were developed to allow a safe direct or indirect reuse...... of wastewater produced by small communities/industries or the use of polluted surface water. Water treatment technologies were coupled with irrigation strategies and technologies to obtain a flexible, easy to use, integrated management of the system. The challenge is to apply new strategies and technologies...... which allow using the lowest irrigation water quality without harming food safety or yield and fruit or derivatives quality. This study presents the results of prototype testing of a small-scale compact pressurized membrane bioreactor and of a modular field treatment system including commercial gravel...

  18. Overflow Water Pathways in the Subpolar North Atlantic Observed with Deep Floats

    Science.gov (United States)

    Bower, Amy; Furey, Heather; Lozier, Susan

    2017-04-01

    As part of the Overturning in the Subpolar North Atlantic Program (OSNAP), a total of 135 acoustically tracked RAFOS floats have been deployed in the deep boundary currents of the Iceland, Irminger and Labrador Basins, and in the Charlie-Gibbs Fracture Zone, to investigate the pathways of Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW). Floats were released annually in 2014, 2015 and 2016 at depths between 1800 and 2800 m for two-year missions. The array of sound sources used for tracking was expanded from 10 to 13 moorings in 2016 when it was discovered that wintertime surface roughness was negatively impacting acoustic ranges. The floats from the first setting reveal several examples of persistent , deep coherent eddy motion, including a cyclonic eddy spinning off the tip of Eirik Ridge (southwest of Cape Farewell), a cyclonic eddy in the northeastern Labrador Basin near where anticyclonic Irminger Rings are formed, and an anticyclonic eddy under the North Atlantic Current (NAC) in the central Iceland Basin. A consistent region of boundary-interior exchange was observed near Hamilton Bank on the western boundary of the Labrador Sea. Deep cyclonic recirculation gyres are revealed in all three basins. Floats released in the southward-flowing deep boundary current over the eastern flank of the Reykjanes Ridge show that shallower layers of ISOW peel off to the west and cross the Ridge into the Irminger Basin through various gaps south of 60°N, including the Bight Fracture Zone. These floats tend to turn northward and continue along the slope in the Irminger Basin. Interestingly, floats released at the ISOW level in the CGFZ did not turn into the Irminger Basin as often depicted in deep circulation schematics, but rather drifted west-northwestward toward the Labrador Sea, or eddied around west of the CGFZ and (in some cases) turned southward. This result is consistent with some previous hydrographic and high-resolution model results

  19. Isotope paleoclimatology and Atlantic deep water history since 15 million years

    International Nuclear Information System (INIS)

    Blanc, P.L.

    1981-12-01

    18 O/ 16 O and 13 C/ 12 C ratios measurements in foraminiferal calcite are applied to the paleoclimatology of the North Atlantic and to the reconstruction of deep water exchanges between the Atlantic and Pacific Oceans, from middle miocene time (15 m.y. ago) to the present, on samples from 2 DSDP wells. Chapters 1 to 4 describe the structural frame and hydrological setting of these sites, and the stratigraphy of the deposits. A .4 m.y. lag between the initiation of the first boreal ice-caps and their extension to northern Europe is explained by the persistency of the North-Atlantic Drift. In chapters 5 to 8, the 13 C/ 12 C ratio of dissolved mineral carbon is used as a tracer of the residence time of the deep waters, the indications of which are preserved in benthonic foraminiferal calcite. It is shown that present-day type thermo-haline circulation was initiated 13.2 m.y. ago in the northern Atlantic, when the volcanic Scotland-Iceland-Greenland ridge subsided; that the closure of the Mediterranean sea during the Messinian (6.2 to 5 m.y. ago) caused this circulation to stop, and that the present circulation started again when the Mediterranean re-opened, at the beginning of the Pliocene [fr

  20. Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic aquifer

    NARCIS (Netherlands)

    Prommer, H.; Stuijfzand, P.J.

    2005-01-01

    Artificial recharge is a technique used increasingly to supplement drinking water supplies. To assess the potential water quality changes that occur during subsurface passage, a comprehensive deep-well injection experiment was carried out for a recharge scheme, where pretreated, aerobic surface

  1. Water environment and water preservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoda, M.; Ofuchi, M.; Tsuzuki, K. (Hitachi, Ltd., Tokyo (Japan))

    1993-12-01

    Technologies on monitoring, purification, and simulation were described concerning water quality preservation, especially in closed water bodies such as lakes. In order to detect an increase in plankton bloom causing unpleasant taste and order, a water quality monitoring system using image analysis was developed. The main feature of this system is the use of a microscope to obtain images of plankton, coupled with a high speed image processor containing VLSI circuits used exclusively for image processing. The original gray image, obtained from the ITV in the microscope, is treated in the image processor, which extracts the features of isolated plankton, then classifies them, based on data previously input into the memory. As one of the water purification measures for lakes, a sprinkler system was developed. The sprinkler system has a pump in a boat-like structure set on a lake. It pumps up large quantities of cold water from depth of 10 m, then jets and sprays it from many nozzles after pressurization. In addition, a simulation technique was developed which can forecast the extent of water pollution and the effects of purification systems using the finite element method. 6 figs., 2 tabs.

  2. The big squeeze: ecosystem change and contraction of habitat for newly discovered deep-water reefs off the U.S. West Coast

    Science.gov (United States)

    Wickes, L.; Etnoyer, P. J.; Lauermann, A.; Rosen, D.

    2016-02-01

    Cold-water reefs are fragile, complex ecosystems that extend into the bathyal depths of the ocean, creating three dimensional structure and habitat for a diversity of deep-water invertebrates and fishes. The cold waters of the California Current support a diverse assemblage of these corals at relatively shallow depths close to shore. At these depths and locations the communities face a multitude of stressors, including low carbonate saturations, hypoxia, changing temperature, and coastal pollution. The current study employed ROV surveys (n=588, 2003-2015) to document the distribution of deep-sea corals in the Southern California Bight, including the first description of a widespread reef-building coral in the naturally acidified waters off the U.S. West Coast. We provide empirical evidence of species survival in the corrosive waters (Ωarag 0.67-1.86), but find loss of reef integrity. Recent publications have implied acclimation, resistance, and resilience of cold-water reef-building corals to ocean acidification, but results of this study indicate a cost to skeletal framework development with a subsequent loss of coral habitat. While ocean acidification and declines in oxygen are expected to further impinge on Lophelia at depth (𝑥̅=190 m), surface warming and coastal polution may affect shallower populations and mesophotic reef assemblages, resulting in a contraction of available coral habitat. Recent observations of die offs of gorgonians and antipatharians from surveys in shallow (50 m) and deep water (500 m) provide compelling evidence of ongoing ecosystem changes. Concurrent losses in habitat quality in deep and mesophotic waters suggest that corals may be "squeezed" into a more restricted depth range. New monitoring efforts aim to characterize the health and condition of deep corals with respect to gradients in carbonate chemistry, coastal pollution and changing temperatures, to assess vulnerability and both current and future habitat suitability.

  3. Dispersion in North Atlantic Deep Water transfer between the northern source region and the South Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Huhn, Oliver; Roether, Wolfgang [Institut fuer Umweltphysik, Universitaet Bremen (Germany)

    2007-07-01

    North Atlantic Deep Water (NADW) represents the Atlantic part of the deep, southward return arm of the oceanic 'conveyor belt', which moderates Europe's climate and effects most of the water transfer from the ocean surface into the deep waters globally. The transfer starts from the NADW formation regions, which in the case of upper NADW (approx. 1500-2000 m depth) is the Labrador Sea (far NW Atlantic). NADW is found concentrated toward the continental slope of the Americas, but subject to meandering, and to recirculation into, and mixing with, the waters of the interior Atlantic. Individual water parcels thus follow a complex ensemble of trajectories. We have obtained characteristics of that ensemble by fitting the free parameters of a suitable function using extensive observations of the transient tracers CFC-11, CFC-12, CCl{sub 4}, and tritium. A tracer transfer function of ocean-surface concentrations to those in newly formed NADW was derived as a precursory step. In the upper NADW we obtain RMS transfer-time dispersions on the way from the Labrador Sea of 31 years at 6 N rising to 53 years at 20 S, compared to mean transfer times ranging 46 to 79 years ({+-}20 %); furthermore, approximately 10 % to 40 % of the water is old, tracer-free water admixed on the way. Similar results have been obtained for lower NADW (approx. 2500-4000 m). The combination of tritium and CFC observations is particularly suited to constrain the dispersion, since it acts on the concentrations of these tracers in an opposite way. The tracer-adjusted transfer functions allow quantification of the NADW transport of pollutants and other compounds delivered to the NADW formation region. The results can furthermore check mean transfer times and large-scale dispersion of the NADW part of dynamic ocean circulation models.

  4. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    Ahmad, I.; Hyder, M.J.

    2000-01-01

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  5. Fundamental research on sintering technology with super deep bed achieving energy saving and reduction of emissions

    International Nuclear Information System (INIS)

    Hongliang Han; Shengli Wu; Gensheng Feng; Luowen Ma; Weizhong Jiang

    2012-01-01

    In the general frame of energy saving, environment protection and the concept of circular economy, the fundamental research on the sintering technology with super deep bed, achieving energy saving and emission reduction, was carried out. At first, the characteristics of the process and exhaust emission in the sintering with super deep bed was mastered through the study of the influence of different bed depths on the sintering process. Then, considering the bed permeability and the fuel combustion, their influence on the sinter yield and quality, their potential for energy saving and emission reduction was studied. The results show that the improvement of the bed permeability and of the fuel combustibility respectively and simultaneously, leads to an improvement of the sintering technical indices, to energy saving and emission reduction in the condition of super deep bed. At 1000 mm bed depth, and taking the appropriate countermeasure, it is possible to decrease the solid fuel consumption and the emission of CO 2 , SO 2 , NO x by 10.08%, 11.20%, 22.62% and 25.86% respectively; and at 700 mm bed depth, it is possible to reduce the solid fuel consumption and the emission of CO 2 , SO 2 , NO x by 20.71%, 22.01%, 58.86% and 13.13% respectively. This research provides the theoretical and technical basis for the new technology of sintering with super deep bed, achieving energy saving and reduction of emission. (authors)

  6. Effects of Deep Water Source-Sink Terms in 3rd generation Wave Model SWAN using different wind data in Black Sea

    Science.gov (United States)

    Kirezci, Cagil; Ozyurt Tarakcioglu, Gulizar

    2016-04-01

    Coastal development in Black Sea has increased in recent years. Therefore, careful monitoring of the storms and verification of numerical tools with reliable data has become important. Previous studies by Kirezci and Ozyurt (2015) investigated extreme events in Black Sea using different wind datasets (NCEP's CFSR and ECMWF's operational datasets) and different numerical tools (SWAN and Wavewatch III). These studies showed that significant effect to results is caused by the deep water source-sink terms (wave growth by wind, deep water dissipation of wave energy (whitecapping) and deep water non-linear wave-wave interactions). According to Timmermans(2015), uncertainty about wind forcing and the process of nonlinear wave-wave interactions are found to be dominant in numerical wave modelling. Therefore, in this study deep water source and sink term solution approaches of 3rd generation numerical tool (SWAN model) are tested, validated and compared using the selected extreme storms in Black Sea. 45 different storms and storm like events observed in Black Sea between years 1994-1999 are selected to use in the models. The storm selection depends on the instrumental wave data (significant wave heights, mean wave period and mean wave direction) obtained in NATO-TU Waves project by the deep water buoy measurements at Hopa, Sinop, Gelendzhik, and wind data (mean and peak wind speeds, storm durations) of the regarding events. 2 different wave growth by wind with the corresponding deep water dissipation terms and 3 different wave -wave interaction terms of SWAN model are used in this study. Wave growth by wind consist of two parts, linear growth which is explained by Cavaleri and Malanotte-Rizzoli(1981),and dominant exponential growth. There are two methods in SWAN model for exponential growth of wave, first one by Snyder et al. (1981), rescaled in terms of friction velocity by Komen et. al (1984) which is derived using driving wind speed at 10m elevation with related drag

  7. Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data

    Science.gov (United States)

    Wolf, Mitchell K.; Hamme, Roberta C.; Gilbert, Denis; Yashayaev, Igor; Thierry, Virginie

    2018-04-01

    Deep water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean by means of the global thermohaline circulation. Models suggest that dissolved gases in newly formed deep water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of these disequilibria are poorly quantified. Here we show that, when convection reached deeper than 800 m, oxygen in the Labrador Sea was consistently undersaturated at -6.1% to -7.6% at the end of convection. Deeper convection resulted in greater undersaturation, while convection ending later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 and 2016, allowing direct observations of wintertime convection. Three of the six optode oxygen sensors displayed substantial average in situ drift of -3.03 μmol O2 kg-1 yr-1 (-0.94% O2 yr-1), which we corrected to stable deepwater oxygen values from repeat ship surveys. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the oxygen concentration of newly formed Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass.

  8. Numerical simulation of solitary waves on deep water with constant vorticity

    Science.gov (United States)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  9. Deep learning evaluation using deep linguistic processing

    OpenAIRE

    Kuhnle, Alexander; Copestake, Ann

    2017-01-01

    We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing 'deep' linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value ...

  10. Alternative technology for arsenic removal from drinking water

    Directory of Open Access Journals (Sweden)

    Purenović Milovan

    2007-01-01

    Full Text Available Arsenic is a naturally occurring element in water, food and air. It is known as a poison, but in very small quantities it is showed to be an essential element. Actual problem in the world is arsenic removal from drinking water using modern and alternative technology, especially because EPA's and other international standards have reduced MCL from 50 to 10 ug/1. Because of rivers and lakes pollution, in a number of plants for natural water purification, average concentrations of arsenic in water are up to 100 ug/1. According to MCL, present technologies are unadjusted for safely arsenic removal for concentrations below of 10 ug/1. This fact has inspired many companies to solve this problem adequately, by using an alternative technologies and new process able materials. In this paper the observation of conventional and the alternative technologies will be given, bearing in mind complex chemistry and electrochemistry of arsenic, formation of colloidal arsenic, which causes the biggest problems in water purification technologies. In this paper many results will be presented, which are obtained using the alternative technologies, as well as the newest results of original author's investigations. Using new nanomaterials, on Pilot plant "VALETA H2O-92", concentration of arsenic was removed far below MLC value.

  11. Subsurface microbial diversity in deep-granitic-fracture water in Colorado

    Science.gov (United States)

    Sahl, J.W.; Schmidt, R.; Swanner, E.D.; Mandernack, K.W.; Templeton, A.S.; Kieft, Thomas L.; Smith, R.L.; Sanford, W.E.; Callaghan, R.L.; Mitton, J.B.; Spear, J.R.

    2008-01-01

    A microbial community analysis using 16S rRNA gene sequencing was performed on borehole water and a granite rock core from Henderson Mine, a >1,000-meter-deep molybdenum mine near Empire, CO. Chemical analysis of borehole water at two separate depths (1,044 m and 1,004 m below the mine entrance) suggests that a sharp chemical gradient exists, likely from the mixing of two distinct subsurface fluids, one metal rich and one relatively dilute; this has created unique niches for microorganisms. The microbial community analyzed from filtered, oxic borehole water indicated an abundance of sequences from iron-oxidizing bacteria (Gallionella spp.) and was compared to the community from the same borehole after 2 weeks of being plugged with an expandable packer. Statistical analyses with UniFrac revealed a significant shift in community structure following the addition of the packer. Phospholipid fatty acid (PLFA) analysis suggested that Nitrosomonadales dominated the oxic borehole, while PLFAs indicative of anaerobic bacteria were most abundant in the samples from the plugged borehole. Microbial sequences were represented primarily by Firmicutes, Proteobacteria, and a lineage of sequences which did not group with any identified bacterial division; phylogenetic analyses confirmed the presence of a novel candidate division. This "Henderson candidate division" dominated the clone libraries from the dilute anoxic fluids. Sequences obtained from the granitic rock core (1,740 m below the surface) were represented by the divisions Proteobacteria (primarily the family Ralstoniaceae) and Firmicutes. Sequences grouping within Ralstoniaceae were also found in the clone libraries from metal-rich fluids yet were absent in more dilute fluids. Lineage-specific comparisons, combined with phylogenetic statistical analyses, show that geochemical variance has an important effect on microbial community structure in deep, subsurface systems. Copyright ?? 2008, American Society for Microbiology

  12. A New Technique for Deep in situ Measurements of the Soil Water Retention Behaviour

    DEFF Research Database (Denmark)

    Rocchi, Irene; Gragnano, Carmine Gerardo; Govoni, Laura

    2018-01-01

    In situ measurements of soil suction and water content in deep soil layers still represent an experimental challenge. Mostly developed within agriculture related disciplines, field techniques for the identification of soil retention behaviour have been so far employed in the geotechnical context ...

  13. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    Science.gov (United States)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  14. Advances in riser and pipeline technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Wan C.; Mortazavi, Mehrdad; Weir, Michael S. [ExxonMobil Development Company, Dallas, TX (United States)

    2009-12-19

    As oil and gas production continues to move into new frontier areas, novel applications of the existing riser and pipeline technologies need to be developed to meet the often more stringent requirements encountered in these environments. The challenges include ultra deep water, harsh environments, aggressive fluid conditions, and local content objectives, etc. They will require industry to constantly extend, expand, and enhance the broad range of solution options. Also, the existing design criteria in industry may need to be revised or new criteria may need to be developed to satisfy these needs. Exxon Mobil (Em) employs, and works with others in industry to promote robust design and operating practices. This approach requires in-depth understanding, sound engineering principles, advanced analysis, uncertainty management, and supportive qualification test data. It enables confident selection, extrapolation, and innovation of technologies to address new riser system and pipeline challenges. Focus on fundamental is imperative to ensure integrity of the selected systems during fabrication, installation, and operation phases. Recent and past project experience in deep water Gulf of Mexico and West Africa provides many successful examples of this approach. This paper reviews several examples of the key riser system and pipeline technology enhancements recently achieved by EM to provide confidence in addressing technical and project application challenges. Riser system technology enhancements addressed in this paper include steel catenary riser (SCR) application on turret-moored FPSO with severe motions, pipe-in-pipe (PIP) hybrid production riser to effectively manage gas lift and flow assurance requirements, irregular wave analysis methodology for flexible risers and umbilicals to reduce conservatism, and qualification of riser and pipeline VIV prediction and mitigation methods. Pipeline technology enhancements detailed in this paper include lateral buckling prediction

  15. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  16. The global distribution of deep-water Antipatharia habitat

    Science.gov (United States)

    Yesson, Chris; Bedford, Faye; Rogers, Alex D.; Taylor, Michelle L.

    2017-11-01

    Antipatharia are a diverse group of corals with many species found in deep water. Many Antipatharia are habitat for associates, have extreme longevity and some species can occur beyond 8500 m depth. As they are major constituents of'coral gardens', which are Vulnerable Marine Ecosystems (VMEs), knowledge of their distribution and environmental requirements is an important pre-requisite for informed conservation planning particularly where the expense and difficulty of deep-sea sampling prohibits comprehensive surveys. This study uses a global database of Antipatharia distribution data to perform habitat suitability modelling using the Maxent methodology to estimate the global extent of black coral habitat suitability. The model of habitat suitability is driven by temperature but there is notable influence from other variables of topography, surface productivity and oxygen levels. This model can be used to predict areas of suitable habitat, which can be useful for conservation planning. The global distribution of Antipatharia habitat suitability shows a marked contrast with the distribution of specimen observations, indicating that many potentially suitable areas have not been sampled, and that sampling effort has been disproportionate to shallow, accessible areas inside marine protected areas (MPAs). Although 25% of Antipatharia observations are located in MPAs, only 7-8% of predicted suitable habitat is protected, which is short of the Convention on Biological Diversity target to protect 10% of ocean habitats by 2020.

  17. Research and application of multi-hydrogen acidizing technology of low-permeability reservoirs for increasing water injection

    Science.gov (United States)

    Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei

    2017-12-01

    The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.

  18. Evaluation of Soil Flushing for Application to the Deep Vadose Zone in the Hanford Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Oostrom, Martinus; Zhang, Z. F.; Carroll, Kenneth C.; Schramke, Janet A.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Gordon, Kathryn A.; Last, George V.

    2010-11-01

    Soil flushing was included in the Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau as a technology with the potential to remove contaminants from the vadose zone. Soil flushing operates through the addition of water, and if necessary an appropriate mobilizing agent, to mobilize contaminants and flush them from the vadose zone and into the groundwater where they are subsequently captured by a pump-and-treat system. There are uncertainties associated with applying soil flushing technology to contaminants in the deep vadose zone at the Hanford Central Plateau. The modeling and laboratory efforts reported herein are intended to provide a quantitative assessment of factors that impact water infiltration and contaminant flushing through the vadose zone and into the underlying groundwater. Once in the groundwater, capture of the contaminants would be necessary, but this aspect of implementing soil flushing was not evaluated in this effort. Soil flushing was evaluated primarily with respect to applications for technetium and uranium contaminants in the deep vadose zone of the Hanford Central Plateau.

  19. Interactions between deep bedrock aquifers and surface water in function of recharge and topography: a numerical study

    Science.gov (United States)

    Goderniaux, P.; Davy, P.; Le Borgne, T.; Bresciani, E.; Jimenez-Martinez, J.

    2011-12-01

    In crystalline rock regions, such as Brittany (France), important reserves of groundwater into deep fractured aquifers are increasingly used and provide high quality water compared to shallow aquifers which can be subject to agricultural contamination. However, recharge processes of these deep aquifers and interactions with surface water are not yet fully understood. In some areas, intensive pumping is carried out without guarantee of the resource quantity and quality. Understanding these processes is crucial for sustainable management of the resource. In this study, we study how deep groundwater fluxes, pathways, ages, and river-aquifer interactions vary according to recharge. We assume that water flowing from the ground surface is distributed between shallow more permeable layers and deep layers. This repartition mostly depends on recharge rates. With high recharge, groundwater levels are high and subsurface streamlines are relatively short between recharge areas and existing draining rivers, which constitutes a very dense network. Therefore, most of the groundwater fluxes occur through the more permeable shallow layers. With low recharge, groundwater levels are lower, and river and shallow permeable levels are partly disconnected from each other. This induces a general increase of the groundwater streamlines length from the recharge areas to more sporadic discharge areas, and more fluxes occur through the deep layers. Recharge conditions and river-aquifer interactions have changed over the last thousands of years, due to change in precipitation, temperatures, existence of permafrost, etc. They have strongly influenced deep groundwater fluxes and can explain current groundwater age and flux distribution. To study these interactions, a regional-scale finite difference flow model was implemented. The model covers an area of 1400 km 2 , a depth of 1 km, and the topography is characteristic of Brittany. As rivers are mainly fed by groundwater drainage, seepages faces

  20. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  1. Deep water convection and biogeochemical cycling of carbon in the Northern North Atlantic

    International Nuclear Information System (INIS)

    Buch, E.; Gissel Nielsen, T.; Lundsgaard, C.; Bendtsen, J.

    2001-01-01

    In 1998, the Danish Research Council launched the Global Change project 'Biochemical cycling of carbon and ocean circulation in the Northern North Atlantic'. The overall aim of the project was to describe the effect of high latitude carbon dynamics on the global ocean-atmosphere carbon system, in general, and on the atmospheric pCO 2 in particular. At present, knowledge concerning the seasonal differences in turnover rates of organic material in polar and sub-polar regions is limited. Thus, in order to achieve the aim of the project, it was necessary to obtain biological and chemical rate measurements for production and mineralization of dissolved and particulate organic material at high latitudes and relate these to ocean dynamics at different times of the year. This was investigated in the project by performing three cruises to the Greenland Sea area at different times of the year. The purpose of the present chapter is to give a review of: 1) The physical environment of the Northern North Atlantic (ocean circulation, deep convection, North Atlantic Oscillation) and its variability including the recent trends of importance to climate change. 2) The chemical and biological processes of importance to carbon cycle and the importance of the carbon cycle to our understanding of climate variability. Additionally preliminary results from the Danish global change investigation in the Greenland Sea will be presented. With regard to circulation it is concluded that the deep water in the Greenland Sea continues to warm up, indicating that the deep water formation in this area is reduced. The biological investigations are providing a highly needed basic knowledge of the structure and function of the pelagic food web as well as of the microbial food web of the intermediate and deep water. These studies form a basis for assessing the productivity, export mechanisms, mineralization rates and mineralization depth-scales in these areas. Especially the questions about the

  2. Water treatment for fossil fuel power generation - technology status report

    International Nuclear Information System (INIS)

    2006-01-01

    This technology status report focuses on the use of water treatment technology in fossil fuel power plants. The use of polymeric ion exchange resins for deionization of water, the currently preferred use of ion exchange for economically treating water containing low dissolved salts, the use of low pressure high-flux membranes, membrane microfiltration, and reverse osmosis are discussed. Details are given of the benefits of the technologies, water use at power plants, the current status of water treatment technologies, and the potential for future developments, along with power plant market trends and potentials, worldwide developments, and UK capabilities in water treatment plant design and manufacturing

  3. The diet and feeding ecology of Conger conger (L. 1758 in the deep waters of the Eastern Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. ANASTASOPOULOU

    2013-06-01

    Full Text Available The diet of the European conger eel Conger conger was investigated for the first time in the Eastern Mediterranean. Fish dominated the European conger eel diet in the deep waters of E. Ionian Sea. All other prey taxa were identified as accidental preys. However, intestine analysis showed that Natantia, Brachyura and Cephalopoda might have a more important contribution in the diet of the species. C. conger exhibited a benthopelagic feeding behavior as it preyed upon both demersal and mesopelagic taxa. The high vacuity index and the low stomach and intestine fullness indicated that the feeding intensity of the species in the deep waters of Eastern Ionian Sea was quite low. C. conger feeding strategy was characterised by specialisation in various resource items. A between-phenotype contribution to niche width was observed for some prey categories. European Conger eel feeding specialisation seemed to be an adaptation to a food-scarce environment, as typified in deep-water habitats

  4. Measuring Habitat Quality for Deep-Sea Corals and Sponges to Add Conservation Value to Telepresence-Enabled Science and Technology

    Science.gov (United States)

    Etnoyer, P. J.; Hourigan, T. F.; Reser, B.; Monaco, M.

    2016-02-01

    The growing fleet of telepresence-enabled research vessels equipped with deep-sea imaging technology provides a new opportunity to catalyze and coordinate research efforts among ships. This development is particularly useful for studying the distribution and diversity of deep-sea corals, which occur worldwide from 50 to 8600 m depth. Marine managers around the world seek to conserve these habitats, but require a clear consensus on what types of information are most important and most relevant for marine conservation. The National Oceanic and Atmospheric Administration (NOAA) seeks to develop a reproducible, non-invasive set of ROV methods designed to measure conservation value, or habitat quality, for deep-sea corals and sponges. New tools and methods will be proposed to inform ocean resource management, as well as facilitate research, outreach, and education. A new database schema will be presented, building upon the Ocean Biogeographic Information System (OBIS) and efforts of submersible and ROV teams over the years. Visual information about corals and sponges has proven paramount, particularly high-quality images with standard attributes for marine geology and marine biology, including scientific names, colony size, health, abundance, and density. Improved habitat suitability models can be developed from these data if presence and absence are measured. Recent efforts to incorporate physical sampling into telepresence protocols further increase the value of such information. It is possible for systematic observations with small file sizes to be distributed as geo-referenced, time-stamped still images with environmental variables for water chemistry and a standardized habitat classification. The technique is common among researchers, but a distributed network for this information is still in its infancy. One goal of this presentation is to make progress towards a more integrated network of these measured observations of habitat quality to better facilitate

  5. How Stressful Is "Deep Bubbling"?

    Science.gov (United States)

    Tyrmi, Jaana; Laukkanen, Anne-Maria

    2017-03-01

    Water resistance therapy by phonating through a tube into the water is used to treat dysphonia. Deep submersion (≥10 cm in water, "deep bubbling") is used for hypofunctional voice disorders. Using it with caution is recommended to avoid vocal overloading. This experimental study aimed to investigate how strenuous "deep bubbling" is. Fourteen subjects, half of them with voice training, repeated the syllable [pa:] in comfortable speaking pitch and loudness, loudly, and in strained voice. Thereafter, they phonated a vowel-like sound both in comfortable loudness and loudly into a glass resonance tube immersed 10 cm into the water. Oral pressure, contact quotient (CQ, calculated from electroglottographic signal), and sound pressure level were studied. The peak oral pressure P(oral) during [p] and shuttering of the outer end of the tube was measured to estimate the subglottic pressure P(sub) and the mean P(oral) during vowel portions to enable calculation of transglottic pressure P(trans). Sensations during phonation were reported with an open-ended interview. P(sub) and P(oral) were higher in "deep bubbling" and P(trans) lower than in loud syllable phonation, but the CQ did not differ significantly. Similar results were obtained for the comparison between loud "deep bubbling" and strained phonation, although P(sub) did not differ significantly. Most of the subjects reported "deep bubbling" to be stressful only for respiratory and lip muscles. No big differences were found between trained and untrained subjects. The CQ values suggest that "deep bubbling" may increase vocal fold loading. Further studies should address impact stress during water resistance exercises. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Next Steps: Water Technology Advances (Research)

    Science.gov (United States)

    This project will focus on contaminants and their impact on health, adequate removal of contaminants from various water systems, and water and resource recovery within treatment systems. It will develop the next generation of technological advances to provide guidance in support ...

  7. Endogenous technological and demographic change under increasing water scarcity

    Science.gov (United States)

    Pande, Saket; Ertsen, Maurits; Sivapalan, Murugesu

    2014-05-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  8. Endogenous technological and population change under increasing water scarcity

    Science.gov (United States)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2013-11-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  9. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  10. The development of a remote repair system for deep water pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Frazer, Ian; Giles, John [Stolt Offshore MS Ltd., Aberdeen (United Kingdom)

    2000-07-01

    The ability to maintain a high level of flexibility within the contingency plans for sub sea pipeline repair is a critical issue normally achieved by basing the repair plans on diver intervention. This allows the pipeline operator flexibility to respond to particular repair situations as they occur, minimize up front planning and optimize the investment in repair equipment and stock. However for deep water pipelines all intervention must be performed by remote methods, which require the development of suitable equipment and more detailed repair procedures. This paper describes the development of a remotely operated pipeline repair system capable of working down to 3000 m and allowing a relatively high level of flexibility with minimum investment in repair stock. The repair system is based upon the Modular Advanced Tie-In System (MATIS) which has been successfully developed for the tie-in of deep water flow lines. The MATIS repair system is based on the use of standard flanges to replace a damaged section of pipe with a spool piece in a similar manner to a hyperbaric welded repair. Various repair scenarios are discussed in the paper together with the equipment and the procedures used to perform the repair. The paper will also discuss the other remote repair options such as hot tapping and friction stitch welding. (author)

  11. Four new species of deep water agglutinated foraminifera from the Oligocene-Miocene of the Congo Fan (offshore Angola)

    OpenAIRE

    Kender, S.; Kaminski, M. A.; Jones, R. W.

    2006-01-01

    Four new species of deep-water agglutinated benthic foraminifera are described from the Oligocene and Miocene of the Congo Fan, offshore Angola. Scherochorella congoensis n.sp., Paratrochamminoides goroyskiformis n.sp., Haplophragmoides nauticus n.sp. and Portatrochammina profunda n.sp. all occur in deep-sea turbiditic shales and sands from the distal section of the Congo Fan.

  12. Fiscal 1999 research result report. Basic research on the evaluation method of deep water by fine algae; 1999 nendo bisai sorui wo mochiita shinsosui hyokaho ni kansuru kisoteki kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Basic research was made on establishment of a bioassay for testing the effect of deep water on surface biota. Mixing of surface water and deep water with high-concentration nutrient salts has effect on fine algae (phytoplankton) immediately. In this research, based on conventional AGP (algae growth potential) method as water quality evaluation method by fine algae, the multiplication potential of 13 strains of algae in Kochi's and Toyama's deep water was evaluated by using the increase rate of the number of cells. The research result showed that (1) deep water has the potential increasing cell concentrations of every fine algae to several times or over ten times as compared with surface water, (2) most of both nitrogen and phosphorus in deep water are consumed during the above process, (3) cell concentrations of both harmful and usable species increase, and (4) although no difference in mean potential is found between Kochi's and Toyama's deep water, the patterns of strains promoting multiplication are different between them. (NEDO)

  13. Review of tritiated water concentration technology

    International Nuclear Information System (INIS)

    Ma Hongbin

    2014-01-01

    In order to cooperate with the construction of the spent fuel reprocessing plant in China, the research and application status of tritiated water concentration technology at home and abroad were summarized. Some suggestions for the technology research route in China were put forward. (author)

  14. A trans-disciplinary review of deep learning research for water resources scientists

    OpenAIRE

    Shen, Chaopeng

    2017-01-01

    Deep learning (DL), a new-generation artificial neural network research, has made profound strides in recent years. This review paper is intended to provide water resources scientists with a simple technical overview, trans-disciplinary progress update, and potentially inspirations about DL. Effective architectures, more accessible data, advances in regularization, and new computing power enabled the success of DL. A trans-disciplinary review reveals that DL is rapidly transforming myriad sci...

  15. Paraffin dispersant application for cleaning subsea flow lines in the deep water Gulf of Mexico cottonwood development

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, David; White, Jake; Pogoson, Oje [Baker Hughes Inc., Houston, TX (United States); Barros, Dalmo; Ramachandran, Kartik; Bonin, George; Waltrich, Paulo; Shecaira, Farid [PETROBRAS America, Houston, TX (United States); Ziglio, Claudio [Petroleo Brasileiro S.A. (CENPES/PETROBRAS), Rio de Janeiro, RJ (Brazil). Centro de Pesquisa e Desenvolvimento

    2012-07-01

    This paper discusses a paraffin dispersant (in seawater) application to clean paraffin deposition from a severely restricted 17.4-mile dual subsea flow line system in the Gulf of Mexico Cottonwood development. In principle, dispersant treatments are simple processes requiring effective dispersant packages and agitation to break-up and disperse deposition. Dispersants have been used onshore for treating wax deposition for decades. Implementation of a treatment in a long deep water production system, however, poses numerous challenges. The Cottonwood application was one of the first ever deep water dispersant applications. The application was designed in four separate phases: pre-treatment displacement for hydrate protection, dispersant treatment for paraffin deposition removal, pigging sequence for final flow line cleaning, and post-treatment displacement for hydrate protection. In addition, considerable job planning was performed to ensure the application was executed in a safe and environmentally responsible manner. Two dynamically positioned marine vessels were used for pumping fluids and capturing returns. The application was extremely successful in restoring the deep water flow lines back to near pre-production state. Final pigging operations confirmed the flow lines were cleaned of all restrictions. Significant paraffin deposition was removed in the application. Approximately 900 bbls of paraffin sludge was recovered from the 4000 bbl internal volume flow line loop. Furthermore, the application was completed with zero discharge of fluids. The application provided significant value for the Cottonwood development. It allowed production from wells to be brought on-line at a higher capacity, thereby generating increased revenue. It also allowed resumption of routine pigging operations. As such, the Cottonwood dispersant application illustrates that with proper planning and execution, paraffin dispersant treatments can be highly effective solutions for cleaning

  16. Using a Water Purification Activity to Teach the Philosophy and Nature of Technology

    Science.gov (United States)

    Kruse, Jerrid; Wilcox, Jesse

    2017-01-01

    Next Generation Science Standards (NGSS), with new emphasis on engineering, reflects broadening definitions of scientific and technological literacy. However, engaging in science and engineering practices is necessary, but insufficient, for developing technological literacy. Just as robust scientific literacy includes a deep understanding of the…

  17. Interactions of energy technology development and new energy exploitation with water technology development in China

    International Nuclear Information System (INIS)

    Liang, Sai; Zhang, Tianzhu

    2011-01-01

    Interactions of energy policies with water technology development in China are investigated using a hybrid input-output model and scenario analysis. The implementation of energy policies and water technology development can produce co-benefits for each other. Water saving potential of energy technology development is much larger than that of new energy exploitation. From the viewpoint of proportions of water saving co-benefits of energy policies, energy sectors benefit the most. From the viewpoint of proportions of energy saving and CO 2 mitigation co-benefits of water technology development, water sector benefits the most. Moreover, economic sectors are classified into four categories concerning co-benefits on water saving, energy saving and CO 2 mitigation. Sectors in categories 1 and 2 have big direct co-benefits. Thus, they can take additional responsibility for water and energy saving and CO 2 mitigation. If China implements life cycle materials management, sectors in category 3 can also take additional responsibility for water and energy saving and CO 2 mitigation. Sectors in category 4 have few co-benefits from both direct and accumulative perspectives. Thus, putting additional responsibility on sectors in category 4 might produce pressure for their economic development. -- Highlights: ► Energy policies and water technology development can produce co-benefits for each other. ► For proportions of water saving co-benefits of energy policies, energy sectors benefit the most. ► For proportions of energy saving and CO 2 mitigation co-benefits of water policy, water sector benefits the most. ► China’s economic sectors are classified into four categories for policy implementation at sector scale.

  18. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

  19. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su

    2016-01-01

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested

  20. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... saving agricultural technology, which include modern biological water-saving technology, unconventional ... and innovation, water, nutrient migration theory, regula- .... urban sewage of more than 50%; Mexico City, 90% of.

  1. Water pollution control technology in Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This work is a compilation by members of the Committee for Studying Transfer of Environmental Technology on the expertise and technology developed by the members for controlling water pollution in Japan, together with consideration of issues concerning the transfer of environmental technologies to developing countries. The committee is composed of representatives for the Environment Agency, Japan, Osaka Prefectural Government, Osaka Municipal Government, and 25 companies such as manufacturers of environmental equipment. The document contains a total of 93 short papers grouped into sections on: industrial wastewater treatment; sewage treatment; right soil treatment; sludge treatment; and miscellaneous. One paper by the Kausai Electric Power Co., Inc., discusses waste water treatment systems in oil-fired thermal power plants; another describes an internally circulating fluidized bed boiler for cocombusting coal with industrial wastes.

  2. Why every national deep-geological-isolation program needs a long-term science & technology component

    International Nuclear Information System (INIS)

    Budnitz, R J

    2006-01-01

    The objective of this paper is to set down the rationale for a separate Science & Technology (S&T) Program within every national deep-geological-isolation program. The fundamental rationale for such a Program is to provide a dedicated focus for longer-term science and technology activities that ultimately will benefit the whole repository mission. Such a Program, separately funded and with a dedicated staff (separate from the ''mainline'' activities to develop the repository, the surface facilities, and the transportation system), can devote itself exclusively to the development and management of a long-term science and technology program. Broad experience in governments worldwide has demonstrated that line offices are unlikely to be able to develop and sustain both the appropriate longer-term philosophy and the specialized skills associated with managing longer-term science and technology projects. Accomplishing both of these requires a separate dedicated program office with its own staff

  3. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  4. The roles of MCDW and deep water iron supply in sustaining a recurrent phytoplankton bloom on central Pennell Bank (Ross Sea)

    Science.gov (United States)

    Kustka, Adam B.; Kohut, Josh T.; White, Angelicque E.; Lam, Phoebe J.; Milligan, Allen J.; Dinniman, Michael S.; Mack, Stefanie; Hunter, Elias; Hiscock, Michael R.; Smith, Walker O.; Measures, Chris I.

    2015-11-01

    During January-February 2011 standing stocks of phytoplankton (chl a) in the Pennell Bank region of the Ross Sea were variable over 10-100 km spatial scales. One area of elevated chl a on central Pennell Bank (CPB) appeared to be a recurrent mid-summer feature. The western flank (WF) of Pennell Bank had pronounced signatures of Modified Circumpolar Deep Water (MCDW). We evaluated the spatial extent of Fe limitation and net primary production and tested whether MCDW may provide elevated amounts of Fe to the CPB region, through a combination of in situ measurements, shipboard incubations and a horizontally resolved physical model. Regional fluxes of dissolved Fe from deep to surface waters were compared to calculated Fe demands. Low in situ variable to maximum fluorescence (Fv/Fm; 0.24-0.37) and surface water dissolved Fe concentrations (~0.12-0.21 nM) were suggestive of widespread limitation, corroborated by the consistent responses (Fv/Fm, growth, and nutrient removal ratios) of incubation treatments to Fe addition. MCDW from the WF region had lower dissolved Fe concentrations than that measured in CDW (Circumpolar Deep Water), which suggests on-shelf modification with Fe deplete surface waters and is consistent with the lack of stimulation due to incubation amendments with filtered MCDW. Model results and empirical data suggest MCDW from the WF region is further modified and mixed en route to the CPB region, leading to both the erosion of the canonical MCDW signature and an elevated dissolved Fe inventory of CPB region deep water. This suggests the addition of Fe possibly via diagenesis, as suggested by Marsay et al. (2014). Calculated deep water supply rates to the surface waters of CPB were ~0.18-0.43 m d-1, while calculated rates at the WF or northern Pennell Bank (NPB) regions were negative. The CPB populations exhibited ~4.5-fold higher net production rates compared to those in the WF and NPB regions and required 520-3200 nmol Fe m-2 d-1. The modeled vertical

  5. Unusual Deep Water sponge assemblage in South China—Witness of the end-Ordovician mass extinction

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-01

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  6. Unusual Deep Water sponge assemblage in South China-Witness of the end-Ordovician mass extinction.

    Science.gov (United States)

    Li, Lixia; Feng, Hongzhen; Janussen, Dorte; Reitner, Joachim

    2015-11-05

    There are few sponges known from the end-Ordovician to early-Silurian strata all over the world, and no records of sponge fossils have been found yet in China during this interval. Here we report a unique sponge assemblage spanning the interval of the end-Ordovician mass extinction from the Kaochiapien Formation (Upper Ordovician-Lower Silurian) in South China. This assemblage contains a variety of well-preserved siliceous sponges, including both Burgess Shale-type and modern type taxa. It is clear that this assemblage developed in deep water, low energy ecosystem with less competitors and more vacant niches. Its explosion may be related to the euxinic and anoxic condition as well as the noticeable transgression during the end-Ordovician mass extinction. The excellent preservation of this assemblage is probably due to the rapid burial by mud turbidites. This unusual sponge assemblage provides a link between the Burgess Shale-type deep water sponges and the modern forms. It gives an excellent insight into the deep sea palaeoecology and the macroevolution of Phanerozoic sponges, and opens a new window to investigate the marine ecosystem before and after the end-Ordovician mass extinction. It also offers potential to search for exceptional fossil biota across the Ordovician-Silurian boundary interval in China.

  7. Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.

    Science.gov (United States)

    Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A

    1993-04-01

    Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.

  8. R and D areas for next generation desalination and water purification technologies

    International Nuclear Information System (INIS)

    Raha, A.; Rao, I.S.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    By 2020, desalination and water purification technologies are expected to contribute significantly to ensure a safe, sustainable, affordable and adequate water supply. The cost of producing water from the current generation desalination technologies has declined over time at a rate of only approximately 4% per year. So we need to accelerate our research and development (R and D) activities with a near and long term objective for evolution of current generation desalination technology and to create revolutionary next generation advanced desalination and water purification technologies which will offer a promise of step reduction in cost of producing water. There are five broad technological areas-thermal technologies, membrane technologies, alternate technologies, concentrate management technologies, reuse and recycle technologies that encompass the spectrum of desalination technology. In this paper high priority research areas in all the above technologies areas are discussed to make decision about research direction that will help to mitigate our nation's future water supply challenges. (author)

  9. Bermuda: Search for Deep Water Caves 2009 on the R/V Endurance between 20090905 and 20090930

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-water marine caves are one of the Earth's last largely unexplored frontiers of undiscovered fauna (animal life). More than 150 limestone caves are known to...

  10. Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery

    International Nuclear Information System (INIS)

    Li, Yuzhong; Yan, Min; Zhang, Liqiang; Chen, Guifang; Cui, Lin; Song, Zhanlong; Chang, Jingcai; Ma, Chunyuan

    2016-01-01

    Highlights: • A method is developed for deep cooling of flue gas in coal-fired boilers. • The method can recover both latent heat and water from flue gas. • The method utilizes FGD scrubber as a deep cooling exchanger. • The method adopts the direct heat exchange mode to avoid the corrosion problem. - Abstract: Flue gas waste heat recovery and utilization is an efficient means to improve the energy efficiency of coal-fired power plants. At present, the surface corrosion and fouling problems of heat exchanger hinder the development of flue gas deep cooling. In this study, a novel flue gas deep cooling method that can reduce flue gas temperature below the dew point of vapor to recover latent heat and obtain clean water simultaneously is proposed to achieve improved energy efficiency. The heat transfer mode of this method is the direct contact mode, which takes the scrubber, e.g. the flue gas desulfurization (FGD) scrubber, as the deep cooling exchanger. The flash evaporation and condensation (FEC) device and heat pump (HP) are utilized to provide low-temperature medium, such as FGD slurry or water, for washing and deep cooling flue gas, to collect recovered water, and to absorb recovered waste heat. This method is called as the FEC–HP method. This paper elaborated on two optional models of the proposed method. The mechanism for recovering heat and water was also analyzed using the customized flue gas humidity chart, and the method to quantitate recovered heat and water, as well as the results of the case of a 300 MW coal-fired generator set were provided. Net present value calculations showed that this method is profitable in the scenario of burning high-water-content coals. Several potential advantages of this method and suggestions for practical application were also discussed.

  11. Emerging desalination technologies for water treatment: a critical review.

    Science.gov (United States)

    Subramani, Arun; Jacangelo, Joseph G

    2015-05-15

    In this paper, a review of emerging desalination technologies is presented. Several technologies for desalination of municipal and industrial wastewater have been proposed and evaluated, but only certain technologies have been commercialized or are close to commercialization. This review consists of membrane-based, thermal-based and alternative technologies. Membranes based on incorporation of nanoparticles, carbon nanotubes or graphene-based ones show promise as innovative desalination technologies with superior performance in terms of water permeability and salt rejection. However, only nanocomposite membranes have been commercialized while others are still under fundamental developmental stages. Among the thermal-based technologies, membrane distillation and adsorption desalination show the most promise for enhanced performance with the availability of a waste heat source. Several alternative technologies have also been developed recently; those based on capacitive deionization have shown considerable improvements in their salt removal capacity and feed water recovery. In the same category, microbial desalination cells have been shown to desalinate high salinity water without any external energy source, but to date, scale up of the process has not been methodically evaluated. In this paper, advantages and drawbacks of each technology is discussed along with a comparison of performance, water quality and energy consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Deep Vadose Zone Applied Field Research Center: Transformational Technology Development For Environmental Remediation

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-01-01

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  13. Preface: Deep Slab and Mantle Dynamics

    Science.gov (United States)

    Suetsugu, Daisuke; Bina, Craig R.; Inoue, Toru; Wiens, Douglas A.

    2010-11-01

    We are pleased to publish this special issue of the journal Physics of the Earth and Planetary Interiors entitled "Deep Slab and Mantle Dynamics". This issue is an outgrowth of the international symposium "Deep Slab and Mantle Dynamics", which was held on February 25-27, 2009, in Kyoto, Japan. This symposium was organized by the "Stagnant Slab Project" (SSP) research group to present the results of the 5-year project and to facilitate intensive discussion with well-known international researchers in related fields. The SSP and the symposium were supported by a Grant-in-Aid for Scientific Research (16075101) from the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. In the symposium, key issues discussed by participants included: transportation of water into the deep mantle and its role in slab-related dynamics; observational and experimental constraints on deep slab properties and the slab environment; modeling of slab stagnation to constrain its mechanisms in comparison with observational and experimental data; observational, experimental and modeling constraints on the fate of stagnant slabs; eventual accumulation of stagnant slabs on the core-mantle boundary and its geodynamic implications. This special issue is a collection of papers presented in the symposium and other papers related to the subject of the symposium. The collected papers provide an overview of the wide range of multidisciplinary studies of mantle dynamics, particularly in the context of subduction, stagnation, and the fate of deep slabs.

  14. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    Science.gov (United States)

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  15. Sidestream Elevated Pool Aeration, a Technology for Improving Water Quality in Urban Rivers

    Science.gov (United States)

    Motta, D.; Garcia, T.; Abad, J. D.; Bombardelli, F. A.; Waratuke, A.; Garcia, M. H.

    2010-12-01

    Dissolved Oxygen (DO) levels are frequently depleted in rivers located in urban areas, as in the case of the Matanza-Riachuelo River in Buenos Aires, Argentina. This stream receives both domestic and industrial loads which have received minor or no treatment before being discharged into the water body. Major sources of pollution include, but are not limited, to leather and meat packing industries. Additionally, deep slow moving water in the river is associated with limited reaeration and facilitates deposition of organic-rich sediment, therefore exacerbating the DO consumption through sediment oxygen demand. In this study we assessed the efficiency of Sidestream Elevated Pool Aeration (SEPA) stations as a technology for alleviating conditions characterized by severely low DO levels. A SEPA station takes water from the stream at low DO concentrations, through a screw pump; then, water is transported to an elevated pool from where it flows over a series of weirs for water reaeration; finally, the aerated water is discharged back into the river sufficiently downstream from the intake point. This system mimics a phenomenon that occurs in mountain streams, where water is purified by bubbling over rocks. The impact of the use of SEPA stations on the DO concentrations in the Matanza-Riachuelo River was evaluated at both local and reach scales: this was done by deploying and monitoring an in situ pilot SEPA station, and by performing numerical modeling for the evaluation of the hydrodynamics in the SEPA station and the water quality in the reach where SEPA stations are planned to be implemented. An efficiency of aeration of 99% was estimated from DO measurements in the pilot SEPA, showing the potential of this technology for DO recovery in urban streams. Three-dimensional hydrodynamic modeling, besides assisting in the design of the pilot SEPA, has allowed for designing a prototype SEPA to be built soon. Finally, one-dimensional water quality modeling has provided the

  16. Tracer element studies on deep water formation and circulation in the European Artic Sea

    International Nuclear Information System (INIS)

    Boenisch, G.

    1991-01-01

    Tracer element investigations (tritium, helium 3, carbon 14, argon 39, krypton 85 and fluorohydrocarbons) were carried out in the European Arctic Sea. The findings are discussed with a view to their validity in the case of deep water formation and circulation. The data cover the period of 1972 through 1989. (BBR) [de

  17. Water extraction of coals - potential for estimating low molecular weight organic acids as carbon feedstock for the deep terrestrial biosphere

    Energy Technology Data Exchange (ETDEWEB)

    Vieth, A.; Mangelsdorf, K.; Sykes, R.; Horsfield, B. [Geoforschungszentrum Potsdam, Potsdam (Germany)

    2008-08-15

    With the recent increasing interest in the deep biosphere, the question arises as to where the carbon sources that support deep microbial communities are derived from. Our research was focussed on the water-soluble, low molecular weight (LMW) organic acids that are potentially available from different sedimentary lithologies to serve as a carbon source to feed the deep biosphere. A series of Eocene-Pleistocene coals, mudstones and sandstones of varying rank (maturity) and total organic carbon (TOC) content from the Waikato Basin, New Zealand, has been Soxhlet-extracted using water. The combined concentration of recovered formate, acetate and oxalate range from 366 to 2499 {mu} g/g sediment and appear to be dependent on rank, organofacies and TOC. The yields indicate the potential of carbonaceous sediments to feed the local deep terrestrial biosphere over geological periods of time. The existence of living microbial organisms in the mudstones and sandstones was proved by the identification of intact phospholipids (PLs).

  18. Reproductive traits of tropical deep-water pandalid shrimps ( Heterocarpus ensifer) from the SW Gulf of Mexico

    Science.gov (United States)

    Briones-Fourzán, Patricia; Barradas-Ortíz, Cecilia; Negrete-Soto, Fernando; Lozano-Álvarez, Enrique

    2010-08-01

    Heterocarpus ensifer is a tropical deep-water pandalid shrimp whose reproductive features are poorly known. We examined reproductive traits of a population of H. ensifer inhabiting the continental slope (311-715 m in depth) off the Yucatan Peninsula, Mexico (SW Gulf of Mexico). Size range of the total sample ( n=816) was 10.4-38.9 mm carapace length. Females grow larger than males, but both sexes mature at 57% of their maximum theoretical size and at ˜30% of their total lifespan. Among adult females, the proportion of ovigerous females was high in all seasons, indicating year-round reproduction. Most females carrying embryos in advanced stages of development had ovaries in advanced stages of maturation, indicating production of successive spawns. In the autumn, however, the proportion of ovigerous females and the condition index of these females were lower compared to other seasons. This pattern potentially reflects a reduction in food resources following the summer minimum in particulate organic carbon flux to the deep benthos, as reported in previous studies. Spawns consisting of large numbers (16024±5644, mean±SD) of small eggs (0.045±0.009 mm 3) are consistent with extended planktotrophic larval development, an uncommon feature in deep-water carideans. Egg number increased as a power function of female size but with substantial variability, and egg size varied widely within and between females. There was no apparent trade-off between egg number and egg size and neither of these two variables was influenced by female condition. These results indicate iteroparity and a high and variable reproductive effort, reflecting a reproductive strategy developed to compensate for high larval mortality. The present study provides a baseline to compare reproductive traits between Atlantic populations of this tropical deep-water pandalid.

  19. Water Power Technologies Office 2017 Marine Energy Accomplishments

    Energy Technology Data Exchange (ETDEWEB)

    Water Power Technologies Office

    2018-04-01

    The U.S. Department of Energy's Water Power Technologies Office's marine and hydrokinetic portfolio has numerous projects that support industry advancement in wave, tidal, and ocean and river current technologies. In order to strengthen state-of-the-art technologies in these fields and bring them closer to commercialization, the Water Power Technologies Office funds industry, academia, and the national laboratories. A U.S. chapter on marine and hydrokinetic energy research and development was included in the Ocean Energy Systems' Technology Programme—an intergovernmental collaboration between countries, which operates under a framework established by the International Energy Agency. This brochure is an overview of the U.S. accomplishments and updates from that report.

  20. Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric CO2 during the Last Glacial Termination

    Science.gov (United States)

    Allen, Katherine A.; Sikes, Elisabeth L.; Hönisch, Bärbel; Elmore, Aurora C.; Guilderson, Thomas P.; Rosenthal, Yair; Anderson, Robert F.

    2015-08-01

    A greater amount of CO2 was stored in the deep sea during glacial periods, likely via greater efficiency of the biologic pump and increased uptake by a more alkaline ocean. Reconstructing past variations in seawater carbonate ion concentration (a major component of alkalinity) enables quantification of the relative roles of different oceanic CO2 storage mechanisms and also places constraints on the timing, magnitude, and location of subsequent deep ocean ventilation. Here, we present a record of deep-water inorganic carbon chemistry since the Last Glacial Maximum (LGM; ∼19-23 ka BP), derived from sediment core RR0503-83 raised from 1627 m in New Zealand's Bay of Plenty. The core site lies within the upper limit of southern-sourced Circumpolar Deep Water (CDW), just below the lower boundary of Antarctic Intermediate Water (AAIW). We reconstruct past changes in bottom water inorganic carbon chemistry from the trace element and stable isotopic composition of calcite shells of the epibenthic foraminifer Cibicidoides wuellerstorfi. A record of ΔCO32-(ΔCO32- = [COCO32-] in situ - [CO32-] saturation) derived from the foraminiferal boron to calcium ratio (B/Ca) provides evidence for greater ice-age storage of respired CO2 and reveals abrupt deglacial shifts in [CO32-] in situ of up to 30 μmol/kg (5 times larger than the difference between average LGM and Holocene values). The rapidity of these changes suggests the influence of changing water mass structure and atmospheric circulation in addition to a decrease in CO2 content of interior waters.

  1. 1st DeepWind 5 MW Baseline design

    DEFF Research Database (Denmark)

    Schmidt Paulsen, Uwe; Vita, Luca; Aagaard Madsen, Helge

    2012-01-01

    The first 5MW baseline design of the DeepWind concept is presented for a Darrieus type floating wind turbine system for water depths of more than 150 m. This design will be used as design reference to test the next technological improvements of sub-component level, being based as much as possible...... trajectory on the water plane. The generator is placed at the bottom of the platform and uses 5MW direct drive technology.The conceptual design is evaluated with numerical simulations in the time domain using the aero-elastic code HAWC2. In order to investigate the concept, a double-disc blade element....... A site has been chosen for the floating turbine off Norway as representative for external conditions. The structure is verified according to an ultimate strength analysis, including loads from wind, waves and currents. The stability of the platform is investigated, considering the displacements...

  2. Application of Confined Blasting in Water-Filled Deep Holes to Control Strong Rock Pressure in Hard Rock Mines

    Directory of Open Access Journals (Sweden)

    Jingxuan Yang

    2017-11-01

    Full Text Available In extra-thick coal seams, mining operations can lead to large-scale disturbances, complex overburden structures, and frequent and strong strata behavior in the stope, which are serious threats to mine safety. This study analyzed the overburden structure and strata behavior and proposed the technique of confined blasting in water-filled deep holes as a measure to prevent strong rock pressure. It found that there are two primary reasons for the high effectiveness of the proposed technique in presplitting hard coal and rock. First, the fracture water enables much more efficient transfer of dynamic load due to its incompressibility. Second, the subsequent expansion of water can further split the rock by compression. A mechanical model was used to reveal how the process of confined blasting in water-filled deep holes presplit roof. Moreover, practical implementation of this technique was found to improve the structure of hard, thick roof and prevent strong rock pressure, demonstrating its effectiveness in roof control.

  3. Application of BIM Technology in Building Water Supply and Drainage Design

    Science.gov (United States)

    Wei, Tianyun; Chen, Guiqing; Wang, Junde

    2017-12-01

    Through the application of BIM technology, the idea of building water supply and drainage designers can be related to the model, the various influencing factors to affect water supply and drainage design can be considered more comprehensively. BIM(Building information model) technology assist in improving the design process of building water supply and drainage, promoting the building water supply and drainage planning, enriching the building water supply and drainage design method, improving the water supply and drainage system design level and building quality. Combined with fuzzy comprehensive evaluation method to analyze the advantages of BIM technology in building water supply and drainage design. Therefore, application prospects of BIM technology are very worthy of promotion.

  4. Seismic Observation in Deep Boreholes and Its Applications - Workshop Proceedings, Niigata Institute of Technology, Kashiwazaki, Japan

    International Nuclear Information System (INIS)

    2014-01-01

    4 was only 70% that of Unit 2 at the same site. Given these circumstances, JNES initiated the 'Observation and Evaluation Study of Ground Motion Amplification' project by drilling a three-kilometer deep borehole on the premises of the Niigata Institute of Technology, which is located near the Kashiwazaki site, and proposed a series of workshops related to deep underground seismic observation and ground motion evaluation to the Seismic Subgroup of the OECD/NEA/IAGE Group at the April 2010 meeting. The first was held from 24-26 November 2010 as part of the first Kashiwazaki International Symposium on seismic safety, and the second was held on 7 to 9 November 2012. In the second WS, 36 papers were presented by the participants from eight countries including two international organizations, and discussed in three sessions (i.e. observation technology, evaluation of the observed seismic motion and the multipurpose use). Regarding the observation technology session, useful lessons-learned in probe development, setup and maintenance under the challenging conditions posed by great depth were described. This information from SAFORD and Kashiwazaki was thought to be particularly valuable for the planning and operation of similar facilities. As for the seismic observations from a deep borehole, it was identified that such observations are very effective for investigation of the earthquake generating process and are important for detailed understanding of the three-dimensional underground structure. There is not yet much experience with observation and application of a deep borehole, and therefore future developments and achievements are expected. The importance of simple ground motion evaluation technology combined with geophysical exploration was also acknowledged. Examples of multipurpose utilization and the advantage of seismic observations in deep boreholes were discussed. Multipurpose use was discussed not only for seismic design and evaluation of nuclear installations

  5. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  6. Water Science and Technology Board annual report, 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report summarizes the activities of the Water Science and Technology Board (WSTB) during 1990, its eighth year of existence. It describes current and recently completed projects, new activities scheduled to begin in 1991, and plans for the future. The WSTB is intended to be a dynamic forum, a mechanism by which the board community of water science, technology, and policy professionals can help assure high-quality national water programs. As such, the Board considers out-reach and communications of much importance.

  7. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    Science.gov (United States)

    Soetaert, Karline; Mohn, Christian; Rengstorf, Anna; Grehan, Anthony; van Oevelen, Dick

    2016-10-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces downwelling events of surface water that brings organic matter to 600-m deep CWCs. This positive feedback between CWC growth on carbonate mounds and enhanced food supply is essential for their sustenance in the deep sea and represents an example of ecosystem engineering of unparalleled magnitude. This ’topographically-enhanced carbon pump’ leaks organic matter that settles at greater depths. The ubiquitous presence of biogenic and geological topographies along ocean margins suggests that carbon sequestration through this pump is of global importance. These results indicate that enhanced stratification and lower surface productivity, both expected consequences of climate change, may negatively impact the energy balance of CWCs.

  8. Microbially-mediated fluorescent organic matter transformations in the deep ocean

    DEFF Research Database (Denmark)

    Aparicio, Fran L.; Nieto-Cid, Mar; Borrull, Encarna

    2015-01-01

    The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also b....... These findings contribute to the understanding of FDOM variability in deep waters and provide valuable information for studies where fluorescent compounds are used in order to track water masses and/or microbial processes.......The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also...

  9. Deep boreholes; Tiefe Bohrloecher

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH Koeln (Germany); Charlier, Frank [NSE international nuclear safety engineering gmbh, Aachen (Germany); Geckeis, Horst [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Nukleare Entsorgung; and others

    2016-02-15

    The report on deep boreholes covers the following subject areas: methods for safe enclosure of radioactive wastes, requirements concerning the geological conditions of possible boreholes, reversibility of decisions and retrievability, status of drilling technology. The introduction covers national and international activities. Further chapters deal with the following issues: basic concept of the storage in deep bore holes, status of the drilling technology, safe enclosure, geomechanics and stability, reversibility of decisions, risk scenarios, compliancy with safe4ty requirements and site selection criteria, research and development demand.

  10. Deep-well injection of radioactive waste in Russia

    International Nuclear Information System (INIS)

    Hoek, J.

    1998-01-01

    In the Russian federation, deep borehole injection of liquid radioactive waste has been established practice since at least 1963. The liquid is injected into sandy or other formations with high porosity, which are isolated by water-tight layers. This technique has also been used elsewhere for toxic liquid waste and residues from mining operations. Deep-well injection of radioactive waste is not currently used in any of the European Commission (EC) countries. In this paper the results of a EC-funded study were presented. The study is entitled 'Measurements, modelling of migration and possible radiological consequences at deep well injection sites for liquid radioactive waste in Russia', COSU-CT94-0099-UK. The study was carried out jointly by AEA Technology, CAG and the Research Institute for Nuclear Reactors (NIIAR) at Dimitrovgrad. Many scientists have contributed to the results reported here. The aims of the study are: Provision of extensive information on the deep-well injection repositories and their use in the former Soviet Union; Provision of a methodology to assess safety aspects of deep-well injection of liquid radioactive waste in deep geological formations; This will allow evaluation of proposals to use deep-well injection techniques in other regions; Support for Russian regulatory bodies through evaluation of the suitability of the sites, including estimates of the maximum amount of waste that can be safely stored in them; and Provision of a methodology to assess the use of deep-well injection repositories as an alternative disposal technique for EC countries. 7 refs

  11. Deep Energy Retrofit

    DEFF Research Database (Denmark)

    Zhivov, Alexander; Lohse, Rüdiger; Rose, Jørgen

    Deep Energy Retrofit – A Guide to Achieving Significant Energy User Reduction with Major Renovation Projects contains recommendations for characteristics of some of core technologies and measures that are based on studies conducted by national teams associated with the International Energy Agency...... Energy Conservation in Buildings and Communities Program (IEA-EBC) Annex 61 (Lohse et al. 2016, Case, et al. 2016, Rose et al. 2016, Yao, et al. 2016, Dake 2014, Stankevica et al. 2016, Kiatreungwattana 2014). Results of these studies provided a base for setting minimum requirements to the building...... envelope-related technologies to make Deep Energy Retrofit feasible and, in many situations, cost effective. Use of energy efficiency measures (EEMs) in addition to core technologies bundle and high-efficiency appliances will foster further energy use reduction. This Guide also provides best practice...

  12. Trace elements and stable isotope ratios (δ13C and δ15N) in fish from deep-waters of the Sulu Sea and the Celebes Sea

    International Nuclear Information System (INIS)

    Asante, Kwadwo Ansong; Agusa, Tetsuro; Kubota, Reiji; Mochizuki, Hiroko; Ramu, Karri; Nishida, Shuhei; Ohta, Suguru; Yeh, Hsin-ming; Subramanian, Annamalai; Tanabe, Shinsuke

    2010-01-01

    Trace elements (TEs) and stable isotope ratios (δ 15 N and δ 13 C) were analyzed in fish from deep-water of the Sulu Sea, the Celebes Sea and the Philippine Sea. Concentrations of V and Pb in pelagic fish from the Sulu Sea were higher than those from the Celebes Sea, whereas the opposite trend was observed for δ 13 C. High concentrations of Zn, Cu and Ag were found in non-migrant fish in deep-water, while Rb level was high in fish which migrate up to the epipelagic zone, probably resulting from differences in background levels of these TEs in each water environment or function of adaptation to deep-water by migrant and non-migrant species. Arsenic level in the Sulu Sea fish was positively correlated with δ 15 N, indicating biomagnification of arsenic. To our knowledge, this is the first study on relationship between diel vertical migration and TE accumulation in deep-water fish.

  13. FY 2001 report on the results of the development of the hydrothermal utilization power plant, etc. Development of collecting technology for deep geothermal resources (Development of production technology for deep geothermal resources); 1992 - 2001 nessui riyo hatsuden plant tou kaihatsu sokatsu seika hokokusho. Shinbu chinetsu shigen saishu gijutsu no kaihatsu - Shinbu chinetsu shigen seisan gijutsu no kaihatsu (2001 nendo seika hokokusho bessatsu shiryo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For making effective/economical collection of deep geothermal resources, development was made from FY 1991 to FY 2001 of the 'drilling technology for deep geothermal resources' and 'production technology for deep geothermal resources,' and the results were summarized. As to the development of logging technology, the PTSD logging system was developed which can measure temperature/pressure/flow velocity/fluid density in geothermal well under the environment of temperature of 400 degrees C. Concerning the development of monitoring technology, development was made of the PT monitoring system that can make the long-term continuous measuring of temperature/pressure in deep geothermal observation well under the environment of temperature of 400 degrees C and of the C monitoring system that samples geothermal fluids at regular intervals to grasp changes in chemical component. Relating to the development of high temperature tracer monitoring technology, the following were conducted: extraction of high temperature tracer agent that can be used in geothermal reservoirs under the environment of temperature of 300 degrees C, development of simulator, and establishment of how to put tracer agent into the reservoir and how to analyze tracer agent. Further, the R and D were made of scale monitoring technology and scale prevention/removal technology. (NEDO)

  14. Deep, diverse and definitely different: unique attributes of the world's largest ecosystem

    Directory of Open Access Journals (Sweden)

    E. Ramirez-Llodra

    2010-09-01

    Full Text Available The deep sea, the largest biome on Earth, has a series of characteristics that make this environment both distinct from other marine and land ecosystems and unique for the entire planet. This review describes these patterns and processes, from geological settings to biological processes, biodiversity and biogeographical patterns. It concludes with a brief discussion of current threats from anthropogenic activities to deep-sea habitats and their fauna.

    Investigations of deep-sea habitats and their fauna began in the late 19th century. In the intervening years, technological developments and stimulating discoveries have promoted deep-sea research and changed our way of understanding life on the planet. Nevertheless, the deep sea is still mostly unknown and current discovery rates of both habitats and species remain high. The geological, physical and geochemical settings of the deep-sea floor and the water column form a series of different habitats with unique characteristics that support specific faunal communities. Since 1840, 28 new habitats/ecosystems have been discovered from the shelf break to the deep trenches and discoveries of new habitats are still happening in the early 21st century. However, for most of these habitats the global area covered is unknown or has been only very roughly estimated; an even smaller – indeed, minimal – proportion has actually been sampled and investigated. We currently perceive most of the deep-sea ecosystems as heterotrophic, depending ultimately on the flux on organic matter produced in the overlying surface ocean through photosynthesis. The resulting strong food limitation thus shapes deep-sea biota and communities, with exceptions only in reducing ecosystems such as inter alia hydrothermal vents or cold seeps. Here, chemoautolithotrophic bacteria play the role of primary producers fuelled by chemical energy sources rather than sunlight. Other ecosystems, such as seamounts, canyons or cold-water

  15. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.

    Science.gov (United States)

    Esteban, N; Unsworth, R K F; Gourlay, J B Q; Hays, G C

    2018-03-21

    Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site -1  = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site -1  = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km 2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. The Effects of Temperature and Hydrostatic Pressure on Metal Toxicity: Insights into Toxicity in the Deep Sea.

    Science.gov (United States)

    Brown, Alastair; Thatje, Sven; Hauton, Chris

    2017-09-05

    Mineral prospecting in the deep sea is increasing, promoting concern regarding potential ecotoxicological impacts on deep-sea fauna. Technological difficulties in assessing toxicity in deep-sea species has promoted interest in developing shallow-water ecotoxicological proxy species. However, it is unclear how the low temperature and high hydrostatic pressure prevalent in the deep sea affect toxicity, and whether adaptation to deep-sea environmental conditions moderates any effects of these factors. To address these uncertainties we assessed the effects of temperature and hydrostatic pressure on lethal and sublethal (respiration rate, antioxidant enzyme activity) toxicity in acute (96 h) copper and cadmium exposures, using the shallow-water ecophysiological model organism Palaemon varians. Low temperature reduced toxicity in both metals, but reduced cadmium toxicity significantly more. In contrast, elevated hydrostatic pressure increased copper toxicity, but did not affect cadmium toxicity. The synergistic interaction between copper and cadmium was not affected by low temperature, but high hydrostatic pressure significantly enhanced the synergism. Differential environmental effects on toxicity suggest different mechanisms of action for copper and cadmium, and highlight that mechanistic understanding of toxicity is fundamental to predicting environmental effects on toxicity. Although results infer that sensitivity to toxicants differs across biogeographic ranges, shallow-water species may be suitable ecotoxicological proxies for deep-sea species, dependent on adaptation to habitats with similar environmental variability.

  17. Applying deep learning technology to automatically identify metaphase chromosomes using scanning microscopic images: an initial investigation

    Science.gov (United States)

    Qiu, Yuchen; Lu, Xianglan; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Li, Shibo; Liu, Hong; Zheng, Bin

    2016-03-01

    Automated high throughput scanning microscopy is a fast developing screening technology used in cytogenetic laboratories for the diagnosis of leukemia or other genetic diseases. However, one of the major challenges of using this new technology is how to efficiently detect the analyzable metaphase chromosomes during the scanning process. The purpose of this investigation is to develop a computer aided detection (CAD) scheme based on deep learning technology, which can identify the metaphase chromosomes with high accuracy. The CAD scheme includes an eight layer neural network. The first six layers compose of an automatic feature extraction module, which has an architecture of three convolution-max-pooling layer pairs. The 1st, 2nd and 3rd pair contains 30, 20, 20 feature maps, respectively. The seventh and eighth layers compose of a multiple layer perception (MLP) based classifier, which is used to identify the analyzable metaphase chromosomes. The performance of new CAD scheme was assessed by receiver operation characteristic (ROC) method. A number of 150 regions of interest (ROIs) were selected to test the performance of our new CAD scheme. Each ROI contains either interphase cell or metaphase chromosomes. The results indicate that new scheme is able to achieve an area under the ROC curve (AUC) of 0.886+/-0.043. This investigation demonstrates that applying a deep learning technique may enable to significantly improve the accuracy of the metaphase chromosome detection using a scanning microscopic imaging technology in the future.

  18. Development of pixel front-end electronics using advanced deep submicron CMOS technologies

    International Nuclear Information System (INIS)

    Havranek, Miroslav

    2014-09-01

    The content of this thesis is oriented on the R and D of microelectronic integrated circuits for processing the signal from particle sensors and partially on the sensors themselves. This work is motivated by ongoing upgrades of the ATLAS Pixel Detector at CERN laboratory and by exploration of new technologies for the future experiments in particle physics. Evolution of technologies for the fabrication of microelectronic circuits follows Moore's laws. Transistors become smaller and electronic chips reach higher complexity. Apart from this, silicon foundries become more open to smaller customers and often provide non-standard process options. Two new directions in pixel technologies are explored in this thesis: design of pixel electronics using ultra deep submicron (65 nm) CMOS technology and Depleted Monolithic Active Pixel Sensors (DMAPS). An independent project concerning the measurement of pixel capacitance with a dedicated measurement chip is a part of this thesis. Pixel capacitance is one of the key parameters for design of the pixel front-end electronics and thus it is closely related to the content of the thesis. The theoretical background, aspects of chip design, performance of chip prototypes and prospect for design of large pixel chips are comprehensively described in five chapters of the thesis.

  19. Development of pixel front-end electronics using advanced deep submicron CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Havranek, Miroslav

    2014-09-15

    The content of this thesis is oriented on the R and D of microelectronic integrated circuits for processing the signal from particle sensors and partially on the sensors themselves. This work is motivated by ongoing upgrades of the ATLAS Pixel Detector at CERN laboratory and by exploration of new technologies for the future experiments in particle physics. Evolution of technologies for the fabrication of microelectronic circuits follows Moore's laws. Transistors become smaller and electronic chips reach higher complexity. Apart from this, silicon foundries become more open to smaller customers and often provide non-standard process options. Two new directions in pixel technologies are explored in this thesis: design of pixel electronics using ultra deep submicron (65 nm) CMOS technology and Depleted Monolithic Active Pixel Sensors (DMAPS). An independent project concerning the measurement of pixel capacitance with a dedicated measurement chip is a part of this thesis. Pixel capacitance is one of the key parameters for design of the pixel front-end electronics and thus it is closely related to the content of the thesis. The theoretical background, aspects of chip design, performance of chip prototypes and prospect for design of large pixel chips are comprehensively described in five chapters of the thesis.

  20. Implementation of the national desalination and water purification technology roadmap : structuring and directing the development of water supply solutions.

    Energy Technology Data Exchange (ETDEWEB)

    Price, Kevin M.; Dorsey, Zachary; Miller, G. Wade; Brady, Patrick Vane; Mulligan, Conrad; Rayburn, Chris

    2006-06-01

    In the United States, economic growth increasingly requires that greater volumes of freshwater be made available for new users, yet supplies of freshwater are already allocated to existing users. Currently, water for new users is made available through re-allocation of xisting water supplies-for example, by cities purchasing agricultural water rights. Water may also be made available through conservation efforts and, in some locales, through the development of ''new'' water from non-traditional sources such as the oceans, deep aquifer rackish groundwater, and water reuse.

  1. Six new deep-water sternaspid species (Annelida, Sternaspidae from the Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Sergio Salazar-Vallejo

    2013-11-01

    Full Text Available Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species bya bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp.n. was found off Peru in 1296–6489 m water depths and in the Southwestern Pacific in 795–3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592–1366 m, off California in 1585 m, Gulf of California in 1200–1274 m, and Western

  2. Six new deep-water sternaspid species (Annelida, Sternaspidae) from the Pacific Ocean.

    Science.gov (United States)

    Salazar-Vallejo, Sergio I; Buzhinskaja, Galina

    2013-01-01

    Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species by having a bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp. n. was found off Peru in 1296-6489 m water depths and in the Southwestern Pacific in 795-3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592-1366 m, off California in 1585 m, Gulf of California in 1200-1274 m, and Western Mexico in 2548 m; it

  3. RISK ASSESSMENT OF SURFACE WATERS ASSOCIATED WITH WATER CIRCULATION TECHNOLOGIES ON TROUT FARMS

    Directory of Open Access Journals (Sweden)

    Marcin Sidoruk

    2014-07-01

    Full Text Available Dynamic development of aquaculture has led to an increasing impact on the status of surface waters. Fish production generates wastes that, at high concentrations, may present a serious risk to the aquatic environment. Studies on the assessment of the impact of water management technologies in trout production on the quality of surface waters were conducted in 2011. Six farms were selected for the studies and were divided into two groups based on water management solutions (n = 3: farms with a flow through system (FTS and farms with a recirculation aquaculture system (RAS. On all farms, water measurement points were set and they depicted the quality of inflow water, the quality of water in ponds and the quality of outflow water. The studies did not demonstrate any impact of applied technology on electrolyte conductivity or calcium and magnesium concentrations in outflow water from a trout operation. In addition, it was found that the use of water for production purposes resulted in a slight increase in phosphorus and total nitrogen concentrations in waste waters.

  4. Proceedings of the Fourth Annual Deep Brain Stimulation Think Tank: A Review of Emerging Issues and Technologies

    NARCIS (Netherlands)

    Deeb, Wissam; Giordano, James J.; Rossi, Peter J.; Mogilner, Alon Y.; Gunduz, Aysegul; Judy, Jack W.; Klassen, Bryan T.; Butson, Christopher R.; van Horne, Craig; Deny, Damiaan; Dougherty, Darin D.; Rowell, David; Gerhardt, Greg A.; Smith, Gwenn S.; Ponce, Francisco A.; Walker, Harrison C.; Bronte-Stewart, Helen M.; Mayberg, Helen S.; Chizeck, Howard J.; Langevin, Jean-Philippe; Volkmann, Jens; Ostrem, Jill L.; Shute, Jonathan B.; Jimenez-Shahed, Joohi; Foote, Kelly D.; Wagle Shukla, Aparna; Rossi, Marvin A.; Oh, Michael; Pourfar, Michael; Rosenberg, Paul B.; Silburn, Peter A.; de Hemptine, Coralie; Starr, Philip A.; Denison, Timothy; Akbar, Umer; Grill, Warren M.; Okun, Michael S.

    2016-01-01

    This paper provides an overview of current progress in the technological advances and the use of deep brain stimulation (DBS) to treat neurological and neuropsychiatric disorders, as presented by participants of the Fourth Annual DBS Think Tank, which was convened in March 2016 in conjunction with

  5. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  6. Cellulose Nanomaterials in Water Treatment Technologies

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  7. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  8. Isotopic composition of water in a deep unsaturated zone beside a radioactive-waste disposal area near Beatty, Nevada

    Science.gov (United States)

    Stonestrom, David A.; Prudic, David E.; Striegl, Robert G.; Morganwalp, David W.; Buxton, Herbert T.

    1999-01-01

    The isotopic composition of water in deep unsaturated zones is of interest because it provides information relevant to hydrologic processes and contaminant migration. Profiles of oxygen-18 (18O), deuterium (D), and tritium (3H) from a 110-meter deep unsaturated zone, together with data on the isotopic composition of ground water and modern-day precipitation, are interpreted in the context of water-content, water-potential, and pore-gas profiles. At depths greater than about three meters, water vapor and liquid water are in approximate equilibrium with respect to D and 18O. The vapor-phase concentrations of D and 18O have remained stable through repeated samplings. Vapor-phase 3H concentrations have generally increased with time, requiring synchronous sampling of liquid and vapor to assess equilibrium. Below 30 meters, concentrations of D and 18O in pore water become approximately equal to the composition of ground water, which is isotopically lighter than modern precipitation and has a carbon-14 (14C) concentration of about 26 percent modern carbon. These data indicate that net gradients driving fluxes of water, gas, and heat are directed upwards for undisturbed conditions at the Amargosa Desert Research Site (ADRS). Superimposed on the upward-directed flow field, tritium is migrating away from waste in response to gradients in tritium concentrations.

  9. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters.

    Science.gov (United States)

    Wu, Xiaofen; Pedersen, Karsten; Edlund, Johanna; Eriksson, Lena; Åström, Mats; Andersson, Anders F; Bertilsson, Stefan; Dopson, Mark

    2017-03-23

    Deep terrestrial biosphere waters are separated from the light-driven surface by the time required to percolate to the subsurface. Despite biofilms being the dominant form of microbial life in many natural environments, they have received little attention in the oligotrophic and anaerobic waters found in deep bedrock fractures. This study is the first to use community DNA sequencing to describe biofilm formation under in situ conditions in the deep terrestrial biosphere. In this study, flow cells were attached to boreholes containing either "modern marine" or "old saline" waters of different origin and degree of isolation from the light-driven surface of the earth. Using 16S rRNA gene sequencing, we showed that planktonic and attached populations were dissimilar while gene frequencies in the metagenomes suggested that hydrogen-fed, carbon dioxide- and nitrogen-fixing populations were responsible for biofilm formation across the two aquifers. Metagenome analyses further suggested that only a subset of the populations were able to attach and produce an extracellular polysaccharide matrix. Initial biofilm formation is thus likely to be mediated by a few bacterial populations which were similar to Epsilonproteobacteria, Deltaproteobacteria, Betaproteobacteria, Verrucomicrobia, and unclassified bacteria. Populations potentially capable of attaching to a surface and to produce extracellular polysaccharide matrix for attachment were identified in the terrestrial deep biosphere. Our results suggest that the biofilm populations were taxonomically distinct from the planktonic community and were enriched in populations with a chemolithoautotrophic and diazotrophic metabolism coupling hydrogen oxidation to energy conservation under oligotrophic conditions.

  10. TECHNOLOGICAL PROCESS ASSESSMENT OF THE DRINKING WATER TREATMENT AT TARGU-MURES WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA HERTIA

    2011-03-01

    Full Text Available This paper intends to assess the technological process of obtaining drinking water at Targu-Mures water treatment plant. The assessment was performed before changing the technological process and four months were chosen to be analized during 2008: January, April, July and October for its efficiency analysis on treatment steps. Mures River is the water source for the water treatment plant, being characterized by unsteady flow and quality parameters with possible important variability in a very short period of time. The treatment technological process is the classic one, represented by coagulation, sedimentation, filtration and disinfection, but also prechlorination was constantly applied as additional treatment during 2008. Results showed that for the measured parameters, raw water at the water treatment plant fits into class A3 for surface waters, framing dictated by the bacterial load. The treatment processes efficiency is based on the performance calculation for sedimentation, filtration, global and for disinfection, a better conformation degree of technological steps standing out in January in comparison to the other three analyzed months. A variable non-compliance of turbidity and residual chlorine levels in the disinfected water was observed constantly. Previous treatment steps managed to maintain a low level of oxidisability, chlorine consumption and residual chlorine levels being also low. 12% samples were found inconsistent with the national legislation in terms of bacteriological quality. Measures for the water treatment plant retechnologization are taken primarily for hyperchlorination elimination, which currently constitutes a discomfort factor (taste, smell, and a generating factor of chlorination by-products.

  11. Strategies for restoration of deep-water coral ecosystems based on a global survey of oil and gas regulations

    Science.gov (United States)

    Cordes, E. E.; Jones, D.; Levin, L. A.

    2016-02-01

    The oil and gas industry is one of the most active agents of the global industrialization of the deep sea. The wide array of impacts following the Deepwater Horizon oil spill highlighted the need for a systematic review of existing regulations both in US waters and internationally. Within different exclusive economic zones, there are a wide variety of regulations regarding the survey of deep-water areas prior to leasing and the acceptable set-back distances from vulnerable marine ecosystems once they are discovered. There are also varying mitigation strategies for accidental release of oil and gas, including active monitoring systems, temporary closings of oil and gas production, and marine protected areas. The majority of these regulations are based on previous studies of typical impacts from oil and gas drilling, rather than accidental releases. However, the probability of an accident from standard operations increases significantly with depth. The Oil & Gas working group of the Deep Ocean Stewardship Initiative is an international partnership of scientists, managers, non-governmental organizations, and industry professionals whose goal is to review existing regulations for the oil & gas industry and produce a best practices document to advise both developed and developing nations on their regulatory structure as energy development moves into deeper waters.

  12. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  13. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Directory of Open Access Journals (Sweden)

    Christopher R German

    Full Text Available The ChEss project of the Census of Marine Life (2002-2010 helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB, the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i continued exploration of the deep-ocean ridge-crest; (ii increased focus on anthropogenic impacts; (iii concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but

  14. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Science.gov (United States)

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  15. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    Based on the analysis of water-saving agricultural technology development status and trends in China, and in combination with the development and the needs of modern water-saving agricultural technology, we have put forward a future research emphasis and developing direction of modern watersaving agricultural ...

  16. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  17. CECE: Expanding the Envelope of Deep Throttling Technology in Liquid Oxygen/Liquid Hydrogen Rocket Engines for NASA Exploration Missions

    Science.gov (United States)

    Giuliano, Victor J.; Leonard, Timothy G.; Lyda, Randy T.; Kim, Tony S.

    2010-01-01

    As one of the first technology development programs awarded by NASA under the Vision for Space Exploration, the Pratt & Whitney Rocketdyne (PWR) Deep Throttling, Common Extensible Cryogenic Engine (CECE) program was selected by NASA in November 2004 to begin technology development and demonstration toward a deep throttling, cryogenic engine supporting ongoing trade studies for NASA s Lunar Lander descent stage. The CECE program leverages the maturity and previous investment of a flight-proven hydrogen/oxygen expander cycle engine, the PWR RL10, to develop and demonstrate an unprecedented combination of reliability, safety, durability, throttlability, and restart capabilities in high-energy, cryogenic, in-space propulsion. The testbed selected for the deep throttling demonstration phases of this program was a minimally modified RL10 engine, allowing for maximum current production engine commonality and extensibility with minimum program cost. Four series of demonstrator engine tests have been successfully completed between April 2006 and April 2010, accumulating 7,436 seconds of hot fire time over 47 separate tests. While the first two test series explored low power combustion (chug) and system instabilities, the third test series investigated and was ultimately successful in demonstrating several mitigating technologies for these instabilities and achieved a stable throttling ratio of 13:1. The fourth test series significantly expanded the engine s operability envelope by successfully demonstrating a closed-loop control system and extensive transient modeling to enable lower power engine starting, faster throttle ramp rates, and mission-specific ignition testing. The final hot fire test demonstrated a chug-free, minimum power level of 5.9%, corresponding to an overall 17.6:1 throttling ratio achieved. In total, these tests have provided an early technology demonstration of an enabling cryogenic propulsion concept with invaluable system-level technology data

  18. Reliance on deep soil water in the tree species Argania spinosa.

    Science.gov (United States)

    Zunzunegui, M; Boutaleb, S; Díaz Barradas, M C; Esquivias, M P; Valera, J; Jáuregui, J; Tagma, T; Ain-Lhout, F

    2017-12-07

    In South-western Morocco, water scarcity and high temperature are the main factors determining species survival. Argania spinosa (L.) Skeels is a tree species, endemic to Morocco, which is suffering from ongoing habitat shrinkage. Argan trees play essential local ecological and economic roles: protecting soils from erosion, shading different types of crops, helping maintain soil fertility and, even more importantly, its seeds are used by the local population for oil production, with valuable nutritional, medicinal and cosmetic purposes. The main objective of this study was to identify the sources of water used by this species and to assess the effect of water availability on the photosynthetic rate and stem water potential in two populations: one growing on the coast and a second one 10 km inland. Stem water potential, photosynthetic rate and xylem water isotopic composition (δ18O) were seasonally monitored during 2 years. Trees from both populations showed a similar strategy in the use of the available water sources, which was strongly dependent on deep soil water throughout the year. Nevertheless, during the wet season or under low precipitation a more complex water uptake pattern was found with a mixture of water sources, including precipitation and soil at different depths. No evidence was found of the use of either groundwater or atmospheric water in this species. Despite the similar water-use strategy, the results indicate that Argania trees from the inland population explored deeper layers than coastal ones as suggested by more depleted δ18O values recorded in the inland trees and better photosynthetic performance, hence suggesting that the coastal population of A. spinosa could be subjected to higher stress. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Discobahamins A and B, new peptides from the Bahamian deep water marine sponge Discodermia sp.

    Science.gov (United States)

    Gunasekera, S P; Pomponi, S A; McCarthy, P J

    1994-01-01

    Discobahamin A [1] and discobahamin B [2] are two bioactive peptides isolated from a new species of the Bahamian deep water marine sponge Discodermia. The discobahamins are inhibitors of the growth of Candida albicans, and the isolation and structure elucidation of 1 and 2 by nmr and chemical methods is described.

  20. The Structure of Sea Water and Gelatinous Water in the Deep Ocean

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Wojciechowicz, M.; Brewer, P. G.

    2016-12-01

    Gelatinous life forms are common in the deep sea and are able to maintain a careful combination of body integrity and easy fluidity of motion over a wide range of T and P. They accomplish this in part by modifying the molecular structure of water. Both the transparent body of the organism (the mesoglea) and the structure of the immediate surrounding sea water were investigated by in situ laser Raman spectroscopy at depths from 300m to 2,800m. The structure of water is reasonably well known; the basic unit is a hydrogen bonded pentamer with defined stretching and bending modes. The spectrum of the bending band is separable into two components while the stretching band spectrum is composed of five components representing both intra- and inter-molecular vibrations. The effect of temperature on the various vibrational modes is complex. While the effect of pressure on the bending modes is small, but the effect of temperature and pressure on the stretching modes is significant and can be modeled as a van `t Hoff function. Our in situ experiments were conducted using MBARI's ROV Ventana and ROV Doc Ricketts. We collected cnidarians and ctenophores into a 6 L glass detritus sampler fitted with a metal grid plate. Once the animal was captured, we introduced argon gas through the lid of the sampler displacing the contained sea water and leaving a motionless sea water free specimen for spectroscopy. The laser beam was focused through the glass wall of the container and the focal point adjusted to be inside the gelatinous body. Our results very clearly show that:i) The gelatinous mass effectively excludes salts with zero sulfate ion being detected.ii) The water bending modes are absent from the gelatinous spectra.iii) The water stretching modes are highly modified from the typical 5 band liquid pentamer structure with only 3 vibrational modes observable. These results stand in marked contrast to the familiar household gelatin which is typically derived from bovine sources

  1. Life Support for Deep Space and Mars

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Kliss, Mark H.

    2014-01-01

    How should life support for deep space be developed? The International Space Station (ISS) life support system is the operational result of many decades of research and development. Long duration deep space missions such as Mars have been expected to use matured and upgraded versions of ISS life support. Deep space life support must use the knowledge base incorporated in ISS but it must also meet much more difficult requirements. The primary new requirement is that life support in deep space must be considerably more reliable than on ISS or anywhere in the Earth-Moon system, where emergency resupply and a quick return are possible. Due to the great distance from Earth and the long duration of deep space missions, if life support systems fail, the traditional approaches for emergency supply of oxygen and water, emergency supply of parts, and crew return to Earth or escape to a safe haven are likely infeasible. The Orbital Replacement Unit (ORU) maintenance approach used by ISS is unsuitable for deep space with ORU's as large and complex as those originally provided in ISS designs because it minimizes opportunities for commonality of spares, requires replacement of many functional parts with each failure, and results in substantial launch mass and volume penalties. It has become impractical even for ISS after the shuttle era, resulting in the need for ad hoc repair activity at lower assembly levels with consequent crew time penalties and extended repair timelines. Less complex, more robust technical approaches may be needed to meet the difficult deep space requirements for reliability, maintainability, and reparability. Developing an entirely new life support system would neglect what has been achieved. The suggested approach is use the ISS life support technologies as a platform to build on and to continue to improve ISS subsystems while also developing new subsystems where needed to meet deep space requirements.

  2. DEEP VADOSE ZONE TREATABILITY TEST PLAN

    International Nuclear Information System (INIS)

    Chronister, G.B.; Truex, M.J.

    2009-01-01

    (sm b ullet) Treatability test plan published in 2008 (sm b ullet) Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) (sm b ullet) Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

  3. Potential Health Benefits of Deep Sea Water: A Review

    Directory of Open Access Journals (Sweden)

    Samihah Zura Mohd Nani

    2016-01-01

    Full Text Available Deep sea water (DSW commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.

  4. Technology advancement of the static feed water electrolysis process

    Science.gov (United States)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  5. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  6. OUT Success Stories: Solar Hot Water Technology

    International Nuclear Information System (INIS)

    Clyne, R.

    2000-01-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building

  7. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  8. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers

    International Nuclear Information System (INIS)

    Schlosser, Peter; Bayer, Reinhold

    1991-01-01

    The application of natural and anthropogenic trace substances in oceanographic studies of the Weddell Sea is reviewed. The potential of some steady-state and transient tracers (tritium, CFC-11 and CFC-12, 18 O, and helium isotopes) for studies of deep water formation and circulation is discussed on the basis of data sets collected mainly on cruises of R/V 'Polastern' to the Weddell Sea during the 1980s. CFC/ tritium ratio dating of young water masses is applied to estimate mean age and transit times of water involved in Weddell Sea Bottom Water formation. The history of the CFC-11/tritium ratio through time is derived for Weddell Sea shelf waters. (author). 36 refs.; 18 figs

  9. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in a research contract between CNEA and the IAEA to evaluate projects of nuclear desalination. This paper analyses the benefits and drawbacks of each desalination technology, the distinctive characteristics of the technology that fit better the different uses, and outlines the related antecedents of its application in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations made in the last years for the different technologies are also described. (author)

  10. Bacterial biomass and activity in the deep waters of the eastern Atlantic—evidence of a barophilic community

    Science.gov (United States)

    Patching, J. W.; Eardly, D.

    1997-09-01

    Bacterial biomass and activity were investigated in deep waters at two sites in the eastern Atlantic, of similar depth (4560-4800 m), but varying in their nutritional status. The Northern (N) site was eutrophic and subject to a strong seasonal input of surface derived organic matter (phytodetritus) to the sediment. The Southern (S) site was oligotrophic. Deep water at this site does not appear to receive any strong seasonal input. Bacterial numbers in the deep water column at the N site showed no significant seasonal variation but were greater than those at the S site. Deep water bacteria were typically small and free-living. From biovolume determinations, it was estimated that mean concentrations of bacterial organic carbon at depths greater than 500 m were 0.12 (0.03-0.29) μg C 1 -1 and 0.02 (0.01-0.04) μg C 1 -1 at the N and S sites, respectively. Rates of thymidine and leucine incorporation were used as indicators of bacterial activity. Bacterial communities in water in contact with the sediment (SCW; sediment contact water) at both sites (but especially at the S site) were strongly barophilic at in situ temperatures (2.5-4.1°C). The barophilic response of thymidine incorporation was enhanced when SCW samples from the N site were incubated at 11.5°C. It is proposed that this result indicated an elevating effect of pressure on cardinal temperatures and that the SCW community was obligately psychrophilic when unpressurised. Comparison of cell-specific incorporation rates determined under in situ conditions showed bacteria in the SCW to have levels of activity comparable with bacteria from a depth of 150 m. Thymidine incorporation rates were highest in SCW samples taken at the N site in May 1988 and September 1989. Thymidine incorporation by SCW samples taken immediately before (10 April 1994) the main spring-bloom-associated deposition of phytodetritus was significantly lower and comparable with that determined for the oligotrophic S site. The attributes

  11. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  12. Fundamental R and D program on water chemistry of supercritical pressure water under radiation field

    International Nuclear Information System (INIS)

    Katsumura, Yosuke; Kiuchi, Kiyoshi; Wada, Yoichi; Yotsuyanagi, Tadasu

    2003-01-01

    In a supercritical water-cooled reactor, property of water changes significantly around the critical point. It is expected that irradiation and change of water property will affect the chemistry and material corrosion. Deep understanding of interactions between supercritical water and materials under irradiation is important. However, comprehensive data on radiolysis, kinetics, corrosion and thermodynamics have not been obtained due to the severe experimental condition. To get such data by experiments and computer simulations, a national program funded by Ministry of Education, Culture, Sports, Science and Technology (MEXT) has been started since December 2002. (author)

  13. Water Science and Technology Board. Annual report 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1993-1994. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Alternatives for ground water cleanup; Managing wastewater in coastal urban areas; and, Water transfers in the West - efficiency, equity and the environment. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  14. Water Science and Technology Board. Annual report 1992-1993

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    This report summarizes the activities of the Water Science and Technology Board during 1992. The WSTB is intended to be a dynamic forum, a mechanism by which the broad community of water science, technology, and policy professionals can help assure high-quality national water programs. The principal products of WSTB studies are written reports which cover a wide range of water resources issues of current national concern. A few recent examples are: Managing wastewater in coastal urban areas; Ground water vulnerability assessment; Water transfers in the West - efficiency, equity and the environment; and Opportunities in the hydrologic sciences. Projects completed, ongoing studies and published reports are described in detail in their respective sections of this report.

  15. Origin and biogeography of the deep-water Mediterranean Hydromedusae including the description of two new species collected in submarine canyons of Northwestern Mediterranean

    Directory of Open Access Journals (Sweden)

    J. M. Gili

    1998-06-01

    Full Text Available Two new species of hydromedusae (Foersteria antoniae and Cunina simplex are described from plankton collected in sediment traps placed in the Lacaze-Duthiers Submarine Canyon and along Banyuls-sur-Mer coast (northwestern Mediterranean. The Mediterranean hydromedusan deep-water fauna contains 41 species which represent 45.5 % of the world-wide deep-sea hydromedusae fauna (90 and 20% of the total number of Mediterranean hydromedusae (204. The Mediterranean deep-water hydromedusan fauna is characterised by a large percentage of holoplanktonic species (61%, mainly Trachymedusae. Nevertheless, contrary to the general opinion, the percentage of meroplanktonic species is equally high. The most original features of this fauna lies however in the importance of the number of endemic species (22% and in the fact that the majority of them are meroplanktonic Leptomedusae with a supposed bathybenthic stage. Some of the endemic species could still represent relics of the primitive Tethys fauna having survived to the Messinian crisis. The origin of the Mediterranean deep-water hydromedusan fauna is discussed and a general hypothesis is proposed.

  16. Determination of deep water circulation in the East Atlantic Ocean by means of a box-model based evaluation of C-14 measurements and other tracer data

    International Nuclear Information System (INIS)

    Schlitzer, R.

    1984-01-01

    Radiocarbon (C-14) measurements proved to be an efficient means of determining the average, large-area deep water circulation in the Atlantic Ocean. The thesis under review explains and discusses measurements carried out in the equatorial West Atlantic and North Atlantic Ocean. The samples have been taken during mission 56 of the RS 'meteor' in spring 1981. The gas has been obtained by vacuum extraction and the measurements have been performed in proportional counter tubes, the error to be accounted for amounting to 2per mille. These measured data, together with measurements of the potential temperatures, the silicate and CO 2 concentrations, and measured data from the South-East Atlantic Ocean, have been used to calculate on the basis of a box model of the Atlantic Ocean the deep water flow from the West to the East Atlantic Ocean, the deep water circulation between the various East Atlantic basins, and the turbulent diffusion coefficients required to parameterize the deep water mixing processes. (orig./HP) [de

  17. THE EFFECTS OF GRADIENT VELOCITY AND DETENTION TIME TO COAGULATION – FLOCCULATION OF DYES AND ORGANIC COMPOUND IN DEEP WELL WATER

    Directory of Open Access Journals (Sweden)

    Muhamad Lindu

    2010-06-01

    Full Text Available The treatment of deep well water of Trisakti University by coagulation and flocculation using baffle channel system has been conducted. The detention time of hydrolic were varied. The coagulant dose was varied as 50, 100, 150, 200, 300, 350, 400, 450 and 500 ppm. Water of well sampel was added by coagulant with rotation velocity 200 rpm for 1 minute. The optimal coagulant dose was determined by measuring turbidity, colour, total suspended solids and organic compound. The result showed that the organic compound and colour of deep well water of Trisakti University could be reduced by coagulation and flocculation process by hydrolyc system. The optimal dose of the coagulant was 250 ppm. The removal efficiency of colour and organic compound using optimal dose for continuous flow reactor reached after water flow passed the reactor for 3 - 5 times detention time in the reactor. The optimal gradient velocity (G was 30 - 35 sec-1 and collision energy (GT was 65.000 - 79.000 to get optimal flocculation. With this condition, the removal efficiency of turbidity, colour and organic was more than 90%.   Keywords: coagulation, flocculation, colour, organic compound, deep well

  18. Deep learning for image classification

    Science.gov (United States)

    McCoppin, Ryan; Rizki, Mateen

    2014-06-01

    This paper provides an overview of deep learning and introduces the several subfields of deep learning including a specific tutorial of convolutional neural networks. Traditional methods for learning image features are compared to deep learning techniques. In addition, we present our preliminary classification results, our basic implementation of a convolutional restricted Boltzmann machine on the Mixed National Institute of Standards and Technology database (MNIST), and we explain how to use deep learning networks to assist in our development of a robust gender classification system.

  19. The deep geologic repository technology programme: toward a geoscience basis for understanding repository safety

    International Nuclear Information System (INIS)

    Jensen, M.R.

    2007-01-01

    Within the Deep Geologic Repository Technology Programme (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Canadian Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a deep geologic repository for used nuclear fuel waste. This is being achieved through a coordinated multi-disciplinary approach intent on: i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions, boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility of various geo-scientific data in supporting a safety case for a deep geologic repository. This multi-disciplinary DGRTP approach is yielding an improved understanding of groundwater flow system evolution and stability in Canadian Shield settings that is further contributing to the geo-scientific basis for understanding and communicating aspects of DGR safety. (author)

  20. Spiraling pathways of global deep waters to the surface of the Southern Ocean

    OpenAIRE

    Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert

    2017-01-01

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle trac...

  1. Proceedings of the Trombay symposium on desalination and water reuse: technology interventions in water purification and management - challenges and opportunities

    International Nuclear Information System (INIS)

    Tewari, P.K.; Saurabh; Tiwari, S.A.; Kaza, Saikiran

    2015-01-01

    This conference deals with the issues relevant to water security, desalination processes and water reuse. The topics covered in the symposium include: water scenario, integrated water resource management, innovative desalination technologies, nuclear and renewable energy based desalination, intake and out fall systems, advances in water purification technologies, advanced water treatment, nanotechnologies in water purification, innovations in desalination technologies, reject brine management, drinking water in rural and remote areas, water quality monitoring and assurance, emerging membrane technologies, spent membrane management, environment and health, techno-economic evaluation and financial models etc. Papers relevant to INIS are indexed separately

  2. Radon 222 levels in deep well waters of Toluca municipality (county)

    International Nuclear Information System (INIS)

    Olguin Gutierrez, Maria Teresa.

    1990-01-01

    The levels of Radon 222 were determined in 46 deep (50-180m) wells in the city and county of Toluca, as well as the annual radiation dose that the stomach admits when ingesting such water. The method used for the quantification of Radon 222 was liquid scintillation counting. The result revealed that levels of Radon 222 in the studied area in the range of 0 to 320 pCi l -1 . In the case of the equivalent annual dose that the stomach (empty) admits due to ingestion of water from the wells, values are in an interval between 0 to 95 mrem a -1 . This values are well below the level established by the International Commission of Radiological Protection (ICRP). The wells that had the higher concentration of Radon 222 were found in the regions of Lodo Prieto, Seminario; San Antonio Buenavista and La Trinidad Huichochitlan. (Author)

  3. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters

    Directory of Open Access Journals (Sweden)

    Or Hazan

    2018-01-01

    Full Text Available Mesopelagic prokaryotes (archaea and bacteria, which are transported together with nutrient-rich intermediate-water to the surface layer by deep convection in the oceans (e.g., winter mixing, upwelling systems, can interact with surface microbial populations. This interaction can potentially affect production rates and biomass of surface microbial populations, and thus play an important role in the marine carbon cycle and oceanic carbon sequestration. The Eastern Mediterranean Sea (EMS is one of the most oligotrophic and warm systems in the world's oceans, with usually very shallow winter mixing (<200 m and lack of large-size spring algal blooms. In this study, we collected seawater (0–1,500 m in 9 different cruises at the open EMS during both the stratified and the mixed seasons. We show that the EMS is a highly oligotrophic regime, resulting in low autotrophic biomass and primary productivity and relatively high heterotrophic prokaryotic biomass and production. Further, we simulated deep water mixing in on-board microcosms using Levantine surface (LSW, ~0.5 m and intermediate (LIW, ~400 m waters at a 9:1 ratio, respectively and examined the responses of the microbial populations to such a scenario. We hypothesized that the LIW, being nutrient-rich (e.g., N, P and a “hot-spot” for microbial activity (due to the warm conditions that prevail in these depths, may supply the LSW with not only key-limiting nutrients but also with viable and active heterotrophic prokaryotes that can interact with the ambient surface microbial population. Indeed, we show that LIW heterotrophic prokaryotes negatively affected the surface phytoplankton populations, resulting in lower chlorophyll-a levels and primary production rates. This may be due to out-competition of phytoplankton by LIW populations for resources and/or by a phytoplankton cell lysis via viral infection. Our results suggest that phytoplankton in the EMS may not likely form blooms, even after

  4. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water

    International Nuclear Information System (INIS)

    Ma, Chunyan; Guo, Yanhua; Li, Dongxue; Zong, Jianpeng; Ji, Xiaoyan; Liu, Chang

    2017-01-01

    Highlights: • Molar enthalpy of mixing and refractive indices for binary mixtures of different deep eutectic solvents with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The NRTL model with fitted parameters were used to predict the vapour pressure and compared with experimental data. - Abstract: The molar enthalpies of mixing were measured for binary systems of choline chloride-based deep eutectic solvents (glycerol, ethylene glycol and malonic acid) with water at 298.15 K and 308.15 K, and atmospheric pressure with an isothermal calorimeter. Refractive indices were also measured at 303.15 K and atmospheric pressure. The binary mixtures of {chcl/glycerol (1:2) + water, chcl/ethylene glycol (1:2) + water} showed exothermic behaviour over the entire range of composition, while the binary mixture of {chcl/malonic acid (1:1) + water} showed endothermic behaviour at first and then changed to be exothermic with the increasing content of chcl/malonic acid (1:1). Experimental refractive indices were fitted with the Redlich–Kister equation, and experimental molar enthalpies of mixing were correlated with the Redlich–Kister equation and the non-random two-liquid (NRTL) model. The NRTL model with the fitted parameters was used to predict the vapour pressures of these three mixtures. For mixtures of {chcl/glycerol (1:2) + water} and {chcl/ethylene glycol (1:2) + water}, the predicted vapour pressures agreed well with the experimental results from the literature. While for mixture of {chcl/malonic acid (1:1) + water}, the predicted vapour pressures showed deviation at the high concentration of chcl/malonic acid (1:1), and this was probably because of the complex molecular interaction between chcl/malonic acid (1:1) and water.

  5. Research on horizontal displacement monitoring method of deep foundation pit based on laser projecting sensing technology

    Science.gov (United States)

    Liu, Peng; Xie, Shulin; Zhang, Lixiao; Zhou, Guangyi; Zhao, Xuefeng

    2018-03-01

    A certain level of horizontal displacement will occur during excavation or subsequent construction of deep foundation pit. If the support is improper and the horizontal displacement of the foundation pit is too large, it will cause collapse and even affect the buildings around the foundation pit, which will endanger people's life and property. Therefore, the horizontal displacement monitoring of deep foundation pit becomes more and more important. At present, the electronic total station is often used to monitor the horizontal displacement of the foundation pit, but this monitoring method is expensive, prone to accidental errors, and can not be used for real-time monitoring. Therefore, a method of monitoring the horizontal displacement of deep foundation pit by using laser projection sensing technique is proposed in this paper. The horizontal displacement of the foundation pit is replaced by the displacement of the laser spot emitted by the laser, and the horizontal displacement of the foundation pit can be obtained by identifying the displacement of the laser spot projected on the screen. A series of experiments show that the accuracy of this monitoring method meets the engineering requirements and greatly reduces the cost, which provides a new technology for the displacement monitoring of deep foundation pit.

  6. A role for subducted super-hydrated kaolinite in Earth's deep water cycle

    Science.gov (United States)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-12-01

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  7. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    Science.gov (United States)

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  8. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    Science.gov (United States)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  9. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations

  10. A critical evaluation of two point-of-use water treatment technologies: can they provide water that meets WHO drinking water guidelines?

    Science.gov (United States)

    Murphy, Heather M; McBean, Edward A; Farahbakhsh, Khosrow

    2010-12-01

    Point-of-use (POU) technologies have been proposed as solutions for meeting the Millennium Development Goal (MDG) for safe water. They reduce the risk of contamination between the water source and the home, by providing treatment at the household level. This study examined two POU technologies commonly used around the world: BioSand and ceramic filters. While the health benefits in terms of diarrhoeal disease reduction have been fairly well documented for both technologies, little research has focused on the ability of these technologies to treat other contaminants that pose health concerns, including the potential for formation of contaminants as a result of POU treatment. These technologies have not been rigorously tested to see if they meet World Health Organization (WHO) drinking water guidelines. A study was developed to evaluate POU BioSand and ceramic filters in terms of microbiological and chemical quality of the treated water. The following parameters were monitored on filters in rural Cambodia over a six-month period: iron, manganese, fluoride, nitrate, nitrite and Escherichia coli. The results revealed that these technologies are not capable of consistently meeting all of the WHO drinking water guidelines for these parameters.

  11. Preliminary physico-chemical results obtained on water using new data acquisition systems for deep wells

    International Nuclear Information System (INIS)

    Vinson, J.M.; Peyrus, J.C.

    1984-02-01

    Data acquisition systems recently developed in the context of research on deep storage facilities have provided with an initial set of interesting observations for the physico-chemical study of boreholes. It is possible to make correlations between the chemical compositions of water, pH and the nature of the substrate. The sampling done at Auriat with a Gerhardt-Owen probe shows the variability in the composition of water as a function of depth. The variation in calcium content, following that of pH, is particularly notable. Examination of pH measurements is of particular interest. A general gradient correlates exactly with the nature of the substrate. Whereas steel piping has a very alkaline pH, distinct pH values correspond to the two types of granite substrate. In this general gradient, series of disturbances can be seen which correspond perfectly to fracturation zones or large fractures. These most promising preliminary results lead to believe that in situ physico-chemical measurements should be continued and developed with a view to improved evaluation of the safety of deep storage facilities

  12. Research on Deep Joints and Lode Extension Based on Digital Borehole Camera Technology

    Directory of Open Access Journals (Sweden)

    Han Zengqiang

    2015-09-01

    Full Text Available Structure characteristics of rock and orebody in deep borehole are obtained by borehole camera technology. By investigating on the joints and fissures in Shapinggou molybdenum mine, the dominant orientation of joint fissure in surrounding rock and orebody were statistically analyzed. Applying the theory of metallogeny and geostatistics, the relationship between joint fissure and lode’s extension direction is explored. The results indicate that joints in the orebody of ZK61borehole have only one dominant orientation SE126° ∠68°, however, the dominant orientations of joints in surrounding rock were SE118° ∠73°, SW225° ∠70° and SE122° ∠65°, NE79° ∠63°. Then a preliminary conclusion showed that the lode’s extension direction is specific and it is influenced by joints of surrounding rock. Results of other boreholes are generally agree well with the ZK61, suggesting the analysis reliably reflects the lode’s extension properties and the conclusion presents important references for deep ore prospecting.

  13. Recent activities on water detritiation technology in JAEA

    Energy Technology Data Exchange (ETDEWEB)

    Iwai, Yasunori, E-mail: iwai.yasunori@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195 (Japan); Kubo, Hitoshi; Ohshima, Yusuke; Noguchi, Hiroshi; Taniuchi, Junichi [Tanaka Kikinzoku Kogyo K.K., Wadai, Tsukuba, Ibaraki 300-4247 (Japan)

    2016-11-01

    Highlights: • Water detritiation technology has been developed for the Japanese fusion DEMO plant. • Durability of an ion exchange membrane was checked with concentrated tritiated water. • Hydrophobic catalyst of SiO{sub 2} substrate has been developed for water detritiation. - Abstract: Japan Atomic Energy Agency has developed the water detritiation technology for CECE process considering the escalation in quantity and tritium concentration of tritiated water to be processed toward realization of the Japanese fusion DEMO plant. A commercial ion exchange perfluoro-membrane for concentrated tritiated water electrolyzer is durable against irradiation up to 1500 kGy in view of mechanical strength and ion exchange capacity. Concerning hydrophobic catalyst for LPCE column, a new method of manufacturing catalysts involving hydrophobic processing with an inorganic substance base has been developed. The catalyst created with this method has achieved the highest exchange efficiency, equivalent to 1.3 times the previously most powerful efficiency.

  14. Seven new deep-water Tetractinellida (Porifera: Demospongiae) from the Galápagos Islands –morphological descriptions and DNA barcodes

    DEFF Research Database (Denmark)

    Schuster, Astrid; Cárdenas, Paco; Pisera, Andrzej

    2018-01-01

    , but little is known about the deep- and shallow-water sponge fau -nas. To date, only 70 sponge species have been described from the Galápagos Islands, 37 of which are endemic. Of these 70 species, only one shallow-water species of desma-bearing Tetractinellida (Demospongiae), Corallistes isabela , has been...

  15. Radiation technology helps China’s industries make water cleaner

    International Nuclear Information System (INIS)

    Jawerth, Nicole

    2015-01-01

    China is pursuing the use of radiation technology as part of its wastewater treatment methods to further efforts to manage industrial waste in an environmentally friendly way. “Treating the water that comes from our industries is very important, so we have been doing this for a long time. Now we want to become better at making our water cleaner,” said Jianlong Wang, Vice-President of the Institute of Nuclear and New Energy Technology (INET) at Tsinghua University in Beijing. “We are receiving a lot of support from the IAEA to use electron beam based technologies to help us get rid of various water pollutants that the other methods cannot do on their own.”

  16. Regulatory issues for deep borehole plutonium disposition

    International Nuclear Information System (INIS)

    Halsey, W.G.

    1995-03-01

    As a result of recent changes throughout the world, a substantial inventory of excess separated plutonium is expected to result from dismantlement of US nuclear weapons. The safe and secure management and eventual disposition of this plutonium, and of a similar inventory in Russia, is a high priority. A variety of options (both interim and permanent) are under consideration to manage this material. The permanent solutions can be categorized into two broad groups: direct disposal and utilization. The deep borehole disposition concept involves placing excess plutonium deep into old stable rock formations with little free water present. Issues of concern include the regulatory, statutory and policy status of such a facility, the availability of sites with desirable characteristics and the technologies required for drilling deep holes, characterizing them, emplacing excess plutonium and sealing the holes. This white paper discusses the regulatory issues. Regulatory issues concerning construction, operation and decommissioning of the surface facility do not appear to be controversial, with existing regulations providing adequate coverage. It is in the areas of siting, licensing and long term environmental protection that current regulations may be inappropriate. This is because many current regulations are by intent or by default specific to waste forms, facilities or missions significantly different from deep borehole disposition of excess weapons usable fissile material. It is expected that custom regulations can be evolved in the context of this mission

  17. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2016-01-01

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  18. Materials and membrane technologies for water and energy sustainability

    KAUST Repository

    Le, Ngoc Lieu

    2016-03-10

    Water and energy have always been crucial for the world’s social and economic growth. Their supply and use must be sustainable. This review discusses opportunities for membrane technologies in water and energy sustainbility by analyzing their potential applications and current status; providing emerging technologies and scrutinizing research and development challenges for membrane materials in this field.

  19. A review of boiling water reactor water chemistry: Science, technology, and performance

    International Nuclear Information System (INIS)

    Fox, M.J.

    1989-02-01

    Boiling water reactor (BWR) water chemistry (science, technology, and performance) has been reviewed with an emphasis on the relationships between BWR water quality and corrosion fuel performance, and radiation buildup. A comparison of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.56, the Boiling Water Reactor Owners Group (BWROG) Water Chemistry Guidelines, and Plant Technical Specifications showed that the BWROG Guidelines are more stringent than the NRC Regulatory Guide, which is almost identical to Plant Technical Specifications. Plant performance with respect to BWR water chemistry has shown dramatic improvements in recent years. Up until 1979 BWRs experienced an average of 3.0 water chemistry incidents per reactor-year. Since 1979 the water chemistry technical specifications have been violated an average of only 0.2 times per reactor-year, with the most recent data from 1986-1987 showing only 0.05 violations per reactor-year. The data clearly demonstrate the industry-wide commitment to improving water quality in BWRs. In addition to improving water quality, domestic BWRs are beginning to switch to hydrogen water chemistry (HWC), a remedy for intergranular stress corrosion cracking. Three domestic BWRs are presently operating on HWC, and fourteen more have either performed HWC mini tests or are in various stages of HWC implementation. This report includes a detailed review of HWC science and technology as well as areas in which further research on BWR chemistry may be needed. 43 refs., 30 figs., 8 tabs

  20. Deep Sky Diving with the ESO New Technology Telescope

    Science.gov (United States)

    1998-01-01

    Preparations for future cosmological observations with the VLT Within a few months, the first 8.2-meter Unit Telescope of the ESO Very Large Telescope (VLT) array will open its eye towards the sky above the Atacama desert. As documented by recent Press Photos from ESO, the construction work at the Paranal VLT Observatory is proceeding rapidly. Virtually all of the telescope components, including the giant Zerodur mirror (cf. ESO PR Photos 35a-l/97 ), are now on the mountain. While the integration of the telescope and its many optical, mechanical and electronic components continues, astronomers in the ESO member countries and at ESO are now busy defining the observing programmes that will be carried out with the new telescope, soon after it enters into operation. In this context, new and exciting observations have recently been obtained with the 3.5-m New Technology Telescope at the ESO La Silla Observatory, 600 km to the south of Paranal. How to record the faintest and most remote astronomical objects With its very large mirror surface (and correspondingly great light collecting power), as well as an unsurpassed optical quality, the VLT will be able to look exceedingly far out into the Universe, well beyond current horizons. The best technique to record the faintest possible light and thus the most remote celestial objects, is to combine large numbers of exposures of the same field with slightly different telescope pointing. This increases the total number of photons recorded and by imaging the stars and galaxies on different areas (pixels) of the detector, the signal-to-noise ratio and hence the visibility of the faintest objects is improved. The famous Hubble Deep Field Images were obtained in this way by combining over 300 single exposures and they show myriads of faint galaxies in the distant realms of the Universe. The NTT as test bench for the VLT ESO is in the fortunate situation of possessing a `prototype' model of the Very Large Telescope, the 3.5-m New

  1. Genetic divergence correlates with morphological and ecological subdivision in the deep-water elk kelp, Pelagophycus porra (phaeophyceae)

    NARCIS (Netherlands)

    Miller, KA; Olsen, JL; Stam, WT

    2000-01-01

    Pelagophycus porra (Leman) Setchell has a narrow distribution confined to deep water from the Channel Islands off the southern California coast to central Baja California, Mexico. Distinct morphotypes are consistently correlated with distinctive habitats, that is, windward exposures characterized by

  2. Corrosion in geothermal plants. Researchers in Potsdam are investigating materials and deep waters at the geothermal facility in Gross Schoenebeck; Korrosion in geothermischen Anlagen. Potsdamer Forschende untersuchen Materialien und Tiefenwaesser an der Anlage in Gross Schoenebeck

    Energy Technology Data Exchange (ETDEWEB)

    Milles, Uwe

    2012-07-01

    Geothermal energy can make a much greater contribution to supplying Germany's energy than has been the case so far. However, more advanced technologies will be required that are specially adapted to geothermal energy and its mostly highly saline waters. One of the aims is to prevent corrosion on pipes, pumps and heat exchangers as economically as possible. At the geothermal research laboratory at Gross Schoenebeck, basic research is being conducted, for example, on corrosion processes, the composition of deep waters and material properties in order to develop site-dependent recommendations. (orig.)

  3. Membrane Technology for Produced Water in Lea County

    Energy Technology Data Exchange (ETDEWEB)

    Cecilia Nelson; Ashok Ghosh

    2011-06-30

    Southeastern New Mexico (SENM) is rich in mineral resources, including oil and gas. Produced water is a byproduct from oil and gas recovery operations. SENM generates approximately 400 million barrels per year of produced water with total dissolved solids (TDS) as high as ~ 200,000 ppm. Typically, produced water is disposed of by transporting it to injection wells or disposal ponds, costing around $1.2 billion per year with an estimated use of 0.3 million barrels of transportation fuel. New Mexico ranks first among U.S. states in potash production. Nationally, more than 85% of all potash produced comes from the Carlsbad potash district in SENM. Potash manufacturing processes use large quantities of water, including fresh water, for solution mining. If the produced water from oilfield operations can be treated and used economically in the potash industry, it will provide a beneficial use for the produced water as well as preserve valuable water resources in an area where fresh water is scarce. The goal of this current research was to develop a prototype desalination system that economically treats produced water from oil and/or natural gas operations for the beneficial use of industries located in southeastern New Mexico. Up until now, most water cleaning technologies have been developed for treating water with much lower quantities of TDS. Seawater with TDS of around 30,000 ppm is the highest concentration that has been seriously studied by researchers. Reverse osmosis (RO) technology is widely used; however the cost remains high due to high-energy consumption. Higher water fluxes and recoveries are possible with a properly designed Forward Osmosis (FO) process as large driving forces can be induced with properly chosen membranes and draw solution. Membrane fouling and breakdown is a frequent and costly problem that drives the cost of desalination very high. The technology developed by New Mexico Tech (NMT) researchers not only protects the membrane, but has also

  4. Deep Space Habitat ECLSS Design Concept

    Science.gov (United States)

    Curley, Su; Stambaugh, Imelda; Swickrath, Michael; Anderson, Molly S.; Rotter, Henry

    2012-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over because the mission definition has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  5. Deep Space Habitat ECLS Design Concept

    Science.gov (United States)

    Curley, Su; Stambaugh, Imelda; Swickrath, Mike; Anderson, Molly; Rotter, Hank

    2011-01-01

    Life support is vital to human spaceflight, and most current life support systems employ single-use hardware or regenerable technologies that throw away the waste products, relying on resupply to make up the consumables lost in the process. Because the long-term goal of the National Aeronautics and Space Administration is to expand human presence beyond low-earth orbit, life support systems must become self-sustaining for missions where resupply is not practical. From May through October 2011, the life support team at the Johnson Space Center was challenged to define requirements, develop a system concept, and create a preliminary life support system design for a non-planetary Deep Space Habitat that could sustain a crew of four in near earth orbit for a duration of 388 days. Some of the preferred technology choices to support this architecture were passed over as the mission definition also has an unmanned portion lasting 825 days. The main portion of the architecture was derived from technologies currently integrated on the International Space Station as well as upcoming technologies with moderate Technology Readiness Levels. The final architecture concept contains only partially-closed air and water systems, as the breakeven point for some of the closure technologies was not achieved with the mission duration.

  6. Ophirapstanol trisulfate, a new biologically active steroid sulfate from the deep water marine sponge Topsentia ophiraphidites.

    Science.gov (United States)

    Gunasekera, S P; Sennett, S H; Kelly-Borges, M; Bryant, R W

    1994-12-01

    Ophirapstanol trisulfate [1], a new steroid trisulfate related to sokotrasterol trisulfate was isolated from a deep water marine sponge Topsentia ophiraphidites. Compound 1 exhibited significant inhibition in the guanosine diphosphate/G-protein RAS exchange assay. The structure elucidation of 1 and ophirapstanol [2] by nmr spectroscopy is described.

  7. Fiscal 1996 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the deep geothermal resource collecting technology (development of the deep geothermal resource drilling technology); 1996 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper reported the results of the fiscal 1996 R and D on the development of deep geothermal resource collecting/drilling technology. In the design of a total development, the planned adjustment of actual well tests was conducted on bits and drilling mud at the time of drilling the exploration well of the Kakkonda area. As to the trend of overseas technology, examined was the developmental trend of high temperature type downhole motor products. In the development of hard high temperature strata drilling element technology, a drilling test was carried out on trially manufactured 300degC heat resistant/durable bits. In the development of high temperature drilling mud, drilling was done in the mud of thermally stable quality in the actual well experiment using the 300degC mud system. In the development of high temperature use cement and high temperature use cement slurry, a possibility was obtained of composing a slurry which has the targeted dewatering amount, compressive strength, and water permeability. In the development of high temperature downhole motor, data on characteristics of heat resistant stator materials were arranged in a relationship among the abrasion amount, thermal expansion amount and elastic recovery amount, and the database was obtained. 166 figs., 148 tabs.

  8. New aspects of sewerage and water technology

    International Nuclear Information System (INIS)

    Niemczynowics, J.

    1993-01-01

    Highly developed countries with expensive water-related infrastructure, sophisticated waterworks and treatment plants, still contribute to local and global pollution. Many developing countries still lack water-treatment facilities and environmentally-sound water management. These problems are especially accentuated in some of the large and fast growing cities of the world. Means of solving the problems involve a new holistic approach to resource management. The goal of such an approach is to close the cycles of residuals that damage the environment, and to recover resources lost in residuals emitted from human activities. The most important step is to apply pollution prevention, i.e. pollution control at the source. Present knowledge suggests technologies that can solve the problem of pollution from human settlements on a single-house level. Alternatively, wastewater may be treated locally and reused. Ecologically-sound technologies that already exist should be used whenever possible. Water management can be integrated with management of other human activities, such as waste handling, industrial production, transportation, etc. Tools for implementation of such solutions are: legislation coupled with education programs; changing competition rules of the market economy; i.e. developing a sustainable society through resource recovery and reuse. Demonstration projects, in which the rules of preventive approach and novel technology are applied, may constitute a practical means of implementing such an approach. 34 refs, 3 figs

  9. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... fastest 100-year in human history, in which the world population has .... achieving modern water-saving high-yield and quality type from .... Information technology, intelligent technology and 3S technology ... perfor-mance and longer service life. .... using artificial neural network technology and data commu-.

  10. Radioisotope mobility across the sediment/water interface in the deep sea

    International Nuclear Information System (INIS)

    ten Brink, M.R.B.

    1987-01-01

    The removal of radiotracers from water to sediments and their partitioning between phases were used to study the rates and mechanisms of transfer for trace elements across the sediment/water interface in the deep sea. The in situ mobility of 22 Na, 134 Cs, 133 Ba, 65 Zn, 125 Sb, 7 Be, 203 Hg, 54 Mn, 60 Co, 59 Fe, 113 Gd, and 141 Ce was measured using MANOP Lander benthic chambers in the N. equatorial Pacific and in San Clemente Basin. The contributions to mobility of diffusion, bioturbation, advection of pore waters, and transport across the diffusive boundary layer was assessed. The penetration of particle reactive tracers in the upper cm suggested a mixing rate of ≤10 -7 cm 2 /s at Sites C and S and ≤10 -5 cm 2 /s at Sites M and H. Greater penetration could be correlated with worm tubes but no evidence of irrigation was found. The presence of nodules did not prevent transport of soluble tracers to the underlying sediment or concentrate tracers. Diffusion was the predominant mode of transport for radiotracers in the short-term in situ experiments

  11. A triangular fuzzy TOPSIS-based approach for the application of water technologies in different emergency water supply scenarios.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; Yu, Huan; You, Hong

    2016-09-01

    Because of the increasing frequency and intensity of unexpected natural disasters, providing safe drinking water for the affected population following a disaster has become a global challenge of growing concern. An onsite water supply technology that is portable, mobile, or modular is a more suitable and sustainable solution for the victims than transporting bottled water. In recent years, various water techniques, such as membrane-assisted technologies, have been proposed and successfully implemented in many places. Given the diversity of techniques available, the current challenge is how to scientifically identify the optimum options for different disaster scenarios. Hence, a fuzzy triangular-based multi-criteria, group decision-making tool was developed in this research. The approach was then applied to the selection of the most appropriate water technologies corresponding to the different emergency water supply scenarios. The results show this tool capable of facilitating scientific analysis in the evaluation and selection of emergency water technologies for enduring security drinking water supply in disaster relief.

  12. The acquisition of aquatic skills in preschool children: deep versus shallow water swimming lessons

    Directory of Open Access Journals (Sweden)

    Helena A Rocha

    2018-05-01

    Full Text Available One of the key factors in the swimming teaching-learning process seems to be the variation of water’s depth.However, there are almost no studies about this topic and the existing ones usually follow a basic approach and with no control of the educational program used. It was our purpose to determine the effect of deep versus shallow water differences on developing pre-schoolers’ aquatic skills after 6 months of practice. Twenty-one Portuguese school-aged children of both genders (4.70 ± 0.51 yrs., inexperienced in aquatic programs, participated in this study. The children were divided into two groups performing a similar aquatic program but in a different water depth: shallow water (n=10 and deep water (n=11. Each participant was evaluated twice for their aquatic readiness using an observation check list of 17 aquatic motor skills: during the first session (T0 and after six months of practice (two sessions per week with a total of 48 sessions (T1. The aquatic proficiency on each skill was compared between the groups and a stepwise discriminant analysis was conducted to predict the conditions with higher or lower aquatic competence. Results suggested that swimming practice contributed positively to improvements on several basic aquatic skills, in both groups. The results showed that shallow water group managed to acquire a higher degree of aquatic competence particularly in five basic aquatic skills (p< .05: breath control combined with face immersion and eye opening; horizontal buoyancy; body position at ventral gliding; body position at dorsal gliding; leg kick with breath control at ventral body position, without any flutter device. The discriminant function revealed a significant association between both groups and four included factors (aquatic skills (p< .001, accounting for 88% between group variability. The body position at ventral gliding was the main relevant predictor (r=0.535. Shallow water swimming lessons generated greater

  13. Seamount egg-laying grounds of the deep-water skate Bathyraja richardsoni.

    Science.gov (United States)

    Henry, L-A; Stehmann, M F W; De Clippele, L; Findlay, H S; Golding, N; Roberts, J M

    2016-08-01

    Highly localized concentrations of elasmobranch egg capsules of the deep-water skate Bathyraja richardsoni were discovered during the first remotely operated vehicle (ROV) survey of the Hebrides Terrace Seamount in the Rockall Trough, north-east Atlantic Ocean. Conductivity-temperature-depth profiling indicated that the eggs were bathed in a specific environmental niche of well-oxygenated waters between 4·20 and 4·55° C, and salinity 34·95-35·06, on a coarse to fine-grained sandy seabed on the seamount's eastern flank, whereas a second type of egg capsule (possibly belonging to the skate Dipturus sp.) was recorded exclusively amongst the reef-building stony coral Solenosmilia variabilis. The depths of both egg-laying habitats (1489-1580 m) provide a de facto refuge from fisheries mortality for younger life stages of these skates. © 2016 The Authors. Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of The Fisheries Society of the British Isles.

  14. Observation technology for remote operation in contaminated turbid water

    International Nuclear Information System (INIS)

    Kishimoto, Manabu; Mitsui, Takashi

    2016-01-01

    Remote underwater work in contaminated tanks and pools is one of major decontamination and decommissioning works under high-dose radiation environment. Generally in this kind of work, visual information is limited due to turbid water caused by suspended sludge particles in the water and it makes remote underwater work difficult to be performed safely and efficiently. Therefore, some alternative observation methods to optical cameras have been required. In order to satisfy this requirement, the alternative observation technology which can obtain visual information in contaminated turbid water has been developed since 2014. It is a technology using an acoustic imaging system in a designated airtight container. It provides the visual information in real time regardless of turbidity without significant contamination of any parts of the system. This paper will present development details of this innovative observation technology and its effectiveness to various remote works in contaminated turbid water. (author)

  15. Temporal behavior of 222Radon, 226Radium and 238Uranium in deep water wells which provide Valle de Toluca with drinking water

    International Nuclear Information System (INIS)

    Pena, P.; Tamez, E.; Iturbe, J.L.; Acosta, A.; Segovia, N.; Carrillo, J.; Armienta, M.

    1994-01-01

    The presence of radionuclides in underground waters may be an indication of its origin and also the sign of the hydraulic properties of the aquifers layers where circulate. Additionally, the ingestion by human beings of water with radioactive elements (Radon 222, Radium 226, Uranium 238) can give as a result the accumulation of such elements in several organs of the body producing then health damages. In this work, the concentrations of Radon 222, Radium 226 and Uranium 238, in waters coming from deep wells which provide with drinking water the Toluca Valley, were determined. For this purpose, during a year (june 1991 to August 1992) ten wells were sampled with a tracking of the radionuclides concentration as well as the physical-chemical components of water; it was established the relationship presented by the analyzed waters with the local geology and the local and regional systems. (Author)

  16. Immunosuppressive compounds from a deep water marine sponge, Agelas flabelliformis.

    Science.gov (United States)

    Gunasekera, S P; Cranick, S; Longley, R E

    1989-01-01

    Two immunosuppressive compounds, 4 alpha-methyl-5 alpha-cholest-8-en-3 beta-ol and 4,5-dibromo-2-pyrrolic acid were isolated from a deep water marine sponge, Agelas flabelliformis. Their structures were determined by comparison of their spectral data with those of samples isolated from other organisms. Both compounds were highly active in suppression of the response of murine splenocytes in the two-way mixed lymphocyte reaction (MLR) with little to no demonstrable cytotoxicity at lower doses. In addition, 4,5-dibromo-2-pyrrolic acid suppressed the proliferative response of splenocytes to suboptimal concentrations of the mitogen, concanavalin A (Con A). These results describe for the first time compounds isolated from the marine sponge A. flabelliformis that possess potent in vitro immunosuppressive activity.

  17. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  18. Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Siegel, Malcolm Dean; McConnell, Paul E.; Kirby, Carolyn (Comforce Technical Services, Inc.)

    2006-09-01

    The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

  19. Methodology for balancing design and process tradeoffs for deep-subwavelength technologies

    Science.gov (United States)

    Graur, Ioana; Wagner, Tina; Ryan, Deborah; Chidambarrao, Dureseti; Kumaraswamy, Anand; Bickford, Jeanne; Styduhar, Mark; Wang, Lee

    2011-04-01

    For process development of deep-subwavelength technologies, it has become accepted practice to use model-based simulation to predict systematic and parametric failures. Increasingly, these techniques are being used by designers to ensure layout manufacturability, as an alternative to, or complement to, restrictive design rules. The benefit of model-based simulation tools in the design environment is that manufacturability problems are addressed in a design-aware way by making appropriate trade-offs, e.g., between overall chip density and manufacturing cost and yield. The paper shows how library elements and the full ASIC design flow benefit from eliminating hot spots and improving design robustness early in the design cycle. It demonstrates a path to yield optimization and first time right designs implemented in leading edge technologies. The approach described herein identifies those areas in the design that could benefit from being fixed early, leading to design updates and avoiding later design churn by careful selection of design sensitivities. This paper shows how to achieve this goal by using simulation tools incorporating various models from sparse to rigorously physical, pattern detection and pattern matching, checking and validating failure thresholds.

  20. The applied technologies to access clean water for remote communities

    Science.gov (United States)

    Rabindra, I. B.

    2018-01-01

    A lot of research is done to overcome the remote communities to access clean water, yet very little is utilized and implemented by the community. Various reasons can probably be made for, which is the application of research results is assessed less practical. The aims of this paper is seeking a practical approach, how to establish criteria for the design can be easier applied, at the proper locations, the simple construction, effectively producing a volume and quality of clean water designation. The methods used in this paper is a technological model assessment of treatment/filtering clean water produced a variety of previous research, to establish a model of appropriate technology for remote communities. Various research results collected from the study of literature, while the identification of opportunities and threats to its application is done using a SWOT analysis. This article discussion is looking for alternative models of clean water filtration technology from the previous research results, to be selected as appropriate technology, easily applied and bring of many benefits to the remote communities. The conclusions resulting from the discussion in this paper, expected to be used as the basic criteria of design model of clean water filtration technologies that can be accepted and applied effectively by the remote communities.

  1. Water Jet Technology Used in Medicine

    Czech Academy of Sciences Publication Activity Database

    Hreha, P.; Hloch, S.; Magurová, D.; Valíček, Jan; Kozak, D.; Harničárová, M.; Rakin, M.

    2010-01-01

    Roč. 17, č. 7 (2010), s. 237-240 ISSN 1330-3651 Institutional research plan: CEZ:AV0Z3086906 Keywords : abrasive water jet * medicine * technology Subject RIV: JQ - Machines ; Tools Impact factor: 0.083, year: 2010

  2. Development of production technology for deep-seated geothermal resources; Shinbu chinetsu shigen seisan gijutsu no kaihatsu gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Wada, T.; Akazawa, T. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1997-11-01

    In order to increase the geothermal power generation volume in Japan furthermore after now, it is necessary to develop the deep-seated geothermal fluid collecting technique at 3,000 to 4,000m in depth and about 350degC. In order to collect the deep-seated geothermal resources economically and effectively, there are some principally important problems on production techniques such as P (pressure)-T(temperature)-S (flow rate)-D (fluid density) logging technique, P (pressure)-T (temperature)-C (chemical composition) monitoring technique, high temperature tracer monitoring technique, scale monitoring technique, scale protection and removal technique and so on. The PTSD logging technique is a measuring technique for collecting some data necessary to conduct production management effectively. The PTC monitoring technique is a technique for collecting data on the geothermal resources essential for the resources evaluation and presumption, and tracer monitoring technique is a technique for collecting actual measurement data of fluid flow analysis in the deep-seated geothermal resources. And the sale monitoring is a technique for collecting data on various kinds of scale components of the deep-seated geothermal water and in the steam. In this paper, these techniques are summarized. 8 figs.

  3. Millennial-scale variations of late Pleistocene radiolarian assemblages in the Bering Sea related to environments in shallow and deep waters

    Science.gov (United States)

    Itaki, Takuya; Kim, Sunghan; Rella, Stephan F.; Uchida, Masao; Tada, Ryuji; Khim, Boo-Keun

    2012-02-01

    A high-resolution record of the radiolarian assemblage from 60 to 10 ka was investigated using a piston core (PC-23A) obtained from the northern slope of the Bering Sea. Faunal changes based on the 29 major radiolarian taxa demonstrated that the surface and deep water conditions in the Bering Sea were related to the orbital and millennial-scale climatic variations known as glacial-interglacial and Dansgaard-Oeschger (D-O) cycles, respectively. During interstadial periods of the D-O cycles, the assemblage was characterized by increases in the high-latitude coastal species Rhizoplegma boreale and the upper-intermediate water species Cycladophora davisiana, while the sea-ice related species Actinomma boreale and A. leptodermum and many deep-water species such as Dictyophimus crisiae and D. hirundo tended to be reduced. This trend was more apparent in two laminated intervals at 15-13.5 and 11.5-11 ka, which were correlated with well-known ice-sheet collapse events that occurred during the last deglaciation: melt-water pulse (MWP)-1A and MWP-1B, respectively. The radiolarian faunal composition in these periods suggests that oceanic conditions were different from today: (1) surface water was affected by increased melt-water discharge from continental ice-sheet, occurring at the same time as an abrupt increase in atmospheric temperature, (2) upper-intermediate water (ca. 200-500 m) was well-ventilated and organic-rich, and (3) lower-intermediate water (ca. 500-1000 m) was oxygen-poor. Conversely, the sea-ice season might have been longer during stadial periods of the D-O cycles and the last glacial maximum (LGM) compared to the interstadial periods and the earliest Holocene. In these colder periods, deep-water species were very abundant, and this corresponded to increases in the oxygen isotope value of benthic foraminifera. Our findings suggest that the oxygen-rich water was present in the lower-intermediate layer resulting from intensified ventilation.

  4. Temperature impacts on deep-sea biodiversity.

    Science.gov (United States)

    Yasuhara, Moriaki; Danovaro, Roberto

    2016-05-01

    Temperature is considered to be a fundamental factor controlling biodiversity in marine ecosystems, but precisely what role temperature plays in modulating diversity is still not clear. The deep ocean, lacking light and in situ photosynthetic primary production, is an ideal model system to test the effects of temperature changes on biodiversity. Here we synthesize current knowledge on temperature-diversity relationships in the deep sea. Our results from both present and past deep-sea assemblages suggest that, when a wide range of deep-sea bottom-water temperatures is considered, a unimodal relationship exists between temperature and diversity (that may be right skewed). It is possible that temperature is important only when at relatively high and low levels but does not play a major role in the intermediate temperature range. Possible mechanisms explaining the temperature-biodiversity relationship include the physiological-tolerance hypothesis, the metabolic hypothesis, island biogeography theory, or some combination of these. The possible unimodal relationship discussed here may allow us to identify tipping points at which on-going global change and deep-water warming may increase or decrease deep-sea biodiversity. Predicted changes in deep-sea temperatures due to human-induced climate change may have more adverse consequences than expected considering the sensitivity of deep-sea ecosystems to temperature changes. © 2014 Cambridge Philosophical Society.

  5. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    Science.gov (United States)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  6. Theonellapeptolide IIIe, a new cyclic peptolide from the New Zealand deep water sponge, Lamellomorpha strongylata.

    Science.gov (United States)

    Li, S; Dumdei, E J; Blunt, J W; Munro, M H; Robinson, W T; Pannell, L K

    1998-06-26

    The structure, stereochemistry, and conformation of theonellapeptolide IIIe (1), a new 36-membered ring cyclic peptolide from the New Zealand deep-water sponge Lamellomorpha strongylata, is described. The sequence of the cytotoxic peptolide was determined through a combination of NMR and MS-MS techniques and confirmed by X-ray crystal structure analysis, which, with chiral HPLC, established the absolute stereochemistry.

  7. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  8. Water use, root activity and deep drainage within a perennial legume-grass pasture: A case study in southern inland Queensland, Australia

    Directory of Open Access Journals (Sweden)

    A. Nahuel A. Pachas

    2016-09-01

    Full Text Available Water use and depth of water extraction of leucaena (Leucaena leucocephala and Rhodes grass (Chloris gayana pasture, irrigated with desalinated coal seam water (a by-product of the coal seam gas industry, were monitored to provide background information on root activity, spatial and temporal water use and deep drainage over a 757-day period from August 2011 to August 2013. Methodology comprised measurement of soil water from surface to 4 m depth using 8 EnviroSCAN probes connected to dataloggers positioned within leucaena twin rows and within the Rhodes grass inter-row. Just over 581,000 individual moisture measurements were collated and are reported here. Water extraction (and by inference root activity of leucaena and Rhodes grass showed marked seasonal fluctuation with deepest and highest water extraction occurring during the first growing season; water extraction was greatly diminished during the following drier and cooler seasons due to the negative influences of lower soil moisture contents, lower temperatures and increased defoliation on pasture growth. The highest values of deep drainage below 4 m depth occurred when high rainfall events corresponded with high soil water storage in the entire profile (0–4 m depth. Given that water usage by both leucaena and Rhodes grass was greatest in the upper layers of soil (<1.5 m, future research should focus on how the level of competitive interaction might be managed by choice of row spacing and frequency of irrigation. Further studies are needed, including: (a physical sampling to determine the depth of active roots; (b how defoliation affects rooting behaviours and water use of leucaena; and (c modelling of the water and salt balances of leucaena and grass inter-row systems using data from this study, with various levels of irrigation, to investigate the risks of deep drainage over an extended climate sequence.Keywords: Active rooting depth, agroforestry, Chloris gayana, Leucaena leucocephala

  9. The Role of Water Governance and Irrigation Technologies in Regional-Scale Water Use and Consumption in the US West

    Science.gov (United States)

    Lammers, R. B.; Grogan, D. S.; Frolking, S. E.; Proussevitch, A. A.; Zuidema, S.; Fowler, L.; Caccese, R. T.; Peklak, D. L.; Fisher-Vanden, K.

    2017-12-01

    Water management in the Western USA is challenged by the demands of an increased population, ecological needs and changing values for water use, and a broadening of variability in climate, which together have created physical limits on water availability. The management of scarce water resources in this region is strictly constrained by the current legal structure (prior appropriation water rights) on one hand, and on the other assisted by the development of new, efficient water delivery and application technologies. Therefore, critical components for a complete understanding of the hydrological landscape include the institutions governing water rights, the technologies used for the highly water consumptive agricultural sector, and the role institutions and technologies play in altering when and where water is used and consumed by humans or reserved for the environment. To explore the sensitivities of water availability within the human-physical system, we present a method to incorporate water rights allocated under the prior appropriation doctrine for the western U.S. into the University of New Hampshire macro-scale Water Balance Model to capture the essential structure of these rights and their impacts on different economic sectors in Idaho and across the US West. In addition to legal structures, new irrigation technologies also alter the efficiency and timing of water use. We assess the impacts of a variety of technologies for both the delivery of water to the agricultural fields and the application methods for bringing water to the crops on consumptive and non-consumptive agricultural water use. We explore the impacts relative to natural climate variability, investigate the role that return flows from different agricultural technologies have on regional water balance, and examine the sensitivity of the entire system to extremes such as extended drought. These methods are sufficiently generalizable to be used by other hydrological models.

  10. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water

    International Nuclear Information System (INIS)

    Li Jun; Li Zheng-Lin; Ren Yun; Li Wen; Zhang Ren-He

    2015-01-01

    The horizontal-longitudinal correlations of the acoustic field in deep water are investigated based on the experimental data obtained in the South China Sea. It is shown that the horizontal-longitudinal correlation coefficients in the convergence zone are high, and the correlation length is consistent with the convergence zone width, which depends on the receiver depth and range. The horizontal-longitudinal correlation coefficients in the convergence zone also have a division structure for the deeper receiver. The signals from the second part of the convergence zone are still correlated with the reference signal in the first part. The horizontal-longitudinal correlation coefficients in the shadow zone are lower than that in the convergence zone, and the correlation length in the shadow zone is also much shorter than that in the convergence zone. The numerical simulation results by using the normal modes theory are qualitatively consistent with the experimental results. (paper)

  11. The research of new type stratified water injection process intelligent measurement technology

    Science.gov (United States)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  12. Flexible riser global analysis for very shallow water

    OpenAIRE

    Karegar, Sadjad

    2013-01-01

    Master's thesis in Offshore technology Flexible risers are widely used for a range of water depths and can accommodate large floater motions when using a buoyant system. A wide range of buoyancy solutions have been developed for very shallow water (e.g. 30-50 m), shallow water (e.g. 90-110 m) and semi-deep water (e.g. 300-400 m) and in the ranges between these depths. Flexible risers can have different configurations. These different solutions have different characteristics which influe...

  13. International water and sanitation technology transfers, experiences from Europe

    NARCIS (Netherlands)

    Krozer, Yoram; Hophmayer Tokich, Sharon

    2016-01-01

    Possibilities of transferring cost-effective, innovative water and wastewater technologies on public water markets are discussed based on experiences of the Dutch water business cluster in the Central and Eastern European Countries. These transfers evolved under suitable conditions, among others

  14. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  15. How might renewable energy technologies fit in the food-water-energy nexus?

    Science.gov (United States)

    Newmark, R. L.; Macknick, J.; Heath, G.; Ong, S.; Denholm, P.; Margolis, R.; Roberts, B.

    2011-12-01

    Feeding the growing population in the U.S. will require additional land for crop and livestock production. Similarly, a growing population will require additional sources of energy. Renewable energy is likely to play an increased role in meeting the new demands of electricity consumers. Renewable energy technologies can differ from conventional technologies in their operation and their siting locations. Many renewable energy technologies have a lower energy density than conventional technologies and can also have large land use requirements. Much of the prime area suitable for renewable energy development in the U.S. has historically been used for agricultural production, and there is some concern that renewable energy installations could displace land currently producing food crops. In addition to requiring vast expanses of land, both agriculture and renewable energy can require water. The agriculture and energy sectors are responsible for the majority of water withdrawals in the U.S. Increases in both agricultural and energy demand can lead to increases in water demands, depending on crop management and energy technologies employed. Water is utilized in the energy industry primarily for power plant cooling, but it is also required for steam cycle processes and cleaning. Recent characterizations of water use by different energy and cooling system technologies demonstrate the choice of fuel and cooling system technologies can greatly impact the withdrawals and the consumptive use of water in the energy industry. While some renewable and conventional technology configurations can utilize more water per unit of land than irrigation-grown crops, other renewable technology configurations utilize no water during operations and could lead to reduced stress on water resources. Additionally, co-locating agriculture and renewable energy production is also possible with many renewable technologies, avoiding many concerns about reductions in domestic food production. Various

  16. Pre-screening tectonic heat flows for basin modelling - Some implications for deep water exploration in the mediterranean

    NARCIS (Netherlands)

    Wees, J.D. van; Bertotti, G.; David, P.; Bergen, F. van; Cloetingh, S.

    2007-01-01

    Basin modelling results can be very sensitive to (paleo-)temperature uncertainties. For frontier basins, in particular for deep water settings, the thermal signature of the basin is poorly constrained, as data from wells are lacking. This may lead to wrong heat flow assumptions if these are

  17. Deep groundwater flow at Palmottu

    International Nuclear Information System (INIS)

    Niini, H.; Vesterinen, M.; Tuokko, T.

    1993-01-01

    Further observations, measurements, and calculations aimed at determining the groundwater flow regimes and periodical variations in flow at deeper levels were carried out in the Lake Palmottu (a natural analogue study site for radioactive waste disposal in southwestern Finland) drainage basin. These water movements affect the migration of radionuclides from the Palmottu U-Th deposit. The deep water flow is essentially restricted to the bedrock fractures which developed under, and are still affected by, the stress state of the bedrock. Determination of the detailed variations was based on fracture-tectonic modelling of the 12 most significant underground water-flow channels that cross the surficial water of the Palmottu area. According to the direction of the hydraulic gradient the deep water flow is mostly outwards from the Palmottu catchment but in the westernmost section it is partly towards the centre. Estimation of the water flow through the U-Th deposit by the water-balance method is still only approximate and needs continued observation series and improved field measurements

  18. Using Deep Learning Techniques to Forecast Environmental Consumption Level

    Directory of Open Access Journals (Sweden)

    Donghyun Lee

    2017-10-01

    Full Text Available Artificial intelligence is a promising futuristic concept in the field of science and technology, and is widely used in new industries. The deep-learning technology leads to performance enhancement and generalization of artificial intelligence technology. The global leader in the field of information technology has declared its intention to utilize the deep-learning technology to solve environmental problems such as climate change, but few environmental applications have so far been developed. This study uses deep-learning technologies in the environmental field to predict the status of pro-environmental consumption. We predicted the pro-environmental consumption index based on Google search query data, using a recurrent neural network (RNN model. To verify the accuracy of the index, we compared the prediction accuracy of the RNN model with that of the ordinary least square and artificial neural network models. The RNN model predicts the pro-environmental consumption index better than any other model. We expect the RNN model to perform still better in a big data environment because the deep-learning technologies would be increasingly sophisticated as the volume of data grows. Moreover, the framework of this study could be useful in environmental forecasting to prevent damage caused by climate change.

  19. Water chemistry technology. One of the key technologies for safe and reliable nuclear power plant operation

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Katsumura, Yosuke

    2013-01-01

    Water chemistry control is one of the key technologies to establish safe and reliable operation of nuclear power plants. Continuous and collaborative efforts of plant manufacturers and plant operator utilities have been focused on optimal water chemistry control, for which, a trio of requirements for water chemistry should be simultaneously satisfied: (1) better reliability of reactor structures and fuel rods; (2) lower occupational exposure and (3) fewer radwaste sources. Various groups in academia have carried out basic research to support the technical bases of water chemistry in plants. The Research Committee on Water Chemistry of the Atomic Energy Society of Japan (AESJ), which has now been reorganized as the Division of Water Chemistry (DWC) of AESJ, has played important roles to promote improvements in water chemistry control, to share knowledge about and experiences with water chemistry control among plant operators and manufacturers and to establish common technological bases for plant water chemistry and then to transfer them to the next generation of plant workers engaged in water chemistry. Furthermore, the DWC has tried and succeeded arranging R and D proposals for further improvement in water chemistry control through roadmap planning. In the paper, major achievements in plant technologies and in basic research studies of water chemistry in Japan are reviewed. The contributions of the DWC to the long-term safe management of the damaged reactors at the Fukushima Daiichi Nuclear Power Plant until their decommissioning are introduced. (author)

  20. Simulation of deep ventilation in Crater Lake, Oregon, 1951–2099

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Piccolroaz, Sebastiano; Girdner, Scott F

    2016-05-04

    The frequency of deep ventilation events in Crater Lake, a caldera lake in the Oregon Cascade Mountains, was simulated in six future climate scenarios, using a 1-dimensional deep ventilation model (1DDV) that was developed to simulate the ventilation of deep water initiated by reverse stratification and subsequent thermobaric instability. The model was calibrated and validated with lake temperature data collected from 1994 to 2011. Wind and air temperature data from three general circulation models and two representative concentration pathways were used to simulate the change in lake temperature and the frequency of deep ventilation events in possible future climates. The lumped model air2water was used to project lake surface temperature, a required boundary condition for the lake model, based on air temperature in the future climates.The 1DDV model was used to simulate daily water temperature profiles through 2099. All future climate scenarios projected increased water temperature throughout the water column and a substantive reduction in the frequency of deep ventilation events. The least extreme scenario projected the frequency of deep ventilation events to decrease from about 1 in 2 years in current conditions to about 1 in 3 years by 2100. The most extreme scenario considered projected the frequency of deep ventilation events to be about 1 in 7.7 years by 2100. All scenarios predicted that the temperature of the entire water column will be greater than 4 °C for increasing lengths of time in the future and that the conditions required for thermobaric instability induced mixing will become rare or non-existent.The disruption of deep ventilation by itself does not provide a complete picture of the potential ecological and water quality consequences of warming climate to Crater Lake. Estimating the effect of warming climate on deep water oxygen depletion and water clarity will require careful modeling studies to combine the physical mixing processes affected by

  1. Field development. Concept selection in deep water environment offshore Angola

    Energy Technology Data Exchange (ETDEWEB)

    Guenot, A.; Berger, J.C.; Limet, N. [TotalFinaElf, la Defense 6, Rosa-Lirio Project Group, 92 - Courbevoie (France)

    2002-10-01

    The significant oil discoveries made at the end of the 90's in the deep water environment offshore the coast of Angola, has led to a considerable amount of development activities. The first field in production was the turnkey development of the Kuito field on the Block 14 operated by Chevron. More recently the Girassol field has been put successfully in production on the Block 17, operated by TotalFinaElf. Both developments are making use of sub-sea wells connected to a moored dedicated FPSO. On the western side of the Girassol field, several discoveries have been made. They are known as the Rosa Lirio pole, from the names of two of the main channels. Values for water depth are in the same range than on Girassol (1300- 1400 m). A project group has been established in 1999 to evaluate the development of these discoveries. The purpose of this paper is to present the conceptual work which as been carried out, and in particular to show that even if many different concepts have been evaluated, the final choice has been also to make use of sub-sea trees. (authors)

  2. Polychaete Annelid (segmented worms) Species Composition in the Deep Gulf of Mexico following the Deep Water Horizon (DWH) Oil Spill

    Science.gov (United States)

    QU, F.; Rowe, G.

    2012-12-01

    Sediments 5 to 9 km from the Deep Water Horizon (DWH) Oil Spill site were sampled using a 0.2 m2 box corer 5 months after the event to assess the effects of the oil spill on polychaete annelid (segmented worms) community structure. Numbers of species, abundance, and biodiversity indices were all significantly lower than pre-spill values from similar depths in the eastern Gulf of Mexico (GoM). All of the five dominant species were different. Non-selective deposit feeders and selective deposit feeders were still the most frequent feeding guilds, but their abundances decreased significantly after the event. A large number of carnivorous Sigalionidae may be a response to an accumulation of PAHs on the sediment. Multivariate analyses (CLUSTER and multidimensional scaling (MDS)) illustrate the differences between assemblages near the DWH and those from prior studies in similar deep GoM habitats. In sum, the polychaete populations appeared to be at an early stage of succession in the recovery from the spill or they could be a resident assemblage that is the natural characteristic infauna in or adjacent to natural seeps of fossil hydrocarbons.

  3. Overcoming technology - obsolescence: a case study in Heavy Water Plant

    International Nuclear Information System (INIS)

    Gupta, O.P.; Sonde, R.R.; Wechalekar, A.K.

    2002-01-01

    Ammonia based Heavy Water Plants in India are set up essentially in conjunction with fertiliser plants for the supply of feed synthesis gas. Earlier ammonia was being produced in fertiliser plants using high-pressure technology which was highly energy intensive. However with fast developments in the field of production of ammonia, fertiliser plants are switching over to low pressure technology. Ammonia based heavy water plants have to operate on pressures corresponding to that of fertiliser plants. Due to low pressures in production of ammonia, heavy water plants would also be required to operate at low pressures than the existing operating pressures. This problem was faced at Heavy Water Plant at Baroda where GSFC supplying synthesis gas switched over to low pressure technology making it imperative on the part of Heavy Water Board to carry out modification to the main plant for continued operation of Heavy Water Plant, Baroda. Anticipating similar problems due to production of ammonia at lower pressures in other fertiliser plants linked to existing Heavy Water Plants, it became necessary for HWB to develop water ammonia front end. The feed in such a case would be water instead of synthesis gas. This would enable HWB to dispense with dependence on fertiliser plants especially if grass-root ammonia based heavy water plants are to be set up. Incorporation of water ammonia front end would enable HWB to de link ammonia based heavy water plants with fertiliser plants. This paper discusses the advantage of de linking heavy water plant respective fertiliser plant by incorporating water ammonia front end and technical issues related to front end technology. A novel concept of ammonia absorption refrigeration (AAR) was considered for the process integration with the front end. The incorporation of AAR with water ammonia front-end configuration utilizes liquid ammonia refrigerant to generate refrigeration without additional energy input which otherwise would have been

  4. Applicability of water-jet cutting technology to nuclear facility decommissioning

    International Nuclear Information System (INIS)

    Abe, Tadashi; Nisizaki, Tadashi; Matumura, Hiroyuki; Ikemoto, Yosikazu; Simizu, Hideki

    1991-01-01

    In nuclear facilities there exist, besides relatively simple components, such as vessels and piping, numerous complex components including the multilayered plate with water layer in between, a bunch of thin tubes and composite lamination of dissimilar materials like metal/non-metal. In conventional development of reactor dismantling technology, the technology development has been made mainly for remote cutting of thick-walled structures like the reactor pressure vessel and the reactor internals. These techniques, however, are not always suitable in cutting the above-mentioned structures. As means of cutting such structures efficiently, these is available the abrasion water-jet cutting technology. This technology is now drawing attention for cutting or shaping new materials like composite material and ceramics in high precision and high efficiency. In the present report by way of its feasibility in nuclear facilities decommissioning the following are described. Principle and features of the water-jet cutting technology, system con-figuration, cutting or shaping performance, and some examples of the cutting and shaping. (author)

  5. New potentional of high-speed water jet technology for renovating concrete structures

    Science.gov (United States)

    Bodnárová, L.; Sitek, L.; Hela, R.; Foldyna, J.

    2011-06-01

    The paper discusses the background and results of research focused on the action of a high-speed water jet on concrete with different qualities. The sufficient and careful removal of degraded concrete layers is very important for the renovation of concrete structures. High-speed water jet technology is one of the most common methods used for removing degraded concrete layers. Different types of high-speed water jets were tested in the experimental part. The classical technology of a single continuous water jet generated with one nozzle was tested as well as the technology of revolving water jets generated by multiple nozzles (used mainly for the renovation of larger areas). A continuous flat water jet and pulsating flat water jet were tested the first time, because the connection of a water jet with the acoustic generator of a pulsating jet offers new possibilities for the use of a water jet (see [1] and [2]). A water jet with such a modification is capable of efficient action and can even be used for cutting solid concrete with a relatively low consumption of energy. A flat pulsating water jet which can be newly used for renovation seems to be a promising technology.

  6. Microbial ecology of deep-water mid-Atlantic canyons

    Science.gov (United States)

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  7. Deep Vadose Zone-Applied Field Research Initiative Fiscal Year 2011 Annual Report

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Johnson, Timothy C.; Smith, Ronald M.; Truex, Michael J.; Matthews, Hope E.

    2011-01-01

    This annual report describes the background of the Deep Vadose Zone-Applied Field Research Initiative, and some of the programmatic approaches and transformational technologies in groundwater and deep vadose zone remediation developed during fiscal year 2011. The Department of Energy (DOE) Office of Technology Innovation and Development's (OTID) mission is to transform science into viable solutions for environmental cleanup. In 2010, OTID developed the Impact Plan, Science and Technology to Reduce the Life Cycle Cost of Closure to outline the benefits of research and development of the lifecycle cost of cleanup across the DOE complex. This plan outlines OTID's ability to reduce by $50 billion, the $200 billion life-cycle cost in waste processing, groundwater and soil, nuclear materials, and deactivation and decommissioning. The projected life-cycle costs and return on investment are based on actual savings realized from technology innovation, development, and insertion into remedial strategies and schedules at the Fernald, Mound, and Ashtabula sites. To achieve our goals, OTID developed Applied Field Research Initiatives to facilitate and accelerate collaborative development and implementation of new tools and approaches that reduce risk, cost and time for site closure. The primary mission of the Deep Vadose Zone-Applied Field Research Initiative (DVZ-AFRI) is to protect our nation's water resources, keeping them clean and safe for future generations. The DVZ-AFRI was established for the DOE to develop effective, science-based solutions for remediating, characterizing, monitoring, and predicting the behavior and fate of deep vadose zone contamination. Subsurface contaminants include radionuclides, metals, organics, and liquid waste that originated from various sources, including legacy waste from the nation's nuclear weapons complexes. The DVZ-AFRI project team is translating strategy into action by working to solve these complex challenges in a collaborative

  8. A role for subducted super-hydrated kaolinite in Earth’s deep water cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Huijeong; Seoung, Donghoon; Lee, Yongjae; Liu, Zhenxian; Liermann, Hanns-Peter; Cynn, Hyunchae; Vogt, Thomas; Kao, Chi-Chang; Mao, Ho-Kwang

    2017-11-20

    Water is the most abundant volatile component in the Earth. It continuously enters the mantle through subduction zones, where it reduces the melting temperature of rocks to generate magmas. The dehydration process in subduction zones, which determines whether water is released from the slab or transported into the deeper mantle, is an essential component of the deep water cycle. Here we use in situ and time-resolved high-pressure/high-temperature synchrotron X-ray diffraction and infrared spectra to characterize the structural and chemical changes of the clay mineral kaolinite. At conditions corresponding to a depth of about 75 km in a cold subducting slab (2.7 GPa and 200 °C), and in the presence of water, we observe the pressure-induced insertion of water into kaolinite. This super-hydrated phase has a unit cell volume that is about 31% larger, a density that is about 8.4% lower than the original kaolinite and, with 29 wt% H2O, the highest water content of any known aluminosilicate mineral in the Earth. As pressure and temperature approach 19 GPa and about 800 °C, we observe the sequential breakdown of super-hydrated kaolinite. The formation and subsequent breakdown of super-hydrated kaolinite in cold slabs subducted below 200 km leads to the release of water that may affect seismicity and help fuel arc volcanism at the surface.

  9. Cathodic protection of mild steel and copper in deep waters of the Arabian Sea and Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Venkat, K.; Wagh, A.B.

    Performance of cathodic protection system to mild steel and copper in deep (> 1000 m) oceanic waters of the Arabian Sea and Bay of Bengal has been assessed using aluminium and mild steel sacrificial anodes. The corrosion rates of unprotected metals...

  10. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  11. Deep-Sky Video Astronomy

    CERN Document Server

    Massey, Steve

    2009-01-01

    A guide to using modern integrating video cameras for deep-sky viewing and imaging with the kinds of modest telescopes available commercially to amateur astronomers. It includes an introduction and a brief history of the technology and camera types. It examines the pros and cons of this unrefrigerated yet highly efficient technology

  12. [Spatiotemporal succession of algae functional groups and the influence of environment change in a deep-water reservoir].

    Science.gov (United States)

    Lu, Jin-Suo; Hu, Ya-Pan

    2013-07-01

    Algae functional group has become an important theory and method of algae research in recent years. In order to explore the spatiotemporal succession of algae functional groups and the influence of environment change, water samples were collected in August, 2011 from a deep-water reservoir in Northwest China. The research combined the methods of on-line monitoring and laboratory analysis. The results showed that there were 10 functional groups of algae in the reservoir. They were designated as B, D, P, X1, X3, F, G, J, L(M) and MP. Wherein, the groups B, P, F, X1, MP, D and J were comparatively common functional groups, and the groups X3, G and L(M) were less common. The populations of groups B, D, P, X1 and X3 were larger than those of the others. Besides, the analysis of changes in the environment factors suggested that temperature was the most important factor influencing the spatiotemporal succession of algae functional groups. The strategy of algal growth followed the law: R/CR in spring --> CR/C in late spring and early summer C/CR/R/CS/S in late summer and early autumn --> CR/R in late autumn and winter. The purpose of this article is to provide theoretical support for water withdrawal safety in deep-water reservoirs.

  13. Hamacanthins A and B, new antifungal bis indole alkaloids from the deep-water marine sponge, Hamacantha sp.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Kelly-Borges, M

    1994-10-01

    Hamacanthin A [1] and hamacanthin B [2] are two bioactive dihydropyrazinonediylbis(indole) alkaloids isolated from a new species of deep-water marine sponge, Hamacantha sp. The hamacanthins are growth inhibitors of Candida albicans and Cryptococcus neoformans. Isolation and structure elucidation of 1 and 2 by nmr spectroscopy are described.

  14. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  15. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge.

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946-4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments.

  16. Effect of selective withdrawal on the annual thermal regime of a deep water body

    International Nuclear Information System (INIS)

    Bocharov, O.B.; Zinov'ev, A.T.

    1993-01-01

    The construction of any large hydraulic structure leads to the occurrence of new ecosystems in the upper and lower pools of the hydro development. A study of scenarios of the development of these ecosystems and an investigation of the possibilities of minimizing the negative ecological consequences of waterpower engineering by means of mathematical modeling in many respects determine the quality of developing the scientific and technical project. For high-head hydroelectric stations, an effective tool for controlling the water quality in the upper and lower pools is the withdrawal of water form different horizons of the upper pool reservoir. Temperature stratification of a deep sluggish water body is modeled in a one-dimensional vertical approximation with the use of an improved method of describing fluid outflow. The effect of selective withdrawal on the annual thermal regime and temperature of the outflowing water was studied. The results obtained permit estimating the effect of selective withdrawal on the thermal regime of the upper pool of the planned hydro development and temperature of the water being discharged into the lower pool on the possibility, in principle, of the water temperature in the lower pool approaching the natural both in winter and summer

  17. Produced water: Market and global trends - oil production - water production - choice of technology

    International Nuclear Information System (INIS)

    Robertson, Steve

    2006-01-01

    The presentation discusses various aspects of the world oil production, the energy demand, the future oil supply, the oil prices and the production growth. Some problems with produced water are also discussed as well as aspects of the market for produced water technology (tk)

  18. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  19. Process technologies for water desalination

    International Nuclear Information System (INIS)

    Ramilo, Lucia B.; Gomez de Soler, Susana M.; Coppari, Norberto R.

    2003-01-01

    The use of the nuclear energy for simultaneous electricity and potable water production is an attractive, technically feasible, and safe alternative to fossil energy options. In Argentina the nuclear desalination option is being studied together with the alternative uses of the innovative advanced Argentinean CAREM reactor, in the research contract CNEA - IAEA to evaluate projects of nuclear desalination. The objective and scope of this work is to know the advantages and disadvantages of each desalination technology, distinctive characteristics of each of them, that make them adapt better to different uses and outline conditions and analysis of related antecedents of its use in the world. In this report a summarized description of those technologies is included by way of introduction, so as to highlight the main advantages and disadvantages of each of them. The improvements and innovations found in the last years for the different technologies are also included. (author)

  20. Stochastic Plume Simulations for the Fukushima Accident and the Deep Water Horizon Oil Spill

    Science.gov (United States)

    Coelho, E.; Peggion, G.; Rowley, C.; Hogan, P.

    2012-04-01

    The Fukushima Dai-ichi power plant suffered damage leading to radioactive contamination of coastal waters. Major issues in characterizing the extent of the affected waters were a poor knowledge of the radiation released to the coastal waters and the rather complex coastal dynamics of the region, not deterministically captured by the available prediction systems. Equivalently, during the Gulf of Mexico Deep Water Horizon oil platform accident in April 2010, significant amounts of oil and gas were released from the ocean floor. For this case, issues in mapping and predicting the extent of the affected waters in real-time were a poor knowledge of the actual amounts of oil reaching the surface and the fact that coastal dynamics over the region were not deterministically captured by the available prediction systems. To assess the ocean regions and times that were most likely affected by these accidents while capturing the above sources of uncertainty, ensembles of the Navy Coastal Ocean Model (NCOM) were configured over the two regions (NE Japan and Northern Gulf of Mexico). For the Fukushima case tracers were released on each ensemble member; their locations at each instant provided reference positions of water volumes where the signature of water released from the plant could be found. For the Deep Water Horizon oil spill case each ensemble member was coupled with a diffusion-advection solution to estimate possible scenarios of oil concentrations using perturbed estimates of the released amounts as the source terms at the surface. Stochastic plumes were then defined using a Risk Assessment Code (RAC) analysis that associates a number from 1 to 5 to each grid point, determined by the likelihood of having tracer particle within short ranges (for the Fukushima case), hence defining the high risk areas and those recommended for monitoring. For the Oil Spill case the RAC codes were determined by the likelihood of reaching oil concentrations as defined in the Bonn Agreement

  1. Fog Water Collection: Challenges beyond Technology

    Directory of Open Access Journals (Sweden)

    Manzoor Qadir

    2018-03-01

    Full Text Available The Sustainable Development Goal (SDG 6, calling for access to safe water and sanitation for all by the year 2030 supports the efforts in water-scarce countries and regions to go beyond conventional resources and tap unconventional water supplies to narrow the water demand-supply gap. Among the unconventional water resources, the potential to collect water from the air, such as fog harvesting, is by far the most under-explored. Fog water collection is a passive, low maintenance, and sustainable option that can supply fresh drinking water to communities where fog events are common. Because of the relatively simple design of fog collection systems, their operation and maintenance are minimal and the associated cost likewise; although, in certain cases, some financially constrained communities would need initial subsidies. Despite technology development and demonstrated benefits, there are certain challenges to fog harvesting, including lack of supportive policies, limited functional local institutions, inexpert communities, gender inequality, and perceived high costs without undertaking comprehensive economic analyses. By addressing such challenges, there is an opportunity to provide potable water in areas where fog intensity and duration are sufficient, and where the competition for clean water is intensifying because water resources are at a far distance or provided by expensive sources.

  2. Research and Development Opportunities for Technologies to Influence Water Consumption Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States); Muehleisen, Ralph T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    In April 2015, Argonne National Laboratory hosted a two-day workshop that convened water experts and stakeholders from across industry, government, and academia to undertake three primary tasks: 1) identify technology characteristics that are favorable for motivating behavioral change, 2) identify barriers that have prevented the development and market adoption of technologies with these characteristics in the water sector, and 3) identify concrete research and development pathways that could be undertaken to overcome these barriers, increase the penetration of technologies that influence water consumption behavior, and ultimately reduce domestic water consumption. While efforts to reduce water consumption have gained momentum in recent years, there are a number of key barriers that have limited the effectiveness of such efforts. Chief among these is the fact that many consumers have limited awareness of their water consumption patterns because of poor data availability, and/or are unmotivated to reduce their consumption because of low costs and split incentives. Without improved data availability and stronger price signals, it will be difficult to effect true transformative behavioral change. This report also reviews a number of technology characteristics that have successfully motivated behavioral change in other sectors, as well as several technologies that could be developed specifically for the water sector. Workshop participants discussed how technologies that provide active feedback and promote measurable goals and social accountability have successfully influenced changes in other types of behavior. A range of regulatory and policy actions that could be implemented to support such efforts are also presented. These include institutional aggregation, revenue decoupling, and price structure reforms. Finally, several R&D pathways were proposed, including efforts to identify optimal communication strategies and to better understand consumer perceptions and

  3. A Deep Hydrographic Section Across the Tasman Sea.

    Science.gov (United States)

    1985-09-01

    the same cruise, TC1, as that on which the magneto- telluric moorings (plus a RANRL recording current-meter) were deployed. A small number of deep...that of Wyrtki (1961) who described the different water masses of this area and the northward movement of deep waters from Antarctica. Boland and

  4. Climatological Implications of Deep-Rooting in Water-Limited Ecosystems

    Science.gov (United States)

    Amenu, G. G.; Kumar, P.

    2005-12-01

    In vegetated ecosystems, plants are the primary channels that connect the soil with the atmosphere (through water, energy, carbon, and nutrient cycles), with plant roots controlling the below-ground dynamics. Recently, several observational evidences are emerging which suggests the existence of plant roots much deeper in the soil/rock profile than the depth usually perceived in existing hydroclimatological and hydroecological models. In this study, using land surface model, we assess the effects of vegetation deep-rooting on (a) moisture and temperature redistribution in the soil profile, (b) energy flux partitioning at the land surface, and (c) net primary productivity of vegetated ecosystems. Three sites characterized by different vegetation, soil, and climate (all located in arid to sub-humid regions of the United States) were studied. The sites include the Mogollon Rim in Arizona, the Edwards Plateau in Texas, and the Southern Piedmont in Georgia. Soil depths of up to 10 m are investigated. Results of this modeling effort and its implications for climatological modeling will be presented.

  5. New species and new records of deep-water Pectinoidea (Bivalvia: Propeamussiidae, Entoliidae and Pectinidae) from the South Pacific

    NARCIS (Netherlands)

    Dijkstra, H.H.; Maestrati, P.

    2008-01-01

    Fifty-two deep-water species of Pectinoidea (37 Propeamussiidae, 1 Entoliidae, 14 Pectinidae) are listed from Norfolk Ridge (11 species), Loyalty Islands (4 species), Fiji Islands (30 species), Tonga (26 species), Solomon Islands (26 species) and the Marquesas archipelago (8 species). All species

  6. Pilot demonstrations of arsenic treatment technologies in U.S. Department of Energy Arsenic Water Technology Partnership program.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Randy L.; Aragon, Alicia R.; Siegal Malcolm D.; Dwyer, Brian P.

    2005-01-01

    The Arsenic Water Technology Partnership program is a multi-year program funded by a congressional appropriation through the Department of Energy. The program is designed to move technologies from benchscale tests to field demonstrations. It will enable water utilities, particularly those serving small, rural communities and Indian tribes, to implement the most cost-effective solutions to their arsenic treatment needs. As part of the Arsenic Water Technology Partnership program, Sandia National Laboratories is carrying out field demonstration testing of innovative technologies that have the potential to substantially reduce the costs associated with arsenic removal from drinking water. The scope for this work includes: (1) Selection of sites and identification of technologies for pilot demonstrations; (2) Laboratory studies to develop rapid small-scale test methods; and (3) Pilot-scale studies at community sites involving side-by-side tests of innovative technologies. The goal of site selection is to identify sites that allow examination of treatment processes and systems under conditions that are relevant to different geochemical settings throughout the country. A number of candidate sites have been identified through reviews of groundwater quality databases, conference proceedings and discussions with state and local officials. These include sites in New Mexico, Arizona, Colorado, Oklahoma, Michigan, and California. Candidate technologies for the pilot tests are being reviewed through vendor forums, proof-of-principle benchscale studies managed by the American Water Works Association Research Foundation (AwwaRF) and the WERC design contest. The review considers as many potential technologies as possible and screens out unsuitable ones by considering data from past performance testing, expected costs, complexity of operation and maturity of the technology. The pilot test configurations will depend on the site-specific conditions such as access, power availability

  7. Petroleum technologies: recent and future evolutions. Consequences on the gas production line; Technologies petrolieres: evolutions recentes et futures. Consequences sur la chaine gaz

    Energy Technology Data Exchange (ETDEWEB)

    Freud, E. [Institut Francais du Petrole, 92 - Rueil-Malmaison (France)

    1998-03-01

    This paper describes how recent technological progresses should solve the difficulties encountered in the exploitation of natural gas fields in hard environments (far away or isolated fields, deep offshore, small or complex fields, production requiring a complex processing). These techniques concern: the exploration of fields and reservoirs, the deep-sea drilling and production (poly-phase pumping, hydrates formation control), the processing of crudes (water/oil and oil/gas separation, dehydration, de-acidification, removal of impurities), the transport (gas-pipelines, LNG and chemical conversion). (J.S.)

  8. Improvement of water desalination technologies in reverse osmosis plants

    Science.gov (United States)

    Vysotskii, S. P.; Konoval'chik, M. V.; Gul'ko, S. E.

    2017-07-01

    The strengthening of requirements for the protection of surface-water sources and increases in the cost of reagents lead to the necessity of using membrane (especially, reverse osmosis) technologies of water desalination as an alternative to ion-exchange technologies. The peculiarities of using reverse osmosis technologies in the desalination of waters with an increased salinity have been discussed. An analogy has been made between the dependence of the adsorptive capacity of ion-exchange resins on the reagent consumption during ion exchange and the dependence of the specific ion flux on the voltage in the electrodialysis and productivity of membrane elements on the excess of the pressure of source water over the osmotic pressure in reverse osmosis. It has been proposed to regulate the number of water desalination steps in reverse osmosis plants, which makes it possible to flexibly change the productivity of equipment and the level of desalinization, depending on the requirements for the technological process. It is shown that the selectivity of reverse osmotic membranes with respect to bivalent ions (calcium, magnesium, and sulfates) is approximately four times higher than the selectivity with respect to monovalent ions (sodium and chlorine). The process of desalination in reverse osmosis plants depends on operation factors, such as the salt content and ion composition of source water, the salt content of the concentrate, and the temperatures of solution and operating pressure, and the design features of devices, such as the length of the motion of the desalination water flux, the distance between membranes, and types of membranes and turbulators (spacers). To assess the influence of separate parameters on the process of reverse osmosis desalination of water solutions, we derived criteria equations by compiling problem solution matrices on the basis of the dimensional method, taking into account the Huntley complement. The operation of membrane elements was

  9. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  10. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  11. TREATABILITY TEST PLAN FOR DEEP VADOSE ZONE REMEDIATION AT THE HANFORD'S SITE CENTRAL PLATEAU

    International Nuclear Information System (INIS)

    PETERSEN SW; MORSE JG; TRUEX MJ; LAST GV

    2007-01-01

    A treatability test plan has been prepared to address options for remediating portions of the deep vadose zone beneath a portion of the U.S. Department of Energy's (DOE's) Hanford Site. The vadose zone is the region of the subsurface that extends from the ground surface to the water table. The overriding objective of the treatability test plan is to recommend specific remediation technologies and laboratory and field tests to support the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and Resource Conservation and Recovery Act of 1976 remedial decision-making process in the Central Plateau of the Hanford Site. Most of the technologies considered involve removing water from the vadose zone or immobilizing the contaminants to reduce the risk of contaminating groundwater. A multi-element approach to initial treatability testing is recommended, with the goal of providing the information needed to evaluate candidate technologies. The proposed tests focus on mitigating two contaminants--uranium and technetium. Specific technologies are recommended for testing at areas that may affect groundwater in the future, but a strategy to test other technologies is also presented

  12. Short-crested waves in deep water: a numerical investigation of recent laboratory experiments

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2006-01-01

    A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centerlines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features...

  13. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  14. Innovative technologies for in-situ remediation

    International Nuclear Information System (INIS)

    Ragaini, R.; Aines, R.; Knapp, R.; Matthews, S.; Yow, J.

    1994-06-01

    LLNL is developing several innovative remediation technologies as long-term improvements to the current pump and treat approaches to cleaning up contaminated soils and groundwater. These technologies include dynamic underground stripping, in-situ microbial filters, and remediation using bremsstrahlung radiation. Concentrated underground organic contaminant plumes are one of the most prevalent groundwater contamination sources. The solvent or fuel can percolate deep into the earth, often into water-bearing regions. Collecting as a separate, liquid organic phase called dense non-aqueous-phase liquids (DNAPLs), or light NAPLs (LNAPLs), these contaminants provide a source term that continuously compromises surrounding groundwater. This type of spill is one of the most difficult environmental problems to remediate. Attempts to remove such material requires a huge amount of water which must be washed through the system to clean it, requiring decades. Traditional pump and treat approaches have not been successful. LLNL has developed several innovative technologies to clean up NAPL contamination. Detailed descriptions of these technologies are given

  15. ETV REPORT: REMOVAL OF ARSENIC IN DRINKING WATER ORCA WATER TECHNOLOGIES KEMLOOP 1000 COAGULATION AND FILTRATION WATER TREATMENT SYSTEM

    Science.gov (United States)

    Verification testing of the ORCA Water Technologies KemLoop 1000 Coagulation and Filtration Water Treatment System for arsenic removal was conducted at the St. Louis Center located in Washtenaw County, Michigan, from March 23 through April 6, 2005. The source water was groundwate...

  16. Field-Assisted Splitting of Pure Water Based on Deep-Sub-Debye-Length Nanogap Electrochemical Cells.

    Science.gov (United States)

    Wang, Yifei; Narayanan, S R; Wu, Wei

    2017-08-22

    Owing to the low conductivity of pure water, using an electrolyte is common for achieving efficient water electrolysis. In this paper, we have fundamentally broken through this common sense by using deep-sub-Debye-length nanogap electrochemical cells to achieve efficient electrolysis of pure water (without any added electrolyte) at room temperature. A field-assisted effect resulted from overlapped electrical double layers can greatly enhance water molecules ionization and mass transport, leading to electron-transfer limited reactions. We have named this process "virtual breakdown mechanism" (which is completely different from traditional mechanisms) that couples the two half-reactions together, greatly reducing the energy losses arising from ion transport. This fundamental discovery has been theoretically discussed in this paper and experimentally demonstrated in a group of electrochemical cells with nanogaps between two electrodes down to 37 nm. On the basis of our nanogap electrochemical cells, the electrolysis current density from pure water can be significantly larger than that from 1 mol/L sodium hydroxide solution, indicating the much better performance of pure water splitting as a potential for on-demand clean hydrogen production.

  17. Potential of Solar-driven CDI Technology for Water Desalination in Egypt

    Directory of Open Access Journals (Sweden)

    Ashraf Seleym

    2017-12-01

    Full Text Available Freshwater scarcity is one of the most challenging problems facing the world today. Rivers, lakes, and surface ice represent only 1.2% of the fresh water sources on earth, while ground water represent over 30% of the potential fresh water. The Egyptian quota from the Nile River is limited to 55 billion m3/yr, and expected to decrease due to increasing demand of water by other Nile basin countries. According to an Egyptian government report, the total population of Egypt increased from 22 million in 1950 to around 85 million in 2010. This increase in population growth will continue for decades and it is likely to increase to between 120-150 million by 2050. Egypt has reached a state where the quantity of water available is imposing limits on its national economic development.  As indication of water scarcity, Egypt passed the international threshold value of 1000 m3/capita/year in the nineties, and it is expected to cross the threshold of absolute water scarcity of 500 m3/capita/yr by 2025. Capacitive de-ionization (CDI is a relatively new technology that was developed as recently as the late 1960s. In CDI systems, saline water is made to pass between a pair of electrodes connected to a voltage source. Ions are stored inside the pores of electrodes in CDI via the applied electric field strength. CDI is a membrane less technology, and the problems of membrane fouling in the Reverse Osmosis technology is not present in CDI. It has the potential to be energy efficient compared with other related techniques, robust technology for water desalination. This paper explores low cost and efficient desalination technologies for brackish water for irrigation and drinking purposes using the abundant solar energy in Egypt.

  18. Potential of Solar-driven CDI Technology for Water Desalination in Egypt

    Directory of Open Access Journals (Sweden)

    Moustafa El Shafei

    2017-12-01

    Full Text Available Freshwater scarcity is one of the most challenging problems facing the world today. Rivers, lakes, and surface ice represent only 1.2% of the fresh water sources on earth, while ground water represents over 30% of the potential fresh water. The Egyptian quota from the River Nile is limited to 55 billion m/yr, and expected to decrease due to increasing demand of water by other Nile basin countries. According to an Egyptian government report, the total population of Egypt increased from 22 million in 1950 to around 85 million in 2010. This increase in population will continue for decades and it is likely to increase to between 120-150 million by 2050. Egypt has reached a state where the quantity of water available is imposing limits on its national economic development. As indication of water scarcity, Egypt passed the international threshold value of 1000 m3/capita/year in the nineties, and it is expected to cross the threshold of absolute water scarcity of 500 m3/capita/yr by 2025. Capacitive deionization (CDI is a relatively new technology that was developed as recently as the late 1960s. In CDI systems, saline water is made to pass between a pair of electrodes connected to a voltage source. Ions are stored inside the pores of electrodes in CDI via the applied electric field strength. CDI is a membrane less technology and the problems of membrane fouling in the Reverse Osmosis technology are not present in CDI. It has the potential to be energy efficient compared with other related techniques and robust technology for water desalination. This paper explores low cost and efficient desalination technologies for brackish water for irrigation and drinking purposes using the abundant solar energy in Egypt.

  19. Deep-water gamma-spectrometer based on HP(Ge) detector

    International Nuclear Information System (INIS)

    Sokolov, A.; Danengirsh, S.; Popov, S.; Pchelincev, A; Gostilo, V.; Kravchenko, S.; Shapovalov, V.; Druzhinin, A.

    1995-01-01

    Full text: For radionuclide monitoring of the sea bottom near underwater storage of high active waste of nuclear industries and near places of accidents with nuclear submarines the spectrometers of gamma-radiation, which allow to carry out the measurements on the great depth, are needed. Usually, these problems are solved with devices, which are cast down into the water, using the rope, and transmit the signals on the surface by the cable. However, the depth of immersion is limited by this construction and often the conditions of measurement are complicated. The deep water gamma-spectrometer based on HP(Ge) detector for the measurement on the depth up to 3000 m is developed. The spectrometer is completely autonomic and is put up in the selected place, using the manipulator of a deep-water apparatus. The spectrometer is created in two cylindrical cases with 170 mm diameter and 1100 mm length, bearing the high hydrostatic pressure. The part of the case around the detector is created from titanium and has especial construction with a thin wall for increasing the efficiency of registration in the region of low-energy gamma-radiation. The cooling of the semiconductor detector is provided by a coolant which supports the working temperature of the detector during more than 24 hours. The electronic system of the spectrometer includes high voltage supply f or the detector, preamplifier, analog processor, analog-digital converter and a device for collecting and storing information in flash memory. The power supply of the spectrometer is provided by a battery of accumulators, which can be recharged on the surface. The programming of the processor is carried out before immersion by connecting the spectrometer to personal computer using standard interface RS-232. During 24 hours the spectrometer provides registration of 16 spectrums each in 4096 channels. The reading of the information by the computer is carried out after lifting up the spectrometer on the surface in the same

  20. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  1. DeepBase: annotation and discovery of microRNAs and other noncoding RNAs from deep-sequencing data.

    Science.gov (United States)

    Yang, Jian-Hua; Qu, Liang-Hu

    2012-01-01

    Recent advances in high-throughput deep-sequencing technology have produced large numbers of short and long RNA sequences and enabled the detection and profiling of known and novel microRNAs (miRNAs) and other noncoding RNAs (ncRNAs) at unprecedented sensitivity and depth. In this chapter, we describe the use of deepBase, a database that we have developed to integrate all public deep-sequencing data and to facilitate the comprehensive annotation and discovery of miRNAs and other ncRNAs from these data. deepBase provides an integrative, interactive, and versatile web graphical interface to evaluate miRBase-annotated miRNA genes and other known ncRNAs, explores the expression patterns of miRNAs and other ncRNAs, and discovers novel miRNAs and other ncRNAs from deep-sequencing data. deepBase also provides a deepView genome browser to comparatively analyze these data at multiple levels. deepBase is available at http://deepbase.sysu.edu.cn/.

  2. Studies on engineering technologies in the Mizunami Underground Research Laboratory. FY 2007 (Contract research)

    International Nuclear Information System (INIS)

    Noda, Masaru; Suyama, Yasuhiro; Nobuto, Jun; Ijiri, Yuji; Mikake, Shinichiro; Matsui, Hiroya

    2009-07-01

    The Mizunami Underground Research Laboratory (MIU) of the Japan Atomic Energy Agency is a major site for geoscientific research to advance the scientific and technological basis for geological disposal of high-level radioactive waste in crystalline rock. Studies on relevant engineering technologies in the MIU consist of a) research on design and construction technology for very deep underground applications, and b) research on engineering technology as a basis of geological disposal. In the Second Phase of the MIU project (the construction phase), engineering studies have focused on research into design and construction technologies for deep underground. The main subjects in the study of very deep underground structures consist of the following: 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction'. In the FY 2007 studies, identification and evaluation of the subjects for study of engineering technologies in the construction phase were carried out to optimize future research work. Specific studies included: validation of the existing design methodology based on data obtained during construction; validation of existing and supplementary rock excavation methods for very deep shafts; estimation of rock stability under high differential water pressures, methodology on long-term maintenance of underground excavations and risk management systems for construction of underground structures have been performed. Based on these studies, future research focused on the four subject areas, which are 'Demonstration of the design methodology', 'Demonstration of existing and supplementary excavation methods', 'Demonstration of countermeasures during excavation' and 'Demonstration of safe construction', has been identified. The design methodology in the first phase of the MIU Project (surface-based investigation phase) was verified to

  3. Water Power Technologies FY 2017 Budget At-A-Glance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    The Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the U.S. (hydropower, marine and hydrokinetics).

  4. Anaerobe-Aerobe Submerged Biofilter Technology for Domestic Waste Water Treatment

    International Nuclear Information System (INIS)

    Nusa-Idaman-Said

    2000-01-01

    Water pollution in the big cities in Indonesia, especially in DKI Jakarta has shown serious problems. One of the potential sources of water pollution is domestic wastewater that is wastewater from kitchens, laundry, bathing and toilets. These problems have become more serious since the spreads of sewerage systems are still low, so that domestic, institutional and commercial wastewater cause severe water pollution in many rivers or shallow ground water. Bases on the fact that the progress of development of sewerage system is still low, it is important to develop low cost technology for individual house hold or semi communal wastewater treatment such as using anaerobic and aerobic submerged biofilter. This paper describes alternative technology for treatment of household wastewater or organic wastewater using anaerobic and aerobic submerged biofilter. Using this technology can decrease BOD, COD and Suspended Solids (SS) concentration more than 90 %. (author)

  5. Development of HMPE fiber for deep water permanent mooring applications

    Energy Technology Data Exchange (ETDEWEB)

    Vlasblom, Martin; Fronzaglia, Bill; Boesten, Jorn [DSM Dyneema, Urmond (Netherlands); Leite, Sergio [Lankhorst Ropes, Sneek (Netherlands); Davies, Peter [Institut Francais de Recherche pour L' Exploration de la Mer (IFREMER) (France)

    2012-07-01

    For a number of years, the creep performance of standard High Modulus Polyethylene (HMPE) fiber types has limited their use in synthetic offshore mooring systems. In 2003, a low creep HMPE fiber was introduced and qualified for semi-permanent MODU moorings. This paper reports on a new High Modulus Polyethylene fiber type with significantly improved creep properties compared to any other HMPE fiber type, which, for the first time, allows its use in permanent offshore mooring systems, for example for deep water FPSO moorings. Results on fiber and rope creep experiments and stiffness measurements are reported. Laboratory testing shows that ropes made with the new fiber type retain the properties characteristic of HMPE such as high static strength, high fatigue resistance and stiffness, and illustrate that stiffness properties determined on HMPE fiber or rope are dependent on the applied load and temperature. (author)

  6. Application of the air/water cushion technology for handling of heavy waste packages in Sweden and France

    International Nuclear Information System (INIS)

    Bosgiraud, Jean-Michel; Seidler, Wolf K.; Londe, Louis; Thurner, Erik; Pettersson, Stig

    2008-01-01

    The disposal of certain types of radioactive waste canisters in a deep repository involves handling and emplacement of very heavy loads. The weight of these particular canisters can be in the order of 20 to 50 metric tons. They generally have to be handled underground in openings that are not much larger than the canisters themselves as it is time consuming and expensive to excavate and backfill large openings in a repository. This therefore calls for the development of special technology that can meet the requirements for safe operation in an industrial scale in restrained operating spaces. Air/water cushion lifting systems are used world wide in the industry for moving heavy loads. However, until now the technology needed for emplacing heavy cylindrical radioactive waste packages in bored drifts (with narrow annular gaps) has not been developed or demonstrated previously. This paper describes the related R and D work carried out by ANDRA (for air cushion technology) and by SKB and Posiva (for water cushion technology) respectively, mainly within the framework of the European Commission (EC) funded Integrated Project called ESDRED (6th European Framework Programme). The background for both the air and the water cushion applications is presented. The specific characteristics of the two different emplacement concepts are also elaborated. The various phases of the Test Programmes (including the Prototype phases) are detailed and illustrated for the two lifting media. Conclusions are drawn for each system developed and evaluated. Finally, based on the R and D experience, improvements deemed necessary for an industrial application are listed. The tests performed so far have shown that the emplacement equipment developed is operating efficiently. However further tests are required to verify the availability and the reliability of the equipment over longer periods of time and to identify the modifications that would be needed for an industrial application in a nuclear

  7. 76 FR 66078 - Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer...

    Science.gov (United States)

    2011-10-25

    ...-0087] Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer... discussions expected to help identify Outer Continental Shelf (OCS) challenges and technologies associated... structured venue for consultation among offshore deepwater oil and gas industry and regulatory experts in...

  8. Discorhabdin P, a new enzyme inhibitor from a deep-water Caribbean sponge of the genus Batzella.

    Science.gov (United States)

    Gunasekera, S P; McCarthy, P J; Longley, R E; Pomponi, S A; Wright, A E; Lobkovsky, E; Clardy, J

    1999-01-01

    Discorhabdin P (1), a new discorhabdin analogue, has been isolated from a deep-water marine sponge of the genus Batzella. Discorhabdin P (1) inhibited the phosphatase activity of calcineurin and the peptidase activity of CPP32. It also showed in vitro cytotoxicity against P-388 and A-549 cell lines. The isolation and structure elucidation of discorhabdin P (1) are described.

  9. WATER PINCH TECHNOLOGY APPLICATION TO MINIMIZE SULPHUROUS WASTEWATER IN AN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    Gabriel Orlando Lobelles Sardiñas

    2017-01-01

    Full Text Available In oil refining industries there is a high water consumption, which influences the high production costs and impacts the environment due to the discharge of their wastes. It is known that there are no technological conditions for the reuse of industrial water at the oil refineries, based on hydroskimming processes. The objective of this study is to implement the process integration methodology, Water Pinch, to a sour water stripper unit, as a unitary process of an oil refinery, to minimize the amount of sulphurous waste water and reduce contamination of the bay that receives these wastes. The technology is applied to evaluate the volume of sulphurous wastewater generated in the Cienfuegos oil refinery. This technology allows identifying opportunities for recovery and reuse of water, based on concentration ranges of contaminants. To achieve this purpose, a sour water stripper tower was assessed with the help of Water Pinch software, which provided an optimized distribution network, as a proposed technological improvement. This facilitated to recover and reuse 667 757, 28 m3 of water per year, and 1 035 023, 78 CUC were saved, at the same time the amount of polluting effluents decreased in approximately 2 % of non-reusable treated water.

  10. Fiscal 1995 report on the results of the subsidy operation under the Sunshine Project on the development of a geothermal water use power plant, etc. Development of the deep geothermal resource collecting technology (development of the deep geothermal resource drilling technology); 1995 nendo New Sunshine keikaku hojo jigyo seika hokokusho. Nessui riyo hatsuden plant nado kaihatsu (shinbu chinetsu shigen saishu gijutsu no kaihatsu / shinbu chinetsu shigen kussaku gijutsu no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper reported the results of the fiscal 1995 R and D on the development of deep geothermal resource collecting/drilling technology. In the design of a total development, the trend of technical development was examined of bits, cement and DHM overseas. Further, the simulational prediction was conducted in deep geothermal drilling. As to the development of element technology of hard high temperature strata drilling, the R and D of seal mechanism, bearing mechanism and cutter mechanism were carried out aiming at developing heat resistant/durable bits, and a bit was trially manufactured which was integrated with element parts selected by each element technology. Concerning the development of high temperature drilling mud, studies were made of the development of drilling mud materials, a mud system, etc. Relating to the development of high temperature cement slurry, the development was conducted of high temperature cement, dewatering adjusting agents, etc. As to the development of high accuracy much inclination drilling technology, in the development of high temperature use downhole motor, tests on heat resistance/durability were carried out in the mud of 12 kinds of high heat resistant stator materials. 175 figs., 137 tabs.

  11. Economics of selected water control technologies and their ...

    African Journals Online (AJOL)

    Using a production function, marginal productivity of farm inputs and benefit-cost analysis, we explore the economics of selected water control technologies. From the production function, all farm inputs, including irrigation water is found to have a significant and positive effect on yield. Marginal value products of farm inputs ...

  12. Energy and water conservation at lignite-fired power plants using drying and water recovery technologies

    International Nuclear Information System (INIS)

    Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong

    2015-01-01

    Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.

  13. Nanofiltration technology in water treatment and reuse: applications and costs.

    Science.gov (United States)

    Shahmansouri, Arash; Bellona, Christopher

    2015-01-01

    Nanofiltration (NF) is a relatively recent development in membrane technology with characteristics that fall between ultrafiltration and reverse osmosis (RO). While RO membranes dominate the seawater desalination industry, NF is employed in a variety of water and wastewater treatment and industrial applications for the selective removal of ions and organic substances, as well as certain niche seawater desalination applications. The purpose of this study was to review the application of NF membranes in the water and wastewater industry including water softening and color removal, industrial wastewater treatment, water reuse, and desalination. Basic economic analyses were also performed to compare the profitability of using NF membranes over alternative processes. Although any detailed cost estimation is hampered by some uncertainty (e.g. applicability of estimation methods to large-scale systems, labor costs in different areas of the world), NF was found to be a cost-effective technology for certain investigated applications. The selection of NF over other treatment technologies, however, is dependent on several factors including pretreatment requirements, influent water quality, treatment facility capacity, and treatment goals.

  14. Influence of the hydrodynamic conditions on the accessibility of the demersal species to the deep water trawl fishery off the Balearic Islands (western Mediterranean)

    Science.gov (United States)

    Amores, A.; Rueda, L.; Monserrat, S.; Guijarro, B.; Pasqual, C.; Massutí, E.

    2013-12-01

    Ocean mean surface vorticity from gridded multi-mission satellite altimetry data was explored in the Western Mediterranean basin for the period 2000-2010, with the aim of comparing its variability with several species of the deep water fishery in the area. Monthly catches per unit of effort (CPUE) of adult red shrimp (Aristeus antennatus), reported in the deep water bottom trawl fishery developed off northern Mallorca Island displayed a good correlation with surface vorticity. This correlation could be explained by assuming that most of the surface vorticity episodes could reach the bottom, increasing the seabed velocities and producing sediment resuspensions, which could affect the near bottom water turbidity. A. antennatus would respond to this increased turbidity by moving downwards to the deeper waters. This massive displacement of red shrimp specimens away from the fishing grounds would consequently decrease their accesibility to fishing exploitation. This relationship between vorticity and catches also holds for other species , considered as by-catch of the deep water fishery in the area. Results appear to support the suggestion that the water turbidity generated by the vorticy episodes is significant enough to affect the dynamics of the demersal species. The way the surface vorticity observed can affect the bottom sediments is also investigated using a year-long moored near-bottom currentmeter and a sediment trap sited in the fishing grounds.

  15. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, W., E-mail: wyman.zhuang@dsto.defence.gov.au [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Liu, Q.; Djugum, R.; Sharp, P.K. [Aerospace Division, Defence Science and Technology Organisation, 506 Lorimer Street, Fishermans Bend, Victoria 3207 (Australia); Paradowska, A. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2232 (Australia)

    2014-11-30

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface.

  16. Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy

    International Nuclear Information System (INIS)

    Zhuang, W.; Liu, Q.; Djugum, R.; Sharp, P.K.; Paradowska, A.

    2014-01-01

    Highlights: • Deep surface rolling as a post-repair enhancement technology was applied to the laser cladded 7075-T651 aluminium alloy specimens that simulated corrosion damage blend-out repair. • The residual stresses induced by the deep surface rolling process were measured. • The deep surface rolling process can introduce deep and high magnitude compressive residual stresses beyond the laser clad and substrate interface. • Spectrum fatigue test showed the fatigue life was significantly increased by deep surface rolling. - Abstract: Deep surface rolling can introduce deep compressive residual stresses into the surface of aircraft metallic structure to extend its fatigue life. To develop cost-effective aircraft structural repair technologies such as laser cladding, deep surface rolling was considered as an advanced post-repair surface enhancement technology. In this study, aluminium alloy 7075-T651 specimens with a blend-out region were first repaired using laser cladding technology. The surface of the laser cladding region was then treated by deep surface rolling. Fatigue testing was subsequently conducted for the laser clad, deep surface rolled and post-heat treated laser clad specimens. It was found that deep surface rolling can significantly improve the fatigue life in comparison with the laser clad baseline repair. In addition, three dimensional residual stresses were measured using neutron diffraction techniques. The results demonstrate that beneficial compressive residual stresses induced by deep surface rolling can reach considerable depths (more than 1.0 mm) below the laser clad surface

  17. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation.

    Science.gov (United States)

    Hohman, Fred; Hodas, Nathan; Chau, Duen Horng

    2017-05-01

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as "black-boxes" due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user's data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  18. ShapeShop: Towards Understanding Deep Learning Representations via Interactive Experimentation

    Energy Technology Data Exchange (ETDEWEB)

    Hohman, Frederick M.; Hodas, Nathan O.; Chau, Duen Horng

    2017-05-30

    Deep learning is the driving force behind many recent technologies; however, deep neural networks are often viewed as “black-boxes” due to their internal complexity that is hard to understand. Little research focuses on helping people explore and understand the relationship between a user’s data and the learned representations in deep learning models. We present our ongoing work, ShapeShop, an interactive system for visualizing and understanding what semantics a neural network model has learned. Built using standard web technologies, ShapeShop allows users to experiment with and compare deep learning models to help explore the robustness of image classifiers.

  19. Abrupt stop of deep water turnover with lake warming: Drastic consequences for algal primary producers.

    Science.gov (United States)

    Yankova, Yana; Neuenschwander, Stefan; Köster, Oliver; Posch, Thomas

    2017-10-23

    After strong fertilization in the 20 th century, many deep lakes in Central Europe are again nutrient poor due to long-lasting restoration (re-oligotrophication). In line with reduced phosphorus and nitrogen loadings, total organismic productivity decreased and lakes have now historically low nutrient and biomass concentrations. This caused speculations that restoration was overdone and intended fertilizations are needed to ensure ecological functionality. Here we show that recent re-oligotrophication processes indeed accelerated, however caused by lake warming. Rising air temperatures strengthen thermal stabilization of water columns which prevents thorough turnover (holomixis). Reduced mixis impedes down-welling of oxygen rich epilimnetic (surface) and up-welling of phosphorus and nitrogen rich hypolimnetic (deep) water. However, nutrient inputs are essential for algal spring blooms acting as boost for annual food web successions. We show that repeated lack (since 1977) and complete stop (since 2013) of holomixis caused drastic epilimnetic phosphorus depletions and an absence of phytoplankton spring blooms in Lake Zurich (Switzerland). By simulating holomixis in experiments, we could induce significant vernal algal blooms, confirming that there would be sufficient hypolimnetic phosphorus which presently accumulates due to reduced export. Thus, intended fertilizations are highly questionable, as hypolimnetic nutrients will become available during future natural or artificial turnovers.

  20. Biogeochemical Regeneration of a Nodule Mining Disturbance Site: Trace Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters

    Directory of Open Access Journals (Sweden)

    Sophie A. L. Paul

    2018-04-01

    Full Text Available Increasing interest in deep-sea mineral resources, such as polymetallic nodules, calls for environmental research about possible impacts of mineral exploitation on the deep-sea ecosystem. So far, little geochemical comparisons of deep-sea sediments before and after mining induced disturbances have been made, and thus long-term environmental effects of deep-sea mining are unknown. Here we present geochemical data from sediment cores from an experimental disturbance area at 4,100 m water depth in the Peru Basin. The site was revisited in 2015, 26 years after a disturbance experiment mimicking nodule mining was carried out and compared to sites outside the experimental zone which served as a pre-disturbance reference. We investigated if signs of the disturbance are still visible in the solid phase and the pore water after 26 years or if pre-disturbance conditions have been re-established. Additionally, a new disturbance was created during the cruise and sampled 5 weeks later to compare short- and longer-term impacts. The particulate fraction and pore water were analyzed for major and trace elements to study element distribution and processes in the surface sediment. Pore water and bottom water samples were also analyzed for oxygen, nitrate, dissolved organic carbon, and dissolved amino acids, to examine organic matter degradation processes. The study area of about 11 km2 was found to be naturally more heterogeneous than expected, requiring an analysis of spatial variability before the disturbed and undisturbed sites can be compared. The disturbed sites exhibit various disturbance features: some surface sediments were mixed through, others had the top layer removed and some had additional material deposited on top. Pore water constituents have largely regained pre-disturbance gradients after 26 years. The solid phase, however, shows clear differences between disturbed and undisturbed sites in the top 20 cm so that the impact is still visible in the

  1. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  2. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    Science.gov (United States)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  3. The Sinking and Spreading of The Antarctic Deep Ice Shelf Water In The Ross Sea Studied By In Situ Observaions and Numerical Modeling

    Science.gov (United States)

    Rubino, A.; Budillon, G.; Pierini, S.; Spezie, G.

    The sinking and spreading of the Deep Ice Shelf Water (DISW) in the Ross Sea are analyzed using in situ observations and the results of a nonlinear, reduced-gravity, frontal layered numerical "plume" model which is able to simulate the motion of a bottom-arrested current over realistic topography. The model is forced by prescribing the thickness of the DISW vein as well as its density structure at the southern model boundary. The ambient temperature and salinity are imposed using hydrographic data acquired by the Italian PNRA-CLIMA project. In the model water of the quiescent ambient ocean is allowed to entrain in the active deep layer due to a simple param- eterization of turbulent mixing. The importance of forcing the model with a realistic ambient density is demonstrated by carrying out a numerical simulation in which the bottom active layer is forced using an idealized ambient density. In a more realis- tic simulation the path and the density structure of the DISW vein flowing over the Challenger Basin are obtained and are found to be in good agreement with data. The evolution of the deep current beyond the continental shelf is also simulated. It provides useful information on the water flow and mixing in a region of the Ross Sea where the paucity of experimental data does not allow for a detailed description of the deep ocean dynamics.

  4. Development of sustainable water treatment technology using scientifically based calculated indexes of source water quality indicators

    Directory of Open Access Journals (Sweden)

    А. С. Трякина

    2017-10-01

    Full Text Available The article describes selection process of sustainable technological process flow chart for water treatment procedure developed on scientifically based calculated indexes of quality indicators for water supplied to water treatment facilities. In accordance with the previously calculated values of the indicators of the source water quality, the main purification facilities are selected. A more sustainable flow chart for the modern water quality of the Seversky Donets-Donbass channel is a two-stage filtering with contact prefilters and high-rate filters. The article proposes a set of measures to reduce such an indicator of water quality as permanganate oxidation. The most suitable for these purposes is sorption purification using granular activated carbon for water filtering. The increased water hardness is also quite topical. The method of ion exchange on sodium cation filters was chosen to reduce the water hardness. We also evaluated the reagents for decontamination of water. As a result, sodium hypochlorite is selected for treatment of water, which has several advantages over chlorine and retains the necessary aftereffect, unlike ozone. A technological flow chart with two-stage purification on contact prefilters and two-layer high-rate filters (granular activated carbon - quartz sand with disinfection of sodium hypochlorite and softening of a part of water on sodium-cation exchangers filters is proposed. This technological flow chart of purification with any fluctuations in the quality of the source water is able to provide purified water that meets the requirements of the current sanitary-hygienic standards. In accordance with the developed flow chart, guidelines and activities for the reconstruction of the existing Makeevka Filtering Station were identified. The recommended flow chart uses more compact and less costly facilities, as well as additional measures to reduce those water quality indicators, the values of which previously were in

  5. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  6. Optimal purification technology of ultrapure water for instrumental analysis

    International Nuclear Information System (INIS)

    Ishii, Naoe

    2011-01-01

    Purified water is one of the most commonly utilized reagents in the laboratory. It is used throughout experimental protocols in virtually every type of laboratory application : as blanks, for the dissolution and dilution of samples, the dilution of standards, preparation of mobile phases and for media and buffer preparation. Contaminants present in purified water can therefore have a significant impact on results. Hence, it is important to ensure that the laboratory water-purification system contains a combination of purification technologies to target specific impurities related to each application. This article looks at some of these technologies and their relevance for specific applications, such as HPLC, LC/MS, and ion chromatography (IC). (author)

  7. WATER MICROPOLLUTANTS: CLASSIFICATION AND TREATMENT TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Yolanda Patiño

    2014-06-01

    Full Text Available This article reviews the different kinds of emerging contaminants, their origin and use, and their presence in the Spanish waters, both in surface and groundwater. Micropollutants are compounds of different origin and chemical nature which had been unnoticed (due to their low concentration and don’t have specific regulation. They are divided into six major groups, and many of them behave as endocrine disruptors causing large negative effects on human health and environment. They are in waters because the waste water treatment plants are not designed for their removal, so they are being discharged. Different alternatives for their removal are discussed - physico- chemical, biological and hybrid treatment technologies -. Among the physicochemical process, the advance oxidation processes (AOPs are very promising.

  8. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  9. Economic Evaluation of SMART Deployment in the MENA Region using DEEP 5..0

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han-Ok; Lee, Man-Ki; Zee, Sung-Kyun; Kim, Young-In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Some countries have officially announced that the development of atomic energy is essential to meet the growing nation's requirements for energy to generate electricity, produce desalination water, and reduce reliance on depleting hydrocarbon resources. SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 tons of desalinated water concurrently, which is sufficient for 100,000 residents. It is an integral type reactor with a sensible mixture of proven technologies and advanced design features. SMART aims at achieving enhanced safety and improved economics; the enhancement of safety and reliability is realized by incorporating inherent safety-improving features and reliable passive safety systems. The improvement in the economics is achieved through a system simplification, component modularization, reduction of construction time, and high plant availability. The standard design approval assures the safety of the SMART system. The economics of SMART are evaluated for the deployment in MENA region in this study. DEEP 5.0 software was selected for the economic evaluation of SMART plant. By using the collected technical and economic data as the input data into DEEP program, the power and water costs are calculated. Electric power and fresh water production costs for the case of SMART deployment at the MENA region is evaluated using the DEEP 5.0 software in this study. Technical input data are prepared on the basis of the local environmental conditions of the MENA region. The results show that the SMART plant can supply 94 MWe to an external grid system with 40,000 m{sup 3}/d of fresh water. The power and water costs are calculated for the various specific construction costs.

  10. Economic Evaluation of SMART Deployment in the MENA Region using DEEP 5..0

    International Nuclear Information System (INIS)

    Kang, Han-Ok; Lee, Man-Ki; Zee, Sung-Kyun; Kim, Young-In; Kim, Keung Koo

    2014-01-01

    Some countries have officially announced that the development of atomic energy is essential to meet the growing nation's requirements for energy to generate electricity, produce desalination water, and reduce reliance on depleting hydrocarbon resources. SMART (system-integrated modular advanced reactor) is a small-sized advanced integral reactor with a rated thermal power of 330 MW. It can produce 100 MW of electricity, or 90 MW of electricity and 40,000 tons of desalinated water concurrently, which is sufficient for 100,000 residents. It is an integral type reactor with a sensible mixture of proven technologies and advanced design features. SMART aims at achieving enhanced safety and improved economics; the enhancement of safety and reliability is realized by incorporating inherent safety-improving features and reliable passive safety systems. The improvement in the economics is achieved through a system simplification, component modularization, reduction of construction time, and high plant availability. The standard design approval assures the safety of the SMART system. The economics of SMART are evaluated for the deployment in MENA region in this study. DEEP 5.0 software was selected for the economic evaluation of SMART plant. By using the collected technical and economic data as the input data into DEEP program, the power and water costs are calculated. Electric power and fresh water production costs for the case of SMART deployment at the MENA region is evaluated using the DEEP 5.0 software in this study. Technical input data are prepared on the basis of the local environmental conditions of the MENA region. The results show that the SMART plant can supply 94 MWe to an external grid system with 40,000 m 3 /d of fresh water. The power and water costs are calculated for the various specific construction costs

  11. Outcomes of the DeepWind conceptual design

    NARCIS (Netherlands)

    Paulsen, US; Borg, M.; Madsen, HA; Pedersen, TF; Hattel, J; Ritchie, E.; Simao Ferreira, C.; Svendsen, H.; Berthelsen, P.A.; Smadja, C.

    2015-01-01

    DeepWind has been presented as a novel floating offshore wind turbine concept with cost reduction potentials. Twelve international partners developed a Darrieus type floating turbine with new materials and technologies for deep-sea offshore environment. This paper summarizes results of the 5 MW

  12. Diffusion tensor imaging and neuromodulation: DTI as key technology for deep brain stimulation.

    Science.gov (United States)

    Coenen, Volker Arnd; Schlaepfer, Thomas E; Allert, Niels; Mädler, Burkhard

    2012-01-01

    Diffusion tensor imaging (DTI) is more than just a useful adjunct to invasive techniques like optogenetics which recently have tremendously influenced our understanding of the mechanisms of deep brain stimulation (DBS). In combination with other technologies, DTI helps us to understand which parts of the brain tissue are connected to others and which ones are truly influenced with neuromodulation. The complex interaction of DBS with the surrounding tissues-scrutinized with DTI-allows to create testable hypotheses that can explain network interactions. Those interactions are vital for our understanding of the net effects of neuromodulation. This work naturally was first done in the field of movement disorder surgery, where a lot of experience regarding therapeutic effects and only a short latency between initiation of neuromodulation and alleviation of symptoms exist. This chapter shows the journey over the past 10 years with first applications in DBS toward current research in affect regulating network balances and their therapeutic alterations with the neuromodulation technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  14. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity

    NARCIS (Netherlands)

    Soetaert, K.; Mohn, C.; Rengstorf, A.; Grehan, A.; Van Oevelen, D.

    2016-01-01

    Cold-water corals (CWCs) form large mounds on the seafloor that are hotspots of biodiversity in the deep sea, but it remains enigmatic how CWCs can thrive in this food-limited environment. Here, we infer from model simulations that the interaction between tidal currents and CWC-formed mounds induces

  15. FLASH Technology: Full-Scale Hospital Waste Water Treatments Adopted in Aceh

    Science.gov (United States)

    Rame; Tridecima, Adeodata; Pranoto, Hadi; Moesliem; Miftahuddin

    2018-02-01

    A Hospital waste water contains a complex mixture of hazardous chemicals and harmful microbes, which can pose a threat to the environment and public health. Some efforts have been carried out in Nangroe Aceh Darussalam (Aceh), Indonesia with the objective of treating hospital waste water effluents on-site before its discharge. Flash technology uses physical and biological pre-treatment, followed by advanced oxidation process based on catalytic ozonation and followed by GAC and PAC filtration. Flash Full-Scale Hospital waste water Treatments in Aceh from different district have been adopted and investigated. Referring to the removal efficiency of macro-pollutants, the collected data demonstrate good removal efficiency of macro-pollutants using Flash technologies. In general, Flash technologies could be considered a solution to the problem of managing hospital waste water.

  16. A new cytotoxic sterol methoxymethyl ether from a deep water marine sponge Scleritoderma sp. cf. paccardi.

    Science.gov (United States)

    Gunasekera, S P; Kelly-Borges, M; Longley, R E

    1996-02-01

    24(R)-Methyl-5 alpha-cholest-7-enyl 3 beta-methoxymethyl ether (1), a new sterol ether, has been isolated from a deep-water marine sponge Scleritoderma sp. cf. paccardi. Compound 1 exhibited in vitro cytotoxicity against the cultured murine P-388 tumor cell line with an IC50 of 2.3 micrograms/mL. The isolation and structure elucidation of 1 by NMR spectroscopy is described.

  17. Advances in geophysical technologies for the exploration and safe mining of deep gold ore bodies in the Witwatersrand basin, South Africa

    CSIR Research Space (South Africa)

    Durrheim, RJ

    2013-08-01

    Full Text Available -1 Proceedings of the Twelfth Biennial Meeting of the Society for Geology Applied to Mineral Deposits, Uppsala, Sweden, 12-15 August 2013 Advances in geophysical technologies for the exploration and safe mining of deep gold ore bodies in the Witwatersrand...

  18. Isometachromin, a new cytotoxic sesquiterpenoid from a deep water sponge of the family Spongiidae.

    Science.gov (United States)

    McConnell, O J; Longley, R; Gunasekera, M

    1992-09-15

    Isometachromin (1), a new sesquiterpene-quinone that is related structurally to metachromin C (2), and the known compounds ilimaquinone (3) and 5-epi-ilimaquinone (4), were isolated from a deep water sponge in the family Spongiidae; the structure of isometachromin was elucidated by spectral methods. Isometachromin exhibits in vitro cytotoxicity against the human lung cancer cell line A549 (IC50 = 2.6 micrograms/ml), but not against P388 murine leukemia (IC 50 > or equal to 10 micrograms/ml) and also exhibits antimicrobial activity.

  19. Socio-Economic Impacts of Rain Water Harvesting Technologies in ...

    African Journals Online (AJOL)

    Technologies in Rwanda: A case study of Nyaruguru ... ownership and maintenance of established RWH technologies. ... production towards food security. .... The overall average family size for the households ..... respondents are aware of these techniques but few implement them- only 1 .... Water productivity in Rain-.

  20. Water Reclamation Technology Development at Johnson Space Center

    Science.gov (United States)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.