WorldWideScience

Sample records for deep ultraviolet photoluminescence

  1. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    Directory of Open Access Journals (Sweden)

    M. El Ghazaly

    Full Text Available Photoluminescence (PL emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53–4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV to 400 (3.10 eV nm in step of 10 nm and the corresponding photoluminescence (PL emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC, the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation. Keywords: Photoluminescence spectra, Makrofol® DE 1-1, UV–vis spectrophotometry, Attenuation coefficient, Ultraviolet radiation

  2. Photoluminescence emission spectra of Makrofol® DE 1-1 upon irradiation with ultraviolet radiation

    Science.gov (United States)

    El Ghazaly, M.; Aydarous, Abdulkadir

    Photoluminescence (PL) emission spectra of Makrofol® DE 1-1 (bisphenol-A based polycarbonate) upon irradiation with ultraviolet radiation of different wavelengths were investigated. The absorption-and attenuation coefficient measurements revealed that the Makrofol® DE 1-1 is characterized by high absorbance in the energy range 6.53-4.43 eV but for a lower energy than 4.43 eV, it is approximately transparent. Makrofol® DE 1-1 samples were irradiated with ultraviolet radiation of wavelength in the range from 250 (4.28 eV) to 400 (3.10 eV) nm in step of 10 nm and the corresponding photoluminescence (PL) emission spectra were measured with a spectrofluorometer. It is found that the integrated counts and the peak height of the photoluminescence emission (PL) bands are strongly correlated with the ultraviolet radiation wavelength. They are increased at the ultraviolet radiation wavelength 280 nm and have maximum at 290 nm, thereafter they decrease and diminish at 360 nm of ultraviolet wavelength. The position of the PL emission band peak was red shifted starting from 300 nm, which increased with the increase the ultraviolet radiation wavelength. The PL bandwidth increases linearly with the increase of the ultraviolet radiation wavelength. When Makrofol® DE 1-1 is irradiated with ultraviolet radiation of short wavelength (UVC), the photoluminescence emission spectra peaks also occur in the UVC but of a relatively longer wavelength. The current new findings should be considered carefully when using Makrofol® DE 1-1 in medical applications related to ultraviolet radiation.

  3. The photoluminescence spectra of micropowder of aromatic compounds under ultraviolet laser excitation

    International Nuclear Information System (INIS)

    Rakhmatullaev, I.A.; Kurbonov, A.K. et al.; Gorelik, V.S.

    2016-01-01

    The method of diagnostics of aromatic compounds on the example of novocaine, aspirin and anthracene is presented. The method is based on optical detection of photoluminescence spectra at ultraviolet laser (266 nm) excitation. Employing this method the photoluminescence spectra are obtained which allows one to establish the differences of the composition and structure of compounds. The developed method can be used for analysis the quality of the large class of luminescent bioactive structures under the ultraviolet radiation. (authors)

  4. Ultraviolet photoluminescence in Gd-doped silica and phosphosilicate fibers

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2017-04-01

    Full Text Available Optical fiber lasers operating in the near infrared and visible spectral regions have relied on the spectroscopic properties of rare earth ions such as Yb3+, Er3+, Tm3+, Nd3+, and Sm3+. Here, we investigate Gd3+ doping in phosphosilicate and pure silica fibers using solution doping and sol-gel techniques, respectively, for potential applications in the ultraviolet. Photoluminescence spectra for optical fiber bundles and fiber preforms were recorded and compared. Emissions at 312 nm (phosphosilicate and 314 nm (pure silica were observed when pumping to the Gd3+ 6DJ, 6IJ, and 6PJ = 5/2, 3/2 energy levels. Oxygen deficient center was observed in solution doping sample with a wide absorption band centered at around 248 nm not affecting pumping to 6IJ states.

  5. Self-compression of femtosecond deep-ultraviolet pulses by filamentation in krypton.

    Science.gov (United States)

    Adachi, Shunsuke; Suzuki, Toshinori

    2017-05-15

    We demonstrate self-compression of deep-ultraviolet (DUV) pulses by filamentation in krypton. In contrast to self-compression in the near-infrared, that in the DUV is associated with a red-shifted sub-pulse appearing in the pulse temporal profile. The achieved pulse width of 15 fs is the shortest among demonstrated sub-mJ deep-ultraviolet pulses.

  6. Fabrication of cerium-doped β-Ga2O3 epitaxial thin films and deep ultraviolet photodetectors.

    Science.gov (United States)

    Li, Wenhao; Zhao, Xiaolong; Zhi, Yusong; Zhang, Xuhui; Chen, Zhengwei; Chu, Xulong; Yang, Hujiang; Wu, Zhenping; Tang, Weihua

    2018-01-20

    High-quality cerium-doped β-Ga 2 O 3 (Ga 2 O 3 :Ce) thin films could be achieved on (0001)α-Al 2 O 3 substrates using a pulsed-laser deposition method. The impact of dopant contents concentration on crystal structure, optical absorption, photoluminescence, and photoelectric properties has been intensively studied. X-ray diffraction analysis results have shown that Ga 2 O 3 :Ce films are highly (2¯01) oriented, and the lattice spacing of the (4¯02) planes is sensitive to the Ce doping level. The prepared Ga 2 O 3 :Ce films show a sharp absorption edge at about 250 nm, meaning a high transparency to deep ultraviolet (DUV) light. The photoluminescence results revealed that the emissions were in the violet-blue-green region, which are associated with the donor-acceptor transitions with the Ce 3+ and oxygen vacancies related defects. A simple DUV photodetector device with a metal-semiconductor-metal structure has also been fabricated based on Ga 2 O 3 :Ce thin film. A distinct DUV photoresponse was obtained, suggesting a potential application in DUV photodetector devices.

  7. Surface plasmon on topological insulator/dielectric interface enhanced ZnO ultraviolet photoluminescence

    Directory of Open Access Journals (Sweden)

    Zhi-Min Liao

    2012-06-01

    Full Text Available It has recently been predicted that the surface plasmons are allowed to exist on the interface between a topological insulator and vacuum. Surface plasmons can be employed to enhance the optical emission from various illuminants. Here, we study the photoluminescence properties of the ZnO/Bi2Te3 hybrid structures. Thin flakes of Bi2Te3, a typical three-dimensional topological insulator, were prepared on ZnO crystal surface by mechanical exfoliation method. The ultraviolet emission from ZnO was found to be enhanced by the Bi2Te3 thin flakes, which was attributed to the surface plasmon – photon coupling at the Bi2Te3/ZnO interface.

  8. Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes

    Science.gov (United States)

    2015-11-16

    Approved for Public Release; Distribution Unlimited Final Report: 14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection...Fluroesence; Raman Spectroscopy; Microbiology REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO...14.3 Microbiology and Biodegradation: Deep Ultraviolet Microscopy for the Detection, Quantification, and Characterization of Microbes Report Title

  9. Time-resolved ultraviolet near-field scanning optical microscope for characterizing photoluminescence lifetime of light-emitting devices.

    Science.gov (United States)

    Park, Kyoung-Duck; Jeong, Hyun; Kim, Yong Hwan; Yim, Sang-Youp; Lee, Hong Seok; Suh, Eun-Kyung; Jeong, Mun Seok

    2013-03-01

    We developed a instrument consisting of an ultraviolet (UV) near-field scanning optical microscope (NSOM) combined with time-correlated single photon counting, which allows efficient observation of temporal dynamics of near-field photoluminescence (PL) down to the sub-wavelength scale. The developed time-resolved UV NSOM system showed a spatial resolution of 110 nm and a temporal resolution of 130 ps in the optical signal. The proposed microscope system was successfully demonstrated by characterizing the near-field PL lifetime of InGaN/GaN multiple quantum wells.

  10. Vacuum ultraviolet excited photoluminescence properties of Gd2O2CO3:Eu3+ phosphor

    Institute of Scientific and Technical Information of China (English)

    WANG Zhilong; WANG Yuhua; ZHANG Jiachi

    2008-01-01

    The Gd2O2CO3:Eu3+ with type-II structure phosphor was successfully synthesized via flux method at 400℃ and their photoluminescence properties in vacuum ultraviolet (VUV) region were examined. The broad and strong excitation bands in the range of 153-205 nm owing to the CO32- host absorption and charge transfer (CT) of Gd3+-O2- were observed for Gd2O2CO3:Eu3+. Under 172 nm excitation, Gd2O2CO3:Eu3+ exhibited strong red emission with good color purity, indicating Eu3+ ions located at low symmetry sites and the chromaticity coordination of luminescence for Gd2O2CO3:Eu3+ was (x=0.652, y=0.345). The photoluminescence quenching concentration of Eu3+ excited by 172 nm for Gd2O2CO3:Eu3+ was about 5%. Gd2O2CO3:Eu3+ would be a potential VUV-excited red phosphor applied in mercury-free fluorescent lamps.

  11. Dominant ultraviolet-blue photoluminescence of ZnO embedded into synthetic opal

    International Nuclear Information System (INIS)

    Abrarov, S.M.; Yuldashev, Sh.U.; Kim, T.W.; Lee, S.B.; Kwon, H.Y.; Kang, T.W.

    2005-01-01

    The temperature-dependent photoluminescence (PL) characteristics of zinc oxide (ZnO) embedded into the voids of synthetic opal were studied. ZnO was infiltrated into opal from aqueous solution with zinc nitrate precursor followed by thermal annealing. The PL spectra of the ZnO powder exhibit very high and broad emission peaks in the green region due to crystal defects, such as oxygen vacancies and zinc ion interstitials. In contrast to the PL spectra of ZnO powder, nanocrystals of ZnO embedded into the voids of FCC packed opal matrix exhibit dominant ultraviolet (UV)-blue and rapidly decreasing green PL emissions with decreasing temperature. The temperature-dependent PL characteristics show that the green band suppression in the ZnO nanocrystals is due to the influence of photonic crystal. The infiltration of nanoparticles into synthetic opal may be used for the fabrication of polycrystalline ZnO with dominant UV-blue PL. These results indicate that the luminescent materials embedded into photonic crystal may be promising for the fabrication of the RGB pixels in full-color displays

  12. An intense ultraviolet photoluminescence in sol-gel ZnO-SiO sub 2 nanocomposites

    CERN Document Server

    Fu Zheng Ping; Li Li; Dong Wei Wei; Jia Chong; Wu Wan

    2003-01-01

    We report the phenomenon that the intensity of the ultraviolet (UV) photoluminescence (PL) from ZnO was greatly enhanced by incorporating ZnO into the SiO sub 2 matrix. PL excitation results show that both the ZnO nanoparticles and the SiO sub 2 matrix in the nanocomposites contribute to the luminescence process for the UV band. On the basis of the x-ray photoelectron spectra, we suggest that interface energy states are formed due to the presence of Zn-O-Si bonds between ZnO nanoparticles and the SiO sub 2 matrix. A tentative model concerning the contribution of the ZnO nanoparticles, SiO sub 2 matrix, and ZnO-SiO sub 2 interface is suggested to explain the PL enhancement effect.

  13. Deep Ultraviolet Light Emitters Based on (Al,Ga)N/GaN Semiconductor Heterostructures

    Science.gov (United States)

    Liang, Yu-Han

    show, by temperature-dependent photoluminescence, that the activation energy of the acceptors is substantially lower, thus allowing a higher hole concentration than usual to be available for conduction. It is believed that the lower activation energy is a result of an impurity band tail induced by the high Mg concentration. The successful p-type doping of high aluminum-content (Al,Ga)N has allowed us to demonstrate operation of deep ultraviolet LEDs emitting at 274 nm. This achievement paves the way for making lasers that emit in the UV-C region of the spectrum. In this thesis, we performed preliminary work on using our structures to make UV-C lasers based on photonic crystal nanocavity structures. The nanocavity laser structures show that the threshold optical pumping power necessary to reach lasing is much lower than in conventional edge-emitting lasers. Furthermore, the photonic crystal nanocavity structure has a small mode volume and does not need mirrors for optical feedback. These advantages significantly reduce material loss and eliminate mirror loss. This structure therefore potentially opens the door to achieving efficient and compact lasers in the UV-C region of the spectrum.

  14. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    Generation of deep ultraviolet radiation at 210 nm by Type-I third harmonic generation is achieved in a pair of BBO crystals with conversion efficiency as high as 36%. The fundamental source is the dye laser radiation pumped by the second harmonic of a Q-switched Nd : YAG laser. A walk-off compensated configuration ...

  15. Photoluminescence as a tool for characterizing point defects in semiconductors

    Science.gov (United States)

    Reshchikov, Michael

    2012-02-01

    Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.

  16. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    Science.gov (United States)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  17. Effect of growth temperature on photoluminescence and piezoelectric characteristics of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Water, Walter [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Fang, T.-H. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China); Institute of Mechanical and Electromechanical Engineering, National Formosa University, Yunlin 632, Taiwan (China)], E-mail: fang.tehua@msa.hinet.net; Ji, L.-W.; Lee, C.-C. [Institute of Electro-Optical and Materials Science, National Formosa University, Yunlin 632, Taiwan (China)

    2009-02-25

    ZnO nanowire arrays were synthesized on Au-coated silicon (1 0 0) substrates by using vapour-liquid-solid process in this work. The effect of growth temperatures on the crystal structure and the surface morphology of ZnO nanowires were investigated by X-ray diffraction and scanning electron microscope. The absorption and optical characteristics of the nanowires were examined by Ultraviolet/Visible spectroscopy, and photoluminescence, respectively. The photoluminescence results exhibited ZnO nanowires had an ultraviolet and blue emission at 383 and 492 nm. Then a nanogenerator with ZnO nanowire arrays was fabricated and demonstrated Schottky-like current-voltage characteristics.

  18. Deep ultraviolet semiconductor light sources for sensing and security

    Science.gov (United States)

    Shatalov, Max; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis

    2009-09-01

    III-Nitride based deep ultraviolet (DUV) light emitting diodes (LEDs) rapidly penetrate into sensing market owing to several advantages over traditional UV sources (i.e. mercury, xenon and deuterium lamps). Small size, a wide choice of peak emission wavelengths, lower power consumption and reduced cost offer flexibility to system integrators. Short emission wavelength offer advantages for gas detection and optical sensing systems based on UV induced fluorescence. Large modulation bandwidth for these devices makes them attractive for frequency-domain spectroscopy. We will review present status of DUV LED technology and discuss recent advances in short wavelength emitters and high power LED lamps.

  19. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  20. Quantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.

    Science.gov (United States)

    Gao, Na; Lin, Wei; Chen, Xue; Huang, Kai; Li, Shuping; Li, Jinchai; Chen, Hangyang; Yang, Xu; Ji, Li; Yu, Edward T; Kang, Junyong

    2014-12-21

    Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as thin as two atomic layers (∼ 0.5 nm) were grown. Theoretical and experimental results demonstrate that an optical absorption band as narrow as 9 nm (210 meV) at deep-ultraviolet wavelengths can be produced, and is attributable to interband transitions between quantum states along the [0001] direction in ultrathin GaN atomic layers isolated by AlN barriers. The absorption wavelength can be precisely engineered by adjusting the thickness of the GaN atomic layers because of the quantum confinement effect. These results represent a major advance towards the realization of wavelength selectable and narrowband photodetectors in the deep-ultraviolet region without any additional optical filters.

  1. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  2. Investigation of the mechanism responsible for the photoluminescence enhancement with Li+ co-doping in highly thermally stable white-emitting Sr8ZnSc(PO4)7:Dy3+ phosphor

    International Nuclear Information System (INIS)

    Gou, Jing; Fan, Jingyan; Luo, Meng; Zuo, Shengnan

    2017-01-01

    The strategy of co-doping Li + was used with the aim of enhancing the emission intensities of Sr 8 ZnSc(PO 4 ) 7 under near ultraviolet excitation. The luminescence enhancement was related to the deep defects V O ¨ which were produced by the introduction of Li + ion. Furthermore, much deep V O ¨ were produced with the incorporation amount of Li + ion increasing. As the sensitizer, the produced deep V O ¨ can effectively tunnelling transfer energy to the nearby activator Dy 3+ resulting in the photoluminescence enhancement in SZSPO:1.5%Dy 3+ ,5%Li + . In addition, its yellow/blue emitting ratio and photoluminescent quantum yields both were improved under longer wavelength excitation. Furthermore, the excellent thermal stability of optimal SZSPO:1.5%Dy 3+ ,5%Li + excelled over commercial phosphor DS-200 below 225 °C. The electroluminescence properties of fabricated ABPD-WLED reach the optimum with V=10 V and I=800 mA (λ ex =365 nm) or 700 mA (λ ex =388 nm), then the bright white luminescence can be obviously observed. These photoluminescence, electroluminescence and thermal properties testified the potential application of Sr 8 ZnSc(PO 4 ) 7 :1.5%Dy 3+ ,5%Li + as a new-style warm-white emitting LEDs phosphor. - Graphical abstract: The mechanism of the luminescence enhancement is consider as that a little amount introduction of Li + ion can produce defects Li Zn ′ and oxygen vacancies V O ¨, and with the incorporation amount of Li + increasing, the more deep V O ¨ are produced. As sensitizer, the productive deeper V O ¨ can effectively tunneling transfer energy to nearby activator Dy 3+ inducing its photoluminescence enhancement.

  3. Surface States Effect on the Large Photoluminescence Redshift in GaN Nanostructures

    KAUST Repository

    Ben Slimane, Ahmed; Najar, Adel; Ooi, Boon S.; Shen, Chao; Anjum, Dalaver H.; San-Romá n-Alerigi, Damiá n P.; Ng, Tien Khee

    2013-01-01

    We report on the large photoluminescence redshift observed in nanostructures fabricated using n-type GaN by ultraviolet (UV) metal-assisted electroless chemical-etching method. The scanning electron microscopy (SEM) characterization showed

  4. Multicolor photoluminescence in ITQ-16 zeolite film

    KAUST Repository

    Chen, Yanli

    2016-09-07

    Exploring the native defects of zeolites is highly important for understanding the properties of zeolites, such as catalysis and optics. Here, ITQ-16 films were prepared via the secondary growth method in the presence of Ge atoms. Various intrinsic defects of ITQ-16 films were fully studied through photoluminescence and FTIR characterizations. It was found that both the as-synthesized and calcined ITQ-16 films displayed multicolor photoluminescence including ultraviolet, blue, green and red emissions by exciting upon appropriate wavelengths. The results indicate that Si―OH and non-bridging oxygen hole centers(NBOHCs) are responsible for the origin of green and red emissions at 540―800 nm, while according to a variety of emission bands of calcined ITQ-16 film, blue emission bands at around 446 and 462 nm are attributed to peroxy free radicals(≡SiO2), ultraviolet emissions ranging from 250 nm to 450 nm are suggested originating from a singlet-to-triplet transition of two-fold-coordinated Si and Ge, respectively. © 2016, Jilin University, The Editorial Department of Chemical Research in Chinese Universities and Springer-Verlag GmbH.

  5. UV and air stability of high-efficiency photoluminescent silicon nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jihua, E-mail: yangj@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Liptak, Richard [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Department of Physics and Optical Engineering, Rose-Hulman Institute of Technology, 5500 Wabash Ave, Terre Haute, IN 47803 (United States); Rowe, David; Wu, Jeslin [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Casey, James; Witker, David [Dow Corning Corporation, 2200 W. Salzburg Road, Midland, MI 48686 (United States); Campbell, Stephen A. [Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 (United States); Kortshagen, Uwe, E-mail: kortshagen@umn.edu [Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 (United States)

    2014-12-30

    The effects of UV light and air exposure on the photoluminescent properties of nonthermal plasma-synthesized silicon nanocrystals (Si NCs) were investigated. Si NCs with high-efficiency photoluminescence (PL) have been achieved via a post-synthesis hydrosilylation process. Photobleaching is observed within the first few hours of ultra-violet (UV) irradiation. Equilibrium is reached after ∼4 h of UV exposure wherein the Si NCs are able to retain 52% of the initially measured PL quantum yield (PLQY). UV-treated Si NCs showed recovery of PL with time. Gas-phase passivation of Si NCs by hydrogen afterglow injection improves PLQY and PL stability against UV and air exposure. Additionally, phosphorous doping can also improve UV stability of photoluminescent Si NCs.

  6. III-N Wide Bandgap Deep-Ultraviolet Lasers and Photodetectors

    KAUST Repository

    Detchprohm, T.

    2016-11-05

    The III-N wide-bandgap alloys in the AlInGaN system have many important and unique electrical and optical properties which have been exploited to develop deep-ultraviolet (DUV) optical devices operating at wavelengths < 300 nm, including light-emitting diodes, optically pumped lasers, and photodetectors. In this chapter, we review some aspects of the development and current state of the art of these DUV materials and devices. We describe the growth of III-N materials in the UV region by metalorganic chemical vapor deposition as well as the properties of epitaxial layers and heterostructure devices. In addition, we discuss the simulation and design of DUV laser diodes, the processing of III-N optical devices, and the description of the current state of the art of DUV lasers and photodetectors.

  7. Modification of the optoelectronic properties of two-dimensional MoS2 crystals by ultraviolet-ozone treatment

    Science.gov (United States)

    Yang, Hae In; Park, Seonyoung; Choi, Woong

    2018-06-01

    We report the modification of the optoelectronic properties of mechanically-exfoliated single layer MoS2 by ultraviolet-ozone exposure. Photoluminescence emission of pristine MoS2 monotonically decreased and eventually quenched as ultraviolet-ozone exposure time increased from 0 to 10 min. The reduction of photoluminescence emission accompanied reduction of Raman modes, suggesting structural degradation in ultraviolet-ozone exposed MoS2. Analysis with X-ray photoelectron spectroscopy revealed that the formation of Ssbnd O and Mosbnd O bonding increases with ultraviolet-ozone exposure time. Measurement of electrical transport properties of MoS2 in a bottom-gate thin-film transistor configuration suggested the presence of insulating MoO3 after ultraviolet-ozone exposure. These results demonstrate that ultraviolet-ozone exposure can significantly influence the optoelectronic properties of single layer MoS2, providing important implications on the application of MoS2 and other two-dimensional materials into optoelectronic devices.

  8. Surface States Effect on the Large Photoluminescence Redshift in GaN Nanostructures

    KAUST Repository

    Ben Slimane, Ahmed

    2013-01-01

    We report on the large photoluminescence redshift observed in nanostructures fabricated using n-type GaN by ultraviolet (UV) metal-assisted electroless chemical-etching method. The scanning electron microscopy (SEM) characterization showed nanostructures with size dispersion ranging from 10 to 100 nm. We observed the crystalline structure using high resolution transmission electron microscopy (HRTEM) and electron energy loss (EELS) techniques. In contrast to 362 nm UV emission from the GaN epitaxy, the nanostructures emitted violet visible-light in photoluminescence (PL) characterization with increasing optical excitation. An energy band model was presented to shed light on the large PL redshift under the influence of surface states, which resulted in two competing photoluminescence mechanisms depending on excitation conditions.

  9. High-Power, Solid-State, Deep Ultraviolet Laser Generation

    Directory of Open Access Journals (Sweden)

    Hongwen Xuan

    2018-02-01

    Full Text Available At present, deep ultraviolet (DUV lasers at the wavelength of fourth harmonics of 1 μm (266 nm/258 nm and at the wavelength of 193 nm are widely utilized in science and industry. We review the generation of these DUV lasers by nonlinear frequency conversion processes using solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics generation (FHG could achieve an average power of 10 W with a beam quality of M2 < 1.5. Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG. A new concept of 193-nm DUV laser generation by use of the diamond Raman laser is also introduced. A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a higher power 193 nm DUV laser in the future.

  10. The effect of ultraviolet irradiation on the photothermal, photoluminescence and photoluminescence excitation spectra of Mn-doped ZnS nanoparticles

    International Nuclear Information System (INIS)

    Briones Cruz, Almira; Shen Qing; Toyoda, Taro

    2006-01-01

    Research involving Mn doped nanocrystalline ZnS (ZnS:Mn) has grown in recent years, partly due to the high quantum luminescence efficiencies that have been reported. We measured the photoacoustic (PA), the photoluminescence (PL) and the photoluminescence excitation (PLE) spectra of surface-passivated and unpassivated ZnS:Mn. The effects of UV irradiation on the PL and PLE spectra were also studied. A decrease in the PA intensity after UV exposure was observed for the ZnS:Mn, indicating a decrease in the nonradiative relaxation probability. The observed increase in PL intensity indicates a corresponding increase in the radiative transition probability. For the PLE spectra, possible aggregation of the primary particles could have resulted in the lower measured energy of the PLE peak compared to the value predicted by the effective mass approximation theory

  11. A picosecond widely tunable deep-ultraviolet laser for angle-resolved photoemission spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Xu Zhi; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2013-01-01

    We develop a picosecond widely tunable laser in a deep-ultraviolet region from 175 nm to 210 nm, generated by two stages of frequency doubling of a 80-MHz mode-locked picosecond Ti:sapphire laser. A β-BaB 2 O 4 walk-off compensation configuration and a KBe 2 BO 3 F 2 prism-coupled device are adopted for the generation of second harmonic and fourth harmonics, respectively. The highest power is 3.72 mW at 193 nm, and the fluctuation at 2.85 mW in 130 min is less than ±2%

  12. Photoluminescence study of aligned ZnO nanorods grown using chemical bath deposition

    International Nuclear Information System (INIS)

    Urgessa, Z.N.; Oluwafemi, O.S.; Dangbegnon, J.K.; Botha, J.R.

    2012-01-01

    The photoluminescence study of self-assembled ZnO nanorods grown on a pre-treated Si substrate by a simple chemical bath deposition method at a temperature of 80 °C is hereby reported. By annealing in O 2 environment the UV emission is enhanced with diminishing deep level emission suggesting that most of the deep level emission is due to oxygen vacancies. The photoluminescence was investigated from 10 K to room temperature. The low temperature photoluminescence spectrum is dominated by donor-bound exciton. The activation energy and binding energy of shallow donors giving rise to bound exciton emission were calculated to be around 13.2 meV, 46 meV, respectively. Depending on these energy values and nature of growth environment, hydrogen is suggested to be the possible contaminating element acting as a donor.

  13. Band-to-band and inner shell excitation VIS-UV photoluminescence of quaternary InAlGaN alloys

    International Nuclear Information System (INIS)

    Fukui, K.; Naoe, S.; Okada, K.; Hamada, S.; Hirayama, H.

    2006-01-01

    Visible and ultraviolet photoluminescence and photoluminescence excitation spectra of quaternary InAlGaN alloys were measured. The excitation photon energy covers from band edge to 180 eV, near both nitrogen K (∝400 eV) and aluminium K (∝1.5 keV) inner shell energy region. From photoluminescence excitation spectra photoluminescence intensity per incident photon number varies in proportion to incident photon energy. This result implies that many conduction band electron - valence band hole pairs which are responsible for photoluminescence are produced by high energy excitation. Time resolved decay curves were also measured in the same energy region. No effect of high energy excitation on time resolved decay measurements suggests a role of indium on the photoluminescence mechanism in InAlGaN system. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. SYNTHESIS AND PHOTOLUMINESCENCE STUDIES ON ZINC OXIDE NANOWIRES

    Directory of Open Access Journals (Sweden)

    Nguyen Ngoc Long

    2017-11-01

    Full Text Available Semiconductor single crystal ZnO nanowires have been successfully synthesized by a simple method based on thermal evaporation of ZnO powders mixed with graphite. Metallic catalysts, carrying gases, and vacuum conditions are not necessary. The x-ray diffraction (XRD analysis shows that the ZnO nanowires are highly crystallized and have a typical wurtzite hexagonal structure with lattice constants a = 0.3246 nm and c = 0.5203 nm. The scanning electron microscopy (SEM images of nanowires indicate that diameters of the ZnO nanowires normally range from 100 to 300 nm and their lengths are several tens of micrometers. Photoluminescence (PL and photoluminescence excitation (PLE spectra of the nanowires were measured in the range of temperature from 15 K to the room temperature. Photoluminescence spectra at low temperatures exhibit a group of ultraviolet (UV narrow peaks in the region 368 nm ~ 390 nm, and a blue-green very broad peak at 500 nm. Origin of the emission lines in PL spectra and the lines in PLE spectra is discussed.

  15. Photoluminescence study of aligned ZnO nanorods grown using chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Urgessa, Z.N. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Oluwafemi, O.S. [Department of Chemistry and Chemical Technology, Walter Sisulu University, Mthatha Campus, Private Bag XI, 5117 (South Africa); Dangbegnon, J.K. [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Botha, J.R., E-mail: Reinhardt.Botha@nmmu.ac.za [Department of Physics, P.O. Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The photoluminescence study of self-assembled ZnO nanorods grown on a pre-treated Si substrate by a simple chemical bath deposition method at a temperature of 80 Degree-Sign C is hereby reported. By annealing in O{sub 2} environment the UV emission is enhanced with diminishing deep level emission suggesting that most of the deep level emission is due to oxygen vacancies. The photoluminescence was investigated from 10 K to room temperature. The low temperature photoluminescence spectrum is dominated by donor-bound exciton. The activation energy and binding energy of shallow donors giving rise to bound exciton emission were calculated to be around 13.2 meV, 46 meV, respectively. Depending on these energy values and nature of growth environment, hydrogen is suggested to be the possible contaminating element acting as a donor.

  16. AlN/GaN Digital Alloy for Mid- and Deep-Ultraviolet Optoelectronics.

    Science.gov (United States)

    Sun, Wei; Tan, Chee-Keong; Tansu, Nelson

    2017-09-19

    The AlN/GaN digital alloy (DA) is a superlattice-like nanostructure formed by stacking ultra-thin ( ≤ 4 monolayers) AlN barriers and GaN wells periodically. Here we performed a comprehensive study on the electronics and optoelectronics properties of the AlN/GaN DA for mid- and deep-ultraviolet (UV) applications. Our numerical analysis indicates significant miniband engineering in the AlN/GaN DA by tuning the thicknesses of AlN barriers and GaN wells, so that the effective energy gap can be engineered from ~3.97 eV to ~5.24 eV. The band structure calculation also shows that the valence subbands of the AlN/GaN DA is properly rearranged leading to the heavy-hole (HH) miniband being the top valence subband, which results in the desired transverse-electric polarized emission. Furthermore, our study reveals that the electron-hole wavefunction overlaps in the AlN/GaN DA structure can be remarkably enhanced up to 97% showing the great potential of improving the internal quantum efficiency for mid- and deep-UV device application. In addition, the optical absorption properties of the AlN/GaN DA are analyzed with wide spectral coverage and spectral tunability in mid- and deep-UV regime. Our findings suggest the potential of implementing the AlN/GaN DA as a promising active region design for high efficiency mid- and deep-UV device applications.

  17. Sub-mm Scale Fiber Guided Deep/Vacuum Ultra-Violet Optical Source for Trapped Mercury Ion Clocks

    Science.gov (United States)

    Yi, Lin; Burt, Eric A.; Huang, Shouhua; Tjoelker, Robert L.

    2013-01-01

    We demonstrate the functionality of a mercury capillary lamp with a diameter in the sub-mm range and deep ultraviolet (DUV)/ vacuum ultraviolet (VUV) radiation delivery via an optical fiber integrated with the capillary. DUV spectrum control is observed by varying the fabrication parameters such as buffer gas type and pressure, capillary diameter, electrical resonator design, and temperature. We also show spectroscopic data of the 199Hg+ hyper-fine transition at 40.5GHz when applying the above fiber optical design. We present efforts toward micro-plasma generation in hollow-core photonic crystal fiber with related optical design and theoretical estimations. This new approach towards a more practical DUV optical interface could benefit trapped ion clock developments for future ultra-stable frequency reference and time-keeping applications.

  18. Point-Defect Nature of the Ultraviolet Absorption Band in AlN

    Science.gov (United States)

    Alden, D.; Harris, J. S.; Bryan, Z.; Baker, J. N.; Reddy, P.; Mita, S.; Callsen, G.; Hoffmann, A.; Irving, D. L.; Collazo, R.; Sitar, Z.

    2018-05-01

    We present an approach where point defects and defect complexes are identified using power-dependent photoluminescence excitation spectroscopy, impurity data from SIMS, and density-functional-theory (DFT)-based calculations accounting for the total charge balance in the crystal. Employing the capabilities of such an experimental computational approach, in this work, the ultraviolet-C absorption band at 4.7 eV, as well as the 2.7- and 3.9-eV luminescence bands in AlN single crystals grown via physical vapor transport (PVT) are studied in detail. Photoluminescence excitation spectroscopy measurements demonstrate the relationship between the defect luminescent bands centered at 3.9 and 2.7 eV to the commonly observed absorption band centered at 4.7 eV. Accordingly, the thermodynamic transition energy for the absorption band at 4.7 eV and the luminescence band at 3.9 eV is estimated at 4.2 eV, in agreement with the thermodynamic transition energy for the CN- point defect. Finally, the 2.7-eV PL band is the result of a donor-acceptor pair transition between the VN and CN point defects since nitrogen vacancies are predicted to be present in the crystal in concentrations similar to carbon-employing charge-balance-constrained DFT calculations. Power-dependent photoluminescence measurements reveal the presence of the deep donor state with a thermodynamic transition energy of 5.0 eV, which we hypothesize to be nitrogen vacancies in agreement with predictions based on theory. The charge state, concentration, and type of impurities in the crystal are calculated considering a fixed amount of impurities and using a DFT-based defect solver, which considers their respective formation energies and the total charge balance in the crystal. The presented results show that nitrogen vacancies are the most likely candidate for the deep donor state involved in the donor-acceptor pair transition with peak emission at 2.7 eV for the conditions relevant to PVT growth.

  19. Hydrothermal green synthesis of magnetic Fe3O4-carbon dots by lemon and grape fruit extracts and as a photoluminescence sensor for detecting of E. coli bacteria.

    Science.gov (United States)

    Ahmadian-Fard-Fini, Shahla; Salavati-Niasari, Masoud; Ghanbari, Davood

    2018-10-05

    The aim of this work is preparing of a photoluminescence nanostructures for rapid detection of bacterial pathogens. Firstly, carbon dots (CDs) were synthesized by grape fruit, lemon, turmeric extracts and hydrothermal method. Then Fe 3 O 4 (magnetite) nanoparticles was achieved using these bio-compatible capping agents. Finally, magnetite-carbon dots were synthesized as a novel magnetic and photoluminescence nanocomposite. X-ray diffraction (XRD) confirms the crystallinity and phase of the products, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigate the morphology, shape and size of the magnetite, carbon dot and nanocomposites. Fourier transform infrared (FT-IR) spectroscopy shows the purity of the nanostructures. Ultraviolet-visible (UV-Vis) absorption and photo-luminescence (PL) spectroscopy show suitable photo-luminescence under ultraviolet irradiation. Vibrating sample magnetometer (VSM) shows super paramagnetic property of the product. Interestingly carbon dots were used as a non-toxic photoluminescence sensor for detecting of Escherichia coli (E. coli) bacteria. Results show quenching of photoluminescence of the CDs nanocomposite by increasing amount of E. coli bacteria. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. On the origin of the ultraviolet photoluminescence in the Ce.sup.3+./sup.-doped epitaxial films of multicomponent (Lu,Gd).sub.3./sub.(Ga,Al).sub.5./sub.O.sub.12./sub. garnets

    Czech Academy of Sciences Publication Activity Database

    Babin, Vladimir; Chernenko, K.; Hanus, M.; Krasnikov, A.; Kučera, M.; Nikl, Martin; Zazubovich, S.

    2017-01-01

    Roč. 254, č. 4 (2017), 1-6, č. článku 1600570. ISSN 0370-1972 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : antisite Ce 3+ centers * fast ultraviolet photoluminescence * (Lu,Gd) sub >3 sub >(Ga,Al) sub >5 sub >O sub >12 sub > garnets Sub ject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.674, year: 2016

  1. Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures

    Science.gov (United States)

    Liang, Y. H.; Towe, E.

    2018-03-01

    Doping of high aluminum-containing (Al,Ga)N thin films has remained a challenging problem that has hindered progress in the development of deep ultraviolet light-emitters. This paper reports on the synthesis and use of heavily doped (Al,Ga)N films in deep ultraviolet (˜274 nm) light-emitting structures; these structures were synthesized by molecular beam epitaxy under liquid-metal growth conditions that facilitate the incorporation of extremely high density of Mg dopant impurities (up to 5 × 1019 cm-3) into aluminum-rich (Al,Ga)N thin films. Prototypical light-emitting diode structures incorporating Al0.7Ga0.3N films doped with Mg impurities that ionize to give free hole carrier concentrations of up to 6 × 1017 cm-3 exhibit external quantum efficiencies of up 0.56%; this is an improvement from previous devices made from molecular beam epitaxy-grown materials. This improvement is believed to be due to the high hole carrier concentration enabled by the relatively low activation energy of 220 meV compared to the expected values of 408-507 meV for Al0.7Ga0.3N films.

  2. Strong white photoluminescence from annealed zeolites

    International Nuclear Information System (INIS)

    Bai, Zhenhua; Fujii, Minoru; Imakita, Kenji; Hayashi, Shinji

    2014-01-01

    The optical properties of zeolites annealed at various temperatures are investigated for the first time. The annealed zeolites exhibit strong white photoluminescence (PL) under ultraviolet light excitation. With increasing annealing temperature, the emission intensity of annealed zeolites first increases and then decreases. At the same time, the PL peak red-shifts from 495 nm to 530 nm, and then returns to 500 nm. The strongest emission appears when the annealing temperature is 500 °C. The quantum yield of the sample is measured to be ∼10%. The PL lifetime monotonously increases from 223 μs to 251 μs with increasing annealing temperature. The origin of white PL is ascribed to oxygen vacancies formed during the annealing process. -- Highlights: • The optical properties of zeolites annealed at various temperatures are investigated. • The annealed zeolites exhibit strong white photoluminescence. • The maximum PL enhancement reaches as large as 62 times. • The lifetime shows little dependence on annealing temperature. • The origin of white emission is ascribed to the oxygen vacancies

  3. Laser micromachined wax-covered plastic paper as both sputter deposition shadow masks and deep-ultraviolet patterning masks for polymethylmethacrylate-based microfluidic systems

    KAUST Repository

    Fan, Yiqiang; Li, Huawei; Yi, Ying; Foulds, Ian G.

    2013-01-01

    We report a technically innovative method of fabricating masks for both deep-ultraviolet (UV) patterning and metal sputtering on polymethylmethacrylate (PMMA) for microfluidic systems. We used a CO2 laser system to cut the required patterns on wax

  4. Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content

    International Nuclear Information System (INIS)

    Deus, R.C.; Cortés, J.A.; Ramirez, M.A.; Ponce, M.A.; Andres, J.; Rocha, L.S.R.

    2015-01-01

    Highlights: • CeO 2 nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO 2 and La-doped CeO 2 particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in the cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission

  5. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  6. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    International Nuclear Information System (INIS)

    Lee, Kuo-Hao; Lai, Sheng-Feng; Lin, Yan-Cheng; Chou, Wu-Ching; Ong, Edwin B.L.; Tan, Hui-Ru; Tok, Eng Soon; Yang, C.S.; Margaritondo, G.; Hwu, Y.

    2015-01-01

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue

  7. On the Hole Injection for III-Nitride Based Deep Ultraviolet Light-Emitting Diodes.

    Science.gov (United States)

    Li, Luping; Zhang, Yonghui; Xu, Shu; Bi, Wengang; Zhang, Zi-Hui; Kuo, Hao-Chung

    2017-10-24

    The hole injection is one of the bottlenecks that strongly hinder the quantum efficiency and the optical power for deep ultraviolet light-emitting diodes (DUV LEDs) with the emission wavelength smaller than 360 nm. The hole injection efficiency for DUV LEDs is co-affected by the p-type ohmic contact, the p-type hole injection layer, the p-type electron blocking layer and the multiple quantum wells. In this report, we review a large diversity of advances that are currently adopted to increase the hole injection efficiency for DUV LEDs. Moreover, by disclosing the underlying device physics, the design strategies that we can follow have also been suggested to improve the hole injection for DUV LEDs.

  8. Characterization of CdSe polycrystalline films by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Brasil, M.J.S.P.

    1985-01-01

    The characterization of CdSe polycristalline films were done by photoluminescence spectroscopy, X-ray diffraction analysis, diagrams IxV, and efficiency of solar energy conversion for cells done by these films. The experimental data shown strong temperature dependence of annealing, and the optimum temperature around 650 0 C was determined. The films did not present photoluminescence before heat treatment, but the annealed sample spectrum showed fine structures in the excitonic region, crystal phase transformation, enhancement of grain size, and better efficiency of the cell. Measurements of photoluminescence between 2 and 300 K, showed two bands of infrared emission, width and intense enough. The shape, at half-width, and the integrated intensity of one these bands were described by a configuration coordinate model for deep centers. Based on obtained results, some hypothesis about the origin of these bands and its correlation with efficiency of cells done with CdSe polycrystalline films, are proposed. (M.C.K.) [pt

  9. Photoluminescence properties of cerium oxide nanoparticles as a function of lanthanum content

    Energy Technology Data Exchange (ETDEWEB)

    Deus, R.C. [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); Cortés, J.A., E-mail: leandrosrr89@gmail.com [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); Ramirez, M.A. [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); Ponce, M.A. [Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) (CONICET-Universidad Nacional de Mar del Plata), Juan B. Justo 4302, 7600 Mar del Plata (Argentina); Andres, J. [Laboratório Interdisciplinar em Cerâmica, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, 14801-907 Araraquara, São Paulo (Brazil); Rocha, L.S.R. [Universidade Estadual Paulista, Unesp —Faculdade de Engenharia de Guaratinguetá, Av. Dr Ariberto Pereira da Cunha 333, Bairro Pedregulho, P.O. Box 355, 12.516-410 Guaratinguetá, São Paulo, Brazil, (Brazil); and others

    2015-10-15

    Highlights: • CeO{sub 2} nanoparticles were obtained by microwave-hydrothermal method. • Rietveld refinement reveals a cubic structure. • KOH mineralizer agent exhibit weak agglomeration at low temperature and shorter time. - Abstract: The structural and photoluminescent properties at room temperature of CeO{sub 2} and La-doped CeO{sub 2} particles were undertaken. The obtained particles were synthesized by a microwave-assisted hydrothermal method (MAH) under different lanthanum contents. X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman), Ultra-violet spectroscopy (UV–vis) and photoluminescence (PL) measurements were carried out. XRD revealed that the powders are free of secondary phases and crystallize in the cubic structure. Raman data show that increasing La doping content increase oxygen vacancies due to lattice expansion. The UV/vis absorption spectroscopy suggested the presence of intermediate energy levels in the band gap of structurally ordered powders. Lanthanum addition creates oxygen vacancies and shifts the photoluminescence in the low energy range leading to intense PL emission.

  10. Annealing effect on the photoluminescence properties of ZnO nanorod array prepared by a PLD-assistant wet chemical method

    International Nuclear Information System (INIS)

    Wei Sufeng; Lian Jianshe; Wu Hua

    2010-01-01

    Well-aligned ZnO nanorod arrays were synthesized by a wet chemical method on the glass substrate with ZnO thin film as seed layer prepared by pulsed laser deposition. The effect of annealing temperature on the luminescence characteristics was investigated. As the annealing temperature increased, the photoluminescence properties show a general enhancing tendency. The nanorod array with high ultraviolet emission and negligible visible light emission (designated by the photoluminescence intensity ratio of ultraviolet to visible emission of 66.4) is obtained by annealing the sample at 700 deg. C for 1 h. Based on the results of X-ray photoelectron spectroscopy and photoluminescence spectra, the mechanisms of visible emission were discussed. - Research Highlights: → ZnO nanorod array with good crystallography, low defects concentration and good optical property was obtained after annealed at 700 deg. C for 1 h. → The transition from the conduction band to the O i level may be responsible for the yellow-green emission. → The yellow emission may originate from the presence of Zn(OH) 2 on the surface or the band transition from conduction band to V o Zn i level. → The transition from the Zn i level to the level should produce an orange emission or an orange-red emission.

  11. A Polarization-Adjustable Picosecond Deep-Ultraviolet Laser for Spin- and Angle-Resolved Photoemission Spectroscopy

    International Nuclear Information System (INIS)

    Zhang Feng-Feng; Yang Feng; Zhang Shen-Jin; Wang Zhi-Min; Xu Feng-Liang; Peng Qin-Jun; Zhang Jing-Yuan; Xu Zu-Yan; Wang Xiao-Yang; Chen Chuang-Tian

    2012-01-01

    We report on a polarization-adjustable picosecond deep-ultraviolet (DUV) laser at 177.3 nm. The DUV laser was produced by second harmonic generation from a mode-locked laser at 355 nm in nonlinear optical crystal KBBF. The laser delivered a maximum average output power of 1.1 mW at 177.3 nm. The polarization of the 177.3 nm beam was adjusted with linear and circular polarization by means of λ/4 and λ/2 wave plates. To the best of our knowledge, the laser has been employed as the circularly polarized and linearly polarized DUV light source for a spin- and angle-resolved photoemission spectroscopy with high resolution for the first time. (fundamental areas of phenomenology(including applications))

  12. Green and fast synthesis of amino-functionalized graphene quantum dots with deep blue photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, E., E-mail: eduardo.blanco@uca.es; Blanco, G.; Gonzalez-Leal, J. M.; Barrera, M. C.; Domínguez, M.; Ramirez-del-Solar, M. [University of Cádiz, Institute of Electron Microscopy and Materials (Spain)

    2015-05-15

    Graphene quantum dots (GQDs) were prepared using a top-down approach with a green microwave-assisted hydrothermal synthesis from ultrathin graphite, previously ultrasound delaminated. Results obtained by transmission electron microscopy and atomic force microscopy indicate that the so-fabricated GQDs are plates with 6 nm of average diameter, mostly single- or bi-layered. Photoluminescence characterization shows that the strongest emission occurs at 410–415 nm wavelength when the samples are excited at 310–320 nm wavelength. In addition to these down-conversion features, GQDs also exhibit up-conversion photoluminescence when excited in the range 560–800 nm wavelength, with broad emission peaks at 410–450 nm wavelength. Analysis of X-ray photoelectron spectroscopy measurements indicates a higher proportion of C–C sp{sup 2} than sp{sup 3} bonds, with the sp{sup 3} ones mainly located at the GQD surfaces. Also evidences of C–O and C–N bonds at the GQD surface have been observed. The combination of these results with Raman and ultraviolet–visible absorption experiments allows envisaging the GQDs to be composed of amino-functionalized sp{sup 2} islands with a high degree of surface oxidation. This would explain the photoluminescent properties observed in the samples under study. The combined up- and down-conversion photoluminescence processes would made these GQDs a powerful energy-transfer component in GQDs–TiO{sub 2} nanocomposite systems, which could be used in photocatalyst devices with superior performance compared to simple TiO{sub 2} systems.

  13. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    Science.gov (United States)

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed.

  14. Denaturing of single electrospun fibrinogen fibers studied by deep ultraviolet fluorescence microscopy.

    Science.gov (United States)

    Kim, Jeongyong; Song, Hugeun; Park, Inho; Carlisle, Christine R; Bonin, Keith; Guthold, Martin

    2011-03-01

    Deep ultraviolet (DUV) microscopy is a fluorescence microscopy technique to image unlabeled proteins via the native fluorescence of some of their amino acids. We constructed a DUV fluorescence microscope, capable of 280 nm wavelength excitation by modifying an inverted optical microscope. Moreover, we integrated a nanomanipulator-controlled micropipette into this instrument for precise delivery of picoliter amounts of fluid to selected regions of the sample. In proof-of-principle experiments, we used this instrument to study, in situ, the effect of a denaturing agent on the autofluorescence intensity of single, unlabeled, electrospun fibrinogen nanofibers. Autofluorescence emission from the nanofibers was excited at 280 nm and detected at ∼350 nm. A denaturant solution was discretely applied to small, select sections of the nanofibers and a clear local reduction in autofluorescence intensity was observed. This reduction is attributed to the dissolution of the fibers and the unfolding of proteins in the fibers. Copyright © 2010 Wiley-Liss, Inc.

  15. Control of two-dimensional growth of AlN and high Al-content AlGaN-based MQWs for deep-UV LEDs

    Directory of Open Access Journals (Sweden)

    Weihuang Yang

    2013-05-01

    Full Text Available Dense and atomically flat AlN film with root-mean-square roughness value of 0.32 nm was grown on sapphire substrate at a relatively lower temperature by using a three-step epitaxy technique. On the basis of this AlN template, AlGaN-based multiple quantum wells (MQWs with atomically flat hetero-interfaces were epitaxially grown to suppress nonradiative recombination by introducing In as a surfactant during simultaneous source supply. As a result, single intense- and narrow-peaked photoluminescence was obtained from the MQWs. Finally, the deep ultraviolet light emitting diodes with well-behaved I-V characteristic and strong electroluminescence in the range of 256–312 nm were fabricated successfully.

  16. Performance Assessment of a Plate Beam Splitter for Deep-Ultraviolet Raman Measurements with a Spatial Heterodyne Raman Spectrometer.

    Science.gov (United States)

    Lamsal, Nirmal; Angel, S Michael

    2017-06-01

    In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.

  17. Extreme Ultraviolet Explorer Bright Source List

    Science.gov (United States)

    Malina, Roger F.; Marshall, Herman L.; Antia, Behram; Christian, Carol A.; Dobson, Carl A.; Finley, David S.; Fruscione, Antonella; Girouard, Forrest R.; Hawkins, Isabel; Jelinsky, Patrick

    1994-01-01

    Initial results from the analysis of the Extreme Ultraviolet Explorer (EUVE) all-sky survey (58-740 A) and deep survey (67-364 A) are presented through the EUVE Bright Source List (BSL). The BSL contains 356 confirmed extreme ultraviolet (EUV) point sources with supporting information, including positions, observed EUV count rates, and the identification of possible optical counterparts. One-hundred twenty-six sources have been detected longward of 200 A.

  18. Widely tunable broadband deep-ultraviolet to visible wavelength generation by the cross phase modulation in a hollow-core photonic crystal fiber cladding

    International Nuclear Information System (INIS)

    Yuan, J H; Sang, X Z; Wu, Q; Yu, C X; Shen, X W; Wang, K R; Yan, B B; Teng, Y L; Farrell, G; Zhou, G Y; Xia, C M; Han, Y; Li, S G; Hou, L T

    2013-01-01

    The deep-ultraviolet (UV) to visible wavelengths are efficiently generated for the first time by the cross phase modulation (XPM) between the red-shifted solitons and the blue-shifted dispersive waves (DWs) in the fundamental guided mode of the multi-knots of a hollow-core photonic crystal fiber cladding (HC-PCFC). When the femtosecond pulses with a wavelength of 850 nm and average power of 300 mW are coupled into the knots 1–3, the conversion efficiency η uv−v of 11% and bandwidth B uv−v of 100 nm in the deep-UV region are experimentally obtained. The multi-milliwatt ultrashort pulses are tunable over the deep-UV (below 200 nm) to visible spectral region by adjusting the wavelengths of the pump pulses in different knots. It is expected that these widely tunable broadband ultrashort deep-UV–visible pulse sources could have important applications in ultrafast photonics, femtochemisty, photobiology, and UV–visible resonant Raman scattering. (letter)

  19. Characteristics and performance of the Sunna high dose dosemeter using green photoluminescence and UV absorption readout methods

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.D.; Murphy, M.K.; Tinker, M.R.; Kovacs, A.; McLaughlin, W

    2002-07-01

    Growth in the use of ionising radiation for medical sterilisation and the potential for wide-scale international food irradiation have created the need for robust, mass-producible, inexpensive, and highly accurate radiation dosemeters. The Sunna dosemeter, lithium fluoride injection-moulded in a polyethylene matrix, can be read out using either green photoluminescence or ultraviolet (UV) absorption. The Sunna dosemeter can be mass-produced inexpensively with high precision. Both the photoluminescent and the UV absorption reader are simple and inexpensive. Both methods of analysis display negligible humidity effects, minimal dose rate dependence, acceptable post-irradiation effects, and permit measurements with a precision of nearly 1% 1s. The UV method shows negligible irradiation temperature effects from -30 deg. C to +60 deg. C. The photoluminescence method shows negligible irradiation temperature effects above room temperature for sterilisation dose levels and above. The dosimetry characteristics of these two readout methods are presented along with performance data in commercial sterilisation facilities. (author)

  20. Al x Ga1‑ x N-based semipolar deep ultraviolet light-emitting diodes

    Science.gov (United States)

    Akaike, Ryota; Ichikawa, Shuhei; Funato, Mitsuru; Kawakami, Yoichi

    2018-06-01

    Deep ultraviolet (UV) emission from Al x Ga1‑ x N-based light-emitting diodes (LEDs) fabricated on semipolar (1\\bar{1}02) (r-plane) AlN substrates is presented. The growth conditions are optimized. A high NH3 flow rate during metalorganic vapor phase epitaxy yields atomically flat Al y Ga1‑ y N (y > x) on which Al x Ga1‑ x N/Al y Ga1‑ y N multiple quantum wells with abrupt interfaces and good periodicity are fabricated. The fabricated r-Al x Ga1‑ x N-based LED emits at 270 nm, which is in the germicidal wavelength range. Additionally, the emission line width is narrow, and the peak wavelength is stable against the injection current, so the semipolar LED shows promise as a UV emitter.

  1. All-solid-state deep ultraviolet laser for single-photon ionization mass spectrometry.

    Science.gov (United States)

    Yuan, Chengqian; Liu, Xianhu; Zeng, Chenghui; Zhang, Hanyu; Jia, Meiye; Wu, Yishi; Luo, Zhixun; Fu, Hongbing; Yao, Jiannian

    2016-02-01

    We report here the development of a reflectron time-of-flight mass spectrometer utilizing single-photon ionization based on an all-solid-state deep ultraviolet (DUV) laser system. The DUV laser was achieved from the second harmonic generation using a novel nonlinear optical crystal KBe2BO3F2 under the condition of high-purity N2 purging. The unique property of this laser system (177.3-nm wavelength, 15.5-ps pulse duration, and small pulse energy at ∼15 μJ) bears a transient low power density but a high single-photon energy up to 7 eV, allowing for ionization of chemicals, especially organic compounds free of fragmentation. Taking this advantage, we have designed both pulsed nanospray and thermal evaporation sources to form supersonic expansion molecular beams for DUV single-photon ionization mass spectrometry (DUV-SPI-MS). Several aromatic amine compounds have been tested revealing the fragmentation-free performance of the DUV-SPI-MS instrument, enabling applications to identify chemicals from an unknown mixture.

  2. A Review of the Synthesis and Photoluminescence Properties of Hybrid ZnO and Carbon Nanomaterials

    Directory of Open Access Journals (Sweden)

    Protima Rauwel

    2016-01-01

    Full Text Available Photoluminescent ZnO carbon nanomaterials are an emerging class of nanomaterials with unique optical properties. They each, ZnO and carbon nanomaterials, have an advantage of being nontoxic and environmentally friendly. Their cost-effective production methods along with simple synthesis routes are also of interest. Moreover, ZnO presents photoluminescence emission in the UV and visible region depending on the synthesis routes, shape, size, deep level, and surface defects. When combined with carbon nanomaterials, modification of surface defects in ZnO allows tuning of these photoluminescence properties to produce, for example, white light. Moreover, efficient energy transfer from the ZnO to carbon nanostructures makes them suitable candidates not only in energy harvesting applications but also in biosensors, photodetectors, and low temperature thermal imaging. This work reviews the synthesis and photoluminescence properties of 3 carbon allotropes: carbon quantum or nanodots, graphene, and carbon nanotubes when hybridized with ZnO nanostructures. Various synthesis routes for the hybrid materials with different morphologies of ZnO are presented. Moreover, differences in photoluminescence emission when combining ZnO with each of the three different allotropes are analysed.

  3. Universal liquid-phase laser fabrication of various nano-metals encapsulated by ultrathin carbon shells for deep-UV plasmonics.

    Science.gov (United States)

    Yu, Miao; Yang, Chao; Li, Xiao-Ming; Lei, Tian-Yu; Sun, Hao-Xuan; Dai, Li-Ping; Gu, Yu; Ning, Xue; Zhou, Ting; Wang, Chao; Zeng, Hai-Bo; Xiong, Jie

    2017-06-29

    The exploration of localized surface plasmon resonance (LSPR) beyond the usual visible waveband, for example within the ultraviolet (UV) or deep-ultraviolet (D-UV) regions, is of great significance due to its unique applications in secret communications and optics. However, it is still challenging to universally synthesize the corresponding metal nanostructures due to their high activity. Herein, we report a universal, eco-friendly, facile and rapid synthesis of various nano-metals encapsulated by ultrathin carbon shells, significantly with a remarkable deep-UV LSPR characteristic, via a liquid-phase laser fabrication method. Firstly, a new generation of the laser ablation in liquid (LAL) method has been developed with an emphasis on the elaborate selection of solvents to generate ultrathin carbon shells, and hence to stabilize the formed metal nanocrystals. As a result, a series of metal@carbon nanoparticles (NPs), including Cr@C, Ti@C, Fe@C, V@C, Al@C, Sn@C, Mn@C and Pd@C, can be fabricated by this modified LAL method. Interestingly, these NPs exhibit LSPR peaks in the range of 200-330 nm, which are very rare for localized surface plasmon resonance. Consequently, the UV plasmonic effects of these metal@carbon NPs were demonstrated both by the observed enhancement in UV photoluminescence (PL) from the carbon nanoshells and by the improvement of the photo-responsivity of UV GaN photodetectors. This work could provide a universal method for carbon shelled metal NPs and expand plasmonics into the D-UV waveband.

  4. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  5. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  6. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    Energy Technology Data Exchange (ETDEWEB)

    Galář, P., E-mail: pavel.galar@mff.cuni.cz; Malý, P. [Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, Prague 121 16 (Czech Republic); Čermák, J.; Kromka, A.; Rezek, B. [Institute of Physics ASCR v.v.i., Cukrovarnická 10, Prague 160 00 (Czech Republic)

    2014-12-14

    Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380–700 nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150 nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200 nm deep inside the NCD film.

  7. Laser micromachined wax-covered plastic paper as both sputter deposition shadow masks and deep-ultraviolet patterning masks for polymethylmethacrylate-based microfluidic systems

    KAUST Repository

    Fan, Yiqiang

    2013-12-16

    We report a technically innovative method of fabricating masks for both deep-ultraviolet (UV) patterning and metal sputtering on polymethylmethacrylate (PMMA) for microfluidic systems. We used a CO2 laser system to cut the required patterns on wax-covered plastic paper; the laser-patterned wax paper will either work as a mask for deep-UV patterning or as a mask for metal sputtering. A microfluidic device was also fabricated to demonstrate the feasibility of this method. The device has two layers: the first layer is a 1-mm thick PMMA substrate that was patterned by deep-UV exposure to create microchannels. The mask used in this process was the laser-cut wax paper. The second layer, also a 1-mm thick PMMA layer, was gold sputtered with patterned wax paper as the shadow mask. These two pieces of PMMA were then bonded to form microchannels with exposed electrodes. This process is a simple and rapid method for creating integrated microfluidic systems that do not require cleanroom facilities.

  8. Final LDRD report :ultraviolet water purification systems for rural environments and mobile applications.

    Energy Technology Data Exchange (ETDEWEB)

    Banas, Michael Anthony; Crawford, Mary Hagerott; Ruby, Douglas Scott; Ross, Michael P.; Nelson, Jeffrey Scott; Allerman, Andrew Alan; Boucher, Ray

    2005-11-01

    We present the results of a one year LDRD program that has focused on evaluating the use of newly developed deep ultraviolet LEDs in water purification. We describe our development efforts that have produced an LED-based water exposure set-up and enumerate the advances that have been made in deep UV LED performance throughout the project. The results of E. coli inactivation with 270-295 nm LEDs are presented along with an assessment of the potential for applying deep ultraviolet LED-based water purification to mobile point-of-use applications as well as to rural and international environments where the benefits of photovoltaic-powered systems can be realized.

  9. AlGaN-Based Deep-Ultraviolet Light Emitting Diodes Fabricated on AlN/sapphire Template

    International Nuclear Information System (INIS)

    Li-Wen, Sang; Zhi-Xin, Qin; Hao, Fang; Yan-Zhao, Zhang; Tao, Li; Zheng-Yu, Xu; Zhi-Jian, Yang; Bo, Shen; Guo-Yi, Zhang; Shu-Ping, Li; Wei-Huang, Yang; Hang-Yang, Chen; Da-Yi, Liu; Jun-Yong, Kang

    2009-01-01

    We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AlN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317 nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Optimized photoluminescence of SrB 2O 4:Eu 3+ red-emitting phosphor by charge compensation

    Science.gov (United States)

    Zhao, Lai-Shi; Liu, Jie; Wu, Zhan-Chao; Kuang, Shao-Ping

    2012-02-01

    A novel red-emitting phosphor, SrB 2O 4:Eu 3+, was synthesized by high temperature solid-state reaction and its photoluminescence properties were studied. The emission spectrum consists of four major emission bands. The emission peaks are located at 593, 612, 650 and 703 nm, corresponding to the 5D0 → 7F1, 5D0 → 7F2, 5D0 → 7F3 and 5D0 → 7F4 typical transitions of Eu 3+, respectively. The effects of Eu 3+ doping content and charge compensators (Li +, Na +, K +) on photoluminescence of SrB 2O 4:Eu 3+ phosphor were studied. The results show that the emission intensity can be affected by above factors and Na + is the optimal charge compensator for SrB 2O 4:Eu 3+. The photoluminescence of NaSrB 2O 4:Eu 3+ was compared with that of Y 2O 2S:Eu 3+. It implies that SrB 2O 4:Eu 3+ is a good candidate as a red-emitting phosphor pumped by near-ultraviolet (NUV) InGaN chip for fabricating white light-emitting diodes (WLEDs).

  11. Performance improvement of AlGaN-based deep-ultraviolet light-emitting diodes via Al-composition graded quantum wells

    Science.gov (United States)

    Lu, Lin; Zhang, Yu; Xu, Fujun; Ding, Gege; Liu, Yuhang

    2018-06-01

    Characteristics of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) with step-like and Al-composition graded quantum wells have been investigated. The simulation results show that compared to DUV-LEDs with the conventional AlGaN multiple quantum wells (MQWs) structure, the light output power (LOP) and efficiency droop of DUV-LEDs with the Al-composition graded wells were remarkably improved. The key factor accounting for the improved performance is ascribed to the better modulation of carrier distribution in the quantum wells to increase the overlap between electron and hole wavefunctions, which contributes to more efficient recombination of electrons and holes, and thereby a significant enhancement in the LOP.

  12. Hole transport and photoluminescence in Mg-doped InN

    Energy Technology Data Exchange (ETDEWEB)

    Miller, N.; Ager III, J. W.; Smith III, H. M.; Mayer, M. A.; Yu, K. M.; Haller, E. E.; Walukiewicz, W.; Schaff, W. J.; Gallinat, C.; Koblmuller, G.; Speck, J. S.

    2010-03-24

    Hole conductivity and photoluminescence were studied in Mg-doped InN films grown by molecular beam epitaxy. Because surface electron accumulation interferes with carrier type determination by electrical measurements, the nature of the majority carriers in the bulk of the films was determined using thermopower measurements. Mg concentrations in a"window" from ca. 3 x 1017 to 1 x 1019 cm-3 produce hole-conducting, p-type films as evidenced by a positive Seebeck coecient. This conclusion is supported by electrolyte-based capacitance voltage measurements and by changes in the overall mobility observed by Hall effect, both of which are consistent with a change from surface accumulation on an n-type film to surface inversion on a p-type film. The observed Seebeck coefficients are understood in terms of a parallel conduction model with contributions from surface and bulk regions. In partially compensated films with Mg concentrations below the window region, two peaks are observed in photoluminescence at 672 meV and at 603 meV. They are attributed to band-to-band and band-to-acceptor transitions, respectively, and an acceptor binding energy of ~;;70 meV is deduced. In hole-conducting films with Mg concentrations in the window region, no photoluminescence is observed; this is attributed to electron trapping by deep states which are empty for Fermi levels close to the valence band edge.

  13. Deep UV Native Fluorescence Imaging of Antarctic Cryptoendolithic Communities

    Science.gov (United States)

    Storrie-Lombardi, M. C.; Douglas, S.; Sun, H.; McDonald, G. D.; Bhartia, R.; Nealson, K. H.; Hug, W. F.

    2001-01-01

    An interdisciplinary team at the Jet Propulsion Laboratory Center for Life Detection has embarked on a project to provide in situ chemical and morphological characterization of Antarctic cryptoendolithic microbial communities. We present here in situ deep ultraviolet (UV) native fluorescence and environmental scanning electron microscopy images transiting 8.5 mm into a sandstone sample from the Antarctic Dry Valleys. The deep ultraviolet imaging system employs 224.3, 248.6, and 325 nm lasers to elicit differential fluorescence and resonance Raman responses from biomolecules and minerals. The 224.3 and 248.6 nm lasers elicit a fluorescence response from the aromatic amino and nucleic acids. Excitation at 325 nm may elicit activity from a variety of biomolecules, but is more likely to elicit mineral fluorescence. The resultant fluorescence images provide in situ chemical and morphological maps of microorganisms and the associated organic matrix. Visible broadband reflectance images provide orientation against the mineral background. Environmental scanning electron micrographs provided detailed morphological information. The technique has made possible the construction of detailed fluorescent maps extending from the surface of an Antarctic sandstone sample to a depth of 8.5 mm. The images detect no evidence of microbial life in the superficial 0.2 mm crustal layer. The black lichen component between 0.3 and 0.5 mm deep absorbs all wavelengths of both laser and broadband illumination. Filamentous deep ultraviolet native fluorescent activity dominates in the white layer between 0.6 mm and 5.0 mm from the surface. These filamentous forms are fungi that continue into the red (iron-rich) region of the sample extending from 5.0 to 8.5 mm. Using differential image subtraction techniques it is possible to identify fungal nuclei. The ultraviolet response is markedly attenuated in this region, apparently from the absorption of ultraviolet light by iron-rich particles coating

  14. Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films

    International Nuclear Information System (INIS)

    Cavalcante, L.S.; Gurgel, M.F.C.; Paris, E.C.; Simoes, A.Z.; Joya, M.R.; Varela, J.A.; Pizani, P.S.; Longo, E.

    2007-01-01

    The correlation between experimental data and theoretical calculations have been investigated to explain the photoluminescence at room temperature of Ba(Ti 0.75 Zr 0.25 )O 3 (BTZ) thin films prepared by the polymeric precursor method. The degree of structural order-disorder was investigated by X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy and photoluminescence (PL) measurements. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and deformed asymmetric models. The electronic properties are analyzed and the relevance of the present theoretical and experimental results on the PL behavior is discussed. The presence of localized electronic levels and a charge gradient in the band gap due to a break in symmetry, are responsible for the PL in disordered BTZ lattice

  15. Negative thermal quenching of photoluminescence in ZnO

    International Nuclear Information System (INIS)

    Watanabe, M.; Sakai, M.; Shibata, H.; Satou, C.; Satou, S.; Shibayama, T.; Tampo, H.; Yamada, A.; Matsubara, K.; Sakurai, K.; Ishizuka, S.; Niki, S.; Maeda, K.; Niikura, I.

    2006-01-01

    We have studied photoluminescence (PL) spectra of ZnO single crystals at photon energies ranging between 2.1 and 3.4eV as a function of temperature to determine thermal quenching behavior in PL emission intensity. It appears that the deep level emissions, donor-acceptor pair emissions, and the bound excitonic emissions undergo negative thermal quenching (NTQ) at intermediate temperatures above ∼10K. By employing an NTQ formula expressed analytically as a function of temperature, we have obtained quantitative NTQ characteristics in terms of the activation energies associated with the intermediate states as well as nonradiative channels

  16. UVUDF: Ultraviolet Imaging of the Hubble Ultra Deep Field with Wide-Field Camera 3

    Science.gov (United States)

    Teplitz, Harry I.; Rafelski, Marc; Kurczynski, Peter; Bond, Nicholas A.; Grogin, Norman; Koekemoer, Anton M.; Atek, Hakim; Brown, Thomas M.; Coe, Dan; Colbert, James W.; Ferguson, Henry C.; Finkelstein, Steven L.; Gardner, Jonathan P.; Gawiser, Eric; Giavalisco, Mauro; Gronwall, Caryl; Hanish, Daniel J.; Lee, Kyoung-Soo; de Mello, Duilia F.; Ravindranath, Swara; Ryan, Russell E.; Siana, Brian D.; Scarlata, Claudia; Soto, Emmaris; Voyer, Elysse N.; Wolfe, Arthur M.

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are #12534.

  17. Molecular beam epitaxial growth and characterization of Al(Ga)N nanowire deep ultraviolet light emitting diodes and lasers

    International Nuclear Information System (INIS)

    Mi, Z; Zhao, S; Djavid, M; Liu, X; Kang, J; Woo, S Y; Bugnet, M; Botton, G A; Kong, X; Guo, H; Ji, W; Liu, Z

    2016-01-01

    We report on the detailed molecular beam epitaxial growth and characterization of Al(Ga)N nanowire heterostructures on Si and their applications for deep ultraviolet light emitting diodes and lasers. The nanowires are formed under nitrogen-rich conditions without using any metal catalyst. Compared to conventional epilayers, Mg-dopant incorporation is significantly enhanced in nearly strain- and defect-free Al(Ga)N nanowire structures, leading to efficient p -type conduction. The resulting Al(Ga)N nanowire LEDs exhibit excellent performance, including a turn-on voltage of ∼5.5 V for an AlN nanowire LED operating at 207 nm. The design, fabrication, and performance of an electrically injected AlGaN nanowire laser operating in the UV-B band is also presented. (paper)

  18. Development of a backscattering type ultraviolet apertureless near-field scanning optical microscope.

    Science.gov (United States)

    Kwon, Sangjin; Jeong, Hyun; Jeong, Mun Seok; Jeong, Sungho

    2011-08-01

    A backscattering type ultraviolet apertureless near-field scanning optical microscope (ANSOM) for the correlated measurement of topographical and optical characteristics of photonic materials with high optical resolution was developed. The near-field Rayleigh scattering image of GaN covered with periodic submicron Cr dots showed that optical resolution around 40 nm was achievable. By measuring the tip scattered photoluminescence of InGaN/GaN multi quantum wells, the applicability of the developed microscope for high resolution fluorescence measurement was also demonstrated.

  19. Photoluminescent properties of ZnS nanoparticles prepared by electro-explosion of Zn wires

    International Nuclear Information System (INIS)

    Goswami, Navendu; Sen, P.

    2007-01-01

    We study the photoluminescent properties of ZnS nanoparticles without the influence of dopants or magnetic impurities. The ZnS nanoparticles reported in this case were synthesized by a novel method of electro-explosion of wire (EEW). The nanoparticles were prepared employing electro-explosion of pure zinc wires in a cell filled with sulfide ions to produce a free-standing compound ZnS semiconductor. To investigate the structural and optical properties, these nanoparticles were characterized by X-ray powder diffraction (XRD), atomic force microscopy (AFM), UV-visible and photoluminescence (PL) spectroscopy. Consistent with the enhancement of the PL intensity of the 443 nm peak due to deep blue emission of ZnS particles, the XRD of the nanoparticles reveals a hexagonal phase of ZnS nanocrystallites prepared by our novel synthesis technique

  20. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    Ultraviolet laser radiation; walk-off compensation; third harmonic generation; nonlinear optical material. ... Because of its large birefringence, BBO crystal permits the generation of UV radiation near 200 nm by THG ... A, B and C are three different configurations for THG, A – Single crystal, B – two crystals (B2 and B3 in.

  1. Quenching of the surface-state-related photoluminescence in Ni-coated ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tang Yang [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Graduate School of the Chinese Academy of Sciences (China); Zhao Dongxu, E-mail: dxzhao2000@yahoo.com.c [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China); Zhang Jiying; Shen Dezhen [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 16 East Nan-Hu Road, Open Economic Zone, Changchun 130033 (China)

    2010-11-01

    Nickel-coated ZnO nanowires (NWs) were fabricated by electrodepositing Ni particles on ZnO NW arrays. The morphological, magnetic, and photoluminescent properties of the Ni-coated ZnO NWs were investigated. The Ni particles were deposited on the ZnO NWs' surface along its length to form a Ni/ZnO shell-core structure. The Ni-coated ZnO NWs exhibited more isotropic characteristic than the electrodeposited Ni films owing to the isotropic sphere structure of the Ni particles. A strong ultraviolet emission can be obtained from the Ni-coated ZnO NWs, while the green emission related to surface states was quenched by the passivated layer.

  2. Quenching of the surface-state-related photoluminescence in Ni-coated ZnO nanowires

    International Nuclear Information System (INIS)

    Tang Yang; Zhao Dongxu; Zhang Jiying; Shen Dezhen

    2010-01-01

    Nickel-coated ZnO nanowires (NWs) were fabricated by electrodepositing Ni particles on ZnO NW arrays. The morphological, magnetic, and photoluminescent properties of the Ni-coated ZnO NWs were investigated. The Ni particles were deposited on the ZnO NWs' surface along its length to form a Ni/ZnO shell-core structure. The Ni-coated ZnO NWs exhibited more isotropic characteristic than the electrodeposited Ni films owing to the isotropic sphere structure of the Ni particles. A strong ultraviolet emission can be obtained from the Ni-coated ZnO NWs, while the green emission related to surface states was quenched by the passivated layer.

  3. Photoluminescence of ZnO thin films deposited at various substrate temperatures

    International Nuclear Information System (INIS)

    Kao, Kuo-Sheng; Shih, Wei-Che; Ye, Wei-Tsuen; Cheng, Da-Long

    2016-01-01

    This study investigated surface acoustic wave devices with an Al/ZnO/Si structure for use in ultraviolet sensors. ZnO thin films were fabricated using a reactive radio frequency magnetron sputtering system. The substrate temperature of ZnO thin films can be varied to obtain highly crystalline properties. The surface morphologies and c-axis preferred orientation of the ZnO thin films were determined using scanning electron microscopy and X-ray diffraction. In addition, bright-field images of ZnO crystallization were investigated using a transmission electron microscope. From photoluminescence analysis, four peaks were obtained at 377.8, 384.9, 391.4, and 403.4 nm. Interdigital transducers of an aluminum electrode were fabricated on the ZnO/Si structure by using a direct current sputtering system and photolithography, combined with the lift-off method, thereby obtaining a surface acoustic wave device. Finally, frequency responses were measured using a network analyzer, and an illuminating test was adopted for the ultraviolet sensor, using a wavelength of 355 nm from a light-emitting diode. The sensitivities of the ultraviolet sensor were also discussed. - Highlights: • The ZnO/Si SAW devices exhibit the Rayleigh and Sezawa modes. • The crystalline of ZnO affects the EHP recombination and generation. • The PL spectrum of ZnO shows Gaussian fitting distributions. • The CTD_U_V is influenced by SAW types and ZnO film characteristics.

  4. Photoluminescence of ZnO thin films deposited at various substrate temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Kuo-Sheng [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Shih, Wei-Che [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Ye, Wei-Tsuen [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China); Cheng, Da-Long, E-mail: dlcheng@stu.edu.tw [Department of Computer and Communication, SHU-TE University, Kaohsiung, Taiwan (China)

    2016-04-30

    This study investigated surface acoustic wave devices with an Al/ZnO/Si structure for use in ultraviolet sensors. ZnO thin films were fabricated using a reactive radio frequency magnetron sputtering system. The substrate temperature of ZnO thin films can be varied to obtain highly crystalline properties. The surface morphologies and c-axis preferred orientation of the ZnO thin films were determined using scanning electron microscopy and X-ray diffraction. In addition, bright-field images of ZnO crystallization were investigated using a transmission electron microscope. From photoluminescence analysis, four peaks were obtained at 377.8, 384.9, 391.4, and 403.4 nm. Interdigital transducers of an aluminum electrode were fabricated on the ZnO/Si structure by using a direct current sputtering system and photolithography, combined with the lift-off method, thereby obtaining a surface acoustic wave device. Finally, frequency responses were measured using a network analyzer, and an illuminating test was adopted for the ultraviolet sensor, using a wavelength of 355 nm from a light-emitting diode. The sensitivities of the ultraviolet sensor were also discussed. - Highlights: • The ZnO/Si SAW devices exhibit the Rayleigh and Sezawa modes. • The crystalline of ZnO affects the EHP recombination and generation. • The PL spectrum of ZnO shows Gaussian fitting distributions. • The CTD{sub UV} is influenced by SAW types and ZnO film characteristics.

  5. Photoluminescent properties of Sr2CeO4: Eu3+ and Sr2CeO4: Eu2+ phosphors suitable for near ultraviolet excitation

    International Nuclear Information System (INIS)

    Suresh, K.; Poornachandra Rao, N.V.; Murthy, K.V.R.

    2014-01-01

    Powder phosphors of 1 mol% Eu 3+ - and Eu 2+ -doped strontium cerium oxide (Sr 2 CeO 4 ) were synthesized by standard solid-state reaction method. Eu 3+ - and Eu 2+ -doped Sr 2 CeO 4 phosphors fired at 1100 ℃ for 2 h were analysed by X-ray diffraction (XRD) and photoluminescence (PL) techniques. The XRD patterns confirm that the obtained phosphors are a single phase of Sr 2 CeO 4 composed of orthorhombic structure. Room temperature PL excitation spectrum of air-heated Sr 2 CeO 4 : Eu phosphor has exhibited bands at 260, 280 and 350 nm. Whereas the excitation spectrum of Sr 2 CeO 4 : Eu phosphor heated under reducing (carbon) atmosphere exhibited single broadband range from 260 to 390 nm. The (PL) emission peaks of both the phosphors at 467 (blue), 537 (green) and 616 nm (red) generate white light under 260, 280 and 350 nm excitation wavelengths. The Commission International de l'Eclairage (CIE) colour coordinates conforms that these phosphors emitting white light. The results reveal that these phosphors are multifunctional phosphors which emit white light under these excitations that they could be used as white components for display and lamp devices and as well as possible good light-conversion phosphor LEDs under near-ultraviolet (nUV) chip. (author)

  6. AlGaN-based deep-ultraviolet light-emitting diodes grown on high-quality AlN template using MOVPE

    KAUST Repository

    Yan, Jianchang; Wang, Junxi; Zhang, Yun; Cong, Peipei; Sun, Lili; Tian, Yingdong; Zhao, Chao; Li, Jinmin

    2015-01-01

    In this article, we report the growth of high-quality AlN film using metal-organic vapor phase epitaxy. Three layers of middle-temperature (MT) AlN were introduced during the high-temperature (HT) AlN growth. During the MT-AlN layer growth, aluminum and nitrogen sources were closed for 6 seconds after every 5-nm MT-AlN, while H2 carrier gas was always on. The threading dislocation density in an AlN epi-layer on a sapphire substrate was reduced by almost half. AlGaN-based deep-ultraviolet light-emitting diodes were further fabricated based on the AlN/sapphire template. At 20 mA driving current, the emitted peak wavelength is 284.5 nm and the light output power exceeds 3 mW.

  7. AlGaN-based deep-ultraviolet light-emitting diodes grown on high-quality AlN template using MOVPE

    KAUST Repository

    Yan, Jianchang

    2015-03-01

    In this article, we report the growth of high-quality AlN film using metal-organic vapor phase epitaxy. Three layers of middle-temperature (MT) AlN were introduced during the high-temperature (HT) AlN growth. During the MT-AlN layer growth, aluminum and nitrogen sources were closed for 6 seconds after every 5-nm MT-AlN, while H2 carrier gas was always on. The threading dislocation density in an AlN epi-layer on a sapphire substrate was reduced by almost half. AlGaN-based deep-ultraviolet light-emitting diodes were further fabricated based on the AlN/sapphire template. At 20 mA driving current, the emitted peak wavelength is 284.5 nm and the light output power exceeds 3 mW.

  8. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, Christoph, E-mail: Christoph.Reich@tu-berlin.de; Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Feneberg, Martin; Goldhahn, Rüdiger [Institut für Experimentelle Physik, Otto-von-Guericke-Universität, Universitätsplatz 2, Magdeburg 39106 (Germany); Rass, Jens; Kneissl, Michael [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623 (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany); Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, Berlin 12489 (Germany)

    2015-10-05

    The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.

  9. Deep Ultraviolet Macroporous Silicon Filters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal describes a novel method to make deep and far UV optical filters from macroporous silicon. This type of filter consists of an array of...

  10. Crystal habit dependent quantum confined photoluminescence of zinc oxide nanostructures

    International Nuclear Information System (INIS)

    Arellano, Ian Harvey J.; Payawan, Leon Jr. M.; Sarmago, Roland V.

    2008-01-01

    Diverse zinc oxide crystal habits namely wire, rods, tubes, whiskers and tetrapods were synthesized via hydrothermal and carbothermal reduction routes. A vapor current induced regionalization in the carbothermal synthesis lead to the isolation of these crystal habits for characterization. The surface morphology of the nanostructures was analyzed via field emission scanning electron microscopy (FESEM). The morphology and crystallinity of the as-synthesized nanostructure architectural motifs were related to their photoluminescence (PL). The photoluminescence at 157 nm was taken using F2 excimer laser and a crystal habit dependent response was observed. X-ray diffraction (XRD) analyses were conducted to deduce the degree of crystallinity showing results consistent with the excitonic emission at the band edge and visible emission at the electron-hole recombination sites. The presence of minimal crystal defects which gave the green emission was supported by energy dispersive spectroscopy (EDS) data. Transmission spectroscopy for the tetrapods exhibited an interesting PL reduction associated with high-energy deep traps in the nanostructures. Furthermore, some intensity dependent characteristics were deduced indicating quantum confined properties of these nano structures. (author)

  11. Co-precipitation synthesis and photoluminescence properties of K2GdZr (PO4)3:Eu3+—a deep red luminomagnetic nanophosphor

    International Nuclear Information System (INIS)

    Chawla, Santa; Ravishanker,; Rajkumar,; Khan, A.F.; Kotnala, R.K.

    2013-01-01

    Nanoparticles of Eu 3+ activated K 2 GdZr(PO 4 ) 3 has been successfully synthesized by controlled inclusive co-precipitation method in high alkaline environment to enable complex crystalline phase formation. Much enhanced deep red luminescence, broadened emission bands with unusually prominent 5 D 0 – 7 F 4 transition at 699 nm are defining characteristics of the nanoparticles compared to bulk counterpart synthesized by solid state reaction route. Among various excitation pathways such as charge transfer from O 2− –Eu 3+ , Gd 3+ –Eu 3+ , the direct excitation of Eu 3+ at 394 nm is the most effective as revealed by photoluminescence and time resolved studies. Occurrence and variation of superparamagnetism in undoped and Eu 3+ doped nanoparticles indicate the role of unpaired 4f electron spin of Gd 3+ in making the nanoparticles superparamagnetic. A room temperature cost effective synthesis process of Eu 3+ doped multimetallic complex phosphate supermagnetic nanophosphor can pave way for applications requiring such functionality. -- Highlights: ► Eu 3+ doped K 2 GdZr(PO 4 ) 3 nanocrystals have been synthesized successfully by coprecipitation. ► K 2 GdZr(PO 4 ) 3 :Eu 3+ emit intense deep red fluorescence. ► Red emitting K 2 GdZr(PO 4 ) 3 :Eu 3+ nanocrystals show superparamagnetism due to Gd 3+ . ► Luminomagnetic KGP:Eu 3+ have application potential in biology, lighting and display

  12. FAINT NEAR-ULTRAVIOLET/FAR-ULTRAVIOLET STANDARDS FROM SWIFT/UVOT, GALEX, AND SDSS PHOTOMETRY

    International Nuclear Information System (INIS)

    Siegel, Michael H.; Hoversten, Erik A.; Roming, Peter W. A.; Brown, Peter

    2010-01-01

    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of 11 new faint (u ∼ 17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer archives and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the near-infrared to the far-ultraviolet. These stars were chosen because they are known to be hot (20, 000 eff < 50, 000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraints on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all 11 passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.

  13. Red photoluminescence and band edge shift from ZnO thin films

    International Nuclear Information System (INIS)

    Marotti, Ricardo E.; Badan, Juan A.; Quagliata, Eduardo; Dalchiele, Enrique A.

    2007-01-01

    The red photoluminescence (PL) band (peaked between 610 and 640 nm) from electrochemically deposited ZnO thin films is studied. The absorption coefficient is obtained from diffuse reflectance measurements. The absorption band edge depends on deposition conditions. The PL peak follows the shift of the band edge. A similar correlation appears when cooling down to 20 K. This suggests that PL is due to a transition from an intrinsic shallow state to an intrinsic deep state. Comparing against ZnO samples showing green PL, the shallow nature of the state is confirmed

  14. On the phenomenon of large photoluminescence red shift in GaN nanoparticles

    KAUST Repository

    Ben Slimane, Ahmed

    2013-07-01

    We report on the observation of broad photoluminescence wavelength tunability from n-type gallium nitride nanoparticles (GaN NPs) fabricated using the ultraviolet metal-assisted electroless etching method. Transmission and scanning electron microscopy measurements performed on the nanoparticles revealed large size dispersion ranging from 10 to 100 nm. Nanoparticles with broad tunable emission wavelength from 362 to 440 nm have been achieved by exciting the samples using the excitation power-dependent method. We attribute this large wavelength tunability to the localized potential fluctuations present within the GaN matrix and to vacancy-related surface states. Our results show that GaN NPs fabricated using this technique are promising for tunable-color-temperature white light-emitting diode applications. © 2013 Slimane et al.; licensee Springer.

  15. On the phenomenon of large photoluminescence red shift in GaN nanoparticles

    KAUST Repository

    Ben Slimane, Ahmed; Anjum, Dalaver H.; Elafandy, Rami T.; Najar, Adel; Ng, Tien Khee; San Roman Alerigi, Damian; Ooi, Boon S.

    2013-01-01

    We report on the observation of broad photoluminescence wavelength tunability from n-type gallium nitride nanoparticles (GaN NPs) fabricated using the ultraviolet metal-assisted electroless etching method. Transmission and scanning electron microscopy measurements performed on the nanoparticles revealed large size dispersion ranging from 10 to 100 nm. Nanoparticles with broad tunable emission wavelength from 362 to 440 nm have been achieved by exciting the samples using the excitation power-dependent method. We attribute this large wavelength tunability to the localized potential fluctuations present within the GaN matrix and to vacancy-related surface states. Our results show that GaN NPs fabricated using this technique are promising for tunable-color-temperature white light-emitting diode applications. © 2013 Slimane et al.; licensee Springer.

  16. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir

    2017-11-28

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  17. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography

    KAUST Repository

    Wyatt-Moon, Gwenhivir; Georgiadou, Dimitra G; Semple, James; Anthopoulos, Thomas D.

    2017-01-01

    Adhesion lithography (a-Lith) is a versatile fabrication technique used to produce asymmetric coplanar electrodes separated by a <15 nm nanogap. Here, we use a-Lith to fabricate deep ultraviolet (DUV) photodetectors by combining coplanar asymmetric nanogap electrode architectures (Au/Al) with solution-processable wide-band-gap (3.5–3.9 eV) p-type semiconductor copper(I) thiocyanate (CuSCN). Because of the device’s unique architecture, the detectors exhibit high responsivity (≈79 A W–1) and photosensitivity (≈720) when illuminated with a DUV-range (λpeak = 280 nm) light-emitting diode at 220 μW cm–2. Interestingly, the photosensitivity of the photodetectors remains fairly high (≈7) even at illuminating intensities down to 0.2 μW cm–2. The scalability of the a-Lith process combined with the unique properties of CuSCN paves the way to new forms of inexpensive, yet high-performance, photodetectors that can be manufactured on arbitrary substrate materials including plastic.

  18. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O_2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  19. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O2/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  20. Defect free C-axis oriented zinc oxide (ZnO) films grown at room temperature using RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh, E-mail: saurabhkunj22@gmail.com; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi-110007 (India)

    2016-05-23

    Radio frequency Magnetron sputtering technique was employed to fabricate ZnO thin films on quartz substrate at room temperature. The effect of varying oxygen to argon (O{sub 2}/Ar) gas ratio on the structural and photoluminescence properties of the film is analyzed.X-ray diffraction (XRD) spectra reveals the formation of hexagonal wurtzite structured ZnO thin films with preferred orientation along (002) plane. Photoluminescence (PL) characterization reveals the preparation of highly crystalline films exhibiting intense Ultraviolet (UV) emission with negligible amount of defects as indicated by the absence of Deep Level Emission (DLE) in the PL spectra.

  1. High power AlGaN ultraviolet light emitters

    Science.gov (United States)

    Shatalov, Max; Sun, Wenhong; Jain, Rakesh; Lunev, Alex; Hu, Xuhong; Dobrinsky, Alex; Bilenko, Yuri; Yang, Jinwei; Garrett, Gregory A.; Rodak, Lee E.; Wraback, Michael; Shur, Michael; Gaska, Remis

    2014-06-01

    We present the analysis of the external quantum efficiency in AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) on sapphire substrates and discuss factors affecting the output power of DUV LEDs. Performance of the LED is related to optimization of the device structure design and improvements of the epitaxial material quality.

  2. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  3. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations

    KAUST Repository

    Lin, Ronghui

    2018-04-21

    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.

  4. Tapering-induced enhancement of light extraction efficiency of nanowire deep ultraviolet LED by theoretical simulations

    KAUST Repository

    Lin, Ronghui; Galan, Sergio Valdes; Sun, Haiding; Hu, Yangrui; Alias, Mohd Sharizal; Janjua, Bilal; Ng, Tien Khee; Ooi, Boon S.; Li, Xiaohang

    2018-01-01

    A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.

  5. High power AlGaN ultraviolet light emitters

    International Nuclear Information System (INIS)

    Shatalov, Max; Sun, Wenhong; Jain, Rakesh; Lunev, Alex; Hu, Xuhong; Dobrinsky, Alex; Bilenko, Yuri; Yang, Jinwei; Gaska, Remis; Garrett, Gregory A; Rodak, Lee E; Wraback, Michael; Shur, Michael

    2014-01-01

    We present the analysis of the external quantum efficiency in AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) on sapphire substrates and discuss factors affecting the output power of DUV LEDs. Performance of the LED is related to optimization of the device structure design and improvements of the epitaxial material quality. (invited article)

  6. Uv Laser Excitation for Ultra-Sensitive Photoluminescent Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kastner, J.; Eggenberger, D.; Longnecker, A. [Argonne National Laboratory, Argonne, IL (United States); King, D.; Schutt, D. [Radiation Laboratory, University of Notre Dame, South Bend, IN (United States)

    1967-03-15

    The factor which has limited the sensitivity of photoluminescent dosimetry has been the ''pre-dose'' background which is stimulated during readout by the usual continuous ultra-violet (UV) exposure. The signal-to-noise ratio has only been partially optimized by the selective choice of filters and optical geometry. A microdosimetric system has been conceived and investigated which is potentially capable of sensing extremely low radiation doses (of the order of microrads). This system depends on the little-known fact that the decay time for the visible luminescence, which is a measure of the absorbed dose, is at least ten times longer than the decay of the indistinguishable visible fluorescence (to UV) which is an inherent characteristic of unexposed silver phosphate glasses. The system consists of UV, 3500A, laser beam, with a Pockels cell so that it has complete cut-off in intensity in the order of nanoseconds, and gating circuitry to open the visible light-sensing photomultiplier at a sufficient time delay to prevent it from sensing the ultra-violet or the pre-dose fluorescence which decays within the order of 100 nanoseconds. In this way the signal-to-noise ratio can be vastly improved upon that obtainable by optical means. With this system the authors were easily able to measure quantitatively one milliroentgen of cobalt-60 exposure. They are of the opinion that further improvement in this system should enable them to do track visualization and/or in vivo biological microdosimetry with a spatial resolution of the order of ten microns. (author)

  7. CsB_4O_6F. A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units

    International Nuclear Information System (INIS)

    Wang, Xuefei; Wang, Ying; Zhang, Bingbing; Zhang, Fangfang; Yang, Zhihua; Pan, Shilie

    2017-01-01

    The discovery of new nonlinear optical (NLO) materials for coherent light generation in the deep-ultraviolet (DUV, wavelength below 200 nm) region is essential for the development of laser technologies. Herein, we report a new material CsB_4O_6F (CBF), which combines the superior structural properties of two well-known NLO materials, β-BaB_2O_4 (BBO) and KBe_2BO_3F_2 (KBBF). CBF exhibits excellent DUV optical properties including a short cutoff edge (155 nm), a large SHG response (∼1.9 x KDP), and a suitable birefringence that enables frequency doubling down to 171.6 nm. Remarkably, CBF melts congruently and shows an improved growth habit. In addition, our rational design strategy will contribute to the discovery of DUV NLO materials. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Study of photoluminescence from annealed bulk-ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yoneta, M.; Ohishi, M.; Saito, H. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Yoshino, K. [Department of Electrical and Electronic Engineering, Miyazaki University, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Honda, M. [Faculty of Science, Naruto University of Education, 748 Nakajima, Takashima, Naruto-cho, Naruto-shi 772-8502 (Japan)

    2006-03-15

    We have investigated the influence of rapid thermal annealing on the photoluminescence of bulk-ZnO single crystal. As-grown ZnO wafer, illuminated by 325 nm ultraviolet light at 4.2 K, emitted the visible luminescence of pale green centered of 2.29 eV. The luminescence was observed by the anneal at the temperature range between 400 C and 1000 C, however, its intensity decreased with anneal temperature. The free-exciton and the 2.18 eV emission line were obtained by the anneal at 1200 C for 60 sec. From the X-ray diffraction and the surface morphology measurements, the improvement of the crystallinity of bulk-ZnO crystal were confirmed. We suggest that a rapid thermal annealing technique is convenience to improve the the quality of bul-ZnO single crystals. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Enhancing Hybrid Perovskite Detectability in the Deep Ultraviolet Region with Down-Conversion Dual-Phase (CsPbBr3-Cs4PbBr6) Films.

    Science.gov (United States)

    Tong, Guoqing; Li, Huan; Zhu, Zhifeng; Zhang, Yan; Yu, Linwei; Xu, Jun; Jiang, Yang

    2018-04-05

    Hybrid perovskite photodetectors (PDs) exhibit outstanding performance in the ultraviolet-visible (UV-vis) spectrum but have poor detectability in the deep ultraviolet (DUV) region (200-350 nm). In this work, a novel inorganic-hybrid architecture that incorporates a dual-phase (CsPbBr 3 -Cs 4 PbBr 6 ) inorganic perovskite material as a down-conversion window layer and a hybrid perovskite as a light capture layer was prepared to achieve faster, highly sensitive photodetection in the DUV spectrum. A dual-phase inorganic perovskite film coated on the back surface of the photodetector enables strong light absorption and tunes the incident energy into emission bands that are optimized for the perovskite photodetector. The presence of Cs 4 PbBr 6 enhances the capture and down-conversion of the incident DUV light. Due to the down-conversion and transport of the DUV photons, a self-driven perovskite photodetector with this composite structure exhibits a fast response time of 7.8/33.6 μs and a high responsivity of 49.4 mA W -1 at 254 nm without extra power supply.

  10. Structure and photoluminescence of Mn-passivated nanocrystalline ZnO:S thin films

    International Nuclear Information System (INIS)

    Tong, Y.H.; Tang, Q.X.; Liu, Y.C.; Shao, C.L.; Xu, C.S.; Liu, Y.X.

    2005-01-01

    Mn-passivated nanocrystalline ZnO:S thin films were fabricated by thermally oxidizing Mn-doped ZnS (ZnS:Mn) films prepared by electron beam evaporation. Mn was introduced to passivate the surface defects of ZnO and to improve the optical properties. X-ray diffraction (XRD) and photoluminescence (PL) spectra at 81.9 K indicated the S content in ZnO thin film gradually decreased with increasing annealing temperature. The fitted result of the temperature-dependent PL spectra in the range from 81.9 to 302.2 K showed that S dopant could broaden the optical band gap energy of ZnO. Room temperature PL spectra confirmed that the ultraviolet peak shifted to lower energy with the decrease of S content in the thin film because of the Burstein-Moss effect

  11. Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells

    International Nuclear Information System (INIS)

    Pincik, E.; Kobayashi, H.; Takahashi, M.; Fujiwara, N.; Brunner, R.; Gleskova, H.; Jergel, M.; Muellerova, J.; Kucera, M.; Falcony, C.; Ortega, L.; Rusnak, J.; Mikula, M.; Zahoran, M.; Jurani, R.; Kral, M.

    2004-01-01

    This paper deals with the photoluminescence, structural and electrical properties of chemically passivated a-Si:H based thin films and corresponding thin film solar cells. The structures were chemically passivated in three types of KCN and HCN solutions containing MeOH and/or with water. The photoluminescence measurements were performed at 6 K using Ar laser and lock-in signal recording device containing Ge and Si photodetectors. Optically determined band gap related photoluminescence signals were observed between 1.1 and 1.7 eV. The electrical properties were measured by a high-sensitive charge version of deep level transient spectroscopy (Q-DLTS). The evolution of three basic groups of defects was observed. The structural studies were realized by the standard X-ray diffraction analysis. The cyanide treatment improved significantly the electrical characteristics of both corresponding MOS structures and solar cells due to the passivation of some parts of the dangling bonds by CN group. Particularly, the passivation of the defects at interfaces in MOS or solar cell multilayer structures was achieved which is of primary practical importance

  12. Photoluminescent ZnO Nanoparticles and Their Biological Applications

    Directory of Open Access Journals (Sweden)

    Zheng-Yong Zhang

    2015-05-01

    Full Text Available During the past decades, numerous achievements concerning luminescent zinc oxide nanoparticles (ZnO NPs have been reported due to their improved luminescence and good biocompatibility. The photoluminescence of ZnO NPs usually contains two parts, the exciton-related ultraviolet (UV emission and the defect-related visible emission. With respect to the visible emission, many routes have been developed to synthesize and functionalize ZnO NPs for the applications in detecting metal ions and biomolecules, biological fluorescence imaging, nonlinear multiphoton imaging, and fluorescence lifetime imaging. As the biological applications of ZnO NPs develop rapidly, the toxicity of ZnO NPs has attracted more and more attention because ZnO can produce the reactive oxygen species (ROS and release Zn2+ ions. Just as a coin has two sides, both the drug delivery and the antibacterial effects of ZnO NPs become attractive at the same time. Hence, in this review, we will focus on the progress in the synthetic methods, luminescent properties, and biological applications of ZnO NPs.

  13. Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes

    International Nuclear Information System (INIS)

    Moseley, Michael; Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura

    2014-01-01

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al 0.7 Ga 0.3 N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al 0.7 Ga 0.3 N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations

  14. Spectroscopic Chemical Analysis Methods and Apparatus

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor); Bhartia, Rohit (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.

  15. Photoluminescence of nanocrystals embedded in oxide matrices

    International Nuclear Information System (INIS)

    Estrada, C.; Gonzalez, J.A.; Kunold, A.; Reyes-Esqueda, J.A.; Pereyra, P.

    2006-12-01

    We used the theory of finite periodic systems to explain the photoluminescence spectra dependence on the average diameter of nanocrystals embedded in oxide matrices. Because of the broad matrix band gap, the photoluminescence response is basically determined by isolated nanocrystals and sequences of a few of them. With this model we were able to reproduce the shape and displacement of the experimentally observed photoluminescence spectra. (author)

  16. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab

    2018-01-26

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  17. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon Hwa; Asadirad, Mojtaba; Kim, Seung Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon-Seop; Ryou, Jae-Hyun

    2018-01-01

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  18. Electronic band structure in porous silicon studied by photoluminescence and photoluminescence excitation spectroscopy

    International Nuclear Information System (INIS)

    Lee, Ki-Won; Kim, Young-You

    2004-01-01

    In this research, we used photoluminescence (PL) and photoluminescence excitation (PLE) to visualize the electronic band structure in porous silicon (PS). From the combined results of the PLE measurements at various PL emission energies and the PL measurements under excitation at various PLE absorption energies, we infer that three different electronic band structures, originating from different luminescent origins, give rise to the PL spectrum. Through either thermal activation or diffusive transfer, excited carriers are moved to each of the electronic band structures.

  19. Photoluminescence properties of ZnTe homoepitaxial films deposited by synchrotron-radiation-excited growth

    International Nuclear Information System (INIS)

    Nishio, Mitsuhiro; Hayashida, Kazuki; Harada, Hiroki; Mitsuishi, Yoshiaki; Guo Qixin; Ogawa, Hiroshi

    2001-01-01

    ZnTe homoepitaxial films have been deposited at substrate temperatures between 27 deg. C and 100 deg. C by synchrotron-radiation-excited growth using diethylzinc and diethyltelluride. Effects of diethylzinc transport rate and substrate temperature upon the photoluminescence properties of the ZnTe films have been clarified. Strong deep level emissions centered at 1.85 and 2.1 eV related to defects such as vacancy-impurity complex become emerged with increasing diethylzinc transport rate or substrate temperature. A sharply excitonic emission at 2.375 eV associated with shallow acceptors is observed and neither a donor-acceptor pair recombination nor a deep level luminescence signal is detected in the spectrum of the film grown under the nearly stoichiometric condition, which indicates that ZnTe films of good quality can be grown even at room temperature by this growth technique

  20. A far ultraviolet spectroscopic study of the reflectance, luminescence and electronic properties of SrMgF4 single crystals

    International Nuclear Information System (INIS)

    Ogorodnikov, I.N.; Pustovarov, V.A.; Omelkov, S.I.; Isaenko, L.I.; Yelisseyev, A.P.; Goloshumova, A.A.; Lobanov, S.I.

    2014-01-01

    The electronic properties of single crystals of SrMgF 4 have been determined using low-temperature (10–293 K) time-resolved vacuum ultraviolet synchrotron radiation spectroscopy, far ultraviolet (3.7–36 eV) reflectance spectra and calculations for the spectra of optical functions. The bandgap of investigated compound was found at E g =12.55eV, the energy threshold for creation of the unrelaxed excitons at E n=1 =11.37eV, and the low-energy fundamental absorption edge at 10.3 eV. Two groups of photoluminescence (PL) bands have been identified: the exciton-type emissions at 2.6–3.3 and 3.3–4.2 eV and defect-related emissions at 1.8–2.6 and 4.2–5.5 eV. It was shown that PL excitation (PLE) for the exciton-type emission bands occurs mainly at the low-energy tail of the fundamental absorption of the crystal with a maximum at 10.7 eV. At excitation energies above E g the energy transfer from the host lattice to the PL emission centers is inefficient. The paper discusses the origin of the excitonic-type PLE spectra taking into account the results of modeling the PLE spectra shape in the framework of a simple diffusion theory and surface energy losses. -- Highlights: • Far-ultraviolet reflection spectra of SrMgF 4 were studied. • Photoluminescence (PL) emission and PL excitation spectra were studied. • Optical function spectra were calculated on the basis of experimental data. • Electronic structure properties of undoped SrMgF 4 crystals were determined

  1. Photoluminescent properties of single crystal diamond microneedles

    Science.gov (United States)

    Malykhin, Sergey A.; Ismagilov, Rinat R.; Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Fedotov, Pavel V.; Ermakova, Anna; Siyushev, Petr; Katamadze, Konstantin G.; Jelezko, Fedor; Rakovich, Yury P.; Obraztsov, Alexander N.

    2018-01-01

    Single crystal needle-like diamonds shaped as rectangular pyramids were produced by combination of chemical vapor deposition and selective oxidation with dimensions and geometrical characteristics depending on the deposition process parameters. Photoluminescence spectra and their dependencies on wavelength of excitation radiation reveal presence of nitrogen- and silicon-vacancy color centers in the diamond crystallites. Photoluminescence spectra, intensity mapping, and fluorescence lifetime imaging microscopy indicate that silicon-vacancy centers are concentrated at the crystallites apex while nitrogen-vacancy centers are distributed over the whole crystallite. Dependence of the photoluminescence on excitation radiation intensity demonstrates saturation and allows estimation of the color centers density. The combination of structural parameters, geometry and photoluminescent characteristics are prospective for advantageous applications of these diamond crystallites in quantum information processing and optical sensing.

  2. DEEP ULTRAVIOLET LUMINOSITY FUNCTIONS AT THE INFALL REGION OF THE COMA CLUSTER

    International Nuclear Information System (INIS)

    Hammer, D. M.; Hornschemeier, A. E.; Jenkins, L.; Salim, S.; Smith, R.; Mobasher, B.; Miller, N.; Ferguson, H.

    2012-01-01

    We have used deep GALEX observations at the infall region of the Coma cluster to measure the faintest ultraviolet (UV) luminosity functions (LFs) presented for a rich galaxy cluster thus far. The Coma UV LFs are measured to M UV = –10.5 in the GALEX FUV and NUV bands, or 3.5 mag fainter than previous studies, and reach the dwarf early-type galaxy population in Coma for the first time. The Schechter faint-end slopes (α ≈ –1.39 in both GALEX bands) are shallower than reported in previous Coma UV LF studies owing to a flatter LF at faint magnitudes. A Gaussian-plus-Schechter model provides a slightly better parameterization of the UV LFs resulting in a faint-end slope of α ≈ –1.15 in both GALEX bands. The two-component model gives faint-end slopes shallower than α = –1 (a turnover) for the LFs constructed separately for passive and star-forming galaxies. The UV LFs for star-forming galaxies show a turnover at M UV ≈ –14 owing to a deficit of dwarf star-forming galaxies in Coma with stellar masses below M * = 10 8 M ☉ . A similar turnover is identified in recent UV LFs measured for the Virgo cluster suggesting this may be a common feature of local galaxy clusters, whereas the field UV LFs continue to rise at faint magnitudes. We did not identify an excess of passive galaxies as would be expected if the missing dwarf star-forming galaxies were quenched inside the cluster. In fact, the LFs for both dwarf passive and star-forming galaxies show the same turnover at faint magnitudes. We discuss the possible origin of the missing dwarf star-forming galaxies in Coma and their expected properties based on comparisons to local field galaxies.

  3. Photoluminescence due to early stage of oxygen precipitation in multicrystalline Si for solar cells

    Science.gov (United States)

    Higuchi, Fumito; Tajima, Michio; Ogura, Atsushi

    2017-07-01

    To analyze the early stage of oxygen precipitation in n-type multicrytalline Si, the spectral change of photoluminescence (PL) induced by thermal treatment at 450-650 °C was investigated in relation to the changes in excess donor and interstitial oxygen concentrations. We observed the characteristic PL bands in the near-band-edge region and sharp lines in the deep-level region in correspondence with the generation of thermal donors and new donors. The observed PL spectral variation is essentially the same as that in Czochralski-grown Si annealed at 450-650 °C.

  4. Magnesium acceptor in gallium nitride. II. Koopmans-tuned Heyd-Scuseria-Ernzerhof hybrid functional calculations of its dual nature and optical properties

    Science.gov (United States)

    Demchenko, D. O.; Diallo, I. C.; Reshchikov, M. A.

    2018-05-01

    The problem of magnesium acceptor in gallium nitride is that experimental photoluminescence measurements clearly reveal a shallow defect state, while most theoretical predictions favor a localized polaronic defect state. To resolve this contradiction, we calculate properties of magnesium acceptor using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional, tuned to fulfill the generalized Koopmans condition. We test Koopmans tuning of HSE for defect calculations in GaN using two contrasting test cases: a deep state of gallium vacancy and a shallow state of magnesium acceptor. The obtained parametrization of HSE allows calculations of optical properties of acceptors using neutral defect-state eigenvalues, without relying on corrections due to charged defects in periodic supercells. Optical transitions and vibrational properties of M gGa defect are analyzed to bring the dual (shallow and deep) nature of this defect into accord with experimental photoluminescence measurements of the ultraviolet band in Mg-doped GaN samples.

  5. Photoluminescence from ZnO-SiO2 opals with different sphere diameters and thicknesses

    International Nuclear Information System (INIS)

    Yang Yingling; Yan Hongwei; Fu Zhengping; Yang Beifang; Xia Linsheng; Wang Zhen; Zuo Jian; Yu Shijun; Fu Shengquan; Li Fanqing

    2007-01-01

    We systematically investigated the photoluminescence (PL) and transmittance characteristics of ZnO-SiO 2 opals with varied positions of the stop-band and film thicknesses. An improved ultraviolet (UV) luminescence was observed from ZnO-SiO 2 composites over pure ZnO nanocrystals under 325 nm He-Cd laser excitation at room temperature. The UV PL of ZnO nanocrystals in SiO 2 opals with stop-bands center of 410 nm is sensitive to the thickness of opal films, and the UV PL intensity increases with the film thickness increasing. The PL spectra of ZnO nanocrystals in SiO 2 opals with stop-bands center of 570 nm show a suppression of the weak visible band. The experimental results are discussed based on the scattering and/or absorbance in opal crystals

  6. Annealing impact on the structural and photoluminescence properties of ZnO thin films on Ag substrates

    International Nuclear Information System (INIS)

    Xu, Linhua; Zheng, Gaige; Lai, Min; Pei, Shixin

    2014-01-01

    Graphical abstract: The Gaussian fitting indicates that the PL spectra of the ZnO thin films include four emission peaks which are centered at 380, 520, 570 and 610 nm, respectively. The ZnO thin film deposited on an Ag substrate shows a stronger green emission and a weaker UV emission than the ZnO thin film directly deposited on a Si substrate annealed at 400 °C. With the rise of annealing temperature, the visible emission intensity and wavelength are largely changed. Highlights: • ZnO thin films have been prepared on Ag substrates by sol–gel method. • The Ag substrates have a great effect on the photoluminescence of ZnO thin films. • All the films exhibit three visible emission bands including green, yellow and red. • Annealing causes a large change of the visible emission intensity and wavelength. -- Abstract: In this work, ZnO thin films were prepared by sol–gel method on Ag substrates. The structural and optical properties of the films annealed at different temperatures were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence, respectively. The results of XRD showed that all the ZnO thin films had a wurtzite phase and were preferentially oriented along the c-axis direction. The sample annealed at 400 °C exhibited better crystalline quality than the ZnO thin film directly deposited on a Si substrate annealed at the same temperature. The photoluminescence spectra showed that ZnO thin films had an ultraviolet emission band and three visible emission bands including green, yellow and red band. The sample annealed at 400 °C exhibited a stronger green emission and a weaker ultraviolet emission compared with the ZnO thin film deposited on a Si substrate annealed at the same temperature. The difference of the luminescence properties was thought to be originated from different substrates. As for the ZnO films on Ag substrates, the increase of annealing temperature led to different changes of visible emissions

  7. N-butylamine functionalized graphene oxide for detection of iron(III) by photoluminescence quenching.

    Science.gov (United States)

    Gholami, Javad; Manteghian, Mehrdad; Badiei, Alireza; Ueda, Hiroshi; Javanbakht, Mehran

    2016-02-01

    An N-butylamine functionalized graphene oxide nanolayer was synthesized and characterized by ultraviolet (UV)-visible spectrometry, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Detection of iron(III) based on photoluminescence spectroscopy was investigated. The N-butylamine functionalized graphene oxide was shown to specifically interact with iron (III), compared with other cationic trace elements including potassium (I), sodium (I), calcium (II), chromium (III), zinc (II), cobalt (II), copper (II), magnesium (II), manganese (II), and molybdenum (VI). The quenching effect of iron (III) on the luminescence emission of N-butylamine functionalized graphene oxide layer was used to detect iron (III). The limit of detection (2.8 × 10(-6)  M) and limit of quantitation (2.9 × 10(-5)  M) were obtained under optimal conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2016-04-11

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.

  9. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    International Nuclear Information System (INIS)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T.; Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2016-01-01

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al_0_._7_0Ga_0_._3_0N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm"2.

  10. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    Science.gov (United States)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  11. Anomalous lattice vibrations of monolayer MoS 2 probed by ultraviolet Raman scattering

    KAUST Repository

    Liu, Hsiang Lin; Guo, Huaihong; Yang, Teng; Zhang, Zhidong; Kumamoto, Yasuaki; Shen, Chih Chiang; Hsu, Yu Te; Li, Lain-Jong; Saito, Riichiro; Kawata, Satoshi

    2015-01-01

    We present a comprehensive Raman scattering study of monolayer MoS2 with increasing laser excitation energies ranging from the near-infrared to the deep-ultraviolet. The Raman scattering intensities from the second-order phonon modes are revealed to be enhanced anomalously by only the ultraviolet excitation wavelength 354 nm. We demonstrate theoretically that such resonant behavior arises from a strong optical absorption that forms near the Γ point and of the band structure and an inter-valley resonant electronic scattering by the M-point phonons. These results advance our understanding of the double resonance Raman scattering process in low-dimensional semiconducting nanomaterials and provide a foundation for the technological development of monolayer MoS2 in the ultraviolet frequency range. © the Owner Societies 2015.

  12. Photoluminescence of Eu2+-doped CaMgSi2xO6+2x (1.00≤x≤1.20) phosphors in UV-VUV region

    International Nuclear Information System (INIS)

    Zhang Zhiya; Wang Yuhua

    2008-01-01

    Alkaline-earth silicate phosphors CaMgSi 2x O 6+2x :Eu 2+ (1.00≤x≤1.20) were prepared by traditional solid-state reaction. The phosphors showed an intense blue emission centered around 453 nm, with both 254 and 147 nm excitations. The host absorption below 200 nm in the excitation spectra consisted of two bands around 160 and 190 nm. The band around 160 nm was ascertained to be associated with the SiO 4 -tetrahedra and MgO 6 -polyhedra, and that around 190 nm was due to the CaO 8 -polyhedra or some impurities. The incorporation of excess Si of less than 15% would not lead to formation of impurities and the results indicated that an appropriate Si excess could improve the Photoluminescence (PL) intensity in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions

  13. CsB{sub 4}O{sub 6}F. A congruent-melting deep-ultraviolet nonlinear optical material by combining superior functional units

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefei [Key Lab. of Functional Materials and Devices for Special Environments, Xinjiang Technical Inst. of Physics and Chemistry, Chinese Academy of Sciences, Xinjiang Key Lab. of Electronic Information Materials and Devices, Urumqi (China); University of Chinese Academy of Sciences, Beijing (China); Wang, Ying; Zhang, Bingbing; Zhang, Fangfang; Yang, Zhihua; Pan, Shilie [Key Lab. of Functional Materials and Devices for Special Environments, Xinjiang Technical Inst. of Physics and Chemistry, Chinese Academy of Sciences, Xinjiang Key Lab. of Electronic Information Materials and Devices, Urumqi (China)

    2017-11-06

    The discovery of new nonlinear optical (NLO) materials for coherent light generation in the deep-ultraviolet (DUV, wavelength below 200 nm) region is essential for the development of laser technologies. Herein, we report a new material CsB{sub 4}O{sub 6}F (CBF), which combines the superior structural properties of two well-known NLO materials, β-BaB{sub 2}O{sub 4} (BBO) and KBe{sub 2}BO{sub 3}F{sub 2} (KBBF). CBF exhibits excellent DUV optical properties including a short cutoff edge (155 nm), a large SHG response (∼1.9 x KDP), and a suitable birefringence that enables frequency doubling down to 171.6 nm. Remarkably, CBF melts congruently and shows an improved growth habit. In addition, our rational design strategy will contribute to the discovery of DUV NLO materials. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Doping effect on the optical properties of ZnO nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, M. [Frederick Seitz Materials Research Laboratory, University of Illinois,104 South Goodwin Avenue, Urbana, IL 61801 (United States); Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France); Juillaguet, S. [Groupe d' Etude des Semi-conducteurs, Universite Montpellier II, Place Eugene Bataillon, 34095 Montpellier Cedex 5 (France); Kyaw, T.M.; Wen, J.G. [Institut Universitaire de Technologie, Universite de Haute Alsace, 61 rue Albert Camus, 68093 Mulhouse Cedex (France)

    2007-04-15

    High quality undoped and Ga{sub 2}O{sub 3} or In{sub 2}O{sub 3} doped ZnO nanostructures are grown by chemical vapor transport and condensation. The doping effect on the optical properties is investigated by photoluminescence. At room temperature, photoluminescence on Ga{sub 2}O{sub 3} doped ZnO nanostructures reveals an enhancement of the ultraviolet near band edge emission at 390 nm, while the intensity of the deep level emission at 530 nm weakens. At 5 K, an intense neutral-donor-bound exciton (D{sup 0}X) line dominates the undoped and doped ZnO photoluminescence spectra. The presence of well resolved two-electron satellite lines allow to determine the type of donors. At 5 K, the results indicate that ZnO nanostructures grown with 10% of Ga{sub 2}O{sub 3} display an excellent optical quality, proved by an intense D{sup 0}X line, a high intensity ratio between the D{sup 0}X line and the deep level emission as well as the presence of numerous phonon replicas of the main lines. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Shin-ichiro, E-mail: s-inoue@nict.go.jp [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Hyogo 651-2492 (Japan); Naoki, Tamari [Advanced ICT Research Institute, National Institute of Information and Communications Technology (NICT), Kobe, Hyogo 651-2492 (Japan); Tsukuba Research Laboratories, Tokuyama Corporation, Tsukuba, Ibaraki 300-4247 (Japan); Kinoshita, Toru; Obata, Toshiyuki; Yanagi, Hiroyuki [Tsukuba Research Laboratories, Tokuyama Corporation, Tsukuba, Ibaraki 300-4247 (Japan)

    2015-03-30

    Deep-ultraviolet (DUV) aluminum gallium nitride-based light-emitting diodes (LEDs) on transparent aluminum nitride (AlN) substrates with high light extraction efficiency and high power are proposed and demonstrated. The AlN bottom side surface configuration, which is composed of a hybrid structure of photonic crystals and subwavelength nanostructures, has been designed using finite-difference time-domain calculations to enhance light extraction. We have experimentally demonstrated an output power improvement of up to 196% as a result of the use of the embedded high-light-extraction hybrid nanophotonic structure. The DUV-LEDs produced have demonstrated output power as high as 90 mW in DC operation at a peak emission wavelength of 265 nm.

  16. Synthesis and photoluminescence property of silicon carbide ...

    Indian Academy of Sciences (India)

    Administrator

    The β-SiC nanowires thin films exhibit the strong photoluminescence (PL) peak at a wavelength of. 400 nm, which is significantly ... in the nanowires. Keywords. SiC nanowires; nanocrystalline diamond; crystal growth; photoluminescence. 1. ... unique mechanical, electrical and thermal properties. Due to the wide band gap ...

  17. Synthesis of silver hollow nanoparticles and observation of photoluminescence emission properties

    International Nuclear Information System (INIS)

    Desarkar, H.S.; Kumbhakar, P.; Mitra, A.K.

    2013-01-01

    Preparation of hollow silver nanoparticles (HSNs) along-with solid silver nanoparticles are reported by Nd:YAG laser ablation of solid silver target immersed in water medium with a laser ablation time (LAT) duration of 50 min and with the incident laser fluence of 151 J/cm 2 . It is found that only solid silver nanoparticles are produced when the experiment is carried out with smaller values of LAT duration. The synthesized samples are characterized by using transmission electron microscopy and UV–Visible absorption spectroscopy. The UV–Visible absorption spectra of the samples show sharp absorptions in the ultraviolet and in visible regions due to interband transition and surface plasmon resonance oscillations in Ag nanoparticles, respectively. It is found that all samples exhibit photoluminescence (PL) emission, at room temperature, in the UV–Visible region peaked at ∼346 nm, due to the recombination of electrons with holes from sp conduction band to d band of Ag. The sample containing HSNs exhibits strong PL emission and the value of peak PL emission intensity is enhanced by the factor of 2.4 in comparison to that obtained from the sample synthesized with LAT duration of 20 min. The synthesized HSNs may find applications in catalysis and in chemical sensing. - Highlights: ►Hollow silver nanoparticles of 15–60 nm particle sizes are prepared by laser ablation. ►Prepared Ag nanoparticles show sharp absorptions in the UV and visible regions. ►Strong interband transition along-with SPR oscillations is reported. ►Enhancement (2.4 times) in photoluminescence emission in the UV region is reported.

  18. Localized surface plasmon enhanced deep UV-emitting of AlGaN based multi-quantum wells by Al nanoparticles on SiO2 dielectric interlayer

    Science.gov (United States)

    He, Ju; Wang, Shuai; Chen, Jingwen; Wu, Feng; Dai, Jiangnan; Long, Hanling; Zhang, Yi; Zhang, Wei; Feng, Zhe Chuan; Zhang, Jun; Du, Shida; Ye, Lei; Chen, Changqing

    2018-05-01

    In this paper, we report a 2.6-fold deep ultraviolet emission enhancement of integrated photoluminescence (PL) intensity in AlGaN-based multi-quantum wells (MQWs) by introducing the coupling of local surface plasmons from Al nanoparticles (NPs) on a SiO2 dielectric interlayer with excitons and photons in MQWs at room temperature. In comparison to bare AlGaN MQWs, a significant 2.3-fold enhancement of the internal quantum efficiency, from 16% to 37%, as well as a 13% enhancement of photon extraction efficiency have been observed in the MQWs decorated with Al NPs on SiO2 dielectric interlayer. Polarization-dependent PL measurement showed that both the transverse electric and transverse magnetic mode were stronger than the original intensity in bare AlGaN MQWs, indicating a strong LSPs coupling process and vigorous scattering ability of the Al/SiO2 composite structure. These results were confirmed by the activation energy of non-radiative recombination from temperature-dependent PL measurement and the theoretical three dimensional finite difference time domain calculations.

  19. Blue photoluminescent carbon nanodots from limeade

    Energy Technology Data Exchange (ETDEWEB)

    Suvarnaphaet, Phitsini [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand); Tiwary, Chandra Sekhar [Department of Materials Science and Nano Engineering, Rice University, Houston, TX 7005 (United States); Wetcharungsri, Jutaphet; Porntheeraphat, Supanit [NECTEC, National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120 (Thailand); Hoonsawat, Rassmidara [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand); Ajayan, Pulickel Madhavapanicker [Department of Materials Science and Nano Engineering, Rice University, Houston, TX 7005 (United States); Tang, I-Ming [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Department of Material Science, Faculty of Science, Kasetsart University, Bangkok 10400 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand); Asanithi, Piyapong, E-mail: asanithi@hotmail.com [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd (Thailand)

    2016-12-01

    Carbon-based photoluminescent nanodot has currently been one of the promising materials for various applications. The remaining challenges are the carbon sources and the simple synthetic processes that enhance the quantum yield, photostability and biocompatibility of the nanodots. In this work, the synthesis of blue photoluminescent carbon nanodots from limeade via a single-step hydrothermal carbonization process is presented. Lime carbon nanodot (L-CnD), whose the quantum yield exceeding 50% for the 490 nm emission in gram-scale amounts, has the structure of graphene core functionalized with the oxygen functional groups. The micron-sized flake of the as-prepared L-CnD powder exhibits multicolor emission depending on an excitation wavelength. The L-CnDs are demonstrated for rapidly ferric-ion (Fe{sup 3+}) detection in water compared to Fe{sup 2+}, Cu{sup 2+}, Co{sup 2+}, Zn{sup 2+}, Mn{sup 2+} and Ni{sup 2+} ions. The photoluminescence quenching of L-CnD solution under UV light is used to distinguish the Fe{sup 3+} ions from others by naked eyes as low concentration as 100 μM. Additionally, L-CnDs provide exceptional photostability and biocompatibility for imaging yeast cell morphology. Changes in morphology of living yeast cells, i.e. cell shape variation, and budding, can be observed in a minute-period until more than an hour without the photoluminescent intensity loss. - Highlights: • Photoluminescent carbon nanodots are synthesized from limeade. • The quantum yield of lime carbon nanodots is higher than 50%. • The lime carbon nanodots can be applied for detecting of Fe{sup 3+} ions and for imaging living yeast cells.

  20. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    International Nuclear Information System (INIS)

    Zhang Qi; Zhang Hao; Xu Tao; Wei Bin; Zhang Xiao-Wen

    2015-01-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. (paper)

  1. Presence of photoluminescent carbon dots in Nescafe® original instant coffee: applications to bioimaging.

    Science.gov (United States)

    Jiang, Chengkun; Wu, Hao; Song, Xiaojie; Ma, Xiaojun; Wang, Jihui; Tan, Mingqian

    2014-09-01

    The presence of the carbon dots (C-dots) in food is a hotly debated topic and our knowledge about the presence and the use of carbon dots (C-dots) in food is still in its infancy. We report the finding of the presence of photoluminescent (PL) C-dots in commercial Nescafe instant coffee. TEM analysis reveals that the extracted C-dots have an average size of 4.4 nm. They were well-dispersed in water and strongly photoluminescent under the excitation of ultra-violet light with a quantum yield (QY) about 5.5%, which were also found to possess clear upconversion PL properties. X-ray photoelectron spectroscopy characterization demonstrates that the C-dots contain C, O and N three elements with the relative contents ca. 30.1, 62.2 and 7.8%. The X-ray diffraction (XRD) analysis indicates that the C-dots are amorphous. Fourier-transform infrared (FTIR) spectra were employed to characterize the surface groups of the C-dots. The C-dots show a pH independent behavior by varying the pH value from 2 to 11. The cytotoxicity study revealed that the C-dots did not cause any toxicity to cells at a concentration as high as 20 mg/mL. The C-dots have been directly applied in cells and fish imaging, which suggested that the C-dots present in commercial coffee may have more potential biological applications. Copyright © 2014. Published by Elsevier B.V.

  2. Photoluminescence of Turkish purple jade (turkiyenite)

    International Nuclear Information System (INIS)

    Hatipoğlu, Murat; Başevirgen, Yasemin

    2012-01-01

    The purple-colored unique gem material is only found in the Harmancık (Bursa) region of the western Anatolia (Turkey). Therefore, it is specially called “Turkish purple jade or turkiyenite” on the worldwide gem market. Even though its jadeite implication is the principal constituent, the material cannot be considered as a single jadeite mineral since other implications are quartz, orthoclase, epidote, chloritoid and phlogopite minerals. Even if the analytical methods are used to characterize and identify the Turkish purple jade samples in detail, the luminescence spectra, especially photoluminescence features regarding to composite mineral implications of the material are important because of the existence the numerous characteristic broad and intensive luminescence bands in the samples. We can state that the UV-irradiation luminescence centers as photoluminescence (PL) are due to the overall signals in the Turkish purple jade samples. Accordingly, the distinctive photoluminescence peaks at 743, 717, 698, 484, 465 and 442 nm in PL-2D (counter diagram and sections) and PL-3D (sequence spectra) ranging between 300 and 900 nm of wavelengths, and between 220 and 340 K of temperatures are observed. Finally, photoluminescence features of the heterogeneous-structured material cannot be simply attributed to any chemical impurities, since the jade mass has numerous heterogeneous mineral constituents instead of a single jadeite mineral. Six different mineral implications and chemical impurities in the material composition display complex and individual all kind of luminescence features. Therefore, photoluminescence as well as radioluminescence, cathodoluminescence and thermoluminescence spectra provide positive identification regarding to the provenance (geographic origin) of the original Turkish purple jade (turkiyenite). - Highlights: ► The purple-colored gem material is only found in the Harmancık-Bursa region of Turkey. ► Material is called “Turkish purple

  3. Ultraviolet Extensions

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Side-by-Side Comparison Click on image for larger view This ultraviolet image from NASA's Galaxy Evolution Explorer shows the Southern Pinwheel galaxy, also know as Messier 83 or M83. It is located 15 million light-years away in the southern constellation Hydra. Ultraviolet light traces young populations of stars; in this image, young stars can be seen way beyond the main spiral disk of M83 up to 140,000 light-years from its center. Could life exist around one of these far-flung stars? Scientists say it's unlikely because the outlying regions of a galaxy are lacking in the metals required for planets to form. The image was taken at scheduled intervals between March 15 and May 20, 2007. It is one of the longest-exposure, or deepest, images ever taken of a nearby galaxy in ultraviolet light. Near-ultraviolet light (or longer-wavelength ultraviolet light) is colored yellow, and far-ultraviolet light is blue. What Lies Beyond the Edge of a Galaxy The side-by-side comparison shows the Southern Pinwheel galaxy, or M83, as seen in ultraviolet light (right) and at both ultraviolet and radio wavelengths (left). While the radio data highlight the galaxy's long, octopus-like arms stretching far beyond its main spiral disk (red), the ultraviolet data reveal clusters of baby stars (blue) within the extended arms. The ultraviolet image was taken by NASA's Galaxy Evolution Explorer between March 15 and May 20, 2007, at scheduled intervals. Back in 2005, the telescope first photographed M83 over a shorter period of time. That picture was the first to reveal far-flung baby stars forming up to 63,000 light-years from the edge of the main spiral disk. This came as a surprise to astronomers because a galaxy's outer territory typically lacks high densities of star-forming materials. The newest picture of M83 from the Galaxy Evolution Explorer is shown at the right, and was taken over a longer period of time. In fact, it is one of the

  4. Ultranarrow and widely tunable Mn2+-Induced photoluminescence from single Mn-doped nanocrystals of ZnS-CdS alloys.

    Science.gov (United States)

    Hazarika, Abhijit; Layek, Arunasish; De, Suman; Nag, Angshuman; Debnath, Saikat; Mahadevan, Priya; Chowdhury, Arindam; Sarma, D D

    2013-06-28

    Extensively studied Mn-doped semiconductor nanocrystals have invariably exhibited photoluminescence over a narrow energy window of width ≤150  meV in the orange-red region and a surprisingly large spectral width (≥180  meV), contrary to its presumed atomic-like origin. Carrying out emission measurements on individual single nanocrystals and supported by ab initio calculations, we show that Mn PL emission, in fact, can (i) vary over a much wider range (∼370  meV) covering the deep green--deep red region and (ii) exhibit widths substantially lower (∼60-75  meV) than reported so far, opening newer application possibilities and requiring a fundamental shift in our perception of the emission from Mn-doped semiconductor nanocrystals.

  5. Synthesis and photoluminescence study of rare earth activated phosphor Na2La2B2O7

    International Nuclear Information System (INIS)

    Nagpure, P.A.; Omanwar, S.K.

    2012-01-01

    The photoluminescence properties in UV and N-UV excitable range for the phosphors of Na 2 La 2 B 2 O 7 : RE (RE=Eu, Tb, Ce, Sm, Gd) are investigated. The solution combustion synthesis technique was employed for the synthesis of the phosphors Na 2 La 2 B 2 O 7 : RE. The photoluminescence measurements of the phosphors were carried out on a HITACHI F7000 Fluorescence Spectrophotometer. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Na 2 La 2 B 2 O 7 : Eu are 591 and 615 nm, Na 2 La 2 B 2 O 7 : Ce shows dominating emission peak at 387 nm and Na 2 La 2 B 2 O 7 : Tb displays green emission at 493, 544, 593 and 620 nm at 254 nm excitation, while Na 2 La 2 B 2 O 7 : Sm shows the main emission peak wavelengths 566 and 604 nm at 405 nm excitation and Na 2 La 2 B 2 O 7 : Gd shows dominating emission peak at 312 nm at 274 nm excitation. These phosphors may provide a new kind of luminescent materials under ultraviolet and near ultraviolet excitation for various applications. - Highlights: ► We use the combustion technique for synthesis of Na 2 La 2 B 2 O 7 : RE phosphor. ► Phosphor Na 2 La 2 B 2 O 7 : Eu 3+ shows intense red emission under UV excitation. ► Phosphor Na 2 La 2 B 2 O 7 : Tb 3+ shows intense green emission under UV excitation. ► Phosphor Na 2 La 2 B 2 O 7 : Sm 3+ shows orange red emission under near UV excitation. ► Phosphors Na 2 La 2 B 2 O 7 : Ce 3+ and Na 2 La 2 B 2 O 7 : Gd 3+ show near UV and UVB emissions under UV excitation.

  6. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    Directory of Open Access Journals (Sweden)

    Mikli Valdek

    2011-01-01

    Full Text Available Abstract Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm were grown in air onto a preheated soda-lime glass (SGL or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km

  7. Photoluminescence study of as-grown vertically standing wurtzite InP nanowire ensembles.

    Science.gov (United States)

    Iqbal, Azhar; Beech, Jason P; Anttu, Nicklas; Pistol, Mats-Erik; Samuelson, Lars; Borgström, Magnus T; Yartsev, Arkady

    2013-03-22

    We demonstrate a method that enables the study of photoluminescence of as-grown nanowires on a native substrate by non-destructively suppressing the contribution of substrate photoluminescence. This is achieved by using polarized photo-excitation and photoluminescence and by making an appropriate choice of incident angle of both excitation beam and photoluminescence collection direction. Using TE-polarized excitation at a wavelength of 488 nm at an incident angle of ∼70° we suppress the InP substrate photoluminescence relative to that of the InP nanowires by about 80 times. Consequently, the photoluminescence originating from the nanowires becomes comparable to and easily distinguishable from the substrate photoluminescence. The measured photoluminescence, which peaks at photon energies of ∼1.35 eV and ∼1.49 eV, corresponds to the InP substrate with zinc-blende crystal structure and to the InP nanowires with wurtzite crystal structure, respectively. The photoluminescence quantum yield of the nanowires was found to be ∼20 times lower than that of the InP substrate. The nanowires, grown vertically in a random ensemble, neither exhibit substantial emission polarization selectivity to the axis of the nanowires nor follow excitation polarization preferences observed previously for a single nanowire.

  8. Deep donor-acceptor pair recombination in bulk GaP studied by ODMR and DLTS techniques

    International Nuclear Information System (INIS)

    Awadelkarim, O.O.; Godlewski, M.; Monemar, B.

    1989-01-01

    Deep level transient spectroscopy (DLTS) and optically detected magnetic resonance (ODMR) are applied to study deep defect levels with photoluminescence bands observed in the near infrared region in S- and Te-doped bulk GaP crystals grown by the liquid encapsulated Czochralski method. The ODMR data suggest that the emission bands with maxima observed at 8000-8200 A (∼ 1.5 eV), common to both materials, and at 7750 A (1.6 eV), present only in GaP:Te, are due to donor-acceptor pair recombinations. The latter band, reported here for the first time, is tentatively associated with deep states observed by DLTS. (author) 19 refs., 5 figs

  9. Unusual photoluminescence phenomena : New insights in Stokes and anti-Stokes emission

    NARCIS (Netherlands)

    de Jong, M.

    2017-01-01

    Photoluminescent materials are applied in many devices that we use in our daily lives. For example in fluorescent lamps and LED-lamps, photoluminescent materials convert the source light to create white light. Photoluminescent materials can also play a role in more complicated devices, as for

  10. Study of the energy band in n-type GaAs and p-type In P by transmission and photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Banai, N.; Khanzadeh, M.

    1998-01-01

    Optical characterization of the n-type In P grown by horizontal Bridgman method was carried out using modular photoluminescence and optical transmission spectroscopy. The measured transmission spectra at room temperature using Cary 17 DX spectrophotometer reveals the band gap energies of 1.4 and 1.34 eV for p-type In P and the n-type GaAs, respectively. Photoluminescence spectra of the above samples was measured at 77 K with the excitation intensity of (20 W/Cm 2 ). The (B-A) transitions occur at 1.405 eV and at 1.382 eV respectively. Three spectra were observed for the n-type GaAs sample, namely, (B-B), (B-A) and another relatively wide spectra at wavelengths above the absorption edge caused by the deep level impurities. The peak position of these spectra are 1.482, 1.4 and 1.36 eV respectively. (author)

  11. Photoluminescence of Eu{sup 2+}-doped CaMgSi{sub 2x}O{sub 6+2x} (1.00{<=}x{<=}1.20) phosphors in UV-VUV region

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhiya [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Wang Yuhua [Department of Materials Science, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China)], E-mail: wyh@lzu.edu.cn

    2008-03-15

    Alkaline-earth silicate phosphors CaMgSi{sub 2x}O{sub 6+2x}:Eu{sup 2+} (1.00{<=}x{<=}1.20) were prepared by traditional solid-state reaction. The phosphors showed an intense blue emission centered around 453 nm, with both 254 and 147 nm excitations. The host absorption below 200 nm in the excitation spectra consisted of two bands around 160 and 190 nm. The band around 160 nm was ascertained to be associated with the SiO{sub 4}-tetrahedra and MgO{sub 6}-polyhedra, and that around 190 nm was due to the CaO{sub 8}-polyhedra or some impurities. The incorporation of excess Si of less than 15% would not lead to formation of impurities and the results indicated that an appropriate Si excess could improve the Photoluminescence (PL) intensity in both ultraviolet (UV) and vacuum ultraviolet (VUV) regions.

  12. Ab initio studies on the optical effects in the deep ultraviolet nonlinear optical crystals of the KBe2BO3F2 family

    International Nuclear Information System (INIS)

    Kang Lei; Luo Siyang; Huang Hongwei; Lin, Z S; Chen, C T; Zheng Tao

    2012-01-01

    Electronic structures of the deep ultraviolet nonlinear optical crystals of the KBe 2 BO 3 F 2 (KBBF) family, including KBBF, RbBe 2 BO 3 F 2 and CsBe 2 BO 3 F 2 , have been investigated based on a plane-wave pseudopotential method. Their linear and nonlinear optical coefficients are also calculated, and are in good agreement with the experimental results. A real-space atom-cutting method is adopted to analyze the respective contributions of the alkali metal cations and anionic groups to optical response. The results show that the contributions of anionic groups to the nonlinear optical anisotropic responses are dominant, but the influence of the A-site alkali metal cations becomes slightly more pronounced with the increase of their radius. Moreover, the birefringence difference among these crystals strongly depends on the volume effect, i.e., the spatial density of the (BO 3 ) 3- anionic groups. (paper)

  13. Visible photoluminescence from hydrogenated silicon particles suspended in a silane plasma

    International Nuclear Information System (INIS)

    Courteille, C.; Dorier, J.L.; Dutta, J.; Hollenstein, C.; Howling, A.A.; Stoto, T.

    1994-09-01

    Visible photoluminescence at room temperature has been observed in amorphous hydrogenated silicon particulates during their formation in a silane radio-frequency plasma. Oxygen injection along with mass spectrometry measurements demonstrate that oxygen has no influence on the photoluminescence. The appearance of visible photoluminescence coincides with a particle agglomeration phase as shown by laser light scattering experiments, and electron microscopy shows silicon nanocrystals within these particulates. These observations of visible photoluminescence are consistent with the model of quantum confinement in the silicon nanocrystals. (author) 5 figs., 45 refs

  14. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Peter J.; Yang, Yi; Wang, Lifan [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Texas A. and M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843 (United States); Cooke, Jeff; Mould, Jeremy [Centre for Astrophysics and Supercomputing, Swinburne University, Hawthorn VIC 3122 (Australia); Olaes, Melanie; Quimby, Robert M. [Department of Astronomy, San Diego State University, San Diego, CA 92182 (United States); Baade, Dietrich [European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching b. München (Germany); Gehrels, Neil [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Hoeflich, Peter [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Maund, Justyn [Department of Physics and Astronomy F39 Hicks Building, Hounsfield Road Sheffield, S3 7RH (United Kingdom); Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2016-09-01

    We present and discuss ultraviolet and optical photometry from the Ultraviolet/Optical Telescope, X-ray limits from the X-Ray Telescope on Swift, and imaging polarimetry and ultraviolet/optical spectroscopy with the Hubble Space Telescope , all from observations of ASASSN-15lh. It has been classified as a hydrogen-poor superluminous supernova (SLSN I), making it more luminous than any other supernova observed. ASASSN-15lh is not detected in the X-rays in individual or co-added observations. From the polarimetry we determine that the explosion was only mildly asymmetric. We find the flux of ASASSN-15lh to increase strongly into the ultraviolet, with an ultraviolet luminosity 100 times greater than the hydrogen-rich, ultraviolet-bright SLSN II SN 2008es. We find that objects as bright as ASASSN-15lh are easily detectable beyond redshifts of ∼4 with the single-visit depths planned for the Large Synoptic Survey Telescope. Deep near-infrared surveys could detect such objects past a redshift of ∼20, enabling a probe of the earliest star formation. A late rebrightening—most prominent at shorter wavelengths—is seen about two months after the peak brightness, which is itself as bright as an SLSN. The ultraviolet spectra during the rebrightening are dominated by the continuum without the broad absorption or emission lines seen in SLSNe or tidal disruption events (TDEs) and the early optical spectra of ASASSN-15lh. Our spectra show no strong hydrogen emission, showing only Ly α absorption near the redshift previously found by optical absorption lines of the presumed host. The properties of ASASSN-15lh are extreme when compared to either SLSNe or TDEs.

  15. Supergraph analysis of the ultraviolet finiteness of gauge supersymmetry

    International Nuclear Information System (INIS)

    Arnowit, R.; Nath, P.

    1979-01-01

    The detailed proof of the ultraviolet finiteness of the S-matrix of gauge supersymmetry for internal symmetry index N >= 2 is presented (where 4N is the number of Fermi coordinates in superspace). The theorem is established to arbitrary loop order in the linearized harmonic gauge when the spontaneous symmetry breaking of gauge supersymmetry preserves global supersymmetry. The asymptotic properties in the deep euclidean region of the tree-approximation propagators are calculated. These enter importantly in the derivation of the theorem. (orig.)

  16. Solar ultraviolet hazards

    International Nuclear Information System (INIS)

    Azmah Ali

    1995-01-01

    The paper discussed the following subjects: the sources of ultraviolet radiation, solar ultraviolet radiation definition, effects of over exposure to solar ultraviolet radiation, exposure limits and radiation protection of this radiation

  17. Effect of aging time on the optical, structural and photoluminescence properties of nanocrystalline ZnO films prepared by a sol–gel method

    International Nuclear Information System (INIS)

    Ibrahim, N.B.; AL-Shomar, S.M.; Ahmad, Sahrim Hj.

    2013-01-01

    The nanocrystalline zinc oxide (ZnO) films were deposited by a sol–gel method and the effect of sol aging time 0, 1, 7 and 11 days on the structural, optical and photoluminescence properties were investigated. X-ray diffraction analysis showed that the deposited films were polycrystalline with hexagonal wurtzite structure and high orientation along c-axis direction. The grain size was in the range of 42–60 nm increased with sol aging time also the thickness increased from 70 to 147 nm with the aging time increment. The roughness of ZnO film investigated by atomic force microscope showed that roughness of the films increased then decreased with the increment of the aging time. The deposited films are highly transparent with an average transmission exceeding 82–95% in the visible range (400–800 nm), which slightly improved with aging time. The measured optical band gap values of the ZnO films were between 3.1 eV and 3.6 eV. The photoluminescence intensity increased with the aging time and the ZnO films have ultraviolet, violet and green emission.

  18. Ultraviolet sterilization

    International Nuclear Information System (INIS)

    Schenck, G.O.

    1987-01-01

    Artificial ultraviolet radiation sources can supply bactericidal energy in such a high dosage that in less than a second a higher degree of disinfection is accomplished than by sun irradiation in hours. Bacteria, viruses, phages, and organic micropollutants can be degraded by photochemical wet combustion down to and below detection limits of organic carbon. There are no known ultraviolet-resistant microorganisms. There are limitations to ultraviolet treatment which can often be overcome by adequate technical measures. Unlike other water purification processes, ultraviolet irradiation only exterminates living organisms. The radiation must be able to penetrate to the objects of the kill; in a dose large enough to kill, and long enough to kill and prevent new growth. Contrary to filters, ultraviolet flow-through reactors do not restrict free flow significantly. In contrast to distillation, ultraviolet irradiation imposes no phase changes to the water. Used as a sequence in ultrapure water systems, maintenance requirements are virtually nonexistent; because of the absence of dissolved and particulate matter in purified water, mechanical cleaning of the photoreactor chambers is not essential. The process is highly economical; energy consumption is low and supervision minimal. 103 refs., 45 figs., 15 tabs

  19. Engineering of the photoluminescence of ZnO nanowires by different growth and annealing environments

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; Sombrio, C I L; Franzen, P L

    2015-01-01

    Optical properties of ZnO nanowires were investigated through photoluminescence (PL) at room and low temperatures. An excitonic structure was observed in the UV band emission and we are able to distinguish between free excitons, bound excitons and donor acceptor pairs. The PL spectra shows deep...... level emissions ranging from 1.4 eV up to 2.8 eV, strongly depending on surface defects whereas the red emission (1.7 eV) is activated at cryogenic temperatures. We attribute the green luminescence (2.4 eV) emission to the presence of zinc vacancies into ZnO nanowires. Further evidences that confirm...... the mechanism are observed in the PL emission spectra after annealing in O2 or Ar environments....

  20. Photoluminescence of Diamondoid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Clay, William; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.; Sasagawa, Takao; Iwasa, Akio; /TIT, Nagatsuta; Liu, Zhi; /LBNL, ALS; Dahl, Jeremy E.; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.; Carlson, Robert M.K.; /Molecular Diamond Technologies, Chevron Technology Ventures; Kelly, Michael; Melos, Nicholas; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.; Shen, Zhi-Xun; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab. /SIMES, Stanford

    2012-04-03

    The photoluminescence of diamondoids in the solid state is examined. All of the diamondoids are found to photoluminesce readily with initial excitation wavelengths ranging from 233 nm to 240 nm (5.3 eV). These excitation energies are more than 1 eV lower than any previously studied saturated hydrocarbon material. The emission is found to be heavily shifted from the absorption, with emission wavelengths of roughly 295 nm (4.2 eV) in all cases. In the dissolved state, however, no uorescence is observed for excitation wavelengths as short as 200 nm. We also discuss predictions and measurements of the quantum yield. Our predictions indicate that the maximum yield may be as high as 25%. Our measurement of one species, diamantane, gives a yield of 11%, the highest ever reported for a saturated hydrocarbon, even though it was likely not at the optimal excitation wavelength.

  1. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    Science.gov (United States)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  2. Shock-Assisted Superficial Hexagonal-to-Cubic Phase Transition in GaN/Sapphire Interface Induced by Using Ultra-violet Laser Lift-Of Techniques

    International Nuclear Information System (INIS)

    Wei-Hua, Chen; Xiao-Dong, Hu; Xiang-Ning, Kang; Xu-Rong, Zhou; Xiao-Min, Zhang; Tong-Jun, Yu; Zhi-Jian, Yang; Ke, Xu; Guo-Yi, Zhang; Xu-Dong, Shan; Li-Ping, You

    2009-01-01

    Ultra-violet (KrF excimer laser, λ = 248 nm) laser lift-of (LLO) techniques have been operated to the GaN/sapphire structure to separate GaN from the sapphire substrate. Hexagonal to cubic phase transformation induced by the ultra-violet laser lift-of (UV-LLO) has been characterized by micro-Raman spectroscopy, micro-photoluminescence, along with high-resolution transmission electron microscopy (HRTEM). HRTEM indicates that UV-LLO induced phase transition takes place above the LLO interface, without phase transition under the LLO interface. The formed cubic GaN often exists as nanocrystal grains attaching on the bulk hexagonal GaN. The half-loop-cluster-like UV-LLO interface indicates that the LLO-induced shock waves has generated and played an assistant role in the decomposition of the hexagonal GaN and in the formation of cubic GaN grains at the LLO surface

  3. Effect of gamma irradiation on the photoluminescence of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Elistratova, M. A., E-mail: Marina.Elistratova@mail.ioffe.ru; Romanov, N. M. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Goryachev, D. N. [Russian Academy of Sciences, Ioffe Institute (Russian Federation); Zakharova, I. B. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Sreseli, O. M. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2017-04-15

    The effect of gamma irradiation on the luminescence properties of porous silicon produced by the electrochemical technique is studied. Changes in the photoluminescence intensity between irradiation doses and over a period of several days after the last irradiation are recorded. The quenching of photoluminescence at low irradiation doses and recovery after further irradiation are registered. It is found that porous silicon is strongly oxidized after gamma irradiation and the oxidation process continues for several days after irradiation. It is conceived that the change in the photoluminescence spectra and intensity of porous silicon after gamma irradiation is caused by a change in the passivation type of the porous surface: instead of hydrogen passivation, more stable oxygen passivation is observed. To stabilize the photoluminescence spectra of porous silicon, the use of fullerenes is proposed. No considerable changes in the photoluminescence spectra during irradiation and up to 18 days after irradiation are detected in a porous silicon sample with a thermally deposited fullerene layer. It is shown that porous silicon samples with a deposited C{sub 60} layer are stable to gamma irradiation and oxidation.

  4. Photoluminescent properties of complex metal oxide nanopowders for gas sensing

    Science.gov (United States)

    Bovhyra, R. V.; Mudry, S. I.; Popovych, D. I.; Savka, S. S.; Serednytski, A. S.; Venhryn, Yu. I.

    2018-03-01

    This work carried out research on the features of photoluminescence of the mixed and complex metal oxide nanopowders (ZnO/TiO2, ZnO/SnO2, Zn2SiO4) in vacuum and gaseous ambient. The nanopowders were obtained using pulsed laser reactive technology. The synthesized nanoparticles were characterized by X-ray diffractometry, energy-dispersive X-ray analysis, and scanning and transmission electron microscopy analysis for their sizes, shapes and collocation. The influence of gas environment on the photoluminescence intensity was investigated. A change of ambient gas composition leads to a rather significant change in the intensity of the photoluminescence spectrum and its deformation. The most significant changes in the photoluminescent spectrum were observed for mixed ZnO/TiO2 nanopowders. This obviously is the result of a redistribution of existing centers of luminescence and the appearance of new adsorption centers of luminescence on the surface of nanopowders. The investigated nanopowders can be effectively used as sensing materials for the construction of the multi-component photoluminescent sensing matrix.

  5. Femtosecond UV laser non-ablative surface structuring of ZnO crystal: impact on exciton photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Museur, Luc [Laboratoire de Physique des Lasers (LPL), UMR 7538 CNRS, Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Michel, Jean-Pierre [Laboratoire des Proprietes Mecaniques et Thermodynamiques des Materiaux (LPMTM), UMR 9001 CNRS, Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Portes, Patrick; Kanaev, Andrei V. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions (LIMHP), UMR 1311 CNRS, Institut Galilee, Universite Paris 13, 93430 Villetaneuse (France); Englezis, Apostolis; Stassinopoulos, Andreas; Anglos, Demetrios [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (IESL-FORTH), 71110 Heraklion, Crete (Greece)

    2010-03-15

    The ultraviolet (UV) laser irradiation (248 nm) of monocrystalline wurtzite ZnO with 450 fs pulses results in surface modification. A formation of two orthogonal ripple structures with a period of 400-500 nm was observed oriented parallel and perpendicular to the laser beam polarization. The UV exciton emission obtained on the irradiated domains is found greatly enhanced locally up to {approx}10{sup 3} times. The photoluminescence band is redshifted by 2-3 nm and 40% narrower (full width at half-maximum), while at the same time the E{sub 2} (439 cm{sup -1}) Raman band intensity increases up to {approx}50 times. The process is found irreversible with the threshold fluence of 11 mJ/cm{sup 2}, which is considerably lower than the ablation threshold 115 mJ/cm{sup 2}. Fine surface nanostructuring on the scale of {approx}10 nm may be responsible for the observed effect. (c) 2008 Optical Society of America.

  6. METHOD OF NON-CONTACT PHOTOLUMINESCENT DIAGNOSTICS OF THE EYE FIBROUS TUNIC CONDITION

    Directory of Open Access Journals (Sweden)

    S. Yu. Petrov

    2018-01-01

    Full Text Available Non-contact optical diagnostics of structural disorders of the eye has a number of advantages: high speed, accuracy and a large range of parameters available for analysis. The paper presents the results of studies of the photoluminescence of the fibrous tunic of the eye, excited by polarized light, depending on the intraocular pressure. In the experiments, isolated de-epithelized eyes of the rabbit were used, inside of which pressure up to 50 mm Hg was artificially created. Under these conditions, the cornea and sclera were illuminated with linearly polarized light at wavelengths of 250, 350 and 450 nm, exciting photoluminescence in the wavelength range up to 700 nm. Cross and co-polarized photoluminescence spectra excited by linearly polarized light were obtained. It has been established that, when excited by polarized light, the photoluminescence of the cornea is partially polarized. Depending on the wavelength of the photoluminescence, the degree of polarization varies from 0.2 to 0.35. It is shown that the degree of polarization of the photoluminescence of the cornea of the eye upon excitation by linearly polarized light can be used as a measurable parameter for assessing the physiological state of the eye. It is shown that the photoluminescence spectrum consists of two bands with maxima near 460-470 and 430-440 nm. These bands are assigned, respectively, to pyridinnucleotides and glycosylated collagen. A significant contribution can be made by the epithelium of the eye, which contains riboflavin with characteristic absorption bands near 450 and 365 nm. When excited at 450 nm, the photoluminescence maximum is located near 540 nm, which corresponds to the spectrum of fluorophores in the endothelium and epithelium. The spectrum of photoluminescence upon excitation at a wavelength of 250 nm can be attributed to tryptophan located in the intraocular lens.

  7. Synthesis, structure and photoluminescence of (PLAGH)2[ZnCl4] and comparative analysis of photoluminescence properties with tris(2,2′-bipyridine)ruthenium(II)

    International Nuclear Information System (INIS)

    Radanović, Mirjana M.; Jelić, Miodrag G.; Romčević, Nebojša Ž.; Boukos, Nikos; Vojinović-Ješić, Ljiljana S.; Leovac, Vukadin M.; Hadžić, Branka B.; Bajac, Branimir M.; Nađ, Laslo F.; Chandrinou, Chrysoula; Baloš, Sebastian S.

    2015-01-01

    Highlights: • New zinc(II) complex with pyridoxalaminoguanidine was synthesized. • The enhancement of the photoluminescence due to the compound formation was achieved. • Very high photoluminescence of Zn(II) compound was noticed. • Comparative analysis of photoluminescence with tris(2,2′-bipyridine) ruthenium(II) was provided. - Abstract: The first compound of zinc(II) containing pyridoxalaminoguanidine has been synthesized and characterized by elemental analysis, infrared spectra, conductometric measurements and X-ray crystallography. Single crystals of the compound were obtained in the reaction of methanolic solution of zinc(II) chloride and pyridoxalaminoguanidine hydrochloride. In this compound the coordination of chelate ligand is absent and tetrachlorido complex of zinc(II) with pyridoxalaminuguanidinium cation as contraion is obtained. Photoluminescence spectra were measured. Lorentzian multipeak technique was used to determine peak wavelengths and their intensities. Photoluminescence spectroscopy upon 325, 488 and 514 nm laser excitation light was used to obtain results. This novel compound of zinc(II) was compared to the well-known organic light emitting diode material—ruthenium(II) complex with bypiridine i.e., tris(2,2′-bipyridine)ruthenium(II), under the same circumstances and the identical experimental setup. A scheme of energy levels and transitions is proposed to explain the obtained experimental results

  8. Plans for the extreme ultraviolet explorer data base

    Science.gov (United States)

    Marshall, Herman L.; Dobson, Carl A.; Malina, Roger F.; Bowyer, Stuart

    1988-01-01

    The paper presents an approach for storage and fast access to data that will be obtained by the Extreme Ultraviolet Explorer (EUVE), a satellite payload scheduled for launch in 1991. The EUVE telescopes will be operated remotely from the EUVE Science Operation Center (SOC) located at the University of California, Berkeley. The EUVE science payload consists of three scanning telescope carrying out an all-sky survey in the 80-800 A spectral region and a Deep Survey/Spectrometer telescope performing a deep survey in the 80-250 A spectral region. Guest Observers will remotely access the EUVE spectrometer database at the SOC. The EUVE database will consist of about 2 X 10 to the 10th bytes of information in a very compact form, very similar to the raw telemetry data. A history file will be built concurrently giving telescope parameters, command history, attitude summaries, engineering summaries, anomalous events, and ephemeris summaries.

  9. Primary photoluminescence in as-neutron (electron) -irradiated n-type 6H-SiC

    International Nuclear Information System (INIS)

    Zhong, Z.Q.; Wu, D.X.; Gong, M.; Wang, O.; Shi, S.L.; Xu, S.J.; Chen, X.D.; Ling, C.C.; Fung, S.; Beling, C.D.; Brauer, G.; Anwand, W.; Skorupa, W.

    2006-01-01

    Low-temperature photoluminescence spectroscopy has revealed a series of features labeled S 1 , S 2 , S 3 in n-type 6H-SiC after neutron and electron irradiation. Thermal annealing studies showed that the defects S 1 , S 2 , S 3 disappeared at 500 deg. C. However, the well-known D 1 center was only detected for annealing temperatures over 700 deg. C. This experimental observation not only indicated that the defects S 1 , S 2 , S 3 were a set of primary defects and the D 1 center was a kind of secondary defect, but also showed that the D 1 center and the E 1 , E 2 observed using deep level transient spectroscopy might not be the same type of defects arising from the same physical origin

  10. Improving the performance of AlGaN-based deep-ultraviolet light-emitting diodes using electron blocking layer with a heart-shaped graded Al composition

    Science.gov (United States)

    Kwon, M. R.; Park, T. H.; Lee, T. H.; Lee, B. R.; Kim, T. G.

    2018-04-01

    We propose a design for highly efficient AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) using a heart-shaped graded Al composition electron-blocking layer (EBL). This novel structure reduced downward band bending at the interface between the last quantum barrier and the EBL and flattened the electrostatic field in the interlayer between the barriers of the multi-quantum barrier EBL. Consequently, electron leakage was significantly suppressed and hole injection efficiency was found to have improved. The parameter values of simulation were extracted from the experimental data of the reference DUV LEDs. Using the SimuLED, we compared the electrical and optical properties of three structures with different Al compositions in the active region and the EBL. The internal quantum efficiency of the proposed structure was shown to exceed those of the reference DUV LEDs by a factor of 1.9. Additionally, the output power at 20 mA was found to increase by a factor of 2.1.

  11. Influence of structural defects on excitonic photoluminescence of pentacene

    International Nuclear Information System (INIS)

    Piryatins'kij, Yu.P.; Kurik, M.V.

    2011-01-01

    The exciton reflection, absorption, and photoluminescence spectra for single crystals and polycrystalline films have been studied in the temperature range of 4.2-296 K. A significant influence of structural defects arising during phase transitions on the exciton spectra of pentacene has been detected. The mechanisms of photoluminescence in single crystals and crystalline films of pentacene have been considered.

  12. UVUDF: Ultraviolet imaging of the Hubble ultra deep field with wide-field camera 3

    Energy Technology Data Exchange (ETDEWEB)

    Teplitz, Harry I.; Rafelski, Marc; Colbert, James W.; Hanish, Daniel J. [Infrared Processing and Analysis Center, MS 100-22, Caltech, Pasadena, CA 91125 (United States); Kurczynski, Peter; Gawiser, Eric [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854 (United States); Bond, Nicholas A.; Gardner, Jonathan P.; De Mello, Duilia F. [Laboratory for Observational Cosmology, Astrophysics Science Division, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Grogin, Norman; Koekemoer, Anton M.; Brown, Thomas M.; Coe, Dan; Ferguson, Henry C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Atek, Hakim [Laboratoire d' Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Finkelstein, Steven L. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Giavalisco, Mauro [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Gronwall, Caryl [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lee, Kyoung-Soo [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Ravindranath, Swara, E-mail: hit@ipac.caltech.edu [Inter-University Centre for Astronomy and Astrophysics, Pune (India); and others

    2013-12-01

    We present an overview of a 90 orbit Hubble Space Telescope treasury program to obtain near-ultraviolet imaging of the Hubble Ultra Deep Field using the Wide Field Camera 3 UVIS detector with the F225W, F275W, and F336W filters. This survey is designed to: (1) investigate the episode of peak star formation activity in galaxies at 1 < z < 2.5; (2) probe the evolution of massive galaxies by resolving sub-galactic units (clumps); (3) examine the escape fraction of ionizing radiation from galaxies at z ∼ 2-3; (4) greatly improve the reliability of photometric redshift estimates; and (5) measure the star formation rate efficiency of neutral atomic-dominated hydrogen gas at z ∼ 1-3. In this overview paper, we describe the survey details and data reduction challenges, including both the necessity of specialized calibrations and the effects of charge transfer inefficiency. We provide a stark demonstration of the effects of charge transfer inefficiency on resultant data products, which when uncorrected, result in uncertain photometry, elongation of morphology in the readout direction, and loss of faint sources far from the readout. We agree with the STScI recommendation that future UVIS observations that require very sensitive measurements use the instrument's capability to add background light through a 'post-flash'. Preliminary results on number counts of UV-selected galaxies and morphology of galaxies at z ∼ 1 are presented. We find that the number density of UV dropouts at redshifts 1.7, 2.1, and 2.7 is largely consistent with the number predicted by published luminosity functions. We also confirm that the image mosaics have sufficient sensitivity and resolution to support the analysis of the evolution of star-forming clumps, reaching 28-29th magnitude depth at 5σ in a 0.''2 radius aperture depending on filter and observing epoch.

  13. Characteristics of exciton photoluminescence kinetics in low-dimensional silicon structures

    CERN Document Server

    Sachenko, A V; Manojlov, E G; Svechnikov, S V

    2001-01-01

    The time-resolved visible photoluminescence of porous nanocrystalline silicon films obtained by laser ablation have been measured within the temperature range 90-300 K. A study has been made of the interrelationship between photoluminescence characteristics (intensity, emission spectra, relaxation times, their temperature dependencies and structural and dielectric properties (size and shapes of Si nanocrystals, oxide phase of nanocrystal coating, porosity). A photoluminescence model is proposed that describes photon absorption and emission occurring in quantum-size Si nanocrystals while coupled subsystems of electron-hole pairs and excitons take part in the recombination. Possible excitonic Auger recombination mechanism in low-dimensional silicon structures is considered

  14. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    Energy Technology Data Exchange (ETDEWEB)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id [Jurusan Fisika, FMIPA-UNJ, Rawamangun, Jakarta (Indonesia); Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Fauzia, Vivi [Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Umar, A. A. [Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor (Malaysia); Sun, X. W. [School of Electrical & Electronic Engineering, Nanyang Technological University, Nanyang Avenue (Singapore)

    2016-04-19

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffraction peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.

  15. Ultraviolet photosensors fabricated with Ag nanowires coated with ZnO nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Guan-Hung [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin Chau-Nan, E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); NCKU Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    We have developed a simple low temperature process to coat zinc oxide (ZnO) nanoparticles (NPs) on Ag nanowires (NWs) with well-controlled morphology. Triethanolamine (TEA) was employed to react with zinc acetate (Zn(CH{sub 3}COO){sub 2}) forming ZnO NPs. TEA was also found to enhance the nucleation and binding of ZnO NPs on the Ag nanowire surfaces facilitating a complete coverage of Ag nanowire surfaces with ZnO NPs. The effects of the process parameters including reaction time and reaction temperature were studied. The surfaces of 60 nm diameter Ag NWs could be completely covered with ZnO NPs with the final diameters of Ag-NWs@ZnO (core–shell NWs) turning into the range from 100 nm to 450 nm. The Ag-NWs@ZnO was characterized by scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray mapping analysis, X-ray diffraction, and photoluminescence spectra. Finally, ultraviolet (UV) photosensors were fabricated using Ag-NWs@ZnO. They were found to improve photosensitivity with greatly enhanced fast response by reducing the recovery time by 2 orders, in comparison with the UV-sensors using single-crystalline ZnO NWs. - Highlights: • Solution process to coat ZnO nanoparticles on Ag nanowires has been developed. • Ultraviolet photosensing of ZnO nanoparticles coated on the Ag nanowires was found. • High defect concentration of ZnO nanoparticles enhanced the photosensing properties.

  16. Exciplex formation and electroluminescent absorption in ultraviolet organic light-emitting diodes

    Science.gov (United States)

    Zhang, Qi; Zhang, Hao; Zhang, Xiao-Wen; Xu, Tao; Wei, Bin

    2015-02-01

    We investigated the formation of exciplex and electroluminescent absorption in ultraviolet organic light-emitting diodes (UV OLEDs) using different heterojunction structures. It is found that an energy barrier of over 0.3 eV between the emissive layer (EML) and adjacent transport layer facilitates exciplex formation. The electron blocking layer effectively confines electrons in the EML, which contributes to pure UV emission and enhances efficiency. The change in EML thickness generates tunable UV emission from 376 nm to 406 nm. In addition, the UV emission excites low-energy organic function layers and produces photoluminescent emission. In UV OLED, avoiding the exciplex formation and averting light absorption can effectively improve the purity and efficiency. A maximum external quantum efficiency of 1.2% with a UV emission peak of 376 nm is realized. Project supported by the National Natural Science Foundation of China (Grant Nos. 61136003 and 61275041) and the Guangxi Provincial Natural Science Foundation, China (Grant No. 2012GXNSFBA053168).

  17. Preparation of Polyimide/Zinc Oxide Nanocomposite Films via an Ion-Exchange Technique and Their Photoluminescence Properties

    Directory of Open Access Journals (Sweden)

    Shuxiang Mu

    2011-01-01

    Full Text Available Polyimide (PI composite films with ZnO nanoparticles embedded in the surface layer were prepared by alkali hydrolyzation following ion exchange in Zn(NO32 solution and thermal treatment of the zinc ion-doped PI films in air atmosphere. The effect of alkali treatment, ion exchange, and thermal treatment conditions was investigated in relation to the amount of zinc atomic loading, morphology, photoluminescence (PL, and thermal properties of the PI/ZnO composite films using ICP, XPS, FE-SEM, TEM, Raman microscope, TGA, and DSC. ZnO nanoparticles were formed slowly and dispersed uniformly in the surface-modified layers of PI films with an average diameter of 20 nm. The PL spectra of all the PI/ZnO nanocomposite films obtained at 350°C/7 h possessed a weak ultraviolet emission peak and a broad and strong visible emission band. The PI/ZnO nanocomposite films maintained the excellent thermal property of the host PI films.

  18. UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction

    International Nuclear Information System (INIS)

    Zebbar, N.; Chabane, L.; Gabouze, N.; Kechouane, M.; Trari, M.; Aida, M.S.; Belhousse, S.; Hadj Larbi, F.

    2016-01-01

    Undoped zinc oxide (ZnO) and indium-doped (ZnO:In) thin films were grown at different temperatures (250–400 °C) on alkali-free borosilicate glass and n-Si (100) substrates by Ultrasonic Spray Pyrolysis method. The structural, compositional, optical and electrical properties of ZnO films were investigated by X-ray diffraction, Scanning Electron Microscopy, Rutherford Back Scattering Spectroscopy, Fourier Transform Infrared spectroscopy, photoluminescence (PL) and the four-point probe technique. The predominance of ultraviolet (UV) and blue emission intensities was found to be closely dependent on the resistivity of the film. The visible emission band (peaking at 432 nm) prevails for low film resistivity, ranging from 10 −2 to 1 Ω·cm. By contrast, for higher resistivity (> 1 Ω·cm), there is a predominance of the UV band (382 nm). The PL and photoresponsivity results of fabricated ZnO:In/n-Si(100) heterojunctions prepared at different temperatures are discussed. The maximum spectral response of the ZnO:8%In/Si heterojunction diode fabricated at 250 °C was about 80 mA/W at zero bias. The highlighted results are attractive for the optoelectronic applications. - Highlights: • Properties of ZnO thin films grown by Ultrasonic Spray Pyrolysis at 350 °C. • Photoluminescence emission intensity in undoped ZnO film: effect of the resistivity • Photoluminescence emission intensity of In-doped ZnO film is resistivity dependent. • The spectral response of ZnO:In/Si hetero-junction deposited in the range (250–400 °C)

  19. UV and visible photoluminescence emission intensity of undoped and In-doped ZnO thin film and photoresponsivity of ZnO:In/Si hetero-junction

    Energy Technology Data Exchange (ETDEWEB)

    Zebbar, N., E-mail: nacbar2003@yahoo.fr [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Chabane, L. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Gabouze, N. [CRTSE, 02 Bd. Frantz Fanon, BP 140, Algiers (Algeria); Kechouane, M. [LCMS, Faculty of Physics, University of Sciences and Technology (USTHB), BP 32, El-Alia, Algiers (Algeria); Trari, M. [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry (USTHB), BP 32, El-Alia, Algiers (Algeria); Aida, M.S. [LCM et Interface, Faculty of Sciences, University of Constantine, 25000 (Algeria); Belhousse, S. [CRTSE, 02 Bd. Frantz Fanon, BP 140, Algiers (Algeria); Hadj Larbi, F. [MEMS & Sensors, Division Microélectronique et Nanotechnologie, Centre de Développement des Technologies Avancées (CDTA), BP 17, Baba Hassen, Algiers (Algeria)

    2016-04-30

    Undoped zinc oxide (ZnO) and indium-doped (ZnO:In) thin films were grown at different temperatures (250–400 °C) on alkali-free borosilicate glass and n-Si (100) substrates by Ultrasonic Spray Pyrolysis method. The structural, compositional, optical and electrical properties of ZnO films were investigated by X-ray diffraction, Scanning Electron Microscopy, Rutherford Back Scattering Spectroscopy, Fourier Transform Infrared spectroscopy, photoluminescence (PL) and the four-point probe technique. The predominance of ultraviolet (UV) and blue emission intensities was found to be closely dependent on the resistivity of the film. The visible emission band (peaking at 432 nm) prevails for low film resistivity, ranging from 10{sup −2} to 1 Ω·cm. By contrast, for higher resistivity (> 1 Ω·cm), there is a predominance of the UV band (382 nm). The PL and photoresponsivity results of fabricated ZnO:In/n-Si(100) heterojunctions prepared at different temperatures are discussed. The maximum spectral response of the ZnO:8%In/Si heterojunction diode fabricated at 250 °C was about 80 mA/W at zero bias. The highlighted results are attractive for the optoelectronic applications. - Highlights: • Properties of ZnO thin films grown by Ultrasonic Spray Pyrolysis at 350 °C. • Photoluminescence emission intensity in undoped ZnO film: effect of the resistivity • Photoluminescence emission intensity of In-doped ZnO film is resistivity dependent. • The spectral response of ZnO:In/Si hetero-junction deposited in the range (250–400 °C)

  20. Photoluminescent carbogenic nanoparticles directly derived from crude biomass

    KAUST Repository

    Krysmann, Marta J.

    2012-01-01

    We present an environmentally benign, energy efficient and readily scalable approach to synthesize photoluminescent carbogenic nanoparticles directly from soft tissue biomass. Our approach relies on the pyrolytic decomposition of grass that gives rise to the formation of well-defined nanoparticles. The carbogenic nanoparticles can be readily surface modified, generating a series of highly selective photoluminescent materials that exhibit remarkable stability upon prolonged exposure to aggressive, high-temperature, high-salinity environment. © 2012 The Royal Society of Chemistry.

  1. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo

    2016-05-06

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  2. Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures

    KAUST Repository

    Wang, Zhuo; Dong, Zhaogang; Gu, Yinghong; Chang, Yung-Huang; Zhang, Lei; Li, Lain-Jong; Zhao, Weijie; Eda, Goki; Zhang, Wenjing; Grinblat, Gustavo; Maier, Stefan A.; Yang, Joel K. W.; Qiu, Cheng-Wei; Wee, Andrew T. S.

    2016-01-01

    Impressive properties arise from the atomically thin nature of transition metal dichalcogenide two-dimensional materials. However, being atomically thin limits their optical absorption or emission. Hence, enhancing their photoluminescence by plasmonic nanostructures is critical for integrating these materials in optoelectronic and photonic devices. Typical photoluminescence enhancement from transition metal dichalcogenides is 100-fold, with recent enhancement of 1,000-fold achieved by simultaneously enhancing absorption, emission and directionality of the system. By suspending WSe2 flakes onto sub-20-nm-wide trenches in gold substrate, we report a giant photoluminescence enhancement of ~20,000-fold. It is attributed to an enhanced absorption of the pump laser due to the lateral gap plasmons confined in the trenches and the enhanced Purcell factor by the plasmonic nanostructure. This work demonstrates the feasibility of giant photoluminescence enhancement in WSe2 with judiciously designed plasmonic nanostructures and paves a way towards the implementation of plasmon-enhanced transition metal dichalcogenide photodetectors, sensors and emitters.

  3. In-situ detection of microbial life in the deep biosphere in igneous ocean crust

    Directory of Open Access Journals (Sweden)

    Everett Cosio Salas

    2015-11-01

    Full Text Available The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in-situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  4. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    Science.gov (United States)

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  5. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, N., E-mail: naderi.phd@gmail.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-03-05

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  6. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    International Nuclear Information System (INIS)

    Naderi, N.; Hashim, M.R.

    2013-01-01

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  7. Detection of certain minerals of uranium, zinc, lead and other metals using photoluminescence

    International Nuclear Information System (INIS)

    Seigel, H.O.; Robbins, J.C.

    1980-01-01

    We have discovered that certain photoluminescent minerals of uranium, lead, zinc, fluorine, tungsten and other elements which may naturally occur at the surface of the earth can be selectively detected in the presence of most other photoluminescent minerals and organic materials which are likely to occur at the earth's surface. The base of selective ldetection is the discovery that the lifetimes of photoluminescent emission of materials in the latter class are much shorter than the lifetimes of photoluminescent emission of materials in the former class. This invention utilizes this discovery in the detection of minerals of uranium, zinc, lead, flourine, tungsten, molybdenum, mercury and other elements. In one embodiment of the invention, using a laser or other short duration source of optical excitation, measurements of the photoluminescent response of the earth are made at times sufficiently long for the photoluminescence of other common and unwanted sources to have substantially decayed, thereby selectively detection and identifying certain minerals of potiential economic interest. In another embodiment a source of light is modulated at a predetermined frequency and the photoluminescent response of the earth which is out-of-phase with the source is measured. In a third embodiment this source of light may be incident solar radiation after passage through asuitable modulator

  8. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  9. Enhanced photoluminescence from porous silicon by hydrogen-plasma etching

    International Nuclear Information System (INIS)

    Wang, Q.; Gu, C.Z.; Li, J.J.; Wang, Z.L.; Shi, C.Y.; Xu, P.; Zhu, K.; Liu, Y.L.

    2005-01-01

    Porous silicon (PS) was etched by hydrogen plasma. On the surface a large number of silicon nanocone arrays and nanocrystallites were formed. It is found that the photoluminescence of the H-etched porous silicon is highly enhanced. Correspondingly, three emission centers including red, green, and blue emissions are shown to contribute to the enhanced photoluminescence of the H-etched PS, which originate from the recombination of trapped electrons with free holes due to Si=O bonding at the surface of the silicon nanocrystallites, the quantum size confinement effect, and oxygen vacancy in the surface SiO 2 layer, respectively. In particular, the increase of SiO x (x<2) formed on the surface of the H-etched porous silicon plays a very important role in enhancing the photoluminescence properties

  10. Semiconductor color-center structure and excitation spectra: Equation-of-motion coupled-cluster description of vacancy and transition-metal defect photoluminescence

    Science.gov (United States)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Burggraf, Larry W.

    2018-03-01

    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered.

  11. ZnO-nanorod-array/p-GaN high-performance ultra-violet light emitting devices prepared by simple solution synthesis

    Science.gov (United States)

    Jha, Shrawan Kumar; Luan, Chunyan; To, Chap Hang; Kutsay, Oleksandr; Kováč, Jaroslav; Zapien, Juan Antonio; Bello, Igor; Lee, Shuit-Tong

    2012-11-01

    Pure ultra-violet (UV) (378 nm) electroluminescence (EL) from zinc oxide (ZnO)-nanorod-array/p-gallium nitride (GaN) light emitting devices (LEDs) is demonstrated at low bias-voltages (˜4.3 V). Devices were prepared merely by solution-synthesis, without any involvement of sophisticated material growth techniques or preparation methods. Three different luminescence characterization techniques, i.e., photo-luminescence, cathodo-luminescence, and EL, provided insight into the nature of the UV emission mechanism in solution-synthesized LEDs. Bias dependent EL behaviour revealed blue-shift of EL peaks and increased peak sharpness, with increasing the operating voltage. Accelerated bias stress tests showed very stable and repeatable electrical and EL performance of the solution-synthesized nanorod LEDs.

  12. Synthesis, structure and photoluminescence of (PLAGH){sub 2}[ZnCl{sub 4}] and comparative analysis of photoluminescence properties with tris(2,2′-bipyridine)ruthenium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Radanović, Mirjana M. [University of Novi Sad, Faculty of Sciences, Novi Sad (Serbia); Jelić, Miodrag G., E-mail: jelicmgm@uns.ac.rs [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia); Romčević, Nebojša Ž. [University of Belgrade, Institute of Physics, Belgrade (Serbia); Boukos, Nikos [National Centre for Scientific Research “Demokritos”, Institute of Materials Science, Athens (Greece); Vojinović-Ješić, Ljiljana S.; Leovac, Vukadin M. [University of Novi Sad, Faculty of Sciences, Novi Sad (Serbia); Hadžić, Branka B. [University of Belgrade, Institute of Physics, Belgrade (Serbia); Bajac, Branimir M. [University of Novi Sad, Faculty of Technology, Novi Sad (Serbia); Nađ, Laslo F. [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia); Chandrinou, Chrysoula [National Centre for Scientific Research “Demokritos”, Institute of Materials Science, Athens (Greece); Baloš, Sebastian S. [University of Novi Sad, Faculty of Technical Sciences, Novi Sad (Serbia)

    2015-10-15

    Highlights: • New zinc(II) complex with pyridoxalaminoguanidine was synthesized. • The enhancement of the photoluminescence due to the compound formation was achieved. • Very high photoluminescence of Zn(II) compound was noticed. • Comparative analysis of photoluminescence with tris(2,2′-bipyridine) ruthenium(II) was provided. - Abstract: The first compound of zinc(II) containing pyridoxalaminoguanidine has been synthesized and characterized by elemental analysis, infrared spectra, conductometric measurements and X-ray crystallography. Single crystals of the compound were obtained in the reaction of methanolic solution of zinc(II) chloride and pyridoxalaminoguanidine hydrochloride. In this compound the coordination of chelate ligand is absent and tetrachlorido complex of zinc(II) with pyridoxalaminuguanidinium cation as contraion is obtained. Photoluminescence spectra were measured. Lorentzian multipeak technique was used to determine peak wavelengths and their intensities. Photoluminescence spectroscopy upon 325, 488 and 514 nm laser excitation light was used to obtain results. This novel compound of zinc(II) was compared to the well-known organic light emitting diode material—ruthenium(II) complex with bypiridine i.e., tris(2,2′-bipyridine)ruthenium(II), under the same circumstances and the identical experimental setup. A scheme of energy levels and transitions is proposed to explain the obtained experimental results.

  13. A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Thales R. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Sczancoski, Júlio C. [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil); Beltrán-Mir, Héctor [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Nogueira, Içamira C. [PPGEM-IFMA, Instituto Federal de Educação, Ciência e Tecnologia do Maranhão, 65030-005 São Luís, MA (Brazil); Li, Máximo S. [IFSC-USP, Universidade de São Paulo, P.O. Box 369, 13560-970 São Carlos, SP (Brazil); Andrés, Juan [QFA-UJI, Universitat Jaume I, 12071 Castellón (Spain); Cordoncillo, Eloisa [QIO-UJI, Universitat Jaume I, 12071 Castellón (Spain); Longo, Elson, E-mail: elson.liec@gmail.com [CDMF-UFSCar, Universidade Federal de São Carlos, P.O. Box 676, 13565-905 São Carlos, São Paulo (Brazil)

    2017-05-15

    Defect-related photoluminescence (PL) in materials have attracted interest for applications including near ultraviolet (NUV) excitable light-emitting diodes and in biomedical field. In this paper, hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}] nanorods with intense PL bands (bluish- and yellowish-white emissions) were obtained when excited under NUV radiation at room temperature. These nanoparticles were synthesized via chemical precipitation at 90 °C followed by distinct heat treatments temperatures (200–800 °C). Intense and broad emission profiles were achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). UV–Vis spectroscopy revealed band gap energies (5.58–5.78 eV) higher than the excitation energies (~3.54 and ~2.98 eV at 350 and 415 nm, respectively), confirming the contribution of defect energy levels within the forbidden zone for PL emissions. The structural features were characterized by X-ray diffraction, Rietveld refinement, thermogravimetric analysis, and Fourier transform infrared spectroscopy. By means of these techniques, the relation between structural order-disorder induced by defects, chemical reactions at both lattice and surface of the materials as well as the PL, without activator centers, was discussed in details. - Graphical abstract: The self-activated photoluminescence emissions of chemically precipitated hydroxyapatite nanorods were improved by different heat treatment temperatures. - Highlights: • HA nanorods were synthesized with improved self-activated PL at room temperature. • PL profile and intensity dependents on the temperature of posterior heat treatments. • Bluish- and yellowish-white emissions under NUV excitation (350 and 415 nm). • Broad and intense profiles achieved at 350 °C (380–750 nm) and 400 °C (380–800 nm). • PL from the e′–h{sup •} recombination between defect energy levels within the band gap.

  14. Effect of ion indium implantation on InP photoluminescence spectra

    International Nuclear Information System (INIS)

    Pyshnaya, N.B.; Radautsan, S.I.; Tiginyanu, I.M.; Ursaki, V.V.

    1988-01-01

    Photoluminescence spectra of indium phosphide single crystals implanted by indium after annealing under the protective Al 2 O 3 film in a nitrogen flow are investigated. As a result of implantation and annealing in photoluminescence spectra of crystals there appeared a new band with the maximum at 1.305 eV (T=6 K) which is connected with the free electron transition at the level of the antistructure defect of In p - lying by 0.115 eV above the valent zone ceiling. With large doses of the implanted indium in the photoluminescence spectrum a long-wave band with the maximum at 0.98-0.99 eV is also observed caused, apparently, by the strong lattice disorder

  15. Terahertz-field-induced photoluminescence of nanostructured gold films

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Malureanu, Radu; Zalkovskij, Maksim

    2013-01-01

    We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced at the pe......We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced...

  16. Ultraviolet detecting properties of amorphous MgInO thin film phototransistors

    International Nuclear Information System (INIS)

    Lu, Huiling; Bi, Xiaobin; Zhang, Shengdong; Zhou, Hang

    2015-01-01

    The ultraviolet (UV) detecting properties of Mg doped In 2 O 3 (MgInO or MIO) bottom gate thin film transistors (TFTs) were investigated. The optical measurements show that the introduction of Mg dopants effectively widens the optical band gap of In 2 O 3 . The cutoff wavelength of MIO films is pushed to deep UV as Mg content increases. Fabricated MIO TFTs with high Mg content demonstrate appraisable UV detecting properties with a dark current of 10 −14 A, a UV to visible rejection ratio of 10 3 , a responsivity of 3.2 A/W (300 nm) and a cutoff wavelength of 320 nm, which can be put to good use in deep UV detection. The dynamic photo-response measurement shows that the persistent photo-conductivity (PPC) effect can be alleviated by imposing a transient positive gate pulse. (paper)

  17. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  18. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  19. Room temperature Ultraviolet B emission from InAlGaN films synthesized by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kong, W., E-mail: wei.kong@duke.edu; Jiao, W. Y.; Kim, T. H.; Brown, A. S. [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States); Roberts, A. T. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Fournelle, J. [Department of Geoscience, University of Wisconsin, Madison, Wisconsin 53706 (United States); Losurdo, M. [CNR-NANOTEC, Istituto di Nanotecnologia, via Orabona, 4-70126 Bari (Italy); Everitt, H. O. [Charles Bowden Laboratory, Army Aviation and Missile RD& E Center, Redstone Arsenal, Alabama 35898 (United States); Department of Physics, Duke University, Durham, North Carolina 27708 (United States)

    2015-09-28

    Thin films of the wide bandgap quaternary semiconductor In{sub x}Al{sub y}Ga{sub (1−x−y)}N with low In (x = 0.01–0.05) and high Al composition (y = 0.40–0.49) were synthesized on GaN templates by plasma-assisted molecular beam epitaxy. High-resolution X-ray diffraction was used to correlate the strain accommodation of the films to composition. Room temperature ultraviolet B (280 nm–320 nm) photoluminescence intensity increased with increasing In composition, while the Stokes shift remained relatively constant. The data suggest a competition between radiative and non-radiative recombination occurs for carriers, respectively, localized at centers produced by In incorporation and at dislocations produced by strain relaxation.

  20. Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films

    International Nuclear Information System (INIS)

    Boudjouan, F.; Chelouche, A.; Touam, T.; Djouadi, D.; Khodja, S.; Tazerout, M.; Ouerdane, Y.; Hadjoub, Z.

    2015-01-01

    Nanostructured ZnO thin films with different molar ratios of MEA to zinc acetate (0.5, 1.0, 1.5 and 2.0) have been deposited on glass substrates by a sol–gel dip coating technique. X-ray diffraction, Scanning Electron Microscopy, UV–visible spectrophotometry and photoluminescence spectroscopy have been employed to investigate the effect of MEA stabilizer ratio on structural, morphological, absorbance and emission properties of the ZnO thin films. Diffraction patterns have shown that all the films are polycrystalline and exhibit a wurtzite hexagonal structure. The c axis orientation has been enhanced with increasing stabilizer ratio. SEM micrographs have revealed that the morphology of the ZnO films depend on stabilizer ratio. The UV–visible absorption spectra have demonstrated that the optical absorption is affected by stabilizer ratio. The photoluminescence spectra have indicated one ultraviolet and two visible emission bands (green and red), while band intensities are found to be dependent on stabilizer ratio. ZnO thin films deposited at MEA ratio of 1.0 show the highest UV emission while the minimum UV emission intensity is observed in thin films deposited at ratio of 0.5 and the maximum green has been recorded for films deposited at MEA ratio of 2.0. - Highlight: • c axis orientation increases with increasing MEA ratio. • The increase of MEA ration from 0.5 to 1.0 enhances greatly the UV emission. • The larger I UV /I visible is obtained for the MEA to Zn ratio of 1:1. • The MEA ratio of 0.5 favors the formation of large density of V zn . • The MEA ratio of 2.0 increases the V o density

  1. Chitosan/ZnAl_2O_4 films: structural evaluation and photoluminescent

    International Nuclear Information System (INIS)

    Araujo, P.M.A.G.; Costa, A.C.F.M.

    2014-01-01

    The photoluminescent materials have been the focus of intense research and applications in optics, electronics and biological areas. This work reports obtaining chitosan/ZnAl_2O_4 film in proportions of 1: 1, 1: 2, 1: 3, 1:4 to 1:5 by weight, and assess the structural properties of the films and photoluminescence. The samples were characterized by XRD, FTIR, emission and excitation. By XRD was found that all samples showed characteristic peaks of chitosan and ZnAl_2O_4. The FTIR spectra for all concentrations of Qs/NPs films exhibit characteristic bands of Qs and trend banding of ions ZnAl_2O_4. The emission and excitation spectra revealed the presence of a broadband processes associated with charge transfer to the Al"3"+ O"2"-, all samples showed good photoluminescent properties being that higher intensities of photoluminescence gave to the film concentration 1:4 being promising for photoelectronic applications. (author)

  2. Characterization of failure modes in deep UV and deep green LEDs utilizing advanced semiconductor localization techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Tangyunyong, Paiboon; Miller, Mary A.; Cole, Edward Isaac, Jr.

    2012-03-01

    We present the results of a two-year early career LDRD that focused on defect localization in deep green and deep ultraviolet (UV) light-emitting diodes (LEDs). We describe the laser-based techniques (TIVA/LIVA) used to localize the defects and interpret data acquired. We also describe a defect screening method based on a quick electrical measurement to determine whether defects should be present in the LEDs. We then describe the stress conditions that caused the devices to fail and how the TIVA/LIVA techniques were used to monitor the defect signals as the devices degraded and failed. We also describe the correlation between the initial defects and final degraded or failed state of the devices. Finally we show characterization results of the devices in the failed conditions and present preliminary theories as to why the devices failed for both the InGaN (green) and AlGaN (UV) LEDs.

  3. Development of highly durable deep-ultraviolet AlGaN-based LED multichip array with hemispherical encapsulated structures using a selected resin through a detailed feasibility study

    Science.gov (United States)

    Nagai, Shoko; Yamada, Kiho; Hirano, Akira; Ippommatsu, Masamichi; Ito, Masahiro; Morishima, Naoki; Aosaki, Ko; Honda, Yoshio; Amano, Hiroshi; Akasaki, Isamu

    2016-08-01

    To replace mercury lamps with AlGaN-based deep-ultraviolet (DUV) LEDs, a simple and low-cost package with increased light extraction efficiency (LEE) is indispensable. Therefore, resin encapsulation is considered to be a key technology. However, the photochemical reactions induced by DUV light cause serious problems, and conventional resins cannot be used. In the former part of this study, a comparison of a silicone resin and fluorine polymers was carried out in terms of their suitability for encapsulation, and we concluded that only one of the fluorine polymers can be used for encapsulation. In the latter part, the endurance of encapsulation using the selected fluorine polymer was investigated, and we confirmed that the selected fluorine polymer can guarantee a lifetime of over 6,000 h at a wavelength of 265 nm. Furthermore, a 3 × 4 array module of encapsulated dies on a simple AlN submount was fabricated, demonstrating the possibility of W/cm2-class lighting.

  4. Investigation of the photoluminescence properties of Au/ZnO/sapphire and ZnO/Au/sapphire films by experimental study and electromagnetic simulation

    International Nuclear Information System (INIS)

    Zeng, Yong; Zhao, Yan; Jiang, Yijian

    2015-01-01

    Highlights: • Photoluminescent properties from Au/ZnO/sapphire and ZnO/Au/sapphire structures have been investigated. • The enhancement of UV intensity is a result of the enhanced electric field intensity of the 325 nm excitation light. • Electron transfer which induced by the local surface may be also account for the enhancement of UV emissions. • The suppression of the visible emissions might be due to the flowing of electrons in the defect states to the Au. - Abstract: Photoluminescent properties from Au/ZnO/sapphire and ZnO/Au/sapphire structures have been investigated. It is found that due to the co-interaction between the incident light and local surface plasmons, the ultraviolet (UV) emissions from the two structures were both enhanced and the visible emissions related to the defects were suppressed. By the means of electromagnetic simulation, it indicates that the enhancement of UV intensity is a result of the enhanced electric field intensity of the 325 nm excitation light, which is induced by localized surface plasmons resonance (LSPR). On the other hand, electron transfer which is induced by the local surface also account for the enhancement of UV emissions. The suppression of the visible emissions might be due to the flowing of electrons in the defect states to the Au, which caused the reduction of the electrons in the defect states

  5. Structural and photoluminescence properties of Si-based nanosheet bundles rooted on Si substrates

    Science.gov (United States)

    Yuan, Peiling; Tamaki, Ryo; Kusazaki, Shinya; Atsumi, Nanae; Saito, Yuya; Kumazawa, Yuki; Ahsan, Nazmul; Okada, Yoshitaka; Ishida, Akihiro; Tatsuoka, Hirokazu

    2018-04-01

    Si-based nanosheet bundles were synthesized by the extraction of Ca atoms from CaSi2 microwalls grown on Si substrates by inositol hexakisphosphate solution or thermal treatment in FeCl2 vapor. The structural and photoluminescence properties of the Si-based nanosheet bundles were examined. The photoluminescence emissions in the visible region were clearly observed, and the temperature and excitation intensity dependences of the emissions were characterized. The observed Si-based nanosheets consist of thin Si layers, and a superlattice-like layered structural model is proposed to describe the Si-based nanosheet bundle structures and their photoluminescence property. The photoluminescence property of the nanosheets significantly depends on their treatment process. The luminescence mechanism of the nanosheets was discussed.

  6. Improved photoluminescence properties of a new green SrB2O4:Tb3+ phosphor by charge compensation

    International Nuclear Information System (INIS)

    Wu, Zhan-Chao; Wang, Ping; Liu, Jie; Li, Chao; Zhou, Wen-Hui; Kuang, Shao-Ping

    2012-01-01

    Highlights: ► New green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. ► Li + , Na + , and K + can all increase luminescent intensity of SrB 2 O 4 :Tb 3+ . ► Na + is the optimal charge compensator among Li + , Na + and K + . ► SrB 2 O 4 :Tb 3+ is a promising green phosphor for fabricating WLED. -- Abstract: A new green-emitting SrB 2 O 4 :Tb 3+ phosphor was synthesized by solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed all the samples with orthorhombic formation of SrB 2 O 4 . The excitation spectra indicate the phosphor can be effectively excited by near ultraviolet (NUV) light, making it attractive as conversion phosphor for LED applications. The phosphor exhibits a bright green emission with the highest photoluminescence (PL) intensity at 544 nm excited by 378 nm light. The critical quenching concentration of Tb 3+ in SrB 2 O 4 :Tb 3+ is about 10 mol%. The effects of charge compensators (Li + , Na + , and K + ) on photoluminescence of SrB 2 O 4 :Tb 3+ were also studied. The results show that the emission intensity can be improved by all the three charge compensators and Na + is the optimal one for SrB 2 O 4 :Tb 3+ . All properties show that the phosphor is a promising green phosphor pumped by NUV InGaN chip for fabricating white light-emitting diodes (WLEDs).

  7. The nature of the photoluminescence in amorphized PZT

    International Nuclear Information System (INIS)

    Silva, M.S.; Cilense, M.; Orhan, E.; Goes, M.S.; Machado, M.A.C.; Santos, L.P.S.; Paiva-Santos, C.O.; Longo, E.; Varela, J.A.; Zaghete, M.A.; Pizani, P.S.

    2005-01-01

    The polymeric precursor method was used to synthesize lead zirconate titanate powder (PZT). The crystalline powder was then amorphized by a high-energy ball milling process during 120 h. A strong photoluminescence emission was observed at room temperature for the amorphized PZT powder. The powders were characterized by XRD and the percentage of amorphous phase was calculated through Rietveld refinement. The microstructure for both phases was investigated by TEM. The optical gap was calculated through the Wood and Tauc method using the UV-Vis. data. Quantum mechanical calculations were carried out to give an interpretation of the photoluminescence in terms of electronic structure

  8. Correlation between surface modification and photoluminescence properties of β-Ga2O3 nanostructures

    Directory of Open Access Journals (Sweden)

    R. Jangir

    2016-03-01

    Full Text Available In this work three different growth methods have been used to grow β-Ga2O3 nanostructures. The nanostructures were characterized by Grazing Incident X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Photoluminescence Spectroscopy. Photoluminescence spectra for all the samples of β-Ga2O3 nanostructures exhibit an UV and blue emission band. The relative intensity of UV and blue luminescence is strongly affected by the surface defects present on the nanostructures. Our study shows that Photoluminescence intensity of UV and blue luminescence can be reliably used to determine the quality of β-Ga2O3 nanostructures. Further the work opens up the possibility of using UV excitation and subsequent Photoluminescence analysis as a possible means for oxygen sensing. The Photoluminescence mechanism in β-Ga2O3 nanostructures is also discussed.

  9. Preparation and Photoluminescence of Tungsten Disulfide Monolayer

    Directory of Open Access Journals (Sweden)

    Yanfei Lv

    2018-05-01

    Full Text Available Tungsten disulfide (WS2 monolayer is a direct band gap semiconductor. The growth of WS2 monolayer hinders the progress of its investigation. In this paper, we prepared the WS2 monolayer through chemical vapor transport deposition. This method makes it easier for the growth of WS2 monolayer through the heterogeneous nucleation-and-growth process. The crystal defects introduced by the heterogeneous nucleation could promote the photoluminescence (PL emission. We observed the strong photoluminescence emission in the WS2 monolayer, as well as thermal quenching, and the PL energy redshift as the temperature increases. We attribute the thermal quenching to the energy or charge transfer of the excitons. The redshift is related to the dipole moment of WS2.

  10. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Kohei [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Takahashi, Hideaki [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Naito, Hiroyoshi [Department of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)]. E-mail: naito@pe.osakafu-u.ac.jp

    2006-06-19

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser ({lambda} = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers.

  11. Optical properties of ultraviolet-light soaked states in polyfluorene thin films

    International Nuclear Information System (INIS)

    Asada, Kohei; Takahashi, Hideaki; Naito, Hiroyoshi

    2006-01-01

    Optical properties of ultraviolet (UV)-light soaked states in poly(9,9-dioctylfluorene) (F8) have been studied. F8 thin films, synthesized by Suzuki and Yamamoto coupling reactions, were irradiated by a He-Cd laser (λ = 325 nm) and the UV-light-soaked states were characterized by photoluminescence (PL), optical absorption, Fourier transform infrared absorption and electron spectroscopy for chemical analysis measurements. A photo-induced decrease in PL intensity and PL color change were found in UV-light-soaked F8 thin films. It is shown that the decrease in PL intensity is due to the increase in oxygen-related PL quenching centers and that the PL color change is due to the appearance of 2.2-eV emission bands whose origin is identified to be an exciplex formed between an oxygen-related defect and its nearest F8 polymer chain. The oxygen-related defect, which forms the exciplex, can result from a keto defect (fluorenone) because of the similarity in PL spectra between UV-light-soaked F8 and fluorene-fluorenone copolymers

  12. Enhanced phonon-assisted photoluminescence in InAs/GaAs parallelepiped quantum dots

    NARCIS (Netherlands)

    Fomin, V.; Gladilin, V.N.; Klimin, S.N.; Devreese, J.T.; Koenraad, P.M.; Wolter, J.H.

    2000-01-01

    We analyze the phonon-assisted photoluminescence due to the intraband transitions of an electron between the size-quantized states in rectangular parallelepiped InAs quantum dots ("quantum bricks") embedded into GaAs. The phonon-assisted photoluminescence is strongly enhanced by two processes.

  13. Synthesis of blue photoluminescent WS2 quantum dots via ultrasonic cavitation

    International Nuclear Information System (INIS)

    Bayat, A.; Saievar-Iranizad, E.

    2017-01-01

    Blue photoluminescent WS 2 quantum dots (QDs) were synthesized using a simple top-down method from natural raw mineral tungsten disulfide via tip ultrasonication followed by centrifugation in a water-ethanol (0.7/0.3 ratio) as eco-friendly solvent. Cavitation process at a high power (300 W) led to the breaking of bulk WS 2 flakes to its quantum dots. The as synthesized WS 2 QDs showed blue photoluminescence upon UV excitation. The synthesized WS 2 QDs were analysed by UV–vis and photoluminescence spectrophotometry, transmission electron microscopy, atomic force microscopy and X-ray diffraction. According to the transmission electron microscopy images, the size of WS 2 QDs was obtained as 5 nm in average. - Highlights: •Large scale blue photoluminescent WS 2 quantum dots was synthesized using Ultrasonic probe (Cavitation Process). •A solution of water/ethanol (0.7/0.3) was used as eco-friendly solvent instead of unsuitable solvent such as NMP and ACN. •Edges of bulk WS 2 was increased with formation of its quantum dots. •Solution of WS 2 QDs was stable after 6 months.

  14. Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors

    International Nuclear Information System (INIS)

    Tian, Ruixue; Hu, Shengliang; Wu, Lingling; Chang, Qing; Yang, Jinlong; Liu, Jun

    2014-01-01

    Highlights: • We develop a facile and green method to tailor surface groups. • Photoluminescence behaviors of carbon quantum dots are improved by tailoring their surface groups. • Highly luminescent efficiency is produced by amino-hydrothermal treatment of reduced carbon quantum dots. - Abstract: A facile and green method to tailor surface groups of carbon quantum dots (CQDs) is developed by hydrothermal treatment in an autoclave. The photoluminescence (PL) behaviors of CQDs depend on the types of surface groups. Highly efficient photoluminescence is obtained through amino-hydrothermal treatment of the CQDs reduced by NaBH 4 . The effects of surface groups on PL behavior are attributed to the degrees of energy band bending induced by surface groups

  15. Inorganic pigments doped with tris(pyrazol-1-yl)borate lanthanide complexes: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Gheno, Giulia, E-mail: giulia.gheno@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Bortoluzzi, Marco; Ganzerla, Renzo [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, Francesco [CIVEN, Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via delle Industrie 5, 30175 Marghera, Venezia (Italy)

    2014-01-15

    The inorganic pigments malachite, Egyptian blue, Ercolano blue and chrome yellow have been doped with the neutral homoleptic Ln(III) complex Ln(Tp){sub 3} (Ln=Eu, Tb; Tp=hydrotris(pyrazol-1-yl)borate) in the presence of arabic gum or acrylic emulsion as binders, in order to obtain photoluminescent materials of interest for cultural heritage restoration. The doped pigments have shown emissions associated to f–f transitions in the visible range upon excitation with UV light. Thermal and UV-light ageings have been carried out. In all the cases the photoluminescent behaviour is maintained, but in the cases of acrylic-based paints emission spectra and lifetimes are strongly influenced by thermal treatments. The choice of binder and pigments influences the photoluminescent behaviour of the corresponding film paints. -- Highlights: • Inorganic pigments doped with photoluminescent lanthanide complexes. • Hydrotris(pyrazol-1-yl)borate (Tp) as antenna-ligand for Eu(III) and Tb(III). • Emission associated to f–f transitions upon excitation with UV light. • Photoluminescence of paints influenced by the choice of binder and pigments. • Photoluminescence after ageing depending upon the type of binder.

  16. Photoluminescence properties and energy transfer in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8) phosphors for potential application in ultraviolet white light-emitting diodes.

    Science.gov (United States)

    Yu, Hong; Zi, Wenwen; Lan, Shi; Gan, Shucai; Zou, Haifeng; Xu, Xuechun; Hong, Guangyan

    2013-01-01

    Sr(3) MgSi(2) O(8) :Ce(3+) , Dy(3+) phosphors were prepared by a solid-state reaction technique and the photoluminescence properties were investigated. The emission spectra show not only a band due to Ce(3+) ions (403 nm) but also as a band due to Dy(3+) ions (480, 575 nm) (UV light excitation). The photoluminescence properties reveal that effective energy transfer occurs in Ce(3+) /Dy(3+) co-doped Sr(3) MgSi(2) O(8)phosphors, and the co-doping of Ce(3+) could enhance the emission intensity of Dy(3+) to a certain extent by transferring its energy to Dy(3+) . The Ce(3+) /Dy(3+) energy transfer was investigated by emission/excitation spectra, and photoluminescence decay behaviors. In Sr2.94 MgSi2 O8 :0.01Ce(3+) , 0.05Dy(3+) phosphors, the fluorescence lifetime of Dy(3+) (from 3.35 to 27.59 ns) is increased whereas that of Ce(3+) is greatly decreased (from 43.59 to 13.55 ns), and this provides indirect evidence of the Ce(3+) to Dy(3+) energy transfer. The varied emitted color of Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) phosphors from blue to white were achieved by altering the concentration ratio of Ce(3+) and Dy(3+) . These results indicate Sr(3) MgSi(2) O(8):Ce(3+) , Dy(3+) may be as a candidate phosphor for white light-emitting diodes. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Photoluminescence decay kinetics of doped ZnS nanophosphors

    International Nuclear Information System (INIS)

    Sharma, Rajesh; Bhatti, H S

    2007-01-01

    Doped nanophosphor samples of ZnS:Mn, ZnS:Mn, Co and ZnS:Mn, Fe were prepared using a chemical precipitation method. Photoluminescence (PL) spectra were obtained and lifetime studies of the nanophosphors were carried out at room temperature. To the best of our knowledge, there are very few reports on the photoluminescence investigations of Co-doped or Fe-doped ZnS:Mn nanoparticles in the literature. Furthermore, there is no report on luminescence lifetime shortening of ZnS:Mn nanoparticles doped with Co or Fe impurity. Experimental results showed that there is considerable change in the photoluminescence spectra of ZnS:Mn nanoparticles doped with X (X = Co, Fe). The PL spectra of the ZnS:Mn, Co nanoparticle sample show three peaks at 410, 432 and 594 nm, while in the case of the ZnS:Mn, Fe nanoparticle sample the peaks are considerably different. The lifetimes are found to be in microsecond time domain for 594 nm emission, while nanosecond order lifetimes are obtained for 432 and 411 nm emission in ZnS:Mn, X nanophosphor samples. These lifetimes suggest a new additional decay channel of the carrier in the host material

  18. Occupational applications of ultraviolet radiation

    International Nuclear Information System (INIS)

    Eriksen, P.

    1987-01-01

    A large population of workers are exposed to ultraviolet radiation in various occupational environments which often necessitates protection. Since ultraviolet radiation may create other environmental problems an occupational hazard- and protection evaluation can be complicated. Threshold Limit Values adopted by the American Conference of Governmental Industrial Hygienists (ACGIH) on ultraviolet radiation are used in most countries as guidelines for risk assessment and control measures. This review addresses the levels of ultraviolet radiation met in occupational environments, its measurement and evaluation, and discusses different protection methods. Ultraviolet lasers are beginning to find their way into industrial processes but are still limited in number and they will not be covered here. Emphasis is on broad band incoherent radiation in high risk environments such as welding, and on the evaluation of protective eyewear, see-through curtains and plastics. Other occupational risks associated with the emission of ultraviolet radiation are discussed

  19. Synthesis and photoluminescence of Eu3+ and Mn2+ doped double phosphates KMLa(PO4)2 (M = Zn, Mg)

    International Nuclear Information System (INIS)

    Pan Yuexiao; Zhang Qinyuan; Jiang Zhonghong

    2006-01-01

    Two compounds, KMgLa(PO 4 ) 2 and KZnLa(PO 4 ) 2 doped with Eu 3+ and Mn 2+ ions, have been synthesized by a conventional solid-state method at 850 deg. C. Structures of KMgLa(PO 4 ) 2 and KZnLa(PO 4 ) 2 have been investigated and confirmed by X-ray diffraction and photoluminescence spectra. The results indicate that the compounds have remained the monoclinic structure of LaPO 4 with space group of C s when (K + , Mg 2+ ) or (K + , Zn 2+ ) could substitute half of the La 3+ ions. Under an ultraviolet source, KMgLa(PO 4 ) 2 :Mn 2+ has shown a bright red phosphorescent color, while KZnLa(PO 4 ) 2 :Mn 2+ has shown an orange-red emission which is assigned to the electronic transition of 4 T 1 ( 4 G)- 6 A 1 ( 6 S) of Mn 2+ in strong crystal field

  20. Plasmon-assisted photoluminescence enhancement of SiC nanocrystals by proximal silver nanoparticles

    International Nuclear Information System (INIS)

    Zhang, N.; Dai, D.J.; Fan, J.Y.

    2012-01-01

    Highlights: ► We studied metal surface plasmon-enhanced photoluminescence in SiC nanocrystals. ► The integrated emission intensity can be enhanced by 17 times. ► The coupling between SiC emission and Ag plasmon oscillation induces the enhancement. ► The enhancement is tunable with varied spacing thickness of electrolytes. - Abstract: Plasmon-enhanced photoluminescence has wide application potential in many areas, whereas the underlying mechanism is still in debate. We report the photoluminescence enhancement in SiC nanocrystal–Ag nanoparticle coupled system spaced by the poly(styrene sulfonic acid) sodium salt/poly(allylamine hydrochloride) polyelectrolyte bilayers. The integrated luminescence intensity can be improved by up to 17 times. Our analysis indicates that the strong coupling between the SiC nanocrystals and the surface plasmon oscillation of the silver nanoparticles is the major cause of the luminescence enhancement. These findings will help to understand the photoluminescence enhancement mechanism as well as widen the applications of the SiC nanocrystals in photonics and life sciences.

  1. Photoluminescence of epitactical and polycrystalline CuInS2 layers for thin-film solar cells

    International Nuclear Information System (INIS)

    Eberhardt, J.

    2007-01-01

    The present thesis deals with one- and polycrystalline CuInS 2 absorber layers for thin-film solar cells and especially with their optical and structural characterization. By means of detailed temperature- and power-dependent photoluminescence measurements in epitactical and polycrystalline absorber layers different radiative transitions could be analyzed and identified. The spectra were dominated by broad luminescence bands of deep perturbing levels. The implantation of hydrogen at low energies led to a passivation of these perturbing levels. On the base of the optical studies on epitactical and polycrystalline absorber layers a new improved defect model for CuInS 2 could be developed. The model contains two donor and two acceptor levels with following ionization energies: D-1=46 meV, D-2=87 meV, A-1=70 meV, and A-2=119 meV

  2. Stabilization and operation of porous silicon photonic structures from near-ultraviolet to near-infrared using high-pressure water vapor annealing

    International Nuclear Information System (INIS)

    Gelloz, Bernard; Koshida, Nobuyoshi

    2010-01-01

    The effects of high-pressure water vapor annealing (HWA), electrochemical oxidation, and substrate resistivity on the properties of porous silicon Bragg mirrors and photoluminescent cavities have been investigated. The photonic structures treated by HWA show very good stability upon ageing in air whereas as-formed structures exhibit significant drifts in their optical properties. Using HWA with lightly doped porous silicon, the structure transparency is enhanced sufficiently to enable the possible photonic operation in the near-ultraviolet. However, the index contrast achievable with these structures is very low in the visible and near-infrared. Useful index contrasts in this range can be achieved with either lightly doped porous silicon treated by electrochemical oxidation and HWA or heavily doped porous silicon treated by HWA.

  3. Effect of γ irradiation on the photoluminescence kinetics of porous silicon

    International Nuclear Information System (INIS)

    Agekyan, V.F.; Stepanov, Yu.A.; Emtsev, V.V.; Lebedev, A.A.; Poloskin, D.S.; Remenyuk, A.D.

    1999-01-01

    The effect of γ irradiation on the photoluminescence decay dynamics in porous silicon is investigated. Growth of the photoluminescence intensity and decrease of the decay time in irradiated porous silicon are explained by a lowering of the barriers to recombination of spatially separated electrons and holes via tunneling. The γ irradiation of porous silicon leads to a greater dispersion of the decay time

  4. Final LDRD report : science-based solutions to achieve high-performance deep-UV laser diodes.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Andrew M.; Miller, Mary A.; Crawford, Mary Hagerott; Alessi, Leonard J.; Smith, Michael L.; Henry, Tanya A.; Westlake, Karl R.; Cross, Karen Charlene; Allerman, Andrew Alan; Lee, Stephen Roger

    2011-12-01

    We present the results of a three year LDRD project that has focused on overcoming major materials roadblocks to achieving AlGaN-based deep-UV laser diodes. We describe our growth approach to achieving AlGaN templates with greater than ten times reduction of threading dislocations which resulted in greater than seven times enhancement of AlGaN quantum well photoluminescence and 15 times increase in electroluminescence from LED test structures. We describe the application of deep-level optical spectroscopy to AlGaN epilayers to quantify deep level energies and densities and further correlate defect properties with AlGaN luminescence efficiency. We further review our development of p-type short period superlattice structures as an approach to mitigate the high acceptor activation energies in AlGaN alloys. Finally, we describe our laser diode fabrication process, highlighting the development of highly vertical and smooth etched laser facets, as well as characterization of resulting laser heterostructures.

  5. Enhancing the Photoluminescence Emission of Conjugated MEH-PPV by Light Processing

    KAUST Repository

    Botiz, Ioan

    2014-04-09

    We show here that treatment of thin films of conjugated polymers by illumination with light leads to an increase of the intensity of their photoluminescence by up to 42%. The corresponding enhancement of absorbance was much less pronounced. We explain this significant enhancement of photoluminescence by a planarization of the conjugated polymer chains induced by photoexcitations even below the glass transition temperature, possibly due to an increased conjugation length. Interestingly, the photoluminescence remains at the enhanced level for more than 71 h after treatment of the films by illumination with light, likely due to the fact that below the glass transition temperature no restoring force could return the conjugated chains into their initial conformational state. © 2014 American Chemical Society.

  6. Photoluminescence study of novel phosphorus-doped ZnO nanotetrapods synthesized by chemical vapour deposition

    International Nuclear Information System (INIS)

    Yu Dongqi; Hu Lizhong; Qiao Shuangshuang; Zhang Heqiu; Fu Qiang; Chen Xi; Sun Kaitong; Len, Song-En Andy; Len, L K

    2009-01-01

    Novel phosphorus-doped and undoped single crystal ZnO nanotetrapods were fabricated on sapphire by a simple chemical vapour deposition method, using phosphorus pentoxide (P 2 O 5 ) as the dopant source. The optical properties of the samples were investigated by photoluminescence (PL) spectroscopy. Low-temperature PL measurements of phosphorus-doped and undoped samples were compared, and the results indicated a decrease in deep level defects due to the incorporation of a phosphorus acceptor dopant. The PL spectrum of the phosphorus-doped sample at 10 K exhibited several acceptor-bound exciton related emission peaks. The effect of phosphorus doping on the optical characteristics of the samples was investigated by excitation intensity and temperature dependent PL spectra. The acceptor-binding energies of the phosphorus dopant were estimated to be about 120 meV, in good agreement with the corresponding theoretical and experimental values in phosphorus-doped ZnO films and nanowires.

  7. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao, E-mail: chaoyangscu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Feng, Guoying, E-mail: guoing_feng@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Dai, Shenyu, E-mail: 232127079@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Wang, Shutong, E-mail: wangshutong.scu@gmail.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Li, Guang, E-mail: 632524844@qq.com [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhang, Hua [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); Zhou, Shouhuan, E-mail: zhoush@scu.edu.cn [College of Electronics and Information Engineering, Sichuan University, No. 24 South Section 1, 1st Ring Road, Chengdu 610064 (China); North China Research Institute of Electro-Optics, 4 Jiuxianqiao Street, Chaoyang District, Beijing 100015 (China)

    2017-08-31

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  8. Femtosecond pulsed laser ablation in microfluidics for synthesis of photoluminescent ZnSe quantum dots

    International Nuclear Information System (INIS)

    Yang, Chao; Feng, Guoying; Dai, Shenyu; Wang, Shutong; Li, Guang; Zhang, Hua; Zhou, Shouhuan

    2017-01-01

    Highlights: • A novel method for synthesis and coating of quantum dots by ultrafast laser pulses. • Mild and “green” synthesis method without toxic chemicals. • Enhanced bright green light emission without doped transition metal ions. • Ultrafast laser and coating layer enhanced the emission originated from defects. - Abstract: A simple but new toxic chemical free method, Femtosecond Laser Ablation in Microfluidics (FLAM) was proposed for the first time. ZnSe quantum dots of 4–6 nm were synthesized and with the use of hyperbranched Polyethyleneimine (PEI) as both structural and functional coated layer. These aqueous nanosized micelles consisting of quantum dots exhibit deep defect states emission of bright green light centered at 500 nm. A possible mechanism for the enhanced board band emission was discussed. The properties of toxic matters free and enhanced photoluminescence without doped transition metal ions demonstrate an application potential for biomedical imaging.

  9. Photoluminescence enhancement in porous SiC passivated by atomic layer deposited Al2O3 films

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2016-01-01

    Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved.......Porous SiC co-doped with B and N was passivated by atomic layer deposited (ALD) Al2O3 films to enhance the photoluminescence. After optimizing the deposition conditions, as high as 14.9 times photoluminescence enhancement has been achieved....

  10. Study of Ultraviolet Emission Spectra in ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Y. M. Lu

    2013-01-01

    Full Text Available Photoluminescence (PL of ZnO thin films prepared on c-Al2O3 substrates by pulsed laser deposition (PLD are investigated. For all samples, roomtemperature (RT spectra show a strong band-edge ultraviolet (UV emission with a pronounced low-energy band tail. The origin of this UV emission is analyzed by the temperature dependence of PL spectra. The result shows that the UV emission at RT contains different recombination processes. At low temperature donor-bound exciton (D0X emission plays a major role in PL spectra, while the free exciton transition (FX gradually dominates the spectrum with increasing temperatures. It notes that at low temperature an emission band (FA appears in low energy side of D0X and FX and can survive up to RT. Further confirmation shows that the origin of the band FA can be attributed to the transitions of conduction band electrons to acceptors (e, A0, in which the acceptor binding energy is estimated to be approximately 121 meV. It is concluded that at room temperature UV emission originates from the corporate contributions of the free exciton and free electrons-to-acceptor transitions.

  11. Photoluminescence of self-organized perylene bisimide polymers

    NARCIS (Netherlands)

    Neuteboom, E.E.; Meskers, S.C.J.; Meijer, E.W.; Janssen, R.A.J.

    2004-01-01

    Three polymers consisting of alternating perylene bisimide chromophores and flexible polytetrahydrofuran segments of different length have been studied using absorption and (time-resolved) photoluminescence spectroscopy. In o-dichlorobenzene, the chromophores self organize to form H-like aggregates.

  12. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    Science.gov (United States)

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Photoluminescence, trap states and thermoluminescence decay ...

    Indian Academy of Sciences (India)

    Administrator

    Photoluminescence, trap states and thermoluminescence decay process study of Ca2MgSi2O7 : Eu. 2+. , Dy. 3+ phosphor. RAVI SHRIVASTAVA*, JAGJEET KAUR, VIKAS DUBEY and BEENA JAYKUMAR. Govt. VYT PG Autonomous College, Durg 491 001, (C.G.) India. MS received 9 July 2013; revised 5 December 2013.

  14. Broadband sensitized white light emission of g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphor under near ultraviolet excitation

    International Nuclear Information System (INIS)

    Han, Bing; Xue, Yongfei; Li, Pengju; Zhang, Jingtao; Zhang, Jie; Shi, Hengzhen

    2015-01-01

    The g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y_2MoO_6:Eu"3"+ relative to g-C_3N_4/Y_2MoO_6:Eu"3"+. In addition, the emission color can be also dependent on the excitation wavelength in g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphor. - Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C_3N_4/Y_2MoO_6:Eu"3"+ composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu"3"+ composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu"3"+ composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.

  15. Microwave-assisted synthesis and photoluminescence properties of ...

    Indian Academy of Sciences (India)

    2017-11-11

    Nov 11, 2017 ... The photoluminescence property was studied by near-UV (nUV) excitation. The XRD .... spectrofluorimeter equipped with a 450-W Xenon lamp, in the range of .... nUV-excited RGB tricolour LED for production of white light.

  16. Microwave Assisted Synthesis and Photoluminescence Properties of ...

    Indian Academy of Sciences (India)

    46

    earth doping of ZnS would not lead to sufficiently bright PL materials. As a result, several new ... photoluminescence characteristics of ZnS nanoparticles doped with Pb2+. New luminescent ..... Papers, San Francisco, CA, USA, 249. [6] Tanaka ...

  17. Cavity-mirror degradation in the deep-UV FEL

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Yamazaki, T.; Sei, N. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    It is known that the degradation of dielectric multilayer mirrors used in short wavelength free-electron lasers (FELs) is caused by the carbon contamination on the mirror surface and the defects inside the dielectrics. We reported last year that the degraded dielectric multilayer mirrors can be repaired with both surface treatment by RF-induced oxygen plasma and thermal annealing. However, such a mirror degradation is still one of the most critical issues in the deep ultraviolet (UV) FELs, because the fundamental undulator radiation resonating in the laser cavity, the intensity of which is much higher than that of higher harmonics, can be sufficiently energetic to cause the mirror degradation through photochemical reactions. We are investigating the mirror degradation mainly in the deep UV region down to 240 nm. The experimental results will be shown. The mirror degradation mechanism will be discussed.

  18. Photoluminescence lineshape of ZnO

    Directory of Open Access Journals (Sweden)

    Bruno Ullrich

    2014-12-01

    Full Text Available The merger of the absorption coefficient dispersion, retrieved from transmission by the modified Urbach rule introduced by Ullrich and Bouchenaki [Jpn. J. Appl. Phys. 30, L1285, 1991], with the extended Roosbroeck-Shockley relation reveals that the optical absorption in ZnO distinctively determines the photoluminescence lineshape. Additionally, the ab initio principles employed enable the accurate determination of the carrier lifetime without further specific probing techniques.

  19. Luminescence and deep-level transient spectroscopy of grown dislocation-rich Si layers

    Directory of Open Access Journals (Sweden)

    I. I. Kurkina

    2012-09-01

    Full Text Available The charge deep-level transient spectroscopy (Q-DLTS is applied to the study of the dislocation-rich Si layers grown on a surface composed of dense arrays of Ge islands prepared on the oxidized Si surface. This provides revealing three deep-level bands located at EV + 0.31 eV, EC – 0.35 eV and EC – 0.43 eV using the stripe-shaped p-i-n diodes fabricated on the basis of these layers. The most interesting observation is the local state recharging process which proceeds with low activation energy (∼50 meV or without activation. The recharging may occur by carrier tunneling within deep-level bands owing to the high dislocation density ∼ 1011 - 1012 cm-2. This result is in favor of the suggestion on the presence of carrier transport between the deep states, which was previously derived from the excitation dependence of photoluminescence (PL intensity. Electroluminescence (EL spectra measured from the stripe edge of the same diodes contain two peaks centered near 1.32 and 1.55 μm. Comparison with PL spectra indicates that the EL peaks are generated from arsenic-contaminated and pure areas of the layers, respectively.

  20. Pressure dependence of photoluminescence of InAs/InP self-assembled quantum wires

    International Nuclear Information System (INIS)

    Ruiz-Castillo, M.; Segura, A.; Sans, J.A.; Martinez-Pastor, J.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.

    2007-01-01

    This paper investigates the electronic structure of self-assembled InAs quantum wires (QWrs), grown under different conditions by molecular beam epitaxy on InP, by means of photoluminescence measurements under pressure. In samples with regularly distributed QWrs, room pressure photoluminescence spectra consist of a broad band centred at about 0.85 eV, which can be easily de-convoluted in a few Gaussian peaks. In samples with isolated QWrs, photoluminescence spectra exhibit up to four clearly resolved bands. Applying hydrostatic pressure, the whole emission band monotonously shifts towards higher photon energies with pressure coefficients ranging from 72 to 98 meV/GPa. In contrast to InAs quantum dots on GaAs, quantum wires photoluminescence is observed up to 10 GPa, indicating that InAs QWrs are metastable well above pressure at which bulk InAs undergoes a phase transition to the rock-salt phase (7 GPa). (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Strategy for synthesizing quantum dot-layered double hydroxide nanocomposites and their enhanced photoluminescence and photostability.

    Science.gov (United States)

    Cho, Seungho; Jung, Sungwook; Jeong, Sanghwa; Bang, Jiwon; Park, Joonhyuck; Park, Youngrong; Kim, Sungjee

    2013-01-08

    Layered double hydroxide-quantum dot (LDH-QD) composites are synthesized via a room temperature LDH formation reaction in the presence of QDs. InP/ZnS (core/shell) QD, a heavy metal free QD, is used as a model constituent. Interactions between QDs (with negative zeta potentials), decorated with dihydrolipoic acids, and inherently positively charged metal hydroxide layers of LDH during the LDH formations are induced to form the LDH-QD composites. The formation of the LDH-QD composites affords significantly enhanced photoluminescence quantum yields and thermal- and photostabilities compared to their QD counterparts. In addition, the fluorescence from the solid LDH-QD composite preserved the initial optical properties of the QD colloid solution without noticeable deteriorations such as red-shift or deep trap emission. Based on their advantageous optical properties, we also demonstrate the pseudo white light emitting diode, down-converted by the LDH-QD composites.

  2. Evolution of Oxygen Deficiency Center on Fused Silica Surface Irradiated by Ultraviolet Laser and Posttreatment

    Directory of Open Access Journals (Sweden)

    Hai-Bing Lü

    2014-01-01

    Full Text Available Evolution of oxygen deficiency centers (ODCs on a fused silica surface irradiated using a 355 nm ultraviolet (UV laser beam in both vacuum and atmospheric conditions was quantitatively studied using photoluminescence and X-ray photoelectron spectroscopy. When the fusedsilica surface was exposed to the UV laser in vacuum, the laser damage threshold was decreased whereas the concentration of the ODCs was increased. For the fuse silica operated under the high power lasers, creation of ODCs on their surface resulted from the UV laser irradiation, and this is more severe in a high vacuum. The laser fluence and/or laser intensity have significant effects on the increase of the ODCs concentration. The ODCs can be effectively repaired using postoxygen plasma treatment and UV laser irradiation in an excessive oxygen environment. Results also demonstrated that the “gain” and “loss” of oxygen at the silica surface is a reversible and dynamic process.

  3. Preparation and photoluminescence properties of Tm{sup 3+}-doped ZrO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingli [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Zhao, Jianling, E-mail: hebutzhaoj@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Xu, Rongqing [Tianjin Zhonghuan Advanced Material & Technology Co., LTD, Tianjin 300384 (China); Fu, Ning [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Wang, Xixin, E-mail: xixinwang@126.com [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-07-25

    Tm{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of a Zr–Tm alloy (3 at.% Tm) obtained by a powder metallurgical method. The morphologies, structures, elemental valence, and photoluminescence properties were characterized by using scanning electron microscope, X-ray diffractometer, X-ray photoelectron spectrometer and photoluminescence analyser, respectively. Results show that preparing conditions and annealing temperatures have significant effects on the crystalline structure and photoluminescence performance. The sample TmZNT-Org prepared in formamide + glycerol organic solution is mainly monoclinic phase and the sample TmZNT-Aq prepared in aqueous solution is mainly tetragonal phase. The sample TmZNT-Org had the strongest photoluminescence peak when annealed at 800 °C, whereas both TmZNT-Aq samples annealed at 600 °C and 800 °C had the strongest photoluminescence peak. The monoclinic phase was conductive to the emission at 454 nm while the tetragonal phase was conductive to the emission at 460 nm. - Highlights: • Tm{sup 3+}-doped ZrO{sub 2} nanotube arrays were prepared by anodization of a Zr-Tm alloy. • Crystal structure had remarkable effects on the photoluminescence properties. • The monoclinic phase was conductive to the emission at 454 nm. • The tetragonal phase was conductive to the emission at 460 nm.

  4. Photoluminescent carbogenic nanoparticles directly derived from crude biomass

    KAUST Repository

    Krysmann, Marta J.; Kelarakis, Antonios; Giannelis, Emmanuel P.

    2012-01-01

    We present an environmentally benign, energy efficient and readily scalable approach to synthesize photoluminescent carbogenic nanoparticles directly from soft tissue biomass. Our approach relies on the pyrolytic decomposition of grass that gives

  5. Photoluminescence under high-electric field of PbS quantum dots

    Directory of Open Access Journals (Sweden)

    B. Ullrich

    2012-12-01

    Full Text Available The effect of a laterally applied electric field (≤10 kV/cm on the photoluminescence of colloidal PbS quantum dots (diameter of 2.7 nm on glass was studied. The field provoked a blueshift of the emission peak, a reduction of the luminescent intensity, and caused an increase in the full width at half maximum of the emission spectrum. Upon comparison with the photoluminescence of p-type GaAs exhibits the uniqueness of quantum dot based electric emission control with respect to bulk materials.

  6. Operation of a free-electron laser from the extreme ultraviolet to the water window

    Science.gov (United States)

    Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; Brinkmann, R.; Brovko, O. I.; Castellano, M.; Castro, P.; Catani, L.; Chiadroni, E.; Choroba, S.; Cianchi, A.; Costello, J. T.; Cubaynes, D.; Dardis, J.; Decking, W.; Delsim-Hashemi, H.; Delserieys, A.; di Pirro, G.; Dohlus, M.; Düsterer, S.; Eckhardt, A.; Edwards, H. T.; Faatz, B.; Feldhaus, J.; Flöttmann, K.; Frisch, J.; Fröhlich, L.; Garvey, T.; Gensch, U.; Gerth, Ch.; Görler, M.; Golubeva, N.; Grabosch, H.-J.; Grecki, M.; Grimm, O.; Hacker, K.; Hahn, U.; Han, J. H.; Honkavaara, K.; Hott, T.; Hüning, M.; Ivanisenko, Y.; Jaeschke, E.; Jalmuzna, W.; Jezynski, T.; Kammering, R.; Katalev, V.; Kavanagh, K.; Kennedy, E. T.; Khodyachykh, S.; Klose, K.; Kocharyan, V.; Körfer, M.; Kollewe, M.; Koprek, W.; Korepanov, S.; Kostin, D.; Krassilnikov, M.; Kube, G.; Kuhlmann, M.; Lewis, C. L. S.; Lilje, L.; Limberg, T.; Lipka, D.; Löhl, F.; Luna, H.; Luong, M.; Martins, M.; Meyer, M.; Michelato, P.; Miltchev, V.; Möller, W. D.; Monaco, L.; Müller, W. F. O.; Napieralski, O.; Napoly, O.; Nicolosi, P.; Nölle, D.; Nuñez, T.; Oppelt, A.; Pagani, C.; Paparella, R.; Pchalek, N.; Pedregosa-Gutierrez, J.; Petersen, B.; Petrosyan, B.; Petrosyan, G.; Petrosyan, L.; Pflüger, J.; Plönjes, E.; Poletto, L.; Pozniak, K.; Prat, E.; Proch, D.; Pucyk, P.; Radcliffe, P.; Redlin, H.; Rehlich, K.; Richter, M.; Roehrs, M.; Roensch, J.; Romaniuk, R.; Ross, M.; Rossbach, J.; Rybnikov, V.; Sachwitz, M.; Saldin, E. L.; Sandner, W.; Schlarb, H.; Schmidt, B.; Schmitz, M.; Schmüser, P.; Schneider, J. R.; Schneidmiller, E. A.; Schnepp, S.; Schreiber, S.; Seidel, M.; Sertore, D.; Shabunov, A. V.; Simon, C.; Simrock, S.; Sombrowski, E.; Sorokin, A. A.; Spanknebel, P.; Spesyvtsev, R.; Staykov, L.; Steffen, B.; Stephan, F.; Stulle, F.; Thom, H.; Tiedtke, K.; Tischer, M.; Toleikis, S.; Treusch, R.; Trines, D.; Tsakov, I.; Vogel, E.; Weiland, T.; Weise, H.; Wellhöfer, M.; Wendt, M.; Will, I.; Winter, A.; Wittenburg, K.; Wurth, W.; Yeates, P.; Yurkov, M. V.; Zagorodnov, I.; Zapfe, K.

    2007-06-01

    We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 µJ for individual pulses, and the average energy per pulse reached 70 µJ. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

  7. Gold nanoparticles–gelatinhybrid fibers with bright photoluminescence

    DEFF Research Database (Denmark)

    Liu, Shuiping; Tan, Lianjiang; Li, Xiaoqiang

    2014-01-01

    acid and gave rise to in situ synthesis of GNPs in the spinning solutions. The GNPs–gelatin fibers were fabricated by electrospinning the spinning solutions. The GNPs were encapsulated in the fibers, which endowed the fibers photoluminescence (PL) characteristics. A variety of experiments were...

  8. Synthesis and photoluminescence of Ca-(Sn,Ti)-Si-O compounds

    International Nuclear Information System (INIS)

    Abe, Shunsuke; Yamane, Hisanori; Yoshida, Hisashi

    2010-01-01

    The phase relation of the compounds prepared in the CaO-SnO 2 -SiO 2 system at 1673 K and in the CaO-TiO 2 -SiO 2 system at 1573 K was investigated in order to explore new Ti 4+ -activated stannate phosphors. Solid solutions of Ca(Sn 1-x Ti x )SiO 5 and Ca 3 (Sn 1-y Ti y )Si 2 O 9 were synthesized at x = 0-1.0 and y = 0-0.10, respectively, and their crystal structures were analyzed by powder X-ray diffraction. Photoluminescence of these solid solutions was observed in a broad range of a visible light wavelength region under ultraviolet (UV) light excitation. The peaks of the emission band of Ca(Sn 0.97 Ti 0.03 )SiO 5 and Ca 3 (Sn 0.925 Ti 0.075 )Si 2 O 9 were at 510 nm under excitation of 252 nm and at 534 nm under excitation of 258 nm, respectively. The absorption edges estimated by the diffuse reflectance spectra were at 300 nm (4.1 eV) for CaSnSiO 5 and at 270 nm (4.6 eV) for Ca 3 SnSi 2 O 9 , suggesting that the excitation levels in Ca(Sn 1-x Ti x )SiO 5 were above the band gap of the host, although the levels in Ca 3 (Sn 1-y Ti y )Si 2 O 9 were within the band gap and near the conduction band edge.

  9. Formation of conductive spontaneous via holes in AlN buffer layer on n+Si substrate by filling the vias with n-AlGaN by metal organic chemical vapor deposition and application to vertical deep ultraviolet photo-sensor

    Directory of Open Access Journals (Sweden)

    N. Kurose

    2014-12-01

    Full Text Available We have grown conductive aluminum nitride (AlN layers using the spontaneous via holes formation technique on an n+-Si substrate for vertical-type device fabrication. The size and density of the via holes are controlled through the crystal growth conditions used for the layer, and this enables the conductance of the layer to be controlled. Using this technique, we demonstrate the fabrication of a vertical-type deep ultraviolet (DUV photo-sensor. This technique opens up the possibility of fabrication of monolithically integrated on-chip DUV sensors and DUV light-emitting devices (LEDs, including amplifiers, controllers and other necessary functional circuits, on a Si substrate.

  10. Synthesis of blue photoluminescent WS{sub 2} quantum dots via ultrasonic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, A.; Saievar-Iranizad, E., E-mail: saievare@modares.ac.ir

    2017-05-15

    Blue photoluminescent WS{sub 2} quantum dots (QDs) were synthesized using a simple top-down method from natural raw mineral tungsten disulfide via tip ultrasonication followed by centrifugation in a water-ethanol (0.7/0.3 ratio) as eco-friendly solvent. Cavitation process at a high power (300 W) led to the breaking of bulk WS{sub 2} flakes to its quantum dots. The as synthesized WS{sub 2} QDs showed blue photoluminescence upon UV excitation. The synthesized WS{sub 2} QDs were analysed by UV–vis and photoluminescence spectrophotometry, transmission electron microscopy, atomic force microscopy and X-ray diffraction. According to the transmission electron microscopy images, the size of WS{sub 2} QDs was obtained as 5 nm in average. - Highlights: •Large scale blue photoluminescent WS{sub 2} quantum dots was synthesized using Ultrasonic probe (Cavitation Process). •A solution of water/ethanol (0.7/0.3) was used as eco-friendly solvent instead of unsuitable solvent such as NMP and ACN. •Edges of bulk WS{sub 2} was increased with formation of its quantum dots. •Solution of WS{sub 2} QDs was stable after 6 months.

  11. Ultraviolet refractometry using field-based light scattering spectroscopy

    Science.gov (United States)

    Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.

    2010-01-01

    Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622

  12. Phase evolution and photoluminescence enhancement of CePO4 nanowires from a low phosphate concentration system

    International Nuclear Information System (INIS)

    Xu Pengfei; Yu Ranbo; Zong Lingbo; Wang Jiali; Wang Dan; Deng Jinxia; Chen Jun; Xing Xianran

    2013-01-01

    Uniform CePO 4 nanowires have been successfully synthesized in a low phosphate concentration system through a single-step hydrothermal process. The low phosphate concentration might decrease the surface PO 4 3− adsorption of the as-synthesized CePO 4 nanowires efficiently and benefit their photoluminescence. The CePO 4 nanowires were identified to go through phase evolution from pure monoclinic to mixed hexagonal and monoclinic phase by only increasing the initial molar ratio of cerium and phosphate source (denoted as Ce/P). Interestingly, the strongest photoluminescence was observed in the CePO 4 nanowires synthesized with the initial Ce/P of 4:1, which proved to be the critical phase evolution point between the hexagonal and monoclinic CePO 4 . Therefore, the strong photoluminescence could be explained by the existence of the structure-sensitive energy level in the CePO 4 . This kind of photoluminescence enhancement would be a meaningful reference for design of other photoluminescent materials, in which the photoluminescent emission might be related to the structure-sensitive energy level. Additionally, the growth processes of CePO 4 nanowires based on related well-designed experiments were proposed.

  13. Influence of LiBr on photoluminescence properties of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dimassi, W., E-mail: dimassi_inrst@yahoo.f [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95 Hammam-Lif 2050 (Tunisia); Haddadi, I.; Bousbih, R.; Slama, S.; Ali Kanzari, M.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de Photovoltaique, Centre de Recherches et des Technologies de l' Energie, Technopole de Borj-Cedria, BP 95 Hammam-Lif 2050 (Tunisia)

    2011-05-15

    A new method has been developed to improve the photoluminescence intensity of porous silicon (PS), which is first time that LiBr is used for passivation of PS. Immersion of the PS in a LiBr solution, followed by a thermal treatment at 100 {sup o}C for 30 min under nitrogen, leads to a nine fold increase in the intensity of the photoluminescence. The atomic force microscope (AFM) shows an increase of the nanoparticle dimension compared to the initial dimension of the PS nanostructure. The LiBr covers the nanoparticles of silicon without changing the wavelength distribution of the optical excitation and emission spectra. Moreover, a significant decrease of reflectivity was observed for the wavelength in the range of 350-500 nm. - Research highlights: {yields} A new method based on the use of LiBr was developed to enhance nine times the photoluminescence of porous silicon. {yields} The LiBr covers the silicon nanoparticles without changing in the optical excitation and emission spectra. {yields} We observed a significant decrease of the reflectivity in the 350-500 nm spectral range.

  14. Influence of LiBr on photoluminescence properties of porous silicon

    International Nuclear Information System (INIS)

    Dimassi, W.; Haddadi, I.; Bousbih, R.; Slama, S.; Ali Kanzari, M.; Bouaicha, M.; Ezzaouia, H.

    2011-01-01

    A new method has been developed to improve the photoluminescence intensity of porous silicon (PS), which is first time that LiBr is used for passivation of PS. Immersion of the PS in a LiBr solution, followed by a thermal treatment at 100 o C for 30 min under nitrogen, leads to a nine fold increase in the intensity of the photoluminescence. The atomic force microscope (AFM) shows an increase of the nanoparticle dimension compared to the initial dimension of the PS nanostructure. The LiBr covers the nanoparticles of silicon without changing the wavelength distribution of the optical excitation and emission spectra. Moreover, a significant decrease of reflectivity was observed for the wavelength in the range of 350-500 nm. - Research highlights: → A new method based on the use of LiBr was developed to enhance nine times the photoluminescence of porous silicon. → The LiBr covers the silicon nanoparticles without changing in the optical excitation and emission spectra. → We observed a significant decrease of the reflectivity in the 350-500 nm spectral range.

  15. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    Energy Technology Data Exchange (ETDEWEB)

    Alejo, T. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Paulo, Pedro M.R. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Merchán, M.D. [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain); Garcia-Fernandez, Emilio; Costa, Sílvia M.B. [Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Velázquez, M.M., E-mail: mvsal@usal.es [Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca, E-37008 Salamanca (Spain)

    2017-03-15

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  16. Bragg superlattice for obtaining individual photoluminescence of diamond color centers in dense 3D ensembles

    Science.gov (United States)

    Kukushkin, V. A.

    2017-10-01

    A way to significantly increase the spatial resolution of the color center photoluminescence collection in chemically vapor-deposited (CVD) diamond at a fixed exciting beam focal volume is suggested. It is based on the creation of a narrow waveguide for the color center photoluminescence with a small number of allowed vertical indices of guided modes. The waveguide is formed between the top surface of a CVD diamond film and an underlaid mirror—a Bragg superlattice made of interchanging high- and low boron-doped layers of CVD diamond. The guided color center photoluminescence is extracted through the top surface of a CVD diamond film with the frustrated total internal reflection method. According to the results of simulation made for a case when color centers are nitrogen-vacancy (NV) centers, the suggested way allows to increase the maximal value of the NV center concentration still compatible with selective collection of their photoluminescence by several times at a fixed exciting beam focal volume. This increase is provided without the deterioration of the NV center photoluminescence collection efficiency.

  17. Influence of 3D aggregation on the photoluminescence dynamics of CdSe quantum dot films

    International Nuclear Information System (INIS)

    Alejo, T.; Paulo, Pedro M.R.; Merchán, M.D.; Garcia-Fernandez, Emilio; Costa, Sílvia M.B.; Velázquez, M.M.

    2017-01-01

    Thin films of semiconductor CdSe quantum dots, QDs, directly deposited onto quartz as well as onto a Langmuir-Blodgett film of the Gemini surfactant ethyl-bis (dimethyl octadecyl ammonium bromide have been prepared and their photoluminescence properties were characterized by confocal fluorescence lifetime microscopy. 3D aggregates of QDs were observed in QD films directly deposited onto the solid while the Gemini surfactant film avoids the 3D aggregation. The photoluminescence decay analysis was performed by a phenomenological model previously proposed by us which considers that the luminescence dynamics is affected by energy transport and trapping processes and the relative contribution of these processes depends on film morphology. Thus, in the non-aggregated and more homogeneous QD films, QDs deposited onto the surfactant, the relative contribution of the energy transport process increases with trap concentration while 3D aggregation favors the energy transport even at low density of energy traps. - Highlights: • Photoluminescence dynamics of QDs films. • Photoluminescence response related to energy transport and trapping processes. • Dependence of photoluminescence dynamics on film morphology.

  18. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  19. Enhancement of the photoluminescence in CdSe quantum dot–polyvinyl alcohol composite by light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Borkovska, L., E-mail: bork@isp.kiev.ua [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, pr. Nauky 41, 03028 Kyiv (Ukraine); Korsunska, N.; Stara, T.; Gudymenko, O.; Venger, Ye. [V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, pr. Nauky 41, 03028 Kyiv (Ukraine); Stroyuk, O.; Raevska, O. [L. Pysarzhevsky Institute of Physical Chemistry, NAS of Ukraine, pr. Nauky 31, 03028 Kyiv (Ukraine); Kryshtab, T., E-mail: kryshtab@gmail.com [Instituto Politécnico Nacional – ESFM, Av. IPN, Ed.9 U.P.A.L.M., 07738 Mexico D.F. (Mexico)

    2013-09-15

    The effect of photo-induced enhancement (more than a tenfold) of room temperature deep-trap photoluminescence (PL) in CdSe quantum dots (QDs) embedded in polyvinyl alcohol (PVA) film has been found and investigated by the PL and X-ray diffraction methods. The effect is observed under illumination of the QD/PVA composite with LED's light of 409 or 470 nm at elevated temperatures and is shown to be caused by an increase of the activation energy of thermal quenching of defect-related PL. It is shown that thermal annealing of the composite by itself stimulates polymer crystallization and produces a small increase in the intensity of both the band-edge and defect-related PL bands of CdSe QDs. It is found that the effect of illumination decreases when the annealing temperature increases from 90 °C to 120 °C because thermal annealing at 120 °C per se results in strong enhancement of room temperature deep-trap PL. The effect of photo-induced enhancement of defect-related PL is found to be irreversible and is assumed to be related to the change of QD surface defect passivation or surface defect rearrangement. This is ascribed to partial destruction of PVA matrix as a result of interaction of QD/PVA interface with photocarriers generated in the QDs due to LED's light absorption.

  20. Photodetector of ultraviolet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Branzari, V.; Vieru, T.; Manole, M.; Canter, V.

    2000-01-01

    The invention relates to photodetectors on base of semiconductors of ultraviolet radiation and may be used in optoelectronic system for determining the intensity and the dose of ultraviolet radiation emitted by the Sun or other sources. Summary of the invention consists in the fact that in the photodetector of ultraviolet radiation the superficial potential barrier is divided into two identical elements, electrically isolated each of the other, one of them being covered with a layer of transparent material for visible and infrared radiation and absorption the ultra violet radiation. The technical result consists in mutual compensation of visible and infrared components of the radiation spectrum

  1. Photoluminescence study of carbon dots from ginger and galangal herbs using microwave technique

    Science.gov (United States)

    Isnaeni; Rahmawati, I.; Intan, R.; Zakaria, M.

    2018-03-01

    Carbon dots are new type of fluorescent nanoparticle that can be synthesis easily from natural sources. We have synthesized carbon dots from ginger and galangal herbs using microwave technique and studied their optical properties. We synthesized colloidal carbon dots in water solvent by varying microwave processing time. UV-Vis absorbance, photoluminescence, time-resolved photoluminescence, and transmission electron microscope were utilized to study properties of carbon dots. We found that microwave processing time significantly affect optical properties of synthesized carbon dots. UV-Vis absorbance spectra and time-resolved photoluminescence results show that luminescent of carbon dots is dominated by recombination process from n-π* surface energy level. With further development, these carbon dots are potential for several applications.

  2. Temperature- and excitation intensity-dependent photoluminescence in TlInSeS single crystals

    CERN Document Server

    Gasanly, N M; Yuksek, N S

    2002-01-01

    Photoluminescence (PL) spectra of TlInSeS layered single crystals were investigated in the wavelength region 460-800 nm and in the temperature range 10-65 K. We observed one wide PL band centred at 584 nm (2.122 eV) at T=10 K and an excitation intensity of 7.5 W cm sup - sup 2. We have also studied the variation of the PL intensity versus excitation laser intensity in the range from 0.023 to 7.5 W cm sup - sup 2. The red shift of this band with increasing temperature and blue shift with increasing laser excitation intensity was observed. The PL was found to be due to radiative transitions from the moderately deep donor level located at 0.243 eV below the bottom of the conduction band to the shallow acceptor level at 0.023 eV located above the top of the valence band. The proposed energy-level diagram permits us to interpret the recombination processes in TlInSeS layered single crystals.

  3. Temperature- and excitation intensity-dependent photoluminescence in TlInSeS single crystals

    International Nuclear Information System (INIS)

    Gasanly, N M; Aydinli, A; Yuksek, N S

    2002-01-01

    Photoluminescence (PL) spectra of TlInSeS layered single crystals were investigated in the wavelength region 460-800 nm and in the temperature range 10-65 K. We observed one wide PL band centred at 584 nm (2.122 eV) at T=10 K and an excitation intensity of 7.5 W cm -2 . We have also studied the variation of the PL intensity versus excitation laser intensity in the range from 0.023 to 7.5 W cm -2 . The red shift of this band with increasing temperature and blue shift with increasing laser excitation intensity was observed. The PL was found to be due to radiative transitions from the moderately deep donor level located at 0.243 eV below the bottom of the conduction band to the shallow acceptor level at 0.023 eV located above the top of the valence band. The proposed energy-level diagram permits us to interpret the recombination processes in TlInSeS layered single crystals

  4. Future Directions in Ultraviolet Spectroscopy

    Science.gov (United States)

    Sonneborn, George (Editor); Moos, Warren; VanSteenberg, Michael

    2009-01-01

    The 'Future Directions in Ultraviolet Spectroscopy' conference was inspired by the accomplishments of the Far Ultraviolet Spectroscopic Explorer (FUSE) Mission. The FUSE mission was launched in June 1999 and spent over eight years exploring the far-ultraviolet universe, gathering over 64 million seconds of high-resolution spectral data on nearly 3000 astronomical targets. The goal of this conference was not only to celebrate the accomplishments of FUSE, but to look toward the future and understand the major scientific drivers for the ultraviolet capabilities of the next generation fo space observatories. Invited speakers presented discussions based on measurements made by FUSE and other ultraviolet instruments, assessed their connection with measurements made with other techniques and, where appropriate, discussed the implications of low-z measurements for high-z phenomena. In addition to the oral presentations, many participants presented poster papers. The breadth of these presentation made it clear that much good science is still in progress with FUSE data and that these result will continue to have relevance in many scientific areas.

  5. Solvothermal tuning of photoluminescent graphene quantum dots: from preparation to photoluminescence mechanism

    Science.gov (United States)

    Qi, Bao-Ping; Zhang, Xiaoru; Shang, Bing-Bing; Xiang, Dongshan; Zhang, Shenghui

    2018-02-01

    Solvothermal synthesis was employed to tune the surface states of graphene quantum dots (GQDs). Two series of GQDs with the particle sizes from 2.6 to 4.5 nm were prepared as follows: (I) GQDs with the same size but different oxygen degrees; (II) GQDs with different core sizes but the similar surface chemistry. Both the large sizes and the high surface oxidation degrees led to the redshift photoluminescence (PL) of GQDs. Electrochemiluminescence (ECL) spectra from two series of GQDs were all in accordance with their PL spectra, respectively, which provided good evidence for the conjugated structures in GQDs responsible for PL. [Figure not available: see fulltext.

  6. Porosity and thickness effect of porous silicon layer on photoluminescence spectra

    Science.gov (United States)

    Husairi, F. S.; Eswar, K. A.; Guliling, Muliyadi; Khusaimi, Z.; Rusop, M.; Abdullah, S.

    2018-05-01

    The porous silicon nanostructures was prepared by electrochemical etching of p-type silicon wafer. Porous silicon prepared by using different current density and fix etching time with assistance of halogen lamp. The physical structure of porous silicon measured by the parameters used which know as experimental factor. In this work, we select one of those factors to correlate which optical properties of porous silicon. We investigated the surface morphology by using Surface Profiler (SP) and photoluminescence using Photoluminescence (PL) spectrometer. Different physical characteristics of porous silicon produced when current density varied. Surface profiler used to measure the thickness of porous and the porosity calculated using mass different of silicon. Photoluminescence characteristics of porous silicon depend on their morphology because the size and distribution of pore its self will effect to their exciton energy level. At J=30 mA/cm2 the shorter wavelength produced and it followed the trend of porosity with current density applied.

  7. Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition

    Science.gov (United States)

    Barbagiovanni, E. G.; Strano, V.; Franzò, G.; Crupi, I.; Mirabella, S.

    2015-03-01

    Two deep level defects (2.25 and 2.03 eV) associated with oxygen vacancies (Vo) were identified in ZnO nanorods (NRs) grown by low cost chemical bath deposition. A transient behaviour in the photoluminescence (PL) intensity of the two Vo states was found to be sensitive to the ambient environment and to NR post-growth treatment. The largest transient was found in samples dried on a hot plate with a PL intensity decay time, in air only, of 23 and 80 s for the 2.25 and 2.03 eV peaks, respectively. Resistance measurements under UV exposure exhibited a transient behaviour in full agreement with the PL transient, indicating a clear role of atmospheric O2 on the surface defect states. A model for surface defect transient behaviour due to band bending with respect to the Fermi level is proposed. The results have implications for a variety of sensing and photovoltaic applications of ZnO NRs.

  8. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  9. Characterization and photoluminescence studies of CdTe ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The major objective of this work was to detect the change of photoluminescence (PL) intensity of. CdTe nanoparticles (NPs) before and after transfer from liquid phase to polystyrene (PS) matrix by electro- spinning technique. Thio-stabilized CdTe NPs were first synthesized in aqueous, then enwrapped by cetyl-.

  10. Photoluminescence studies of Li-doped Si nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Klimešová, Eva; Vacík, Jiří; Holý, V.; Pelant, Ivan

    2013-01-01

    Roč. 3, č. 14 (2013), s. 1-7 ISSN 1847-9804 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : Si nanocrystals * photoluminescence * doping * Li-ion batteries Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.949, year: 2013

  11. Preparation, photoluminescent properties and luminescent dynamics of BaAlF5:Eu2+ nanophosphors

    International Nuclear Information System (INIS)

    Zhang, Wei; Hua, Ruinian; Liu, Tianqing; Zhao, Jun; Na, Liyan; Chen, Baojiu

    2014-01-01

    Graphical abstract: Rice-shaped BaAlF 5 :Eu 2+ nanophosphors were synthesized via one-pot hydrothermal process. The as-prepared BaAlF 5 :Eu 2+ are composed of many particles with an average diameter of 40 nm. When excited at 260 nm, the sharp line emission located at 361 nm of Eu 2+ was observed. The optimum doping concentration of Eu 2+ was confirmed to be 5 mol%. The strong ultraviolet emission of Eu 2+ ions in BaAlF 5 :Eu 2+ nanoparticles suggests that these nanoparticles may have potential applications for sensing, solid-state lasers and spectrometer calibration. - Highlights: • BaAlF 5 :Eu 2+ nanophosphors were synthesized via a mild hydrothermal process. • The Van and Huang models were used to research the mechanism of concentration quenching. • The optimum doping concentration of Eu2+ was confirmed to be 5 mol%. - Abstract: Eu 2+ -doped BaAlF 5 nanophosphors were synthesized via a facile one-pot hydrothermal method. The final products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD results showed that the prepared samples are single-phase. The FE-SEM and TEM images indicated that the prepared BaAlF 5 :Eu 2+ nanophosphors are composed of many rice-shaped particles with an average diameter of 40 nm. When excited at 260 nm, BaAlF 5 :Eu 2+ nanophosphors exhibit the sharp line emissions of Eu 2+ at room temperature. The optimum doping concentration of Eu 2+ was confirmed to be 5 mol%. The Van and Huang models were used to study the mechanism of concentration quenching and the electric dipole–dipole interaction between Eu 2+ can be deduced to be a dominant for quenching fluorescence in BaAlF 5 :Eu 2+ nanophosphors. The strong ultraviolet emission of Eu 2+ in BaAlF 5 :Eu 2+ nanophosphors suggests that these nanoparticles may have potential applications for sensing, spectrometer calibration and solid-state lasers

  12. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    International Nuclear Information System (INIS)

    Khenfouch, M.; Wéry, J.; Baïtoul, M.; Maaza, M.

    2014-01-01

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods

  13. Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods

    Science.gov (United States)

    Viter, R.; Jekabsons, K.; Kalnina, Z.; Poletaev, N.; Hsu, S. H.; Riekstina, U.

    2016-11-01

    Using photoluminescent ZnO nanorods and carbohydrate marker SSEA-4, a novel cancer cell recognition system was developed. Immobilization of SSEA-4 antibodies (αSSEA-4) on ZnO nanorods was performed in buffer solution (pH = 7.1) over 2 h. The cancer cell line probes were fixed on the glass slide. One hundred microliters of ZnO-αSSEA-4 conjugates were deposited on the cell probe and exposed for 30 min. After washing photoluminescence spectra were recorded. Based on the developed methodology, ZnO-αSSEA-4 probes were tested on patient-derived breast and colorectal carcinoma cells. Our data clearly show that the carbohydrate SSEA-4 molecule is expressed on cancer cell lines and patient-derived cancer cells. Moreover, SSEA-4 targeted ZnO nanorods bind to the patient-derived cancer cells with high selectivity and the photoluminescence signal increased tremendously compared to the signal from the control samples. Furthermore, the photoluminescence intensity increase correlated with the extent of malignancy in the target cell population. A novel portable bioanalytical system, based on optical ZnO nanorods and fiber optic detection system was developed. We propose that carbohydrate SSEA-4 specific ZnO nanorods could be used for the development of cancer diagnostic biosensors and for targeted therapy.

  14. Photoluminescence and dynamics of excitation relaxation in graphene oxide-porphyrin nanorods composite

    Energy Technology Data Exchange (ETDEWEB)

    Khenfouch, M., E-mail: khenfouch@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Wéry, J. [Institut des Matériaux Jean Rouxel, Nantes, 2 rue de la Houssinière, BP 32229, 44322 Nantes, Cedex 3 (France); Baïtoul, M., E-mail: baitoul@yahoo.fr [University Sidi Mohamed Ben Abdellah, Faculty of Sciences Dhar el Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, BP 1796 Atlas, Fez 30 000 (Morocco); Maaza, M. [iThemba LABS-National Research Foundation of South Africa, Old Faure Road, PO Box 722, Somerset West 7129, Western Cape Province (South Africa); UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa)

    2014-01-15

    Generally, porphyrin nanostructured materials are known by playing many roles such as photoconductors, photovoltaics and capable of light induced charging. Also their combination with acceptors like graphene, the rising two dimension material, added exciting physical and chemical properties. In this work, Morphology, optical absorption and photoluminescence properties were investigated in order to elucidate the interaction between the few layered graphene oxide (FGO) and pophyrin nanorods. Reporting on the photoluminescence (PL) of both porphyrin nanorods and FGO/porphyrin nanorods composite, synthesized via a self-assembly method, we have experimentally demonstrated the generation of a new photoluminescence band giving rise to a white light. This luminescence was studied by the analysis of its origins and dynamics which show a huge change of exciton life time found to be longer after the interaction with graphene oxide (GO) sheets. -- Highlights: • We prepared FGO-porphyrin nanorods composite via a simple chemical method. • Luminescence properties were studied presenting the absorption, photoluminescence and dynamics measurements. • These results show the emission of a white light which we studied its emissions origins. • TEM images show FGO sheets decorated with porphyrin nanorods. • FGO had like effect an increase of the exciton lifetime in porphyrin nanorods.

  15. Tuning photoluminescence of ZnS nanoparticles by silver

    Indian Academy of Sciences (India)

    Wintec

    Ag@ZnS core-shell nanoparticles. ... doped ZnS NPs and thus changes the emission charac- teristics. We also ... Nanoparticles; photoluminescence; silver; zinc sulfide; doping. 1. ..... Sooklal K, Brain S, Angel M and Murphy C J 1996 J. Phys.

  16. Photoluminescence properties of PZT 52/48 synthesized by microwave hydrothermal method using PVA with template

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, G.F., E-mail: guilmina@hotmail.com [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Gasparotto, G. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil); Paris, E.C. [Empresa Brasileira de Pesquisa Agropecuaria, Embrapa Instrumentacao, Rua XV de novembro, 1452, Centro, 13.569-970 Sao Carlos, SP (Brazil); Zaghete, M.A.; Longo, E.; Varela, J.A. [Instituto de Quimica, Universidade Estadual Paulista, Departamento de Bioquimica e Tecnologia Quimica, Rua Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, SP (Brazil)

    2012-01-15

    Lead Titanate Zirconate (PZT) perovskite powders were synthesized by microwave hydrothermal method (M-H) at 180 {sup o}C for different time periods (2, 4, 8 and 12 h) with the presence of aqueous polyvinyl alcohol (PVA) solution 0.36 g L{sup -1}. The X-Ray diffraction (XRD), SE-FEG as well as the measurements of photoluminescence (PL) emission were used for monitoring the formation of a perovskite phase with random polycrystalline distortion in the structure. Emission spectra with fixed excitation wavelength of 350 nm showed higher value for the powder obtained after undergoing 8 h of treatment. A theoretical model derived from previous calculations allows us to discuss the origin of photoluminescence emission in the powders, which can be further related to the local disorder in the network of both ZrO{sub 6} and TiO{sub 6} octahedral, and dodecahedral PbO{sub 12}. The new morphology initially observed from the PZT perovskite crystal growth bearing the shape of fine plates is found to be directly related to photoluminescence emission with energy lower than that present in the PZT with cube-like morphology that emits in 560 nm. - Highlights: > This work details the efficiency of microwave hydrothermal synthesis in obtaining PZT powders. > PVA is used as a crystallization agent of PZT particles. > PZT particles presented photoluminescent (PL) behavior. > There aren't previous reports of photoluminescent PZT obtained by microwave hydrothermal synthesis. > Photoluminescence is one more interesting property for technological applications this material.

  17. Tunable photoluminescence and magnetic properties of Dy(3+) and Eu(3+) doped GdVO4 multifunctional phosphors.

    Science.gov (United States)

    Liu, Yanxia; Liu, Guixia; Dong, Xiangting; Wang, Jinxian; Yu, Wensheng

    2015-10-28

    A series of Dy(3+) or/and Eu(3+) doped GdVO4 phosphors were successfully prepared by a simple hydrothermal method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectrometry (EDS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). The results indicate that the as-prepared samples are pure tetragonal phase GdVO4, taking on nanoparticles with an average size of 45 nm. Under ultraviolet (UV) light excitation, the individual Dy(3+) or Eu(3+) ion activated GdVO4 phosphors exhibit excellent emission properties in their respective regions. The mechanism of energy transfer from the VO4(3-) group and the charge transfer band (CTB) to Dy(3+) and Eu(3+) ions is proposed. Color-tunable emissions in GdVO4:Dy(3+),Eu(3+) phosphors are realized through adopting different excitation wavelengths or adjusting the appropriate concentration of Dy(3+) and Eu(3+) when excited by a single excitation wavelength. In addition, the as-prepared samples show paramagnetic properties at room temperature. This kind of multifunctional color-tunable phosphor has great potential applications in the fields of photoelectronic devices and biomedical sciences.

  18. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy.

    Science.gov (United States)

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Kong, Jing; Terrones, Humberto; Meunier, Vincent; Dresselhaus, Mildred S

    2014-10-08

    Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and exciton reaches its maximum value for the twisted angle 0° or 60°, while for the twisted angle 30° or 90° the situation is the opposite. This is mainly attributed to the change of the trion binding energy. The first-principles density functional theory analysis further confirms the change of the interlayer coupling with the twisted angle, which interprets our experimental results.

  19. Rhodamine 6G impregnated porous silica: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Anedda, A. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Canada) (Italy); Carbonaro, C.M. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Canada) (Italy)]. E-mail: cm.carbonaro@dsf.unica.it; Clemente, F. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Corpino, R. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Ricci, P.C. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Rossini, S. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy)

    2005-12-15

    The optical properties of rhodamine 6G dye confined in porous silica are reported. Photoluminescence properties of embedded chromophores in mesoporous hosts can be affected by the surrounding matrices: shifts in emission spectra and variations of photoluminescence quantum yield are found as compared to dye solutions. Host-guest interactions are studied here by varying both SiO{sub 2} xerogels porosity and the dye concentration. Comparing samples obtained by impregnating matrices with 5.4 and 18.2 nm pores with solutions having concentrations in the rhodamine 6G high laser gain, matrices with 5.4 nm pores impregnated with a dye concentration of 5 x 10{sup -4} M are found to be the most stable and efficient in the examined range.

  20. Comparative photoluminescence study of close-packed and colloidal InP/ZnS quantum dots

    Science.gov (United States)

    Thuy, Ung Thi Dieu; Thuy, Pham Thi; Liem, Nguyen Quang; Li, Liang; Reiss, Peter

    2010-02-01

    This letter reports on the comparative photoluminescence study of InP/ZnS quantum dots in the close-packed solid state and in colloidal solution. The steady-state photoluminescence spectrum of the close-packed InP/ZnS quantum dots peaks at a longer wavelength than that of the colloidal ones. Time-resolved photoluminescence shows that the close-packed quantum dots possess a shorter luminescence decay time and strongly increased spectral shift with the time delayed from the excitation moment in comparison with the colloidal ones. The observed behavior is discussed on the basis of energy transfer enabled by the short interparticle distance between the close-packed quantum dots.

  1. Inhibition of seagrass photosynthesis by ultraviolet-B radiation.

    Science.gov (United States)

    Trocine, R P; Rice, J D; Wells, G N

    1981-07-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme Kütz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated.Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. This mechanism effectively attenuated photosynthetic inhibition induced by ultraviolet-B dose rates and dosages in excess of natural conditions. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species.Observations obtained in this study seem to suggest the possibility of anthocyanin and/or other flavonoid synthesis as an adaptation to long term ultraviolet-B irradiation by these species. In addition, Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation.

  2. Formation of Isolated Zn Vacancies in ZnO Single Crystals by Absorption of Ultraviolet Radiation: A Combined Study Using Positron Annihilation, Photoluminescence, and Mass Spectroscopy

    Science.gov (United States)

    Khan, Enamul H.; Weber, Marc H.; McCluskey, Matthew D.

    2013-07-01

    Positron annihilation spectra reveal isolated zinc vacancy (VZn) creation in single-crystal ZnO exposed to 193-nm radiation at 100mJ/cm2 fluence. The appearance of a photoluminescence excitation peak at 3.18 eV in irradiated ZnO is attributed to an electronic transition from the VZn acceptor level at ˜100meV to the conduction band. The observed VZn density profile and hyperthermal Zn+ ion emission support zinc vacancy-interstitial Frenkel pair creation by exciting a wide 6.34 eV Zn-O antibonding state at 193-nm photon—a novel photoelectronic process for controlled VZn creation in ZnO.

  3. Inhibition of seagrass photosynthesis by ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Trocine, R.P.; Rice, J.D.; Wells, G.N.

    1981-01-01

    Effects of ultraviolet-B radiation on the photosynthesis of seagrasses (Halophila engelmanni Aschers, Halodule wrightii Aschers, and Syringodium filiforme (Kuetz) were examined. The intrinsic tolerance of each seagrass to ultraviolet-B, the presence and effectiveness of photorepair mechanisms to ultraviolet-B-induced photosynthetic inhibition, and the role of epiphytic growth as a shield from ultraviolet-B were investigated. Halodule was found to possess the greatest photosynthetic tolerance for ultraviolet-B. Photosynthesis in Syringodium was slightly more sensitive to ultraviolet-B while Halophila showed relatively little photosynthetic tolerance. Evidence for a photorepair mechanism was found only in Halodule. Syringodium appeared to rely primarily on a thick epidermal cell layer to reduce photosynthetic damage. Halophila seemed to have no morphological or photorepair capabilities to deal with ultraviolet-B. This species appeared to rely on epiphytic and detrital shielding and the shade provided by other seagrasses to reduce ultraviolet-B irradiation to tolerable levels. The presence of epiphytes on leaf surfaces was found to reduce the extent of photosynthetic inhibition from ultraviolet-B exposure in all species. Halophila appears to obtain an increased photosynthetic tolerance to ultraviolet-B as an indirect benefit of chloroplast clumping to avoid photo-oxidation by intense levels of photosynthetically active radiation

  4. Harmful effects of ultraviolet radiation

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Tanning for cosmetic purposes by sunbathing or by using artificial tanning devices is widespread. The hazards associated with exposure to ultraviolet radiation are of concern to the medical profession. Depending on the amount and form of the radiation, as well as on the skin type of the individual exposed, ultraviolet radiation causes erythema, sunburn, photodamage (photoaging), photocarcinogenesis, damage to the eyes, alteration of the immune system of the skin, and chemical hypersensitivity. Skin cancers most commonly produced by ultraviolet radiation are basal and squamous cell carcinomas. There also is much circumstantial evidence that the increase in the incidence of cutaneous malignant melanoma during the past half century is related to increased sun exposure, but this has not been proved. Effective and cosmetically acceptable sunscreen preparations have been developed that can do much to prevent or reduce most harmful effects to ultraviolet radiation if they are applied properly and consistently. Other safety measures include (1) minimizing exposure to ultraviolet radiation, (2) being aware of reflective surfaces while in the sun, (3) wearing protective clothing, (4) avoiding use of artificial tanning devices, and (5) protecting infants and children

  5. Broadband infrared photoluminescence in silicon nanowires with high density stacking faults.

    Science.gov (United States)

    Li, Yang; Liu, Zhihong; Lu, Xiaoxiang; Su, Zhihua; Wang, Yanan; Liu, Rui; Wang, Dunwei; Jian, Jie; Lee, Joon Hwan; Wang, Haiyan; Yu, Qingkai; Bao, Jiming

    2015-02-07

    Making silicon an efficient light-emitting material is an important goal of silicon photonics. Here we report the observation of broadband sub-bandgap photoluminescence in silicon nanowires with a high density of stacking faults. The photoluminescence becomes stronger and exhibits a blue shift under higher laser powers. The super-linear dependence on excitation intensity indicates a strong competition between radiative and defect-related non-radiative channels, and the spectral blue shift is ascribed to the band filling effect in the heterostructures of wurtzite silicon and cubic silicon created by stacking faults.

  6. Effect of ultraviolet exposure on mitochondrial respiratory system

    Energy Technology Data Exchange (ETDEWEB)

    Noda, K [Kurume Univ., Fukuoka (Japan). School of Medicine

    1975-09-01

    To find the photodynamic effect of ultraviolet light on the mitochondrial respiratory chain, mitochondria were obtained from rat livers, and the suspension was exposed to an extensive ultraviolet light. The oxygen consumption was measured polarographically with a Clark oxygen electrode. The effect of ultraviolet exposure on the five states of respiratory control (Chance and Williams), the P/O ratio, and the respiratory control index in mitochondria was discussed. The ultraviolet light with a dose of 9.6 x 10/sup 6/ erg/cm/sup 2/ caused the oxidative phosphorylation in mitochondria to uncouple. The 2nd phosphorylation site of the respiratory chain was susceptible to ultraviolet exposure. The stimulation of latent ATPase activity in mitochondria following exposure was observed by increasing exposure of ultraviolet light. However, DNP-stimulated ATPase was found to be stable in activity. The uncoupling of the respiratory chain by ultraviolet exposure was not detected if the mitochondrial suspension was preincubated with bovine serum albumin before exposure. The changes in light absorption of the mitochondrial suspension were followed at 520 nm after exposure. A close correlation was found between the ultraviolet exposure and swelling in mitochondria. But, the reversing contraction was observed by adding ATP to the swelled mitochondria. The peroxide compound was formed in mitochondria irradiated with ultraviolet light. The amount of compounds formed was dependent on the radiant energy of ultraviolet light. The possible mechanisms involved in the photodynamic effect of ultraviolet light to the mitochondrial respiration system were discussed.

  7. Photoluminescence Enhancement in Formamidinium Lead Iodide Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Wang, Feng; Adjokatse, Sampson; Zhao, Ni; Loi, Maria Antonietta

    2016-01-01

    Formamidinium lead iodide (FAPbI(3)) has a broader absorption spectrum and better thermal stability than the most famous methylammonium lead iodide, thus exhibiting great potential for photovoltaic applications. In this report, the light-induced photoluminescence (PL) evolution in FAPbI(3) thin

  8. Optical properties and photoluminescence of tetrahexyl-sexithiophene allotropes

    NARCIS (Netherlands)

    Botta, C; Destri, S; Porzio, W; Bongiovanni, G; Loi, MA; Mura, A; Tubino, R

    2001-01-01

    The optical absorption, Raman scattering and photoluminescence of two phases of tetrahexyl-sexithiophene (4HT6) display properties coherently related to the different molecular conformations imposed by the chain packing. We analyse the temperature dependence of the optical properties of a sample in

  9. Synthesis and photoluminescence of Cr-, Ni-, Co-, and Ti-doped ZnSe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Bui The [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Nhatrang Institute of Technology and Research Application, 2 Hungvuong, Nhatrang (Viet Nam); Seo, Min-Ho; Kumar, Avvaru Praveen [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Jeong, Hyuk [Department of Chemistry, Sookmyung Women’s University, Seoul 140-742 (Korea, Republic of); Lee, Yong-Ill, E-mail: yilee@changwon.ac.kr [Anastro Laboratory, Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of)

    2014-03-05

    Highlights: • The chain length, structure of surfactants operated the size nanoparticles. • Ni{sup 2+}, Co{sup 2+}, Cr{sup 3+}, and Ti{sup 3+} did not create any new centers in the structure of ZnSe. • Doping may have influenced the nanoparticles size because of the Zn replacement. • The TM ions change in ligand field caused the influence on fluorescence intensity. -- Abstract: We developed a facile strategy to synthesize transition metal (TM; Ni, Cr, Co, and Ti)-doped ZnSe nanoparticles (NPs) in aqueous media using a chemical co-precipitation method. Co-precipitation was performed in the presence of one of four different surfactants, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), thioglycerol (TGC), or (3-mercaptopropyl) trimethoxysilane (MPTMS). Surface morphology, chemical, and crystalline properties of the TM-doped ZnSe NPs were studied by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Optical features were characterized by UV–visible and photoluminescence spectroscopies. The influence of various experimental parameters, including the amount of TM and the ratio of precursors, as well as different types of surfactants on the photoluminescence properties of TM-doped ZnSe NPs was investigated systematically. TM-doped ZnSe NPs were excited in the UV region and exhibited photoluminescence in the visible region. Intensity was affected by the concentration of the TM. The results showed that MPA had a stronger influence on photoluminescence than MAA, TGC, and MPTMS. The photoluminescence intensity of TM-doped ZnSe NPs was 30% higher than that of undoped ZnSe NPs.

  10. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    International Nuclear Information System (INIS)

    Yao Risheng; Li Manman; Deng Shengsong; Hu Huajia; Wang Huai; Li Fenghe

    2012-01-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  11. Mutagenesis of Trichoderma Viride by Ultraviolet and Plasma

    Science.gov (United States)

    Yao, Risheng; Li, Manman; Deng, Shengsong; Hu, Huajia; Wang, Huai; Li, Fenghe

    2012-04-01

    Considering the importance of a microbial strain capable of increased cellulase production, a mutant strain UP4 of Trichoderma viride was developed by ultraviolet (UV) and plasma mutation. The mutant produced a 21.0 IU/mL FPase which was 98.1% higher than that of the parent strain Trichoderma viride ZY-1. In addition, the effect of ultraviolet and plasma mutagenesis was not merely simple superimposition of single ultraviolet mutation and single plasma mutation. Meanwhile, there appeared a capsule around some of the spores after the ultraviolet and plasma treatment, namely, the spore surface of the strain became fuzzy after ultraviolet or ultraviolet and plasma mutagenesis.

  12. Investigation on photoluminescence quenching of CdSe/ZnS quantum dots by organic charge transporting materials

    Directory of Open Access Journals (Sweden)

    Yuqiu Qu

    2015-12-01

    Full Text Available The effect of different organic charge transporting materials on the photoluminescence of CdSe/ZnS core/shell quantum dots has been studied by means of steady-state and time-resolved photoluminescence spectroscopy. With an increase in concentration of the organic charge transporting material in the quantum dots solutions, the photoluminescence intensity of CdSe/ZnS quantum dots was quenched greatly and the fluorescence lifetime was shortened gradually. The quenching efficiency of CdSe/ZnS core/shell quantum dots decreased with increasing the oxidation potential of organic charge transporting materials. Based on the analysis, two pathways in the photoluminescence quenching process have been defined: static quenching and dynamic quenching. The dynamic quenching is correlated with hole transporting from quantum dots to the charge transporting materials.

  13. Photodetector of ultra-violet radiation

    International Nuclear Information System (INIS)

    Dorogan, V.; Vieru, T.; Coseac, V.; Chirita, F.

    1999-01-01

    The invention relates to photodetectors on the semiconductors base, in particular, to photodetectors of ultra-violet radiation and can be used in the optoelectronics systems for determining the intensity and dose of ultraviolet radiation emitted by the Sun and other sources. In the structure of the photodetector of ultraviolet radiation with a superficial potential barrier formed of semiconductors A 3 B 5 with the prohibited power width Eg 1 , solid solutions thereof with the prohibited power width Eg 2 and SnO 2 or ITO, in the semiconductors A 3 B 5 at a surface distance less than the absorption length of the visible radiation it is formed an isotype heterojunction between the semiconductors A 3 B 5 and solid solutions thereof with the prohibited power width Eg 2 > Eg 1 . The technical result consists in manufacturing of a photodetector sensitive solely to the ultraviolet radiation

  14. Ultraviolet light - nature's own disinfection process

    Energy Technology Data Exchange (ETDEWEB)

    Munkeberg, T [Thorolf Gregersen a/s, Oslo (Norway)

    1978-05-18

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m/sup 3/ /hr, though there is no reason why this should not be increased.

  15. Ultraviolet light - nature's own disinfection process

    International Nuclear Information System (INIS)

    Munkeberg, T.

    1978-01-01

    Ultraviolet radiation from the sun is the means by which natural pollution products, as well as much of the smaller amount of pollution products produced by man, are converted and returned to the cycle of nature. Artificial ultraviolet radiation offers an optimum method for the disinfection of drinking water and can be used in the long term without undesireable effects on man or the enviromment. There is no evidence that ultraviolet irradiation leads to radiation resistant mutations of bacteria. The geometrical arrangement of ultraviolet disinfection units is described and the capacities of typical units is mentioned as being 600-800 m 3 /hr, though there is no reason why this should not be increased. (JIW)

  16. Photoluminescence quenching through resonant energy transfer in blends of conjugated polymer with low-molecular acceptor

    International Nuclear Information System (INIS)

    Zapunidi, S. A.; Paraschuk, D. Yu.

    2008-01-01

    A model is proposed for photoluminescence quenching due to resonant energy transfer in a blend of a conjugated polymer and a low-molecular energy acceptor. An analytical dependence of the normalized photoluminescence intensity on the acceptor concentration is derived for the case of a homogeneous blend. This dependence can be described by two fitting parameters related to the Foerster radii for energy transfer between conjugated segments of the polymer and between the conjugated polymer segment and the energy acceptor. Asymptotic approximations are obtained for the model dependence that make it possible to estimate the contribution from the spatial migration of excitons to the photoluminescence quenching. The proposed model is used to analyze experimental data on the photoluminescence quenching in a blend of the soluble derivative of poly(p-phenylene vinylene) and trinitrofluorenone [13]. The Foerster radius for resonant energy transfer between the characteristic conjugated segment of poly(p-phenylene vinylene) and the energy acceptor is determined to be r F = 2.6 ± 0.3 nm

  17. Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging

    Science.gov (United States)

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Şen Karaman, Didem; Burikov, Sergey A.; Dolenko, Tatiana A.; Deguchi, Takahiro; Mamaeva, Veronika; Hänninen, Pekka E.; Vlasov, Igor I.; Shenderova, Olga A.; Rosenholm, Jessica M.

    2015-06-01

    Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are attractive for biomedical imaging such as low toxicity and stable photoluminescence. In this study, the nGOs were organically surface-modified with poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) copolymers tagged with folic acid as the affinity ligand for cancer cells expressing folate receptors. The functionalization enhanced both the cellular uptake and quantum efficiency of the photoluminescence as compared to non-modified nGOs. The nGOs exhibited an excitation dependent photoluminescence that facilitated their detection with a wide range of microscope configurations. The functionalized nGOs were non-toxic, they were retained in the stained cell population over a period of 8 days and they were distributed equally between daughter cells. We have evaluated their applicability in in vitro and in vivo (chicken embryo CAM) models to visualize and track migratory cancer cells. The good biocompatibility and easy detection of the functionalized nGOs suggest that they could address the limitations faced with quantum dots and organic fluorophores in long-term in vivo biomedical imaging.Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are

  18. Thermally stimulated luminescence and photoluminescence ...

    Indian Academy of Sciences (India)

    2012-01-13

    Jan 13, 2012 ... red to ultraviolet, which depends on the crystal structure of host materials ..... to strong anisotropic nature of the fine structure (fs) transi- tion(s), other .... 39 2065. Pan Shilie, Wu Yicheng, Fu Peizhen, Zhang Guochun, Li Zhihua,.

  19. Far-ultraviolet spectral changes of titanium dioxide with gold nanoparticles by ultraviolet and visible light

    Science.gov (United States)

    Tanabe, Ichiro; Kurawaki, Yuji

    2018-05-01

    Attenuated total reflectance spectra including the far-ultraviolet (FUV, ≤ 200 nm) region of titanium dioxide (TiO2) with and without gold (Au) nanoparticles were measured. A newly developed external light-irradiation system enabled to observe spectral changes of TiO2 with Au nanoparticles upon light irradiations. Absorption in the FUV region decreased and increased by the irradiation with ultraviolet and visible light, respectively. These spectral changes may reflect photo-induced electron transfer from TiO2 to Au nanoparticles under ultraviolet light and from Au nanoparticles to TiO2 under visible light, respectively.

  20. Large-scale syntheses of uniform ZnO nanorods and ethanol gas sensors application

    International Nuclear Information System (INIS)

    Chen Jin; Li Jin; Li Jiahui; Xiao Guoqing; Yang Xiaofeng

    2011-01-01

    Research highlights: → The uniform ZnO nanorods could be synthesized by a low temperature, solution-based method. → The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. → Room-temperature photoluminescence spectra of these nanorods show an exciton emission around 382 nm and a weak deep level emission, indicating the nanorods have high quality. → The sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. - Abstract: Uniform ZnO nanorods with a gram scale were prepared by a low temperature and solution-based method. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL). The results showed that the sample had uniform rod-like morphology with a narrow size distribution and highly crystallinity. Room-temperature PL spectra of these nanorods show an exciton emission around 382 nm and a negligible deep level emission, indicating the nanorods have high quality. The gas-sensing properties of the materials have been investigated. The results indicate that the as-prepared nanorods show much better sensitivity and stability. The n-type semiconductor gas sensor exhibited high sensitivity and fast response to ethanol gas at a work temperature of 400 deg. C. ZnO nanorods are excellent potential candidates for highly sensitive gas sensors and ultraviolet laser.

  1. Ultraviolet Extinction in Backlit Galaxies - from Galaxy Zoo to GALEX

    Science.gov (United States)

    Keel, William C.; Manning, A.; Holwerda, B. W.; Lintott, C.; Schawinski, K.; Galaxy Zoo Team

    2012-01-01

    We examine the ultraviolet extinction of galaxies on large scales, combining optical and GALEX UV data on backlit galaxies (most found in the Galaxy Zoo citizen-science project). We analyze the images in matching ways, modelling both foreground and background galaxies by symmetry or elliptical isophote families as appropriate, and using the non-overlapping regions of the galaxies to estimate errors in the derived transmission T=e-κ. Spirals appear less symmetric in the UV, as star-forming regions become more dominant, so that our most reliable results are mean values across multiple regions and multiple galaxies. Our mean effective extinction curve is dominated by the contribution of luminous spirals,and shows a fairly flat gray" extinction law into the ultraviolet. For example, the median of κNUV/κB in spiral arms is only 1.3. Along with previous high-resolution HST studies of a few nearby backlit galaxies, this suggests that on kpc scales the effective extinction is dominated by the dust clumping rather than the intrinsic reddening law. This implies that extrapolation of local properties to short wavelengths, a step toward the history of dust in galaxies through comparison of local properties with a similar analysis in deep HST fields, can be done without introducing much additional error. This work was supported by NASA Astrophysics Data Analysis Program grant NNX10AD54G.

  2. Picosecond green and deep ultraviolet pulses generated by a high-power 100 kHz thin-disk laser

    Czech Academy of Sciences Publication Activity Database

    Novák, Ondřej; Turčičová, Hana; Smrž, Martin; Miura, Taisuke; Endo, Akira; Mocek, Tomáš

    2016-01-01

    Roč. 41, č. 22 (2016), s. 5210-5213 ISSN 0146-9592 R&D Projects: GA MŠk ED2.1.00/01.0027; GA MŠk LO1602; GA MŠk EE2.3.30.0057 Grant - others:HILASE(XE) CZ.1.05/2.1.00/01.0027; OP VK 4 POSTDOK(XE) CZ.1.07/2.3.00/30.0057 Institutional support: RVO:68378271 Keywords : lasers * diode-pumped * ultraviolet Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.416, year: 2016

  3. Ultraviolet spectrophotometry of three LINERs

    Science.gov (United States)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  4. Photoluminescent polysaccharide-coated germanium(IV) oxide nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Lobaz, Volodymyr; Rabyk, Mariia; Pánek, Jiří; Doris, E.; Nallet, F.; Štěpánek, Petr; Hrubý, Martin

    2016-01-01

    Roč. 294, č. 7 (2016), s. 1225-1235 ISSN 0303-402X R&D Projects: GA MŠk(CZ) 7AMB14FR027; GA ČR(CZ) GA13-08336S; GA MZd(CZ) NV15-25781A Institutional support: RVO:61389013 Keywords : germanium oxide nanoparticles * polysaccharide coating * photoluminescent label Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.723, year: 2016

  5. Power-law photoluminescence decay in quantum dots

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2013-01-01

    Roč. 5, č. 6 (2013), s. 608-610 ISSN 2164-6627 R&D Projects: GA MŠk(CZ) OC10007; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : quantum dots * indirect gap * photoluminescence * electron-phonon interaction * non-adiabatic Subject RIV: BM - Solid Matter Physics ; Magnetism; JA - Electronics ; Optoelectronics, Electrical Engineering (UMCH-V)

  6. Ultraviolet safety assessments of insect light traps.

    Science.gov (United States)

    Sliney, David H; Gilbert, David W; Lyon, Terry

    2016-01-01

    Near-ultraviolet (UV-A: 315-400 nm), "black-light," electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV "Black-light" ILTs were measured at a range of distances to assess potential exposures. Realistic time-weighted human exposures are shown to be well below current guidelines for human exposure to ultraviolet radiation. These UV-A exposures would be far less than the typical UV-A exposure in the outdoor environment. Proposals are made for realistic ultraviolet safety standards for ILT products.

  7. Design considerations of a MW-scale, high-efficiency, industrial-use, ultraviolet FEL amplifier

    International Nuclear Information System (INIS)

    Pagani, C.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2000-01-01

    Theoretical and experimental work in free electron laser (FEL) physics, and the physics of particle accelerators over the last 10 years has pointed to the possibility of the generation of MW-level optical beams with laser-like characteristics in the ultraviolet (UV) spectral range. The concept is based on generation of the radiation in the master oscillator-power FEL amplifier (MOPA) configuration. The FEL amplifier concept eliminates the need for an optical cavity. As a result, there are no thermal loading limitations to increase the average output power of this device up to the MW-level. The problem of a tunable master oscillator can be solved with available conventional quantum lasers. The use of a superconducting energy-recovery linac could produce a major, cost-effective facility with wall plug power to output optical power efficiency of about 20% that spans wavelengths from the visible to the deep ultraviolet regime. The stringent electron beam qualities required for UV FEL amplifier operation can be met with a conservative injector design (using a conventional thermionic gun and subharmonic bunchers) and the beam compression and linear acceleration technology, recently developed in connection with high-energy linear collider and X-ray FEL programs

  8. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Rafiq, Muhammad; Seo, Sung-Yum [Department of Biology, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Lee, Ki Hwan, E-mail: khlee@kongju.ac.kr [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of)

    2014-07-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  9. Influence of acetylcholinesterase immobilization on the photoluminescence properties of mesoporous silicon surface

    International Nuclear Information System (INIS)

    Saleem, Muhammad; Rafiq, Muhammad; Seo, Sung-Yum; Lee, Ki Hwan

    2014-01-01

    Acetylcholinesterase immobilized p-type porous silicon surface was prepared by covalent attachment. The immobilization procedure was based on support surface chemical oxidation, silanization, surface activation with cyanuric chloride and finally covalent attachment of free enzyme on the cyanuric chloride activated porous silicon surface. Different pore diameter of porous silicon samples were prepared by electrochemical etching in HF based electrolyte solution and appropriate sample was selected suitable for enzyme immobilization with maximum trapping ability. The surface modification was studied through field emission scanning electron microscope, EDS, FT-IR analysis, and photoluminescence measurement by utilizing the fluctuation in the photoluminescence of virgin and enzyme immobilized porous silicon surface. Porous silicon showed strong photoluminescence with maximum emission at 643 nm and immobilization of acetylcholinesterase on porous silicon surface cause considerable increment on the photoluminescence of porous silicon material while acetylcholinesterase free counterpart did not exhibit any fluorescence in the range of 635–670 nm. The activities of the free and immobilized enzymes were evaluated by spectrophotometric method by using neostigmine methylsulfate as standard enzyme inhibitor. The immobilized enzyme exhibited considerable response toward neostigmine methylsulfate in a dose dependent manner comparable with that of its free counterpart alongside enhanced stability, easy separation from the reaction media and significant saving of enzyme. It was believed that immobilized enzyme can be exploited in organic and biomolecule synthesis possessing technical and economical prestige over free enzyme and prominence of easy separation from the reaction mixture.

  10. Photoluminescence enhancement from GaN by beryllium doping

    Science.gov (United States)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  11. Optimizing image-based patterned defect inspection through FDTD simulations at multiple ultraviolet wavelengths

    Science.gov (United States)

    Barnes, Bryan M.; Zhou, Hui; Henn, Mark-Alexander; Sohn, Martin Y.; Silver, Richard M.

    2017-06-01

    The sizes of non-negligible defects in the patterning of a semiconductor device continue to decrease as the dimensions for these devices are reduced. These "killer defects" disrupt the performance of the device and must be adequately controlled during manufacturing, and new solutions are required to improve optics-based defect inspection. To this end, our group has reported [Barnes et al., Proc. SPIE 1014516 (2017)] our initial five-wavelength simulation study, evaluating the extensibility of defect inspection by reducing the inspection wavelength from a deep-ultraviolet wavelength to wavelengths in the vacuum ultraviolet and the extreme ultraviolet. In that study, a 47 nm wavelength yielded enhancements in the signal to noise (SNR) by a factor of five compared to longer wavelengths and in the differential intensities by as much as three orders-of-magnitude compared to 13 nm. This paper briefly reviews these recent findings and investigates the possible sources for these disparities between results at 13 nm and 47 nm wavelengths. Our in-house finite-difference time-domain code (FDTD) is tested in both two and three dimensions to determine how computational conditions contributed to the results. A modified geometry and materials stack is presented that offers a second viewpoint of defect detectability as functions of wavelength, polarization, and defect type. Reapplication of the initial SNR-based defect metric again yields no detection of a defect at λ = 13 nm, but additional image preprocessing now enables the computation of the SNR for λ = 13 nm simulated images and has led to a revised defect metric that allows comparisons at all five wavelengths.

  12. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhitao [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0826 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Banishev, Alexandr A.; Christensen, James; Dlott, Dana D. [School of Chemical Sciences and Fredrick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N., E-mail: naresh.thadhani@mse.gatech.edu [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245 (United States); Xiao, Pan [LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States); Zhou, Min [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0405 (United States)

    2016-07-28

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  13. Exploration of CdTe quantum dots as mesoscale pressure sensors via time-resolved shock-compression photoluminescent emission spectroscopy

    International Nuclear Information System (INIS)

    Kang, Zhitao; Banishev, Alexandr A.; Christensen, James; Dlott, Dana D.; Lee, Gyuhyon; Scripka, David A.; Breidenich, Jennifer; Summers, Christopher J.; Thadhani, Naresh N.; Xiao, Pan; Zhou, Min

    2016-01-01

    The nanometer size of CdTe quantum dots (QDs) and their unique optical properties, including size-tunable narrow photoluminescent emission, broad absorption, fast photoluminescence decay, and negligible light scattering, are ideal features for spectrally tagging the shock response of localized regions in highly heterogeneous materials such as particulate media. In this work, the time-resolved laser-excited photoluminescence response of QDs to shock-compression was investigated to explore their utilization as mesoscale sensors for pressure measurements and in situ diagnostics during shock loading experiments. Laser-driven shock-compression experiments with steady-state shock pressures ranging from 2.0 to 13 GPa were performed on nanocomposite films of CdTe QDs dispersed in a soft polyvinyl alcohol polymer matrix and in a hard inorganic sodium silicate glass matrix. Time-resolved photoluminescent emission spectroscopy was used to correlate photoluminescence changes with the history of shock pressure and the dynamics of the matrix material surrounding the QDs. The results revealed pressure-induced blueshifts in emitted wavelength, decreases in photoluminescent emission intensity, reductions in peak width, and matrix-dependent response times. Data obtained for these QD response characteristics serve as indicators for their use as possible time-resolved diagnostics of the dynamic shock-compression response of matrix materials in which such QDs are embedded as in situ sensors.

  14. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    International Nuclear Information System (INIS)

    Kweon, Dae Cheol; Park, Peom

    2001-01-01

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 μW · s/cm 2 Win in 30 second relative to ultraviolet dose in time

  15. Photoluminescence properties of a novel conjugate of water-soluble CdTe quantum dots to guanine

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xuejiao [North-East Normal University, Changchun 130024 (China); Shang, Qingkun, E-mail: shangqk995@nenu.edu.c [North-East Normal University, Changchun 130024 (China); Liu Hongjian [Relia Diagnostic Systems, Burlingame, CA 94010 (United States); Wang Wenlan; Wang Zhidan; Liu Junyu [North-East Normal University, Changchun 130024 (China)

    2010-04-15

    A novel conjugate of water-soluble CdTe quantum dots to a small biomolecule guanine has been obtained in aqueous phase. The photoluminescence property and the stability of the conjugate increased comparing to CdTe QDs. The interaction between CdTe QDs and guanine was studied by TEM, fluorescence microscope and photoluminescence (PL), IR, UV-Vis spectra. The effects of reflux time, pH value, ionic strength, and the ratio of CdTe QDs to guanine on the photoluminescence properties of conjugate were investigated in detail. The results show that guanine has a great influence on both the photoluminescence property and stability of thioglycolic acid-stabilized CdTe QDs. The formation of coordination and hydrogen bond between guanine molecules and CdTe including thioglycolic acid on its surface may effectively enhance the PL intensity and stability of CdTe QDs. The maximum PL intensity of the conjugate was obtained on the condition with lower ionic strength, less than 30 min reflux time, neutral pH value and 6/1 as molar ratio of guanine to CdTe.

  16. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszkiewicz, Marek, E-mail: mpietraszkiewicz@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Dutkiewicz, Grzegorz; Borowiak, Teresa [Adam Mickiewicz University, Faculty of Chemistry, Department of Crystallography, Grunwaldzka 6, 60-780 Poznań (Poland); Kaczmarek, Anna M. [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium); Van Deun, Rik, E-mail: rik.vandeun@ugent.be [L3–Luminescent Lanthanide Lab, f-element coordination chemistry, Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281, Building S3, 9000 Gent (Belgium)

    2016-02-15

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu{sup 3+} to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip){sub 3}. The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  17. Highly photoluminescent europium tetraphenylimidodiphosphinate ternary complexes with heteroaromatic co-ligands. Solution and solid state studies

    International Nuclear Information System (INIS)

    Pietraszkiewicz, Marek; Pietraszkiewicz, Oksana; Karpiuk, Jerzy; Majka, Alina; Dutkiewicz, Grzegorz; Borowiak, Teresa; Kaczmarek, Anna M.; Van Deun, Rik

    2016-01-01

    Tetraphenylimidodiphosphinate (tpip) forms neutral 3:1 complexes with lanthanide ions. These complexes can accommodate one ancillary planar heterocyclic ligand to complement their coordination sphere of Eu 3+ to coordination number 8. Several co-ligands were tested to form new complexes: 1,10-phenanthroline, bathophenanthroline, 2,4,6-tris(2-pyridyl)-1,3,5-triazine, dipyrido[3,2-f:2′,3′-h]quinoxaline and 2,2′:6′,2′′-terpyridine. The addition of heterocyclic N,N-bidentate co-ligands to the coordination sphere results in a dramatic (by a factor of 45–50) luminescence enhancement of the parent Eu(tpip) 3 . The solid-state measurements confirmed that the ancillary ligands strongly increased the photoluminescence quantum yield (PLQY) of the investigated complexes. - Highlights: • We have disovered highly photoluminescent ternary Eu(III) complexes. • They consist of Eu(III) tetraphenylimidodiphosphinate, and planar heterocyclic ligands. • The increase in photoluminescence quantum yields in solution is enhanced up to 50 times in solution. • The solid-state photoluminescence exceeds 80% at room temperature.

  18. Hydrothermal synthesis of two photoluminescent nitrogen-doped graphene quantum dots emitted green and khaki luminescence

    International Nuclear Information System (INIS)

    Zhu, Xiaohua; Zuo, Xiaoxi; Hu, Ruiping; Xiao, Xin; Liang, Yong; Nan, Junmin

    2014-01-01

    A simple and effective chemical synthesis of the photoluminescent nitrogen-doped graphene quantum dots (N-GQDs) biomaterial is reported. Using the hydrothermal treatment of graphene oxide (GO) in the presence of hydrogen peroxide (H 2 O 2 ) and ammonia, the N-GQDs are synthesized through H 2 O 2 exfoliating the GO into nanocrystals with lateral dimensions and ammonia passivating the generated active surface. Then, after a dialytic separation, two water-soluble N-GQDs with average size of about 2.1 nm/6.2 nm, which emit green/khaki luminescence and exhibit excitation dependent/independent photoluminescence (PL) behaviors, are obtained. In addition, it is also demonstrated that these two N-GQDs are stable over a broad pH range and have the upconversion PL property, showing this approach provides a simple and effective method to synthesize the functional N-GQDs. - Highlights: • Nitrogen-doped graphene quantum dots (N-GQDs) are prepared by hydrothermal routine. • Two N-GQDs with different size distribution emit green/khaki photoluminescence. • Two N-GQDs exhibit excitation-dependent/independent photoluminescence behaviors

  19. Ultraviolet Spectroscopy of Asteroid(4) Vesta

    Science.gov (United States)

    Li, Jian-Yang; Bodewits, Dennis; Feaga, Lori M.; Landsman, Wayne; A'Hearn, Michael F.; Mutchler, Max J.; Russell, Christopher T.; McFadden, Lucy A.; Raymond, Carol A.

    2011-01-01

    We report a comprehensive review of the UV-visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm arc derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope in the ultraviolet displays a sharp minimum ncar sub-Earth longitude of 20deg, and maximum in the eastern hemisphere. This is completely consistent with the distribution of the spectral slope in the visible wavelength. The uncertainty of the measurement in the ultraviolet is approx.20%, and in the visible wavelengths better than 10%. The amplitude of Vesta's rotational lightcurves is approx.10% throughout the range of wavelengths we observed, but is smaller at 950 nm (approx.6%) ncar the 1-micron mafic band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/ncar-infrared lightcurves with respect to sub-Earth longitude. Vesta's average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible. and ncar-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies lack of global space weathering on Vesta. Keyword,: Asteroid Vesta; Spectrophotometry; Spectroscopy; Ultraviolet observations; Hubble Space Telescope observations

  20. The study of photocatalysis under ultraviolet + visible two-beam light irradiation using undoped nano-titanium dioxide

    International Nuclear Information System (INIS)

    Liu Baoshun; Wen Liping; Zhao Xiujian

    2008-01-01

    The nano-TiO 2 powder was synthesized using wet chemical method and characterized by X-ray diffraction (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET), and transmission electron microscope (TEM). The photodegradation of aqueous methyl orange and phenol under the irradiation of visible, ultraviolet (UV), and UV + visible lights was used to evaluate the photocatalytic activity of nano-TiO 2 powder prepared. It is found that the photocatalysis under UV and visible light irradiation simultaneously is much faster than the sum of that solely induced by UV light and visible light. UV-vis spectroscopy, photoluminescence (PL) spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used to investigate the physical cause of the enhancement of photocatalytic activity induced by UV + visible two-beam light irradiation. A photocatalytic mechanism based on the d-d transition of photoinduced electrons on surface located at conduction band was suggested to explain the experimental result. It is considered that this is a novel method to utilize visible light in the photocatalysis by using undoped TiO 2 material

  1. Gold Photoluminescence: Wavelength and Polarization Engineering

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Pors, Anders Lambertus; Bozhevolnyi, Sergey I.

    2015-01-01

    We demonstrate engineering of the spectral content and polarization of photoluminescence (PL) from arrayed gold nanoparticles atop a subwavelength-thin dielectric spacer and optically-thick gold film, a configuration that supports gap-surface plasmon resonances (GSPRs). Choice of shapes...... and dimensions of gold nanoparticles influences the GSPR wavelength and polarization characteristics, thereby allowing us to enhance and spectrally mold the plasmon-assisted PL while simultaneously controlling its polarization. In order to understand the underlying physics behind the plasmon-enhanced PL, we...

  2. Photoluminescence properties of Eu2+-activated Ca2Y2Si2O9 phosphor

    NARCIS (Netherlands)

    Zhang, Zhijun; Delsing, A.C.A.; Notten, P.H.L.; Zhao, Jingtai; Hintzen, H.T.J.M.

    2012-01-01

    Eu2+-activated Ca2Y2Si2O9 phosphors with different Eu2+ concentrations have been prepared by a solid-state reaction method at high temperature and their photoluminescence (PL) properties were investigated. Photoluminescence results show that Eu2+-doped Ca2Y2Si2O9 can be efficiently excited by

  3. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    International Nuclear Information System (INIS)

    Murphy, J. R.; Delikanli, S.; Demir, H. V.; Scrace, T.; Zhang, P.; Norden, T.; Petrou, A.; Thomay, T.; Cartwright, A. N.

    2016-01-01

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  4. Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. R. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Delikanli, S.; Demir, H. V., E-mail: volkan@bilkent.edu.tr [LUMINOUS Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, Nanyang Technological University, Singapore 639798 (Singapore); Department of Electrical and Electronics Engineering, Department of Physics, UNAM−Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey); Scrace, T.; Zhang, P.; Norden, T.; Petrou, A., E-mail: petrou@buffalo.edu [Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States); Thomay, T.; Cartwright, A. N. [Department of Electrical Engineering, State University of New York, University at Buffalo, Buffalo, New York 14260 (United States)

    2016-06-13

    We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.

  5. Photoluminescence and photoluminescence excitation studies in 80 MeV Ni ion irradiated MOCVD grown GaN

    Energy Technology Data Exchange (ETDEWEB)

    Devaraju, G. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Pathak, A.P., E-mail: appsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Srinivasa Rao, N.; Saikiran, V. [School of Physics, University of Hyderabad, Central University P.O., Hyderabad 500 046 (India); Enrichi, Francesco [Coordinamento Interuniversitario Veneto per le Nanotecnologie (CIVEN), via delle Industrie 5, Marghera, I-30175Venice (Italy); Trave, Enrico [Dipartimento di Chimica Fisica, Universita Ca' Foscari Venezia, Dorsoduro 2137, I-30123 Venice (Italy)

    2011-09-01

    Highlights: {yields} MOCVD grown GaN samples are irradiated with 80 MeV Ni ions at room temperature. {yields} PL and PLE studies have been carried out for band to band, BL and YL emissions. {yields} Ni ions irradiated GaN shows BL band at 450 nm besides YL band. {yields} Radiation annealed Ga vacancies have quenching effect on YL intensity. {yields} We speculated that BL and YL are associated with N and Ga vacancies, respectively. - Abstract: We report damage creation and annihilation under energetic ion bombardment at a fixed fluence. MOCVD grown GaN thin films were irradiated with 80 MeV Ni ions at a fluence of 1 x 10{sup 13} ions/cm{sup 2}. Irradiated GaN thin films were subjected to rapid thermal annealing for 60 s in nitrogen atmosphere to anneal out the defects. The effects of defects on luminescence were explored with photoluminescence measurements. Room temperature photoluminescence spectra from pristine sample revealed presence of band to band transition besides unwanted yellow luminescence. Irradiated GaN does not show any band to band transition but there is a strong peak at 450 nm which is attributed to ion induced defect blue luminescence. However, irradiated and subsequently annealed samples show improved band to band transitions and a significant decrease in yellow luminescence intensity due to annihilation of defects which were created during irradiation. Irradiation induced effects on yellow and blue emissions are discussed.

  6. Photoluminescence in Spray Pyrolysis Deposited β-In2S3 Thin Films

    Science.gov (United States)

    Jayakrishnan, R.

    2018-04-01

    Spray pyrolysis deposited In2S3 thin films exhibit two prominent photoluminescent emissions. One of the emissions is green in color and centered at around ˜ 540 nm and the other is centered at around ˜ 690 nm and is red in color. The intensity of the green emission decreases when the films are subjected to annealing in air or vacuum. The intensity of red emission increases when films are air annealed and decreases when vacuum annealed. Vacuum annealing leads to an increase in work function whereas air annealing leads to a decrease in work function for this thin film system relative to the as deposited films indicating changes in space charge regions. Surface photovoltage analysis using a Kelvin probe leads to the conclusion that inversion of band bending occurs as a result of annealing. Correlating surface contact potential measurements using a Kelvin probe, x-ray photoelectron spectroscopy and photoluminescence, we conclude that the surface passivation plays a critical role in controlling the photoluminescence from the spray pyrolysis deposited for In2S3 thin films.

  7. Wavelength-tuned light emission via modifying the band edge symmetry: Doped SnO2 as an example

    KAUST Repository

    Zhou, Hang

    2014-03-27

    We report the observation of ultraviolet photoluminescence and electroluminescence in indium-doped SnO2 thin films with modified "forbidden" bandgap. With increasing indium concentration in SnO 2, dominant visible light emission evolves into the ultraviolet regime in photoluminescence. Hybrid functional first-principles calculations demonstrate that the complex of indium dopant and oxygen vacancy breaks "forbidden" band gap to form allowed transition states. Furthermore, undoped and 10% indium-doped SnO2 layers are synthesized on p-type GaN substrates to obtain SnO2-based heterojunction light-emitting diodes. A dominant visible emission band is observed in the undoped SnO 2-based heterojunction, whereas strong near-ultraviolet emission peak at 398 nm is observed in the indium-doped SnO2-based heterojunction. Our results demonstrate an unprecedented doping-based approach toward tailoring the symmetry of band edge states and recovering ultraviolet light emission in wide-bandgap oxides. © 2014 American Chemical Society.

  8. Disinfection Effect of Film Cassettes by Ultraviolet Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Dae Cheol; Park, Peom [Ajou Univ., Suwon (Korea, Republic of)

    2001-12-15

    A bacteria infection on film cassette contact surface was examined at the diagnostic radiology department. Studies have demonstrated a bactericidal effect of ultraviolet irradiation, and to assess the contamination level on film cassette contact surface as a predictor of patient prevent from nosocomial infection. The study showed that the laboratory result was identified non-pathologic and pathologic bacterial in the five different cassette size of the contact surface. Film cassettes were exposed to ultraviolet light for 1, 2 and 3 minutes. Ultraviolet light disinfection practices suitable for bacteria. The study concludes that presence of a bacterial infection will prevent a using antiseptic technique on film cassette contact surface. In conclusion, ultraviolet irradiate on film cassette over the surface more than 2 minutes. Ultraviolet dose of 1565 {mu}W {center_dot} s/cm{sup 2}Win in 30 second relative to ultraviolet dose in time.

  9. Near-unity photoluminescence quantum yield in MoS2

    KAUST Repository

    Amani, Matin

    2015-11-26

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low.The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QYof 0.6%, which indicates a considerable defect density. Herewe report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude.The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a finalQYofmore than 95%, with a longest-observed lifetime of 10.8 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.

  10. Near-unity photoluminescence quantum yield in MoS2

    KAUST Repository

    Amani, Matin; Lien, Der Hsien; Kiriya, Daisuke; Xiao, Jun; Azcatl, Angelica; Noh, Jiyoung; Madhvapathy, Surabhi R.; Addou, Rafik; Santosh, K. C.; Dubey, Madan; Cho, Kyeongjae; Wallace, Robert M.; Lee, Si Chen; He, Jr-Hau; Ager, Joel W.; Zhang, Xiang; Yablonovitch, Eli; Javey, Ali

    2015-01-01

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low.The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QYof 0.6%, which indicates a considerable defect density. Herewe report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude.The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a finalQYofmore than 95%, with a longest-observed lifetime of 10.8 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials.

  11. UV-induced photoluminescence and thermally stimulated luminescence of CaSO{sub 4}:Eu and CaF{sub 2}:Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Godbole, S.V.; Nagpal, J.S.; Page, A.G. E-mail: agpage@magnum.barc.ernet.in

    2000-08-15

    Ultraviolet radiation induced changes in photoluminescence (PL) and thermally stimulated luminescence (TSL) of europium activated calcium sulphate (CaSO{sub 4}:Eu{sup 3+}, Eu{sup 2+}) and terbium doped calcium fluoride (CaF{sub 2}:Tb{sup 3+}) phosphors have been studied. PL measurements suggest conversion of Eu{sup 3+} to Eu{sup 2+} on 254 nm irradiation corresponding to charge transfer band of Eu{sup 3+} ions and reduction of Eu{sup 2+} ions with 365 nm illumination representing a f-d transition of Eu{sup 2+} ions. Similar studies carried out on CaF{sub 2}:Tb{sup 3+} phosphor, however, do not show any significant wavelength specific changes. The integrated TSL output appears to be rate-dependent for both phosphors. The wavelength dependent changes in TSL output observed for CaSO{sub 4}:Eu phosphor have been correlated with those obtained in PL studies. The changes in TSL and PL characteristics of CaF{sub 2}:Tb{sup 3+} phosphor have been explained on the basis of stabilisation of traps based on matrix specific charge similarities.

  12. Resveratrol anti-ultraviolet-induced guinea pig skin injury

    International Nuclear Information System (INIS)

    Li Wenxing; Zhao Ying

    2014-01-01

    Objective: To Estimate on the protection effect of Stilbene on skin damage induced by ultraviolet radiation. Methods: After the normal skin in guinea pig under the intervene of Resveratrol was irradiated with over- dose of ultraviolet rays (UVB and UVA), the samples in every group were matched and compared. Results: The skin tissue in the Resveratrol intervene group irradiated by ultraviolet rays didn't change obviously as compared with that in the self-control group. But, the damage skin tissue in the control group irradiated by ultraviolet did change significantly as compared with that in the Stilbene intervene group. Conclusion: Resveratrol is a good material to protect the skin from damage effect by ultraviolet radiation. (authors)

  13. Ultraviolet-radiation-curable paints

    Energy Technology Data Exchange (ETDEWEB)

    Grosset, A M; Su, W F.A.; Vanderglas, E

    1981-09-30

    In product finishing lines, ultraviolet radiation curing of paints on prefabricated structures could be more energy efficient than curing by natural gas fired ovens, and could eliminate solvent emission. Diffuse ultraviolet light can cure paints on three dimensional metal parts. In the uv curing process, the spectral output of radiation sources must complement the absorption spectra of pigments and photoactive agents. Photosensitive compounds, such as thioxanthones, can photoinitiate unsaturated resins, such as acrylated polyurethanes, by a free radical mechanism. Newly developed cationic photoinitiators, such as sulfonium or iodonium salts (the so-called onium salts) of complex metal halide anions, can be used in polymerization of epoxy paints by ultraviolet light radiation. One-coat enamels, topcoats, and primers have been developed which can be photoinitiated to produce hard, adherent films. This process has been tested in a laboratory scale unit by spray coating these materials on three-dimensional objects and passing them through a tunnel containing uv lamps.

  14. A near-infrared, optical, and ultraviolet polarimetric and timing investigation of complex equatorial dusty structures

    Science.gov (United States)

    Marin, F.; Rojas Lobos, P. A.; Hameury, J. M.; Goosmann, R. W.

    2018-05-01

    Context. From stars to active galactic nuclei, many astrophysical systems are surrounded by an equatorial distribution of dusty material that is, in a number of cases, spatially unresolved even with cutting edge facilities. Aims: In this paper, we investigate if and how one can determine the unresolved and heterogeneous morphology of dust distribution around a central bright source using time-resolved polarimetric observations. Methods: We used polarized radiative transfer simulations to study a sample of circumnuclear dusty morphologies. We explored a grid of geometrically variable models that are uniform, fragmented, and density stratified in the near-infrared, optical, and ultraviolet bands, and we present their distinctive time-dependent polarimetric signatures. Results: As expected, varying the structure of the obscuring equatorial disk has a deep impact on the inclination-dependent flux, polarization degree and angle, and time lags we observe. We find that stratified media are distinguishable by time-resolved polarimetric observations, and that the expected polarization is much higher in the infrared band than in the ultraviolet. However, because of the physical scales imposed by dust sublimation, the average time lags of months to years between the total and polarized fluxes are important; these time lags lengthens the observational campaigns necessary to break more sophisticated, and therefore also more degenerated, models. In the ultraviolet band, time lags are slightly shorter than in the infrared or optical bands, and, coupled to lower diluting starlight fluxes, time-resolved polarimetry in the UV appears more promising for future campaigns. Conclusions: Equatorial dusty disks differ in terms of inclination-dependent photometric, polarimetric, and timing observables, but only the coupling of these different markers can lead to inclination-independent constraints on the unresolved structures. Even though it is complex and time consuming, polarized

  15. Photoluminescence study of ZnS and ZnS:Pb nanoparticles

    International Nuclear Information System (INIS)

    Virpal,; Hastir, Anita; Kaur, Jasmeet; Singh, Gurpreet; Singh, Ravi Chand

    2015-01-01

    Photoluminescence (PL) study of pure and 5wt. % lead doped ZnS prepared by co-precipitation method was conducted at room temperature. The prepared nanoparticles were characterized by X-ray Diffraction (XRD), UV-Visible (UV-Vis) spectrophotometer, Photoluminescence (PL) and Raman spectroscopy. XRD patterns confirm cubic structure of ZnS and PbS in doped sample. The band gap energy value increased in case of Pb doped ZnS nanoparticles. The PL spectrum of pure ZnS was de-convoluted into two peaks centered at 399nm and 441nm which were attributed to defect states of ZnS. In doped sample, a shoulder peak at 389nm and a broad peak centered at 505nm were observed. This broad green emission peak originated due to Pb activated ZnS states

  16. Magnetic enhancement of photoluminescence from blue-luminescent graphene quantum dots

    Science.gov (United States)

    Chen, Qi; Shi, Chentian; Zhang, Chunfeng; Pu, Songyang; Wang, Rui; Wu, Xuewei; Wang, Xiaoyong; Xue, Fei; Pan, Dengyu; Xiao, Min

    2016-02-01

    Graphene quantum-dots (GQDs) have been predicted and demonstrated with fascinating optical and magnetic properties. However, the magnetic effect on the optical properties remains experimentally unexplored. Here, we conduct a magneto-photoluminescence study on the blue-luminescence GQDs at cryogenic temperatures with magnetic field up to 10 T. When the magnetic field is applied, a remarkable enhancement of photoluminescence emission has been observed together with an insignificant change in circular polarization. The results have been well explained by the scenario of magnetic-field-controlled singlet-triplet mixing in GQDs owing to the Zeeman splitting of triplet states, which is further verified by temperature-dependent experiments. This work uncovers the pivotal role of intersystem crossing in GQDs, which is instrumental for their potential applications such as light-emitting diodes, photodynamic therapy, and spintronic devices.

  17. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    Science.gov (United States)

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  18. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra

    Energy Technology Data Exchange (ETDEWEB)

    Surrente, A; Gallo, P; Felici, M; Dwir, B; Rudra, A; Kapon, E, E-mail: alessandro.surrente@epfl.c [Laboratory of Physics of Nanostructures, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2009-10-14

    Arrays of site-controlled, pyramidal InGaAs/GaAs quantum dots (QDs) grown by organo-metallic chemical vapour deposition with densities comparable to those of self-assembled QDs (5 x 10{sup 9} cm{sup -2}) are demonstrated. The QDs exhibit high quality photoluminescence spectra with inhomogeneous broadening of only 6.5 meV. The QD dipole moment was estimated through the analysis of time-resolved photoluminescence measurements. Such ordered QD arrays should be useful for applications in active nanophotonic systems such as QD lasers, modulators and switches requiring high overlap of the optical modes with the QD active region.

  19. Ultraviolet light in the use of water disinfection

    International Nuclear Information System (INIS)

    Dabbagh, R.

    1999-01-01

    Ultraviolet light is an effective method in the use of water disinfection for swimming pools, potable water and industry required water. For many reasons Ultraviolet light and Ultraviolet compounded with chlorine (Ultraviolet/chlorine) has been brought to attention ed in resent years. In this research, a swimming pool water disinfection was carried out by means of a system with the use of a reactor which was made of stainless steel (SS-304) and with many another standards required. Operation of system was carried out at first in the pilot plant and then installation in essential water treatment integrated. Inactivation of pollution index, E. Coli or Total coliform and Pseudomonas aeroginosa studies with 6000,16000 and 30000 μW.s/cm 2 Ultraviolet dose and then in presence of 0.3,0.6,0.9 and 1.2 mg/1 free chlorine (Ultraviolet/chlorine). In swimming pools minimum free chlorine residual usually is 1.5 mg/1. Optimum Ultraviolet dose was 16000 μW.s/cm 2 attention to 50 percent Ultraviolet absorption ca sued to TSS,TDS and turbidity. In the Ultraviolet/chlorine system suitable rate was 16000μW.s/cm 2 Ultraviolet dose/0.6 mg/1 chlorine in the 2.4 * 10 5 CFU/100 ml for Total coliform and 3600 CFU/100 ml for Pseudomonas aeroginosa. Most probable number (MPN) estimated multiple tube fermentation technique. In this way the flow rate for system indicated about 240 cm 3 /s or 0.9 m 3 /h. The samples polluted for secondary pollution with 54000 CFU/100 ml for E. Coli and 1800 CFU/100ml Pseudomonas aeroginosa. The number of microbes decreased to zero duration after 45 minutes contact time in presence of free chlorine residual in samples. In practical conditions which that disinfectant system was installed in essential water treatment circuit under 1.4 atm hydraulic pressure no growth was seen for pollution index in disinfected water with Ultraviolet in microbial density about 840 CFU/100 ml for Total coliform and 12 CFU/100 ml for pseudomonas aeroginosa. Attention to lower

  20. One-step synthesis and properties of monolithic photoluminescent ruby colored cuprous oxide antimony oxide glass nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Som, Tirtha [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India); Karmakar, Basudeb, E-mail: basudebk@cgcri.res.in [Glass Science and Technology Section, Glass Division, Central Glass and Ceramic Research Institute, Council of Scientific and Industrial Research (CSIR, India), 196, Raja S.C. Mullick Road, Kolkata 700032 (India)

    2011-04-14

    Research highlights: > Single-step synthesis of Cu{sub 2}O, Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) and Cu nanocrystals co-doped novel antimony oxide glass hybrid nanocomposites. > Yellow and orange colored nanocomposites shows size-controlled band gap shift of Cu{sub 2}O. > Red nanocomposite exhibits surface plasmon resonance band due to metallic Cu. > They exhibit broad deep-red photoluminescence emission under various UV excitation wavelengths. - Abstract: Cuprous oxide (Cu{sub 2}O) antimony glass (K{sub 2}O-B{sub 2}O{sub 3}-Sb{sub 2}O{sub 3}) monolithic nanocomposites having brilliant yellow to ruby red color have been synthesized by a single-step melt-quench technique involving in situ thermochemical reduction of Cu{sup 2+} (CuO) by the reducing glass matrix without using any external reducing agent. The X-ray diffraction (XRD), infrared transmission and reflection spectra, and selected area electron diffraction analysis support the reduction of Cu{sup 2+} to Cu{sup +} with the formation of Cu{sub 2}O nanoclusters along with Cu{sub y}Sb{sub 2-x}(O,OH){sub 6-7} (y {<=} 2, x {<=} 1) nanocrystalline phases while Cu{sup 0} nanoclusters are formed at very high Cu concentration. The UV-vis spectra of the yellow and orange colored nanocomposites show size-controlled band gap shift of the semiconductor (Cu{sub 2}O) nanocrystallites embedded in the glasses while the red nanocomposite exhibits surface plasmon resonance band at 529 nm due to metallic Cu. Transmission electron microscopic image advocates the formation of nanocystallites (5-42 nm). Photoluminescence emission studies show broad red emission band around 626 nm under various excitation wavelengths from 210 to 270 nm.

  1. Extremely high absolute internal quantum efficiency of photoluminescence in co-doped GaN:Zn,Si

    Science.gov (United States)

    Reshchikov, M. A.; Willyard, A. G.; Behrends, A.; Bakin, A.; Waag, A.

    2011-10-01

    We report on the fabrication of GaN co-doped with silicon and zinc by metalorganic vapor phase epitaxy and a detailed study of photoluminescence in this material. We observe an exceptionally high absolute internal quantum efficiency of blue photoluminescence in GaN:Zn,Si. The value of 0.93±0.04 has been obtained from several approaches based on rate equations.

  2. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    OpenAIRE

    Marija Matulionyte; Dominyka Dapkute; Laima Budenaite; Greta Jarockyte; Ricardas Rotomskis

    2017-01-01

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. The...

  3. Simultaneous multi-wavelength ultraviolet excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu

    Science.gov (United States)

    Zhou, Zhenzhen; Liu, Guanghui; Ni, Jia; Liu, Wanlu; Liu, Qian

    2018-05-01

    A kind of novel compound Ba1-x(Zr,Ti)Si3O9:xEu simultaneously activated by different-valence Eu2+ and Eu3+ ions has been successfully synthesized. The existence of Ti4+-O2- charge transfer (CT) transitions in Ba1-xZrSi3O9:xEu is proved by the photoluminescence spectra and first principle calculations, and the Ti4+ ions come from the impurities in commercial ZrO2 raw materials. Under the excitation of multi-wavelength ultraviolet radiation (λEX = 392, 260, 180 nm), Ba1-xZrSi3O9:xEu (x = 0.15) can directly emit nearly white light. The coexistence of multiple luminescent centers and the energy transfer among Zr4+-O2- CT state, Ti4+-O2- CT state, Eu2+ and Eu3+ ions play important roles in the white light emission. Ba1-xZrSi3O9:xEu (x = 0.15) has good thermal stability, in particular, the intensity of emission spectrum (λEX = 392 nm) at 150 °C is ∼96% of that at room temperature. In general, the multi-wavelength ultraviolet-excited single-phase white light emitting phosphor Ba1-x(Zr,Ti)Si3O9:xEu possesses a promise for applications in white light emitting diodes (WLEDs), agriculture, medicine and other photonic fields.

  4. Micro-Raman and photoluminescence studies of neutron-irradiated gallium nitride epilayers

    International Nuclear Information System (INIS)

    Wang, R.X.; Xu, S.J.; Fung, S.; Beling, C.D.; Wang, K.; Li, S.; Wei, Z.F.; Zhou, T.J.; Zhang, J.D.; Huang Ying; Gong, M.

    2005-01-01

    GaN epilayers grown on sapphire substrate were irradiated with various dosages of neutrons and were characterized using Micro-Raman and photoluminescence. It was found that the A 1 (LO) peak in the Raman spectra clearly shifted with neutron irradiation dosage. Careful curve fitting of the Raman data was carried out to obtain the carrier concentration which was found to vary with the neutron irradiation dosage. The variation of the full width at half maximum height of the photoluminescence was consistent with the Raman results. The neutron irradiation-induced structural defects (likely to be Ge Ga ) give rise to carrier trap centers which are responsible for the observed reduction in carrier concentration of the irradiated GaN

  5. AgCl-doped CdSe quantum dots with near-IR photoluminescence.

    Science.gov (United States)

    Kotin, Pavel Aleksandrovich; Bubenov, Sergey Sergeevich; Mordvinova, Natalia Evgenievna; Dorofeev, Sergey Gennadievich

    2017-01-01

    We report the synthesis of colloidal CdSe quantum dots doped with a novel Ag precursor: AgCl. The addition of AgCl causes dramatic changes in the morphology of synthesized nanocrystals from spherical nanoparticles to tetrapods and finally to large ellipsoidal nanoparticles. Ellipsoidal nanoparticles possess an intensive near-IR photoluminescence ranging up to 0.9 eV (ca. 1400 nm). In this article, we explain the reasons for the formation of the ellipsoidal nanoparticles as well as the peculiarities of the process. The structure, Ag content, and optical properties of quantum dots are also investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found.

  6. Photoluminescence enhancement in few-layer WS2 films via Au nanoparticles

    Directory of Open Access Journals (Sweden)

    Sin Yuk Choi

    2015-06-01

    Full Text Available Nano-composites of two-dimensional atomic layered WS2 and Au nanoparticles (AuNPs have been fabricated by sulfurization of sputtered W films followed by immersing into HAuCl4 aqueous solution. The morphology, structure and AuNPs distribution have been characterized by electron microscopy. The decorated AuNPs can be more densely formed on the edge and defective sites of triangle WS2. We have compared the optical absorption and photoluminescence of bare WS2 and Au-decorated WS2 layers. Enhancement in the photoluminescence is observed in the Au-WS2 nano-composites, attributed to localized surface plasmonic effect. This work provides the possibility to develop photonic application in two-dimensional materials.

  7. Photoluminescence and ESR of glasses of the Ge-S system

    International Nuclear Information System (INIS)

    Cernoskova, E.; Cernosek, Z.; Holubova, J.

    1999-01-01

    In this work the chalcogenide glasses were studied by photoluminescence, electron spin resonance (ESR) as well as optically induce ESR (LESR) methods. Dependence of energy of luminescence and Stokes shift on glass composition was determined

  8. Photoluminescence of Er in SiOx

    International Nuclear Information System (INIS)

    Wan Jun; Sheng Chi; Lu Fang; Gong Dawei; Fan Yongliang; Lin Feng; Wang Xun

    1998-01-01

    Erbium-doped SiO x is prepared by molecular beam epitaxy. The influence of Er on the incorporation of O is studied by using Auger spectroscopy. Photoluminescence (PL) peaks around the wave-length of 1.53 μm have been observed within the temperature range of 18 to 300 K after annealing. The relationship between PL intensity and annealing temperature is discussed. The temperature dependence of the PL intensity shows an exponential decay with an activation energy of 12 meV at low temperatures ( 100 K)

  9. An analysis of the repair processes in ultraviolet-irradiated Micrococcus luteus using purified ultraviolet-endonuclease

    International Nuclear Information System (INIS)

    Tomilin, N.V.; Zherebtsov, S.V.

    1982-01-01

    The measurement of the frequency of endonucleolytic incisions in ultraviolet-irradiated DNA serves as the test for the presence of pyrimidine dimers. In accordance with this approach, the lysates of three Micrococcus luteus strains containing radioactively labeled chromosomes were treated with purified M. luteus ultraviolet-endonuclease to trace segregation of dimers amongst parental and newly synthesized DNA and their removal during postreplication and excision DNA repair. A considerable proportion of the dimers in all strains tested proved to be insensitive to the action of exogenous incising enzyme. The use of chloramphenicol as an inhibitor of postirradiation protein synthesis in combination with ultraviolet-endonuclease treatment of DNA allowed to reveal at least two alternative pathways of postreplication repair: constitutively active recombinational pathway and inducible nonrecombinational one. (Auth.)

  10. Hydrophobic perfluoro-silane functionalization of porous silicon photoluminescent films and particles

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, C.; Laplace, P.; Gallach-Pérez, D.; Pellacani, P.; Martín-Palma, R.J. [Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid (Spain); Torres-Costa, V. [Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid (Spain); Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049, Madrid (Spain); Ceccone, G. [European Commission, Joint Research Centre, Institute for Health and Consumer Protection, 21020, Ispra (Italy); Manso Silván, M., E-mail: miguel.manso@uam.es [Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049, Madrid (Spain)

    2016-09-01

    Highlights: • Hydrophobic functionalization of porous silicon structures. • Perfluorooctyl group binding confirmed by XPS. • Improved stability face to extreme oxidation conditions. • Perfluorooctyl functionalization compatible with photoluminescence of porous silicon particles. - Abstract: Luminescent structures based on semiconductor quantum dots (QDs) are increasingly used in biomolecular assays, cell tracking systems, and in-vivo diagnostics devices. In this work we have carried out the functionalization of porous silicon (PSi) luminescent structures by a perfluorosilane (Perfluoro-octyltriethoxysilane, PFOS) self assembly. The PFOS surface binding (traced by X-ray photoelectron spectroscopy) and photoluminescence efficiency were analyzed on flat model PSi. Maximal photoluminescence intensity was obtained from PSi layers anodized at 110 mA/cm{sup 2}. Resistance to hydroxylation was assayed in H{sub 2}O{sub 2}:ethanol solutions and evidenced by water contact angle (WCA) measurements. PFOS-functionalized PSi presented systematically higher WCA than untreated PSi. The PFOS functionalization was found to slightly improve the aging of the PSi particles in water giving rise to particles with longer luminescent life. Confirmation of PFOS binding to PSi particles was derived from FTIR spectra and the preservation of luminescence was observed by fluorescence microscopy. Such functionalization opens the possibility of promoting hydrophobic-hydrophobic interactions between biomolecules and fluorescent QD structures, which may enlarge their biomedical applications catalogue.

  11. Solar ultraviolet irradiance variations: a review

    International Nuclear Information System (INIS)

    Lean, J.

    1987-01-01

    Despite the geophysical importance of solar ultraviolet radiation, specific aspects of its temporal variations have not yet been adequately determined experimentally, nor are the mechanisms for the variability completely understood. Satellite observations have verified the reality of solar ultraviolet irradiance variations over time scales of days and months, and model calculations have confirmed the association of these short-term variations with the evolution and rotation of regions of enhanced magnetic activity on the solar disc. However, neither rocket nor satellite measurements have yet been made with sufficient accuracy and regularity to establish unequivocally the nature of the variability over the longer time of the 11-year solar cycle. The comparative importance for the long-term variations of local regions of enhanced magnetic activity and global scale activity perturbations is still being investigated. Solar ultraviolet irradiance variations over both short and long time scales are reviewed, with emphasis on their connection to solar magnetic activity. Correlations with ground-based measures of solar variability are examined because of the importance of the ground-based observations as historical proxies of ultraviolet irradiance variations. Current problems in understanding solar ultraviolet irradiance variations are discussed, and the measurements planned for solar cycle 22, which may resolve these problems, are briefly described. copyright American Geophysical Union 1987

  12. 21 CFR 880.6710 - Medical ultraviolet water purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet water purifier. 880.6710... Miscellaneous Devices § 880.6710 Medical ultraviolet water purifier. (a) Identification. A medical ultraviolet water purifier is a device intended for medical purposes that is used to destroy bacteria in water by...

  13. Stellar extreme ultraviolet astronomy

    International Nuclear Information System (INIS)

    Cash, W.C. Jr.

    1978-01-01

    The design, calibration, and launch of a rocket-borne imaging telescope for extreme ultraviolet astronomy are described. The telescope, which employed diamond-turned grazing incidence optics and a ranicon detector, was launched November 19, 1976, from the White Sands Missile Range. The telescope performed well and returned data on several potential stellar sources of extreme ultraviolet radiation. Upper limits ten to twenty times more sensitive than previously available were obtained for the extreme ultraviolet flux from the white dwarf Sirius B. These limits fall a factor of seven below the flux predicted for the star and demonstrate that the temperature of Sirius B is not 32,000 K as previously measured, but is below 30,000 K. The new upper limits also rule out the photosphere of the white dwarf as the source of the recently reported soft x-rays from Sirius. Two other white dwarf stars, Feige 24 and G191-B2B, were observed. Upper limits on the flux at 300 A were interpreted as lower limits on the interstellar hydrogen column densities to these stars. The lower limits indicate interstellar hydrogen densitites of greater than .02 cm -3 . Four nearby stars (Sirius, Procyon, Capella, and Mirzam) were observed in a search for intense low temperature coronae or extended chromospheres. No extreme ultraviolet radiation from these stars was detected, and upper limits to their coronal emisson measures are derived

  14. Photoluminescence of 1,3-dimethyl pyrazoloquinoline derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Koscien, E. [1st Liceum, Sobieskiego 22, 42-700 Lubliniec (Poland); Gondek, E.; Pokladko, M. [Institute of Physics, Technical University of Krakow, Podhorazych 1, 30-084 Krakow (Poland); Jarosz, B. [Department of Chemistry, Hugon Kollotaj Agricultural University, Al. Mickiewicza 24/28, 30-059 Krakow (Poland); Vlokh, R.O. [Institute of Physical Optics, Dragomanova 23, 79005 Lviv (Ukraine); Kityk, A.V. [Department of Electrical Engineering, Czestochowa University of Technology, Al. Armii Krajowej 17, 42-200 Czestochowa (Poland)], E-mail: kityk@ap.univie.ac.at

    2009-04-15

    This paper presents absorption and photoluminescence of 6-F, 6-Br, 6-Cl, 7-TFM and 6-COOEt derivatives of 1,3-dimethyl-1H-Pyrazolo[3,4-b]quinoline (DMPQ). The measured absorption and emission spectra are compared with the quantum chemical calculations performed by means of the semi-empirical methods (AM1 or PM3) that are applied either to the equilibrium conformations in vacuo (T = 0 K) or combined with the molecular dynamics simulations (T = 300 K). The spectra calculated by the AM1 method appear to be for all dyes in practically excellent agreement with the measured ones. In particular, the position of the first absorption band is obtained with the accuracy up to a few nanometers, whereas the calculated photoluminescence spectra predict the positions of the emission maxima for a gas phase with the accuracy up to 10-18 nm. The photoemission spectra of DMPQ dyes are considerably less solvatochromic comparing to phenyl-containing pyrazoloquinoline derivatives. According to the quantum chemical analysis the reason for such behaviour lies in a local character of the electronic transitions of DMPQ dyes which are characterized by a relatively small difference between the excited state and ground state dipole moments. Importantly that the rotational dynamics of both methyl subunits does not change this situation.

  15. Ultraviolet Communication for Medical Applications

    Science.gov (United States)

    2015-06-01

    DEI procured several UVC phosphors and tested them with vacuum UV (VUV) excitation. Available emission peaks include: 226 nm, 230 nm, 234 nm, 242...SUPPLEMENTARY NOTES Report contains color. 14. ABSTRACT Under this Phase II SBIR effort, Directed Energy Inc.’s (DEI) proprietary ultraviolet ( UV ...15. SUBJECT TERMS Non-line-of-sight (NLOS), networking, optical communication, plasma-shells, short range, ultraviolet ( UV ) light 16. SECURITY

  16. Origin of photoluminescence in β -G a2O3

    Science.gov (United States)

    Ho, Quoc Duy; Frauenheim, Thomas; Deák, Peter

    2018-03-01

    β -G a2O3 , a candidate material for power electronics and UV optoelectronics, shows strong room-temperature photoluminescence (PL). In addition to the three well-known bands of as-grown samples in the UV, blue, and green, also red PL was observed upon nitrogen doping. This raises the possibility of applying β -G a2O3 nanostructures as white phosphors. Using an optimized, Koopmans-compliant hybrid functional, we show that most intrinsic point defects, as well as substitutional nitrogen, act as deep acceptors, and each of the observed PL bands can be explained by electron recombination with a hole trapped in one of them. We suggest this mechanism to be general in wide-band-gap semiconductors which can only be doped n -type. Calculations on the nitrogen acceptor reproduce the observed red luminescence accurately. Earlier we have shown that not only the energy, but the polarization properties of the UV band can be explained by self-trapped hole states. Here we find that the blue band has its origin mainly in singly negative Ga-O divacancies, and the green band is caused dominantly by interstitial O atoms (with minor contribution of Ga vacancies to both). These assignments can explain the experimentally observed dependence of the PL bands on free-electron concentration and stoichiometry. The information provided here paves the way for the conscious tuning of light emission from β -G a2O3 .

  17. Photoluminescence model of sulfur passivated p-InP nanowires

    International Nuclear Information System (INIS)

    Tajik, N; Haapamaki, C M; LaPierre, R R

    2012-01-01

    The effect of ammonium polysulfide solution, (NH 4 ) 2 S x , on the surface passivation of p-doped InP nanowires (NWs) was investigated by micro-photoluminescence. An improvement in photoluminescence (PL) intensity from individual NWs upon passivation was used to optimize the passivation procedure using different solvents, sulfur concentrations and durations of passivation. The optimized passivation procedure gave an average of 24 times improvement in peak PL intensity. A numerical model is presented to explain the PL improvement upon passivation in terms of a reduction in surface trap density by two orders of magnitude from 10 12 to 10 10 cm −2 , corresponding to a change in surface recombination velocity from 10 6 to 10 4 cm s −1 . The diameter dependence of the PL intensity is investigated and explained by the model. The PL intensity from passivated nanowires decreased to its initial (pre-passivation) value over a period of seven days in ambient air, indicating that the S passivation was unstable. (paper)

  18. Graphitic carbon nitride/graphene oxide/reduced graphene oxide nanocomposites for photoluminescence and photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrzak, Malgorzata, E-mail: malgorzata.aleksandrzak@o2.pl; Kukulka, Wojciech; Mijowska, Ewa

    2017-03-15

    Highlights: • Graphitic carbon nitride modified with graphene nanostructures. • Influence of graphene nanostructures size in photocatalytic properties of g-C{sub 3}N{sub 4}. • Improved photocatalysis resulted from up-converted photoluminescence. - Abstract: The study presents a modification of graphitic carbon nitride (g-C{sub 3}N{sub 4}) with graphene oxide (GO) and reduced graphene oxide (rGO) and investigation of photoluminescent and photocatalytic properties. The influence of GO and rGO lateral sizes used for the modification was investigated. The nanomaterials were characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance UV–vis spectroscopy (DR-UV-vis) and photoluminescence spectroscopy (PL). PL revealed that pristine graphitic carbon nitride and its nanocomposites with GO and rGO emitted up-converted photoluminescence (UCPL) which could contribute to the improvement of photocatalytic activity of the materials. The photoactivity was evaluated in a process of phenol decomposition under visible light. A hybrid composed of rGO nanoparticles (rGONPs, 4–135 nm) exhibited the highest photoactivity compared to rGO with size of 150 nm–7.2 μm and graphene oxide with the corresponding sizes. The possible reason of the superior photocatalytic activity is the most enhanced UCPL of rGONPs, contributing to the emission of light with higher energy than the incident light, resulting in improved photogeneration of electron-hole pairs.

  19. New organically templated photoluminescence iodocuprates(I)

    International Nuclear Information System (INIS)

    Hou Qin; Zhao Jinjing; Zhao Tianqi; Jin Juan; Yu Jiehui; Xu Jiqing

    2011-01-01

    Two types of organic cyclic aliphatic diamine molecules piperazine (pip) and 1,3-bis(4-piperidyl)propane (bpp) were used, respectively, to react with an inorganic mixture of CuI and KI in the acidic CH 3 OH solutions under the solvothermal conditions, generating finally three new organically templated iodocuprates as 2-D layered [(Hpip)Cu 3 I 4 ] 1, 1-D chained [tmpip][Cu 2 I 4 ] 2 (tmpip=N,N,N',N'-tetramethylpiperazinium) and dinuclear [H 2 bpp] 2 [Cu 2 I 5 ] I.2H 2 O 3. Note that the templating agent tmpip 2+ in compound 2 originated from the in situ N-alkylation reaction between the pip molecule and the methanol solvent. The photoluminescence analysis indicates that the title compounds emit the different lights: yellow for 1, blue for 2 and yellow-green for 3, respectively. - Graphical abstract: The solvothermal self-assemblies of CuI, KI and pip/bpp in acidic CH 3 OH solutions created three iodocuprates 2-D layered [(Hpip)Cu 3 I 4 ] 1, 1-D chained [tmpip][Cu 2 I 4 ] 2 and dinuclear [H 2 bpp] 2 [Cu 2 I 5 ] I.2H 2 O 3. Highlights: → A new layered iodocuprate(I) with 20-membered rings was hydrothermally prepared. → A simple approach to prepare the new organic templating agent was reported. → Photoluminescence analysis indicates the emission for iodocuprate(I) is associated with the Cu...Cu interactions.

  20. 2-(2-Hydroxyphenyl)imidazole-based four-coordinate organoboron compounds with efficient deep blue photoluminescence and electroluminescence.

    Science.gov (United States)

    Zhang, Zhenyu; Zhang, Zuolun; Zhang, Hongyu; Wang, Yue

    2017-12-19

    Two new four-coordinate organoboron compounds with 2-(2-hydroxyphenyl)imidazole derivatives as the chelating ligands have been synthesized. They possess high thermal stability and are able to form an amorphous glass state. Crystallographic analyses indicate that the differences in ligand structure cause the change of ππ stacking character. The CH 2 Cl 2 solutions and thin films of these compounds display bright blue emission, and these compounds have appropriate HOMO and LUMO energy levels for carrier injection in OLEDs. By utilizing the good thermal and luminescent properties, as well as the proper frontier orbital energy levels, bright non-doped OLEDs with a simple structure have been realized. Notably, these simple devices show deep blue electroluminescence with the Commission Internationale de l'Éclairage (CIE) coordinate of ca. (0.16, 0.08), which is close to the CIE coordinate of (0.14, 0.08) for standard blue defined by the National Television System Committee. In addition, one of the devices exhibits good performance, showing brightness, current efficiency, power efficiency and external quantum efficiency up to 2692 cd m -2 , 2.50 cd A -1 , 1.81 lm W -1 and 3.63%, respectively. This study not only provides good deep-blue emitting OLED materials that are rarely achieved by using four-coordinate organoboron compounds, but also allows a deeper understanding of the structure-property relationship of 2-(2-hydroxyphenyl)imidazole-based boron complexes, which benefits the further structural design of this type of material.

  1. Inactivation of mitochondrial ATPase by ultraviolet light

    International Nuclear Information System (INIS)

    Chavez, E.; Cuellar, A.

    1984-01-01

    The present work describes experiments that show that far-ultraviolet irradiation induce the inhibition of ATPase activity in both membrane-bound and soluble F1. It was also found that ultraviolet light promotes the release of tightly bound adenine nucleotides from F1-ATPase. Experiments carried out with submitochondrial particles indicate that succinate partially protects against these effects of ultraviolet light. Titration of sulfhydryl groups in both irradiated submitochondrial particles and soluble F1-ATPase indicates that a conformational change induced by photochemical modifications of amino acid residues appears involved in the inactivation of the enzyme. Finally, experiments are described which show that the tyrosine residue located in the active site of F1-ATPase is modified by ultraviolet irradiation

  2. Influence of alumina on photoluminescence and thermoluminescence characteristics of Gd{sup 3+} doped barium borophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kalpana, T. [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Gandhi, Y. [Department of Physics, Kakani Venkata Ratnam College, Nandigama 521 185, A.P. (India); Sanyal, Bhaskar [Food Technology Division, Bhabha Atomic Research Center, Trombay, Mumbai 400 085 (India); Sudarsan, V. [Bhabha Atomic Research Centre, Chemistry Division, Mumbai 400 085 (India); Bragiel, P.; Piasecki, M. [Institute of Physics, Jan Dlugosz University, Ul. Armii Krajowej 13/15, Czestochowa 42-201 (Poland); Kumar, V. Ravi [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India); Veeraiah, N., E-mail: nvr8@rediffmail.com [Department of Physics, Acharya Nagarjuna University, Nagarjuna Nagar 522 510, A.P. (India)

    2016-11-15

    Gd{sup 3+} doped barium borophosphate glasses mixed with varying concentration of Al{sub 2}O{sub 3} are synthesized. Photoluminescence, thermoluminescence and other spectroscopic studies viz., IR and EPR spectral studies, have been carried out. IR spectral studies of these glasses indicated that there is a gradual increase in the degree of depolymerization of the glass network with increase in the concentration of Al{sub 2}O{sub 3} upto 3.0 mol%. The EPR spectral studies revealed the lowest concentration of Gd{sup 3+} ion clusters in the glass mixed with 3.0 mol% of Al{sub 2}O{sub 3}. The photoluminescence emission spectra exhibited strong ultraviolet blue emission at 311 under excitation at 273 nm due to {sup 6}P{sub 7/2}→{sup 8}S{sub 7/2} transition of Gd{sup 3+} ions. The intensity of this band is found to be enhanced four times when the glass mixed with 3.0 mol% of Al{sub 2}O{sub 3} with respect to that of alumina free glass. The enrichment of this emission is attributed to the declustering of Gd{sup 3+} ions by Al{sup 3+} ions. Thermoluminescence (TL) characteristics of these glasses have also been investigated after irradiating them with different doses of γ-rays (in the range 0–8.0 kGy). The TL emission exhibited a dosimetric peak at about 200 °C. The TL output under this glow peak is observed to increase with increase of γ-ray dose. For any fixed γ-ray dose, the TL output is increased with increasing Al{sub 2}O{sub 3} content up to 3.0 mol% and beyond this concentration quenching of TL is observed. The mechanisms responsible for TL emission and the variation in TL output with the concentration of Al{sub 2}O{sub 3} are quantitatively discussed in terms of electron and hole centers developed due to interaction of γ-rays with the glass network. The dose response of these glass samples exhibited linear behavior in the dose range 0–8.0 kGy.

  3. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878... tanning. (a) Identification. An ultraviolet lamp for tanning is a device that is a lamp (including a fixture) intended to provide ultraviolet radiation to tan the skin. See § 1040.20 of this chapter. (b...

  4. Ultraviolet safety assessments of insect light traps

    OpenAIRE

    Sliney, David H.; Gilbert, David W.; Lyon, Terry

    2016-01-01

    ABSTRACT Near-ultraviolet (UV-A: 315?400?nm), ?black-light,? electric lamps were invented in 1935 and ultraviolet insect light traps (ILTs) were introduced for use in agriculture around that time. Today ILTs are used indoors in several industries and in food-service as well as in outdoor settings. With recent interest in photobiological lamp safety, safety standards are being developed to test for potentially hazardous ultraviolet emissions. A variety of UV ?Black-light? ILTs were measured at...

  5. Photoluminescence and electrical properties of silicon oxide and silicon nitride superlattices containing silicon nanocrystals

    International Nuclear Information System (INIS)

    Shuleiko, D V; Ilin, A S

    2016-01-01

    Photoluminescence and electrical properties of superlattices with thin (1 to 5 nm) alternating silicon-rich silicon oxide or silicon-rich silicon nitride, and silicon oxide or silicon nitride layers containing silicon nanocrystals prepared by plasma-enhanced chemical vapor deposition with subsequent annealing were investigated. The entirely silicon oxide based superlattices demonstrated photoluminescence peak shift due to quantum confinement effect. Electrical measurements showed the hysteresis effect in the vicinity of zero voltage due to structural features of the superlattices from SiOa 93 /Si 3 N 4 and SiN 0 . 8 /Si 3 N 4 layers. The entirely silicon nitride based samples demonstrated resistive switching effect, comprising an abrupt conductivity change at about 5 to 6 V with current-voltage characteristic hysteresis. The samples also demonstrated efficient photoluminescence with maximum at ∼1.4 eV, due to exiton recombination in silicon nanocrystals. (paper)

  6. Photoluminescence of Mg-doped m-plane GaN grown by MOCVD on bulk GaN substrates

    Energy Technology Data Exchange (ETDEWEB)

    Monemar, Bo [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Paskov, Plamen; Pozina, Galia; Hemmingsson, Carl; Bergman, Peder [Department of Physics, Chemistry and Biology, Linkoeping University, 581 83 Linkoeping (Sweden); Lindgren, David; Samuelson, Lars [Solid State Physics-The Nanometer Structure Consortium, Lund University, Box 118, 221 00 Lund (Sweden); Ni, Xianfeng; Morkoc, Hadis [Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284-3072 (United States); Paskova, Tanya [Kyma Technologies Inc., Raleigh, North Carolina 27617 (United States); Bi, Zhaoxia; Ohlsson, Jonas [Glo AB, Ideon Science Park, Scheelevaegen 17, 223 70 Lund (Sweden)

    2011-07-15

    Photoluminescence (PL) properties are reported for a set of m-plane GaN films with Mg doping varied from mid 10{sup 18} cm{sup -3} to above 10{sup 20} cm{sup -3}. The samples were grown with MOCVD at reduced pressure on low defect density bulk GaN templates. The sharp line near bandgap bound exciton (BE) spectra observed below 50 K, as well as the broader donor-acceptor pair (DAP) PL bands at 2.9-3.3 eV give evidence of several Mg related acceptors, similar to the case of c-plane GaN. The dependence of the BE spectra on excitation intensity as well as the transient decay behaviour demonstrate acoustic phonon assisted transfer between the acceptor BE states. The lower energy donor-acceptor pair spectra suggest the presence of deep acceptors, in addition to the two main shallower ones at about 0.23 eV. Similar spectra from Mg-doped GaN nanowires (NWs) grown by MOCVD are also briefly discussed. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    CERN Document Server

    Chen, S J; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn sub 3 P sub 2. Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I sub 4) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrate...

  8. Photoluminescence properties of ZnO films grown on InP by thermally oxidizing metallic Zn films

    International Nuclear Information System (INIS)

    Chen, S J; Liu, Y C; Zhang, J Y; Lu, Y M; Shen, D Z; Fan, X W

    2003-01-01

    Photoluminescence (PL) properties of ZnO films grown on (001) InP substrates by thermal oxidization of metallic Zn films, in which oxygen vacancies and interstitial Zn ions are compensated by P ions diffusing from (001) InP substrates, are investigated. X-ray diffraction spectra indicate that P ions have diffused into the Zn films and chemically combined with Zn ions to form Zn 3 P 2 . Intense free exciton emission dominates the PL spectra of ZnO films with very weak deep-level emission. Low-temperature PL spectra at 79 K are dominated by neutral-donor bound exciton emission at 3.299 eV (I 4 ) with a linewidth of 17.3 meV and neutral-acceptor bound exciton emission at 3.264 eV. The free exciton emission increases with increasing temperature and eventually dominates the emission spectrum for temperature higher than 170 K. Furthermore, the visible emission around 2.3 eV correlated with oxygen deficiencies and interstitial Zn defects was quenched to a remarkable degree by P diffusing from InP substrates

  9. Assembling photoluminescent tri(8-quinolinolato)aluminum into periodic mesoporous organosilicas.

    Science.gov (United States)

    Yang, Ying; Zhang, Xin; Kan, Qiubin

    2013-12-01

    Mesostructured and mesoporous materials are emerging as a new class of optical materials. However, their synthesis is nontrivial. In this work, periodic mesostructured metal complex-containing silicas of MCM- and SBA-type bearing homogeneously distributed photoluminescent tri(8-quinolinolato)aluminum inside the channel walls (denoted as Alq3@PMO-MCM and Alq3@PMO-SBA, respectively) have been achieved via one-pot co-assembling of inorganic/surfactant/optically active species. A comprehensive multianalytical characterization of the structural and optical properties demonstrates that both Alq3@PMO-MCM and Alq3@PMO-SBA series gainfully combine the photoluminescent properties of Alq3 with the porous features of PMOs. Regularly arranged pores provide high surface area to disperse optically active components well and render Alq3-containing PMOs promising materials for optoelectronic applications. Copyright © 2013. Published by Elsevier Inc.

  10. Near-unity photoluminescence quantum yield in MoS.sub.2

    Science.gov (United States)

    Amani, Matin; Lien, Der-Hsien; Kiriya, Daisuke; Bullock, James; Javey, Ali

    2017-12-26

    Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS.sub.2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS.sub.2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8.+-.0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.

  11. Pollen DNA repair after treatment with the mutagens 4-nitroquinoline-1-oxide, ultraviolet and near-ultraviolet irradiation, and boron dependence of repair

    International Nuclear Information System (INIS)

    Jackson, J.F.; Linskens, H.F.; Katholieke Universiteit Nijmegen

    1979-01-01

    Irradiation of dry, mature pollen from Petuna hybrida with near-ultraviolet light from an erythemal-sunlamp gave rise to a repair-like, unscheduled DNA synthesis during the early stages of in vitro germination. Like that brought about by far-ultraviolet light from a germicidal lamp, this DNA synthesis is enhanced by hydroxyurea added to the germination medium, and reduced by photoreactivating light given after ultraviolet irradiation and before germination begins. It is concluded that pollen, often receiving considerable exposure to sunlight, has, in addition to the protection afforded by the ultraviolet filtering effects of yellow pigments, also the capacity to repair ultraviolet produced changes in DNA, by both photoreactivation and dark repair processes. (orig./AJ) [de

  12. Origin of photoluminescence from silicon nanowires prepared by metal induced etching (MIE)

    International Nuclear Information System (INIS)

    Saxena, Shailendra K.; Rai, Hari. M.; Late, Ravikiran; Sagdeo, Pankaj R.; Kumar, Rajesh

    2015-01-01

    In this present study the origin of luminescence from silicon nanowires (SiNws) has been studied. SiNWs are fabricated on Si substrate by metal induced chemical etching (MIE). Here it is found that the band gap of SiNWs is higher than the gap of luminescent states in SiNWs which leads to the effect of Si=O bond. The band gap is estimated from diffuse reflectance analysis. Here we observe that band gap can be tailored depending on size (quantum confinement) but photoluminescence (PL) from all the sample is found to be fixed at 1.91 eV. This study is important for the understanding of origin of photoluminescence

  13. Beryllium-free β-Rb{sub 2}Al{sub 2}B{sub 2}O{sub 7} as a possible deep-ultraviolet nonlinear optical material replacement for KBe{sub 2}BO{sub 3}F{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Tran, T. Thao; Halasyamani, P. Shiv [Department of Chemistry, University of Houston, TX (United States); Koocher, Nathan Z.; Rondinelli, James M. [Department of Materials Science and Engineering, Northwestern University, Evanston, IL (United States)

    2017-03-06

    A new beryllium-free deep-ultraviolet (DUV) nonlinear optical (NLO) material, β-Rb{sub 2}Al{sub 2}B{sub 2}O{sub 7} (β-RABO), has been synthesized and characterized. The chiral nonpolar acentric material shows second-harmonic generation (SHG) activity at both 1064 and 532 nm with efficiencies of 2 x KH{sub 2}PO{sub 4} and 0.4 x β-BaB{sub 2}O{sub 4}, respectively, and exhibits a short absorption edge below 200 nm. β-Rb{sub 2}Al{sub 2}B{sub 2}O{sub 7} has a three-dimensional structure of corner-shared Al(BO{sub 3}){sub 3}O polyhedra. The discovery of β-RABO shows that through careful synthesis and characterization, replacement of KBe{sub 2}BO{sub 3}F{sub 2} (KBBF) by a Be-free DUV NLO material is possible. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Time-resolved photoluminescence measurements of InP/ZnS quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Pham Thi Thuy; Ung Thi Dieu Thuy; Tran Thi Kim Chi; Le Quang Phuong; Nguyen Quang Liem [Institute of Materials Science, VAST, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Li Liang; Reiss, Peter [CEA Grenoble, DSM/INAC/SPrAM (UMR 5819 CEA-CNRS-Universite Joseph Fourier)/LEMOH, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)], E-mail: liemnq@ims.vast.ac.vn

    2009-09-01

    This paper reports the results on the time-resolved photoluminescence study of InP/ZnS core/shell quantum dots. The ZnS shell played a decisive role to passivate imperfections on the surface of InP quantum dots, consequently giving rise to a strong enhancement of the photoluminescence from the InP core. Under appropriate excitation conditions, not only the emission from the InP core but also that from the ZnS shell was observed. The emission peak in InP core quantum dots varied as a function of quantum dots size, ranging in the 600 - 700 nm region; while the ZnS shell showed emission in the blue region around 470 nm, which is interpreted as resulting from defects in ZnS.

  15. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    International Nuclear Information System (INIS)

    Simimol, A.; Manikandanath, N. T.; Chowdhury, Prasanta; Barshilia, Harish C.; Anappara, Aji A.

    2014-01-01

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T A  = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V O ), zinc interstitial (Zn i ), and oxygen interstitial (O i ) defects and these can be reduced significantly by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T A greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T A  ≥ 450 °C in the oxygen and air environments, the density of O i defects increased, whereas, the green emission associated with V O is dominant in the vacuum annealed (T A  = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications

  16. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Science.gov (United States)

    Tandon, S. N.; Subramaniam, Annapurni; Girish, V.; Postma, J.; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Hutchings, J.; Ghosh, S. K.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Leahy, D.; Mahesh, P. K.; Mohan, R.; Nagabhushana, S.; Pati, A. K.; Kameswara Rao, N.; Sreedhar, Y. H.; Sreekumar, P.

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300-1800 Å), and the other for the near-ultraviolet (NUV) channel (2000-3000 Å) and the visible (VIS) channel (3200-5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  17. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes

    Science.gov (United States)

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C.; Shimoni, Olga; Aharonovich, Igor

    2015-03-01

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07510b

  18. Ultrafast photoluminescence spectroscopy of InAs/GaAs quantum dots

    Czech Academy of Sciences Publication Activity Database

    Neudert, K.; Trojánek, F.; Kuldová, Karla; Oswald, Jiří; Hospodková, Alice; Malý, P.

    2009-01-01

    Roč. 6, č. 4 (2009), 853-856 ISSN 1862-6351 R&D Projects: GA ČR GA202/06/0718 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * photoluminescence * MOVPE Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Hydrothermal Growth of Quasi-Monocrystal ZnO Thin Films and Their Application in Ultraviolet Photodetectors

    Directory of Open Access Journals (Sweden)

    Yung-Chun Tu

    2015-01-01

    Full Text Available Quasi-monocrystal ZnO film grown using the hydrothermal growth method is used for the fabrication of Cu2O/ZnO heterojunction (HJ ultraviolet photodetectors (UV-PDs. The HJ was formed via the sputtering deposition of p-type Cu2O onto hydrothermally grown ZnO film (HTG-ZnO-film. The effect of annealing temperature in the nitrogen ambient on the photoluminescence spectra of the synthesized ZnO film was studied. The optoelectronic properties of Cu2O/ZnO film with various Cu2O thicknesses (250–750 nm under UV light (365 nm; intensity: 3 mW/cm2 were determined. The UV sensitivity of the HTG-ZnO-film-based UV-PDs and the sputtered ZnO-film-based UV-PDs were 55.6-fold (SHTG and 8.8-fold (Ssputter, respectively. The significant gain in sensitivity (SHTG/Ssputter = 630% of the proposed ZnO-film-based device compared to that for the device based on sputtered film can be attributed to the improved photoelectric properties of quasi-monocrystal ZnO film.

  20. Narrow photoluminescence peak from Ge(Si) islands embedded between tensile-strained Si layers

    Energy Technology Data Exchange (ETDEWEB)

    Shaleev, Mikhail; Novikov, Alexey; Baydakova, Nataliya; Yablonskiy, Artem; Drozdov, Yuriy; Lobanov, Dmitriy; Krasilnik, Zakhary [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Kuznetsov, Oleg [Physical-Technical Research Institute, Nizhny Novgorod State University, pr. Gagarina 23, 603950 Nizhny Novgorod (Russian Federation)

    2011-03-15

    The influence of thickness of the strained Si layers, measurement temperature and optical pumping power on width of the photoluminescence line from Ge(Si) self-assembled nanoislands grown on relaxed SiGe/Si(001) buffer layers and embedded between tensile-stained Si layers was studied. This line appears due to the II-type optical transition between the holes localized in islands and the electrons confined in tensile-strained Si layers under and above the islands. The possibility of tuning the photoluminescence line width by changing the strained Si layer thicknesses under and above the islands is showed. The decrease of the photoluminescence line width from Ge(Si) islands down to values comparable with width of the PL line from InAs/GaAs quantum dots was achieved due to the quantum confinement of electrons in thin strained Si layers and taking into account of the higher diffusion-induced smearing of strained Si layer above the islands. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    International Nuclear Information System (INIS)

    Shirazi, Roza; Kovacs, Andras; Dan Corell, Dennis; Gritti, Claudia; Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul; Kardynal, Beata

    2014-01-01

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active

  2. Origin of low quantum efficiency of photoluminescence of InP/ZnS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, Roza, E-mail: rozas@fotonik.dtu.dk [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Kovacs, Andras [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Peter Grunberg Institute, Forschungszentrum Julich, 52425 Julich (Germany); Dan Corell, Dennis [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Gritti, Claudia [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); Thorseth, Anders; Dam-Hansen, Carsten; Michael Petersen, Paul [Department of Photonics Engineering, Technical University of Denmark, Riso, Frederiksborgvej 399, 4000 Roskilde (Denmark); Kardynal, Beata [Department of Photonics Engineering, Technical University of Denmark, Oersted Plads 343, 2800 Kgs Lyngby (Denmark); PGI-9, Forschungszentrum Julich, JARA FIT, 52425 Julich (Germany)

    2014-01-15

    In this paper, we study the origin of a strong wavelength dependence of the quantum efficiency of InP/ZnS nanocrystals. We find that while the average size of the nanocrystals increased by 50%, resulting in longer emission wavelength, the quantum efficiency drops more than one order of magnitude compared to the quantum efficiency of the small nanocrystals. By correlating this result with the time-resolved photoluminescence we find that the reduced photoluminescence efficiency is caused by a fast growing fraction of non-emissive nanocrystals while the quality of the nanocrystals that emit light is similar for all samples. Transmission electron microscopy reveals the polycrystalline nature of many of the large nanocrystals, pointing to the grain boundaries as one possible site for the photoluminescence quenching defects. -- Highlights: • We investigate drop of quantum efficiency of InP/ZnS nanocrystals emitting at longer wavelengths. • We correlate quantum efficiency measurements with time-resolved carrier dynamics. • We find that only a small fraction of larger nanocrystals is optically active.

  3. Glutathione-assisted synthesis of star-shaped zinc oxide nanostructures and their photoluminescence behavior

    International Nuclear Information System (INIS)

    Kavita; Singh, Karamjit; Kumar, Sunil; Bhatti, H.S.

    2014-01-01

    Star-shaped ZnO nanostructures have been synthesized by facile chemical co-precipitation method in the presence of glutathione. Glutathione, a reducing agent, shape modifier and an entirely benign antioxidant; acts as a capping agent in the present study. The powder X-ray diffraction patterns indicate that the novel star-shaped ZnO nanostructures exhibit hexagonal structure. Fourier transform infra-red spectroscopic studies confirmed the anchoring of glutathione on ZnO nanocrystals. Transmission electron microscopy and field emission scanning electron microscopy revealed the star and cube-shaped shaped morphology of the glutathione modified nanocrystals. Optical characterization of synthesized nanocrystals has been done by UV–vis absorption spectroscopy and steady state photoluminescence spectroscopy. Recorded Photoluminescence spectra confirm the multi-chromatic photoluminescence behavior of the synthesized nanostructures. - Highlights: • Morphology has been investigated as a function of capping agent concentration. • Comparison between capped and uncapped ZnO nanoparticles has been examined. • Diffraction scans show the crystalline wurtzite structure of synthesized product. • Recorded PL spectra show the multichromatic behavior of synthesized nanostructures

  4. Defect induced structural inhomogeneity, ultraviolet light emission and near-band-edge photoluminescence broadening in degenerate In2O3 nanowires

    Science.gov (United States)

    Mukherjee, Souvik; Sarkar, Ketaki; Wiederrecht, Gary P.; Schaller, Richard D.; Gosztola, David J.; Stroscio, Michael A.; Dutta, Mitra

    2018-04-01

    We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy ({V}{{O}}) defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of {V}{{O}} defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

  5. ULTRAVIOLET TECHNOLOGY FOR FOOD PRESERVATION

    OpenAIRE

    Guedes, AMM; Novello, D; Mendes, GMD; Cristianini, M

    2009-01-01

    ULTRAVIOLET TECHNOLOGY FOR FOOD PRESERVATION This literature review article had as objective to gather information about ultraviolet (UV) technology utilization on the food industry, its effects and potential application. Aspects as the origin, concept and applications of the technology on the equipment industry and running mechanisms were approached. The application of UV radiation on food decontamination is still little used due its low penetration, but it is known that it can be easily app...

  6. Different approaches for sensing captopril based on functionalized graphene quantum dots as photoluminescent probe

    Energy Technology Data Exchange (ETDEWEB)

    Toloza, Carlos A.T.; Khan, Sarzamin; Silva, Renan L.D. [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900 (Brazil); Romani, Eric C.; Freire, F.L. [Department of Physics, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900 (Brazil); Aucélio, Ricardo Q., E-mail: aucelior@puc-rio.br [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900 (Brazil)

    2016-11-15

    The determination of captopril is proposed using graphene quantum dots produced by the pyrolysis of citric acid and glutathione (GSH-GQDs). Captopril induces both quenching and spectral red-shifting in the photoluminescence from aqueous dispersions of GSH-GQDs. By employing Fe{sup 3+} as mediator (that enables signal quenching of GSH-GQDs), the presence of captopril restored the photoluminescence of quantum dots. Under optimized experimental conditions, the signal quenching from the GSH-GQDs as function of the concentration of captopril showed a linear response range covering three orders of magnitude (10{sup −6} to 10{sup −4} mol L{sup −1}). The proposed approaches were tested by determining captopril in simulated samples and in commercial pharmaceutical formulations. The measurement of either the spectral shifting observed of the GSH-GQDs probe or the photoluminescence switch on/off using GQDs-GSH-Fe{sup 3+} resulted in satisfactory recoveries of captopril, showing the quantitative sensing potential.

  7. Photoluminescence study of CdSe nanorods embedded in a PVA matrix

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mamta [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India); Tripathi, S.K., E-mail: surya@pu.ac.in [Centre of Advanced Study in Physics, Department of Physics, Panjab University, Chandigarh 160014 (India)

    2013-03-15

    Nanometer-sized semiconductor CdSe nanorods have been successfully grown within polyvinyl alcohol (PVA) matrix by in situ technique. PVA:n-CdSe nanorods are characterized by X-ray diffraction, transmission electron microscopy, UV-vis spectrophotometer and photoluminescence spectroscopy. The photoluminescence spectra of PVA:n-CdSe nanorods are studied at different excitation wavelengths. PVA:n-CdSe nanorods have demonstrated to exhibit strong and well-defined green photoluminescence emission. The long-term stability of the PL properties of PVA:n-CdSe nanorods is also investigated in view of possible applications of polymer nanocomposites. The linear optical constants such as the extinction coefficient (k), real ({epsilon}{sub 1}) and imaginary ({epsilon}{sub 2}) dielectric constant, optical conductivity ({sigma}{sub opt}) are calculated for PVA:n-CdSe nanorods. The optical properties i.e. good photostability and larger stokes shift suggesting to apply PVA:n-CdSe nanorods in bioimaging applications. - Highlights: Black-Right-Pointing-Pointer In situ synthesis of PVA:n-CdSe via chemical bath method at room temperature. {open_square} From TEM image, the three arm nanorods morphology of PVA:n-CdSe is obtained. Black-Right-Pointing-Pointer The optical constants i.e. n, k, {epsilon}{sub 1}, {epsilon}{sub 2} and {sigma}{sub opt} are calculated. Black-Right-Pointing-Pointer Exhibiting green band photoemission peak at 540 nm.

  8. Defect-Induced Photoluminescence Enhancement and Corresponding Transport Degradation in Individual Suspended Carbon Nanotubes

    Science.gov (United States)

    Wang, Bo; Shen, Lang; Yang, Sisi; Chen, Jihan; Echternach, Juliana; Dhall, Rohan; Kang, DaeJin; Cronin, Stephen

    2018-05-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. The utilization of defects in carbon nanotubes to improve their photoluminescence efficiency has become a widespread study of the realization of efficient light-emitting devices. Here, we report a detailed comparison of the defects in nanotubes (quantified by Raman spectroscopy) and photoluminescence (PL) intensity of individual suspended carbon nanotubes (CNTs). We also evaluate the impact of these defects on the electron or hole transport in the nanotubes, which is crucial for the ultimate realization of optoelectronic devices. We find that brightly luminescent nanotubes exhibit a pronounced D-band in their Raman spectra, and vice versa, dimly luminescent nanotubes exhibit almost no D-band. Here, defects are advantageous for light emission by trapping excitons, which extend their lifetimes. We quantify this behavior by plotting the PL intensity as a function of the ID /IG -band Raman intensity ratio, which exhibits a Lorentzian distribution peaked at ID /IG=0.17 . For CNTs with a ID /IG ratio >0.25 , the PL intensity decreases, indicating that above some critical density, nonradiative recombination at defect sites dominates over the advantages of exciton trapping. In an attempt to fabricate optoelectronic devices based on these brightly luminescent CNTs, we transfer these suspended CNTs to platinum electrodes and find that the brightly photoluminescent nanotubes exhibit nearly infinite resistance due to these defects, while those without bright photoluminescence exhibit finite resistance. These findings indicate a potential limitation in the use of brightly luminescent CNTs for optoelectronic applications.

  9. In-orbit Calibrations of the Ultraviolet Imaging Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Tandon, S. N. [Inter-University Center for Astronomy and Astrophysics, Pune (India); Subramaniam, Annapurni; Sankarasubramanian, K.; Sriram, S.; Stalin, C. S.; Mondal, C.; Sahu, S.; Joseph, P.; Barve, I. V.; George, K.; Kamath, P. U.; Kathiravan, S.; Kumar, A.; Lancelot, J. P.; Mahesh, P. K. [Indian Institute of Astrophysics, Koramangala II Block, Bangalore-560034 (India); Girish, V. [ISRO Satellite Centre, HAL Airport Road, Bangalore 560017 (India); Postma, J.; Leahy, D. [University of Calgary, 2500 University Drive NW, Calgary, Alberta Canada (Canada); Hutchings, J. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Ghosh, S. K., E-mail: purni@iiap.res.in [National Centre for Radio Astrophysics, Pune (India); and others

    2017-09-01

    The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375 mm telescopes: one for the far-ultraviolet (FUV) channel (1300–1800 Å), and the other for the near-ultraviolet (NUV) channel (2000–3000 Å) and the visible (VIS) channel (3200–5500 Å). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.″8, along with provisions for slit-less spectroscopy in the NUV and FUV channels. The results of in-orbit calibrations of UVIT are presented in this paper.

  10. UV-VIS and photoluminescence spectroscopy for nanomaterials characterization

    CERN Document Server

    2013-01-01

    Second volume of a 40-volume series on nanoscience and nanotechnology, edited by the renowned scientist Challa S.S.R. Kumar. This handbook gives a comprehensive overview about UV-visible and photoluminescence spectroscopy for the characterization of nanomaterials. Modern applications and state-of-the-art techniques are covered and make this volume essential reading for research scientists in academia and industry in the related fields.

  11. Ultraviolet radiation therapy and UVR dose models

    Energy Technology Data Exchange (ETDEWEB)

    Grimes, David Robert, E-mail: davidrobert.grimes@oncology.ox.ac.uk [School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland and Cancer Research UK/MRC Oxford Institute for Radiation Oncology, Gray Laboratory, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ (United Kingdom)

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  12. Ultraviolet radiation therapy and UVR dose models

    International Nuclear Information System (INIS)

    Grimes, David Robert

    2015-01-01

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed

  13. AN UPDATED ULTRAVIOLET CATALOG OF GALEX NEARBY GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu; Zou, Hu; Liu, JiFeng; Wang, Song, E-mail: ybai@nao.cas.cn, E-mail: zouhu@nao.cas.cn, E-mail: jfliu@nao.cas.cn, E-mail: songw@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang Distict, 100012 Beijing (China)

    2015-09-15

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest Genral Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1′. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV − K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX–β relation is reformulated with our UV-selected nearby galaxies.

  14. Characterization of as-grown and heavily irradiated GaN epitaxial structures by photoconductivity and photoluminescence

    International Nuclear Information System (INIS)

    Gaubas, E.; Jurs e-dot nas, S.; Tomasiunas, R.; Vaitkus, J.; Zukauskas, A.; Blue, A.; Rahman, M.; Smith, K.M.

    2005-01-01

    The influence of radiation defects on photoconductivity transients and photoluminescence (PL) spectra have been examined in semi-insulating GaN epitaxial layers grown on bulk n-GaN/sapphire substrates. Defects induced by 10-keV X-ray irradiation with a dose of 600Mrad and 100-keV neutrons with fluences of 5x10 14 and 10 16 cm -2 have been revealed through contact photoconductivity and microwave absorption transients. The amplitude of the initial photoconductivity decay is significantly reduced by the radiation defect density. A simultaneous decrease with radiation-induced defect density is also observed in the steady-state PL intensity of yellow, blue and ultraviolet bands peaked at 2.18, 2.85, and 3.42eV, respectively. The decrease of the PL intensity is accompanied by an increase of asymptotic decay lifetime, which is due to excess carrier multi-trapping. The decay can be described by the stretched exponential approximation exp[-(t/τ) α ] with different values of α in as-grown material (α∼0.7) and irradiated samples (α∼0.3). The value of the fracton dimension d s of the disordered structure, evaluated as d s =2α/(1-α), changes from 4.7 to 0.86 for as-grown and irradiated material, respectively, implying percolative carrier motion on an infinite cluster of dislocations net in the as-grown material and cluster fragmentation into finite fractons after irradiation

  15. One-step microwave synthesis of photoluminescent carbon nanoparticles from sodium dextran sulfate water solution

    Science.gov (United States)

    Kokorina, Alina A.; Goryacheva, Irina Y.; Sapelkin, Andrei V.; Sukhorukov, Gleb B.

    2018-04-01

    Photoluminescent (PL) carbon nanoparticles (CNPs) have been synthesized by one-step microwave irradiation from water solution of sodium dextran sulfate (DSS) as the sole carbon source. Microwave (MW) method is very simple and cheap and it provides fast synthesis of CNPs. We have varied synthesis time for obtaining high luminescent CNPs. The synthesized CNPs exhibit excitation-dependent photoluminescent. Final CNPs water solution has a blue- green luminescence. CNPs have low cytotoxicity, good photostability and can be potentially suitable candidates for bioimaging, analysis or analytical tests.

  16. Some aspects of vacuum ultraviolet radiation physics

    CERN Document Server

    Damany, Nicole; Vodar, Boris

    2013-01-01

    Some Aspects of Vacuum Ultraviolet Radiation Physics presents some data on the state of research in vacuum ultraviolet radiation in association with areas of physics. Organized into four parts, this book begins by elucidating the optical properties of solids in the vacuum ultraviolet region (v.u.v.), particularly the specific methods of determination of optical constants in v.u.v., the properties of metals, and those of ionic insulators. Part II deals with molecular spectroscopy, with emphasis on the spectra of diatomic and simple polyatomic molecules, paraffins, and condensed phases. Part III

  17. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    Science.gov (United States)

    2002-01-01

    , NGC 3310, shows young and old stars evenly distributed. If this were the case with most galaxies, astronomers would be able to recognize faraway galaxies fairly easily. In most galaxies, however, the stars are segregated by age, making classifying the distant ones more difficult. NGC 3310 is 46 million light-years from Earth in the constellation Ursa Major. The image was taken Sept. 12-13, 2000. The middle image is an example of a tiny, youthful spiral galaxy. ESO 418-008 is representative of the myriad of dwarf galaxies astronomers have seen in deep surveys. These galaxies are much smaller than typical ones like our Milky Way. In this galaxy, the population of stars is more strongly segregated by age. The older stars [red] reside in the center; the younger [blue], in the developing spiral arms. These small, young galaxies may be the building blocks of galaxy formation. ESO 418-008 is 56 million light-years from Earth in the southern constellation Fornax. The image was taken Oct. 10, 2000. The picture at right shows a cosmic collision between two galaxies, UGC 06471 and UGC 06472. These collisions occurred frequently in the early universe, producing galaxies of unusual shapes. The Hubble telescope has spied many such galaxies in the deep field surveys. The ultraviolet images of this galaxy merger suggest the presence of large amounts of dust, which were produced by massive stars that formed before or during this dramatic collision. This dust reddens the starlight in many places, just like a dusty atmosphere reddens the sunset. Studying the effects of this nearby collision could help astronomers explain the peculiar shapes seen in some of the distant galaxies. UGC 06471 and UGC 06472 are 145 million light-years from Earth in the constellation Ursa Major. The image was taken July 11, 2000. Photo credits: NASA, Rogier Windhorst (Arizona State University, Tempe, AZ), and the Hubble mid-UV team

  18. Laser deposition of resonant silicon nanoparticles on perovskite for photoluminescence enhancement

    Science.gov (United States)

    Tiguntseva, E. Y.; Zalogina, A. S.; Milichko, V. A.; Zuev, D. A.; Omelyanovich, M. M.; Ishteev, A.; Cerdan Pasaran, A.; Haroldson, R.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid lead halide perovskite based optoelectronics is a promising area of modern technologies yielding excellent characteristics of light emitting diodes and lasers as well as high efficiencies of photovoltaic devices. However, the efficiency of perovskite based devices hold a potential of further improvement. Here we demonstrate high photoluminescence efficiency of perovskites thin films via deposition of resonant silicon nanoparticles on their surface. The deposited nanoparticles have a number of advances over their plasmonic counterparts, which were applied in previous studies. We show experimentally the increase of photoluminescence of perovskite film with the silicon nanoparticles by 150 % as compared to the film without the nanoparticles. The results are supported by numerical calculations. Our results pave the way to high throughput implementation of low loss resonant nanoparticles in order to create highly effective perovskite based optoelectronic devices.

  19. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  20. Chemical Changes and photoluminescence properties of UV modified polypyrrole

    Czech Academy of Sciences Publication Activity Database

    Galář, P.; Dzurňák, B.; Malý, P.; Čermák, Jan; Kromka, Alexander; Omastová, M.; Rezek, Bohuslav

    2013-01-01

    Roč. 8, č. 1 (2013), s. 57-70 ISSN 1452-3981 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : photoluminescence * polypyrrole * monocrystalline diamond Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.956, year: 2013 http://www.electrochemsci.org/papers/vol8/80100057.pdf

  1. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    Science.gov (United States)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  2. Photoluminescence and optical transmission of diamond and its imitators

    International Nuclear Information System (INIS)

    Lipatov, E.I.; Avdeev, S.M.; Tarasenko, V.F.

    2010-01-01

    Photoluminescence and optical transmission spectra of several samples of natural and synthetic diamond and its imitators - fianite and corundum - are investigated. The band-A of luminescence at 440 nm, the vibronic N3 system of luminescence and absorption at 415.2 nm, the fundamental absorption edge at 225 nm, and the secondary absorption below 308 nm are the main identifying markers of natural diamonds. For synthetic diamonds, however, such identifying markers are the free-exciton luminescence at 235 nm, the band-A, and the fundamental absorption edge. Fianites can be identified by the structureless wideband at 500 nm and the wide transmission band in the entire visible range. Colored corundum samples with chrome impurities emit the narrow line at 693 nm and show the absorption band in the 500-600 nm spectral range. A new method for diamond express identification is developed on the basis of measurement of photoluminescence and optical transmission spectra of the samples. It is shown that a diamond tester can be designed combining a spectrometer and a KrCl-excilamp radiating at 222 nm.

  3. Tunable photoluminescence of porous silicon by liquid crystal infiltration

    International Nuclear Information System (INIS)

    Ma Qinglan; Xiong Rui; Huang Yuanming

    2011-01-01

    The photoluminescence (PL) of porous silicon films has been investigated as a function of the amount of liquid crystal molecules that are infiltrated into the constricted geometry of the porous silicon films. A typical nematic liquid crystal 4-pentyl-4'-cyanobiphenyl was employed in our experiment as the filler to modify the PL of porous silicon. It is found that the originally red PL of porous silicon films can be tuned to blue by simply adjusting the amount of liquid crystal molecules in the microchannels of the porous films. The chromaticity coordinates are calculated for the recorded PL spectra. The mechanism of the tunable PL is discussed. Our results have demonstrated that the luminescent properties of porous silicon films can be efficiently tuned by liquid crystal infiltration. - Highlights: → Liquid crystal infiltration can tune the photoluminescence of porous silicon. → Red emission of porous silicon can be switched to blue by the infiltration. → Chromaticity coordinates are calculated for the tuned emissions. → White emission is realized for porous silicon by liquid crystal infiltration.

  4. Thermal Quenching of Photoluminescence from Er-Doped GaN Thin Films

    National Research Council Canada - National Science Library

    Seo, J. T; Hoemmerich, U; Lee, D. C; Heikenfeld, J; Steckl, A. J; Zavada, J. M

    2002-01-01

    The green (537 and 558 nm) and near infrared (1.54 micrometers) photoluminescence (PL) spectra of Er-doped GaN thin films have been investigated as a function of temperature, excitation wavelength, and pump intensity...

  5. Highly sensitive detection of ionizing radiations by a photoluminescent uranyl organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jian; Wang, Yaxing; Liu, Wei; Yin, Xuemiao; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao [School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou (China); Zou, Youming [High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui (China); Albrecht-Schmitt, Thomas E. [Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL (United States); Liu, Guokui [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-19

    Precise detection of low-dose X- and γ-radiations remains a challenge and is particularly important for studying biological effects under low-dose ionizing radiation, safety control in medical radiation treatment, survey of environmental radiation background, and monitoring cosmic radiations. We report here a photoluminescent uranium organic framework, whose photoluminescence intensity can be accurately correlated with the exposure dose of X- or γ-radiations. This allows for precise and instant detection of ionizing radiations down to the level of 10{sup -4} Gy, representing a significant improvement on the detection limit of approximately two orders of magnitude, compared to other chemical dosimeters reported up to now. The electron paramagnetic resonance analysis suggests that with the exposure to radiations, the carbonyl double bonds break affording oxo-radicals that can be stabilized within the conjugated uranium oxalate-carboxylate sheet. This gives rise to a substantially enhanced equatorial bonding of the uranyl(VI) ions as elucidated by the single-crystal structure of the γ-ray irradiated material, and subsequently leads to a very effective photoluminescence quenching through phonon-assisted relaxation. The quenched sample can be easily recovered by heating, enabling recycled detection for multiple runs. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Ultraviolet dosimetry using thermoluminescent phosphors - an update

    International Nuclear Information System (INIS)

    Nagpal, J.S.

    1998-04-01

    Intrinsic response of various thermoluminescent (TL) materials such as CaSO 4 (Dy, Eu, Mn, Sm, Tb, or Tm), LiF (Mg, Cu, P), Mg 2 SiO 4 :Tb, CaF 2 :Dy, CaF 2 :Tb, ThO 2 :Tb and Al 2 O 3 (Si, Ti); cathodoluminescent phosphors Y 3 Al 5 O 12 :Ce, Y 3 Al 5 O 12 :Tb and Y(V,P)O 4 :Eu; and fluorescent lamp phosphors calcium halophosphate (Mn,Sb) and Ce Mg aluminate (Eu, Tb) to ultraviolet (UV) radiations has been studied. Intrinsic TL response of most of the phosphors is rate (radiant flux) dependent. For the first time, UV response of the materials is reported for a fixed total radiant energy (total UV dose), at a single radiant flux (260 μW.cm -2 ), for an appropriate comparison. A wide range of UV sensitivity is observed. Studies conducted using UV radiation from two unfiltered low pressure mercury lamps show significant differences in glow curves, as compared to those obtained with nearly monochromatic UV radiations. Photons of wavelength 365 nm induce bleaching of TL induced by 254 nm photons, in most of the materials. Sequential/tandem exposures to 254 nm and 365 nm photons have yielded new but alarming results in CaF 2 :Tb. Preferential induction and bleaching of specific TL glow peaks by 365 nm and 254 nm photons are interesting characteristics discovered in CaSO 4 :Eu. Photoluminescence studies of Tb 3+ and Eu 3+ activated phosphors have augmented the inferences drawn from the bleaching effects produced by 365 nm photons. Earlier work carried out on phototransferred thermoluminescence of CaSO 4 :Dy-teflon dosimeters, TLD-100, Mg 2 SiO 4 :Tb and Al 2 O 3 (Si,Ti) has also been reviewed. (author)

  7. Outdoor ultraviolet exposure of children and adolescents

    International Nuclear Information System (INIS)

    Diffey, B.L.; Gibson, C.J.

    1996-01-01

    The weekday and weekend outdoor ultraviolet exposure of young people from primary and secondary schools in three geographically distinct regions of England was determined over a 3-month period in summer. Ultraviolet exposure was measured using personal film badges worn by each young person and time spent outdoors, in hourly intervals, assessed using exposure records. In each area a class of 9-10 year-old children from a primary school and a class of 14-15-year-old adolescents from a secondary school took part, giving a total of 180 subjects. We found that primary school children received higher outdoor ultraviolet exposure than young people in secondary schools, and geographical differences in exposure could not be accounted for solely by differences in ambient ultraviolet. There was little difference between the exposure of males and females. Children and adolescents did not behave as homogeneous groups with regard to exposure. (Author)

  8. Broadband sensitized white light emission of g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor under near ultraviolet excitation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bing, E-mail: hanbing@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Xue, Yongfei; Li, Pengju [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jingtao [School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Zhang, Jie [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China); Shi, Hengzhen, E-mail: shihz@zzuli.edu.cn [School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002 (China)

    2015-12-15

    The g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors were synthesized and characterized by X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet visible diffuse reflection spectra, photoluminescence spectra and luminescence decay curves. Under the excitation of 360 nm near ultraviolet light, these composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained in term of appropriate quality proportion of Y{sub 2}MoO{sub 6}:Eu{sup 3+} relative to g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+}. In addition, the emission color can be also dependent on the excitation wavelength in g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphor. - Graphical abstract: Under the excitation of 360 nm near ultraviolet light, the g-C{sub 3}N{sub 4}/Y{sub 2}MoO{sub 6}:Eu{sup 3+} composite phosphors show tunable emission from blue to red region, in which white light emission can be obtained. - Highlights: • The g-C3N4/Y2MoO6:Eu{sup 3+} composite phosphors were synthesized and characterized. • White light emission was realized in the g-C3N4/Y2MoO6:Eu{sup 3+} composites under UV excitation. • A novel idea to realize the broadband sensitized white light emission in phosphors was provided.

  9. SIZES OF LYα-EMITTING GALAXIES AND THEIR REST-FRAME ULTRAVIOLET COMPONENTS AT z = 3.1

    International Nuclear Information System (INIS)

    Bond, Nicholas A.; Gawiser, Eric; Gronwall, Caryl; Ciardullo, Robin; Altmann, Martin; Schawinski, Kevin

    2009-01-01

    We present a rest-frame ultraviolet analysis of ∼120 z ∼ 3.1 Lyman Alpha Emitters (LAEs) in the Extended Chandra Deep Field South. Using Hubble Space Telescope (HST) images taken as part of the Galaxy Evolution From Morphology and SEDS (GEMS) survey, Great Observatories Origins Deep Survey (GOODS), and Hubble Ultradeep Field surveys, we analyze the sizes of LAEs, as well as the spatial distribution of their components, which are defined as distinct clumps of UV-continuum emission. We set an upper limit of ∼1 kpc (∼0.''1) on the rms offset between the centroids of the continuum and Lyα emission. The SFRs of LAE components inferred from the rest-frame ultraviolet continuum range from ∼0.1 M sun yr -1 to ∼5 M sun yr -1 . A subsample of LAEs with coverage in multiple surveys (at different imaging depths) suggests that one needs a signal-to-noise ratio, S/N ∼>30, in order to make a robust estimate of the half-light radius of an LAE system. The majority of LAEs have observed half-light radii ∼<2 kpc, and LAE components typically have observed half-light radii ∼<1.5 kpc (∼<0.''20). Although only ∼50% of the detected LAE components are resolved at GOODS depth, the brightest (V ∼< 26.3) are all resolved in both GOODS and GEMS. Since we find little evidence for a correlation between the rest-UV sizes and magnitudes of LAEs, the majority should be resolved in a deeper survey at the ∼0.''05 angular resolution of the HST. Most of the multi-component LAEs identified in shallow frames become connected in deeper images, suggesting that the majority of the rest-UV 'clumps' are individual star-forming regions within a single system.

  10. Photoluminescence of monovalent indium centres in phosphate glass

    OpenAIRE

    Masai, Hirokazu; Yamada, Yasuhiro; Okumura, Shun; Yanagida, Takayuki; Fujimoto, Yutaka; Kanemitsu, Yoshihiko; Ina, Toshiaki

    2015-01-01

    Valence control of polyvalent cations is important for functionalization of various kinds of materials. Indium oxides have been used in various applications, such as indium tin oxide in transparent electrical conduction films. However, although metastable In+ (5 s2 configuration) species exhibit photoluminescence (PL), they have attracted little attention. Valence control of In+ cations in these materials will be important for further functionalization. Here, we describe In+ species using PL ...

  11. A SEARCH FOR LYMAN BREAK GALAXIES IN THE CHANDRA DEEP FIELD SOUTH USING SWIFT ULTRAVIOLET/OPTICAL TELESCOPE

    International Nuclear Information System (INIS)

    Basu-Zych, Antara R.; Hornschemeier, Ann E.; Hoversten, Erik A.; Gronwall, Caryl; Lehmer, Bret

    2011-01-01

    While the Swift satellite is primarily designed to study gamma-ray bursts, its ultraviolet and optical imaging and spectroscopy capabilities are also being used for a variety of scientific programs. In this study, we use the UV/Optical Telescope (UVOT) instrument on board Swift to discover 0.5 2 at >60 ks exposure time, achieving a limiting magnitude of u * /M sun ) = 9.4 ± 0.6, which is slightly lower than z ∼ 3 LBGs ((logM * /Ms un ) = 10.2 ± 0.4) and slightly higher compared with the z ∼ 1 CDF-S galaxies ((logM * /M sun ) = 8.7 ± 0.7). Similarly, our sample of z ∼ 1 LBGs has SFRs (derived using both ultraviolet and infrared data, where available) of (logSFR/(M sun yr -1 )) = 0.7 ± 0.6, nearly an order of magnitude lower than z ∼ 3 LBGs ((logSFR/M sun yr -1 ) = 1.5 ± 0.4), but slightly higher than the comparison z ∼ 1 sample of CDF-S galaxies ((logSFR/M sun yr -1 ) = 0.2 ± 0.7). We find that our z ∼ 1 UV-dropouts have (A FUV ) = 2.0 ± 1.0, which is higher than z ∼ 3 LBGs ((A FUV ) = 1.0 ± 0.5), but similar to the distribution of dust attenuations in the other CDF-S galaxies ((A FUV ) ∼ 2.8 ± 1.5). Using the GOODS-South multiwavelength catalog of galaxies, we simulate a larger and fainter sample of LBGs to compare their properties with those of the UVOT-selected LBG sample. We conclude that UVOT can be useful for finding and studying the bright end of 0.5 < z < 2.0 LBGs.

  12. Influence of plasmon coupling on the photoluminescence of ZnS/Ag nanoparticles obtained by laser irradiation in liquid

    Science.gov (United States)

    Moos, Rafaela; Graff, Ismael L.; de Oliveira, Vinicius S.; Schreiner, Wido H.; Bezerra, Arandi G.

    2017-10-01

    We investigate the photoluminescence, optical absorption and structural properties of ZnS submitted to laser irradiation in water and isopropyl alcohol. Nanoparticles were produced by irradiating micro-sized ZnS particles dispersed in both liquids, with and without the addition of Ag nanoparticles, taking advantage of the laser-assisted fragmentation effect. When ZnS microparticles are irradiated either in pure water or isopropyl alcohol a considerable size reduction is achieved (from micra to few nanometers). The photoluminescence of these nanoparticles mainly occurs in the UV, centered at 350 nm, and with smaller intensity in the visible, centered at 600 nm. Irradiation of ZnS microparticles dispersed in colloidal silver triggers a reaction between both materials, modifying its optical absorption and photoluminescent properties. After irradiation of ZnS in alcohol containing Ag nanoparticles, a giant increase of the UV photoluminescence is observed. Interestingly, when the irradiation is performed in aqueous Ag nanoparticles colloids, the photoluminescence suffers a red-shift towards the violet-blue. The data show that core-shell (Ag-ZnO) nanostructures are formed after irradiation and the visible emission likely originates from the ZnO shell grown around silver nanoparticles. The presence of Ag nanoparticles in the liquid medium promotes a stronger absorption of the laser beam during irradiation due to the coupling with the surface plasmon resonance, fostering intense reactions among ZnS, Ag nanoparticles, and the liquid medium. Our study shows that with a simple change of the liquid medium wherein the irradiation is conducted the photoluminescence can be tuned from UV to visible and core-shell nanostructures can be obtained.

  13. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  14. The manifestation of charge transfer transitions in photoluminescence spectra of Zn1-xMexO oxide (Me - Mn, Ni, Co) compounds

    International Nuclear Information System (INIS)

    Sokolov, V.I.; Gruzdev, N.B.; Pustovarov, V.A.; Churmanov, V.N.

    2013-01-01

    The paper concerns the investigation of Zn 1-x Co x O and Zn 1-x Ni x O crystals by the photoluminescent method at temperatures of 8 K and 90 K. Taking into account the expansions of the photoluminescence spectra into the sums of distributions Gauss functions and the well-known positions of donor and acceptor levels of 3d-impurities regarding the edges of conduction and valence bands, we interpreted the peaks observed in the photoluminescence spectra as a result of radiative recombination through the donor and acceptor levels of nickel and cobalt ions. The obtained results are compared with the peculiarities observed earlier in the photoluminescence spectra of Zn 1-x Mn x O crystals.

  15. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species.

    Science.gov (United States)

    Matulionyte, Marija; Dapkute, Dominyka; Budenaite, Laima; Jarockyte, Greta; Rotomskis, Ricardas

    2017-02-10

    In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS) of bovine serum albumin-encapsulated (BSA-Au NCs) and 2-(N-morpholino) ethanesulfonic acid (MES)capped photoluminescent gold nanoclusters (Au-MES NCs) were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  16. Photoluminescent Gold Nanoclusters in Cancer Cells: Cellular Uptake, Toxicity, and Generation of Reactive Oxygen Species

    Directory of Open Access Journals (Sweden)

    Marija Matulionyte

    2017-02-01

    Full Text Available In recent years, photoluminescent gold nanoclusters have attracted considerable interest in both fundamental biomedical research and practical applications. Due to their ultrasmall size, unique molecule-like optical properties, and facile synthesis gold nanoclusters have been considered very promising photoluminescent agents for biosensing, bioimaging, and targeted therapy. Yet, interaction of such ultra-small nanoclusters with cells and other biological objects remains poorly understood. Therefore, the assessment of the biocompatibility and potential toxicity of gold nanoclusters is of major importance before their clinical application. In this study, the cellular uptake, cytotoxicity, and intracellular generation of reactive oxygen species (ROS of bovine serum albumin-encapsulated (BSA-Au NCs and 2-(N-morpholino ethanesulfonic acid (MEScapped photoluminescent gold nanoclusters (Au-MES NCs were investigated. The results showed that BSA-Au NCs accumulate in cells in a similar manner as BSA alone, indicating an endocytotic uptake mechanism while ultrasmall Au-MES NCs were distributed homogeneously throughout the whole cell volume including cell nucleus. The cytotoxicity of BSA-Au NCs was negligible, demonstrating good biocompatibility of such BSA-protected Au NCs. In contrast, possibly due to ultrasmall size and thin coating layer, Au-MES NCs exhibited exposure time-dependent high cytotoxicity and higher reactivity which led to highly increased generation of reactive oxygen species. The results demonstrate the importance of the coating layer to biocompatibility and toxicity of ultrasmall photoluminescent gold nanoclusters.

  17. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    Science.gov (United States)

    2016-01-05

    SECURITY CLASSIFICATION OF: Funds were used to purchase a Renishaw inVia Reflex Spectrometer System for Raman and Photoluminescence spectral...Unlimited UU UU UU UU 05-01-2016 15-Aug-2014 14-Aug-2015 Final Report: Purchase of a Raman and Photoluminescence Imaging System for Characterization of...MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Raman spectroscopy

  18. Characterization of ZnS nanoparticles synthesized by co-precipitation method

    International Nuclear Information System (INIS)

    Iranmanesh Parvaneh; Nourzpoor Mohsen; Saeednia Samira

    2015-01-01

    ZnS nanoparticles are prepared by homogeneous chemical co-precipitation method using EDTA as a stabilizer and capping agent. The structural, morphological, and optical properties of as-synthesized nanoparticles are investigated using x-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, ultraviolet-visible (UV-Vis) absorption, and photoluminescence spectroscopy. The x-ray diffraction pattern exhibits a zinc-blended crystal structure at room temperature. The average particle size of the nanoparticles from the scanning electron microscopy image is about 50 nm. The ultraviolet absorption spectrum shows the blue shift in the band gap due to the quantum confinement effect. The photoluminescence spectrum of ZnS nanoparticles shows a blue visible spectrum. (paper)

  19. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    Science.gov (United States)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  20. Photoluminescence of Copper-Doped Lithium Niobate Crystals

    Science.gov (United States)

    Gorelik, V. S.; Pyatyshev, A. Yu.; Sidorov, N. V.

    2018-05-01

    The photoluminescence (PL) of copper-doped lithium niobate single crystals is studied using different UV-Vis light-emitting diodes and a pulse-periodic laser with a wavelength of 266 nm as excitation radiation sources. With the resonance excitation from a 527-nm light-emitting diode, the intensity of PL increases sharply (by two orders of magnitude). When using a 467-nm light-emitting diode for excitation, the PL spectrum is characterized by the presence of multiphonon lines in the range of 520-620 nm.

  1. Synthesis and characterization of a new photoluminescent material (8-hydroxy quinoline) bis (2-2'bipyridine) lanthanum La(Bpy)2q

    Science.gov (United States)

    Kumar, Rahul; Bhargava, Parag

    2016-05-01

    A new photoluminescence material, (8-hydroxy quinoline) bis (2-2'bipyridine) lanthanum has been synthesized and characterized by different techniques. The prepared material La(Bpy)2q was characterized for structural, thermal and photoluminescence analysis. Structural analysis of this material was done by Fourier transformed infrared spectroscopy (FTIR) and mass spectroscopy. Thermal analysis of this material was done by thermal gravimetric analysis (TGA) shows the thermal stability up to 190°C.Absorption and emission spectra of the material was measured by UV-visible spectroscopy and photoluminescence spectroscopy. Solution of this material La(Bpy)2q in ethanol showed absorption peak at 385nm, which may be attributed due to (π - π*) transitions. The photoluminescence spectra of La(Bpy)2q in ethanol solution showed intense peak at 490 nm

  2. Ultraviolet Behavior of N = 8 Supergravity

    International Nuclear Information System (INIS)

    Dixon, Lance J.

    2010-01-01

    In these lectures the author describes the remarkable ultraviolet behavior of N = 8 supergravity, which through four loops is no worse than that of N = 4 super-Yang-Mills theory (a finite theory). I also explain the computational tools that allow multi-loop amplitudes to be evaluated in this theory - the KLT relations and the unitarity method - and sketch how ultraviolet divergences are extracted from the amplitudes.

  3. Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance

    Science.gov (United States)

    Tiguntseva, E. Y.; Saraeva, I. N.; Kudryashov, S. I.; Ushakova, E. V.; Komissarenko, F. E.; Ishteev, A. R.; Tsypkin, A. N.; Haroldson, R.; Milichko, V. A.; Zuev, D. A.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid halide perovskites have emerged as one of the most promising type of materials for thin-film photovoltaic and light-emitting devices. Further boosting their performance is critically important for commercialization. Here we use femtosecond laser for post-processing of organo-metalic perovskite (MAPbI3) films. The high throughput laser approaches include both ablative silicon nanoparticles integration and laser-induced annealing. By using these techniques, we achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally 10-fold enhancement of absorbance in a perovskite layer with the silicon nanoparticles. Direct laser annealing allows for increasing of photoluminescence over 130%, and increase absorbance over 300% in near-IR range. We believe that the developed approaches pave the way to novel scalable and highly effective designs of perovskite based devices.

  4. Giant Enhancement of Small Photoluminescent Signals on Glass Surfaces Covered by Self-Assembled Silver Nanorings.

    Science.gov (United States)

    Sousanis, A; Poulopoulos, P; Karoutsos, V; Trachylis, D; Politis, C

    2017-02-01

    Self-assembled nanostructures with the shape of nanospheres or nanorings were formed after annealing of ultrathin Ag films grown on glass, in a furnace with air at 460 °C. Intense localized surface plasmon resonances were recorded for these nanostructures with maxima at the green-blue light. The surface became functional in terms of enhancing the weak photoluminescence of glass between 2–400 times. This system provides an easy way of enhancing the photoluminescence emission of initially low performance materials.

  5. Ultraviolet extinction in M-supergiant circumstellar envelopes

    International Nuclear Information System (INIS)

    Buss, R.H. Jr.; Snow, T.P. Jr.

    1986-01-01

    Using International Ultraviolet (IUS) archival low-dispersion spectra, ultraviolet spectral extinctions were derived for the circumstellar envelopes of two M supergiants: HD 60414 and HD 213310. The observed stellar systems belong to a class of widely-separated spectroscopic binaries that are called VV Cephei stars. The total extinction was calculated by dividing the reddened fluxes with unreddened comparison fluxes of similar stars (g B2.5 for HD 213310 and a normalized s+B3 for HD 60414) from the reference atlas. After substracting the interstellar extinctions, which were estimated from the E(B-V) reddening of nearby stars, the resultant circumstellar extinctions were normalized at about 3.5 inverse microns. Not only is the 2175 A extinction bump absent in the circumstellar extinctions, but the far-ultraviolet extinction rise is also absent. The rather flat, ultraviolet extinction curves were interpreted as signatures of a population of noncarbonaceous, oxygen-rich grains with diameters larger than the longest observed wavelength

  6. Ultraviolet fire detector

    Science.gov (United States)

    Turnage, J. E.; Linford, R. M. F.; Cornish, S. D.

    1976-01-01

    System is capable of detecting ultraviolet light emitted by match size flame at distance of 10 ft. System is not affected by high energy or particulate radiation and is therefore particularly suited for applications around nuclear plants and X-ray equipment.

  7. Ion-beam synthesis and photoluminescence of SiC nanocrystals assisted by MeV-heavy-ion-beam annealing

    International Nuclear Information System (INIS)

    Khamsuwan, J.; Intarasiri, S.; Kirkby, K.; Chu, P.K.; Singkarat, S.; Yu, L.D.

    2012-01-01

    This work explored a novel way to synthesize silicon carbide (SiC) nanocrystals for photoluminescence. Carbon ions at 90 keV were implanted in single crystalline silicon wafers at elevated temperature, followed by irradiation using xenon ion beams at an energy of 4 MeV with two low fluences of 5 × 10 13 and 1 × 10 14 ions/cm 2 at elevated temperatures for annealing. X-ray diffraction, Raman scattering, infrared spectroscopy and transmission electron microscopy were used to characterize the formation of nanocrystalline SiC. Photoluminescence was measured from the samples. The results demonstrated that MeV-heavy-ion-beam annealing could indeed induce crystallization of SiC nanocrystals and enhance emission of photoluminescence with violet bands dominance due to the quantum confinement effect.

  8. Ultraviolet spectrophotometer for measuring columnar atmospheric ozone from aircraft

    Science.gov (United States)

    Hanser, F. A.; Sellers, B.; Briehl, D. C.

    1978-01-01

    An ultraviolet spectrophotometer (UVS) to measure downward solar fluxes from an aircraft or other high altitude platform is described. The UVS uses an ultraviolet diffuser to obtain large angular response with no aiming requirement, a twelve-position filter wheel with narrow (2-nm) and broad (20-nm) bandpass filters, and an ultraviolet photodiode. The columnar atmospheric ozone above the UVS (aircraft) is calculated from the ratios of the measured ultraviolet fluxes. Comparison with some Dobson station measurements gives agreement to 2%. Some UVS measured ozone profiles over the Pacific Ocean for November 1976 are shown to illustrate the instrument's performance.

  9. Preparation, photoluminescent properties and luminescent dynamics of BaAlF{sub 5}:Eu{sup 2+} nanophosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei [Stem Cell and Tissue Engineering Laboratory, Dalian University of Technology, Dalian, Liaoning 116023 (China); College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Hua, Ruinian, E-mail: rnhua@dlnu.edu.cn [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Liu, Tianqing, E-mail: liutq@dlut.edu.cn [Stem Cell and Tissue Engineering Laboratory, Dalian University of Technology, Dalian, Liaoning 116023 (China); Zhao, Jun [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China); Na, Liyan [College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600 (China); Chen, Baojiu [Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026 (China)

    2014-12-15

    Graphical abstract: Rice-shaped BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via one-pot hydrothermal process. The as-prepared BaAlF{sub 5}:Eu{sup 2+} are composed of many particles with an average diameter of 40 nm. When excited at 260 nm, the sharp line emission located at 361 nm of Eu{sup 2+} was observed. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The strong ultraviolet emission of Eu{sup 2+} ions in BaAlF{sub 5}:Eu{sup 2+} nanoparticles suggests that these nanoparticles may have potential applications for sensing, solid-state lasers and spectrometer calibration. - Highlights: • BaAlF{sub 5}:Eu{sup 2+} nanophosphors were synthesized via a mild hydrothermal process. • The Van and Huang models were used to research the mechanism of concentration quenching. • The optimum doping concentration of Eu2+ was confirmed to be 5 mol%. - Abstract: Eu{sup 2+}-doped BaAlF{sub 5} nanophosphors were synthesized via a facile one-pot hydrothermal method. The final products were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy. XRD results showed that the prepared samples are single-phase. The FE-SEM and TEM images indicated that the prepared BaAlF{sub 5}:Eu{sup 2+} nanophosphors are composed of many rice-shaped particles with an average diameter of 40 nm. When excited at 260 nm, BaAlF{sub 5}:Eu{sup 2+} nanophosphors exhibit the sharp line emissions of Eu{sup 2+} at room temperature. The optimum doping concentration of Eu{sup 2+} was confirmed to be 5 mol%. The Van and Huang models were used to study the mechanism of concentration quenching and the electric dipole–dipole interaction between Eu{sup 2+} can be deduced to be a dominant for quenching fluorescence in BaAlF{sub 5}:Eu{sup 2+} nanophosphors. The strong ultraviolet emission of Eu{sup 2+} in BaAlF{sub 5}:Eu{sup 2+} nanophosphors suggests that

  10. Photoluminescence study of Er-doped zinc-sodium-antimonite glasses

    Czech Academy of Sciences Publication Activity Database

    Zavadil, Jiří; Ivanova, Z. G.; Kostka, Petr; Hamzaoui, M.; Soltani, M.

    2014-01-01

    Roč. 611, 25 October (2014), s. 111-116 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384; GA MŠk(CZ) 7AMB14SK009 Institutional support: RVO:67985882 ; RVO:67985891 Keywords : Erbium * Photoluminescence * Antimonite glasses Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; BM - Solid Matter Physics ; Magnetism (USMH-B) Impact factor: 2.999, year: 2014

  11. The relation between photoluminescence properties and gas pressure with [0001] InGaN single quantum well systems

    Energy Technology Data Exchange (ETDEWEB)

    Tsutsumi, Toshiaki [Department of Nanosystem Sciences, Yokohama City University, Yokohama 236-0027 (Japan); Alfieri, Giovanni; Kawakami, Yoichi [Department of Electronic Science and Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, Kyoto 615-8510 (Japan); Micheletto, Ruggero, E-mail: ruggero@yokohama-cu.ac.jp [Department of Nanosystem Sciences, Yokohama City University, Yokohama 236-0027 (Japan)

    2017-01-15

    Highlights: • Photoluminescence of InGaN device is variable, there is no clear explanation for this. • We perform an ad-hoc absorption procedure, found that gases on the surface reduce emission. • We found that variability is related to the pressure of the gas in which the sample is immersed. • We point out the role of oxygen as major player in the reduction of photoluminescence. • A model is proposed and explains successfully the dynamical optical processes observed. - Abstract: We show for the first time that photoluminescence of InGaN single quantum wells (SQW) devices is related to the gas pressure in which the sample is immersed, also we give a model of the phenomena to suggest a possible cause. Our model shows a direct relation between experimental behavior and molecular coverage dynamics. This strongly suggests that the driving force of photoluminescence decrease is oxygen covering the surface of the device with a time dynamics that depends on the gas pressure. This aims to contribute to the understanding of the physical mechanism of the so-called optical memory effect and blinking phenomenon observed in these devices.

  12. EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method.

    Science.gov (United States)

    Gupta, Atul K; Kripal, Ram

    2012-10-01

    The structural properties of Mn doped CdS (Mn:CdS) nanoparticles (NPs) are studied using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-vis), Photoluminescence (PL), Raman and Electron paramagnetic resonance (EPR) spectroscopy. XRD analysis shows the nanostructure with 2-4 nm of average crystallite size. The planes (110), (103) and (112) in XRD pattern distinguish the wurtzite structure of the Mn:CdS NPs. The intensity of the plane (102) increases as the doping concentration of Mn(2+) increases. UV-vis absorption spectra show blue shift as compared to bulk CdS. The optical band gap energy of Mn(2+) (0, 0.35, 0.70 and 1.35 at.%) doped CdS NPs corresponding to absorption edge are found to be 5.29, 5.28, 5.25 and 5.21 eV, respectively. The intensity of luminescence is changing with the concentration of Mn(2+) doped in CdS NPs. Raman spectra show blue shift in fundamental optical phonon mode (1LO) as well as second optical phonon mode (2LO) as compared to bulk CdS. The intensity ratio of the 2LO to 1LO modes slightly decreases as Mn(2+) concentration increases. EPR shows the existence of Mn(2+) with different local structures in CdS nanoparticles. The values of spectroscopic splitting factor (g) and hyperfine interaction constant (A) decrease as Mn(2+) concentration increases in CdS NPs. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Stratospheric ozone, ultraviolet radiation and climate change

    International Nuclear Information System (INIS)

    Boucher, O.

    2008-01-01

    It is well known that an overexposure to ultraviolet radiation is associated with a number of health risks such as an increased risk of cataracts and skin cancers. At a time when climate change is often blamed for all our environmental problems, what is the latest news about the stratospheric ozone layer and other factors controlling ultraviolet radiation at the surface of the Earth? Will the expected changes in the chemical composition of the atmosphere and changes in our climate increase or decrease the risk for skin cancer? This article investigates the role of the various factors influencing ultraviolet radiation and presents the latest knowledge on the subject. (author)

  14. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  15. Synthesis and Photoluminescence Properties of Ca2Ga2SiO7:Eu(3+) Red Phosphors with an Intense (5)D0 → (7)F4 Transition.

    Science.gov (United States)

    Behrh, Gaganpreet Kaur; Gautier, Romain; Latouche, Camille; Jobic, Stéphane; Serier-Brault, Hélène

    2016-09-19

    Novel melilite-type Ca2Ga2SiO7:Eu(3+) red-emitting phosphors with different Eu(3+) contents were synthesized via high-temperature solid-state reaction. The crystal structure, optical absorption, and photoluminescence properties were investigated, while density functional theory calculations were performed on the host lattice. The excitation spectra indicate that phosphors can be effectively excited by near-UV light for a potential application in white-light-emitting diodes. Because of the abnormally high intensity emission at about 700 nm arising from the (5)D0 → (7)F4 transition of Eu(3+), the phosphors Ca2Ga2SiO7:Eu(3+) show a deep-red emission with chromaticity coordinates (0.639, 0.358).

  16. The Photoluminescent Properties of New Cationic Iridium(III Complexes Using Different Anions and Their Applications in White Light-Emitting Diodes

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2015-09-01

    Full Text Available Three cationic iridium(III complexes [Ir(ppy2(phen][PF6] (C1, [Ir(ppy2(phen]2SiF6 (C2 and [Ir(ppy2(phen]2TiF6 (C3 (ppy: 2-phenylpyridine, phen: 1, 10-phenanthroline using different anions were synthesized and characterized by 1H Nuclear magnetic resonance (1HNMR, mass spectra (MS, Fourier transform infrared (FTIR spectra and element analysis (EA. After the ultraviolet visible (UV-vis absorption spectra, photoluminescent (PL properties and thermal properties of the complexes were investigated, complex C1 and C3 with good optical properties and high thermal stability were used in white light-emitting diodes (WLEDs as luminescence conversion materials by incorporation with 460 nm-emitting blue GaN chips. The integrative performances of the WLEDs fabricated with complex C1 and C3 are better than those fabricated with the widely used yellow phosphor Y3Al5O12:Ce3+ (YAG. The color rendering indexes of the WLEDs with C1 and C3 are 82.0 and 82.6, the color temperatures of them are 5912 K and 3717 K, and the maximum power efficiencies of them are 10.61 Lm·W−1 and 11.41 Lm·W−1, respectively.

  17. The Photoluminescent Properties of New Cationic Iridium(III) Complexes Using Different Anions and Their Applications in White Light-Emitting Diodes.

    Science.gov (United States)

    Yang, Hui; Meng, Guoyun; Zhou, Yayun; Tang, Huaijun; Zhao, Jishou; Wang, Zhengliang

    2015-09-14

    Three cationic iridium(III) complexes [Ir(ppy)₂(phen)][PF₆] (C1), [Ir(ppy)₂(phen)]₂SiF₆ (C2) and [Ir(ppy)₂(phen)]₂TiF₆ (C3) (ppy: 2-phenylpyridine, phen: 1, 10-phenanthroline) using different anions were synthesized and characterized by ¹H Nuclear magnetic resonance (¹HNMR), mass spectra (MS), Fourier transform infrared (FTIR) spectra and element analysis (EA). After the ultraviolet visible (UV-vis) absorption spectra, photoluminescent (PL) properties and thermal properties of the complexes were investigated, complex C1 and C3 with good optical properties and high thermal stability were used in white light-emitting diodes (WLEDs) as luminescence conversion materials by incorporation with 460 nm-emitting blue GaN chips. The integrative performances of the WLEDs fabricated with complex C1 and C3 are better than those fabricated with the widely used yellow phosphor Y₃Al₅O 12 :Ce 3+ (YAG). The color rendering indexes of the WLEDs with C1 and C3 are 82.0 and 82.6, the color temperatures of them are 5912 K and 3717 K, and the maximum power efficiencies of them are 10.61 Lm·W -1 and 11.41 Lm·W -1 , respectively.

  18. Enhanced photoluminescence from ring resonators in hydrogenated amorphous silicon thin films at telecommunications wavelengths.

    Science.gov (United States)

    Patton, Ryan J; Wood, Michael G; Reano, Ronald M

    2017-11-01

    We report enhanced photoluminescence in the telecommunications wavelength range in ring resonators patterned in hydrogenated amorphous silicon thin films deposited via low-temperature plasma enhanced chemical vapor deposition. The thin films exhibit broadband photoluminescence that is enhanced by up to 5 dB by the resonant modes of the ring resonators due to the Purcell effect. Ellipsometry measurements of the thin films show a refractive index comparable to crystalline silicon and an extinction coefficient on the order of 0.001 from 1300 nm to 1600 nm wavelengths. The results are promising for chip-scale integrated optical light sources.

  19. Photoluminescence properties of Li{sup +}-doped KNbO{sub 3}: Eu{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnaiah, R.; Kim, Dongwoo; Yi, Soungsoo; Kim, Sunghoon [Silla University, Busan (Korea, Republic of); Jang, Kiwan; Lee, Hosueb [Changwon National University, Changwon (Korea, Republic of); Moon, Byungkee; Jeong, Junghyun [Pukyong National University, Busan (Korea, Republic of)

    2010-12-15

    Different concentrations of Li{sup +}-ions doped KNbO{sub 3}:Eu polycrystalline powder phosphors were prepared by using the conventional solid state reaction method and were characterized by using X-ray diffraction, field emission scanning electron microscopy, and by using photoluminescence excitation and emission measurements. The morphological and the photoluminescence properties of the phosphors were effectively improved with Li-doping. The PL properties as a function of Li concentration in the Li-doped KNbO{sub 3}:Eu phosphors using different excitation wavelengths, along with a comparison of results with these in similar reported works, are discussed in the present work.

  20. Laser-excited photoluminescence of three-layer GaAs double-heterostructure laser material

    International Nuclear Information System (INIS)

    Nash, F.R.; Dixon, R.W.; Barnes, P.A.; Schumaker, N.E.

    1975-01-01

    The successful fabrication of high-quality DH GaAs lasers from a simplified three-layer structure is reported. A major asset of this structure is the transparency of its final layer to recombination radiation occurring in the active layer, thus permitting the use of nondestructive photoluminescent techniques for material evaluation prior to device fabrication. In the course of photoluminescence investigations on this material the additional important observation has been made that indirect excitation (in which photocarriers are generated in the top ternary layer) has significant advantages over direct excitation (in which photocarriers are generated directly in the active layer). These include (i) the direct measurement of Al concentrations in both upper layers, (ii) the measurements of the minority-carrier diffusion length in the upper layer, (iii) an easily obtained indication of taper in the thickness of the upper layer, and (iv) surprisingly effective excitation of the active layer. By combining direct and indirect excitation it is shown that a clearer understanding of the location and detrimental influences of defects in the GaAs laser structure may be obtained. For example, the width of the region of reduced luminescence associated with many defects is found to be very excitation dependent and is confirmed to arise fr []m reduced active region luminescence. The photoluminescent excitation techniques described should be useful in the study of other heterostructure devices and material systems

  1. Photoluminescence study in diaminobenzene functionalized graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Abhisek, E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in; Saha, Shyamal K., E-mail: guptaabhisek017@gmail.com, E-mail: cnssks@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2014-10-15

    Being an excellent electronic material graphene is a very poor candidate for optoelectronic applications. One of the major strategies to develop the optical property in GO is the functionalization of graphene oxide (GO). In the present work GO sheets are functionalized by o-phenylenediamine to achieve diaminobenzene functionalized GO composite (DAB-GO). Formation of DAB-GO composite is further characterized by FTIR, UV, Raman studies. Excellent photoluminescence is observed in DAB-GO composite via passivation of the surface reactive sites by ring-opening amination of epoxides of GO.

  2. Ion chromatography with the indirect ultraviolet detection of alkali metal ions and ammonium using imidazolium ionic liquid as ultraviolet absorption reagent and eluent.

    Science.gov (United States)

    Liu, Yong-Qiang; Yu, Hong

    2016-08-01

    Indirect ultraviolet detection was conducted in ultraviolet-absorption-agent-added mobile phase to complete the detection of the absence of ultraviolet absorption functional group in analytes. Compared with precolumn derivatization or postcolumn derivatization, this method can be widely used, has the advantages of simple operation and good linear relationship. Chromatographic separation of Li(+) , Na(+) , K(+) , and NH4 (+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid/organic solvent as the mobile phase, in which imidazolium ionic liquids acted as ultraviolet absorption reagent and eluting agent. The retention behaviors of four kinds of cations are discussed, and the mechanism of separation and detection are described. The main factors influencing the separation and detection were the background ultraviolet absorption reagent and the concentration of hydrogen ion in the ion chromatography-indirect ultraviolet detection. The successful separation and detection of Li(+) , Na(+) , K(+) , and NH4 (+) within 13 min was achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.02, 0.11, 0.30, and 0.06 mg/L, respectively. A new separation and analysis method of alkali metal ions and ammonium by ion chromatography with indirect ultraviolet detection method was developed, and the application range of ionic liquid was expanded. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chemical states and electronic properties of the interface between aluminium and a photoluminescent conjugated copolymer containing europium complex

    International Nuclear Information System (INIS)

    Cai, Q.J.; Ling, Q.D.; Li, S.; Zhu, F.R.; Huang, Wei; Kang, E.T.; Neoh, K.G.

    2004-01-01

    The chemical states and electronic properties of the interface between thermally evaporated aluminium and a photoluminescent conjugated copolymer containing 9,9'-dihexylfluorene and europium complex-chelated benzoate units in the main chain (PF6-Eu(dbm) 2 phen) were studied in situ by X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS). The changes in C 1s, Eu 3d, N 1s, and Al 2p core-level lineshapes with progressive deposition of aluminium atoms were carefully monitored. Aluminium was found to interact with the conjugated backbone of the copolymer to form the Al carbide, Al-O-C complex, and Al(III)-N chelate at the interface. In addition, the europium ions were reduced to the metallic state by the deposited aluminium atoms, which were oxidized and chelated by the 1,10-phenanthroline ligands (phen). The changes in chemical states at the interface suggest that the intramolecular energy transfer process in this copolymer had been affected. Moreover, aluminium also interacted with the bulk-adsorbed oxygen, which migrates to the surface in response to the deposition of aluminium atoms, to form a layer of metal oxides. On the other hand, the evolution of the UPS spectra suggests that the π-states of the conjugated system were affected and an unfavorable dipole layer was induced by the deposited aluminium atoms

  4. Reliable and Damage-Free Estimation of Resistivity of ZnO Thin Films for Photovoltaic Applications Using Photoluminescence Technique

    Directory of Open Access Journals (Sweden)

    N. Poornima

    2013-01-01

    Full Text Available This work projects photoluminescence (PL as an alternative technique to estimate the order of resistivity of zinc oxide (ZnO thin films. ZnO thin films, deposited using chemical spray pyrolysis (CSP by varying the deposition parameters like solvent, spray rate, pH of precursor, and so forth, have been used for this study. Variation in the deposition conditions has tremendous impact on the luminescence properties as well as resistivity. Two emissions could be recorded for all samples—the near band edge emission (NBE at 380 nm and the deep level emission (DLE at ~500 nm which are competing in nature. It is observed that the ratio of intensities of DLE to NBE (/ can be reduced by controlling oxygen incorporation in the sample. - measurements indicate that restricting oxygen incorporation reduces resistivity considerably. Variation of / and resistivity for samples prepared under different deposition conditions is similar in nature. / was always less than resistivity by an order for all samples. Thus from PL measurements alone, the order of resistivity of the samples can be estimated.

  5. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  6. FAR-ULTRAVIOLET SPECTROSCOPY OF THE NOVA-LIKE VARIABLE KQ MONOCEROTIS: A NEW SW SEXTANTIS STAR?

    International Nuclear Information System (INIS)

    Wolfe, Aaron; Sion, Edward M.; Bond, Howard E.

    2013-01-01

    New optical spectra obtained with the SMARTS 1.5 m telescope and archival International Ultraviolet Explorer (IUE) far-ultraviolet (FUV) spectra of the nova-like variable KQ Mon are discussed. The optical spectra reveal Balmer lines in absorption as well as He I absorption superposed on a blue continuum. The 2011 optical spectrum is similar to the KPNO 2.1 m IIDS spectrum we obtained 33 years earlier except that the Balmer and He I absorption is stronger in 2011. Far-ultraviolet IUE spectra reveal deep absorption lines due to C II, Si III, Si IV, C IV, and He II, but no P Cygni profiles indicative of wind outflow. We present the results of the first synthetic spectral analysis of the IUE archival spectra of KQ Mon with realistic optically thick, steady-state, viscous accretion-disk models with vertical structure and high-gravity photosphere models. We find that the photosphere of the white dwarf (WD) contributes very little FUV flux to the spectrum and is overwhelmed by the accretion light of a steady disk. Disk models corresponding to a WD mass of ∼0.6 M ☉ , with an accretion rate of order 10 –9 M ☉ yr –1 and disk inclinations between 60° and 75°, yield distances from the normalization in the range of 144-165 pc. KQ Mon is discussed with respect to other nova-like variables. Its spectroscopic similarity to the FUV spectra of three definite SW Sex stars suggests that it is likely a member of the SW Sex class and lends support to the possibility that the WD is magnetic.

  7. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples.

    Science.gov (United States)

    Wang, Huazi; Hu, Lu; Liu, Xinya; Yin, Shujun; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang

    2017-09-22

    In the present study, a simple and rapid sample preparation method designated ultrasound-assisted dispersive liquid-liquid microextraction based on a deep eutectic solvent (DES) followed by high-performance liquid chromatography with ultraviolet (UV) detection (HPLC-UVD) was developed for the extraction and determination of UV filters from water samples. The model analytes were 2,4-dihydroxybenzophenone (BP-1), benzophenone (BP) and 2-hydroxy-4-methoxybenzophenone (BP-3). The hydrophobic DES was prepared by mixing trioctylmethylammonium chloride (TAC) and decanoic acid (DecA). Various influencing factors (selection of the extractant, amount of DES, ultrasound duration, salt addition, sample volume, sample pH, centrifuge rate and duration) on UV filter recovery were systematically investigated. Under optimal conditions, the proposed method provided good recoveries in the range of 90.2-103.5% and relative standard deviations (inter-day and intra-day precision, n=5) below 5.9%. The enrichment factors for the analytes ranged from 67 to 76. The limits of detection varied from 0.15 to 0.30ngmL -1 , depending on the analytes. The linearities were between 0.5 and 500ngmL -1 for BP-1 and BP and between 1 and 500ngmL -1 for BP-3, with coefficients of determination greater than 0.99. Finally, the proposed method was applied to the determination of UV filters in swimming pool and river water samples, and acceptable relative recoveries ranging from 82.1 to 106.5% were obtained. Copyright © 2017. Published by Elsevier B.V.

  8. Growth and characterization of β-Ga2O3 thin films by molecular beam epitaxy for deep-UV photodetectors

    Science.gov (United States)

    Ghose, Susmita; Rahman, Shafiqur; Hong, Liang; Rojas-Ramirez, Juan Salvador; Jin, Hanbyul; Park, Kibog; Klie, Robert; Droopad, Ravi

    2017-09-01

    The growth of high quality epitaxial beta-gallium oxide (β-Ga2O3) using a compound source by molecular beam epitaxy has been demonstrated on c-plane sapphire (Al2O3) substrates. The compound source provides oxidized gallium molecules in addition to oxygen when heated from an iridium crucible in a high temperature effusion cell enabling a lower heat of formation for the growth of Ga2O3, resulting in a more efficient growth process. This source also enabled the growth of crystalline β-Ga2O3 without the need for additional oxygen. The influence of the substrate temperatures on the crystal structure and quality, chemical bonding, surface morphology, and optical properties has been systematically evaluated by x-ray diffraction, scanning transmission electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, spectroscopic ellipsometry, and UV-vis spectroscopy. Under optimized growth conditions, all films exhibited pure (" separators="|2 ¯01 ) oriented β-Ga2O3 thin films with six-fold rotational symmetry when grown on a sapphire substrate. The thin films demonstrated significant absorption in the deep-ultraviolet (UV) region with an optical bandgap around 5.0 eV and a refractive index of 1.9. A deep-UV photodetector fabricated on the high quality β-Ga2O3 thin film exhibits high resistance and small dark current (4.25 nA) with expected photoresponse for 254 nm UV light irradiation suggesting that the material grown using the compound source is a potential candidate for deep-ultraviolet photodetectors.

  9. New insights into the complex photoluminescence behaviour of titanium white pigments

    NARCIS (Netherlands)

    van Driel, B.A.; Artesani, A.; van den Berg, Klaas Jan; Dik, J.; Mosca, S.; Rossenaar, B.; Hoekstra, J.; Davies, A.; Nevin, A.; Valentini, G.; Comelli, D.

    2018-01-01

    This work reports the analysis of the time-resolved photoluminescence behaviour on the nanosecond and microsecond time scale of fourteen historical and contemporary titanium white pigments. The pigments were produced with different production methods and post-production treatments, giving rise to

  10. Plications of extended ultra-violet circular dichroism spectroscopy in biology and medicine.

    Science.gov (United States)

    Jones, Gareth R; Clarke, David T

    2004-01-01

    Deep ultra-violet circular dichroism is fast becoming an important technique in structural biology. The exponential increase in the number of protein structures deposited in the Protein Data Bank together with programs that extract protein secondary structure from atomic coordinates and the advancement of the software to analyse circular dichroic spectra, have revolutionised the technique. In addition, the extended short wavelength data afforded by synchrotron radiation is set to have a major impact on the development of the area. We have selected three diverse areas of research and development in the biomedical sciences to illustrate the ubiquity of the technique for future applications in the area of biomedical research. For example, the high flux of synchrotron radiation has provided a gold standard for the assay of the lipoprotein HDL in serum which has been proven to reverse the effects of coronary heart disease. In a second example, the high flux of synchrotron radiation enables the recording of millisecond data during the conformational changes in proteins over their spectrum, mapping out changes to protein secondary structure and thus providing absolute structural measurements in the millisecond time regime. In the third example, subtle conformational changes are interpreted from the extended CD spectra on protein drug binding, distinguishing between induced binding effects and the conformational changes in the target protein. The strengths and weaknesses of extended ultra-violet circular dichroism using synchrotron radiation are discussed using these examples as a template.

  11. Deep UV LEDs

    Science.gov (United States)

    Han, Jung; Amano, Hiroshi; Schowalter, Leo

    2014-06-01

    Deep ultraviolet (DUV) photons interact strongly with a broad range of chemical and biological molecules; compact DUV light sources could enable a wide range of applications in chemi/bio-sensing, sterilization, agriculture, and industrial curing. The much shorter wavelength also results in useful characteristics related to optical diffraction (for lithography) and scattering (non-line-of-sight communication). The family of III-N (AlGaInN) compound semiconductors offers a tunable energy gap from infrared to DUV. While InGaN-based blue light emitters have been the primary focus for the obvious application of solid state lighting, there is a growing interest in the development of efficient UV and DUV light-emitting devices. In the past few years we have witnessed an increasing investment from both government and industry sectors to further the state of DUV light-emitting devices. The contributions in Semiconductor Science and Technology 's special issue on DUV devices provide an up-to-date snapshot covering many relevant topics in this field. Given the expected importance of bulk AlN substrate in DUV technology, we are pleased to include a review article by Hartmann et al on the growth of AlN bulk crystal by physical vapour transport. The issue of polarization field within the deep ultraviolet LEDs is examined in the article by Braut et al. Several commercial companies provide useful updates in their development of DUV emitters, including Nichia (Fujioka et al ), Nitride Semiconductors (Muramoto et al ) and Sensor Electronic Technology (Shatalov et al ). We believe these articles will provide an excellent overview of the state of technology. The growth of AlGaN heterostructures by molecular beam epitaxy, in contrast to the common organo-metallic vapour phase epitaxy, is discussed by Ivanov et al. Since hexagonal boron nitride (BN) has received much attention as both a UV and a two-dimensional electronic material, we believe it serves readers well to include the

  12. Probing the exciton density of states in semiconductor nanocrystals using integrated photoluminescence spectroscopy

    CERN Document Server

    Filonovich, S A; Vasilevskiy, M I; Rolo, A G; Gomes, M J M; Artemiev, M V; Talapin, D V; Rogach, A L

    2002-01-01

    We present the results of a comparative analysis of the absorption and photoluminescence excitation (PLE) spectra vs. integrated photoluminescence (IPL) measured as a function of the excitation wavelength for a number of samples containing II-VI semiconductor nanocrystals (NCs) produced by different techniques. The structure of the absorption and PL spectra due to excitons confined in NCs and difficulties with the correct interpretation of the transmittance and PLE results are discussed. It is shown that, compared to the conventional PLE, the IPL intensity plotted against the excitation wavelength (IPLE spectra) reproduce better the structure of the absorption spectra. Therefore, IPLE spectroscopy can be successfully used for probing the quantized electron-hole (e-h) transitions in semiconductor nanocrystals. (author)

  13. Mechanoluminescence and photoluminescence of Pr3+ activated KMgF3 phosphor

    International Nuclear Information System (INIS)

    Dhoble, S.J.; Kher, R.S.; Furetta, C.

    2003-01-01

    A Czochralski method for the preparation of crystalline KMgF 3 : Pr phosphors are reported. Photoluminescence (PL) and mechanoluminescence (ML) characteristics are studied. Photoluminescence of Pr 3+ activated KMgF 3 shows the strong emission of Pr 3+ ions were observed at 498 and 650 nm by excitation of 213 mn. ML of KMgF 3 : Pr 3+ shows two peaks, which have been observed in ML intensity versus time curve. The ML peak shows the recombination of electrons with free radical (anion radical produced by γ-irradiation) released from two type traps during the mechanical pressure applied on KMgF 3 : Pr 3+ phosphor. It has a supra linear ML response with γ-ray exposure and a negligible fading. These properties of phosphor should be suitable in dosimetry of ionization relation using ML technique. Therefore the KMgF 3 : Pr 3+ phosphor proposed for ML dosimetry of ionization radiations. (Author)

  14. Quantum dots with indirect band gap: power-law photoluminescence decay

    Czech Academy of Sciences Publication Activity Database

    Král, Karel; Menšík, Miroslav

    2014-01-01

    Roč. 11, č. 5 (2014), s. 507-512 ISSN 1708-5284 R&D Projects: GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 ; RVO:61389013 Keywords : photoluminescence * quantum dots * electron-phonon interaction * inter-valley deformation potential interaction * power-law decay Subject RIV: BM - Solid Matter Physics ; Magnetism

  15. Lensless Photoluminescence Hyperspectral Camera Employing Random Speckle Patterns.

    Czech Academy of Sciences Publication Activity Database

    Žídek, Karel; Denk, Ondřej; Hlubuček, Jiří

    2017-01-01

    Roč. 7, č. 1 (2017), č. článku 15309. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1206; GA ČR(CZ) GJ17-26284Y Institutional support: RVO:61389021 Keywords : compressed sensing * photoluminescence imaging * laser speckles * single-pixel camera Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 4.259, year: 2016 https://www.nature.com/articles/s41598-017-14443-4

  16. Modelling and Display of the Ultraviolet Sky

    Science.gov (United States)

    Daniels, J.; Henry, R.; Murthy, J.; Allen, M.; McGlynn, T. A.; Scollick, K.

    1994-12-01

    A computer program is currently under development to model in 3D - one dimension of which is wavelength - all the known and major speculated sources of ultraviolet (900 A - 3100 A ) radiation over the celestial sphere. The software is being written in Fortran 77 and IDL and currently operates under IRIX (the operating system of the Silicon Graphics Iris Machine); all output models are in FITS format. Models along with display software will become available to the astronomical community. The Ultraviolet Sky Model currently includes the Zodiacal Light, Point Sources of Emission, and the Diffuse Galactic Light. The Ultraviolet Sky Model is currently displayed using SkyView: a package under development at NASA/ GSFC, which allows users to retrieve and display publically available all-sky astronomical survey data (covering many wavebands) over the Internet. We present a demonstration of the SkyView display of the Ultraviolet Model. The modelling is a five year development project: the work illustrated here represents product output at the end of year one. Future work includes enhancements to the current models and incorporation of the following models: Galactic Molecular Hydrogen Fluorescence; Galactic Highly Ionized Atomic Line Emission; Integrated Extragalactic Light; and speculated sources in the intergalactic medium such as Ionized Plasma and radiation from Non-Baryonic Particle Decay. We also present a poster which summarizes the components of the Ultraviolet Sky Model and outlines a further package that will be used to display the Ultraviolet Model. This work is supported by United States Air Force Contract F19628-93-K-0004. Dr J. Daniels is supported with a post-doctoral Fellowship from the Leverhulme Foundation, London, United Kingdom. We are also grateful for the encouragement of Dr Stephen Price (Phillips Laboratory, Hanscomb Air Force Base, MA)

  17. Photoreactivation of Pseudomonas cepacia after ultraviolet exposure: a potential source of contamination in ultraviolet-treated waters

    International Nuclear Information System (INIS)

    Carson, L.A.; Petersen, N.J.

    1975-01-01

    Cells of a naturally occurring strain of Pseudomonas cepacia grown in distilled water were exposed to ultraviolet radiation. Irradiated samples incubated on membrane filters or in fluid recovery media in the absence of light showed no evidence of dark repair mechanisms. When samples were exposed to fluorescent light ranging from 50 to 950 foot candles (538 to 10,222 lux) of illumination, apparent photo-induced repair of ultraviolet injury resulted in 1- to 4-log increases in viable cells recovered

  18. Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm

    International Nuclear Information System (INIS)

    Urata, Yoshiharu; Shinozaki, Tatsuya; Wada, Yoshio; Kaneda, Yushi; Wada, Satoshi; Imai, Shinichi

    2009-01-01

    A high-pulse-repetition-frequency (PRF) pulsed light source in the deep ultraviolet region has been realized by a multiple wavelength conversion technique using a hybrid fiber/bulk amplifier system. Output of 199 nm with a power of 50 mW was achieved at 2.4 MHz PRF. The 1 μm amplifier consisted of a Yb-doped fiber amplifier and a Nd-doped YVO4 amplifier. A 1.5 μm fiber master-oscillator power amplifier was employed as the other fundamental source. The amplifiers exhibited good amplification properties in pulse energy, polarization extinction ratio, and spectrum for nonlinear wavelength conversion

  19. On the acceptor-related photoluminescence spectra of GaAs quantum-wire microcrystals: A model calculation

    International Nuclear Information System (INIS)

    Oliveira, L.E.; Porras Montenegro, N.; Latge, A.

    1992-07-01

    The acceptor-related photoluminescence spectrum of a GaAs quantum-wire microcrystal is theoretically investigated via a model calculation within the effective-mass approximation, with the acceptor envelope wave functions and binding energies calculated through a variational procedure. Typical theoretical photoluminescence spectra show two peaks associated to transitions from the n = 1 conduction subband electron gas to acceptors at the on-center and on-edge positions in the wire in good agreement with the recent experimental results by Hirum et al. (Appl. Phys. Lett. 59, 431 (1991)). (author). 14 refs, 3 figs

  20. Synthesis and characterization of a new photoluminescent material (8-hydroxy quinoline) bis (2-2’bipyridine) lanthanum La(Bpy)2q

    International Nuclear Information System (INIS)

    Kumar, Rahul; Bhargava, Parag

    2016-01-01

    A new photoluminescence material, (8-hydroxy quinoline) bis (2-2’bipyridine) lanthanum has been synthesized and characterized by different techniques. The prepared material La(Bpy) 2 q was characterized for structural, thermal and photoluminescence analysis. Structural analysis of this material was done by Fourier transformed infrared spectroscopy (FTIR) and mass spectroscopy. Thermal analysis of this material was done by thermal gravimetric analysis (TGA) shows the thermal stability up to 190°C.Absorption and emission spectra of the material was measured by UV-visible spectroscopy and photoluminescence spectroscopy. Solution of this material La(Bpy) 2 q in ethanol showed absorption peak at 385nm, which may be attributed due to (π – π*) transitions. The photoluminescence spectra of La(Bpy) 2 q in ethanol solution showed intense peak at 490 nm

  1. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    International Nuclear Information System (INIS)

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-01-01

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: → In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. → The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. → The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10 -3 emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10 -3 emu/g. → The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V 2 O 5 and BaCl 2 at 200 o C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba 3 V 2 O 8 with small amount of Ba 3 VO 4.8 coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of ∼20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO 4 tetrahedron with T d symmetry in Ba 3 V 2 O 8 . The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10 -3 emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10 -3 emu/g, which is mainly due to the presence of a non-orthovanadate phase with spin S = 1/2.

  2. Photoluminescence topography of fluorescent SiC and its corresponding source crystals

    DEFF Research Database (Denmark)

    Wilhelm, M.; Kaiser, M.; Jokubavicus, V.

    2013-01-01

    The preparation and application of co-doped polycrystalline SiC as source in sublimation growth of fluorescent layers is a complex topic. Photoluminescence topographies of luminescent 6H-SiC layers and their corresponding source crystals have been studied in order to investigate the dependence...

  3. Solar ultraviolet radiation effects on biological systems

    International Nuclear Information System (INIS)

    Diffey, B.L.

    1991-01-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK)

  4. Solar ultraviolet radiation effects on biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Diffey, B.L. (Dryburn Hospital, Durham (UK). Regional Medical Physics Dept.)

    1991-03-01

    This extensive review discusses the topic under the following headings: ultraviolet climatology, molecular and cellular ultraviolet photobiology (absorption, photoproducts, repair), effects of solar UVR on aquatic life (phyto and zooplankton), plants and humans. The section on human effects includes tanning, photo-aging, non-melanoma and melanoma skin cancers and the effects of solar UVR on the eye. (UK).

  5. Ultraviolet microscopy aids in cytological and biomedical research

    Science.gov (United States)

    Schlenk, F.; Svihla, B.

    1967-01-01

    Ultraviolet microscopy is used by cytologists and biochemists to study the morphological and physiological changes in the living cell under varied culture conditions. The yeast cell is used because of its content of ultraviolet absorbing materials and its lack of motility.

  6. Photoluminescence and thermoluminescence properties of BaGa2O4

    Science.gov (United States)

    Noto, L. L.; Poelman, D.; Orante-Barrón, V. R.; Swart, H. C.; Mathevula, L. E.; Nyenge, R.; Chithambo, M.; Mothudi, B. M.; Dhlamini, M. S.

    2018-04-01

    Rare-Earth free luminescent materials are fast becoming important as the cost of rare earth ions gradually increases. In this work, a Rare-Earth free BaGa2O4 luminescent compound was prepared by solid state chemical reaction, which was confirmed to have a single phase by X-ray Diffraction. The Backscattered Electron image and Energy Dispersive X-ray spectroscopy maps confirmed irregular particle and homogeneous compound formation, respectively. The Photoluminescence spectrum displayed broad emission between 350 to 650 nm, which was deconvoluted into two components. The photoluminescence excitation peak was positioned at 254 nm, which corresponds with the band-to-band position observed from the diffuse reflectance spectrum. The band gap was extrapolated to 4.65 ± 0.02 eV using the Kubelka-Munk model. The preliminary thermoluminescence results indicated that the kinetics involved were neither of first nor second order. Additionally, the activation energy of the electrons within the trap centres was approximated to 0.61 ± 0.01 eV using the Initial Rise model.

  7. Photoluminescence of ZnBeMnSe solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Strzałkowski, K., E-mail: skaroll@fizyka.umk.pl; Firszt, F.; Marasek, A.

    2017-04-15

    In this paper optical properties of Zn{sub 1-x-y}Be{sub x}Mn{sub y}Se mixed semiconductors were studied as a function of both, temperature and excitation power. The crystals under investigation were grown by the high-pressure, high-temperature vertical Bridgman technique within the range of the composition 0.05≤x, y≤0.2. Photoluminescence spectra for the lowest content of Mn and Be exhibit character typical for II-VI semiconductors together with intensive yellow-orange manganese emission. Evolution of the excitonic emission as the function of temperature allowed determining the energy gap of the investigated semiconductors. Absorbance and photoluminescence excitation spectra confirmed crystal field splitting of excited atomic terms of manganese ions into the states, denoted according to the crystal field theory in the case of tetrahedral symmetry. Temperature and laser power dependences of luminescence showed anomalous behavior of the manganese emission. It turned out that the position of the Mn{sup 2+} related luminescence band does not change monotonically with the variation of the temperature or the excitation power. Finally, switching of the manganese emission has been observed. By increasing laser power of exciting radiation, the Mn-related emission could be quenched by almost two orders in magnitude. This effect was especially strong at low temperature and it was fully reversible.

  8. Ultraviolet colors of subdwarf O stars

    International Nuclear Information System (INIS)

    Wesselius, P.R.

    1978-01-01

    The group of subdwarf O stars consisting of field stars and some central stars of old planetary nebulae does occupy an interesting place in the HR diagram. Greenstein and Sargent (1974) have tried to establish this place, and conclude that especially the hottest ones need ultraviolet data to improve the values of effective temperature and absolute luminosity. The author therefore observed some twenty sdO stars in the far ultraviolet using the spectrophotometer in the Netherlands' satellite ANS. (Auth.)

  9. Ultraviolet photoelectron spectroscopy of transient species

    International Nuclear Information System (INIS)

    Leeuw, D.M. de.

    1979-01-01

    Transient species are studied in the isolation of the gas phase using ultraviolet photoelectron spectroscopy (PES). A description of the equipment used and a discussion of some theoretical topics, which play a role in the interpretation of PE spectra, are given. Koopmans' theorem, Hartree-Fock-Slater (HFS) calculations and the sum rule are discussed. A versatile ultraviolet PE spectrometer, designed specifically for this purpose, has been built and the construction and performance of this instrument are described. (Auth.)

  10. The ultraviolet variations of iota Cas

    Science.gov (United States)

    Molnar, M. R.; Mallama, A. D.; Soskey, D. G.; Holm, A. V.

    1976-01-01

    The Ap variable star iota Cas was observed with the photometers on OAO-2 covering the spectral range 1430-4250 A. The ultraviolet light curves show a double wave with primary minimum and maximum at phase ? 0.00 and 0.35, respectively. Secondary minimum light is at phase ? 0.65 with secondary maximum at phase ? 0.85. The light curves longward of 3150 A vary in opposition to those shortward of this 'null region'. Ground-based coude spectra show that the Fe II and Cr II line strengths have a double-wave variation such that maximum strength occurs at minimum ultraviolet light. We suggest that the strong ultraviolet opacities due to photoionization and line blanketing by these metals may cause the observed photometric variations. We have also constructed an oblique-rotator model which shows iron and chromium lying in a great circle band rather than in circular spots.

  11. DeepPy: Pythonic deep learning

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces DeepPy – a deep learning framework built on top of NumPy with GPU acceleration. DeepPy bridges the gap between highperformance neural networks and the ease of development from Python/NumPy. Users with a background in scientific computing in Python will quickly...... be able to understand and change the DeepPy codebase as it is mainly implemented using high-level NumPy primitives. Moreover, DeepPy supports complex network architectures by letting the user compose mathematical expressions as directed graphs. The latest version is available at http...

  12. Enhanced photoluminescence from single nitrogen-vacancy defects in nanodiamonds coated with phenol-ionic complexes.

    Science.gov (United States)

    Bray, Kerem; Previdi, Rodolfo; Gibson, Brant C; Shimoni, Olga; Aharonovich, Igor

    2015-03-21

    Fluorescent nanodiamonds are attracting major attention in the field of bio-sensing and bio-labeling. In this work we demonstrate a robust approach to achieve an encapsulation of individual nanodiamonds with phenol-ionic complexes that enhance the photoluminescence from single nitrogen vacancy (NV) centers. We show that single NV centres in the coated nanodiamonds also exhibit shorter lifetimes, opening another channel for high resolution sensing. We propose that the nanodiamond encapsulation reduces the non-radiative decay pathways of the NV color centers. Our results provide a versatile and assessable way to enhance photoluminescence from nanodiamond defects that can be used in a variety of sensing and imaging applications.

  13. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet air purifier. 880.6500 Section 880.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... to ultraviolet radiation. (b) Classification. Class II (performance standards). ...

  14. Photoluminescence measurements of ZnO heterostructures

    International Nuclear Information System (INIS)

    Adachi, Yutaka; Sakaguchi, Isao; Ohashi, Naoki; Haneda, Hajime; Ryoken, Haruki; Takenaka, Tadashi

    2003-01-01

    ZnO thin films were grown on TbAlO 3 single crystal substrates by pulsed laser deposition. In photoluminescence (PL) measurements, strong emissions from TbAlO 3 were observed with the emission from ZnO when the film thickness was less than 100 nm. The relationship between the ZnO film thickness and the emission intensity from TbAlO 3 was investigated in order to determine the penetration depth of excitation light. Information on the heterostructures ranging from the surface to a depth of 300 nm was obtained by PL measurements in this study, and the absorption coefficient for a wavelength of 325 nm was estimated to be 1.31x10 5 cm -1 . (author)

  15. Modelling absorption and photoluminescence of TPD

    International Nuclear Information System (INIS)

    Vragovic, Igor; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C.; Gisslen, L.; Scholz, R.

    2008-01-01

    We analyse the optical spectra of N,N ' -diphenyl-N,N ' -bis(3-methyl-phenyl)-(1,1 ' -biphenyl)-4,4 ' -diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer

  16. Highly photoluminescent MoO{sub x} quantum dots: Facile synthesis and application in off-on Pi sensing in lake water samples

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Sai Jin [Jiangxi Key Laboratory of Mass Spectrometry and Instrumentation, East China University of Technology (ECUT), Nanchang 330013 (China); School of Chemistry, Biology and Material Science, ECUT, Nanchang 330013 (China); Zhao, Xiao Jing; Zuo, Jun [School of Chemistry, Biology and Material Science, ECUT, Nanchang 330013 (China); Huang, Hai Qing [State Key Laboratory Breeding Base of Nuclear Resources and Environment, ECUT, Nanchang 330013 (China); Zhang, Li, E-mail: zhangli8@ncu.edu.cn [College of Chemistry, Nanchang University, Nanchang 330031 (China)

    2016-02-04

    Molybdenum oxide (MoO{sub x}) is a well-studied transition-metal semiconductor material, and has a wider band gap than MoS{sub 2} which makes it become a promising versatile probe in a variety of fields, such as gas sensor, catalysis, energy storage ect. However, few MoO{sub x} nanomaterials possessing photoluminescence have been reported until now, not to mention the application as photoluminescent probes. Herein, a one-pot method is developed for facile synthesis of highly photoluminescent MoO{sub x} quantum dots (MoO{sub x} QDs) in which commercial molybdenum disulfide powder and hydrogen peroxide (H{sub 2}O{sub 2}) are involved as the precursor and oxidant, respectively. Compared with current synthesis methods, the proposed one has the advantages of rapid, one-pot, easily prepared, environment friendly as well as strong photoluminescence. The obtained MoO{sub x} QDs is further utilized as an efficient photoluminescent probe, and a new off-on sensor has been constructed for phosphate (Pi) determination in complicated lake water samples, attributed to the fact that the binding affinity of Eu{sup 3+} ions to the oxygen atoms from Pi is much higher than that from the surface of MoO{sub x} QDs. Under the optimal conditions, a good linear relationship was found between the enhanced photoluminescence intensity and Pi concentration in the range of 0.1–160.0 μM with the detection limit of 56 nM (3σ/k). The first application of the photoluminescent MoO{sub x} nanomaterials for ion photochemical sensing will open the gate of employing MoO{sub x} nanomaterials as versatile probes in a variety of fields, such as chemi-/bio-sensor, cell imaging, biomedical and so on. - Highlights: • Though increasing effort has been devoted to MoO{sub x} nanomaterials synthesis, only a few reports mentioning its photoluminescence property are available, while even no evidence has shown its applications in chemical and biological sensing. • Herein, a one-pot method possessing the

  17. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    International Nuclear Information System (INIS)

    Thorseth, Trond Morten

    2000-01-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe

  18. Solar ultraviolet irradiance measurements, instrumentation, intercomparisons and interpretations

    Energy Technology Data Exchange (ETDEWEB)

    Thorseth, Trond Morten

    2000-07-01

    The thesis reports studies of stabile instruments that are capable of detecting small alterations in ultraviolet irradiation over a long period. A central theme in the work has been to improve the measuring systems for continuous research based monitoring of natural variations in the ultraviolet irradiation from the sun. Methods for controlling the stability and continually secure the quality of the collected data. The causes of measuring errors are mapped and methods for the correction of collected data are developed. The methods and measuring systems for collecting the data have been adapted to the Norwegian climate and geography. The work has lead to an increased understanding of the natural variation in the ultraviolet radiation from the sun and what factors in the atmosphere that influences the process. The collected data and the developed methods for the quality control have increased the understanding of the ultraviolet irradiation climate in Europe.

  19. Polymer filters for ultraviolet-excited integrated fluorescence sensing

    International Nuclear Information System (INIS)

    Dandin, Marc; Abshire, Pamela; Smela, Elisabeth

    2012-01-01

    Optical filters for blocking ultraviolet (UV) light were fabricated by doping various polymer hosts with a UV absorbing chromophore. The polymers were polydimethylsiloxane (PDMS), a silicone elastomer frequently used in microfluidics, SU-8, a photopatternable epoxy, and Humiseal 1B66, an acrylic coating used for moisture protection of integrated circuits. The chromophore was 2-(2′-hydroxy-5′-methylphenyl) benzotriazole (BTA), which has a high extinction coefficient between 300 nm and 400 nm. We demonstrate filters 5 µm thick that exhibit high ultraviolet rejection (nearly −40 dB at 342 nm) yet pass visible light (near 0 dB above 400 nm), making them ideal for ultraviolet-excited fluorescence sensing within microsystems. The absorbance of the BTA depended on the host polymer. These filters are promising for integrated fluorescence spectroscopy in bioanalytical platforms because they can be patterned by dry etching, molding or exposure to ultraviolet light. (paper)

  20. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.

    Science.gov (United States)

    Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-07-01

    Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.

  1. The photoluminescence of Co-Al-layered double hydroxide

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We report a new optical behaviour of pure Co-Al-layered double hydroxide (LDH). It was found that the Co-Al-LDH sample could emit fluorescence without any fluorescent substances intercalated. Its excitation spectrum shows a maximum peak near the wavelength 370 nm, the maximum emission peak appears at 430 nm and the photoluminescence colour of the Co-Al-LDH sample is blue. This new optical property will be expected to extend the potential applications of LDHs in optical materials field.

  2. Photoluminescence efficiency in AlGaN quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Tamulaitis, G.; Mickevičius, J. [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Jurkevičius, J., E-mail: jonas.jurkevicius@ff.vu.lt [Institute of Applied Research and Semiconductor Physics Department, Vilnius University, Sauletekio av. 9-III, Vilnius LT-10222 (Lithuania); Shur, M.S. [Department of ECE and CIE, Rensselaer Polytechnic Institute (United States); Shatalov, M.; Yang, J.; Gaska, R. [Sensor Electronic Technology, Inc. (United States)

    2014-11-15

    Photoluminescence spectroscopy of AlGaN/AlGaN multiple quantum wells under quasi-steady-state conditions in the temperature range from 8 to 300 K revealed a strong dependence of droop onset threshold on temperature that was explained by the influence of carrier delocalization. The delocalization at room temperature results predominantly in enhancement of bimolecular radiative recombination, while being favorable for enhancement of nonradiative recombination at low temperatures. Studies of stimulated emission confirmed the strong influence of carrier localization on droop.

  3. Photoluminescence excitation measurements using pressure-tuned laser diodes

    Science.gov (United States)

    Bercha, Artem; Ivonyak, Yurii; Medryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-06-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available.

  4. Photoluminescence excitation measurements using pressure-tuned laser diodes

    International Nuclear Information System (INIS)

    Bercha, Artem; Ivonyak, Yurii; Mędryk, Radosław; Trzeciakowski, Witold A.; Dybała, Filip; Piechal, Bernard

    2015-01-01

    Pressure-tuned laser diodes in external cavity were used as tunable sources for photoluminescence excitation (PLE) spectroscopy. The method was demonstrated in the 720 nm-1070 nm spectral range using a few commercial laser diodes. The samples for PLE measurements were quantum-well structures grown on GaAs and on InP. The method is superior to standard PLE measurements using titanium sapphire laser because it can be extended to any spectral range where anti-reflection coated laser diodes are available

  5. Photoluminescence and semiconducting behavior of Fe, Co, Ni and Cu implanted in heavy metal oxide glasses

    Directory of Open Access Journals (Sweden)

    Mohamed A. Marzouk

    2016-07-01

    Full Text Available Transition metal ions (0.5 wt% of Fe2O3, CoO, NiO or CuO doped heavy metal oxide glasses having chemical composition of 60PbO·20Bi2O3·20 MxOy mol% (where MxOy = B2O3 or SiO2 or P2O5 were prepared by conventional melt annealing method. Combined optical and photoluminescence properties have been measured and employed to evaluate the prepared glassy samples. From the absorption edge data, the values of the optical band gap Eopt, Urbach energy (ΔE and refractive index were calculated to estimate semiconducting behavior. Photoluminescence and values of the optical energy gap were found to be dependent on the glass composition. The variations of the photoluminescence intensity, values of optical band gap, Urbach energy and refractive index gave an indication to use the prepared glasses for design of novel functional optical materials with higher optical performance.

  6. Size-dependent and intra-band photoluminescence of NiS2 nano-alloys synthesized by microwave assisted hydrothermal technique

    International Nuclear Information System (INIS)

    Linganiso, Ella Cebisa; Mhlanga, Sabelo Dalton; Coville, Neil John; Mwakikunga, Bonex Wakufwa

    2013-01-01

    Graphical abstract: Unexpected ultra-violet (UV) emission as well as near infra-red (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions due to the smaller crystallite size of the capped NiS 2 nanostructures was also observed. Band energy and local density of states calculation for NiS 2 were used to support the experimentally observed luminescence results. The luminescence features at wavelengths of 400 nm (3.10 eV), 428 nm (2.90 eV), 447 nm (2.77 eV) and 464 nm (2.67) can be attributed to some of those electrons de-exciting from S (3p) levels down to the Ni (3d) (blue to UV emission) whereas those features at wavelengths of 710 nm (1.75 eV), 751 nm (1.65 eV), 754 nm (1.64 eV) [NiS 2 /HDA-capped NiS 2 ] and 784 nm (1.58 eV) respectively seem to result from de-excitations between either Ni(3d) or S (3s, 3p) levels and Ni–S hybridization levels (red to near IR emission). Highlights: ► Rapid solid state alloying of Ni and S from their liquid state precursor by microwaves. ► New photoluminescence data of NiS 2 system. ► Unexpected luminescence in the UV–Visible and near IR ranges for such a metal matrix alloy. ► Explanation of NiS 2 photoluminescence from ab initio calculations by electronic energy band structure and density of states. -- Abstract: Synthesis of nickel disulfide (NiS 2 ) nano-alloys capped and uncapped with hexadecylamine (HDA) was carried out. A cubic phase NiS 2 formation was confirmed by X-ray diffraction (XRD) analysis. An average crystallite size of 35 nm was obtained for the uncapped nanostructures and 9 nm was obtained for the capped nanostructures estimated using the Scherrer equation. Unexpected ultra-violet (UV) emission as well as near infrared (IR) emissions were attributed to intra-band energy state transitions that occur as a result of the porous structure of the material. Enhanced UV and near IR PL emissions

  7. Synthesis and characterization of a new photoluminescent material (8-hydroxy quinoline) bis (2-2’bipyridine) lanthanum La(Bpy)2q

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul, E-mail: id-kumarrahul003@gmail.com; Bhargava, Parag [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology-Bombay, Mumbai-400076 (India)

    2016-05-06

    A new photoluminescence material, (8-hydroxy quinoline) bis (2-2’bipyridine) lanthanum has been synthesized and characterized by different techniques. The prepared material La(Bpy){sub 2}q was characterized for structural, thermal and photoluminescence analysis. Structural analysis of this material was done by Fourier transformed infrared spectroscopy (FTIR) and mass spectroscopy. Thermal analysis of this material was done by thermal gravimetric analysis (TGA) shows the thermal stability up to 190°C.Absorption and emission spectra of the material was measured by UV-visible spectroscopy and photoluminescence spectroscopy. Solution of this material La(Bpy){sub 2}q in ethanol showed absorption peak at 385nm, which may be attributed due to (π – π*) transitions. The photoluminescence spectra of La(Bpy){sub 2}q in ethanol solution showed intense peak at 490 nm.

  8. Photoluminescence and electroluminescence from Ge/strained GeSn/Ge quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chung-Yi; Chang, Chih-Chiang [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Huang, Chih-Hsiung; Huang, Shih-Hsien [Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Liu, C. W., E-mail: chee@cc.ee.ntu.edu.tw [Department of Electrical Engineering, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan (China); Department of Electrical Engineering, Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan (China); National Nano Device Labs, Hsinchu 30077, Taiwan (China); Huang, Yi-Chiau; Chung, Hua; Chang, Chorng-Ping [Applied Materials Inc., Sunnyvale, California 94085 (United States)

    2016-08-29

    Ge/strained GeSn/Ge quantum wells are grown on a 300 mm Si substrate by chemical vapor deposition. The direct bandgap emission from strained GeSn is observed in the photoluminescence spectra and is enhanced by Al{sub 2}O{sub 3}/SiO{sub 2} passivation due to the field effect. The electroluminescence of the direct bandgap emission of strained GeSn is also observed from the Ni/Al{sub 2}O{sub 3}/GeSn metal-insulator-semiconductor tunneling diodes. Electroluminescence is a good indicator of GeSn material quality, since defects in GeSn layers degrade the electroluminescence intensity significantly. At the accumulation bias, the holes in the Ni gate electrode tunnel to the strained n-type GeSn layer through the ultrathin Al{sub 2}O{sub 3} and recombine radiatively with electrons. The emission wavelength of photoluminescence and electroluminescence can be tuned by the Sn content.

  9. Effect of proton irradiation on photoluminescent properties of PDMS-nanodiamond composites

    International Nuclear Information System (INIS)

    Borjanovic, Vesna; Hens, Suzanne; Shenderova, Olga; McGuire, Gary E; Lawrence, William G; Edson, Clark; Jaksic, Milko; Zamboni, Ivana; Vlasov, Igor

    2008-01-01

    Pure poly(dimethylsiloxane) (PDMS) films, PDMS-nanodiamond (ND) and pure nanodiamond powder were irradiated with 2 MeV protons under a variety of fluence and current conditions. Upon proton irradiation, these samples acquire a fluence-dependent photoluminescence (PL). The emission and excitation spectra, photostability and emission lifetime of the induced photoluminescence of PDMS and PDMS-ND samples are reported. Pure PDMS exhibits a noticeable stable blue PL, while the PDMS-ND composites exhibit a pronounced stable green PL under 425 nm excitation. The PL of PDMS-ND composites is much more prominent than that of pure PDMS or pure ND powder even when irradiated at higher doses. The origin of the significantly enhanced PL intensity for the proton-irradiated PDMS-ND composite is explained by the combination of enhanced intrinsic PL within ND particles due to ion-implantation-generated defects and by PL originating from structural transformations produced by protons at the nanodiamond/matrix interface.

  10. Photoluminescence properties of ZnO thin films grown by using the hydrothermal technique

    International Nuclear Information System (INIS)

    Sahoo, Trilochan; Jang, Leewoon; Jeon, Juwon; Kim, Myoung; Kim, Jinsoo; Lee, Inhwan; Kwak, Joonseop; Lee, Jaejin

    2010-01-01

    The photoluminescence properties of zinc-oxide thin films grown by using the hydrothermal technique have been investigated. Zinc-oxide thin films with a wurtzite symmetry and c-axis orientation were grown in aqueous solution at 90 .deg. C on sapphire substrates with a p-GaN buffer layer by using the hydrothermal technique. The low-temperature photoluminescence analysis revealed a sharp bound-exciton-related luminescence peak at 3.366 eV with a very narrow peak width. The temperature-dependent variations of the emission energy and of the integrated intensity were studied. The activation energy of the bound exciton complex was calculated to be 7.35 ± 0.5 meV from the temperature dependent quenching of the integral intensities.

  11. Conditions giving rise to intense visible room temperature photoluminescence in SrWO4 thin films: the role of disorder

    International Nuclear Information System (INIS)

    Orhan, E.; Anicete-Santos, M.; Maurera, M.A.M.A.; Pontes, F.M.; Paiva-Santos, C.O.; Souza, A.G.; Varela, J.A.; Pizani, P.S.; Longo, E.

    2005-01-01

    The nature of intense visible photoluminescence at room temperature of SrWO 4 (SWO) non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The SWO thin films were synthesized by the polymeric precursors method. Their structural properties have been obtained by X-ray diffraction data and the corresponding photoluminescence (PL) spectra have been measured. The UV-vis optical spectra measurements suggest the creation of localized states in the disordered structure. The photoluminescence measurements reveal that the PL changes with the degree of disorder in the SWO thin film. To understand the origin of visible PL at room temperature in disordered SWO, we performed quantum-mechanical calculations on crystalline and disordered SWO periodic models. Their electronic structures are analyzed in terms of DOS, band dispersion and charge densities. We used DFT method with the hybrid non-local B3LYP approximation. The polarization induced by the symmetry break and the existence of localized levels favors the creation of trapped holes and electrons, giving origin to the room temperature photoluminescence phenomenon in the SWO thin films

  12. Exposure to ultraviolet radiation: recommendations for cosmetic use

    International Nuclear Information System (INIS)

    Dias, C.; Carvalho, F.R.S.

    2000-01-01

    The beginning of the so-called tanning industry made possible the acquisition of a tanned skin independently of the available solar radiation. The tan is produced by ultraviolet radiation and, as well as in solar exposure, there are additional risks on the use of the so-called sun-beds. The damaging effects of ultraviolet exposure are well documented and reasonably quantified. The objective of this paper is to inform the potential effects of ultraviolet radiation exposure in sun-beds and to provide recommendations in order to reduce the associated risks. These recommendations are adapted for cosmetics use only (author)

  13. Photoluminescence decay lifetime measurements of hemicyanine derivatives of different alkyl chain lengths

    International Nuclear Information System (INIS)

    Shim, Taekyu; Lee, Myounghee; Kim, Sungho; Sung, Jaeho; Rhee, Bum Ku; Kim, Doseok; Kim, Hyunsung; Yoon, Kyung Byung

    2004-01-01

    The fluorescence upconversion setup for the detection of photoluminescence (PL) decay lifetime with subpicosecond time resolution was constructed, and the photoluminescence phenomena of several hemicyanine dyes with alkyl chains of different chain lengths tethered to the N atom of the pyridine moiety (HC-n, n=6, 15, 22) in methanol were investigated. The average decay lifetimes of the solutions determined from the measured data by multi-order exponential decay curve fitting were ∼27 ps at the PL peak wavelength. It was found that the PL decay properties did not depend on the alkyl chain length in the molecule, implying that the twist of the alkylpyridinium ring of the molecule is not possible as a nonfluorescing relaxation pathway. The time-dependent PL spectra constructed from the PL lifetime data showed the dynamic Stokes shift of ∼1000 cm -1

  14. The correlation of blue shift of photoluminescence and morphology of silicon nanoporous

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaili, Batool E. B., E-mail: batooleneaze@gmail.com [Department of Physics, (UPM), Serdang, Selangor 43400 (Malaysia); Department of Physics, Anbar University (Iraq); Talib, Zainal A.; Josephine, L.Y.; Paiman, Suriati B.; Muh’d, Ibrahim B.; Mofdal, Manahil E. E. [Department of Physics, (UPM), Serdang, Selangor 43400 (Malaysia); Ahmed, Naser M.; Abdulateef, Sinan A. [School of Physics, USM, 11800 Penang (Malaysia); Al-Jumaily, Abdulmajeed H. J. [Department of Computer and Communication Systems Engineering, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400 (Malaysia); Ramizy, Asmiet [Department of Physics, Anbar University (Iraq)

    2016-07-06

    Porous silicon with diameters ranging from 6.41 to 7.12 nm were synthesized via electrochemical etching by varied anodization current density in ethanoic solutions containing aqueous hydrofluoric acid up to 65 mA/cm{sup 2}.The luminescence properties of the nanoporous at room temperature were analyzed via photoluminescence spectroscopy. Photoluminescence PL spectra exhibit a broad emission band in the range of 360-700 nm photon energy. The PL spectrum has a blue shift in varied anodization current density; the blue shift incremented as the existing of anodization although the intensity decreased. The current blue shift is owning to alteration of silicon nanocrystal structure at the superficies. The superficial morphology of the PS layers consists of unified and orderly distribution of nanocrystalline Si structures, have high porosity around (93.75%) and high thickness 39.52 µm.

  15. NH4 Be2 BO3 F2 and γ-Be2 BO3 F: Overcoming the Layering Habit in KBe2 BO3 F2 for the Next-Generation Deep-Ultraviolet Nonlinear Optical Materials.

    Science.gov (United States)

    Peng, Guang; Ye, Ning; Lin, Zheshuai; Kang, Lei; Pan, Shilie; Zhang, Min; Lin, Chensheng; Long, Xifa; Luo, Min; Chen, Yu; Tang, Yu-Huan; Xu, Feng; Yan, Tao

    2018-05-12

    KBe 2 BO 3 F 2 (KBBF) is still the only practically usable crystal that can generate deep-ultraviolet (DUV) coherent light by direct second harmonic generation (SHG). However, applications are hindered by layering, leading to difficulty in the growth of thick crystals and compromised mechanical integrity. Despite efforts, it is still a great challenge to discover new nonlinear optical (NLO) materials that overcome the layering while keeping the DUV SHG available. Now, two new DUV NLO beryllium borates have been successfully designed and synthesized, NH 4 Be 2 BO 3 F 2 (ABBF) and γ-Be 2 BO 3 F (γ-BBF), which not only overcome the layering but also can be used as next-generation DUV NLO materials with the shortest type I phase-matching second-harmonic wavelength down to 173.9 nm and 146 nm, respectively. Significantly, γ-BBF is superior to KBBF in all metrics and would be the most outstanding DUV NLO crystal. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effects of Sr2+ substitution on photoluminescence characteristics of Ba1−x−ySryZrSi3O9:xEu2+ phosphors

    International Nuclear Information System (INIS)

    Chiang, Chung-Hao; Gong, Syuan-Jhih; Lin, Han-Yu; Zhan, Ting-Shi; Chu, Sheng-Yuan

    2014-01-01

    In this work, single-phase Ba 1−x−y Sr y ZrSi 3 O 9 :xEu 2+ phosphors were synthesized via the solid-state reaction method. The crystal structure and luminescence properties were investigated using X-ray diffraction and photoluminescence measurements, respectively. An increase of the dopant Sr 2+ increased the emission intensity of the phosphors. The peak intensity of the samples was at y = 0.4 under near-ultraviolet light excitation (397 nm). The wavelength of the emission peaks red-shifts slightly from 477 to 483 nm due to the splitting of the 5d energy level. Sr 2+ ions have a smaller ionic radius than that of Ba 2+ ions, and thus the dopant changes the crystal structure, improving the energy transfer efficiency between luminescence centers. More Eu 2+ solid solubility was found in Ba 0.6−x Sr 0.4 ZrSi 3 O 9 :xEu 2+ phosphors (10 mol. %) than in the host BaZrSi 3 O 9 (6 mol. %), which enhanced the emission intensity. In addition, the thermal reliability of the phosphors was studied

  17. Ba2ZnWO6:Sm3+ as promising orange-red emitting phosphors: Photoluminescence properties and energy transfer process

    Science.gov (United States)

    Chen, Peng; Hu, Wenyuan; Yang, Dingming; Zhu, Jiayi; Zhang, Jing; Wu, Yadong

    2018-02-01

    Novel orange-red emitting phosphors, Ba2Zn1-xWO6:xSm3+ (x = 0.03, 0.04, 0.05, 0.06 and 0.07) (BZW:Sm3+), were prepared using a high-temperature solid-state reaction method. Their crystal structure and photoluminescence properties were characterized and the mechanism of energy transfers between Ba2ZnWO6 and Sm3+ elucidated in detail. It was found that the phosphors had a cubic structure with space group Fm 3 bar m . They can be excited by near-ultraviolet light, and the characteristic emissions of Sm3+ ions are observed at 564 nm, 598 nm and 645 nm, corresponding to 4G5/2 → 6H5/2, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 transitions, respectively. The 4G5/2 → 6H9/2 transitions shows the greatest intensity, which indicates that Sm3+ ions occupy the noncentrosymmetric sites. The optimal doping concentration of Sm3+ ions in Ba2ZnWO6 is about 5 mol% and the phenomenon of concentration quenching occurs when the content of Sm3+ ions exceeds 5 mol%. All results show that the Ba2ZnWO6:Sm3+ phosphor holds great promise for use in high-quality white light-emitting diodes.

  18. Photoluminescence of Mg_2Si films fabricated by magnetron sputtering

    International Nuclear Information System (INIS)

    Liao, Yang-Fang; Xie, Quan; Xiao, Qing-Quan; Chen, Qian; Fan, Meng-Hui; Xie, Jing; Huang, Jin; Zhang, Jin-Min; Ma, Rui; Wang, Shan-Lan; Wu, Hong-Xian; Fang, Di

    2017-01-01

    Highlights: • High quality Mg_2Si films were grown on Si (111) and glass substrates with magnetron sputtering, respectively. • The first observation of Photoluminescence (PL) of Mg_2Si films was reported. • The Mg_2Si PL emission wavelengths are almost independence on temperature in the range of 77–300 K. • The strongest PL emissions may be attributed to interstitial Mg donor level to valence band transitions. • The activation energy of Mg_2Si is determined from the quenching of major luminescence peaks. - Abstract: To understand the photoluminescence mechanisms and optimize the design of Mg_2Si-based light-emitting devices, Mg_2Si films were fabricated on silicon (111) and glass substrates by magnetron sputtering technique, and the influences of different substrates on the photoelectric properties of Mg_2Si films were investigated systematically. The crystal structure, cross-sectional morphology, composition ratios and temperature-dependent photoluminescence (PL) of the Mg_2Si films were examined using X-ray diffraction (XRD), Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and PL measurement system, respectively. XRD results indicate that the Mg_2Si film on Si (111) displays polycrystalline structure, whereas Mg_2Si film on glass substrate is of like-monocrystalline structure.SEM results show that Mg_2Si film on glass substrate is very compact with a typical dense columnar structure, and the film on Si substrate represents slight delamination phenomenon. EDS results suggest that the stoichiometry of Mg and Si is approximately 2:1. Photoluminescence (PL) of Mg_2Si films was observed for the first time. The PL emission wavelengths of Mg_2Si are almost independence on temperature in the range of 77–300 K. The PL intensity decreases gradually with increasing temperature. The PL intensity of Mg_2Si films on glass substrate is much larger than that of Mg_2Si film on Si (111) substrate. The activation energy of 18 meV is

  19. On the AlxGa1-xN/AlyGa1-yN/AlxGa1-xN (x>y) p-electron blocking layer to improve the hole injection for AlGaN based deep ultraviolet light-emitting diodes

    Science.gov (United States)

    Chu, Chunshuang; Tian, Kangkai; Fang, Mengqian; Zhang, Yonghui; Li, Luping; Bi, Wengang; Zhang, Zi-Hui

    2018-01-01

    This work proposes the [0001] oriented AlGaN-based deep ultraviolet (DUV) light-emitting diode (LED) possessing a specifically designed p-electron blocking layer (p-EBL) to achieve the high internal quantum efficiency. Both electrons and holes can be efficiently injected into the active region by adopting the Al0.60Ga0.40N/Al0.50Ga0.50N/Al0.60Ga0.40N structured p-EBL, in which a p-Al0.50Ga0.50N layer is embedded into the p-EBL. Moreover, the impact of different thicknesses for the p-Al0.50Ga0.50N insertion layer on the hole and electron injections has also been investigated. Compared with the DUV LED with the bulk p-Al0.60Ga0.40N as the EBL, the proposed LED architectures improve the light output power if the thickness of the p-Al0.50Ga0.50N insertion layer is properly designed.

  20. Optical properties and electronic transitions of zinc oxide, ferric oxide, cerium oxide, and samarium oxide in the ultraviolet and extreme ultraviolet

    DEFF Research Database (Denmark)

    Pauly, N; Yubero, F; Espinós, J P

    2017-01-01

    Optical properties and electronic transitions of four oxides, namely zinc oxide, ferric oxide, cerium oxide, and samarium oxide, are determined in the ultraviolet and extreme ultraviolet by reflection electron energy loss spectroscopy using primary electron energies in the range 0.3-2.0 ke...