WorldWideScience

Sample records for deep tissue injuries

  1. Pressure induced deep tissue injury explained

    NARCIS (Netherlands)

    Oomens, C.W.J.; Bader, D.L.; Loerakker, S.; Baaijens, F.P.T.

    The paper describes the current views on the cause of a sub-class of pressure ulcers known as pressure induced deep tissue injury (DTI). A multi-scale approach was adopted using model systems ranging from single cells in culture, tissue engineered muscle to animal studies with small animals. This

  2. Factors associated with deep tissue injury in male wheelchair basketball players of a Japanese national team

    Directory of Open Access Journals (Sweden)

    Hirotaka Mutsuzaki

    2014-04-01

    Full Text Available Maintenance of the sporting activity of elite athletes in adapted sports can be difficult if a secondary disorder, such as a pressure ulcer, occurs. Pressure ulcers result from deep tissue injuries by external pressure. The purpose of this study was to use ultrasonography to investigate deep tissue injuries in male wheelchair basketball players of a Japanese national team, and to determine factors associated with the injuries (e.g., body mass index, class of wheelchair basketball, underlying disease, length of athletic career, and whether use of wheelchair is primarily for playing basketball. Twenty male Japanese wheelchair basketball players on the national team for the 2012 London Paralympic Games (12 representative players and eight candidate representative players participated in this study. The sacral region and bilateral ischial regions in each athlete were examined by ultrasonography to detect low-echoic lesions indicative of deep tissue injuries. Nine (45% players had low-echoic lesions, which were detected in 10 of 60 areas. Eight lesions were detected in the sacral region and two lesions were detected in the ischial region. More players with spinal cord injury had low-echoic lesions [9 (69.2% of 13 players], compared to players with skeletal system disease [0 (0% of 7 players, p = 0.002]. Players who used a wheelchair in daily life were more likely to have low-echoic lesions [8 (66.74% of 12 players], compared to players who primarily used a wheelchair for playing basketball [1 (12.5% of 8 players, p = 0.010]. Deep tissue injuries were detected in 45% of male Japanese wheelchair basketball players on the national team. Players with spinal cord injury and players who used a wheelchair in daily life were more likely to have deep tissue injuries, particularly in the sacral region. The lesions were small, but a periodic medical check should be performed to maintain athletes' sporting life.

  3. Pressure Combined with Ischemia/Reperfusion Injury Induces Deep Tissue Injury via Endoplasmic Reticulum Stress in a Rat Pressure Ulcer Model

    Directory of Open Access Journals (Sweden)

    Fei-Fei Cui

    2016-02-01

    Full Text Available Pressure ulcer is a complex and significant health problem in long-term bedridden patients, and there is currently no effective treatment or efficient prevention method. Furthermore, the molecular mechanisms and pathogenesis contributing to the deep injury of pressure ulcers are unclear. The aim of the study was to explore the role of endoplasmic reticulum (ER stress and Akt/GSK3β signaling in pressure ulcers. A model of pressure-induced deep tissue injury in adult Sprague-Dawley rats was established. Rats were treated with 2-h compression and subsequent 0.5-h release for various cycles. After recovery, the tissue in the compressed regions was collected for further analysis. The compressed muscle tissues showed clear cellular degenerative features. First, the expression levels of ER stress proteins GRP78, CHOP, and caspase-12 were generally increased compared to those in the control. Phosphorylated Akt and phosphorylated GSK3β were upregulated in the beginning of muscle compression, and immediately significantly decreased at the initiation of ischemia-reperfusion injury in compressed muscles tissue. These data show that ER stress may be involved in the underlying mechanisms of cell degeneration after pressure ulcers and that the Akt/GSK3β signal pathway may play an important role in deep tissue injury induced by pressure and ischemia/reperfusion.

  4. Strain-time cell death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury

    NARCIS (Netherlands)

    Gefen, A.; Nierop, van B.J.; Bader, D.L.; Oomens, C.W.J.

    2008-01-01

    Deep tissue injury (DTI) is a severe pressure ulcer that results from sustained deformation of muscle tissue overlying bony prominences. In order to understand the etiology of DTI, it is essential to determine the tolerance of muscle cells to large mechanical strains. In this study, a new

  5. Compression-induced deep tissue injury examined with magnetic resonance imaging and histology

    NARCIS (Netherlands)

    Stekelenburg, A.; Oomens, C. W. J.; Strijkers, G. J.; Nicolay, K.; Bader, D. L.

    2006-01-01

    The underlying mechanisms leading to deep tissue injury after sustained compressive loading are not well understood. It is hypothesized that initial damage to muscle fibers is induced mechanically by local excessive deformation. Therefore, in this study, an animal model was used to study early

  6. Distribution of internal pressure around bony prominences: implications to deep tissue injury and effectiveness of intermittent electrical stimulation.

    Science.gov (United States)

    Solis, Leandro R; Liggins, Adrian; Uwiera, Richard R E; Poppe, Niek; Pehowich, Enid; Seres, Peter; Thompson, Richard B; Mushahwar, Vivian K

    2012-08-01

    The overall goal of this project is to develop interventions for the prevention of deep tissue injury (DTI), a form of pressure ulcers that originates in deep tissue around bony prominences. The present study focused on: (1) obtaining detailed measures of the distribution of pressure experienced by tissue around the ischial tuberosities, and (2) investigating the effectiveness of intermittent electrical stimulation (IES), a novel strategy for the prevention of DTI, in alleviating pressure in regions at risk of breakdown due to sustained loading. The experiments were conducted in adult pigs. Five animals had intact spinal cords and healthy muscles and one had a spinal cord injury that led to substantial muscle atrophy at the time of the experiment. A force-controlled servomotor was used to load the region of the buttocks to levels corresponding to 25%, 50% or 75% of each animal's body weight. A pressure transducer embedded in a catheter was advanced into the tissue to measure pressure along a three dimensional grid around the ischial tuberosity of one hind leg. For all levels of external loading in intact animals, average peak internal pressure was 2.01 ± 0.08 times larger than the maximal interfacial pressure measured at the level of the skin. In the animal with spinal cord injury, similar absolute values of internal pressure as that in intact animals were recorded, but the substantial muscle atrophy produced larger maximal interfacial pressures. Average peak internal pressure in this animal was 1.43 ± 0.055 times larger than the maximal interfacial pressure. Peak internal pressure was localized within a ±2 cm region medio-laterally and dorso-ventrally from the bone in intact animals and ±1 cm in the animal with spinal cord injury. IES significantly redistributed internal pressure, shifting the peak values away from the bone in spinally intact and injured animals. These findings provide critical information regarding the relationship between internal and

  7. Optical spectroscopy for the detection of ischemic tissue injury

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Fitzgerald, Jason [Sacramento, CA; Troppmann, Christoph [Sacramento, CA; Michalopoulou, Andromachi [Athens, GR

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  8. The Compression Intensity Index: a practical anatomical estimate of the biomechanical risk for a deep tissue injury.

    Science.gov (United States)

    Gefen, Amit

    2008-01-01

    Pressure-related deep tissue injury (DTI) is a severe form of pressure ulcer that initiates in compressed muscle tissues under bony prominences, and progresses superficially towards the skin. Patients with impaired motosensory capacities are at high risk of developing DTI. There is a critical medical need for developing risk assessment tools for DTI. A new anatomical index, the Compression Intensity Index: CII=(BW/Rt);[1/2], which depends on the body weight (BW), radius of curvature of the ischial tuberosities (R) and thickness of the underlying gluteus muscles (t), is suggested for approximating the loading intensity in muscle tissue during sitting in permanent wheelchair users, as part of a clinically-oriented risk assessment for DTI. Preliminary CII data were calculated for 6 healthy and 4 paraplegic subjects following MRI scans, and data were compared between the groups and with respect to a gold standard, being a previously developed subject-specific MRI-finite-element (MRI-FE) method of calculating muscle tissue stresses (Linder-Ganz et al., J. Biomech. 2007). Marked differences between the R and t parameters of the two groups caused the CII values of the paraplegics to be approximately 1.6-fold higher than for the healthy (pbedridden patients. Hence, CII measurements can be integrated into DTI-risk-assessment tools, the need of which is now being discussed intensively in the American and European Pressure Ulcer Advisory Panel meetings.

  9. Deep tissue injury in development of pressure ulcers: a decrease of inflammasome activation and changes in human skin morphology in response to aging and mechanical load.

    Directory of Open Access Journals (Sweden)

    Olivera Stojadinovic

    Full Text Available Molecular mechanisms leading to pressure ulcer development are scarce in spite of high mortality of patients. Development of pressure ulcers that is initially observed as deep tissue injury is multifactorial. We postulate that biomechanical forces and inflammasome activation, together with ischemia and aging, may play a role in pressure ulcer development. To test this we used a newly-developed bio-mechanical model in which ischemic young and aged human skin was subjected to a constant physiological compressive stress (load of 300 kPa (determined by pressure plate analyses of a person in a reclining position for 0.5-4 hours. Collagen orientation was assessed using polarized light, whereas inflammasome proteins were quantified by immunoblotting. Loaded skin showed marked changes in morphology and NLRP3 inflammasome protein expression. Sub-epidermal separations and altered orientation of collagen fibers were observed in aged skin at earlier time points. Aged skin showed significant decreases in the levels of NLRP3 inflammasome proteins. Loading did not alter NLRP3 inflammasome proteins expression in aged skin, whereas it significantly increased their levels in young skin. We conclude that aging contributes to rapid morphological changes and decrease in inflammasome proteins in response to tissue damage, suggesting that a decline in the innate inflammatory response in elderly skin could contribute to pressure ulcer pathogenesis. Observed morphological changes suggest that tissue damage upon loading may not be entirely preventable. Furthermore, newly developed model described here may be very useful in understanding the mechanisms of deep tissue injury that may lead towards development of pressure ulcers.

  10. Soft tissue twisting injuries of the knee

    International Nuclear Information System (INIS)

    Magee, T.; Shapiro, M.

    2001-01-01

    Twisting injuries occur as a result of differential motion of different tissue types in injuries with some rotational force. These injuries are well described in brain injuries but, to our knowledge, have not been described in the musculoskeletal literature. We correlated the clinical examination and MR findings of 20 patients with twisting injuries of the soft tissues around the knee. Design and patients: We prospectively followed the clinical courses of 20 patients with knee injuries who had clinical histories and MR findings to suggest twisting injuries of the subcutaneous tissues. Patients with associated internal derangement of the knee (i.e., meniscal tears, ligamentous or bone injuries) were excluded from this study. MR findings to suggest twisting injuries included linear areas of abnormal dark signal on T1-weighted sequences and abnormal bright signal on T2-weighted or short tau inversion recovery (STIR) sequences and/or signal to suggest hemorrhage within the subcutaneous tissues. These MR criteria were adapted from those established for indirect musculotendinous junction injuries. Results: All 20 patients presented with considerable pain that suggested internal derangement on physical examination by the referring orthopedic surgeons. All presented with injuries associated with rotational force. The patients were placed on a course of protected weight-bearing of the affected extremity for 4 weeks. All patients had pain relief by clinical examination after this period of protected weight-bearing. Twisting injuries of the soft tissues can result in considerable pain that can be confused with internal derangement of the knee on physical examination. Soft tissue twisting injuries need to be recognized on MR examinations as they may be the cause of the patient's pain despite no MR evidence of internal derangement of the knee. The demonstration of soft tissue twisting injuries in a patient with severe knee pain but no documented internal derangement on MR

  11. Risk Factors for Pressure Ulcers Including Suspected Deep Tissue Injury in Nursing Home Facility Residents: Analysis of National Minimum Data Set 3.0.

    Science.gov (United States)

    Ahn, Hyochol; Cowan, Linda; Garvan, Cynthia; Lyon, Debra; Stechmiller, Joyce

    2016-04-01

    To provide information on risk factors associated with pressure ulcers (PrUs), including suspected deep tissue injury (sDTI), in nursing home residents in the United States. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Examine the literature related to risk factors for the development of PrUs.2. Compare risk factors associated with the prevalence of PrUs and sDTI from the revised Minimum Data Set 3.0 2012 using a modified Defloor's conceptual model of PrUs as a theoretical framework. This study aims to characterize and compare risk factors associated with pressure ulcers (PrUs), including suspected deep tissue injury (sDTI), in nursing home (NH) residents in the United States. Secondary analysis of the 2012 Minimum Data Set (MDS 3.0). Medicare- or Medicaid-certified NHs in the United States. Nursing home residents (n = 2,936,146) 18 years or older with complete PrU data, who received comprehensive assessments from January to December 2012. Pressure ulcer by stage was the outcome variable. Explanatory variables (age, gender, race and ethnicity, body mass index, skin integrity, system failure, disease, infection, mobility, and cognition) from the MDS 3.0 were aligned with the 4 elements of Defloor's conceptual model: compressive forces, shearing forces, tissue tolerance for pressure, and tissue tolerance for oxygen. Of 2,936,146 NH residents who had complete data for PrU, 89.9% had no PrU; 8.4% had a Stage 2, 3, or 4 or unstagable PrU; and 1.7% had an sDTI. The MDS variables corresponding to the 4 elements of Defloor's model were significantly predictive of both PrU and sDTI. Black residents had the highest risk of any-stage PrU, and Hispanic residents had the highest risk of sDTI. Skin integrity, system failure, infection, and disease risk factors had larger effect sizes for sDTI than for other PrU stages

  12. A case of lethal soft tissue injuries due to assault

    Directory of Open Access Journals (Sweden)

    Yanagawa Y

    2012-05-01

    Full Text Available Youichi Yanagawa,1 Yoshimasa Kanawaku,2 Jun Kanetake21Department of Emergency and Disaster Medicine, Juntendo University, Tokyo, 2Department of Forensic Medicine, National Defense Medical College, Saitama, JapanAbstract: A 42-year-old male had been assaulted by his family over the two previous days and went into a deep coma. When the emergency technician arrived, the patient was in a state of cardiopulmonary arrest. On arrival, his electrocardiogram showed asystole. His body showed swelling with subcutaneous hemorrhage, suggesting multiple contusional wounds. Serum biochemistry evaluation revealed blood urea nitrogen of 80 mg/dL, creatinine of 5.99 mg/dL, creatine phosphokinase of 10,094 IU/L, and potassium of 11.0 mEq/L. Advanced cardiopulmonary resuscitation failed to obtain a return of spontaneous circulation. Laboratory findings revealed rhabdomyolysis, renal failure, and hyperkalemia. Autopsy did not indicate the direct cause of death to be traumatic organ injuries. Because trauma was not the direct reason of death, we speculated that the patient died of hyperkalemia induced by multiple contusional soft tissue injuries, following rhabdomyolysis, hemolysis, and acute renal failure. The physician should maintain a high index of suspicion for hyperkalemia induced by rhabdomyolysis and acute renal failure, especially in patients presenting with symptoms of multiple soft tissue injuries with massive subcutaneous hemorrhaging.Keywords: contusion, rhabdomyolysis, renal failure, hyperkalemia

  13. Significance of prevertebral soft tissue measurement in cervical spine injuries

    Energy Technology Data Exchange (ETDEWEB)

    Dai Liyang E-mail: lydai@etang.com

    2004-07-01

    Objective: The objective of this study was to evaluate the diagnostic value of prevertebral soft tissue swelling in cervical spine injuries. Materials and methods: A group of 107 consecutive patients with suspected injuries of the cervical vertebrae were reviewed retrospectively to identify the presence of prevertebral soft tissue swelling and to investigate the association of prevertebral soft tissue swelling with the types and degrees of cervical spine injuries. Results: Prevertebral soft tissue swelling occurred in 47 (43.9%) patients. Of the 47 patients, 38 were found with bony injury and nine were without. The statistic difference was significant (P<0.05). No correlation was demonstrated between soft tissue swelling and either the injured level of the cervical vertebrae or the degree of the spinal cord injury (P>0.05). Anterior element injuries in the cervical vertebrae had widening of the prevertebral soft tissue more than posterior element injuries (P<0.05). Conclusion: The diagnostic value of prevertebral soft tissue swelling for cervical spine injuries is significant, but the absence of this sign does not mean that further image evaluation can be spared.

  14. Injury Response of Resected Human Brain Tissue In Vitro

    NARCIS (Netherlands)

    Verwer, Ronald W. H.; Sluiter, Arja A.; Balesar, Rawien A.; Baaijen, Johannes C.; de Witt Hamer, Philip C.; Speijer, Dave; Li, Yichen; Swaab, Dick F.

    2015-01-01

    Brain injury affects a significant number of people each year. Organotypic cultures from resected normal neocortical tissue provide unique opportunities to study the cellular and neuropathological consequences of severe injury of adult human brain tissue in vitro. The in vitro injuries caused by

  15. MAXILLOFACIAL SOFT TISSUE INJURIES IN NAIROBI, KENYA

    African Journals Online (AJOL)

    2012-09-09

    Sep 9, 2012 ... Conclusion: The leading causes of MF-STIs apparently differ from those of skeletal fractures. INTRODUCTION. Maxillofacial (MF) soft tissue injuries (STIs) are often overlooked in clinical surveys compared to fractures, yet these injuries negatively impact both on function and esthetics. Previous surveys on ...

  16. Deep soft tissue leiomyoma of the thigh

    International Nuclear Information System (INIS)

    Watson, G.M.T.; Saifuddin, A.; Sandison, A.

    1999-01-01

    A case of ossified leiomyoma of the deep soft tissues of the left thigh is presented. The radiographic appearance suggested a low-grade chondrosarcoma. MRI of the lesion showed signal characteristics similar to muscle on both T1- and T2-weighted spin echo sequences with linear areas of high signal intensity on T1-weighted images consistent with medullary fat in metaplastic bone. Histopathological examination of the resected specimen revealed a benign ossified soft tissue leiomyoma. (orig.)

  17. Wireless power transfer to deep-tissue microimplants.

    Science.gov (United States)

    Ho, John S; Yeh, Alexander J; Neofytou, Evgenios; Kim, Sanghoek; Tanabe, Yuji; Patlolla, Bhagat; Beygui, Ramin E; Poon, Ada S Y

    2014-06-03

    The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less ("microimplants"), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk.

  18. Deep soft tissue leiomyoma of the thigh

    Energy Technology Data Exchange (ETDEWEB)

    Watson, G.M.T.; Saifuddin, A. [Department of Radiology, The Royal National Orthopaedic Hospital Trust, Brockley Hill (United Kingdom); Sandison, A. [Department of Pathology, The Royal National Orthopaedic Hospital Trust, Stanmore, Middlesex (United Kingdom)

    1999-07-01

    A case of ossified leiomyoma of the deep soft tissues of the left thigh is presented. The radiographic appearance suggested a low-grade chondrosarcoma. MRI of the lesion showed signal characteristics similar to muscle on both T1- and T2-weighted spin echo sequences with linear areas of high signal intensity on T1-weighted images consistent with medullary fat in metaplastic bone. Histopathological examination of the resected specimen revealed a benign ossified soft tissue leiomyoma. (orig.) With 3 figs., 13 refs.

  19. Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain

    Science.gov (United States)

    2017-09-01

    Project Manager Boston Biomedical Innovation Center 215 First Street, Suite 500; Cambridge, MA 02142 857-307-2441 | rblackman1@partners.org | b...AWARD NUMBER: W81XWH-15-1-0480 TITLE: Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain PRINCIPAL...31/2017 4. TITLE AND SUBTITLE Development of Novel Local Analgesics for Management of Acute Tissue Injury Pain 5a. CONTRACT NUMBER Tissue Injury

  20. Deep venous thrombosis in patients with chronic spinal cord injury.

    Science.gov (United States)

    Mackiewicz-Milewska, Magdalena; Jung, Stanisław; Kroszczyński, Andrzej C; Mackiewicz-Nartowicz, Hanna; Serafin, Zbigniew; Cisowska-Adamiak, Małgorzata; Pyskir, Jerzy; Szymkuć-Bukowska, Iwona; Hagner, Wojciech; Rość, Danuta

    2016-07-01

    Deep venous thrombosis (DVT) is a well-known complication of an acute spinal cord injury (SCI). However, the prevalence of DVT in patients with chronic SCI has only been reported in a limited number of studies. The aim of our study was to examine the prevalence of DVT in patients with SCI beyond three months after injury. Cross-sectional study. Rehabilitation Department at the Bydgoszcz University Hospital in Poland. Sixty-three patients with SCI that were more than 3 months post injury. The patients, ranging in age from 13 to 65 years, consisted of 15 women and 48 men; the mean age of the patients was 32.1 years. The time from injury varied from 4 to 124 months. Clinical assessment, D-dimer and venous duplex scan. The venous duplex scan revealed DVT in 5 of the 63 patients. The post-injury time in four of the patients varied between 4 and 5 months; one patient was 42 months post-injury. DVT occurred in patients with chronic SCI, mainly by the 6th post injury month.

  1. Sensory processing of deep tissue nociception in the rat spinal cord and thalamic ventrobasal complex.

    Science.gov (United States)

    Sikandar, Shafaq; West, Steven J; McMahon, Stephen B; Bennett, David L; Dickenson, Anthony H

    2017-07-01

    Sensory processing of deep somatic tissue constitutes an important component of the nociceptive system, yet associated central processing pathways remain poorly understood. Here, we provide a novel electrophysiological characterization and immunohistochemical analysis of neural activation in the lateral spinal nucleus (LSN). These neurons show evoked activity to deep, but not cutaneous, stimulation. The evoked responses of neurons in the LSN can be sensitized to somatosensory stimulation following intramuscular hypertonic saline, an acute model of muscle pain, suggesting this is an important spinal relay site for the processing of deep tissue nociceptive inputs. Neurons of the thalamic ventrobasal complex (VBC) mediate both cutaneous and deep tissue sensory processing, but in contrast to the lateral spinal nucleus our electrophysiological studies do not suggest the existence of a subgroup of cells that selectively process deep tissue inputs. The sensitization of polymodal and thermospecific VBC neurons to mechanical somatosensory stimulation following acute muscle stimulation with hypertonic saline suggests differential roles of thalamic subpopulations in mediating cutaneous and deep tissue nociception in pathological states. Overall, our studies at both the spinal (lateral spinal nucleus) and supraspinal (thalamic ventrobasal complex) levels suggest a convergence of cutaneous and deep somatosensory inputs onto spinothalamic pathways, which are unmasked by activation of muscle nociceptive afferents to produce consequent phenotypic alterations in spinal and thalamic neural coding of somatosensory stimulation. A better understanding of the sensory pathways involved in deep tissue nociception, as well as the degree of labeled line and convergent pathways for cutaneous and deep somatosensory inputs, is fundamental to developing targeted analgesic therapies for deep pain syndromes. © 2017 University College London. Physiological Reports published by Wiley Periodicals

  2. The tissue injury and repair in cancer radiotherapy

    International Nuclear Information System (INIS)

    Matsuzawa, Taiju

    1975-01-01

    One of the difficulties in cancer radiotherapy arises from the fact that the tissue tolerance dose is much smaller than the tumor lethal dose. In our opinion the former depends upon the tolerance of the endothelial cell of the blood vessel in the normal tissue. In this introduction, a new concept regarding the estimation of tissue radiosensitivity was described, and the possible significance of the mode of radiation injury and the repair capability of normal tissue in the cancer radiotheraphy was discussed. (author)

  3. Connective tissue injury in calf muscle tears and return to play: MRI correlation.

    Science.gov (United States)

    Prakash, Ashutosh; Entwisle, Tom; Schneider, Michal; Brukner, Peter; Connell, David

    2017-10-26

    The aim of our study was to assess a group of patients with calf muscle tears and evaluate the integrity of the connective tissue boundaries and interfaces. Further, we propose a novel MRI grading system based on integrity of the connective tissue and assess any correlation between the grading score and time to return to play. We have also reviewed the anatomy of the calf muscles. We retrospectively evaluated 100 consecutive patients with clinical suspicion and MRI confirmation of calf muscle injury. We evaluated each calf muscle tear with MRI for the particular muscle injured, location of injury within the muscle and integrity of the connective tissue structure at the interface. The muscle tears were graded 0-3 depending on the degree of muscle and connective tissue injury. The time to return to play for each patient and each injury was found from the injury records and respective sports doctors. In 100 patients, 114 injuries were detected. Connective tissue involvement was observed in 63 out of 100 patients and failure (grade 3 injury) in 18. Mean time to return to play with grade 0 injuries was 8 days, grade 1 tears was 17 days, grade 2 tears was 25 days and grade 3 tears was 48 days (pmuscle tears. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-01

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  5. Eigenspectra optoacoustic tomography achieves quantitative blood oxygenation imaging deep in tissues.

    Science.gov (United States)

    Tzoumas, Stratis; Nunes, Antonio; Olefir, Ivan; Stangl, Stefan; Symvoulidis, Panagiotis; Glasl, Sarah; Bayer, Christine; Multhoff, Gabriele; Ntziachristos, Vasilis

    2016-06-30

    Light propagating in tissue attains a spectrum that varies with location due to wavelength-dependent fluence attenuation, an effect that causes spectral corruption. Spectral corruption has limited the quantification accuracy of optical and optoacoustic spectroscopic methods, and impeded the goal of imaging blood oxygen saturation (sO2) deep in tissues; a critical goal for the assessment of oxygenation in physiological processes and disease. Here we describe light fluence in the spectral domain and introduce eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-dependent light attenuation, and estimate blood sO2 within deep tissue. We validate eMSOT in simulations, phantoms and animal measurements and spatially resolve sO2 in muscle and tumours, validating our measurements with histology data. eMSOT shows substantial sO2 accuracy enhancement over previous optoacoustic methods, potentially serving as a valuable tool for imaging tissue pathophysiology.

  6. Interventions for preventing lower limb soft-tissue running injuries.

    Science.gov (United States)

    Yeung, Simon S; Yeung, Ella W; Gillespie, Lesley D

    2011-07-06

    Overuse soft-tissue injuries occur frequently in runners. Stretching exercises, modification of training schedules, and the use of protective devices such as braces and insoles are often advocated for prevention. This is an update of a review first published in 2001. To assess the effects of interventions for preventing lower limb soft-tissue running injuries. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register (March 2011); The Cochrane Library 2010, Issue 4; MEDLINE (1966 to January 2011); EMBASE (1980 to January 2011); and international trial registries (17 January 2011). Randomised or quasi-randomised trials evaluating interventions to prevent lower limb soft-tissue running injuries. Two authors independently assessed risk of bias (relating to sequence generation, allocation concealment, blinding, incomplete outcome data) and extracted data. Data were adjusted for clustering if necessary and pooled using the fixed-effect model when appropriate. We included 25 trials (30,252 participants). Participants were military recruits (19 trials), runners from the general population (three trials), soccer referees (one trial), and prisoners (two trials). The interventions tested in the included trials fell into four main preventive strategies: exercises, modification of training schedules, use of orthoses, and footwear and socks. All 25 included trials were judged as 'unclear' or 'high' risk of bias for at least one of the four domains listed above.We found no evidence that stretching reduces lower limb soft-tissue injuries (6 trials; 5130 participants; risk ratio [RR] 0.85, 95% confidence interval [95% CI] 0.65 to 1.12). As with all non-significant results, this is compatible with either a reduction or an increase in soft-tissue injuries. We found no evidence to support a training regimen of conditioning exercises to improve strength, flexibility and coordination (one trial; 1020 participants; RR 1.20, 95% CI 0.77 to 1.87).We found no

  7. Properties and Types of Significant Thermal Skin Burn Injuries

    Science.gov (United States)

    2018-02-01

    The deep burn category includes deep second, deep third and deep fourth-degree burns. Table 2: Burn Classification and Injury Outcome ( Rice ...Subcutaneous tissue  Entire dermis destroyed  No to low pain due to nerve destruction  Waxy white to leathery gray to charred black skin  Dry...Richard R.L. (2009) Rehabilitation of the Burned Hand. Hand Clinics, 25, 529- 541 Rice P.L. & Orgill, D.P. (2015).Classification of burns. (Ed

  8. Severe blood-brain barrier disruption and surrounding tissue injury.

    Science.gov (United States)

    Chen, Bo; Friedman, Beth; Cheng, Qun; Tsai, Phil; Schim, Erica; Kleinfeld, David; Lyden, Patrick D

    2009-12-01

    Blood-brain barrier opening during ischemia follows a biphasic time course, may be partially reversible, and allows plasma constituents to enter brain and possibly damage cells. In contrast, severe vascular disruption after ischemia is unlikely to be reversible and allows even further extravasation of potentially harmful plasma constituents. We sought to use simple fluorescent tracers to allow wide-scale visualization of severely damaged vessels and determine whether such vascular disruption colocalized with regions of severe parenchymal injury. Severe vascular disruption and ischemic injury was produced in adult Sprague Dawley rats by transient occlusion of the middle cerebral artery for 1, 2, 4, or 8 hours, followed by 30 minutes of reperfusion. Fluorescein isothiocyanate-dextran (2 MDa) was injected intravenously before occlusion. After perfusion-fixation, brain sections were processed for ultrastructure or fluorescence imaging. We identified early evidence of tissue damage with Fluoro-Jade staining of dying cells. With increasing ischemia duration, greater quantities of high molecular weight dextran-fluorescein isothiocyanate invaded and marked ischemic regions in a characteristic pattern, appearing first in the medial striatum, spreading to the lateral striatum, and finally involving cortex; maximal injury was seen in the mid-parietal areas, consistent with the known ischemic zone in this model. The regional distribution of the severe vascular disruption correlated with the distribution of 24-hour 2,3,5-triphenyltetrazolium chloride pallor (r=0.75; P<0.05) and the cell death marker Fluoro-Jade (r=0.86; P<0.05). Ultrastructural examination showed significantly increased areas of swollen astrocytic foot process and swollen mitochondria in regions of high compared to low leakage, and compared to contralateral homologous regions (ANOVA P<0.01). Dextran extravasation into the basement membrane and surrounding tissue increased significantly from 2 to 8 hours of

  9. Unicompartmental muscle edema: an early sign of deep venous thrombosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Patrick T. [Mayo Clinic Scottsdale, Department of Diagnostic Radiology, 13400 E. Shea Boulevard, Scottsdale, AZ 85259 (United States); Ilaslan, Hakan [Mayo Clinic Rochester, Department of Diagnostic Radiology, Rochester, Minnesota (United States)

    2003-01-01

    The finding of muscle edema restricted to a single muscle compartment on MRI usually indicates a diagnosis of traumatic injury, myositis, denervation or neoplasm. This case demonstrates that deep venous thrombosis can also be the cause of isolated deep posterior compartment muscle edema in the calf and should be considered in the differential diagnosis even in the absence of diffuse soft tissue or subcutaneous edema. (orig.)

  10. Superficial or deep implantation of motor nerve after denervation: an experimental study--superficial or deep implantation of motor nerve.

    Science.gov (United States)

    Askar, Ibrahím; Sabuncuoglu, Bízden Tavíl

    2002-01-01

    Neurorraphy, conventional nerve grafting technique, and artificial nerve conduits are not enough for repair in severe injuries of peripheral nerves, especially when there is separation of motor nerve from muscle tissue. In these nerve injuries, reinnervation is indicated for neurotization. The distal end of a peripheral nerve is divided into fascicles and implanted into the aneural zone of target muscle tissue. It is not known how deeply fascicles should be implanted into muscle tissue. A comparative study of superficial and deep implantation of separated motor nerve into muscle tissue is presented in the gastrocnemius muscle of rabbits. In this experimental study, 30 white New Zealand rabbits were used and divided into 3 groups of 10 rabbits each. In the first group (controls, group I), only surgical exposure of the gastrocnemius muscle and motor nerve (tibial nerve) was done without any injury to nerves. In the superficial implantation group (group II), tibial nerves were separated and divided into their own fascicles. These fascicles were implanted superficially into the lateral head of gastrocnemius muscle-aneural zone. In the deep implantation group (group III), the tibial nerves were separated and divided into their own fascicles. These fascicles were implanted around the center of the muscle mass, into the lateral head of the gastrocnemius muscle-aneural zone. Six months later, histopathological changes and functional recovery of the gastrocnemius muscle were investigated. Both experimental groups had less muscular weight than in the control group. It was found that functional recovery was achieved in both experimental groups, and was better in the superficial implantation group than the deep implantation group. EMG recordings revealed that polyphasic and late potentials were frequently seen in both experimental groups. Degeneration and regeneration of myofibrils were observed in both experimental groups. New motor end-plates were formed in a scattered

  11. Mathematical models of soft tissue injury repair : towards understanding musculoskeletal disorders

    OpenAIRE

    Dunster, Joanne L.

    2012-01-01

    The process of soft tissue injury repair at the cellular lew I can be decomposed into three phases: acute inflammation including coagulation, proliferation and remodelling. While the later phases are well understood the early phase is less so. We produce a series of new mathematical models for the early phases coagulation and inflammation. The models produced are relevant not only to soft tissue injury repair but also to the many disease states in which coagulation and inflammation play a rol...

  12. Quantum dots versus organic fluorophores in fluorescent deep-tissue imaging--merits and demerits.

    Science.gov (United States)

    Bakalova, Rumiana; Zhelev, Zhivko; Gadjeva, Veselina

    2008-12-01

    The use of fluorescence in deep-tissue imaging is rapidly expanding in last several years. The progress in fluorescent molecular probes and fluorescent imaging techniques gives an opportunity to detect single cells and even molecular targets in live organisms. The highly sensitive and high-speed fluorescent molecular sensors and detection devices allow the application of fluorescence in functional imaging. With the development of novel bright fluorophores based on nanotechnologies and 3D fluorescence scanners with high spatial and temporal resolution, the fluorescent imaging has a potential to become an alternative of the other non-invasive imaging techniques as magnetic resonance imaging, positron-emission tomography, X-ray, computing tomography. The fluorescent imaging has also a potential to give a real map of human anatomy and physiology. The current review outlines the advantages of fluorescent nanoparticles over conventional organic dyes in deep-tissue imaging in vivo and defines the major requirements to the "perfect fluorophore". The analysis proceeds from the basic principles of fluorescence and major characteristics of fluorophores, light-tissue interactions, and major limitations of fluorescent deep-tissue imaging. The article is addressed to a broad readership - from specialists in this field to university students.

  13. Confocal multispot microscope for fast and deep imaging in semicleared tissues

    Science.gov (United States)

    Adam, Marie-Pierre; Müllenbroich, Marie Caroline; Di Giovanna, Antonino Paolo; Alfieri, Domenico; Silvestri, Ludovico; Sacconi, Leonardo; Pavone, Francesco Saverio

    2018-02-01

    Although perfectly transparent specimens are imaged faster with light-sheet microscopy, less transparent samples are often imaged with two-photon microscopy leveraging its robustness to scattering; however, at the price of increased acquisition times. Clearing methods that are capable of rendering strongly scattering samples such as brain tissue perfectly transparent specimens are often complex, costly, and time intensive, even though for many applications a slightly lower level of tissue transparency is sufficient and easily achieved with simpler and faster methods. Here, we present a microscope type that has been geared toward the imaging of semicleared tissue by combining multispot two-photon excitation with rolling shutter wide-field detection to image deep and fast inside semicleared mouse brain. We present a theoretical and experimental evaluation of the point spread function and contrast as a function of shutter size. Finally, we demonstrate microscope performance in fixed brain slices by imaging dendritic spines up to 400-μm deep.

  14. Outcome of tissue sparing surgical intervention in mine blast limb injuries

    International Nuclear Information System (INIS)

    Khan, M.I.; Zafar, A.; Khan, N.; Mufti, N.

    2006-01-01

    To describe the pattern of mine blast limb injuries in civilian population of Kashmir, to evaluate the outcome of tissue sparing surgical intervention in these injuries and to determine the sensitivity of hand-held percutaneous Doppler for tissue viability. One hundred and three patients who sustained mine blast injuries to upper or lower limbs, along side the line of control between the Indian-held Kashmir and Azad Kashmir, regardless of age and gender, were included in this study. Patients who already had amputation after injury at some other place were excluded. All patients were initially managed in emergency and had more than one surgical intervention. Transcutaneous Doppler was used to evaluate the vascularity of the remaining tissue. All patients were operated under spinal or general anaesthesia and had repeated debridements followed by skin cover by split skin graft, full thickness skin graft or rotational flaps. Every patient received at least 5 days course of antibiotics and tetanus prophylaxis. Postoperative rehabilitation and follow-up was conducted for at least 6 months after discharge from the hospital. Mean age of victims in this study was 22 years. Out of 103 patients, 72 (69.9%) received initial wound care in the peripheral primary health care centre but were not amputated while 31 patients (30%) were just dressed and referred for further treatment at tertiary care hospitals. Eighty five patients (82.5%), out of the total, had some sort of traumatic amputation at presentation due to the original injury. That included loss of limb below knee in 19 (18.45%) patients, at distal tibiofibular region in 13 (12.6%), mid tarsal amputations in 39(37.9%), and hemi foot amputation in 15 (14.6%) patients. Nine (8.7%) patients had losses of two or less than two toes, 1 (0.97%) patient had injury at mid palmer region, and 5 (4.9%) patients had 2 fingers traumatic amputation. Eighteen (17.5%) patients had soft tissue ( with or without bony injury) injury only

  15. The effect of keratinocytes on the biomechanical characteristics and pore microstructure of tissue engineered skin using deep dermal fibroblasts.

    Science.gov (United States)

    Varkey, Mathew; Ding, Jie; Tredget, Edward E

    2014-12-01

    Fibrosis affects most organs, it results in replacement of normal parenchymal tissue with collagen-rich extracellular matrix, which compromises tissue architecture and ultimately causes loss of function of the affected organ. Biochemical pathways that contribute to fibrosis have been extensively studied, but the role of biomechanical signaling in fibrosis is not clearly understood. In this study, we assessed the effect keratinocytes have on the biomechanical characteristics and pore microstructure of tissue engineered skin made with superficial or deep dermal fibroblasts in order to determine any biomaterial-mediated anti-fibrotic influences on tissue engineered skin. Tissue engineered skin with deep dermal fibroblasts and keratinocytes were found to be less stiff and contracted and had reduced number of myofibroblasts and lower expression of matrix crosslinking factors compared to matrices with deep fibroblasts alone. However, there were no such differences between tissue engineered skin with superficial fibroblasts and keratinocytes and matrices with superficial fibroblasts alone. Also, tissue engineered skin with deep fibroblasts and keratinocytes had smaller pores compared to those with superficial fibroblasts and keratinocytes; pore size of tissue engineered skin with deep fibroblasts and keratinocytes were not different from those matrices with deep fibroblasts alone. A better understanding of biomechanical characteristics and pore microstructure of tissue engineered skin may prove beneficial in promoting normal wound healing over pathologic healing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Assessment of deep tissue hyperalgesia in the groin – a method comparison of electrical vs. pressure stimulation

    DEFF Research Database (Denmark)

    Aasvang, E K; Werner, M U; Kehlet, H

    2014-01-01

    BACKGROUND: Deep pain complaints are more frequent than cutaneous in post-surgical patients, and a prevalent finding in quantitative sensory testing studies. However, the preferred assessment method - pressure algometry - is indirect and tissue unspecific, hindering advances in treatment and prev......BACKGROUND: Deep pain complaints are more frequent than cutaneous in post-surgical patients, and a prevalent finding in quantitative sensory testing studies. However, the preferred assessment method - pressure algometry - is indirect and tissue unspecific, hindering advances in treatment...... thresholds to pressure algometry, by performing identical test-retest sequences 10 days apart, in deep tissues in the groin region. Electrical stimulation was performed by five up-and-down staircase series of single impulses of 0.04 ms duration, starting from 0 mA in increments of 0.2 mA until a threshold......: The presented tissue-specific direct deep tissue electrical stimulation technique has equal or superior reliability compared with the indirect tissue-unspecific stimulation by pressure algometry. This method may facilitate advances in mechanism based preventive and treatment strategies in acute and chronic post...

  17. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury.

    Science.gov (United States)

    Pachori, Alok S; Melo, Luis G; Hart, Melanie L; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D; Stahl, Gregory L; Pratt, Richard E; Dzau, Victor J

    2004-08-17

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  18. Hypoxia-regulated therapeutic gene as a preemptive treatment strategy against ischemia/reperfusion tissue injury

    Science.gov (United States)

    Pachori, Alok S.; Melo, Luis G.; Hart, Melanie L.; Noiseux, Nicholas; Zhang, Lunan; Morello, Fulvio; Solomon, Scott D.; Stahl, Gregory L.; Pratt, Richard E.; Dzau, Victor J.

    2004-08-01

    Ischemia and reperfusion represent major mechanisms of tissue injury and organ failure. The timing of administration and the duration of action limit current treatment approaches using pharmacological agents. In this study, we have successfully developed a preemptive strategy for tissue protection using an adenoassociated vector system containing erythropoietin hypoxia response elements for ischemia-regulated expression of the therapeutic gene human heme-oxygenase-1 (hHO-1). We demonstrate that a single administration of this vector several weeks in advance of ischemia/reperfusion injury to multiple tissues such as heart, liver, and skeletal muscle yields rapid and timely induction of hHO-1 during ischemia that resulted in dramatic reduction in tissue damage. In addition, overexpression of therapeutic transgene prevented long-term pathological tissue remodeling and normalized tissue function. Application of this regulatable system using an endogenous physiological stimulus for expression of a therapeutic gene may be a feasible strategy for protecting tissues at risk of ischemia/reperfusion injury.

  19. Generalized deep-tissue hyperalgesia in patients with chronic low-back pain

    DEFF Research Database (Denmark)

    O'Neill, Søren; Manniche, Claus; Graven-Nielsen, Thomas

    2007-01-01

    be demonstrated in a group of patients with chronic low-back pain with intervertebral disc herniation. Twelve patients with MRI confirmed lumbar intervertebral disc herniation and 12 age and sex matched controls were included. Subjects were exposed to quantitative nociceptive stimuli to the infraspinatus...... in the anterior tibialis muscle compared to controls. In conclusion, generalized deep-tissue hyperalgesia was demonstrated in chronic low-back pain patients with radiating pain and MRI confirmed intervertebral disc herniation, suggesting that this central sensitization should also be addressed in the pain......Some chronic painful conditions including e.g. fibromyalgia, whiplash associated disorders, endometriosis, and irritable bowel syndrome are associated with generalized musculoskeletal hyperalgesia. The aim of the present study was to determine whether generalized deep-tissue hyperalgesia could...

  20. Mathematical model of normal tissue injury in telegammatherapy

    International Nuclear Information System (INIS)

    Belov, S.A.; Lyass, F.M.; Mamin, R.G.; Minakova, E.I.; Raevskaya, S.A.

    1983-01-01

    A model of normal tissue injury as a result of exposure to ionizing radiation is based on an assumption that the degree of tissue injury is determined by the degree of destruction by certain critical cells. The dependence of the number of lethal injuriies on a single dose is expressed by a trinomial - linear and quadratic parts and a constant, obtained as a result of the processing of experimental data. Quantitative correlations have been obtained for the skin and brain. They have been tested using clinical and experimental material. The results of the testing point out to the absence of time dependence on a single up to 6-week irradiation cources. Correlation with an irradiation field has been obtained for the skin. A conclusion has been made that the concept of isoefficacy of irradiation cources is conditional. Spatial-time fractionation is a promising direction in the development of radiation therapy

  1. Aberrant innate immune activation following tissue injury impairs pancreatic regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra E Folias

    Full Text Available Normal tissue architecture is disrupted following injury, as resident tissue cells become damaged and immune cells are recruited to the site of injury. While injury and inflammation are critical to tissue remodeling, the inability to resolve this response can lead to the destructive complications of chronic inflammation. In the pancreas, acinar cells of the exocrine compartment respond to injury by transiently adopting characteristics of progenitor cells present during embryonic development. This process of de-differentiation creates a window where a mature and stable cell gains flexibility and is potentially permissive to changes in cellular fate. How de-differentiation can turn an acinar cell into another cell type (such as a pancreatic β-cell, or a cell with cancerous potential (as in cases of deregulated Kras activity is of interest to both the regenerative medicine and cancer communities. While it is known that inflammation and acinar de-differentiation increase following pancreatic injury, it remains unclear which immune cells are involved in this process. We used a combination of genetically modified mice, immunological blockade and cellular characterization to identify the immune cells that impact pancreatic regeneration in an in vivo model of pancreatitis. We identified the innate inflammatory response of macrophages and neutrophils as regulators of pancreatic regeneration. Under normal conditions, mild innate inflammation prompts a transient de-differentiation of acinar cells that readily dissipates to allow normal regeneration. However, non-resolving inflammation developed when elevated pancreatic levels of neutrophils producing interferon-γ increased iNOS levels and the pro-inflammatory response of macrophages. Pancreatic injury improved following in vivo macrophage depletion, iNOS inhibition as well as suppression of iNOS levels in macrophages via interferon-γ blockade, supporting the impairment in regeneration and the

  2. Scratching the surface: the processing of pain from deep tissues.

    Science.gov (United States)

    Sikandar, Shafaq; Aasvang, Eske Kvanner; Dickenson, Anthony H

    2016-04-01

    Although most pain research focuses on skin, muscles, joints and viscerae are major sources of pain. We discuss the mechanisms of deep pains arising from somatic and visceral structures and how this can lead to widespread manifestations and chronification. We include how both altered peripheral and central sensory neurotransmission lead to deep pain states and comment on key areas such as top-down modulation where little is known. It is vital that the clinical characterization of deep pain in patients is improved to allow for back translation to preclinical models so that the missing links can be ascertained. The contribution of deeper somatic and visceral tissues to various chronic pain syndromes is common but there is much we need to know.

  3. The tissue injury and repair in cancer radiotherapy. A concept of tissue architecture and radio sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1975-06-01

    One of the difficulties in cancer radiotherapy arises from the fact that the tissue tolerance dose is much smaller than the tumor lethal dose. In our opinion the former depends upon the tolerance of the endothelial cell of the blood vessel in the normal tissue. In this introduction, a new concept regarding the estimation of tissue radiosensitivity was described, and the possible significance of the mode of radiation injury and the repair capability of normal tissue in the cancer radiotheraphy was discussed.

  4. Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation

    Science.gov (United States)

    2015-10-01

    currently investigating the effects of CG stimulation in subjects with debilitating pain due to cervical or thoracic SCI. This study stemmed from...had a low thoracic injury and pain in lumbar dermatomes, whereas Subject 1 had mainly mid- cervical pain that responded minimally to DBS and matched...AWARD NUMBER: W81XWH-12-1-0559 TITLE: Treatment of Pain and Autonomic Dysreflexia in Spinal Cord Injury with Deep Brain Stimulation PRINCIPAL

  5. Soft tissue injuries of the face: early aesthetic reconstruction in polytrauma patients.

    Science.gov (United States)

    Aveta, Achille; Casati, Paolo

    2008-01-01

    Facial injuries are often accompanied by soft tissue injuries. The complexity of these injuries is represented by the potential for loss of relationships between the functional and the aesthetic subunits of the head. Most reviews of craniofacial trauma have concentrated on fractures. With this article, we want to emphasize the importance of early aesthetic reconstruction of the face in polytrauma patients. We present 13 patients with soft tissue injuries of the face, treated in our emergency department in the 'day one surgery", without "second look"procedures. The final result always restored a sense of normalcy to the face. The face is the first most visible part of the human anatomy, so, in emergency, surgeons must pay special attention also to the reconstruction of the face, in polytrauma patients.

  6. Propionibacterium acnes in shoulder surgery: true infection, contamination, or commensal of the deep tissue?

    Science.gov (United States)

    Hudek, Robert; Sommer, Frank; Kerwat, Martina; Abdelkawi, Ayman F; Loos, Franziska; Gohlke, Frank

    2014-12-01

    Propionibacterium acnes has been linked to chronic infections in shoulder surgery. Whether the bacterium is a contaminant or commensal of the deep tissue is unclear. We aimed to assess P. acnes in intraoperative samples of different tissue layers in patients undergoing first-time shoulder surgery. In 118 consecutive patients (mean age, 59.2 years; 75 men, 43 women), intraoperative samples were correlated to preoperative subacromial injection, the type of surgical approach, and gender. One skin, one superficial, one deep tissue, and one test sample were cultured for each patient. The cultures were positive for P. acnes in 36.4% (n = 43) of cases. Subacromial injection was not associated with bacterial growth rates (P = .88 for P. acnes; P = .20 for bacteria other than P. acnes; P = .85 for the anterolateral approach; P = .92 for the deltopectoral approach; P = .56 for men; P = .51 for women). Skin samples were positive for P. acnes in 8.5% (n = 10), superficial samples were positive in 7.6% (n = 9), deep samples were positive in 13.6% (n = 16), and both samples (superficial and deep) were positive in 15.3% (n = 18) of cases (P shoulder surgery. Preoperative subacromial injection was not associated with bacterial growth. P. acnes was observed more frequently in the deep tissues than in the superficial tissues. The relative risk for obtaining a positive P. acnes culture was 2-fold greater for the anterolateral approach than for the deltopectoral approach, and the risk was 2.5-fold greater for men. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  7. Facilitated assessment of tissue loss following traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anders eHånell

    2012-03-01

    Full Text Available All experimental models of traumatic brain injury (TBI result in a progressive loss of brain tissue. The extent of tissue loss reflects the injury severity and can be measured to evaluate the potential neuroprotective effect of experimental treatments. Quantitation of tissue volumes is commonly performed using evenly spaced brain sections stained using routine histochemical methods and digitally captured. The brain tissue areas are then measured and the corresponding volumes are calculated using the distance between the sections. Measurements of areas are usually performed using a general purpose image analysis software and the results are then transferred to another program for volume calculations. To facilitate the measurement of brain tissue loss we developed novel algorithms which automatically separate the areas of brain tissue from the surrounding image background and identify the ventricles. We implemented these new algorithms by creating a new computer program (SectionToVolume which also has functions for image organization, image adjustments and volume calculations. We analyzed brain sections from mice subjected to severe focal TBI using both SectionToVolume and ImageJ, a commonly used image analysis program. The volume measurements made by the two programs were highly correlated and analysis using SectionToVolume required considerably less time. The inter-rater reliability was high. Given the extensive use of brain tissue loss measurements in TBI research, SectionToVolume will likely be a useful tool for TBI research. We therefore provide both the source code and the program as attachments to this article.

  8. Tissue classification and segmentation of pressure injuries using convolutional neural networks.

    Science.gov (United States)

    Zahia, Sofia; Sierra-Sosa, Daniel; Garcia-Zapirain, Begonya; Elmaghraby, Adel

    2018-06-01

    This paper presents a new approach for automatic tissue classification in pressure injuries. These wounds are localized skin damages which need frequent diagnosis and treatment. Therefore, a reliable and accurate systems for segmentation and tissue type identification are needed in order to achieve better treatment results. Our proposed system is based on a Convolutional Neural Network (CNN) devoted to performing optimized segmentation of the different tissue types present in pressure injuries (granulation, slough, and necrotic tissues). A preprocessing step removes the flash light and creates a set of 5x5 sub-images which are used as input for the CNN network. The network output will classify every sub-image of the validation set into one of the three classes studied. The metrics used to evaluate our approach show an overall average classification accuracy of 92.01%, an average total weighted Dice Similarity Coefficient of 91.38%, and an average precision per class of 97.31% for granulation tissue, 96.59% for necrotic tissue, and 77.90% for slough tissue. Our system has been proven to make recognition of complicated structures in biomedical images feasible. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Time-reversed ultrasonically encoded (TRUE) focusing for deep-tissue optogenetic modulation

    Science.gov (United States)

    Brake, Joshua; Ruan, Haowen; Robinson, J. Elliott; Liu, Yan; Gradinaru, Viviana; Yang, Changhuei

    2018-02-01

    The problem of optical scattering was long thought to fundamentally limit the depth at which light could be focused through turbid media such as fog or biological tissue. However, recent work in the field of wavefront shaping has demonstrated that by properly shaping the input light field, light can be noninvasively focused to desired locations deep inside scattering media. This has led to the development of several new techniques which have the potential to enhance the capabilities of existing optical tools in biomedicine. Unfortunately, extending these methods to living tissue has a number of challenges related to the requirements for noninvasive guidestar operation, speed, and focusing fidelity. Of existing wavefront shaping methods, time-reversed ultrasonically encoded (TRUE) focusing is well suited for applications in living tissue since it uses ultrasound as a guidestar which enables noninvasive operation and provides compatibility with optical phase conjugation for high-speed operation. In this paper, we will discuss the results of our recent work to apply TRUE focusing for optogenetic modulation, which enables enhanced optogenetic stimulation deep in tissue with a 4-fold spatial resolution improvement in 800-micron thick acute brain slices compared to conventional focusing, and summarize future directions to further extend the impact of wavefront shaping technologies in biomedicine.

  10. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Tsubouchi, S [Aichi Cancer Center, Nagoya (Japan). Research Inst.; Matsuzawa, T

    1975-06-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140 to 300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200 to 300 days postirradiation showed mucoid adenocarcinoma.

  11. Relation between radiation-induced tissue injury and its carcinogenesis of the rat small intestine

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Matsuzawa, Taiju.

    1975-01-01

    This study was undertaken to make clear the relationships between radiation-induced tissue injury and its carcinogenesis in the rat small intestine. The abdomens of Wistar rats were irradiated locally with 1000 to 2000 rads. Approximately 2 months following irradiation, visible nodules were found in the intestines of the groups receiving irradiation. Nodule incidence was 80 to 100% in groups that received 1750 or 2000 rads, 50% in the 1500-rad groups, and 3% in the 1000-rad groups, respectively. The histology of the nodules within 70 days postirradiation, revealed adenomatous hyperplasia, including invasion of submucosa, muscle layers, and serosa of the small intestine accompanied by an area of fibrous tissue resulting from desmoplastic reaction by irradiation injury. The nodule within 140-300 days postirradiation induced advanced tissue injuried, that is, a polypoid lesion in histology and intestinal nodular adhesion in macroscopic anatomy. Running parallel with the advance of the above mentioned tissue injuries, the nodules in 3 out of 18 rat during 200-300 days postirradiation showed mucoid adenocarcinoma. (author)

  12. AT2 Receptor and Tissue Injury

    DEFF Research Database (Denmark)

    Namsolleck, Pawel; Recarti, Chiara; Foulquier, Sébastien

    2014-01-01

    The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well...... established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from...... and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans...

  13. Training volume and soft tissue injury in professional and non-professional rugby union players: a systematic review.

    Science.gov (United States)

    Ball, Shane; Halaki, Mark; Orr, Rhonda

    2017-07-01

    To investigate the relationship between training volume and soft tissue injury incidence, and characterise soft tissue injury in rugby union players. A systematic search of electronic databases was performed. The search strategy combined terms covering: training volume and injury, and rugby union, and players of all levels. Medline, SPORTDiscus, Web of Science, Embase, PubMed. Studies were included if they reported: male rugby union players, a clear definition of a rugby union injury, the amount of training volume undertaken by participants, and epidemiological data for soft-tissue injuries including the number or incidence. 15 studies were eligible for inclusion. Overall match and training injury incidence ranged from 3.3 to 218.0 injuries/1000 player match hours and 0.1-6.1 injuries/1000 player training hours, respectively. Muscle and tendon as well as joint (non-bone) and ligament injuries were the most frequently occurring injuries. The lower limb was the most prevalent injury location. Injury incidence was higher in professional rugby union players than non-professional players. Contact events were responsible for the greatest injury incidence. For non-contact mechanisms, running was responsible for the highest injury incidence. Inconsistent injury definitions hindered reliable comparison of injury data. The lack of reporting training volumes in hours per player per week limited the ability to investigate associations between training volume and injury incidence. A higher level of play may result in higher match injury incidence. Muscle and tendon injuries were the most common type of soft tissue injury, while the lower limb was the most common location of injury in rugby union players, and running was responsible for the highest injury incidence during non-contact events. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Knee Ligament Injury and the Clinical Application of Tissue Engineering Techniques: A Systematic Review.

    Science.gov (United States)

    Riley, Thomas C; Mafi, Reza; Mafi, Pouya; Khan, Wasim S

    2018-02-23

    The incidence of knee ligament injury is increasing and represents a significant cost to healthcare providers. Current interventions include tissue grafts, suture repair and non-surgical management. These techniques have demonstrated good patient outcomes but have been associated graft rejection, infection, long term immobilization and reduced joint function. The limitations of traditional management strategies have prompted research into tissue engineering of knee ligaments. This paper aims to evaluate whether tissue engineering of knee ligaments offers a viable alternative in the clinical management of knee ligament injuries. A search of existing literature was performed using OVID Medline, Embase, AMED, PubMed and Google Scholar, and a manual review of citations identified within these papers. Silk, polymer and extracellular matrix based scaffolds can all improve graft healing and collagen production. Fibroblasts and stem cells demonstrate compatibility with scaffolds, and have been shown to increase organized collagen production. These effects can be augmented using growth factors and extracellular matrix derivatives. Animal studies have shown tissue engineered ligaments can provide the biomechanical characteristics required for effective treatment of knee ligament injuries. There is a growing clinical demand for a tissue engineered alternative to traditional management strategies. Currently, there is limited consensus regarding material selection for use in tissue engineered ligaments. Further research is required to optimize tissue engineered ligament production before clinical application. Controlled clinical trials comparing the use of tissue engineered ligaments and traditional management in patients with knee ligament injury could determine whether they can provide a cost-effective alternative. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Hyperspectral Image Enhancement and Mixture Deep-Learning Classification of Corneal Epithelium Injuries.

    Science.gov (United States)

    Noor, Siti Salwa Md; Michael, Kaleena; Marshall, Stephen; Ren, Jinchang

    2017-11-16

    In our preliminary study, the reflectance signatures obtained from hyperspectral imaging (HSI) of normal and abnormal corneal epithelium tissues of porcine show similar morphology with subtle differences. Here we present image enhancement algorithms that can be used to improve the interpretability of data into clinically relevant information to facilitate diagnostics. A total of 25 corneal epithelium images without the application of eye staining were used. Three image feature extraction approaches were applied for image classification: (i) image feature classification from histogram using a support vector machine with a Gaussian radial basis function (SVM-GRBF); (ii) physical image feature classification using deep-learning Convolutional Neural Networks (CNNs) only; and (iii) the combined classification of CNNs and SVM-Linear. The performance results indicate that our chosen image features from the histogram and length-scale parameter were able to classify with up to 100% accuracy; particularly, at CNNs and CNNs-SVM, by employing 80% of the data sample for training and 20% for testing. Thus, in the assessment of corneal epithelium injuries, HSI has high potential as a method that could surpass current technologies regarding speed, objectivity, and reliability.

  16. Hyperextension injuries of the knee. Do patterns of bone bruising predict soft tissue injury?

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.M.; Gibbons, C.E.R. [Chelsea and Westminster Hospital, Department of Orthopaedic Surgery, London (United Kingdom); Pillai, J.K.; Roberton, B.J. [Chelsea and Westminster Hospital, Department of Radiology, London (United Kingdom); Gulati, V. [Homerton University Hospital, Department of Orthopaedic Surgery, London (United Kingdom)

    2018-02-15

    To establish whether patterns of soft tissue injury following knee hyperextension are associated with post-traumatic 'bone bruise' distribution. Patients with a knee MRI within one year of hyperextension injury were identified at our institution over a 7 year period. MRIs, plain radiographs and clinical details of these patients were reviewed. Twenty-five patients were identified (median time from injury to MRI = 24 days). The most common sites of bone bruising were the anteromedial tibial plateau (48%) and anterolateral tibial plateau (44%). There were high rates of injury to the posterior capsule (52%), ACL (40%) and PCL (40%) but lower rates of injury to the menisci (20%), medial and lateral collateral ligaments (16%) and posterolateral corner (16%). Anterior tibial plateau oedema and rupture of the posterior capsule predicted cruciate ligament injury [OR = 10.5 (p = 0.02) and 24.0 (p = 0.001) respectively]. Whilst anterolateral tibial plateau oedema strongly predicted PCL injury [OR = 26.0, p = 0.003], ACL injury was associated with a variable pattern of bone bruising. Meniscal injury was unrelated to the extent or pattern of bone bruising. 5 out of 8 patients with a 'double sulcus' on the lateral radiograph had ACL injury. The presence of a double sulcus showed significant association with anteromedial kissing contusions (OR = 7.8, p = 0.03). Following knee hyperextension, bone bruising patterns may be associated with cruciate ligament injury. Other structures are injured less frequently and have weaker associations with bone bruise distribution. The double sulcus sign is a radiographic marker that confers a high probability of ACL injury. (orig.)

  17. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is "Inflammation" Always Inflammation?

    Science.gov (United States)

    Kulkarni, Onkar P; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of "proinflammatory" cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine "inflammation"? In this review, we discuss the functions of "inflammatory" mediators/regulators of the innate immune system that determine tissue environments to fulfill the need of the tissue while regaining homeostasis after injury.

  18. Fluoro jade-C staining in the assessment of brain injury after deep hypothermia circulatory arrest.

    Science.gov (United States)

    Wang, Ren; Ma, Wei-Guo; Gao, Guo-Dong; Mao, Qun-Xia; Zheng, Jun; Sun, Li-Zhong; Liu, Ying-Long

    2011-02-04

    To evaluate the efficacy of Fluoro Jade-C staining (FJC) in the assessment of brain injury after deep hypothermia circulatory arrest (DHCA). Six healthy adult miniature male pigs underwent DHCA, the rectal temperature was down to 18°C, circulation was stopped , circulatory arrest was maintained for 60 minutes. On postoperative day 1, perfusion-fixation was performed on brain tissue. Cerebral cortex, hippocampus, cerebellum were taken for sampling. FJC, hematoxylin-eosin staining (HE), nissl staining (NISSL), terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) were performed to detect the histological and pathological changes. Histological scores of all slices were ranked. Comparison between the FJC and other techniques was done by analysis of variance (ANOVA) according to histological scores. All animals survived the operation. On the cerebral cortex, in comparison of FJC between HE, NISSL and TUNEL, the p value was 0.90, 0.40, 0.16 respectively (p>0.05). On the hippocampus, the comparison of FJC with HE, NISSL and TUNEL had a p value of 0.12, 0.23, 0.62 respectively (p>0.05). On the cerebellum, in comparing FJC with HE, NISSL and TUNEL, the p value was 0.96, 0.77, 0.96 respectively (p>0.05). On representative regions, the results of FJC were in accordance with that of TUNEL, NISSL and HE. Furthermore, ascertainment of brain injury is easier with FJC. FJC is a reliable and convenient method to assess brain injury after DHCA. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. A retrospective study on traumatic dental and soft-tissue injuries in preschool children in Zagreb, Croatia.

    Science.gov (United States)

    Vuletić, Marko; Škaričić, Josip; Batinjan, Goran; Trampuš, Zdenko; Čuković Bagić, Ivana; Jurić, Hrvoje

    2014-02-01

    The purpose of this study was to analyze data according to gender, age, cause, number of traumatized teeth, time elapsed before treatment and type of tooth from the records of traumatized children. A retrospective study was conducted in the Department of Paediatric Dentistry at the University Dental Clinic in Zagreb, Croatia using the documentation of 128 patients (61 males and 67 females) aged 1 month to 6 years with injuries of primary teeth between February 2009 and January 2013. Trauma was seen in 217 primary teeth, which implies that the number of injured primary teeth was 1.69 per child. The maxillary central incisors were the most frequently affected teeth (81.1%), they were followed by maxillary lateral incisors, while the least affected were mandibular central incisors. Traumatic dental injuries involved periodontal tissue 2.82 times more frequently than hard dental and pulp tissue. The main cause of teeth injury was fall (67.2%) and the majority of injuries occurred at home (51.6%) (p<0.05). Of 128 patients who received treatment 71 (55.5%) also had soft-tissue injuries. The distribution of soft-tissue injuries by gender (35 males, 36 females) was not statistically significant. Comparing children with soft-tissue injuries and those without them, a statistically significant difference was found in the time of arrival (p<0.01). The results of this study showed the need of informing about preventive measures against falls at home and the methods of providing first aid in dental trauma injuries.

  20. Concussion classification via deep learning using whole-brain white matter fiber strains

    Science.gov (United States)

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828–0.862 vs. 0.690–0.776, and .632+ error of 0.148–0.176 vs. 0.207–0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury. PMID:29795640

  1. Concussion classification via deep learning using whole-brain white matter fiber strains.

    Science.gov (United States)

    Cai, Yunliang; Wu, Shaoju; Zhao, Wei; Li, Zhigang; Wu, Zheyang; Ji, Songbai

    2018-01-01

    Developing an accurate and reliable injury predictor is central to the biomechanical studies of traumatic brain injury. State-of-the-art efforts continue to rely on empirical, scalar metrics based on kinematics or model-estimated tissue responses explicitly pre-defined in a specific brain region of interest. They could suffer from loss of information. A single training dataset has also been used to evaluate performance but without cross-validation. In this study, we developed a deep learning approach for concussion classification using implicit features of the entire voxel-wise white matter fiber strains. Using reconstructed American National Football League (NFL) injury cases, leave-one-out cross-validation was employed to objectively compare injury prediction performances against two baseline machine learning classifiers (support vector machine (SVM) and random forest (RF)) and four scalar metrics via univariate logistic regression (Brain Injury Criterion (BrIC), cumulative strain damage measure of the whole brain (CSDM-WB) and the corpus callosum (CSDM-CC), and peak fiber strain in the CC). Feature-based machine learning classifiers including deep learning, SVM, and RF consistently outperformed all scalar injury metrics across all performance categories (e.g., leave-one-out accuracy of 0.828-0.862 vs. 0.690-0.776, and .632+ error of 0.148-0.176 vs. 0.207-0.292). Further, deep learning achieved the best cross-validation accuracy, sensitivity, AUC, and .632+ error. These findings demonstrate the superior performances of deep learning in concussion prediction and suggest its promise for future applications in biomechanical investigations of traumatic brain injury.

  2. Skin regeneration in deep second-degree scald injuries either by infusion pumping or topical application of recombinant human erythropoietin gel

    Directory of Open Access Journals (Sweden)

    Giri P

    2015-05-01

    Full Text Available Priya Giri,1 Sabine Ebert,1 Ulf-Dietrich Braumann,2 Mathias Kremer,3 Shibashish Giri,1 Hans-Günther Machens,4 Augustinus Bader1 1Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ, Faculty of Medicine, University of Leipzig, Leipzig, Germany; 2Interdisciplinary Center for Bioinformatics (IZBI, University of Leipzig, Leipzig, Germany; 3Department of Plastic and Hand Surgery, University of Lübeck, Lübeck, Germany; 4Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany Abstract: Large doses of recombinant growth factors formulated in solution form directly injected into the body is usual clinical practice in treating second-degree scald injuries, with promising results, but this approach creates side effects; furthermore, it may not allow appropriate levels of the factor to be sensed by the target injured tissue/organ in the specific time frame, owing to complications arising from regeneration. In this research, two delivery methods (infusion pumping and local topical application were applied to deliver recombinant human erythropoietin (rHuEPO for skin regeneration. First, rHuEPO was given in deep second-degree scald injury sites in mice by infusion pump. Vascularization was remarkably higher in the rHuEPO pumping group than in controls. Second, local topical application of rHuEPO gel was given in deep second-degree scald injury sites in rats. Histological analysis showed that epithelialization rate was significantly higher in the rHuEPO gel-treated group than in controls. Immunohistochemical studies showed that the rHuEPO gel-treated group showed remarkably higher expression of skin regeneration makers than the control group. An accurate method for visualization and quantification of blood vessel networks in target areas has still not been developed up to this point, because of technical difficulties in detecting such thin blood vessels. A method which

  3. Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2015-01-01

    Full Text Available With advances in biomedical methods, tissue-engineered materials have developed rapidly as an alternative to nerve autografts for the repair of peripheral nerve injuries. However, the materials selected for use in the repair of peripheral nerve injuries, in particular multiple injuries and large-gap defects, must be chosen carefully. Various methods and materials for protecting the healthy tissue and repairing peripheral nerve injuries have been described, and each method or material has advantages and disadvantages. Recently, a large amount of research has been focused on tissue-engineered materials for the repair of peripheral nerve injuries. Using the keywords "pe-ripheral nerve injury", "autotransplant", "nerve graft", and "biomaterial", we retrieved publications using tissue-engineered materials for the repair of peripheral nerve injuries appearing in the Web of Science from 2010 to 2014. The country with the most total publications was the USA. The institutions that were the most productive in this field include Hannover Medical School (Germany, Washington University (USA, and Nantong University (China. The total number of publications using tissue-engineered materials for the repair of peripheral nerve injuries grad-ually increased over time, as did the number of Chinese publications, suggesting that China has made many scientific contributions to this field of research.

  4. Deep-tissue reporter-gene imaging with fluorescence and optoacoustic tomography: a performance overview.

    Science.gov (United States)

    Deliolanis, Nikolaos C; Ale, Angelique; Morscher, Stefan; Burton, Neal C; Schaefer, Karin; Radrich, Karin; Razansky, Daniel; Ntziachristos, Vasilis

    2014-10-01

    A primary enabling feature of near-infrared fluorescent proteins (FPs) and fluorescent probes is the ability to visualize deeper in tissues than in the visible. The purpose of this work is to find which is the optimal visualization method that can exploit the advantages of this novel class of FPs in full-scale pre-clinical molecular imaging studies. Nude mice were stereotactically implanted with near-infrared FP expressing glioma cells to from brain tumors. The feasibility and performance metrics of FPs were compared between planar epi-illumination and trans-illumination fluorescence imaging, as well as to hybrid Fluorescence Molecular Tomography (FMT) system combined with X-ray CT and Multispectral Optoacoustic (or Photoacoustic) Tomography (MSOT). It is shown that deep-seated glioma brain tumors are possible to visualize both with fluorescence and optoacoustic imaging. Fluorescence imaging is straightforward and has good sensitivity; however, it lacks resolution. FMT-XCT can provide an improved rough resolution of ∼1 mm in deep tissue, while MSOT achieves 0.1 mm resolution in deep tissue and has comparable sensitivity. We show imaging capacity that can shift the visualization paradigm in biological discovery. The results are relevant not only to reporter gene imaging, but stand as cross-platform comparison for all methods imaging near infrared fluorescent contrast agents.

  5. Ultraviolet injury of connective tissue

    International Nuclear Information System (INIS)

    Sengupta, K.P.; Sanyal, Sabitri; Biswas, S.K.; Pal, N.C.

    1975-01-01

    Changes induced by UV irradiation of rat skin could be divided morphologically into prenecrotic, necrotic and regenerating phases. During prenecrotic and necrotic phases, decrease in water content, collagenous protein, citrate buffer soluble fraction, elastin and total lipid and its fractions, and increase in noncollagenous protein nitrogen and fucoglycoprotein were observed. Increase in serum and urinary hydroxyproline and hexosamine, and serum sialic acid and fucose revealed the complicated nature of intrinsic changes occurring systemically. The study revealed that the ground substance was more easily affected while collagen, elastin and fat appeared to be more resistant to injury. This could be due to superficial action of radiation of short duration (30 min) on the dermal connective tissue. (author)

  6. Opto-ultrasound imaging in vivo in deep tissue

    International Nuclear Information System (INIS)

    Si, Ke; YanXu; Zheng, Yao; Zhu, Xinpei; Gong, Wei

    2016-01-01

    It is of keen importance of deep tissue imaging with high resolution in vivo. Here we present an opto-ultrasound imaging method which utilizes an ultrasound to confine the laser pulse in a very tiny spot as a guide star. The results show that the imaging depth is 2mm with a resolution of 10um. Meanwhile, the excitation power we used is less than 2mW, which indicates that our methods can be applied in vivo without optical toxicity and optical bleaching due to the excitation power. (paper)

  7. Skin regeneration with conical and hair follicle structure of deep second-degree scalding injuries via combined expression of the EPO receptor and beta common receptor by local subcutaneous injection of nanosized rhEPO

    Directory of Open Access Journals (Sweden)

    Ebert S

    2012-03-01

    Full Text Available Augustinus Bader1, Sabine Ebert1, Shibashish Giri1, Mathias Kremer2, Shuhua Liu2, Andreas Nerlich5, Christina I Günter³, Dagmar U Smith4, Hans-Günther Machens2,31Department of Applied Stem Cell Biology and Cell Techniques, Centre for Biotechnology and Biomedicine, University of Leipzig, Leipzieg, 2Department of Plastic and Hand Surgery, University of Lübeck, Lübeck, 3Department of Plastic and Hand Surgery, Technische Universität München, Munich, 4Münchner Studienzentrum, Technische Universität München, Munich, 5Institute of Pathology, Klinikum München-Bogenhausen, Munich, GermanyBackground: Acceleration of skin regeneration is still an unsolved problem in the clinical treatment of patients suffering from deep burns and scalds. Although erythropoietin (EPO has a protective role in a wide range of organs and cells during ischemia and after trauma, it has been recently discovered that EPO is not tissue-protective in the common β subunit receptor (βCR knockout mouse. The protective capacity of EPO in tissue is mediated via a heteroreceptor complex comprising both the erythropoietin receptor (EPOR and βCR. However, proof of coexpression of these heterogenic receptors in regenerating skin after burns is still lacking.Methods: To understand the role of nanosized recombinant human erythropoietin (rhEPO in wound healing, we investigated the effects of subcutaneous injections of EPO on skin regeneration after deep second-degree scalding injuries. Our aim was to determine if joint expression of EPOR and βCR is a prerequisite for the tissue-protective effect of rhEPO. The efficiency in wound regeneration in a skin scalding injury mouse model was examined. A deep second-degree dermal scald injury was produced on the backs of 20 female Balb/c mice which were subsequently randomized to four experimental groups, two of which received daily subcutaneous injections of rhEPO. At days 7 and 14, the mice were sacrificed and the effects of rhEPO were

  8. Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Nicole [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); University of Zurich, Department of Forensic Medicine and Radiology, Institute of Forensic Medicine, Zurich (Switzerland); Andreisek, Gustav; Karer, Anissja T.; Manoliu, Andrei; Ulbrich, Erika J. [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Bouaicha, Samy [University Hospital Zurich, Department of Trauma Surgery, Zurich (Switzerland); Naraghi, Ali [University of Toronto, Department of Medical Imaging, Mount Sinai Hospital and the University Health Network, Toronto, ON (Canada); Seifert, Burkhardt [University of Zurich, Epidemiology, Biostatistics and Prevention Institute, Department of Biostatistics, Zurich (Switzerland)

    2017-01-15

    To determine the association between traumatic bone marrow abnormalities, the knee injury mechanism, and associated soft tissue injuries in a larger cohort than those in the published literature. Retrospective study including 220 patients with traumatic knee injuries. Knee MRIs were evaluated for trauma mechanism, soft tissue injury, and the location of bone marrow abnormalities. The locations of the abnormalities were correlated with trauma mechanisms and soft tissue injuries using the chi-square test with Bonferroni correction. One hundred and forty-four valgus injuries, 39 pivot shift injuries, 25 lateral patellar dislocations, 8 hyperextensions, and 4 dashboard injuries were included. Valgus and pivot shift injuries showed traumatic bone marrow abnormalities in the posterolateral regions of the tibia. Abnormalities after patellar dislocation were found in the anterolateral and centrolateral femur and patella. Hyperextension injuries were associated with abnormalities in almost all regions, and dashboard injuries were associated with changes in the anterior regions of the tibia and femur. Our study provides evidence of associations between traumatic bone marrow abnormality patterns and different trauma mechanisms in acute knee injury, and reveals some overlap, especially of the two most common trauma mechanisms (valgus and pivot shift), in a large patient cohort. (orig.)

  9. Association between traumatic bone marrow abnormalities of the knee, the trauma mechanism and associated soft-tissue knee injuries

    International Nuclear Information System (INIS)

    Berger, Nicole; Andreisek, Gustav; Karer, Anissja T.; Manoliu, Andrei; Ulbrich, Erika J.; Bouaicha, Samy; Naraghi, Ali; Seifert, Burkhardt

    2017-01-01

    To determine the association between traumatic bone marrow abnormalities, the knee injury mechanism, and associated soft tissue injuries in a larger cohort than those in the published literature. Retrospective study including 220 patients with traumatic knee injuries. Knee MRIs were evaluated for trauma mechanism, soft tissue injury, and the location of bone marrow abnormalities. The locations of the abnormalities were correlated with trauma mechanisms and soft tissue injuries using the chi-square test with Bonferroni correction. One hundred and forty-four valgus injuries, 39 pivot shift injuries, 25 lateral patellar dislocations, 8 hyperextensions, and 4 dashboard injuries were included. Valgus and pivot shift injuries showed traumatic bone marrow abnormalities in the posterolateral regions of the tibia. Abnormalities after patellar dislocation were found in the anterolateral and centrolateral femur and patella. Hyperextension injuries were associated with abnormalities in almost all regions, and dashboard injuries were associated with changes in the anterior regions of the tibia and femur. Our study provides evidence of associations between traumatic bone marrow abnormality patterns and different trauma mechanisms in acute knee injury, and reveals some overlap, especially of the two most common trauma mechanisms (valgus and pivot shift), in a large patient cohort. (orig.)

  10. Propagation characteristics of laser-induced stress wave in deep tissue for gene transfer

    International Nuclear Information System (INIS)

    Ando, Takahiro; Sato, Shunichi; Takano, Shinta; Ashida, Hiroshi; Obara, Minoru

    2009-01-01

    Propagation characteristics of laser-induced stress waves (LISWs) in tissue and their correlation with properties of gene transfection were investigated for targeted deep-tissue gene therapy. LISWs were generated by irradiating a laser-absorbing material with 532-nm Q-switched Nd:YAG laser pulses; a transparent plastic sheet was attached on the absorbing material for plasma confinement. Temporal pressure profiles of LISWs that were propagated through different thickness tissues were measured with a needle-type hydrophone and propagation of LISWs in water was visualized by shadowgraph technique. The measurements showed that at a laser fluence of 1.2 J/cm 2 with a laser spot diameter of 3 mm, flat wavefront was maintained for up to 5 mm in depth and peak pressure P decreased with increasing tissue thickness d; P was proportional to d -0.54 . Rat dorsal skin was injected with plasmid DNA coding for reporter gene, on which different numbers of excised skin(s) was/were placed, and LISWs were applied from the top of the skins. Efficient gene expression was observed in the skin under the 3 mm thick stacked skins, suggesting that deep-located tissue such as muscle can be transfected by transcutaneous application of LISWs.

  11. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury

    DEFF Research Database (Denmark)

    Mackey, Abigail Louise; Kjaer, Michael

    2017-01-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibres as they undergo necrosis, followed closely by satellite cell mediated myogenesis, have been mapped in detail. Much less is known about...... the adaptation throughout this process of both the connective tissue structures surrounding the myofibres, and the fibroblasts, the cells responsible for synthesising this connective tissue. However, the few studies investigating muscle connective tissue remodelling demonstrate a strong response that appears...

  12. Role of Kletik oil, Ginger and Garlic Extracts towards Soft Tissue Injury

    Directory of Open Access Journals (Sweden)

    Benjamin Yong Qing Nan

    2016-09-01

    Full Text Available Background: There is an increased consumption of herbal medicines throughout the world as an alternative treatment for curing health problems. Several herbal medicines are believed to contain anti-inflammatory properties that could trigger healing process. But little is known about the combination effect of herbal medicines. Therefore, the objective of the study was to determine the effects of garlic, ginger and coconut oil (kletik oil on soft tissue injury (swelling. Methods: The study was held in the research laboratory of Faculty of Medicine Universitas Padjadjaran, from 24th September until 1st October 2014. This experimental study used 7 healthy rabbits (Lepus curpaeums, ±2.5kg as animal models for each control and intervention group with induced soft tissue injury in the dorsal ear to mimic swelling (inflammation. The mixture of herbs was applied on the injured site in the trial group, while the healing process was denoted by the thickness of edema and time of observation. The data was analyzed using Wilcoxon test. Results: The study results showed that after observation time of 0.5 hour, 2 hours, and 5 hours, edema thickness was unvaried. Onset of action of the herbal mixture began 24 hours after induced injury, with significant difference of edema thickness on both groups; hence the p-value 0.019 (p<0.05. Conclusions: The herbal mixture of ginger, garlic, and coconut oil (kletik oil contains anti-inflammatory properties to enhance the healing process of soft tissue injury.

  13. The extent of soft tissue and musculoskeletal injuries after earthquakes; describing a role for reconstructive surgeons in an emergency response.

    Science.gov (United States)

    Clover, A J P; Jemec, B; Redmond, A D

    2014-10-01

    Earthquakes are the leading cause of natural disaster-related mortality and morbidity. Soft tissue and musculoskeletal injuries are the predominant type of injury seen after these events and a major reason for admission to hospital. Open fractures are relatively common; however, they are resource-intense to manage. Appropriate management is important in minimising amputation rates and preserving function. This review describes the pattern of musculoskeletal and soft-tissue injuries seen after earthquakes and explores the manpower and resource implications involved in their management. A Medline search was performed, including terms "injury pattern" and "earthquake," "epidemiology injuries" and "earthquakes," "plastic surgery," "reconstructive surgery," "limb salvage" and "earthquake." Papers published between December 1992 and December 2012 were included, with no initial language restriction. Limb injuries are the commonest injuries seen accounting for 60 % of all injuries, with fractures in more than 50 % of those admitted to hospital, with between 8 and 13 % of these fractures open. After the first few days and once the immediate lifesaving phase is over, the management of these musculoskeletal and soft-tissue injuries are the commonest procedures required. Due to the predominance of soft-tissue and musculoskeletal injuries, plastic surgeons as specialists in soft-tissue reconstruction should be mobilised in the early stages of a disaster response as part of a multidisciplinary team with a focus on limb salvage.

  14. Tissues Use Resident Dendritic Cells and Macrophages to Maintain Homeostasis and to Regain Homeostasis upon Tissue Injury: The Immunoregulatory Role of Changing Tissue Environments

    Science.gov (United States)

    Lech, Maciej; Gröbmayr, Regina; Weidenbusch, Marc; Anders, Hans-Joachim

    2012-01-01

    Most tissues harbor resident mononuclear phagocytes, that is, dendritic cells and macrophages. A classification that sufficiently covers their phenotypic heterogeneity and plasticity during homeostasis and disease does not yet exist because cell culture-based phenotypes often do not match those found in vivo. The plasticity of mononuclear phagocytes becomes obvious during dynamic or complex disease processes. Different data interpretation also originates from different conceptual perspectives. An immune-centric view assumes that a particular priming of phagocytes then causes a particular type of pathology in target tissues, conceptually similar to antigen-specific T-cell priming. A tissue-centric view assumes that changing tissue microenvironments shape the phenotypes of their resident and infiltrating mononuclear phagocytes to fulfill the tissue's need to maintain or regain homeostasis. Here we discuss the latter concept, for example, why different organs host different types of mononuclear phagocytes during homeostasis. We further discuss how injuries alter tissue environments and how this primes mononuclear phagocytes to enforce this particular environment, for example, to support host defense and pathogen clearance, to support the resolution of inflammation, to support epithelial and mesenchymal healing, and to support the resolution of fibrosis to the smallest possible scar. Thus, organ- and disease phase-specific microenvironments determine macrophage and dendritic cell heterogeneity in a temporal and spatial manner, which assures their support to maintain and regain homeostasis in whatever condition. Mononuclear phagocytes contributions to tissue pathologies relate to their central roles in orchestrating all stages of host defense and wound healing, which often become maladaptive processes, especially in sterile and/or diffuse tissue injuries. PMID:23251037

  15. Flap reconstruction for soft-tissue defects with exposed hardware following deep infection after internal fixation of ankle fractures.

    Science.gov (United States)

    Ovaska, Mikko T; Madanat, Rami; Tukiainen, Erkki; Pulliainen, Lea; Sintonen, Harri; Mäkinen, Tatu J

    2014-12-01

    The aim of the present study was to determine the outcome for patients treated with flap reconstruction following deep ankle fracture infection with exposed hardware. Out of 3041 consecutive ankle fracture operations in 3030 patients from 2006 to 2011, we identified 56 patients requiring flap reconstruction following deep infection. Thirty-two of these patients could be examined at a follow-up visit. Olerud-Molander Ankle (OMA) score, 15D score, Numeric Rating Scale (NRS), and clinical examination were used to assess the outcome. A total of 58 flap reconstructions were performed in 56 patients with a mean age of 57 years (range 25–93 years) and mean follow-up time of 52 months. The most commonly used reconstruction was a distally based peroneus brevis muscle flap with a split-thickness skin graft. A microvascular free flap was required in only one patient. 22 (39%) patients required subsequent surgical interventions because of a flap-related complication. With flap reconstruction, hardware could eventually be salvaged in 53% of patients with a non-consolidated fracture. The mean OMA score was fair or poor in 53% of the patients, and only 56% had recovered their pre-injury level of function. Half of the patients had shoe wear limitations. The 15D score showed a significantly poorer health-related quality of life compared to an age-standardised sample of the general population. The mean pain NRS was 2.1 (range 0–6), and the mean satisfaction NRS was 6.6 (range 0–10). Our study showed that successful treatment of a soft-tissue defect with exposed hardware following ankle fracture infections can be achieved with local flaps. Despite eventual reconstructive success, complications are common. Patients perceive a poorer health-related quality of life, have shoe wear limitations, and only half of them achieve their pre-injury level of function.

  16. Aging causes collateral rarefaction and increased severity of ischemic injury in multiple tissues

    Science.gov (United States)

    Faber, James E.; Zhang, Hua; Lassance-Soares, Roberta M.; Prabhakar, Pranay; Najafi, Amir H.; Burnett, Mary Susan; Epstein, Stephen E.

    2011-01-01

    Objective Aging is a major risk factor for increased ischemic tissue injury. Whether collateral rarefaction and impaired remodeling contribute to this is unknown. We quantified the number and diameter of native collaterals, and their remodeling in 3-, 16-, 24-, and 31-months-old mice. Methods and Results Aging caused an “age-dose-dependent” greater drop in perfusion immediately after femoral artery ligation, followed by a diminished recovery of flow and increase in tissue injury. These effects were associated with a decline in collateral number, diameter and remodeling. Angiogenesis was also impaired. Mechanistically, these changes were not accompanied by reduced recruitment of T-cells or macrophages to remodeling collaterals. However, eNOS signaling was dysfunctional, as indicated by increased protein nitrosylation and less phosphorylated eNOS and VASP in collateral wall cells. The cerebral circulation exhibited a similar age-dose-dependent loss of collateral number and diameter and increased tortuosity, resulting in an increase in collateral resistance and infarct volume (e.g., 6- and 3-fold, respectively, in 24-months-old mice) after artery occlusion. This was not associated with rarefaction of similarly-sized arterioles. Collateral remodeling was also reduced. Conclusions Our findings demonstrate that aging causes rarefaction and insufficiency of the collateral circulation in multiple tissues, resulting in more severe ischemic tissue injury. PMID:21617137

  17. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  18. Angiographic findings and need for amputation in high tension electrical injuries

    International Nuclear Information System (INIS)

    Vedung, S.; Arturson, G.; Hedlund, A.; Wadin, K.

    1990-01-01

    Because it is difficult to estimate the extent of deep tissue injury clinically, angiography was carried out in 28 patients with signs of damage from current flow through the body. Eight of the arteriograms showed normal extremities, 6 showed changes of small arteries, and 38 showed injury to the main arteries. In the latter group there were 24 total arterial occlusions, narrow irregular lumens in 10, and 4 had occlusion and distal refilling. Changes in the main arteries were most often seen near major joints where the internal body resistance as well as the density of the current are higher. Injury to the main arteries resulted in severe neuromuscular damage or amputation of the limb, whereas injury to small arteries resulted in little functional deficit. Of the 25 amputations 19 were at the level of the arterial occlusion. Spasmolytic drugs did not increase filling. We concluded that early angiography is valuable for the detection of deep injury and often indicates the level of adequate amputation or the need for immediate exploration. In some patients it indicated the necessity for arterial reconstruction. (au)

  19. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration

    Science.gov (United States)

    Bastakoty, Dikshya; Young, Pampee P.

    2016-01-01

    The Wnt/β-catenin pathway is an evolutionarily conserved set of signals with critical roles in embryonic and neonatal development across species. In mammals the pathway is quiescent in many organs. It is reactivated in response to injury and is reported to play complex and contrasting roles in promoting regeneration and fibrosis. We review the current understanding of the role of the Wnt/β-catenin pathway in injury of various mammalian organs and discuss the current advances and potential of Wnt inhibitory therapeutics toward promoting tissue regeneration and reducing fibrosis.—Bastakoty, D., Young, P. P. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. PMID:27335371

  20. Referred pain and cutaneous responses from deep tissue electrical pain stimulation in the groin

    DEFF Research Database (Denmark)

    Aasvang, E K; Werner, M U; Kehlet, H

    2015-01-01

    , supporting individual differences in anatomy and sensory processing. Future studies investigating the responses to deep tissue electrical stimulation in persistent postherniotomy pain patients may advance our understanding of underlying pathophysiological mechanisms and strategies for treatment...

  1. Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System.

    Science.gov (United States)

    Edsberg, Laura E; Black, Joyce M; Goldberg, Margaret; McNichol, Laurie; Moore, Lynn; Sieggreen, Mary

    Our understanding of pressure injury etiology and development has grown in recent years through research, clinical expertise, and global interdisciplinary expert collaboration. Therefore, the National Pressure Ulcer Advisory Panel (NPUAP) has revised the definition and stages of pressure injury. The revision was undertaken to incorporate the current understanding of the etiology of pressure injuries, as well as to clarify the anatomical features present or absent in each stage of injury. An NPUAP-appointed Task Force reviewed the literature and created drafts of definitions, which were then reviewed by stakeholders and the public, including clinicians, educators, and researchers around the world. Using a consensus-building methodology, these revised definitions were the focus of a multidisciplinary consensus conference held in April 2016. As a result of stakeholder and public input, along with the consensus conference, important changes were made and incorporated into the new staging definitions. The revised staging system uses the term injury instead of ulcer and denotes stages using Arabic numerals rather than Roman numerals. The revised definition of a pressure injury now describes the injuries as usually occurring over a bony prominence or under a medical or other device. The revised definition of a Stage 2 pressure injury seeks to clarify the difference between moisture-associated skin damage and injury caused by pressure and/or shear. The term suspected has been removed from the Deep Tissue Pressure Injury diagnostic label. Each definition now describes the extent of tissue loss present and the anatomical features that may or may not be present in the stage of injury. These important revisions reflect the methodical and collaborative approach used to examine the available evidence and incorporate current interdisciplinary clinical expertise into better defining the important phenomenon of pressure injury etiology and development.

  2. Neutrophil depletion reduces edema formation and tissue loss following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Kenne Ellinor

    2012-01-01

    Full Text Available Abstract Background Brain edema as a result of secondary injury following traumatic brain injury (TBI is a major clinical concern. Neutrophils are known to cause increased vascular permeability leading to edema formation in peripheral tissue, but their role in the pathology following TBI remains unclear. Methods In this study we used controlled cortical impact (CCI as a model for TBI and investigated the role of neutrophils in the response to injury. The outcome of mice that were depleted of neutrophils using an anti-Gr-1 antibody was compared to that in mice with intact neutrophil count. The effect of neutrophil depletion on blood-brain barrier function was assessed by Evan's blue dye extravasation, and analysis of brain water content was used as a measurement of brain edema formation (24 and 48 hours after CCI. Lesion volume was measured 7 and 14 days after CCI. Immunohistochemistry was used to assess cell death, using a marker for cleaved caspase-3 at 24 hours after injury, and microglial/macrophage activation 7 days after CCI. Data were analyzed using Mann-Whitney test for non-parametric data. Results Neutrophil depletion did not significantly affect Evan's blue extravasation at any time-point after CCI. However, neutrophil-depleted mice exhibited a decreased water content both at 24 and 48 hours after CCI indicating reduced edema formation. Furthermore, brain tissue loss was attenuated in neutropenic mice at 7 and 14 days after injury. Additionally, these mice had a significantly reduced number of activated microglia/macrophages 7 days after CCI, and of cleaved caspase-3 positive cells 24 h after injury. Conclusion Our results suggest that neutrophils are involved in the edema formation, but not the extravasation of large proteins, as well as contributing to cell death and tissue loss following TBI in mice.

  3. Soft-tissue injuries of the fingertip: methods of evaluation and treatment. An algorithmic approach.

    Science.gov (United States)

    Lemmon, Joshua A; Janis, Jeffrey E; Rohrich, Rod J

    2008-09-01

    After studying this article, the participant should be able to: 1. Understand the anatomy of the fingertip. 2. Describe the methods of evaluating fingertip injuries. 3. Discuss reconstructive options for various tip injuries. The fingertip is the most commonly injured part of the hand, and therefore fingertip injuries are among the most frequent injuries that plastic surgeons are asked to treat. Although microsurgical techniques have enabled replantation of even very distal tip amputations, it is relatively uncommon that a distal tip injury will be appropriate for replantation. In the event that replantation is not pursued, options for distal tip soft-tissue reconstruction must be considered. This review presents a straightforward method for evaluating fingertip injuries and provides an algorithm for fingertip reconstruction.

  4. Proteomic Analysis of Various Rat Ocular Tissues after Ischemia–Reperfusion Injury and Possible Relevance to Acute Glaucoma

    Directory of Open Access Journals (Sweden)

    Hsin-Yi Chen

    2017-02-01

    Full Text Available Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. To investigate the protein expression alterations in various intraocular tissues (i.e., the cornea, conjunctiva, uvea, retina, and sclera during ischemia–reperfusion (IR injury, this study performed a proteomic analysis to qualitatively investigate such alterations resulting from acute glaucoma. The IR injury model combined with the proteomic analysis approach of two-dimensional difference gel electrophoresis (2D-DIGE and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS was used to monitor the protein expression alterations in two groups of specimens (an IR injury group and a control group. The analysis results revealed 221 unique differentially expressed proteins of a total of 1481 proteins in the cornea between the two groups. In addition, 97 of 1206 conjunctival proteins, 90 of 1354 uveal proteins, 61 of 1180 scleral proteins, and 37 of 1204 retinal proteins were differentially expressed. These findings imply that different ocular tissues have different tolerances against IR injury. To sum up, this study utilized the acute glaucoma model combined with 2D-DIGE and MALDI-TOF MS to investigate the IR injury affected protein expression on various ocular tissues, and based on the ratio of protein expression alterations, the alterations in the ocular tissues were in the following order: the cornea, conjunctiva, uvea, sclera, and retina.

  5. Connective tissue regeneration in skeletal muscle after eccentric contraction-induced injury.

    Science.gov (United States)

    Mackey, Abigail L; Kjaer, Michael

    2017-03-01

    Human skeletal muscle has the potential to regenerate completely after injury induced under controlled experimental conditions. The events inside the myofibers as they undergo necrosis, followed closely by satellite cell-mediated myogenesis, have been mapped in detail. Much less is known about the adaptation throughout this process of both the connective tissue structures surrounding the myofibers and the fibroblasts, the cells responsible for synthesizing this connective tissue. However, the few studies investigating muscle connective tissue remodeling demonstrate a strong response that appears to be sustained for a long time after the major myofiber responses have subsided. While the use of electrical stimulation to induce eccentric contractions vs. voluntary eccentric contractions appears to lead to a greater extent of myofiber necrosis and regenerative response, this difference is not apparent when the muscle connective tissue responses are compared, although further work is required to confirm this. Pharmacological agents (growth hormone and angiotensin II type I receptor blockers) are considered in the context of accelerating the muscle connective tissue adaptation to loading. Cautioning against this, however, is the association between muscle matrix protein remodeling and protection against reinjury, which suggests that a (so far undefined) period of vulnerability to reinjury may exist during the remodeling phases. The role of individual muscle matrix components and their spatial interaction during adaptation to eccentric contractions is an unexplored field in human skeletal muscle and may provide insight into the optimal timing of rest vs. return to activity after muscle injury. Copyright © 2017 the American Physiological Society.

  6. Pattern, severity, and management of cranio-maxillofacial soft-tissue injuries in Port Harcourt, Nigeria

    Directory of Open Access Journals (Sweden)

    Akinbami Babatunde Olayemi

    2013-01-01

    Full Text Available Background: The pattern of craniofacial soft-tissue injuries occurring either in isolation or in association with fractures vary in different societies and is multiply influenced. The effects are enormous because of the prominence of the face; therefore, the purpose of this study was to document any changing pattern, severity and management of these craniofacial injuries in our center. Patients and Method: Cranio-maxillofacial region was classified into upper, middle and lower face. The cause, type, and site of the injuries were documented. Gunshot injuries were further categorized as penetrating, perforating or avulsions. Further, classification of injuries into mild, moderate, and severe was carried out based on multiple factors. Result: A total of 126 patients with soft-tissue injuries presented to our hospital out of which 85 (67.5% were males and 41 (32.5 were females. The age range of the patients was between 10 months and 90 years with a mean ± SD of 26.4 ± 15.5 years. Road traffic accident was the most common etiology of which vehicular accidents constituted 50 (54.9% and the motorcycle was 2 (2.2%. Assault contributed 16 (17.6% while cases due to gun shots were 13 (14.3%. A total of 19 (15.1% patients had associated head injuries, 11 (8.7% patients had craniofacial fractures involving any of the bones while 3 (2.4% patients had limb fractures and 2 (1.6% patients had rib fractures. There were 51 (41.8% cases classified as mild injuries, 37 (30.3% cases as moderate injuries and 24 (19.7% cases as severe injuries. Total of 126 cases managed, 121 (96.0% received primary closure of the wounds while 5 (4.0% received delayed closure under general anesthesia.

  7. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Salama, Samir A., E-mail: salama.3@buckeyemail.osu.edu [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11751 (Egypt); Department of Pharmacology and GTMR Unit, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); Omar, Hany A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Maghrabi, Ibrahim A. [Department of Clinical Pharmacy, College of Clinical Pharmacy, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); AlSaeed, Mohammed S. [Department of Surgery, College of Medicine, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia); EL-Tarras, Adel E. [High Altitude Research Center, Taif University, Al-Haweiah, Taif 21974 (Saudi Arabia)

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  8. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    International Nuclear Information System (INIS)

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  9. A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images.

    Science.gov (United States)

    Liang, Liang; Liu, Minliang; Sun, Wei

    2017-11-01

    Biological collagenous tissues comprised of networks of collagen fibers are suitable for a broad spectrum of medical applications owing to their attractive mechanical properties. In this study, we developed a noninvasive approach to estimate collagenous tissue elastic properties directly from microscopy images using Machine Learning (ML) techniques. Glutaraldehyde-treated bovine pericardium (GLBP) tissue, widely used in the fabrication of bioprosthetic heart valves and vascular patches, was chosen to develop a representative application. A Deep Learning model was designed and trained to process second harmonic generation (SHG) images of collagen networks in GLBP tissue samples, and directly predict the tissue elastic mechanical properties. The trained model is capable of identifying the overall tissue stiffness with a classification accuracy of 84%, and predicting the nonlinear anisotropic stress-strain curves with average regression errors of 0.021 and 0.031. Thus, this study demonstrates the feasibility and great potential of using the Deep Learning approach for fast and noninvasive assessment of collagenous tissue elastic properties from microstructural images. In this study, we developed, to our best knowledge, the first Deep Learning-based approach to estimate the elastic properties of collagenous tissues directly from noninvasive second harmonic generation images. The success of this study holds promise for the use of Machine Learning techniques to noninvasively and efficiently estimate the mechanical properties of many structure-based biological materials, and it also enables many potential applications such as serving as a quality control tool to select tissue for the manufacturing of medical devices (e.g. bioprosthetic heart valves). Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Automatic tissue image segmentation based on image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  11. The Effect of Blood Loss in the Presence and Absence of Severe Soft Tissue Injury on Hemodynamic and Metabolic Parameters; an Experimental study

    Directory of Open Access Journals (Sweden)

    Ali Mohammad Moradi

    2014-09-01

    Full Text Available Introduction: The effect of severe soft tissue injury on the severity of hemorrhagic shock is still unknown. Therefore, the present study was aimed to determine hemodynamic and metabolic changes in traumatic/hemorrhagic shock in an animal model. Methods: Forty male rats were randomly divided into 4 equal groups including sham, hemorrhagic shock, soft tissue injury, and hemorrhagic shock + soft tissue injury groups. The changes in blood pressure, central venous pressure (CVP level, acidity (pH, and base excess were dynamically monitored and comparedsented. Results: Mean arterial blood pressure decreased significantly in hemorrhagic shock (df: 12; F=10.9; p<0.001 and severe soft tissue injury + hemorrhagic shock (df: 12; F=11.7; p<0.001 groups 15 minutes and 5 minutes after injury, respectively. A similar trend was observed in CVP in severe soft tissue injury + hemorrhagic shock group (df: 12; F=8.9; p<0.001. After 40 minutes, pH was significantly lower in hemorrhagic shock (df: 12; F=6.8; p=0.009 and severe soft tissue injury + hemorrhagic shock (df: 12; F=7.9; p=0.003 groups. Base excess changes during follow ups have a similar trend. (df: 12; F=11.3; p<0.001. Conclusion: The results of this study have shown that the effect of hemorrhage on the decrease of mean arterial blood pressure, CVP, pH, and base excess is the same in the presence or absence of soft tissue injury.

  12. [Observation on changes of oxygen partial pressure in the deep tissues along the large intestine meridian during acupuncture in healthy subjects].

    Science.gov (United States)

    Chen, Ming; Hu, Xiang-long; Wu, Zu-xing

    2010-06-01

    To observe changes of the partial oxygen pressure in the deep tissues along the Large Intestine Meridian (LIM) during acupuncture stimulation, so as to reveal the characteristics of energy metabolism in the tissues along the LIM. Thirty-one healthy volunteer subjects were enlisted in the present study. Partial oxygen pressure (POP) in the tissues (at a depth of about 1.5 cm) of acupoints Binao (LI 14), Shouwuli (LI 13), Shousanli (LI 10), 2 non-acupoints [the midpoints between Quchi (LI 11) and LI 14, and between Yangxi (LI 5) and LI 11) of the LIM, and 10 non-meridian points, 1.5-2.0 cm lateral and medial to each of the tested points of the LIM was detected before, during and after electroacupuncture (EA) stimulation of Hegu (LI 4) by using a tissue oxygen tension needle-like sensor. In normal condition, the POP values in the deep tissues along the LIM were significantly higher than those of the non-meridian control points on its bilateral sides. During and after EA of Hegu (LI 4), the POP levels decreased significantly in the deep tissues along the LIM in comparison with pre-EA (P 0.05). POP is significantly higher in the deep tissues along the LIM of healthy subjects under normal conditions, which can be downregulated by EA of Hegu (LI 4), suggesting an increase of both the utilization rate of oxygen and energy metabolism after EA.

  13. Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.

    Science.gov (United States)

    Abraham, John P; Plourde, Brian; Vallez, Lauren; Stark, John; Diller, Kenneth R

    2015-12-01

    The objective of this study is to develop and present a simple procedure for evaluating the temperature and exposure-time conditions that lead to causation of a deep-partial thickness burn and the effect that the immediate post-burn thermal environment can have on the process. A computational model has been designed and applied to predict the time required for skin burns to reach a deep-partial thickness level of injury. The model includes multiple tissue layers including the epidermis, dermis, hypodermis, and subcutaneous tissue. Simulated exposure temperatures ranged from 62.8 to 87.8°C (145-190°F). Two scenarios were investigated. The first and worst case scenario was a direct exposure to water (characterized by a large convection coefficient) with the clothing left on the skin following the exposure. A second case consisted of a scald insult followed immediately by the skin being washed with cool water (20°C). For both cases, an Arrhenius injury model was applied whereby the extent and depth of injury were calculated and compared for the different post-burn treatments. In addition, injury values were compared with experiment data from the literature to assess verification of the numerical methodology. It was found that the clinical observations of injury extent agreed with the calculated values. Furthermore, inundation with cool water decreased skin temperatures more quickly than the clothing insulating case and led to a modest decrease in the burn extent. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  14. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  15. Profile of the subjects with soft tissue injuries attended at an occupational health service and the RSI

    Directory of Open Access Journals (Sweden)

    Camila de Freitas

    2015-07-01

    Full Text Available Aim: To investigate the profile of subjects with soft tissue injuries attended at the Reference Center of Occupational Health – CEREST in the municipality of Santos, Sao Paulo state, in 2010, and the social insurance benefits granted.Materials and Methods: Analysis of medical records of the subjects assisted at CEREST in 2010, surveying data on gender, age, occupation, clinical diagnostics, clinical complaints, retirement, etc. The clinical diagnostics were categorized according to the International Classification of Diseases - ICD-10, subjects with soft tissue injuries were selected, and the diagnostics related to mental health disorders were registered. Data were recorded in Microsoft Excel spreadsheet and analyzed using statistical software R Development Core Team.Results: Of the 206 medical records analyzed, 18.0% (n=37 showed soft tissue injuries, 81.1% were female and 18.9% were male, and the subjects’ mean age was 43.24 years (SD=8.76. Subjects between 31 and 50 years old (70.2% were the most affected. The most affected occupations were cleaners, general service workers, and bank clerks. The most prevalent clinical diagnoses were synovitis and tenosynovitis, shoulder bursitis, and rotator cuff syndrome, with 62.2% of the subjects presenting more than one clinical diagnosis. 13.5% of the subjects also presented mental disorders. Association between retirement from work and the presence of soft tissue injury was observed (p=0.032. Only 13.5% of the diagnoses had some association with the work conditions.Conclusions: The general profile of the workers with soft tissue injuries was obtained: prevalence in women, diseases manifested in productive age, difficulty of association with work conditions, need for interdisciplinary interventions.

  16. Hemodynamic measurements in deep brain tissues of humans by near-infrared time-resolved spectroscopy

    Science.gov (United States)

    Suzuki, Hiroaki; Oda, Motoki; Yamaki, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2014-03-01

    Using near-infrared time-resolved spectroscopy (TRS), we measured the human head in transmittance mode to obtain the optical properties, tissue oxygenation, and hemodynamics of deep brain tissues in 50 healthy adult volunteers. The right ear canal was irradiated with 3-wavelengths of pulsed light (760, 795, and 835nm), and the photons passing through the human head were collected at the left ear canal. Optical signals with sufficient intensity could be obtained from 46 of the 50 volunteers. By analyzing the temporal profiles based on the photon diffusion theory, we successfully obtained absorption coefficients for each wavelength. The levels of oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (Hb), total hemoglobin (tHb), and tissue oxygen saturation (SO2) were then determined by referring to the hemoglobin spectroscopic data. Compared with the SO2 values for the forehead measurements in reflectance mode, the SO2 values of the transmittance measurements of the human head were approximately 10% lower, and tHb values of the transmittance measurements were always lower than those of the forehead reflectance measurements. Moreover, the level of hemoglobin and the SO2 were strongly correlated between the human head measurements in transmittance mode and the forehead measurements in the reflectance mode, respectively. These results demonstrated a potential application of this TRS system in examining deep brain tissues of humans.

  17. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.

    Science.gov (United States)

    Cheng, Bingbing; Bandi, Venugopal; Wei, Ming-Yuan; Pei, Yanbo; D'Souza, Francis; Nguyen, Kytai T; Hong, Yi; Yuan, Baohong

    2016-01-01

    For many years, investigators have sought after high-resolution fluorescence imaging in centimeter-deep tissue because many interesting in vivo phenomena-such as the presence of immune system cells, tumor angiogenesis, and metastasis-may be located deep in tissue. Previously, we developed a new imaging technique to achieve high spatial resolution in sub-centimeter deep tissue phantoms named continuous-wave ultrasound-switchable fluorescence (CW-USF). The principle is to use a focused ultrasound wave to externally and locally switch on and off the fluorophore emission from a small volume (close to ultrasound focal volume). By making improvements in three aspects of this technique: excellent near-infrared USF contrast agents, a sensitive frequency-domain USF imaging system, and an effective signal processing algorithm, for the first time this study has achieved high spatial resolution (~ 900 μm) in 3-centimeter-deep tissue phantoms with high signal-to-noise ratio (SNR) and high sensitivity (3.4 picomoles of fluorophore in a volume of 68 nanoliters can be detected). We have achieved these results in both tissue-mimic phantoms and porcine muscle tissues. We have also demonstrated multi-color USF to image and distinguish two fluorophores with different wavelengths, which might be very useful for simultaneously imaging of multiple targets and observing their interactions in the future. This work has opened the door for future studies of high-resolution centimeter-deep tissue fluorescence imaging.

  18. Early- and late-stage morphea subtypes with deep tissue involvement is treatable with Abatacept (Orencia).

    Science.gov (United States)

    Adeeb, Fahd; Anjum, Shakeel; Hodnett, Philip; Kashif, Ahmad; Brady, Mary; Morrissey, Siobhan; Devlin, Joseph; Fraser, Alexander Duncan

    2017-06-01

    This case series explores the potential efficacy of Abatacept in patients presenting with morphea subtypes and deep tissue involvement. Three patients with established morphea subtypes and deep tissue involvement and with no contraindication to Abatacept were included in this prospective open-label study. The index patient was exceptionally severely affected with a mean Modified Rodnan Skin Score (MRSS) of 38/51. At baseline, whole-body MRI and skin biopsy were performed which confirmed classical deposition of dense fibrous tissue in the appropriate layer of the skin. MRSS was performed independently by three clinicians and VAS scores (10cm) were measured at baseline for Patient Global Disease Activity (PGDA), Patient Global Pain (PGP), Patient Day Pain (PDP), Patient Night Pain (PNP), and Physician Global Disease Activity (PhGDA). Patients 2 and 3 were similarly screened at baseline except for MRI. Patients were commenced on Abatacept as per body weight (10mg/kg) given intravenously with concomitant tapering dose of oral prednisolone. All three were re-assessed at 6 months and the index case was further re-assessed at 18 months. All patients tolerated the Abatacept well and showed dramatic improvement. The index patient's clinical signs and symptoms, whole-body MRI, and mean Modified Rodnan Skin Score improved dramatically from baseline by 37% at 6 months and by 74% at 18 months. There were no clinically significant adverse outcomes noted. We present three cases, one with exceptionally severe disease, which demonstrated excellent clinical response to Abatacept. Abatacept is a promising option for the treatment of severe or resistant morphea, especially in those with deep tissue involvement. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Energy-Looping Nanoparticles: Harnessing Excited-State Absorption for Deep-Tissue Imaging.

    Science.gov (United States)

    Levy, Elizabeth S; Tajon, Cheryl A; Bischof, Thomas S; Iafrati, Jillian; Fernandez-Bravo, Angel; Garfield, David J; Chamanzar, Maysamreza; Maharbiz, Michel M; Sohal, Vikaas S; Schuck, P James; Cohen, Bruce E; Chan, Emory M

    2016-09-27

    Near infrared (NIR) microscopy enables noninvasive imaging in tissue, particularly in the NIR-II spectral range (1000-1400 nm) where attenuation due to tissue scattering and absorption is minimized. Lanthanide-doped upconverting nanocrystals are promising deep-tissue imaging probes due to their photostable emission in the visible and NIR, but these materials are not efficiently excited at NIR-II wavelengths due to the dearth of lanthanide ground-state absorption transitions in this window. Here, we develop a class of lanthanide-doped imaging probes that harness an energy-looping mechanism that facilitates excitation at NIR-II wavelengths, such as 1064 nm, that are resonant with excited-state absorption transitions but not ground-state absorption. Using computational methods and combinatorial screening, we have identified Tm(3+)-doped NaYF4 nanoparticles as efficient looping systems that emit at 800 nm under continuous-wave excitation at 1064 nm. Using this benign excitation with standard confocal microscopy, energy-looping nanoparticles (ELNPs) are imaged in cultured mammalian cells and through brain tissue without autofluorescence. The 1 mm imaging depths and 2 μm feature sizes are comparable to those demonstrated by state-of-the-art multiphoton techniques, illustrating that ELNPs are a promising class of NIR probes for high-fidelity visualization in cells and tissue.

  20. Measuring surface temperature and grading pathological changes of airway tissue in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Zhao, Ran; Di, La-na; Zhao, Xiao-zhuo; Wang, Cheng; Zhang, Guo-an

    2013-06-01

    Airway tissue shows unexpected invulnerability to heated air. The mechanisms of this phenomenon are open to debate. This study was designed to measure the surface temperatures at different locations of the airway, and to explore the relationship between the tissue's surface temperature and injury severity. Twenty dogs were randomly divided into four groups, including three experimental groups (six dogs in each) to inhale heated air at 70-80 °C (group I), 150-160 °C (group II) and 310-320 °C (group III) and a control group (two dogs, only for histological observation). Injury time was 20 min. Mucosal surface temperatures of the epiglottis (point A), cricoid cartilage (point B) and lower trachea (point C) were measured. Dogs in group I-III were divided into three subgroups (two in each), to be assayed at 12, 24 and 36 h after injury, respectively. For each dog, four tissue parts (epiglottis, larynx, lower trachea and terminal bronchiole) were microscopically observed and graded according to an original pathological scoring system (score range: 0-27). Surface temperatures of the airway mucosa increased slowly to 40.60±3.29 °C, and the highest peak temperature was 48.3 °C (group III, point A). The pathological score of burned tissues was 4.12±4.94 (0.0-18.0), suggesting slight to moderate injuries. Air temperature and airway location both influenced mucosal temperature and pathological scores very significantly, and there was a very significant positive correlation between tissue temperature and injury severity. Compared to the inhalational air hyperthermia, airway surface temperature was much lower, but was still positively correlated with thermal injury severity. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  1. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

    Science.gov (United States)

    Aurora, Amit; Roe, Janet L; Corona, Benjamin T; Walters, Thomas J

    2015-10-01

    Extracellular matrix (ECM) derived scaffolds continue to be investigated for the treatment of volumetric muscle loss (VML) injuries. Clinically, ECM scaffolds have been used for lower extremity VML repair; in particular, MatriStem™, a porcine urinary bladder matrix (UBM), has shown improved functional outcomes and vascularization, but limited myogenesis. However, efficacy of the scaffold for the repair of traumatic muscle injuries has not been examined systematically. In this study, we demonstrate that the porcine UBM scaffold when used to repair a rodent gastrocnemius musculotendinous junction (MTJ) and tibialis anterior (TA) VML injury does not support muscle tissue regeneration. In the MTJ model, the scaffold was completely resorbed without tissue remodeling, suggesting that the scaffold may not be suitable for the clinical repair of muscle-tendon injuries. In the TA VML injury, the scaffold remodeled into a fibrotic tissue and showed functional improvement, but not due to muscle fiber regeneration. The inclusion of physical rehabilitation also did not improve functional response or tissue remodeling. We conclude that the porcine UBM scaffold when used to treat VML injuries may hasten the functional recovery through the mechanism of scaffold mediated functional fibrosis. Thus for appreciable muscle regeneration, repair strategies that incorporate myogenic cells, vasculogenic accelerant and a myoconductive scaffold need to be developed. Published by Elsevier Ltd.

  2. A novel radiation responsive cis-acting element regulates gene induction and mediates tissue injury

    International Nuclear Information System (INIS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi; Kuchibahtla, Jaya

    1997-01-01

    Purpose: The intracellular adhesion molecule (ICAM-1) binds and activates inflammatory cells and thereby contributes to the pathogenesis of tissue injury. To characterize a model for radiation-induction of tissue injury, we studied radiation-mediated lung injury in mice deficient in the ICAM-1 gene. To study the mechanisms of x-ray mediated ICAM induction, we studied transcriptional activation of the ICAM promoter and nuclear protein binding to the 5' untranslated region of the ICAM gene. Methods: Immunohistochemistry and immunofluorescence were used to study the histologic pattern of ICAM expression in irradiated tissue. The ICAM-1 knockout mice were bred with wild type mice to create heterozygous mice with attenuated ICAM expression. ICAM -/-, ICAM+/- and ICAM +/+ mice were treated with thoracic irradiation and lung sections were stained for leukocyte common antigen (CD45) to study inflammation. To study the mechanism of x-ray induction of ICAM, we linked the 5' untranslated region of the ICAM gene to the luciferase reporter gene and delated DNA segments from the promoter to determine which elements are required for induction. We performed electrophoretic mobility shift analysis of nuclear proteins from irradiated endothelial cells to study transcription factor activation. Results: Immunohistochemistry showed dose and time dependent increases in ICAM protein expression in irradiated lungs which was prolonged as compared to endothelial cells in vitro. The histologic pattern of ICAM expression was in the capillary endothelium and was distinct from the pattern of expression of other radiation-inducible adhesion molecules. ICAM knockout mice had no ICAM expression and no inflammatory cell accumulation in the irradiated lung. ICAM+/+ mice developed leukocyte adhesion to irradiated endothelium within hours of irradiation and radiation pneumonitis 5 to 6 weeks later. The DNA sequence between -981 and -769 (relative to start codon) contains two 16-base pair repeats, each

  3. Quantitative evaluation of deep and shallow tissue layers' contribution to fNIRS signal using multi-distance optodes and independent component analysis.

    Science.gov (United States)

    Funane, Tsukasa; Atsumori, Hirokazu; Katura, Takusige; Obata, Akiko N; Sato, Hiroki; Tanikawa, Yukari; Okada, Eiji; Kiguchi, Masashi

    2014-01-15

    To quantify the effect of absorption changes in the deep tissue (cerebral) and shallow tissue (scalp, skin) layers on functional near-infrared spectroscopy (fNIRS) signals, a method using multi-distance (MD) optodes and independent component analysis (ICA), referred to as the MD-ICA method, is proposed. In previous studies, when the signal from the shallow tissue layer (shallow signal) needs to be eliminated, it was often assumed that the shallow signal had no correlation with the signal from the deep tissue layer (deep signal). In this study, no relationship between the waveforms of deep and shallow signals is assumed, and instead, it is assumed that both signals are linear combinations of multiple signal sources, which allows the inclusion of a "shared component" (such as systemic signals) that is contained in both layers. The method also assumes that the partial optical path length of the shallow layer does not change, whereas that of the deep layer linearly increases along with the increase of the source-detector (S-D) distance. Deep- and shallow-layer contribution ratios of each independent component (IC) are calculated using the dependence of the weight of each IC on the S-D distance. Reconstruction of deep- and shallow-layer signals are performed by the sum of ICs weighted by the deep and shallow contribution ratio. Experimental validation of the principle of this technique was conducted using a dynamic phantom with two absorbing layers. Results showed that our method is effective for evaluating deep-layer contributions even if there are high correlations between deep and shallow signals. Next, we applied the method to fNIRS signals obtained on a human head with 5-, 15-, and 30-mm S-D distances during a verbal fluency task, a verbal working memory task (prefrontal area), a finger tapping task (motor area), and a tetrametric visual checker-board task (occipital area) and then estimated the deep-layer contribution ratio. To evaluate the signal separation

  4. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    Science.gov (United States)

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  5. Experimental study on tissue phantoms to understand the effect of injury and suturing on human skin mechanical properties.

    Science.gov (United States)

    Chanda, Arnab; Unnikrishnan, Vinu; Flynn, Zachary; Lackey, Kim

    2017-01-01

    Skin injuries are the most common type of injuries occurring in day-to-day life. A skin injury usually manifests itself in the form of a wound or a cut. While a shallow wound may heal by itself within a short time, deep wounds require surgical interventions such as suturing for timely healing. To date, suturing practices are based on a surgeon's experience and may vary widely from one situation to another. Understanding the mechanics of wound closure and suturing of the skin is crucial to improve clinical suturing practices and also to plan automated robotic surgeries. In the literature, phenomenological two-dimensional computational skin models have been developed to study the mechanics of wound closure. Additionally, the effect of skin pre-stress (due to the natural tension of the skin) on wound closure mechanics has been studied. However, in most of these analyses, idealistic two-dimensional skin geometries, materials and loads have been assumed, which are far from reality, and would clearly generate inaccurate quantitative results. In this work, for the first time, a biofidelic human skin tissue phantom was developed using a two-part silicone material. A wound was created on the phantom material and sutures were placed to close the wound. Uniaxial mechanical tests were carried out on the phantom specimens to study the effect of varying wound size, quantity, suture and pre-stress on the mechanical behavior of human skin. Also, the average mechanical behavior of the human skin surrogate was characterized using hyperelastic material models, in the presence of a wound and sutures. To date, such a robust experimental study on the effect of injury and sutures on human skin mechanics has not been attempted. The results of this novel investigation will provide important guidelines for surgical planning and validation of results from computational models in the future.

  6. Applications of two-photon fluorescence microscopy in deep-tissue imaging

    Science.gov (United States)

    Dong, Chen-Yuan; Yu, Betty; Hsu, Lily L.; Kaplan, Peter D.; Blankschstein, D.; Langer, Robert; So, Peter T. C.

    2000-07-01

    Based on the non-linear excitation of fluorescence molecules, two-photon fluorescence microscopy has become a significant new tool for biological imaging. The point-like excitation characteristic of this technique enhances image quality by the virtual elimination of off-focal fluorescence. Furthermore, sample photodamage is greatly reduced because fluorescence excitation is limited to the focal region. For deep tissue imaging, two-photon microscopy has the additional benefit in the greatly improved imaging depth penetration. Since the near- infrared laser sources used in two-photon microscopy scatter less than their UV/glue-green counterparts, in-depth imaging of highly scattering specimen can be greatly improved. In this work, we will present data characterizing both the imaging characteristics (point-spread-functions) and tissue samples (skin) images using this novel technology. In particular, we will demonstrate how blind deconvolution can be used further improve two-photon image quality and how this technique can be used to study mechanisms of chemically-enhanced, transdermal drug delivery.

  7. Convective transport of highly plasma protein bound drugs facilitates direct penetration into deep tissues after topical application

    Science.gov (United States)

    Dancik, Yuri; Anissimov, Yuri G; Jepps, Owen G; Roberts, Michael S

    2012-01-01

    AIMS To relate the varying dermal, subcutaneous and muscle microdialysate concentrations found in man after topical application to the nature of the drug applied and to the underlying physiology. METHODS We developed a physiologically based pharmacokinetic model in which transport to deeper tissues was determined by tissue diffusion, blood, lymphatic and intersitial flow transport and drug properties. The model was applied to interpret published human microdialysis data, estimated in vitro dermal diffusion and protein binding affinity of drugs that have been previously applied topically in vivo and measured in deep cutaneous tissues over time. RESULTS Deeper tissue microdialysis concentrations for various drugs in vivo vary widely. Here, we show that carriage by the blood to the deeper tissues below topical application sites facilitates the transport of highly plasma protein bound drugs that penetrate the skin, leading to rapid and significant concentrations in those tissues. Hence, the fractional concentration for the highly plasma protein bound diclofenac in deeper tissues is 0.79 times that in a probe 4.5 mm below a superficial probe whereas the corresponding fractional concentration for the poorly protein bound nicotine is 0.02. Their corresponding estimated in vivo lag times for appearance of the drugs in the deeper probes were 1.1 min for diclofenac and 30 min for nicotine. CONCLUSIONS Poorly plasma protein bound drugs are mainly transported to deeper tissues after topical application by tissue diffusion whereas the transport of highly plasma protein bound drugs is additionally facilitated by convective blood, lymphatic and interstitial transport to deep tissues. PMID:21999217

  8. Endocrine factors influencing radiation injury to central nervous tissue

    International Nuclear Information System (INIS)

    Aristizabal, S.A.; Boone, M.L.; Laguna, J.F.

    1979-01-01

    Corticosteroids have been shown experimentally to lower the tolerance of various normal tissues (lung, kidney, intestine) to irradiation. Pre-existing hypertension also modified the effect of irradiation on the rat spinal cord and brain. Hypercorticism and hypertension co-exist in patients with Cushing's disease. Although these patients are often approached therapeutically by irradiation, no reports concerning differences in the radiation sensitivity of nervous tissue between normal subjects (non-functioning pituitary adenomas) and those with hormonal imbalance and/or hypertension appear to be available. A comprehensive review of the literature revealed 14 patients with radiation damage to brain or to optic pathways following moderate doses for pituitary adenomas. Seven of the 14 patients (50%) had Cushing's disease. This apparent higher incidence of radiation injury is significant if we consider that less than 5% of all patients receiving irradiation for pituitary adenomas have Cushing's disease

  9. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch

    Directory of Open Access Journals (Sweden)

    David R Lionberger

    2010-11-01

    Full Text Available David R Lionberger1, Michael J Brennan21Southwest Orthopedic Group, Houston, TX, USA; 2Department of Medicine, Bridgeport Hospital, Bridgeport, CT, USAAbstract: The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs, diclofenac, and DETP in patients with acute soft tissue injuries was included. Relevant literature was identified on MEDLINE using the search terms topical NSAIDs, diclofenac, diclofenac epolamine, acute pain, sports injury, soft tissue injury, strain, sprain, and contusion, and from citations in retrieved articles covering the years 1978–2008. Review of published, randomized clinical trials and meta-analyses shows that topical NSAIDs are significantly more effective than placebo in relieving acute pain; the pooled average relative benefit was 1.7 (95% confidence interval, 1.5–1.9. In a limited number of comparisons, topical and oral NSAIDs provided comparable pain relief, but the use of topical agents produced lower plasma drug concentrations and fewer systemic adverse events (AEs. The physical–chemical properties of diclofenac epolamine make it well suited for topical use. In patients with acute soft tissue injuries treated with DETP, clinical data report an analgesic benefit within hours of the first application, and significant pain relief relative to placebo within 3 days. Moreover, DETP displayed tolerability comparable with placebo; the most common AEs were pruritus and other application site reactions. Review of published literature suggests that DETP is generally safe and well tolerated, clinically efficacious, and a rational treatment option for patients experiencing acute pain associated with strains, sprains, and contusions, and other localized painful conditions

  10. Effects of mesenchymal stem cells on thymus tissue injury induced by ionizing radiation in mice

    International Nuclear Information System (INIS)

    Wang Hongyan; Qi Yali; Gong Shouliang; Song Xiangfu; Liu Liping; Chen Yubing

    2009-01-01

    Objective: To observe the migration,colonization and repairing effects of marrow mesenchymal stem cells (MSCs) on thymus tissue injury induced by ionizing radiation in mice. Methods: MSCs of C57BL/6 mice were isolated, purified and cultivated in vitro. Their migration and colorization were observed with laser confocal microscopy 1, 5 and 10 d after DAPI labeled. MSCs were injected into the thymus tissue of mice through tail vein. The model of thymus tissue injury induced by whole-body X-irradiation was established. The mice were divided into four groups: normal, irradiation, irradiation+saline, and irradiation+MSCs groups. The apoptosis was detected by flow cytometry and the repairing effect of MSCs on thymus tissue injury was observed by histological method 3 months later. Results: The occurrence of MSCs in the thymus was observed 1 d after MSCs injection, the diffusion of MSCs in the thymus appeared 5 d later, and widely dispersed 10 d later. The apoptotic rate of thymocytes in irradiation group was higher than that in normal (P<0.05) and was lower than that in MSCs group (P<0.05). The structures of cortex and medulla of thymus were clear in mice in normal group, there were a large number of lymphocytes in the cortex and small number of lymphocytes in the medulla. The structures of cortex and medulla of thymus were unclear in mice in both irradiation, irradiation and saline groups. The lymphocytes in thymus showed extensive coagulation necrosis. There were remnants or newborn lymphoid tissue in the cortex and medulla in mice in irradiation+MSCs groups. Conclusion: MSCs can be rapidly enriched in thymus tissue and promote regeneration and repair of damaged thymus. (authors)

  11. Emergency repair of upper extremity large soft tissue and vascular injuries with flow-through anterolateral thigh free flaps.

    Science.gov (United States)

    Zhan, Yi; Fu, Guo; Zhou, Xiang; He, Bo; Yan, Li-Wei; Zhu, Qing-Tang; Gu, Li-Qiang; Liu, Xiao-Lin; Qi, Jian

    2017-12-01

    Complex extremity trauma commonly involves both soft tissue and vascular injuries. Traditional two-stage surgical repair may delay rehabilitation and functional recovery, as well as increase the risk of infections. We report a single-stage reconstructive surgical method that repairs soft tissue defects and vascular injuries with flow-through free flaps to improve functional outcomes. Between March 2010 and December 2016 in our hospital, 5 patients with severe upper extremity trauma received single-stage reconstructive surgery, in which a flow-through anterolateral thigh free flap was applied to repair soft tissue defects and vascular injuries simultaneously. Cases of injured artery were reconstructed with the distal trunk of the descending branch of the lateral circumflex femoral artery. A segment of adjacent vein was used if there was a second artery injury. Patients were followed to evaluate their functional recoveries, and received computed tomography angiography examinations to assess peripheral circulation. Two patients had post-operative thumb necrosis; one required amputation, and the other was healed after debridement and abdominal pedicle flap repair. The other 3 patients had no major complications (infection, necrosis) to the recipient or donor sites after surgery. All the patients had achieved satisfactory functional recovery by the end of the follow-up period. Computed tomography angiography showed adequate circulation in the peripheral vessels. The success of these cases shows that one-step reconstructive surgery with flow-through anterolateral thigh free flaps can be a safe and effective treatment option for patients with complex upper extremity trauma with soft tissue defects and vascular injuries. Copyright © 2017. Published by Elsevier Ltd.

  12. Prevention of deep venous thrombosis in patients with acute spinal cord injuries: use of rotating treatment tables

    International Nuclear Information System (INIS)

    Becker, D.M.; Gonzalez, M.; Gentili, A.; Eismont, F.; Green, B.A.

    1987-01-01

    A randomized clinical trial of 15 patients with acute spinal cord injuries was performed to test the hypothesis that rotating treatment tables prevent deep venous thrombosis in this population. Four of 5 control (nonrotated) patients developed distal and proximal thrombi, assessed by 125 I fibrinogen leg scans and impedance plethysmography. In comparison, only 1 of 10 treated (rotated) patients developed both distal and proximal thrombosis. These results suggest but do not prove that rotating treatment tables prevent the development of proximal deep venous thrombosis in spinal cord-injured patients. Larger clinical trials are needed to confirm this heretofore undocumented benefit of rotating treatment tables

  13. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters.

    Science.gov (United States)

    Loubani, Osama M; Green, Robert S

    2015-06-01

    The aim of this study was to collect and describe all published reports of local tissue injury or extravasation from vasopressor administration via either peripheral intravenous (IV) or central venous catheter. A systematic search of Medline, Embase, and Cochrane databases was performed from inception through January 2014 for reports of adults who received vasopressor intravenously via peripheral IV or central venous catheter for a therapeutic purpose. We included primary studies or case reports of vasopressor administration that resulted in local tissue injury or extravasation of vasopressor solution. Eighty-five articles with 270 patients met all inclusion criteria. A total of 325 separate local tissue injury and extravasation events were identified, with 318 events resulting from peripheral vasopressor administration and 7 events resulting from central administration. There were 204 local tissue injury events from peripheral administration of vasopressors, with an average duration of infusion of 55.9 hours (±68.1), median time of 24 hours, and range of 0.08 to 528 hours. In most of these events (174/204, 85.3%), the infusion site was located distal to the antecubital or popliteal fossae. Published data on tissue injury or extravasation from vasopressor administration via peripheral IVs are derived mainly from case reports. Further study is warranted to clarify the safety of vasopressor administration via peripheral IVs. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Single-stage soft tissue reconstruction and orbital fracture repair for complex facial injuries.

    Science.gov (United States)

    Wu, Peng Sen; Matoo, Reshvin; Sun, Hong; Song, Li Yuan; Kikkawa, Don O; Lu, Wei

    2017-02-01

    Orbital fractures with open periorbital wounds cause significant morbidity. Timing of debridement with fracture repair and soft tissue reconstruction is controversial. This study focuses on the efficacy of early single-stage repair in combined bony and soft tissue injuries. Retrospective review. Twenty-three patients with combined open soft tissue wounds and orbital fractures were studied for single-stage orbital reconstruction and periorbital soft tissue repair. Inclusion criteria were open soft tissue wounds with clinical and radiographic evidence of orbital fractures and repair performed within 48 h after injury. Surgical complications and reconstructive outcomes were assessed over 6 months. The main outcome measures were enophthalmos, pre- and post-CT imaging of orbits, scar evaluation, presence of diplopia, and eyelid position. Enophthalmos was corrected in 16/19 cases and improved in 3/19 cases. 3D reconstruction of CT images showed markedly improved orbital alignment with objective measurements of the optic foramen to cornea distance (mm) in reconstructed orbits relative to intact orbits of 0.66, 95% confidence interval [CI] (lower 0.33, upper 0.99) mm. The mean baseline of Stony Brook Scar Evaluation Scale was 0.6, 95%CI (0.30-0.92), and for 6 months, the mean score was 3.4, 95%CI (3.05-3.73). Residual diplopia in secondary gazes was present in two patients; one patient had ectropion. Complications included one case of local wound infection. An early single-stage repair of combined soft tissue and orbital fractures yields satisfactory functional and aesthetic outcomes. Complications are low and likely related to trauma severity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  15. Gustatory tissue injury in man: radiation dose response relationships and mechanisms of taste loss

    International Nuclear Information System (INIS)

    Mossman, K.L.

    1986-01-01

    In this report dose response data for gustatory tissue damage in patients given total radiation doses ranging from 3000 to 6000 cGy are presented. In order to evaluate direct radiation injury to gustatory tissues as a mechanism of taste loss, measurements of damage to specific taste structures in bovine and murine systems following radiation exposure in the clinical range are correlated to taste impairment observed in radiotherapy patients. (author)

  16. Experience with wound VAC and delayed primary closure of contaminated soft tissue injuries in Iraq.

    Science.gov (United States)

    Leininger, Brian E; Rasmussen, Todd E; Smith, David L; Jenkins, Donald H; Coppola, Christopher

    2006-11-01

    Wartime missile injuries are frequently high-energy wounds that devitalize and contaminate tissue, with high risk for infection and wound complications. Debridement, irrigation, and closure by secondary intention are fundamental principles for the management of these injuries. However, closure by secondary intention was impractical in Iraqi patients. Therefore, wounds were closed definitively before discharge in all Iraqi patients treated for such injures at our hospital. A novel wound management protocol was developed to facilitate this practice, and patient outcomes were tracked. This article describes that protocol and discusses the outcomes in a series of 88 wounds managed with it. High-energy injuries were treated with rapid aggressive debridement and pulsatile lavage, then covered with negative pressure (vacuum-assisted closure [VAC]) dressings. Patients underwent serial operative irrigation and debridement until wounds appeared clean to gross inspection, at which time they were closed primarily. Patient treatment and outcome data were recorded in a prospectively updated database. Treatment and outcomes data from September 2004 through May 2005 were analyzed retrospectively. There were 88 high-energy soft tissue wounds identified in 77 patients. Surprisingly, for this cohort of patients the wound infection rate was 0% and the overall wound complication rate was 0%. This series of 88 cases is the first report of the use of a negative pressure dressing (wound VAC) as part of the definitive management of high-energy soft tissue wounds in a deployed wartime environment. Our experience with these patients suggests that conventional wound management doctrine may be improved with the wound VAC, resulting in earlier more reliable primary closure of wartime injuries.

  17. Effect of Extracorporeal Shock Wave Treatment on Deep Partial-Thickness Burn Injury in Rats: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Gabriel Djedovic

    2014-01-01

    Full Text Available Extracorporeal shock wave therapy (ESWT enhances tissue vascularization and neoangiogenesis. Recent animal studies showed improved soft tissue regeneration using ESWT. In most cases, deep partial-thickness burns require skin grafting; the outcome is often unsatisfactory in function and aesthetic appearance. The aim of this study was to demonstrate the effect of ESWT on skin regeneration after deep partial-thickness burns. Under general anesthesia, two standardized deep partial-thickness burns were induced on the back of 30 male Wistar rats. Immediately after the burn, ESWT was given to rats of group 1 (N=15, but not to group 2 (N=15. On days 5, 10, and 15, five rats of each group were analyzed. Reepithelialization rate was defined, perfusion units were measured, and histological analysis was performed. Digital photography was used for visual documentation. A wound score system was used. ESWT enhanced the percentage of wound closure in group 1 as compared to group 2 (P<0.05. The reepithelialization rate was improved significantly on day 15 (P<0.05. The wound score showed a significant increase in the ESWT group. ESWT improves skin regeneration of deep partial-thickness burns in rats. It may be a suitable and cost effective treatment alternative in this type of burn wounds in the future.

  18. Effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    WANG Qiong; LI Ai-lin; ZHI Da-shi; HUANG Hui-ling

    2007-01-01

    Objective:To study the effect of mild hypothermia on glucose metabolism and glycerol of brain tissue in patients with severe traumatic brain injury (STBI) using clinical microdialysis.Methods: Thirty-one patients with STBI ( GCS ≤8) were randomly divided into hypothermic group (Group A) and control group (Group B). Microdialysis catheters were inserted into the cerebral cortex of perilesional and normal brain tissue. All samples were analyzed using CMA microdialysis analyzer.Results: In comparison with the control group, lactate/glucose ratio ( L/G) , lactate/pyruvate ratio ( L/P) and glycerol (Gly) in perilensional tissue were significantly decreased; L/P in normal brain tissue was significantly decreased. In control group, L/G, L/P and Gly in perilensional tissue were higher than that in normal brain tissue. In the hypothermic group, L/P in perilensional tissue was higher than that in relative normal brain.Conclusions: Mild hypothermia protects brain tissues by decreasing L/G, L/P and Gly in perilensional tissue and L/P in "normal brain" tissues. The energy crisis and membrane phospholipid degradation in perilensional tissue are easier to happen after traumatic brain injury, and mild hypothermia protects brain better in perilensional tissue than in normal brain tissue.

  19. Prolonged superficial local cryotherapy attenuates microcirculatory impairment, regional inflammation, and muscle necrosis after closed soft tissue injury in rats.

    Science.gov (United States)

    Schaser, Klaus-Dieter; Disch, Alexander C; Stover, John F; Lauffer, Annette; Bail, Herman J; Mittlmeier, Thomas

    2007-01-01

    Closed soft tissue injury induces progressive microvascular dysfunction and regional inflammation. The authors tested the hypothesis that adverse trauma-induced effects can be reduced by local cooling. While superficial cooling reduces swelling, pain, and cellular oxygen demand, the effects of cryotherapy on posttraumatic microcirculation are incompletely understood. Controlled laboratory study. After a standardized closed soft tissue injury to the left tibial compartment, male rats were randomly subjected to percutaneous perfusion for 6 hours with 0.9% NaCL (controls; room temperature) or cold NaCL (cryotherapy; 8 degrees C) (n = 7 per group). Uninjured rats served as shams (n = 7). Microcirculatory changes and leukocyte adherence were determined by intravital microscopy. Intramuscular pressure was measured, and invasion of granulocytes and macrophages was assessed by immunohistochemistry. Edema and tissue damage was quantified by gravimetry and decreased desmin staining. Closed soft tissue injury significantly decreased functional capillary density (240 +/- 12 cm(-1)); increased microvascular permeability (0.75 +/- 0.03), endothelial leukocyte adherence (995 +/- 77/cm(2)), granulocyte (182.0 +/- 25.5/mm(2)) and macrophage infiltration, edema formation, and myonecrosis (ratio: 2.95 +/- 0.45) within the left extensor digitorum longus muscle. Cryotherapy for 6 hours significantly restored diminished functional capillary density (393 +/- 35), markedly decreased elevated intramuscular pressure, reduced the number of adhering (462 +/- 188/cm(2)) and invading granulocytes (119 +/- 28), and attenuated tissue damage (ratio: 1.7 +/- 0.17). The hypothesis that prolonged cooling reduces posttraumatic microvascular dysfunction, inflammation, and structural impairment was confirmed. These results may have therapeutic implications as cryotherapy after closed soft tissue injury is a valuable therapeutic approach to improve nutritive perfusion and attenuate leukocyte

  20. Finite element model to study temperature distribution in skin and deep tissues of human limbs.

    Science.gov (United States)

    Agrawal, Mamta; Pardasani, K R

    2016-12-01

    The temperature of body tissues is viewed as an indicator of tissue response in clinical applications since ancient times. The tissue temperature depends on various physical and physiological parameters like blood flow, metabolic heat generation, thermal conductivity of tissues, shape and size of organs etc. In this paper a finite element model has been proposed to study temperature distribution in skin and deep tissues of human limbs. The geometry of human limb is taken as elliptical tapered shape. It is assumed that outer surface of the limb is exposed to the environment. The appropriate boundary conditions have been framed based on physical conditions of the problem. The model has been developed for a three dimensional steady state case. Hexahedral circular sectoral elements are used to discretize the region. The results have been computed to obtain temperature profiles and study the relation of tissue temperature with the parameters like atmospheric temperature, rate of evaporation, thickness of tissues layers and shape of the limb. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigation of elemental changes in brain tissues following excitotoxic injury

    International Nuclear Information System (INIS)

    Siegele, Rainer; Howell, Nicholas R.; Callaghan, Paul D.; Pastuovic, Zeljko

    2013-01-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca +2 cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca +2 cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma

  2. Investigation of elemental changes in brain tissues following excitotoxic injury

    Energy Technology Data Exchange (ETDEWEB)

    Siegele, Rainer, E-mail: rns@ansto.gov.au [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Howell, Nicholas R.; Callaghan, Paul D. [Life Sciences, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Pastuovic, Zeljko [Institute for Environmental Research, ANSTO, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2013-07-01

    Recently the ANSTO heavy ion microprobe has been used for elemental mapping of thin brain tissue sections. The fact that a very small portion of the proton energy is used for X-ray excitation combined with small variations of the major element concentrations makes μ-PIXE imaging and GeoPIXE analysis a challenging task. Excitotoxic brain injury underlies the pathology of stroke and various neurodegenerative disorders. Large fluxes in Ca{sup +2} cytosolic concentrations are a key feature of the initiation of this pathophysiological process. In order to understand if these modifications are associated with changes in the elemental composition, several brain sections have been mapped with μ-PIXE. Increases in Ca{sup +2} cytosolic concentrations were indicative of the pathophysiological process continuing 1 week after an initiating neural insult. We were able to measure significant variations in K and Ca concentration distribution across investigated brain tissue. These variations correlate very well with physiological changes visible in the brain tissue. Moreover, the obtained μ-PIXE results clearly demonstrate that the elemental composition changes significantly correlate with brain drauma.

  3. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch.

    Science.gov (United States)

    Lionberger, David R; Brennan, Michael J

    2010-11-10

    The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP) in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac, and DETP in patients with acute soft tissue injuries was included. Relevant literature was identified on MEDLINE using the search terms topical NSAIDs, diclofenac, diclofenac epolamine, acute pain, sports injury, soft tissue injury, strain, sprain, and contusion, and from citations in retrieved articles covering the years 1978-2008. Review of published, randomized clinical trials and meta-analyses shows that topical NSAIDs are significantly more effective than placebo in relieving acute pain; the pooled average relative benefit was 1.7 (95% confidence interval, 1.5-1.9). In a limited number of comparisons, topical and oral NSAIDs provided comparable pain relief, but the use of topical agents produced lower plasma drug concentrations and fewer systemic adverse events (AEs). The physical-chemical properties of diclofenac epolamine make it well suited for topical use. In patients with acute soft tissue injuries treated with DETP, clinical data report an analgesic benefit within hours of the first application, and significant pain relief relative to placebo within 3 days. Moreover, DETP displayed tolerability comparable with placebo; the most common AEs were pruritus and other application site reactions. Review of published literature suggests that DETP is generally safe and well tolerated, clinically efficacious, and a rational treatment option for patients experiencing acute pain associated with strains, sprains, and contusions, and other localized painful conditions.

  4. Cell density signal protein suitable for treatment of connective tissue injuries and defects

    Science.gov (United States)

    Schwarz, Richard I.

    2002-08-13

    Identification, isolation and partial sequencing of a cell density protein produced by fibroblastic cells. The cell density signal protein comprising a 14 amino acid peptide or a fragment, variant, mutant or analog thereof, the deduced cDNA sequence from the 14 amino acid peptide, a recombinant protein, protein and peptide-specific antibodies, and the use of the peptide and peptide-specific antibodies as therapeutic agents for regulation of cell differentiation and proliferation. A method for treatment and repair of connective tissue and tendon injuries, collagen deficiency, and connective tissue defects.

  5. Effect of ketamine on aquaporin-4 expression and neuronal apoptosis in brain tissues following brain injury in rats

    Institute of Scientific and Technical Information of China (English)

    Zangong Zhou; Xiangyu Ji; Li Song; Jianfang Song; Shiduan Wang; Yanwei Yin

    2006-01-01

    BACKGROUND: Aquaporin-4 (AQP-4) is closely related to the formation of brain edema. Neuronal apoptosis plays an important part in the conversion of swelled neuron following traumatic brain injury. At present, the studies on the protective effect of ketamine on brain have involved in its effect on aquaporin-4 expression and neuronal apoptosis in the brain tissues following brain injury in rats.OBJECTIVE: To observe the effect of ketamine on AQP-4 expression and neuronal apoptosis in the brain tissue following rat brain injury, and analyze the time-dependence of ketamine in the treatment of brain injury.DESIGN: Randomized grouping design, controlled animal trial.SETTING: Department of Anesthesiology, the Medical School Hospital of Qingdao University.MATERIALS: Totally 150 rats of clean grade, aged 3 months, were involved and randomized into control group and ketamine-treated group, with 75 rats in each. Each group was divided into 5 subgroups separately at 6,12, 24, 48 and 72 hours after injury, with 15 rats at each time point. Main instruments and reagents:homemade beat machine, ketamine hydrochloride (Hengrui Pharmaceutical Factory, Jiangsu), rabbit anti-rat AQP-4 polyclonal antibody, SABC immunohistochemical reagent kit and TUNEL reagent kit (Boster Co.,Ltd.,Wuhan).METHODS: This trial was carried out in the Institute of Cerebrovascular Disease, Medical College of Qingdao University during March 2005 to February 2006. A weight-dropping rat model of brain injury was created with Feeney method. The rats in the ketamine-treated group were intraperitoneally administered with 50 g/L ketamine (120 mg/kg) one hour after injury, but ketamine was replaced by normal saline in the control group. In each subgroup, the water content of cerebral hemisphere was measured in 5 rats chosen randomly. The left 10 rats in each subgroup were transcardiacally perfused with ketamine, then the brain tissue was made into paraffin sections and stained by haematoxylin and eosin. Neuronal

  6. Histomorphology of the Olfactory Mucosa and Spinal Tissue Sparing Following Transplantation in the Partial Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    H Delaviz

    2011-01-01

    Full Text Available Introduction & Objective: Nowadays, cellular and tissues transplant has become the focus of attention for spinal cord injury. It has been shown olfactory nerve cells or olfactory mucosa whi have more efficient on nervous tissue repair and they have been more studied in experimental study. Furthermore, they were used in a few clinical centers for spinal defect. But mucosa tissue and spinal tissue have different structure and there is doubt about the integration of mucosa tissue in nervous tissue. Thus, in this research the morphology and the effect of the fetal olfactory mucosa (FOM on spinal tissue sparing were studied after transplanted into the spinal cord hemisection in rats. Materials & Methods: This experimental study was conducted at Iran University of Medical Sciences in 2008. Of thirty eight female Sprague-Dawley (200-250g rats twenty- eight were spinally hemisected at the L1 spinal level and were randomized into two groups of 14 animals. Treatment group received FOM graft and the control group received fetal respiratory mucosa graft (FRM. The other animals received surgical procedure without spinal cord injury as a sham group. The morphology of the transplant region and spinal tissue sparing was examined histological eight weeks after transplantation. The collected data was analyzed by the SPSS software using ANOVA and the morphology of the transplant region were studied by light microscope. Results: Histological study showed that the both mucosa tissues could not integrate with the parenchyma of the spinal tissue. Although the FOM were fused more than the FRM with the host tissue but clear boundary was seen at the graft–host interface. The mean spinal tissue sparing of the treatment group increased a little compare to the control but a significant difference was not apparent whereas, the spinal tissue sparing in treatment and control groups compare to the sham group decreased significantly (P < 0.05. Conclusion: Transplantation of

  7. Carpal tunnel syndrome due to an atypical deep soft tissue leiomyoma: The risk of misdiagnosis and mismanagement

    Directory of Open Access Journals (Sweden)

    Dimitriou Christos G

    2007-08-01

    Full Text Available Abstract Background Leiomyomas of the deep soft tissue are quite uncommon and occur even more rarely in upper extremity. Case presentation A 32-year old manual laborer man presented with a two-year history of numbness, tingling and burning pain in the palmar surface of the left hand and fingers. His medical history was unremarkable and no trauma episode was reported. According to the clinical examination and the result of median nerve conduction study (NCS the diagnosis of carpal tunnel syndrome was established. Operative release of the transverse carpal ligament was subsequently performed but the patient experienced only temporary relief of his symptoms. MRI examination revealed a deep palmary located mass with well-defined margins and ovoid shape. Intraoperatively, the tumor was in continuity with the flexor digitorum superficialis tendon of the middle finger causing substantial compression to median nerve. Histopathological findings of the resected mass were consistent with leiomyoma. After two years the patient was pain-free without signs of tumor recurrence. Conclusion Despite the fact that reports on deep soft tissue leiomyoma are exceptional, this tumor had to be considered as differential diagnosis in painful non-traumatic hand syndromes especially in young patients.

  8. Angiokeratoma circumscriptum naeviforme with soft tissue hypertrophy and deep venous malformation: A variant of Klippel-Trenaunay syndrome?

    OpenAIRE

    Wankhade, Vaishali; Singh, Rajesh; Sadhwani, Venus; Kodate, Purnima; Disawal, Amit

    2014-01-01

    Klippel-Trenaunay syndrome (KTS) is a cutaneous capillary malformation on a limb in association with soft tissue swelling with or without bony hypertrophy and atypical varicosity. The capillary malformation associated with KTS is port wine stain. Angiokeratoma circumscriptum naeviforme (ACN) is a congenital variant of angiokeratoma commonly present on the lower limb as a hyperkeratotic plaque. ACN is rarely associated with KTS. We report a case of ACN with soft tissue hypertrophy and deep ven...

  9. The experimental study of radiation injury on bile duct and liver tissue

    International Nuclear Information System (INIS)

    Cao Guiwen; Wang Bin; Sun Yequan; Shao Xueye; Ning Houfa; Sui Shouguang; Wang Xiuchun; Bai Xuming

    2007-01-01

    Objective: To investigate the safety, acceptance and the effective extent of 192 Ir-internal irradiation, providing theoretical guidelines for HC. Methods: Sixteen male healthy hybrid dogs enrolled in the experiment were divided into 4 groups of 4 each. The brachytherapy applicator was introduced from gall bladder into the convergence of cystic duct with common hepatic duct during the operation and a small chip of 1 cm 3 liver tissue was cut off and taken for control later on. The animals in group A-D were irradiated by 192 Ir-internal irradiation with 30 Gy, 40 Gy, 50 Gy arid 60 Gy at the correlative dose points respectively. Animals were put to death after 10 days subsequently, with sampling specimens obtained from radiation cystic duct and the in between liver tissue with the distant cystic duct. The radiation injury of the cystic duct and liver tissue near bile ducts were observed and studied by light microscope and transmission election microscope. Results: By the limit of the safest endurance dose(50 Gy) of Bile duct, unreversed injury of the nuclei of liver cells occurred at 0 to 15 mm from bile duct revealed by transmission electron microscope and light microscope. The whole biliary duct wall would be undergone necrosis with irradiation dose over 60 Gy. Conclusions: Normal bile duct possesses good endurance to 192 Ir-internal irradiation. Within the safest endurance limit of 50 Gy the effective irradiation field could reach 15 mm from the involved bile duct. (authors)

  10. Spreading epidural hematoma and deep subcutaneous edema: indirect MRI signs of posterior ligamentous complex injury in thoracolumbar burst fractures

    International Nuclear Information System (INIS)

    Kim, Na Ra; Hong, Sung Hwan; Choi, Ja-Young; Myung, Jae Sung; Chang, Bong-Soon; Lee, Joon Woo; Kang, Heung Sik; Moon, Sung Gyu

    2010-01-01

    The purpose of this study was to evaluate the diagnostic value of a spreading epidural hematoma (SEH) and deep subcutaneous edema (DSE) as indirect signs of posterior ligamentous complex (PLC) injuries on MR imaging of thoracolumbar burst fractures. We retrospectively reviewed spinal MR images of 43 patients with thoracolumbar burst fractures: 17 patients with PLC injuries (study group) and 26 without PLC injuries (control group). An SEH was defined as a hemorrhagic infiltration into the anterior or posterior epidural space that spread along more than three vertebrae including the level of the fracture. A DSE was regarded as a fluid-like signal lesion in the deep subcutaneous layer of the back, and its epicenter was at the burst fracture level. The frequency of the SEH/DSE in the two groups was analyzed. In addition, the association between each sign and the degree of vertebral collapse, the severity of central canal compromise, and surgical decisions were analyzed. Magnetic resonance images showed an SEH in 20 out of 43 patients (46%) and a DSE in 17 (40%). The SEH and DSE were more commonly seen in the study group with PLC injuries (SEH, 15 out of 17 patients, 80%; DSE, 16 out of 17 patients, 94%) than in the control group without PLC injuries (SEH, 5 out of 26, 19%; DSE, 1 out of 26, 4%) (P <0.0001). The SEH and DSE were significantly associated with surgical management decisions (17 out of 20 patients with SEH, 85%, vs 8 out of the 23 without SEH, 35%, P =0.002; 15 out of 17 with DSE, 88%, vs 10 out of 26 without DSE, 38%, P =0.002). The SEH and DSE did not correlate with the degree of vertebral collapse or the severity of central canal compromise. The SEH and DSE may be useful secondary MR signs of posterior ligamentous complex injury in thoracolumbar burst fractures. (orig.)

  11. An ex vivo spinal cord injury model to study ependymal cells in adult mouse tissue.

    Science.gov (United States)

    Fernandez-Zafra, Teresa; Codeluppi, Simone; Uhlén, Per

    2017-08-15

    Traumatic spinal cord injury is characterized by an initial cell loss that is followed by a concerted cellular response in an attempt to restore the damaged tissue. Nevertheless, little is known about the signaling mechanisms governing the cellular response to injury. Here, we have established an adult ex vivo system that exhibits multiple hallmarks of spinal cord injury and allows the study of complex processes that are difficult to address using animal models. We have characterized the ependymal cell response to injury in this model system and found that ependymal cells can become activated, proliferate, migrate out of the central canal lining and differentiate in a manner resembling the in vivo situation. Moreover, we show that these cells respond to external adenosine triphosphate and exhibit spontaneous Ca 2+ activity, processes that may play a significant role in the regulation of their response to spinal cord injury. This model provides an attractive tool to deepen our understanding of the ependymal cell response after spinal cord injury, which may contribute to the development of new treatment options for spinal cord injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The iliac wing sign: An indicator of the presence of bone and/or soft-tissue injury of the pelvis and hips

    Energy Technology Data Exchange (ETDEWEB)

    Kakigi, Takahide, E-mail: t.a.kakigi@dance.ocn.ne.jp [Department of Radiology, Saiseikai Ibaraki Hospital, 2-1-45 Mitsukeyama, Ibaraki, Osaka 567-0035 (Japan); Hosono, Makoto, E-mail: hosono@med.kindai.ac.jp [Department of Radiology, Kinki University School of Medicine, 377-2 Ohno-higashi, Osakasayama, Osaka 589-8511 (Japan); Shimono, Taro [Department of Radiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585 (Japan); Hiraoka, Taizo; Nishimura, Kazumasa [Department of Radiology, Saiseikai Ibaraki Hospital, 2-1-45 Mitsukeyama, Ibaraki, Osaka 567-0035 (Japan)

    2012-09-15

    Purpose: To prospectively evaluate the feasibility of using the “iliac wing sign (IWS)” as an indicator of bone and/or soft-tissue injury of the pelvis and hips on magnetic resonance (MR) imaging. IWS means edema of the iliacus muscle attachment entering the iliac wing that is visualized as a linear high signal intensity on fat-suppressed T2-weighted MR images. Methods: Consecutive 106 patients who complained of hip pain were enrolled in this study. We evaluated the correlation between IWS and bone and/or soft-tissue injury of the pelvis and hips using Fisher's exact test. Further, performance parameters of sensitivity, specificity, accuracy, the positive predictive value (PPV), and negative predictive value (NPV) of IWS were calculated. Results: Thirty-eight of the 106 (36%) patients had bone and/or soft-tissue injury. Twenty-seven of these 38 (71%) patients with injury showed a positive IWS, while only 11 of 68 (16%) patients without injury showed a positive IWS (p < .0001). IWS, thus, yielded a sensitivity of 71%, specificity of 84%, accuracy of 79%, positive predictive value (PPV) of 71%, and negative predictive value (NPV) of 84%. Conclusion: In cases with a positive IWS, the careful interpretation of MR images is needed because injury presence is highly likely, as suggested by the relatively high sensitivity and PPV. IWS absence may mean a low probability of injury because of the high specificity and NPV.

  13. Giant Post-traumatic Cyst after Motorcycle Injury: A Case Report with Review of the Pathogenesis

    Directory of Open Access Journals (Sweden)

    A. Yilmaz

    2013-01-01

    Full Text Available Post-traumatic cysts of soft tissue usually occur at the junction of the subcutaneous fat and deep fascia, most often filled with serosanguinous fluid and lined with fibrous tissue. It appears as complication after severe injuries when crushing and shearing forces cause separation of the skin and subcutaneous fat from the deep fascia and muscle, creating a cavity filled with hematoma and liquefied fat. This rare condition calls Morel-Lavallee lesion, which was first described by this French physician in 1853 (Sterling et al., 1977; Tull and Borrelli, 2003. Magnetic resonance imaging is the modality of choice for detection and revealing the exact size and location of these lesions. The best method of treatment is surgical excision with complete resection.

  14. One Stage Reconstruction of Skull Exposed by Burn Injury Using a Tissue Expansion Technique

    Directory of Open Access Journals (Sweden)

    Jae Young Cho

    2012-03-01

    Full Text Available BackgroundAn area of the skull exposed by burn injury has been covered by various methods including local flap, skin graft, or free flap surgery. Each method has disadvantages, such as postoperative alopecia or donor site morbidities. Due to the risk of osteomyelitis in the injured skull during the expansion period, tissue expansion was excluded from primary reconstruction. However, successful primary reconstruction was possible in burned skull by tissue expansion.MethodsFrom January 2000 to 2011, tissue expansion surgery was performed on 10 patients who had sustained electrical burn injuries. In the 3 initial cases, removal of the injured part of the skull and a bone graft was performed. In the latter 7 cases, the injured skull tissue was preserved and covered with a scalp flap directly to obtain natural bone healing and bone remodeling.ResultsThe mean age of patients was 49.9±12.2 years, with 8 male and 2 female. The size of the burn wound was an average of 119.6±36.7 cm2. The mean expansion duration was 65.5±5.6 days, and the inflation volume was an average of 615±197.6 mL. Mean defect size was 122.2±34.9 cm2. The complications including infection, hematoma, and the exposure of the expander were observed in 4 cases. Nonetheless, only 1 case required revision.ConclusionsSuccessful coverage was performed by tissue expansion surgery in burned skull primarily and no secondary reconstruction was needed. Although the risks of osteomyelitis during the expansion period were present, constant coverage of the injured skull and active wound treatment helped successful primary reconstruction of burned skull by tissue expansion.

  15. A simple and noninvasive technique using Bohlers stirrup facilitating management of posterior soft tissue injuries of heel

    Directory of Open Access Journals (Sweden)

    Nikil Jayasheelan

    2014-01-01

    Full Text Available Introduction: Many techniques have been devised to solve the problems associated with posterior soft tissue injuries. A noninvasive technique with plaster of Paris cast mold has been described by Ravishankar. Plaster casting techniques have been associated with problems such as tight cast and cast damage. Invasive techniques using external fixators as described by Berkowitz and Kim using tubular fixators like "kick back stand" and by Kamath using ring Illizarov fixators. The external fixators have their own problems like maintaining them for weeks and pin tract infection. Materials and Methods: We have tried to achieve as noninvasive technique using a Bohler stirrup incorporated with slab for patients with only soft tissue in injury and in a fixator for patients with skeletal injury already on tubular fixators. Results: In all the 12 cases where this method was used, the authors achieved the purpose of protecting the split skin graft in four cases and flap in eight cases. We did not encounter any problems related to this method such as skin maceration, sores including loosening of the frame. Conclusion: It is a simple and noninvasive method, which can be easily and reliably performed to maintain adequate limb elevation and soft tissue protection, which can be done is any hospital setup.

  16. Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Wan, Jiangbo; Zhang, Guoan; Qiu, Yuxuan; Wen, Chunquan; Fu, Tairan

    2016-05-01

    This study aimed to further explore heat dissipation by blood circulation and airway tissue heat absorption in an inhalational thermal injury model. Twelve adult male Beagle dogs were divided into four groups to inhale heated air for 10min: the control group, group I (100.5°C), group II (161.5°C), and group III (218°C). The relative humidity and temperature of the inhaled heated air were measured in the heating tube and trachea, as were blood temperatures and flow velocities in both common jugular veins. Formulas were used to calculate the total heat quantity reduction of the heated air, heat dissipation by the blood, and airway tissue heat absorption. The blood temperatures of both the common jugular veins increased by 0.29°C±0.07°C to 2.96°C±0.24°C and the mean blood flow volume after injury induction was about 1.30-1.74 times greater than before injury induction. The proportions of heat dissipated by the blood and airway tissue heat absorption were 68.92%±14.88% and 31.13%±14.87%, respectively. The heat dissipating ability of the blood circulation was demonstrated and improved upon along with tissue heat absorption owing to increased regional blood flow. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  17. Studying the distribution of deep Raman spectroscopy signals using liquid tissue phantoms with varying optical properties.

    Science.gov (United States)

    Vardaki, Martha Z; Gardner, Benjamin; Stone, Nicholas; Matousek, Pavel

    2015-08-07

    In this study we employed large volume liquid tissue phantoms, consisting of a scattering agent (Intralipid), an absorption agent (Indian ink) and a synthesized calcification powder (calcium hydroxyapatite (HAP)) similar to that found in cancerous tissues (e.g. breast and prostate), to simulate human tissues. We studied experimentally the magnitude and origin of Raman signals in a transmission Raman geometry as a function of optical properties of the medium and the location of calcifications within the phantom. The goal was to inform the development of future noninvasive cancer screening applications in vivo. The results provide insight into light propagation and Raman scattering distribution in deep Raman measurements, exploring also the effect of the variation of relative absorbance of laser and Raman photons within the phantoms. Most notably when modeling breast and prostate tissues it follows that maximum signals is obtained from the front and back faces of the tissue with the central region contributing less to the measured spectrum.

  18. Traumatic brain injury is associated with the development of deep vein thrombosis independent of pharmacological prophylaxis.

    Science.gov (United States)

    Reiff, Donald A; Haricharan, Ramanath N; Bullington, Nathan M; Griffin, Russell L; McGwin, Gerald; Rue, Loring W

    2009-05-01

    Deep venous thrombosis (DVT) is common among trauma patients. If left untreated it may result in lethal pulmonary thromboembolism. Previous studies have suggested that intracranial hemorrhage serves as an independent risk factor for the development of DVT. These studies were not able to exclude anticoagulation therapy as a confounding variable in their analysis. Our objective was to determine the association of traumatic brain injury (TBI) to the formation of DVT irrespective of the use of anticoagulation therapy. All patients admitted to an academic level I Trauma Center between 2000 and 2007 with blunt or penetrating injuries were selected for inclusion in this study. Patients who died or who were discharged within 24 hours of admission were excluded in the analysis. TBI was defined as any intraparenchymal hemorrhage or extra-axial intracranial bleeding identified on radiographic imaging or both. Anticoagulation therapy was defined as the uninterrupted use of either subcutaneous lovenox or heparin. Risk ratios and 95% confidence intervals compared the risk of DVT among patients with and without TBI according to the initiation of anticoagulation therapy (no therapy, 48 hours) adjusted for age, gender, race, injury severity, mechanism of injury, spinal injury, and lower extremity fracture. Irrespective of the time of initiation of pharmacologic prophylaxis, TBI is independently associated with the formation of DVT. A threefold to fourfold increased risk of DVT formation is consistent across all prophylaxis groups among patients with TBI. The incidence of DVT among injured patients with TBI is significantly higher than those patients without head injury independent of anticoagulation therapy. Rigorous surveillance to detect DVT among trauma patients with TBI should be undertaken and where appropriate alternate means for pulmonary thromboembolism prevention used.

  19. Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-08-30

    Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  20. Deep-tissue temperature mapping by multi-illumination photoacoustic tomography aided by a diffusion optical model: a numerical study

    Science.gov (United States)

    Zhou, Yuan; Tang, Eric; Luo, Jianwen; Yao, Junjie

    2018-01-01

    Temperature mapping during thermotherapy can help precisely control the heating process, both temporally and spatially, to efficiently kill the tumor cells and prevent the healthy tissues from heating damage. Photoacoustic tomography (PAT) has been used for noninvasive temperature mapping with high sensitivity, based on the linear correlation between the tissue's Grüneisen parameter and temperature. However, limited by the tissue's unknown optical properties and thus the optical fluence at depths beyond the optical diffusion limit, the reported PAT thermometry usually takes a ratiometric measurement at different temperatures and thus cannot provide absolute measurements. Moreover, ratiometric measurement over time at different temperatures has to assume that the tissue's optical properties do not change with temperatures, which is usually not valid due to the temperature-induced hemodynamic changes. We propose an optical-diffusion-model-enhanced PAT temperature mapping that can obtain the absolute temperature distribution in deep tissue, without the need of multiple measurements at different temperatures. Based on the initial acoustic pressure reconstructed from multi-illumination photoacoustic signals, both the local optical fluence and the optical parameters including absorption and scattering coefficients are first estimated by the optical-diffusion model, then the temperature distribution is obtained from the reconstructed Grüneisen parameters. We have developed a mathematic model for the multi-illumination PAT of absolute temperatures, and our two-dimensional numerical simulations have shown the feasibility of this new method. The proposed absolute temperature mapping method may set the technical foundation for better temperature control in deep tissue in thermotherapy.

  1. Intraoperative Detection of Cell Injury and Cell Death with an 800 nm Near-Infrared Fluorescent Annexin V Derivative

    Science.gov (United States)

    Ohnishi, Shunsuke; Vanderheyden, Jean-Luc; Tanaka, Eiichi; Patel, Bhavesh; De Grand, Alec; Laurence, Rita G.; Yamashita, Kenichiro; Frangioni, John V.

    2008-01-01

    The intraoperative detection of cell injury and cell death is fundamental to human surgeries such as organ transplantation and resection. Because of low autofluorescence background and relatively high tissue penetration, invisible light in the 800 nm region provides sensitive detection of disease pathology without changing the appearance of the surgical field. In order to provide surgeons with real-time intraoperative detection of cell injury and death after ischemia/reperfusion (I/R), we have developed a bioactive derivative of human annexin V (annexin800), which fluoresces at 800 nm. Total fluorescence yield, as a function of bioactivity, was optimized in vitro, and final performance was assessed in vivo. In liver, intestine and heart animal models of I/R, an optimal signal to background ratio was obtained 30 min after intravenous injection of annexin800, and histology confirmed concordance between planar reflectance images and actual deep tissue injury. In summary, annexin800 permits sensitive, real-time detection of cell injury and cell death after I/R in the intraoperative setting, and can be used during a variety of surgeries for rapid assessment of tissue and organ status. PMID:16869796

  2. Traumatic injuries: imaging of head injuries

    Energy Technology Data Exchange (ETDEWEB)

    Besenski, N. [Croatian Institute for Brain Research, Zagreb (Croatia)

    2002-06-01

    Due to the forces of acceleration, linear translation, as well as rotational and angular acceleration, the brain undergoes deformation and distortion depending on the site of impact of traumatizing force direction, severity of the traumatizing force, and tissue resistance of the brain. Linear translation of accereration in a closed-head injury can run along the shorter diameter of the skull in latero-lateral direction causing mostly extra-axial lesions (subdural hematoma,epidural hematoma, subarachnoidal hemorrhage) or quite pronounced coup and countercoup contusions. Contusions are considerably less frequently present in medial or paramedial centroaxial blows (fronto-occipital or occipito-frontal). The centroaxial blows produce a different pattern of lesions mostly in the deep structures, causing in some cases a special category of the brain injury, the diffuse axonal injury (DAI). The brain stem can also be damaged, but it is damaged more often in patients who have suffered centroaxial traumatic force direction. Computed tomography and MRI are the most common techniques in patients who have suffered brain injury. Computed tomography is currently the first imaging technique to be used after head injury, in those settings where CT is available. Using CT, scalp, bone, extra-axial hematomas, and parenchymal injury can be demonstrated. Computed tomography is rapid and easily performed also in monitored patients. It is the most relevant imaging procedure for surgical lesions. Computed tomography is a suitable method to follow the dynamics of lesion development giving an insight into the corresponding pathological development of the brain injury. Magnetic resonance imaging is more sensitive for all posttraumatic lesions except skull fractures and subarachnoidal hemorrhage, but scanning time is longer, and the problem with the monitoring of patients outside the MRI field is present. If CT does not demonstrate pathology as can adequately be explained to account for

  3. Traumatic injuries: imaging of head injuries

    International Nuclear Information System (INIS)

    Besenski, N.

    2002-01-01

    Due to the forces of acceleration, linear translation, as well as rotational and angular acceleration, the brain undergoes deformation and distortion depending on the site of impact of traumatizing force direction, severity of the traumatizing force, and tissue resistance of the brain. Linear translation of accereration in a closed-head injury can run along the shorter diameter of the skull in latero-lateral direction causing mostly extra-axial lesions (subdural hematoma,epidural hematoma, subarachnoidal hemorrhage) or quite pronounced coup and countercoup contusions. Contusions are considerably less frequently present in medial or paramedial centroaxial blows (fronto-occipital or occipito-frontal). The centroaxial blows produce a different pattern of lesions mostly in the deep structures, causing in some cases a special category of the brain injury, the diffuse axonal injury (DAI). The brain stem can also be damaged, but it is damaged more often in patients who have suffered centroaxial traumatic force direction. Computed tomography and MRI are the most common techniques in patients who have suffered brain injury. Computed tomography is currently the first imaging technique to be used after head injury, in those settings where CT is available. Using CT, scalp, bone, extra-axial hematomas, and parenchymal injury can be demonstrated. Computed tomography is rapid and easily performed also in monitored patients. It is the most relevant imaging procedure for surgical lesions. Computed tomography is a suitable method to follow the dynamics of lesion development giving an insight into the corresponding pathological development of the brain injury. Magnetic resonance imaging is more sensitive for all posttraumatic lesions except skull fractures and subarachnoidal hemorrhage, but scanning time is longer, and the problem with the monitoring of patients outside the MRI field is present. If CT does not demonstrate pathology as can adequately be explained to account for

  4. Adverse event reporting and developments in radiation biology after normal tissue injury: International Atomic Energy Agency consultation

    International Nuclear Information System (INIS)

    Chen Yuhchyau; Trotti, Andy; Coleman, C. Norman; Machtay, Mitchell; Mirimanoff, Rene O.; Hay, John; O'Brien, Peter C.; El-Gueddari, Brahim; Salvajoli, Joao V.; Jeremic, Branislav

    2006-01-01

    Purpose: Recent research has enhanced our understanding of radiation injury at the molecular-cellular and tissue levels; significant strides have occurred in standardization of adverse event reporting in clinical trials. In response, the International Atomic Energy Agency, through its Division of Human Health and its section for Applied Radiation Biology and Radiotherapy, organized a consultation meeting in Atlanta (October 2, 2004) to discuss developments in radiobiology, normal tissue reactions, and adverse event reporting. Methods and Materials: Representatives from cooperative groups of African Radiation Oncology Group, Curriculo Radioterapeutica Ibero Latino Americana, European Organization for Research and Treatment of Cancer, National Cancer Institute of Canada Clinical Trials Group, Radiation Therapy Oncology Group, and Trans-Tasman Radiation Oncology Group held the meeting discussion. Results: Representatives of major radiotherapy groups/organizations and prominent leaders in radiotherapy discussed current understanding of normal tissue radiobiologic effects, the design and implementation of future clinical and translational projects for normal tissue injury, and the standardization of adverse-event reporting worldwide. Conclusions: The consensus was to adopt NCI comprehensive adverse event reporting terminology and grading system (CTCAE v3.0) as the new standard for all cooperative group trials. Future plans included the implementation of coordinated research projects focusing on normal tissue biomarkers and data collection methods

  5. Does the ratio and thickness of prevertebral soft tissue provide benefit in blunt cervical spine injury?

    Science.gov (United States)

    Shiau, J-P; Chin, C-C; Yeh, C-N; Chen, J-F; Lee, S-T; Fang, J-F; Liao, C-C

    2013-06-01

    Although many reports advocate computed tomography (CT) as the initial surveillance tool for occult cervical spine injury (CSI) at the emergency department (ED), the role of a lateral cervical spine radiograph (LCSX) has still not been replaced. We hypothesized that the increased width of the prevertebral soft tissue on an LCSX provides helpful information for selecting the high-risk patients who need to be evaluated with more accurate diagnostic tools. This was a retrospective and consecutive series of injured patients requiring cervical spine evaluation who were first imaged with three-view plain films at the ED. The prevertebral soft tissue thickness (PVST) and ratio of prevertebral soft tissue thickness to the cervical vertebrae diameter (PVST ratio) were calculated on the LCSX. Suspicion of CSI was confirmed by either CT or magnetic resonance imaging (MRI) scans. A total of 826 adult trauma patients requiring cervical spine evaluation were enrolled. The C3 PVST and PVST ratio were significantly different between patients with or without upper cervical area injury (UCAI, 8.64 vs. 5.49 mm, and 0.394 vs. 0.276, respectively), and, likewise, the C6 PVST and PVST ratio for patients with or without lower cervical area injury (LCAI, 16.89 vs. 14.66 mm, and 0.784 vs. 0.749, respectively). The specificity was greater than 90 % in predicting UCAI and LCAI when combining these two parameters. This method maximizes the usefulness of LCSX during the initial assessment of a conscious patient with blunt head and neck injury, especially for the identification of high-risk patients requiring prompt CT or MRI; on the other hand, it prevents the overuse of these high-cost imaging studies as initial diagnostic tools.

  6. Tissue microstructure estimation using a deep network inspired by a dictionary-based framework.

    Science.gov (United States)

    Ye, Chuyang

    2017-12-01

    Diffusion magnetic resonance imaging (dMRI) captures the anisotropic pattern of water displacement in the neuronal tissue and allows noninvasive investigation of the complex tissue microstructure. A number of biophysical models have been proposed to relate the tissue organization with the observed diffusion signals, so that the tissue microstructure can be inferred. The Neurite Orientation Dispersion and Density Imaging (NODDI) model has been a popular choice and has been widely used for many neuroscientific studies. It models the diffusion signal with three compartments that are characterized by distinct diffusion properties, and the parameters in the model describe tissue microstructure. In NODDI, these parameters are estimated in a maximum likelihood framework, where the nonlinear model fitting is computationally intensive. Therefore, efforts have been made to develop efficient and accurate algorithms for NODDI microstructure estimation, which is still an open problem. In this work, we propose a deep network based approach that performs end-to-end estimation of NODDI microstructure, which is named Microstructure Estimation using a Deep Network (MEDN). MEDN comprises two cascaded stages and is motivated by the AMICO algorithm, where the NODDI microstructure estimation is formulated in a dictionary-based framework. The first stage computes the coefficients of the dictionary. It resembles the solution to a sparse reconstruction problem, where the iterative process in conventional estimation approaches is unfolded and truncated, and the weights are learned instead of predetermined by the dictionary. In the second stage, microstructure properties are computed from the output of the first stage, which resembles the weighted sum of normalized dictionary coefficients in AMICO, and the weights are also learned. Because spatial consistency of diffusion signals can be used to reduce the effect of noise, we also propose MEDN+, which is an extended version of MEDN. MEDN

  7. Reconstruction of Hyaline Cartilage Deep Layer Properties in 3-Dimensional Cultures of Human Articular Chondrocytes.

    Science.gov (United States)

    Nanduri, Vibudha; Tattikota, Surendra Mohan; T, Avinash Raj; Sriramagiri, Vijaya Rama Rao; Kantipudi, Suma; Pande, Gopal

    2014-06-01

    Articular cartilage (AC) injuries and malformations are commonly noticed because of trauma or age-related degeneration. Many methods have been adopted for replacing or repairing the damaged tissue. Currently available AC repair methods, in several cases, fail to yield good-quality long-lasting results, perhaps because the reconstructed tissue lacks the cellular and matrix properties seen in hyaline cartilage (HC). To reconstruct HC tissue from 2-dimensional (2D) and 3-dimensional (3D) cultures of AC-derived human chondrocytes that would specifically exhibit the cellular and biochemical properties of the deep layer of HC. Descriptive laboratory study. Two-dimensional cultures of human AC-derived chondrocytes were established in classical medium (CM) and newly defined medium (NDM) and maintained for a period of 6 weeks. These cells were suspended in 2 mm-thick collagen I gels, placed in 24-well culture inserts, and further cultured up to 30 days. Properties of chondrocytes, grown in 2D cultures and the reconstructed 3D cartilage tissue, were studied by optical and scanning electron microscopic techniques, immunohistochemistry, and cartilage-specific gene expression profiling by reverse transcription polymerase chain reaction and were compared with those of the deep layer of native human AC. Two-dimensional chondrocyte cultures grown in NDM, in comparison with those grown in CM, showed more chondrocyte-specific gene activity and matrix properties. The NDM-grown chondrocytes in 3D cultures also showed better reproduction of deep layer properties of HC, as confirmed by microscopic and gene expression analysis. The method used in this study can yield cartilage tissue up to approximately 1.6 cm in diameter and 2 mm in thickness that satisfies the very low cell density and matrix composition properties present in the deep layer of normal HC. This study presents a novel and reproducible method for long-term culture of AC-derived chondrocytes and reconstruction of cartilage

  8. Oxidized tissue proteins after intestinal reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Schanaider Alberto

    2005-01-01

    Full Text Available PURPOSE: To analyse if the carbonyl proteins measurement could be validated as a method that allows the identification of an intestinal oxidative stress after ischemia and reperfusion injury. METHODS: Twenty-five male Wistar rats (n =21 weighting 200 to 250g were divided into three groups. Group I - control (n = 10. Group II - sham (n = 5 and Group III (n = 10 subjected to 60 minutes of intestinal ischemia and equal period of reperfusion. For this purpose it was clamped the superior mesenteric artery in its distal third. Histological changes and carbonyl protein levels were determined in the samples of all groups. In group III, samples of both normal and reperfused ileal segment were studied. RESULTS: All the reperfused segments showed mucosal and submucosal swelling and inflammatory infiltrate of the lamina propria. Levels of carbonyl protein rose in group III, including in the non-ischemic segments. The sensitivity and specificity of the carbonyl protein tissue levels were respectively 94% and 88%. CONCLUSION: The carbonyl protein method is a useful biologic marker of oxidative stress after the phenomenon of intestinal ischemia and reperfusion in rats. It was also noteworthy that the effects of oxidative stress could be seen far from the locus of the primary injury.

  9. Reconstruction with vascularized composite tissue in patients with excessive injury following surgery and irradiation

    International Nuclear Information System (INIS)

    Serafin, D.; DeLand, M.; Lesesne, C.B.; Smith, P.J.; Noell, K.T.; Georgiade, N.

    1982-01-01

    The biological effects of a single high dose of radiation are examined. Both cellular injury and repair are reviewed during early, intermediate, and late phases. Anticipated composite tissue morbidity is detailed for therapeutic radiation doses administered to the head and neck, breast and thorax, and perineum. Patients who demonstrated excessive time-dose fractionation values were irradiated with lower x-ray energies. Those in whom there was an overlap of treatment fields presented a serious challenge to the reconstructive surgeon. Judicious selection of well-vascularized composite tissue outside the portals of irradiation, preferably with a long vascular pedicle, facilitated reconstruction. When possible, both donor and recipient vasculature should be outside the irradiated area to ensure uninterrupted blood flow to the transferred or transplanted tissue

  10. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.

    Science.gov (United States)

    Kooi, Thijs; van Ginneken, Bram; Karssemeijer, Nico; den Heeten, Ard

    2017-03-01

    It is estimated that 7% of women in the western world will develop palpable breast cysts in their lifetime. Even though cysts have been correlated with risk of developing breast cancer, many of them are benign and do not require follow-up. We develop a method to discriminate benign solitary cysts from malignant masses in digital mammography. We think a system like this can have merit in the clinic as a decision aid or complementary to specialized modalities. We employ a deep convolutional neural network (CNN) to classify cyst and mass patches. Deep CNNs have been shown to be powerful classifiers, but need a large amount of training data for which medical problems are often difficult to come by. The key contribution of this paper is that we show good performance can be obtained on a small dataset by pretraining the network on a large dataset of a related task. We subsequently investigate the following: (a) when a mammographic exam is performed, two different views of the same breast are recorded. We investigate the merit of combining the output of the classifier from these two views. (b) We evaluate the importance of the resolution of the patches fed to the network. (c) A method dubbed tissue augmentation is subsequently employed, where we extract normal tissue from normal patches and superimpose this onto the actual samples aiming for a classifier invariant to occluding tissue. (d) We combine the representation extracted using the deep CNN with our previously developed features. We show that using the proposed deep learning method, an area under the ROC curve (AUC) value of 0.80 can be obtained on a set of benign solitary cysts and malignant mass findings recalled in screening. We find that it works significantly better than our previously developed approach by comparing the AUC of the ROC using bootstrapping. By combining views, the results can be further improved, though this difference was not found to be significant. We find no significant difference between

  11. Radiation-induced hypoxia may perpetuate late normal tissue injury

    International Nuclear Information System (INIS)

    Vujaskovic, Zeljko; Anscher, Mitchell S.; Feng, Q.-F.; Rabbani, Zahid N.; Amin, Khalid; Samulski, Thaddeus S.; Dewhirst, Mark W.; Haroon, Zishan A.

    2001-01-01

    Purpose: The purpose of this study was to determine whether or not hypoxia develops in rat lung tissue after radiation. Methods and Materials: Fisher-344 rats were irradiated to the right hemithorax using a single dose of 28 Gy. Pulmonary function was assessed by measuring the changes in respiratory rate every 2 weeks, for 6 months after irradiation. The hypoxia marker was administered 3 h before euthanasia. The tissues were harvested at 6 weeks and 6 months after irradiation and processed for immunohistochemistry. Results: A moderate hypoxia was detected in the rat lungs at 6 weeks after irradiation, before the onset of functional or histopathologic changes. The more severe hypoxia, that developed at the later time points (6 months) after irradiation, was associated with a significant increase in macrophage activity, collagen deposition, lung fibrosis, and elevation in the respiratory rate. Immunohistochemistry studies revealed an increase in TGF-β, VEGF, and CD-31 endothelial cell marker, suggesting a hypoxia-mediated activation of the profibrinogenic and proangiogenic pathways. Conclusion: A new paradigm of radiation-induced lung injury should consider postradiation hypoxia to be an important contributing factor mediating a continuous production of a number of inflammatory and fibrogenic cytokines

  12. Angiokeratoma circumscriptum naeviforme with soft tissue hypertrophy and deep venous malformation: A variant of Klippel-Trenaunay syndrome?

    Directory of Open Access Journals (Sweden)

    Vaishali Wankhade

    2014-01-01

    Full Text Available Klippel-Trenaunay syndrome (KTS is a cutaneous capillary malformation on a limb in association with soft tissue swelling with or without bony hypertrophy and atypical varicosity. The capillary malformation associated with KTS is port wine stain. Angiokeratoma circumscriptum naeviforme (ACN is a congenital variant of angiokeratoma commonly present on the lower limb as a hyperkeratotic plaque. ACN is rarely associated with KTS. We report a case of ACN with soft tissue hypertrophy and deep venous malformation (possibly a variant of Klippel-Trenaunay in a 4-year-old male child.

  13. Vitamin E levels in preeclampsia placenta tissue and its correlation with oxidative stress injury and apoptosis

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-04-01

    Full Text Available Objective: To study the vitamin E levels in preeclampsia placenta tissue and its correlation with oxidative stress injury and apoptosis. Methods: A total of 60 pregnant women with preeclampsia who received treatment and gave birth in our hospital between July 2012 and January 2016 were collected and divided into mild preeclampsia group (n=41 and severe preeclampsia group (n=19 according to the disease severity; 38 normal pregnant women who received pregnancy test and gave birth in our hospital during the same period were selected as healthy control group. The placental tissue samples of three groups of research subjects were retained, high performance liquid chromatograph-mass spectrometry was used to detect VitE levels in tissue grinding fluid, automatic biochemical analyzer was used to detect the levels of oxidative stress injury indexes, and fluorescence quantitative PCR method was used to detect the mRNA expression of apoptosis molecules. Results: VitE, SOD and CAT levels in grinding fluid of severe preeclampsia group were lower than those of mild preeclampsia group and healthy control group while ROS and AOPP levels were higher than those of mild preeclampsia group and healthy control group; Fas, caspase and Apaf-1 mRNA expression were higher than those of mild preeclampsia group and healthy control group while anti-apoptotic molecules Bcl-2, Bcl-xl, Mcl-2 and p57kip2 mRNA expression were lower than those of mild preeclampsia group and healthy control group. Spearman correlation analysis showed that VitE level in the preeclampsia placenta tissue was directly correlated with oxidative stress injury and cell apoptosis. Conclusion: VitE deficiency is the direct factor that results in oxidative stress and cell apoptosis in patients with preeclampsia, and the VitE supplementation in time is expected to become the auxiliary treatment means for patients with preeclampsia.

  14. Super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging

    Science.gov (United States)

    Wei, Lu; Zhu, Xinxin; Chen, Zhixing; Min, Wei

    2014-02-01

    Two-photon excited fluorescence microscopy (TPFM) offers the highest penetration depth with subcellular resolution in light microscopy, due to its unique advantage of nonlinear excitation. However, a fundamental imaging-depth limit, accompanied by a vanishing signal-to-background contrast, still exists for TPFM when imaging deep into scattering samples. Formally, the focusing depth, at which the in-focus signal and the out-of-focus background are equal to each other, is defined as the fundamental imaging-depth limit. To go beyond this imaging-depth limit of TPFM, we report a new class of super-nonlinear fluorescence microscopy for high-contrast deep tissue imaging, including multiphoton activation and imaging (MPAI) harnessing novel photo-activatable fluorophores, stimulated emission reduced fluorescence (SERF) microscopy by adding a weak laser beam for stimulated emission, and two-photon induced focal saturation imaging with preferential depletion of ground-state fluorophores at focus. The resulting image contrasts all exhibit a higher-order (third- or fourth- order) nonlinear signal dependence on laser intensity than that in the standard TPFM. Both the physical principles and the imaging demonstrations will be provided for each super-nonlinear microscopy. In all these techniques, the created super-nonlinearity significantly enhances the imaging contrast and concurrently extends the imaging depth-limit of TPFM. Conceptually different from conventional multiphoton processes mediated by virtual states, our strategy constitutes a new class of fluorescence microscopy where high-order nonlinearity is mediated by real population transfer.

  15. Oral paracetamol and/or ibuprofen for treating pain after soft tissue injuries: Single centre double-blind, randomised controlled clinical trial.

    Directory of Open Access Journals (Sweden)

    Kevin K C Hung

    Full Text Available Soft tissue injuries commonly present to the emergency department (ED, often with acute pain. They cause significant suffering and morbidity if not adequately treated. Paracetamol and ibuprofen are commonly used analgesics, but it remains unknown if either one or the combination of both is superior for pain control.To investigate the analgesic effect of paracetamol, ibuprofen and the combination of both in the treatment of soft tissue injury in an ED, and the side effect profile of these drugs.Double-blind, double dummy, placebo-controlled randomised controlled trial. 782 adult patients presenting with soft tissue injury without obvious fractures attending the ED of a university hospital in the New Territories of Hong Kong were recruited. Patients were randomised using a random number table into three parallel arms of paracetamol only, ibuprofen only and a combination of paracetamol and ibuprofen in a 1:1:1 ratio. The primary outcome measure was pain score at rest and on activity in the first 2 hours and first 3 days. Data was analysed on an intention to treat basis.There was no statistically significant difference in pain score in the initial two hours between the three groups, and no clinically significant difference in pain score in the first three days.There was no difference in analgesic effects or side effects observed using oral paracetamol, ibuprofen or a combination of both in patients with mild to moderate pain after soft tissue injuries attending the ED.The study is registered with ClinicalTrials.gov (no. NCT00528658.

  16. Oral paracetamol and/or ibuprofen for treating pain after soft tissue injuries: Single centre double-blind, randomised controlled clinical trial.

    Science.gov (United States)

    Hung, Kevin K C; Graham, Colin A; Lo, Ronson S L; Leung, Yuk Ki; Leung, Ling Yan; Man, S Y; Woo, W K; Cattermole, Giles N; Rainer, Timothy H

    2018-01-01

    Soft tissue injuries commonly present to the emergency department (ED), often with acute pain. They cause significant suffering and morbidity if not adequately treated. Paracetamol and ibuprofen are commonly used analgesics, but it remains unknown if either one or the combination of both is superior for pain control. To investigate the analgesic effect of paracetamol, ibuprofen and the combination of both in the treatment of soft tissue injury in an ED, and the side effect profile of these drugs. Double-blind, double dummy, placebo-controlled randomised controlled trial. 782 adult patients presenting with soft tissue injury without obvious fractures attending the ED of a university hospital in the New Territories of Hong Kong were recruited. Patients were randomised using a random number table into three parallel arms of paracetamol only, ibuprofen only and a combination of paracetamol and ibuprofen in a 1:1:1 ratio. The primary outcome measure was pain score at rest and on activity in the first 2 hours and first 3 days. Data was analysed on an intention to treat basis. There was no statistically significant difference in pain score in the initial two hours between the three groups, and no clinically significant difference in pain score in the first three days. There was no difference in analgesic effects or side effects observed using oral paracetamol, ibuprofen or a combination of both in patients with mild to moderate pain after soft tissue injuries attending the ED. The study is registered with ClinicalTrials.gov (no. NCT00528658).

  17. Letter to Editor: Carpal tunnel syndrome due to an atypical deep soft tissue leiomyoma: The risk of misdiagnosis and mismanagement

    Directory of Open Access Journals (Sweden)

    Caliandro Pietro

    2008-02-01

    Full Text Available Abstract A response to Chalidis et al: Carpal tunnel syndrome due to an atypical deep soft tissue leiomyoma: The risk of misdiagnosis and mismanagement. World J Surg Oncol 2007, 5:92.

  18. UNC5B receptor deletion exacerbates tissue injury in response to AKI.

    Science.gov (United States)

    Ranganathan, Punithavathi; Jayakumar, Calpurnia; Navankasattusas, Sutip; Li, Dean Y; Kim, Il-man; Ramesh, Ganesan

    2014-02-01

    Netrin-1 regulates cell survival and apoptosis by activation of its receptors, including UNC5B. However, the in vivo role of UNC5B in cell survival during cellular stress and tissue injury is unknown. We investigated the role of UNC5B in cell survival in response to stress using mice heterozygously expressing the UNC5B gene (UNC5B(-/flox)) and mice with targeted homozygous deletion of UNC5B in kidney epithelial cells (UNC5B(-/flox/GGT-cre)). Mice were subjected to two different models of organ injury: ischemia reperfusion injury of the kidney and cisplatin-induced nephrotoxicity. Both mouse models of UNC5B depletion had normal organ function and histology under basal conditions. After AKI, however, UNC5B(-/flox/GGT-cre) mice exhibited significantly worse renal function and damage, increased tubular apoptosis, enhanced p53 activation, and exacerbated inflammation compared with UNC5B(-/flox) and wild-type mice. shRNA-mediated suppression of UNC5B expression in cultured tubular epithelial cells exacerbated cisplatin-induced cell death in a p53-dependent manner and blunted Akt phosphorylation. Inhibition of PI3 kinase similarly exacerbated cisplatin-induced apoptosis; in contrast, overexpression of UNC5B reduced cisplatin-induced apoptosis in these cells. Taken together, these results show that the netrin-1 receptor UNC5B plays a critical role in cell survival and kidney injury through Akt-mediated inactivation of p53 in response to stress.

  19. High-throughput sequencing and analysis of the gill tissue transcriptome from the deep-sea hydrothermal vent mussel Bathymodiolus azoricus

    Directory of Open Access Journals (Sweden)

    Gomes Paula

    2010-10-01

    Full Text Available Abstract Background Bathymodiolus azoricus is a deep-sea hydrothermal vent mussel found in association with large faunal communities living in chemosynthetic environments at the bottom of the sea floor near the Azores Islands. Investigation of the exceptional physiological reactions that vent mussels have adopted in their habitat, including responses to environmental microbes, remains a difficult challenge for deep-sea biologists. In an attempt to reveal genes potentially involved in the deep-sea mussel innate immunity we carried out a high-throughput sequence analysis of freshly collected B. azoricus transcriptome using gills tissues as the primary source of immune transcripts given its strategic role in filtering the surrounding waterborne potentially infectious microorganisms. Additionally, a substantial EST data set was produced and from which a comprehensive collection of genes coding for putative proteins was organized in a dedicated database, "DeepSeaVent" the first deep-sea vent animal transcriptome database based on the 454 pyrosequencing technology. Results A normalized cDNA library from gills tissue was sequenced in a full 454 GS-FLX run, producing 778,996 sequencing reads. Assembly of the high quality reads resulted in 75,407 contigs of which 3,071 were singletons. A total of 39,425 transcripts were conceptually translated into amino-sequences of which 22,023 matched known proteins in the NCBI non-redundant protein database, 15,839 revealed conserved protein domains through InterPro functional classification and 9,584 were assigned with Gene Ontology terms. Queries conducted within the database enabled the identification of genes putatively involved in immune and inflammatory reactions which had not been previously evidenced in the vent mussel. Their physical counterpart was confirmed by semi-quantitative quantitative Reverse-Transcription-Polymerase Chain Reactions (RT-PCR and their RNA transcription level by quantitative PCR (q

  20. A new concept of endometriosis and adenomyosis: tissue injury and repair (TIAR).

    Science.gov (United States)

    Leyendecker, Gerhard; Wildt, Ludwig

    2011-03-01

    Pelvic endometriosis, deeply infiltrating endometriosis and uterine adenomyosis share a common pathophysiology and may be integrated into the physiological mechanism and new nosological concept of 'tissue injury and repair' (TIAR) and may, in this context, just represent the extreme of a basically physiological, estrogen-related mechanism that is pathologically exaggerated in an extremely estrogen-sensitive reproductive organ. The acronym TIAR describes a fundamental and apparently ubiquitous biological system that becomes operative in mesenchymal tissues following tissue injury and, upon activation, results in the local production of estradiol. Endometriosis and adenomyosis are caused by trauma. In the spontaneously developing disease, chronic uterine peristaltic activity or phases of hyperperistalsis induce, at the endometrial-myometrial interface near the fundo-cornual raphe, microtraumatisations, with activation of the TIAR mechanism. With ongoing traumatisations, such sites of inflammation might accumulate and the increasingly produced estrogens interfere in a paracrine fashion with ovarian control over uterine peristaltic activity, resulting in permanent hyperperistalsis and a self-perpetuation of the disease process. Overt autotraumatisation of the uterus with dislocation of fragments of basal endometrium into the peritoneal cavity and infiltration of basal endometrium into the depth of the myometrial wall ensues. In most cases of endometriosis/adenomyosis a causal event early in the reproductive period of life must be postulated, rapidly leading to archimetral hyperestrogenism and uterine hyperperistalsis. In late premenopausal adenomyosis such an event might not have occurred. However, as indicated by the high prevalence of the disease, it appears to be unavoidable that, with time, chronic normoperistalsis throughout the reproductive period of life accumulates to the same extent of microtraumatisation. With activation of the TIAR mechanism followed by

  1. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue.

    Science.gov (United States)

    Sinha, Mithun; Sen, Chandan K; Singh, Kanhaiya; Das, Amitava; Ghatak, Subhadip; Rhea, Brian; Blackstone, Britani; Powell, Heather M; Khanna, Savita; Roy, Sashwati

    2018-03-05

    Inflammation, following injury, induces cellular plasticity as an inherent component of physiological tissue repair. The dominant fate of wound macrophages is unclear and debated. Here we show that two-thirds of all granulation tissue fibroblasts, otherwise known to be of mesenchymal origin, are derived from myeloid cells which are likely to be wound macrophages. Conversion of myeloid to fibroblast-like cells is impaired in diabetic wounds. In cross-talk between keratinocytes and myeloid cells, miR-21 packaged in extracellular vesicles (EV) is required for cell conversion. EV from wound fluid of healing chronic wound patients is rich in miR-21 and causes cell conversion more effectively compared to that by fluid from non-healing patients. Impaired conversion in diabetic wound tissue is rescued by targeted nanoparticle-based delivery of miR-21 to macrophages. This work introduces a paradigm wherein myeloid cells are recognized as a major source of fibroblast-like cells in the granulation tissue.

  2. Liver Transplantation in the Mouse: Insights Into Liver Immunobiology, Tissue Injury and Allograft Tolerance

    Science.gov (United States)

    Yokota, Shinichiro; Yoshida, Osamu; Ono, Yoshihiro; Geller, David A.; Thomson, Angus W.

    2016-01-01

    The surgically-demanding mouse orthotopic liver transplant model was first described in 1991. It has proved a powerful research tool for investigation of liver biology, tissue injury, the regulation of alloimmunity and tolerance induction and the pathogenesis of specific liver diseases. Liver transplantation in mice has unique advantages over transplantation of the liver in larger species, such as the rat or pig, since the mouse genome is well-characterized and there is much greater availability of both genetically-modified animals and research reagents. Liver transplant experiments using various transgenic or gene knockout mice has provided valuable mechanistic insights into the immuno- and pathobiology of the liver and the regulation of graft rejection and tolerance over the past 25 years. The molecular pathways identified in regulation of tissue injury and promotion of liver transplant tolerance provide new potential targets for therapeutic intervention to control adverse inflammatory responses/ immune-mediated events in the hepatic environment and systemically. Conclusion: Orthotopic liver transplantation in the mouse is a valuable model for gaining improved insights into liver biology, immunopathology and allograft tolerance that may result in therapeutic innovation in liver and other diseases. PMID:26709949

  3. Deltoid ligament in acute ankle injury: MR imaging analysis

    International Nuclear Information System (INIS)

    Jeong, Min Sun; Choi, Yun Sun; Kim, Yun Jung; Jung, Yoon Young; Kim, Jin Su; Young, Ki Won

    2014-01-01

    To identify the pattern of deltoid ligament injury after acute ankle injury and the relationship between ankle fracture and deltoid ligament tear by magnetic resonance imaging (MRI). Thirty-six patients (32 male, and 4 female; mean age, 29.8 years) with acute deltoid ligament injury who had undergone MRI participated in this study. The deltoid ligament was classified as having 3 superficial and 2 deep components. An image analysis included the integrity and tear site of the deltoid ligament, and other associated injuries. Association between ankle fracture and deltoid ligament tear was assessed using Fisher's exact test (P < 0.05). Of the 36 patients, 21 (58.3 %) had tears in the superficial and deep deltoid ligaments, 6 (16.7 %) in the superficial ligaments only, and 4 (11.1 %) in the deep ligaments only. The most common tear site of the three components of the superficial deltoid and deep anterior tibiotalar ligaments was their proximal attachments (94 % and 91.7 % respectively), and that of the deep posterior tibiotalar ligament (pTTL) was its distal attachment (82.6 %). The common associated injuries were ankle fracture (63.9 %), syndesmosis tear (55.6 %), and lateral collateral ligament complex tear (44.4 %). All the components of the deltoid ligament were frequently torn in patients with ankle fractures (tibionavicular ligament, P = 0.009). The observed injury pattern of the deltoid ligament was complex and frequently associated with concomitant ankle pathology. The most common tear site of the superficial deltoid ligament was the medial malleolar attachment, whereas that of the deep pTTL was near its medial talar insertion. (orig.)

  4. Role of MMP-12 on tissue remodeling at early stage of radiation-induced pulmonary injury

    International Nuclear Information System (INIS)

    Li Ming; Song Liangwen; Diao Ruiying; Wang Shaoxia; Xu Xinping; Luo Qingliang

    2008-01-01

    Objective: To explore the role of MMP-12 on tissue remodeling at early stage of radiation- induced pulmonary injury. Methods: Wistar rats irradiated by 60 Co γ-rays to the whole lungs were sacrificed at 1, 2, 4 weeks. MMP-12 mRNA expression was detected by RT-PCR. MMP-2, MMP-9, MMP-12 activities were determined by zymography. The degradation and collapse of elastin were determined by tissue elastin particular staining; the 'cross talking' phenomenon between alveolar type II cells and mesenchymal cells was observed under electron microscope; the expression of TGF-β1 and TNF-α in BALF was detected by ELISA. The expression of α-SMA was determined by immunohistochemistry. Results: The mRNA expression of MMP-12 displayed a significant elevation at 1, 2, 4 weeks after irradiation. MMP-12 activity increased at 2, 4 weeks after irradiation. Elastin began to degrade and collapse at 1 week, which became worst 4 weeks after irradiation. The cross talking phenomenon was found under electron microscope. The expression of TGF-β1, TNF-α and α-SMA was increased gradually as time elapse after irradiation. Conclusions: 60 Co γ-ray irradiation can promote pulmonary MMP-12 expression, initiate pulmonary tissue remodeling by degradation of elastin, and make the pulmonary injury develop towards pulmonary fibrosis eventually. (authors)

  5. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    Directory of Open Access Journals (Sweden)

    Guangjun Zhao

    2016-01-01

    Full Text Available Cryosection brain images in Chinese Visible Human (CVH dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel. Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  6. Risk factors for deep vein thrombosis and pulmonary embolism after traumatic injury: A competing risks analysis.

    Science.gov (United States)

    Van Gent, Jan-Michael; Calvo, Richard Yee; Zander, Ashley L; Olson, Erik J; Sise, C Beth; Sise, Michael J; Shackford, Steven R

    2017-12-01

    Venous thromboembolism, including deep vein thrombosis (DVT) and pulmonary embolism (PE), is typically reported as a composite measure of the quality of trauma center care. Given that recent data suggesting postinjury DVT and PE are distinct clinical processes, a better understanding may result from analyzing them as independent, competing events. Using competing risks analysis, we evaluated our hypothesis that the risk factors and timing of postinjury DVT and PE are different. We examined all adult trauma patients admitted to our Level I trauma center from July 2006 to December 2011 who received at least one surveillance duplex ultrasound of the lower extremities and who were at high risk or greater for DVT. Outcomes included DVT and PE events, and time-to-event from admission. We used competing risks analysis to evaluate risk factors for DVT while accounting for PE as a competing event, and vice versa. Of 2,370 patients, 265 (11.2%) had at least one venous thromboembolism event, 235 DVT only, 19 PE only, 11 DVT and PE. Within 2 days of admission, 38% of DVT cases had occurred compared with 26% of PE. Competing risks modeling of DVT as primary event identified older age, severe injury (Injury Severity Score, ≥ 15), mechanical ventilation longer than 4 days, active cancer, history of DVT or PE, major venous repair, male sex, and prophylactic enoxaparin and prophylactic heparin as associated risk factors. Modeling of PE as the primary event showed younger age, nonsevere injury (Injury Severity Score, risk factors for PE and DVT after injury were different, suggesting that they are clinically distinct events that merit independent consideration. Many DVT events occurred early despite prophylaxis, bringing into question the preventability of postinjury DVT. We recommend trauma center quality reporting program measures be revised to account for DVT and PE as unique events. Epidemiologic, level III.

  7. Deep tissue optical imaging of upconverting nanoparticles enabled by exploiting higher intrinsic quantum yield through use of millisecond single pulse excitation with high peak power

    DEFF Research Database (Denmark)

    Liu, Haichun; Xu, Can T.; Dumlupinar, Gökhan

    2013-01-01

    We have accomplished deep tissue optical imaging of upconverting nanoparticles at 800 nm, using millisecond single pulse excitation with high peak power. This is achieved by carefully choosing the pulse parameters, derived from time-resolved rate-equation analysis, which result in higher intrinsic...... quantum yield that is utilized by upconverting nanoparticles for generating this near infrared upconversion emission. The pulsed excitation approach thus promises previously unreachable imaging depths and shorter data acquisition times compared with continuous wave excitation, while simultaneously keeping...... therapy and remote activation of biomolecules in deep tissues....

  8. Effect of pheniramine maleate on reperfusion injury in brain tissue.

    Science.gov (United States)

    Yürekli, Ismail; Gökalp, Orhan; Kiray, Müge; Gökalp, Gamze; Ergüneş, Kazım; Salman, Ebru; Yürekli, Banu Sarer; Satoğlu, Ismail Safa; Beşir, Yüksel; Cakır, Habib; Gürbüz, Ali

    2013-12-06

    The aim of this study was to investigate the protective effects of methylprednisolone (Pn), which is a potent anti-inflammatory agent, and pheniramine maleate (Ph), which is an antihistaminic with some anti-inflammatory effects, on reperfusion injury in brain developing after ischemia of the left lower extremity of rats. Twenty-eight randomly selected male Sprague-Dawley rats were divided into 4 groups: Group 1 was the control group, Group 2 was the sham group (I/R), Rats in Group 3 were subjected to I/R and given Ph, and rats in Group 4 were subjected to I/R and given Pn. A tourniquet was applied at the level of left groin region of subjects in the I/R group after induction of anesthesia. One h of ischemia was performed with no drug administration. In the Ph group, half of a total dose of 10 mg/kg Ph was administered intraperitoneally before ischemia and the remaining half before reperfusion. In the Pn group, subjects received a single dose of 50 mg/kg Pn intraperitoneally at the 30th min of ischemia. Brains of all subjects were removed after 24 h for examination. Malondialdehyde (MDA) levels of the prefrontal cortex were significantly lower in the Ph group than in the I/R group (p<0.05). Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were found to be significantly higher in the Ph group than in the I/R group (p<0.05). Histological examination demonstrated that Ph had protective effects against I/R injury developing in the brain tissue. Ph has a protective effect against ischemia/reperfusion injury created experimentally in rat brains.

  9. An experimental study of radiation injury on oral tissue at young age

    International Nuclear Information System (INIS)

    Kuba, Youichi

    1986-01-01

    For the purpose of studying radiation injury on mandibles at growth stage, the mandibles of young adult dogs were irradiated with X-ray of 200 kVp, and the irradiated intraoral tissues such as gingival membrane, teeth and mandibles were investigated macroscopically and the teeth and mandibles radiologically. The results were as follows: 1. As the injury on irradiated skin, partial epilation began two days after irradiation and ulceration (4 out of 16 cases) formed at 79 days and worsened further, and necrosis was seen in all subjects at 195 days. 2. As the injury on the intraoral tissue, pigment loss in the gingival membrane began four days after irradiation. Ulceration of gingiva (2 out of 16) formed at 30 days and worsened, and exposure of the alveolar bone was observed at 208 days. At 220 days, bone fracture (6 out of 16) was observed. 3. Formation of necrosis in the gingiva leading to necrosis of the skin corresponding to the third premolar was found in four cases. Formation of necrosis in the skin corresponding to the third premolar leading to necrosis of the gingival membrane was found in 12 cases. 4. In radiological findings, enlargement of periodontal membrane space, disappearance of lamina dura (6 out of 16), and resporption of the alveolar crest (6 out of 16) began in the subjects at 1 month. Worsening began with bone destruction (10 out of 16), bone destruction accompanied by osteosclerosis, and erosion of inferior border of the cortical bone (8 out of 16) in the subjects at 3 months. Formation of sequestrum (4 out of 16) at 6 months and bone fracture (6 out of 16) at 8 months were observed. 5. In radiological findings for the subjects with formation of ulceration, enlargement of periodontal membrane space, and resorption of the alveolar crest were the early findings and lamina dura image around the bone destruction image followed. (J.P.N.)

  10. Deltoid ligament in acute ankle injury: MR imaging analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Min Sun; Choi, Yun Sun; Kim, Yun Jung; Jung, Yoon Young [Eulji University, Department of Radiology, Eulji Hospital, Seoul (Korea, Republic of); Kim, Jin Su; Young, Ki Won [Eulji University, Department of Orthopedic Surgery, Eulji Hospital, Seoul (Korea, Republic of)

    2014-05-15

    To identify the pattern of deltoid ligament injury after acute ankle injury and the relationship between ankle fracture and deltoid ligament tear by magnetic resonance imaging (MRI). Thirty-six patients (32 male, and 4 female; mean age, 29.8 years) with acute deltoid ligament injury who had undergone MRI participated in this study. The deltoid ligament was classified as having 3 superficial and 2 deep components. An image analysis included the integrity and tear site of the deltoid ligament, and other associated injuries. Association between ankle fracture and deltoid ligament tear was assessed using Fisher's exact test (P < 0.05). Of the 36 patients, 21 (58.3 %) had tears in the superficial and deep deltoid ligaments, 6 (16.7 %) in the superficial ligaments only, and 4 (11.1 %) in the deep ligaments only. The most common tear site of the three components of the superficial deltoid and deep anterior tibiotalar ligaments was their proximal attachments (94 % and 91.7 % respectively), and that of the deep posterior tibiotalar ligament (pTTL) was its distal attachment (82.6 %). The common associated injuries were ankle fracture (63.9 %), syndesmosis tear (55.6 %), and lateral collateral ligament complex tear (44.4 %). All the components of the deltoid ligament were frequently torn in patients with ankle fractures (tibionavicular ligament, P = 0.009). The observed injury pattern of the deltoid ligament was complex and frequently associated with concomitant ankle pathology. The most common tear site of the superficial deltoid ligament was the medial malleolar attachment, whereas that of the deep pTTL was near its medial talar insertion. (orig.)

  11. Throwing Injuries of the Shoulder.

    Science.gov (United States)

    McCue, Frank C., III; and Others

    The majority of shoulder injuries occurring in throwing sports involve the soft tissue structures. Injuries often occur when the unit is overstretched to a point near its greatest length, involving the elastic tissues. The other injury mechanism involves the contractural unit of the muscle, which occurs near the midpoint of contractions, involving…

  12. Predictive validity of granulation tissue color measured by digital image analysis for deep pressure ulcer healing: a multicenter prospective cohort study.

    Science.gov (United States)

    Iizaka, Shinji; Kaitani, Toshiko; Sugama, Junko; Nakagami, Gojiro; Naito, Ayumi; Koyanagi, Hiroe; Konya, Chizuko; Sanada, Hiromi

    2013-01-01

    This multicenter prospective cohort study examined the predictive validity of granulation tissue color evaluated by digital image analysis for deep pressure ulcer healing. Ninety-one patients with deep pressure ulcers were followed for 3 weeks. From a wound photograph taken at baseline, an image representing the granulation red index (GRI) was processed in which a redder color represented higher values. We calculated the average GRI over granulation tissue and the proportion of pixels exceeding the threshold intensity of 80 for the granulation tissue surface (%GRI80) and wound surface (%wound red index 80). In the receiver operating characteristics curve analysis, most GRI parameters had adequate discriminative values for both improvement of the DESIGN-R total score and wound closure. Ulcers were categorized by the obtained cutoff points of the average GRI (≤80, >80), %GRI80 (≤55, >55-80, >80%), and %wound red index 80 (≤25, >25-50, >50%). In the linear mixed model, higher classes for all GRI parameters showed significantly greater relative improvement in overall wound severity during the 3 weeks after adjustment for patient characteristics and wound locations. Assessment of granulation tissue color by digital image analysis will be useful as an objective monitoring tool for granulation tissue quality or surrogate outcomes of pressure ulcer healing. © 2012 by the Wound Healing Society.

  13. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  14. Cerebral ischemic injury decreases α-synuclein expression in brain tissue and glutamate-exposed HT22 cells.

    Science.gov (United States)

    Koh, Phil-Ok

    2017-09-01

    α-Synuclein is abundantly expressed in neuronal tissue, plays an essential role in the pathogenesis of neurodegenerative disorders, and exerts a neuroprotective effect against oxidative stress. Cerebral ischemia causes severe neurological disorders and neuronal dysfunction. In this study, we examined α-synuclein expression in middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury and neuronal cells damaged by glutamate treatment. MCAO surgical operation was performed on male Sprague-Dawley rats, and brain samples were isolated 24 hours after MCAO. We confirmed neurological behavior deficit, infarction area, and histopathological changes following MCAO injury. A proteomic approach and Western blot analysis demonstrated a decrease in α-synuclein in the cerebral cortices after MCAO injury. Moreover, glutamate treatment induced neuronal cell death and decreased α-synuclein expression in a hippocampal-derived cell line in a dose-dependent manner. It is known that α-synuclein regulates neuronal survival, and low levels of α-synuclein expression result in cytotoxicity. Thus, these results suggest that cerebral ischemic injury leads to a reduction in α-synuclein and consequently causes serious brain damage.

  15. Assessment of tissue viability after frostbite injury by technetium-99m-sestamibi scintigraphy in an experimental rabbit model

    Energy Technology Data Exchange (ETDEWEB)

    Sarikaya, I. [Dept. of Nuclear Medicine, Kocaeli University Medical Faculty, Kocaeli (Turkey); Cemal Aygit, A. [Department of Plastic and Reconstructive Surgery, Trakya University Medical Faculty, Edirne (Turkey); Candan, L. [Department of Pathology, Trakya University Medical Faculty, Edirne (Turkey); Sarikaya, A.; Berkarda, S. [Dept. of Nuclear Medicine, Trakya University Medical Faculty, Edirne (Turkey); Tuerkyilmaz, M. [Dept. of Chemistry, Trakya University Faculty of Science, Edirne (Turkey)

    2000-01-01

    Frostbite causes injury to the tissue by direct ice-crystal formation at the cellular level with cellular dehydration and microvascular occlusion. Muscle that initially appears viable on reperfusion may subsequently become necrotic because of microcirculatory collapse. Since muscle is a sensitive tissue in frostbite injury, we used technetium-99m-sestamibi limb scintigraphy to assess tissue viability in an experimental rabbit model. Twelve rabbits were used for this investigation. The right hind limb of the rabbits was immersed to the ankle joint in a container filled with 90% ethanol at -25 C for 10 min. Frostbitten limbs were allowed to thaw in air at room temperature. Imaging and pathological examination of the affected limbs were performed 2 h, 24 h, 48 h and 72 h after freezing. In 2-h images, initial hypoperfusion was seen that corresponded to circulatory collapse. In 24-h images, there was hyperperfusion (so-called period of temporary reperfusion), corresponding to circulatory restoration. In 48-h images, a second hypoperfusion corresponded to viable but ischaemic tissue. In 72-h images, there was non-perfusion of the limb that correlated with the pathologically determined diagnosis of necrosis. All scintigraphic patterns correlated with pathological findings. We suggest that these scintigraphic patterns in soft tissue may be helpful in distinguishing between frank infarction and reversible ischemia and therefore may be useful in selecting early therapeutic or surgical interventions to salvage bone and soft tissue. Further studies are needed to show the usefulness of {sup 99m}Tc sestamibi scintigraphy in clinical frostbite cases. (orig.)

  16. Detection of deep venous thrombosis with indium 111-labelled monoclonal antibody against tissue plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Tromholt, N.; Hesse, B. (Hilleroed County Hospital (Denmark). Dept. of Clinical Physiology); Folkenborg, O. (Isotope-Pharmcy, Broenshoej (Denmark)); Selmer, J. (Novo Industri A/S, Bagsvaerd (Denmark)); Nielsen, N.T. (Hilleroed County Hospital (Denmark). Dept. of Radiology)

    1991-05-01

    The administration of a radiolabelled monoclonal antibody against tissue plasminogen activator allows detection of areas with increased fibrinolytic activity, i.e. those with an active thrombotic lesion. Eight patients with phlebographically verified deep venous thrombosis were examined. At the time of immunoscintigraphy study they were examined receiving anticoagulant therapy. Some 75-85 MBq {sup 111}In-labelled antibody were injected, and scintigrams were obtained after 30 min and after 24 h. The precise site of the thrombus could not be visualized after 30 min due to high background activity, whereas after 24 h it was detectable in all patients. The thrombus/background ratios achieved are twice as high as those observed in a human antifibrin antibody study. These preliminary data suggest a high sensitivity of our PA-specific antibody for the detection of active deep venous thrombosis in man, and our antibody seems to offer theoretical advantages over both platelet and fibrin-specific antibodies. (orig.).

  17. Detection of deep venous thrombosis with indium 111-labelled monoclonal antibody against tissue plasminogen activator

    International Nuclear Information System (INIS)

    Tromholt, N.; Hesse, B.; Selmer, J.; Nielsen, N.T.

    1991-01-01

    The administration of a radiolabelled monoclonal antibody against tissue plasminogen activator allows detection of areas with increased fibrinolytic activity, i.e. those with an active thrombotic lesion. Eight patients with phlebographically verified deep venous thrombosis were examined. At the time of immunoscintigraphy study they were examined receiving anticoagulant therapy. Some 75-85 MBq 111 In-labelled antibody were injected, and scintigrams were obtained after 30 min and after 24 h. The precise site of the thrombus could not be visualized after 30 min due to high background activity, whereas after 24 h it was detectable in all patients. The thrombus/background ratios achieved are twice as high as those observed in a human antifibrin antibody study. These preliminary data suggest a high sensitivity of our PA-specific antibody for the detection of active deep venous thrombosis in man, and our antibody seems to offer theoretical advantages over both platelet and fibrin-specific antibodies. (orig.)

  18. Tissue injuries of wistar rats treated with hydroalcoholic extract of Sonchus oleraceus L.

    Directory of Open Access Journals (Sweden)

    Franciele Carla Prichoa

    2011-09-01

    Full Text Available The use of plant species is emerging as an important alternative in the treatment of injuries. Therefore, the extract of Sonchus oleraceus 10% was employed in the repair of skin lesions. A total of 36 male Wistar rats were subjected to a punch injury and divided into three groups: a negative control, receiving no treatment, a positive control, treated with Dersani, and the experimental group treated with the extract. The injury was assessed macroscopically and microscopically. Morphometric data was collected at the 3rd, 5th and 7th postoperative day, and the experimental group showed greater changes in shrinkage of the lesion compared to control groups. On the 3rd postoperative day, the injury in the experimental group showed less necrotic tissue, lower slough and more granulation tissue in relation to the positive control group. On the 7th and 10th postoperative day, the injury in the experimental group showed lower slough compared to the positive control group. Microscopic analysis of lesions on the 5th postoperative day revealed increased fibroplasia in the experimental group compared to control groups, while on the 14th postoperative day less neovascularization was evident in the experimental group and increased formation of hair follicles in the negative control group. The extract of S. oleraceus provided tissue repair in accordance with normal physiological patterns thus confirming empirical evidence for its use.O emprego de espécies vegetais vem surgindo como alternativa no tratamento de lesões. Dessa forma, foi utilizado o extrato hidroalcoólico de Sonchus oleraceus a 10% na reparação de lesões cutâneas. Trinta e seis ratos machos Wistar, foram submetidos a uma lesão com "punch" e distribuídos em três grupos: controle negativo, não recebeu tratamento; controle positivo, tratado com Dersani; e o experimental, tratado com extrato. A lesão foi avaliada macroscopicamente e microscopicamente. Os dados morfométricos mostraram que

  19. Effects of copper on the sabellid polychaete, Eudistylia vancouveri. II. copper accumulation and tissue injury in the branchial crown

    Energy Technology Data Exchange (ETDEWEB)

    Young, J S [Pacific Northwest Lab., Sequim, WA; Adee, R R; Piscopo, I; Buschbom, R L

    1981-01-01

    Copper in seawater caused injury to the radioles (gills) of the sabellid polychaete, Eudistylia vancouveri. Light and electron microscopy showed the loss of cellular adhesion and the structural derangement that lead to cell necrosis and death. The progression of injury was related to the uptake of copper into the tissues. Copper was found by X-ray microanalysis to be localized subcellularly in membrane-bound vesicles that are similar to lysosomes. Cell breakdown may result from lysosmal labilization.

  20. Nasal avulsion injuries.

    Science.gov (United States)

    Denneny, J C

    1987-11-01

    The nose is the most frequently traumatized portion of the human face. High-speed motor vehicle accidents and interpersonal violence commonly produce bony pyramid and septal damage and occasional minor soft-tissue damage. Major soft-tissue injuries are much less commonly encountered. Avulsion injuries of this type may involve skin only or the bony and cartilaginous framework as well. The severity of these injuries can range from total avulsion to minor skin loss and anywhere within the spectrum between. My experience is reviewed, management guidelines and options are detailed, and selected cases are presented.

  1. Prevalence of graduated compression stocking-associated pressure injuries in surgical intensive care units.

    Science.gov (United States)

    Hobson, Deborah B; Chang, Tracy Y; Aboagye, Jonathan K; Lau, Brandyn D; Shihab, Hasan M; Fisher, Betsy; Young, Samantha; Sujeta, Nancy; Shaffer, Dauryne L; Popoola, Victor O; Kraus, Peggy S; Knorr, Gina; Farrow, Norma E; Streiff, Michael B; Haut, Elliott R

    2017-08-01

    This study aimed to determine the prevalence of static graduated compression stocking (sGCS)-associated pressure injury among patients in surgical intensive care units (ICUs). We retrospectively reviewed data from wound care rounds between April 2011 and June 2012 at 3 surgical ICUs at an urban, tertiary care hospital. Patients with sGCS-associated pressure injury were identified and descriptive analysis was performed on their demographic, perioperative, and postoperative characteristics. We examined 1787 individual patients during 2391 patient encounters. A total of 129 (7.2%) of patients developed pressure injuries. Forty patients (2.2%) developed sGCS-associated pressure injury. Static GCS-associated pressure injury accounted for 31% (40/129) of all pressure injuries and 74% (40/54) of all medical device-related pressure injury. Eighteen (45%) and 6 (15%) developed stage 1 and 2 pressure injury, respectively, and 16 (40%) developed deep tissue injuries. The mean age of our patients was 64.7 years, about half (47.5%) were male, and their mean Acute Physiology and Chronic Health Evaluation II score was 18.8. Many had comorbid conditions, including obesity (44.5%) and diabetes (42.5%), and required mechanical ventilation (45%). Pressure injuries are a notable complication of sGCS in surgical ICU patients. Appropriate measures are required to help avoid this potentially preventable harm. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Precision Medicine for Acute Kidney Injury (AKI): Redefining AKI by Agnostic Kidney Tissue Interrogation and Genetics.

    Science.gov (United States)

    Kiryluk, Krzysztof; Bomback, Andrew S; Cheng, Yim-Ling; Xu, Katherine; Camara, Pablo G; Rabadan, Raul; Sims, Peter A; Barasch, Jonathan

    2018-01-01

    Acute kidney injury (AKI) currently is diagnosed by a temporal trend of a single blood analyte: serum creatinine. This measurement is neither sensitive nor specific to kidney injury or its protean forms. Newer biomarkers, neutrophil gelatinase-associated lipocalin (NGAL, Lipocalin 2, Siderocalin), or kidney injury molecule-1 (KIM-1, Hepatitis A Virus Cellular Receptor 1), accelerate the diagnosis of AKI as well as prospectively distinguish rapidly reversible from prolonged causes of serum creatinine increase. Nonetheless, these biomarkers lack the capacity to subfractionate AKI further (eg, sepsis versus ischemia versus nephrotoxicity from medications, enzymes, or metals) or inform us about the primary and secondary sites of injury. It also is unknown whether all nephrons are injured in AKI, whether all cells in a nephron are affected, and whether injury responses can be stimulus-specific or cell type-specific or both. In this review, we summarize fully agnostic tissue interrogation approaches that may help to redefine AKI in cellular and molecular terms, including single-cell and single-nuclei RNA sequencing technology. These approaches will empower a shift in the current paradigm of AKI diagnosis, classification, and staging, and provide the renal community with a significant advance toward precision medicine in the analysis AKI. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects

    Science.gov (United States)

    Dragulescu-Andrasi, Anca; Chan, Carmel T.; Massoud, Tarik F.; Gambhir, Sanjiv S.

    2011-01-01

    Identifying protein–protein interactions (PPIs) is essential for understanding various disease mechanisms and developing new therapeutic approaches. Current methods for assaying cellular intermolecular interactions are mainly used for cells in culture and have limited use for the noninvasive assessment of small animal disease models. Here, we describe red light-emitting reporter systems based on bioluminescence resonance energy transfer (BRET) that allow for assaying PPIs both in cell culture and deep tissues of small animals. These BRET systems consist of the recently developed Renilla reniformis luciferase (RLuc) variants RLuc8 and RLuc8.6, used as BRET donors, combined with two red fluorescent proteins, TagRFP and TurboFP635, as BRET acceptors. In addition to the native coelenterazine luciferase substrate, we used the synthetic derivative coelenterazine-v, which further red-shifts the emission maxima of Renilla luciferases by 35 nm. We show the use of these BRET systems for ratiometric imaging of both cells in culture and deep-tissue small animal tumor models and validate their applicability for studying PPIs in mice in the context of rapamycin-induced FK506 binding protein 12 (FKBP12)-FKBP12 rapamycin binding domain (FRB) association. These red light-emitting BRET systems have great potential for investigating PPIs in the context of drug screening and target validation applications. PMID:21730157

  4. Autophagy, Innate Immunity and Tissue Repair in Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Pu Duann

    2016-05-01

    Full Text Available Kidney is a vital organ with high energy demands to actively maintain plasma hemodynamics, electrolytes and water homeostasis. Among the nephron segments, the renal tubular epithelium is endowed with high mitochondria density for their function in active transport. Acute kidney injury (AKI is an important clinical syndrome and a global public health issue with high mortality rate and socioeconomic burden due to lack of effective therapy. AKI results in acute cell death and necrosis of renal tubule epithelial cells accompanied with leakage of tubular fluid and inflammation. The inflammatory immune response triggered by the tubular cell death, mitochondrial damage, associative oxidative stress, and the release of many tissue damage factors have been identified as key elements driving the pathophysiology of AKI. Autophagy, the cellular mechanism that removes damaged organelles via lysosome-mediated degradation, had been proposed to be renoprotective. An in-depth understanding of the intricate interplay between autophagy and innate immune response, and their roles in AKI pathology could lead to novel therapies in AKI. This review addresses the current pathophysiology of AKI in aspects of mitochondrial dysfunction, innate immunity, and molecular mechanisms of autophagy. Recent advances in renal tissue regeneration and potential therapeutic interventions are also discussed.

  5. CT and MRI diagnosis of acute hepatic injury

    International Nuclear Information System (INIS)

    Wang Rengui; Fumio Yamamoto; Pu Yonglin; Gao Yujie.

    1997-01-01

    To evaluate and compare MR and CT in diagnosis of acute traumatic hepatic laceration, ten patients with acute hepatic rupture underwent CT scan and/or MRI in the first 24 hours after injury. The injury was graded as mild ( 50% of one lobe). In the first 24 hours after injury, 33.3% (3/9) and 28.6%(2/7) of the hepatic injury demonstrated isodensity and isointensity on plain CT scan and T 1 -weighted images. All the lesions (100%) were clearly identified as marked hyperintensity on T 2 -weighted images. On T 2 WI, T 1 WI and non-contrast CT, 100%, 57.1% and 55.6% of the acute hepatic injuries could be graded respectively. Delayed complications occurred in four patients with deep hepatic injury about 1 to 3 weeks after injury. T 2 -weighted MR imaging is more sensitive and useful for detection of the type and severity of acute hepatic rupture. Follow-up MRI or CT within the first few weeks after injury is needed in patients with deep hepatic injury for detection of delayed complications

  6. Alkaline Phosphatase for the Prevention of Intestinal and Renal Injury in a Rat Model of Cardiopulmonary Bypass with Deep Hypothermic Circulatory Arrest

    Science.gov (United States)

    2017-09-01

    prevention of intestinal and kidney injury after pediatric cardiopulmonary bypass with deep hypothermic circulatory arrest. In this model, we place 5-10kg...first abstract submissions to either Pediatric Academic Society or American Thoracic Society meetings by November. Secondary analysis of serum...rats. Transition to the piglet model also had multiple benefits beyond greater consistency of surgical approach. We now have a true pediatric model and

  7. Spinal cord injury after blunt cervical spine trauma: correlation of soft-tissue damage and extension of lesion.

    Science.gov (United States)

    Martínez-Pérez, R; Paredes, I; Cepeda, S; Ramos, A; Castaño-León, A M; García-Fuentes, C; Lobato, R D; Gómez, P A; Lagares, A

    2014-05-01

    In patients with spinal cord injury after blunt trauma, several studies have observed a correlation between neurologic impairment and radiologic findings. Few studies have been performed to correlate spinal cord injury with ligamentous injury. The purpose of this study was to retrospectively evaluate whether ligamentous injury or disk disruption after spinal cord injury correlates with lesion length. We retrospectively reviewed 108 patients diagnosed with traumatic spinal cord injury after cervical trauma between 1990-2011. Plain films, CT, and MR imaging were performed on patients and then reviewed for this study. MR imaging was performed within 96 hours after cervical trauma for all patients. Data regarding ligamentous injury, disk injury, and the extent of the spinal cord injury were collected from an adequate number of MR images. We evaluated anterior longitudinal ligaments, posterior longitudinal ligaments, and the ligamentum flavum. Length of lesion, disk disruption, and ligamentous injury association, as well as the extent of the spinal cord injury were statistically assessed by means of univariate analysis, with the use of nonparametric tests and multivariate analysis along with linear regression. There were significant differences in lesion length on T2-weighted images for anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum in the univariate analysis; however, when this was adjusted by age, level of injury, sex, and disruption of the soft tissue evaluated (disk, anterior longitudinal ligaments, posterior longitudinal ligaments, and ligamentum flavum) in a multivariable analysis, only ligamentum flavum showed a statistically significant association with lesion length. Furthermore, the number of ligaments affected had a positive correlation with the extension of the lesion. In cervical spine trauma, a specific pattern of ligamentous injury correlates with the length of the spinal cord lesion in MR imaging studies

  8. Palifermin for the protection and regeneration of epithelial tissues following injury: new findings in basic research and pre-clinical models.

    Science.gov (United States)

    Finch, Paul W; Mark Cross, Lawrence J; McAuley, Daniel F; Farrell, Catherine L

    2013-09-01

    Keratinocyte growth factor (KGF) is a paracrine-acting epithelial mitogen produced by cells of mesenchymal origin, that plays an important role in protecting and repairing epithelial tissues. Pre-clinical data initially demonstrated that a recombinant truncated KGF (palifermin) could reduce gastrointestinal injury and mortality resulting from a variety of toxic exposures. Furthermore, the use of palifermin in patients with hematological malignancies reduced the incidence and duration of severe oral mucositis experienced after intensive chemoradiotherapy. Based upon these findings, as well as the observation that KGF receptors are expressed in many, if not all, epithelial tissues, pre-clinical studies have been conducted to determine the efficacy of palifermin in protecting different epithelial tissues from toxic injury in an attempt to model various clinical situations in which it might prove to be of benefit in limiting tissue damage. In this article, we review these studies to provide the pre-clinical background for clinical trials that are described in the accompanying article and the rationale for additional clinical applications of palifermin. © 2013 The Authors. Journal of Cellular and Molecular Medicine Published by Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  9. Burn-injury affects gut-associated lymphoid tissues derived CD4+ T cells.

    Science.gov (United States)

    Fazal, Nadeem; Shelip, Alla; Alzahrani, Alhusain J

    2013-01-01

    After scald burn-injury, the intestinal immune system responds to maintain immune balance. In this regard CD4+T cells in Gut-Associated Lymphoid Tissues (GALT), like mesenteric lymph nodes (MLN) and Peyer's patches (PP) respond to avoid immune suppression following major injury such as burn. Therefore, we hypothesized that the gut CD4+T cells become dysfunctional and turn the immune homeostasis towards depression of CD4+ T cell-mediated adaptive immune responses. In the current study we show down regulation of mucosal CD4+ T cell proliferation, IL-2 production and cell surface marker expression of mucosal CD4+ T cells moving towards suppressive-type. Acute burn-injury lead to up-regulation of regulatory marker (CD25+), down regulation of adhesion (CD62L, CD11a) and homing receptor (CD49d) expression, and up-regulation of negative co-stimulatory (CTLA-4) molecule. Moreover, CD4+CD25+ T cells of intestinal origin showed resistance to spontaneous as well as induced apoptosis that may contribute to suppression of effector CD4+ T cells. Furthermore, gut CD4+CD25+ T cells obtained from burn-injured animals were able to down-regulate naïve CD4+ T cell proliferation following adoptive transfer of burn-injured CD4+CD25+ T cells into sham control animals, without any significant effect on cell surface activation markers. Together, these data demonstrate that the intestinal CD4+ T cells evolve a strategy to promote suppressive CD4+ T cell effector responses, as evidenced by enhanced CD4+CD25+ T cells, up-regulated CTLA-4 expression, reduced IL-2 production, tendency towards diminished apoptosis of suppressive CD4+ T cells, and thus lose their natural ability to regulate immune homeostasis following acute burn-injury and prevent immune paralysis.

  10. A MRI-Compatible Combined Mechanical Loading and MR Elastography Setup to Study Deformation-Induced Skeletal Muscle Damage in Rats

    NARCIS (Netherlands)

    Nelissen, Jules L.; de Graaf, Larry; Traa, Willeke A.; Schreurs, Tom J. L.; Moerman, Kevin M.; Nederveen, Aart J.; Sinkus, Ralph; Oomens, Cees W. J.; Nicolay, Klaas; Strijkers, Gustav J.

    2017-01-01

    Deformation of skeletal muscle in the proximity of bony structures may lead to deep tissue injury category of pressure ulcers. Changes in mechanical properties have been proposed as a risk factor in the development of deep tissue injury and may be useful as a diagnostic tool for early detection. MRE

  11. Immunolocalization of Myostatin (GDF-8) Following Musculoskeletal Injury and the Effects of Exogenous Myostatin on Muscle and Bone Healing

    Science.gov (United States)

    Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang

    2012-01-01

    The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a “pool” of intense myostatin staining was observed among injured skeletal muscle fibers 12–24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (pMyostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (pmyostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. PMID:22205678

  12. Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury.

    Science.gov (United States)

    Moore, Scott M; Zhang, Hua; Maeda, Nobuyo; Doerschuk, Claire M; Faber, James E

    2015-07-01

    Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months of age in mice (i.e., middle age), and worse ischemic injury-effects that are accelerated in even 3-month-old eNOS(-/-) mice. These findings have found indirect support in recent human studies. We sought to determine whether other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. Mice with nine different models of CVRFs of 4-12 months of age were assessed for number and diameter of native collaterals in skeletal muscle and brain and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wild-type mice with L-N (G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury which were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence.

  13. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  14. Analysis of sports related mTBI injuries caused by elastic wave propagation through brain tissue

    Directory of Open Access Journals (Sweden)

    D Case

    2016-10-01

    Full Text Available Repetitive concussions and sub-concussions suffered by athletes have been linked to a series of sequelae ranging from traumatic encephalopathy to dementia pugilistica. A detailed finite element model of the human head was developed based on standard libraries of medical imaging. The model includes realistic material properties for the brain tissue, bone, soft tissue, and CSF, as well as the structure and properties of a protective helmet. Various impact scenarios were studied, with a focus on the strains/stresses and pressure gradients and concentrations created in the brain tissue due to propagation of waves produced by the impact through the complex internal structure of the human head. This approach has the potential to expand our understanding of the mechanism of brain injury, and to better assess the risk of delayed neurological disorders for tens of thousands of young athletes throughout the world.

  15. Deep learning for tissue microarray image-based outcome prediction in patients with colorectal cancer

    Science.gov (United States)

    Bychkov, Dmitrii; Turkki, Riku; Haglund, Caj; Linder, Nina; Lundin, Johan

    2016-03-01

    Recent advances in computer vision enable increasingly accurate automated pattern classification. In the current study we evaluate whether a convolutional neural network (CNN) can be trained to predict disease outcome in patients with colorectal cancer based on images of tumor tissue microarray samples. We compare the prognostic accuracy of CNN features extracted from the whole, unsegmented tissue microarray spot image, with that of CNN features extracted from the epithelial and non-epithelial compartments, respectively. The prognostic accuracy of visually assessed histologic grade is used as a reference. The image data set consists of digitized hematoxylin-eosin (H and E) stained tissue microarray samples obtained from 180 patients with colorectal cancer. The patient samples represent a variety of histological grades, have data available on a series of clinicopathological variables including long-term outcome and ground truth annotations performed by experts. The CNN features extracted from images of the epithelial tissue compartment significantly predicted outcome (hazard ratio (HR) 2.08; CI95% 1.04-4.16; area under the curve (AUC) 0.66) in a test set of 60 patients, as compared to the CNN features extracted from unsegmented images (HR 1.67; CI95% 0.84-3.31, AUC 0.57) and visually assessed histologic grade (HR 1.96; CI95% 0.99-3.88, AUC 0.61). As a conclusion, a deep-learning classifier can be trained to predict outcome of colorectal cancer based on images of H and E stained tissue microarray samples and the CNN features extracted from the epithelial compartment only resulted in a prognostic discrimination comparable to that of visually determined histologic grade.

  16. Fiber-based tissue identification for electrode placement in deep brain stimulation neurosurgery (Conference Presentation)

    Science.gov (United States)

    DePaoli, Damon T.; Lapointe, Nicolas; Goetz, Laurent; Parent, Martin; Prudhomme, Michel; Cantin, Léo.; Galstian, Tigran; Messaddeq, Younès.; Côté, Daniel C.

    2016-03-01

    Deep brain stimulation's effectiveness relies on the ability of the stimulating electrode to be properly placed within a specific target area of the brain. Optical guidance techniques that can increase the accuracy of the procedure, without causing any additional harm, are therefore of great interest. We have designed a cheap optical fiber-based device that is small enough to be placed within commercially available DBS stimulating electrodes' hollow cores and that is capable of sensing biological information from the surrounding tissue, using low power white light. With this probe we have shown the ability to distinguish white and grey matter as well as blood vessels, in vitro, in human brain samples and in vivo, in rats. We have also repeated the in vitro procedure with the probe inserted in a DBS stimulating electrode and found the results were in good agreement. We are currently validating a second fiber optic device, with micro-optical components, that will result in label free, molecular level sensing capabilities, using CARS spectroscopy. The final objective will be to use this data in real time, during deep brain stimulation neurosurgery, to increase the safety and accuracy of the procedure.

  17. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    Science.gov (United States)

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  18. Ganga hospital open injury score in management of open injuries.

    Science.gov (United States)

    Rajasekaran, S; Sabapathy, S R; Dheenadhayalan, J; Sundararajan, S R; Venkatramani, H; Devendra, A; Ramesh, P; Srikanth, K P

    2015-02-01

    Open injuries of the limbs offer challenges in management as there are still many grey zones in decision making regarding salvage, timing and type of reconstruction. As a result, there is still an unacceptable rate of secondary amputations which lead to tremendous waste of resources and psychological devastation of the patient and his family. Gustilo Anderson's classification was a major milestone in grading the severity of injury but however suffers from the disadvantages of imprecise definition, a poor interobserver correlation, inability to address the issue of salvage and inclusion of a wide spectrum of injuries in Type IIIb category. Numerous scores such as Mangled Extremity Severity Score, the Predictive Salvage Index, the Limb Salvage Index, Hannover Fracture Scale-97 etc have been proposed but all have the disadvantage of retrospective evaluation, inadequate sample sizes and poor sensitivity and specificity to amputation, especially in IIIb injuries. The Ganga Hospital Open Injury Score (GHOIS) was proposed in 2004 and is designed to specifically address the outcome in IIIb injuries of the tibia without vascular deficit. It evaluates the severity of injury to the three components of the limb--the skin, the bone and the musculotendinous structures separately on a grade from 0 to 5. Seven comorbid factors which influence the treatment and the outcome are included in the score with two marks each. The application of the total score and the individual tissue scores in management of IIIB injuries is discussed. The total score was shown to predict salvage when the value was 14 or less; amputation when the score was 17 and more. A grey zone of 15 and 16 is provided where the decision making had to be made on a case to case basis. The additional value of GHOIS was its ability to guide the timing and type of reconstruction. A skin score of more than 3 always required a flap and hence it indicated the need for an orthoplastic approach from the index procedure. Bone

  19. The Immune System in Tissue Environments Regaining Homeostasis after Injury: Is “Inflammation” Always Inflammation?

    OpenAIRE

    Kulkarni, Onkar P.; Lichtnekert, Julia; Anders, Hans-Joachim; Mulay, Shrikant R.

    2016-01-01

    Inflammation is a response to infections or tissue injuries. Inflammation was once defined by clinical signs, later by the presence of leukocytes, and nowadays by expression of “proinflammatory” cytokines and chemokines. But leukocytes and cytokines often have rather anti-inflammatory, proregenerative, and homeostatic effects. Is there a need to redefine “inflammation”? In this review, we discuss the functions of “inflammatory” mediators/regulators of the innate immune system that determine t...

  20. Matrix- and plasma-derived peptides promote tissue-specific injury responses and wound healing in diabetic swine.

    Science.gov (United States)

    Sheets, Anthony R; Massey, Conner J; Cronk, Stephen M; Iafrati, Mark D; Herman, Ira M

    2016-07-02

    Non-healing wounds are a major global health concern and account for the majority of non-traumatic limb amputations worldwide. However, compared to standard care practices, few advanced therapeutics effectively resolve these injuries stemming from cardiovascular disease, aging, and diabetes-related vasculopathies. While matrix turnover is disrupted in these injuries, debriding enzymes may promote healing by releasing matrix fragments that induce cell migration, proliferation, and morphogenesis, and plasma products may also stimulate these processes. Thus, we created matrix- and plasma-derived peptides, Comb1 and UN3, which induce cellular injury responses in vitro, and accelerate healing in rodent models of non-healing wounds. However, the effects of these peptides in non-healing wounds in diabetes are not known. Here, we interrogated whether these peptides stimulate healing in a diabetic porcine model highly reminiscent of human healing impairments in type 1 and type 2-diabetes. After 3-6 weeks of streptozotocin-induced diabetes, full-thickness wounds were surgically created on the backs of adult female Yorkshire swine under general anesthesia. Comb1 and UN3 peptides or sterile saline (negative control) were administered to wounds daily for 3-7 days. Following sacrifice, wound tissues were harvested, and quantitative histological and immunohistochemical analyses were performed for wound closure, angiogenesis and granulation tissue deposition, along with quantitative molecular analyses of factors critical for angiogenesis, epithelialization, and dermal matrix remodeling. Comb1 and UN3 significantly increase re-epithelialization and angiogenesis in diabetic porcine wounds, compared to saline-treated controls. Additionally, fluorescein-conjugated Comb1 labels keratinocytes, fibroblasts, and vascular endothelial cells in porcine wounds, and Far western blotting reveals these cell populations express multiple fluorescein-Comb1-interacting proteins in vitro. Further

  1. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice.

    Directory of Open Access Journals (Sweden)

    Min Ao

    Full Text Available BACKGROUND: A number of studies have revealed a link between chronic periodontitis and cardiovascular disease in obese patients. However, there is little information about the influence of periodontitis-associated bacteria, Porphyromonas gingivalis (Pg, on pathogenesis of atherosclerosis in obesity. METHODS: In vivo experiment: C57BL/6J mice were fed with a high-fat diet (HFD or normal chow diet (CD, as a control. Pg was infected from the pulp chamber. At 6 weeks post-infection, histological and immunohistochemical analysis of aortal tissues was performed. In vitro experiment: hTERT-immortalized human umbilical vein endothelial cells (HuhT1 were used to assess the effect of Pg/Pg-LPS on free fatty acid (FFA induced endothelial cells apoptosis and regulation of cytokine gene expression. RESULTS: Weaker staining of CD31 and increased numbers of TUNEL positive cells in aortal tissue of HFD mice indicated endothelial injury. Pg infection exacerbated the endothelial injury. Immunohistochemically, Pg was detected deep in the smooth muscle of the aorta, and the number of Pg cells in the aortal wall was higher in HFD mice than in CD mice. Moreover, in vitro, FFA treatment induced apoptosis in HuhT1 cells and exposure to Pg-LPS increased this effect. In addition, Pg and Pg-LPS both attenuated cytokine production in HuhT1 cells stimulated by palmitate. CONCLUSIONS: Dental infection of Pg may contribute to pathogenesis of atherosclerosis by accelerating FFA-induced endothelial injury.

  2. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  3. Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence.

    Science.gov (United States)

    Hodges, Paul W; James, Gregory; Blomster, Linda; Hall, Leanne; Schmid, Annina; Shu, Cindy; Little, Chris; Melrose, James

    2015-07-15

    Longitudinal case-controlled animal study. To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in

  4. Antioxidant Approaches to Management of Ionizing Irradiation Injury

    Directory of Open Access Journals (Sweden)

    Joel Greenberger

    2015-01-01

    Full Text Available Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1 radiation counter measures against total or partial body irradiation; (2 normal tissue protection against acute organ specific ionizing irradiation injury; and (3 prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.

  5. Stages of Adult Soft Tissue Sarcoma

    Science.gov (United States)

    ... deep (in the muscle and may be in connective or subcutaneous tissue). In stage IB , the tumor is low-grade (likely to grow and spread ... deep (in the muscle and may be in connective or subcutaneous tissue). In stage IIB , the tumor is mid-grade (somewhat likely to grow and ...

  6. Tissue at risk in the deep middle cerebral artery territory is critical to stroke outcome

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Charlotte; Samson, Yves [Pitie-Salpetriere Hospital, AP-HP, Urgences Cerebro-Vasculaires, Paris (France); UPMC, Univ Paris 06, Paris (France); Centre de Recherche de l' Institut du Cerveau et de la Moelle epiniere, ICM, UPMC Paris 6, Inserm, U975, CNRS, UMR 7225, COGIMAGE, Paris (France); Colliot, Olivier [UPMC, Univ Paris 06, Paris (France); Centre de Recherche de l' Institut du Cerveau et de la Moelle epiniere, ICM, UPMC Paris 6, Inserm, U975, CNRS, UMR 7225, COGIMAGE, Paris (France); Valabregue, Romain [UPMC, Univ Paris 06, Paris (France); Centre de Recherche de l' Institut du Cerveau et de la Moelle epiniere, ICM, UPMC Paris 6, Inserm, U975, CNRS, UMR 7225, Centre for NeuroImaging Research (CENIR), Paris (France); Crozier, Sophie [Pitie-Salpetriere Hospital, AP-HP, Urgences Cerebro-Vasculaires, Paris (France); Dormont, Didier [UPMC, Univ Paris 06, Paris (France); Centre de Recherche de l' Institut du Cerveau et de la Moelle epiniere, ICM, UPMC Paris 6, Inserm, U975, CNRS, UMR 7225, COGIMAGE, Paris (France); Pitie-Salpetriere Hospital, AP-HP, Department of Neuroradiology, Paris (France); Lehericy, Stephane [UPMC, Univ Paris 06, Paris (France); Centre de Recherche de l' Institut du Cerveau et de la Moelle epiniere, ICM, UPMC Paris 6, Inserm, U975, CNRS, UMR 7225, Centre for NeuroImaging Research (CENIR), Paris (France); Pitie-Salpetriere Hospital, AP-HP, Department of Neuroradiology, Paris (France)

    2011-10-15

    The clinical efficacy of thrombolysis in stroke patients is explained by the increased rate of recanalization, which limits infarct growth. However, the efficacy could also be explained by the protection of specific sites of the brain. Here, we investigate where is this outcome-related tissue at risk using voxel-based analysis. We included 68 acute stroke patients with middle cerebral artery (MCA) occlusion on the admission MRI performed within 6 h of symptoms onset (H6) and 16 controls. MCA recanalization was assessed using the magnetic resonance angiography performed at day 1 (D1). Apparent diffusion coefficient (ADC) changes were analyzed using a voxel-based method between patients vs. controls group at admission (H6) in non-recanalized vs. recanalized and in 3-month poor vs. good outcome patients at D1. Complete or partial MCA recanalization was observed in 52 of 68 patients. Good outcome at 3 months occurred in 40 patients (59%). In non-recanalized patients, ADC was decreased in the deep MCA and watershed arterial territory (the lenticular nucleus, internal capsule, and the overlying periventricular white matter). This decrease was not observed in recanalized patients at D1 or patients at H6. Fiber tracking suggested that the area is crossed by the cortico-spinal, cerebellar, and intra-hemispheric association tracts. Finally, this area almost co-localized with the area associated with poor outcome. A clinically relevant area of tissue at risk may occur in patients with MCA infarcts at the level of deep white matter fiber tracts. These findings suggest that neuroprotection research should be refocused on white matter. (orig.)

  7. Tissue at risk in the deep middle cerebral artery territory is critical to stroke outcome

    International Nuclear Information System (INIS)

    Rosso, Charlotte; Samson, Yves; Colliot, Olivier; Valabregue, Romain; Crozier, Sophie; Dormont, Didier; Lehericy, Stephane

    2011-01-01

    The clinical efficacy of thrombolysis in stroke patients is explained by the increased rate of recanalization, which limits infarct growth. However, the efficacy could also be explained by the protection of specific sites of the brain. Here, we investigate where is this outcome-related tissue at risk using voxel-based analysis. We included 68 acute stroke patients with middle cerebral artery (MCA) occlusion on the admission MRI performed within 6 h of symptoms onset (H6) and 16 controls. MCA recanalization was assessed using the magnetic resonance angiography performed at day 1 (D1). Apparent diffusion coefficient (ADC) changes were analyzed using a voxel-based method between patients vs. controls group at admission (H6) in non-recanalized vs. recanalized and in 3-month poor vs. good outcome patients at D1. Complete or partial MCA recanalization was observed in 52 of 68 patients. Good outcome at 3 months occurred in 40 patients (59%). In non-recanalized patients, ADC was decreased in the deep MCA and watershed arterial territory (the lenticular nucleus, internal capsule, and the overlying periventricular white matter). This decrease was not observed in recanalized patients at D1 or patients at H6. Fiber tracking suggested that the area is crossed by the cortico-spinal, cerebellar, and intra-hemispheric association tracts. Finally, this area almost co-localized with the area associated with poor outcome. A clinically relevant area of tissue at risk may occur in patients with MCA infarcts at the level of deep white matter fiber tracts. These findings suggest that neuroprotection research should be refocused on white matter. (orig.)

  8. Diving the wreck: risk and injury in sport scuba diving.

    Science.gov (United States)

    Hunt, J C

    1996-07-01

    This paper utilizes psychoanalytic theory to examine risk and injury in the case of a male deep sea diver. It examines the unconscious conflicts which appeared to fuel the diver's involvement in deep diving and to lead to a near fatal incident of decompression sickness. Particular attention is paid to the role of the diver's father in the evolution of the preoedipal and oedipal fantasies and conflicts which appear to be linked to the injury. The research is based on interviews with and fieldwork among recreational and deep divers.

  9. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Science.gov (United States)

    Baer, Matthew L; Henderson, Scott C; Colello, Raymond J

    2015-01-01

    Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  10. Elucidating the Role of Injury-Induced Electric Fields (EFs in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Matthew L Baer

    Full Text Available Injury to the vertebrate central nervous system (CNS induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.

  11. Tissue Engineered Strategies for Skeletal Muscle Injury

    Directory of Open Access Journals (Sweden)

    Umile Giuseppe Longo

    2012-01-01

    Full Text Available Skeletal muscle injuries are common in athletes, occurring with direct and indirect mechanisms and marked residual effects, such as severe long-term pain and physical disability. Current therapy consists of conservative management including RICE protocol (rest, ice, compression, and elevation, nonsteroidal anti-inflammatory drugs, and intramuscular corticosteroids. However, current management of muscle injuries often does not provide optimal restoration to preinjury status. New biological therapies, such as injection of platelet-rich plasma and stem-cell-based therapy, are appealing. Although some studies support PRP application in muscle-injury management, reasons for concern persist, and further research is required for a standardized and safe use of PRP in clinical practice. The role of stem cells needs to be confirmed, as studies are still limited and inconsistent. Further research is needed to identify mechanisms involved in muscle regeneration and in survival, proliferation, and differentiation of stem cells.

  12. Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury.

    Science.gov (United States)

    Weidenbusch, Marc; Rodler, Severin; Song, Shangqing; Romoli, Simone; Marschner, Julian A; Kraft, Franziska; Holderied, Alexander; Kumar, Santosh; Mulay, Shrikant R; Honarpisheh, Mohsen; Kumar Devarapu, Satish; Lech, Maciej; Anders, Hans-Joachim

    2017-12-22

    Notch and interleukin-22 (IL-22) signaling are known to regulate tissue homeostasis and respond to injury in humans and mice, and the induction of endogenous aryl hydrocarbon receptor (Ahr) ligands through Notch links the two pathways in a hierarchical fashion. However in adults, the species-, organ- and injury-specific gene expression of the Notch-AhR-IL22 axis components is unknown. We therefore performed gene expression profiling of DLL1, DLL3, DLL4, DLK1, DLK2, JAG1, JAG2, Notch1, Notch2, Notch3, Notch4, ADAM17/TNF-α ADAM metalloprotease converting enzyme (TACE), PSEN1, basigin (BSG)/CD147, RBP-J, HES1, HES5, HEY1, HEYL, AHR, ARNT, ARNT2, CYP1A1, CYP24A1, IL-22, IL22RA1, IL22RA2, IL10RB, and STAT3 under homeostatic conditions in ten mature murine and human organs. Additionally, the expression of these genes was assessed in murine models of acute sterile inflammation and progressive fibrosis. We show that there are organ-specific gene expression profiles of the Notch-AhR-IL22 axis in humans and mice. Although there is an overall interspecies congruency, specific differences between human and murine expression signatures do exist. In murine tissues with AHR/ARNT expression CYP1A1 and IL-22 were correlated with HES5 and HEYL expression, while in human tissues no such correlation was found. Notch and AhR signaling are involved in renal inflammation and fibrosis with specific gene expression changes in each model. Despite the presence of all Notch pathway molecules in the kidney and a model-specific induction of Notch ligands, IL-22 was only up-regulated in acute inflammation, but rapidly down-regulated during regeneration. This implies that for targeting injury responses, e.g. via IL-22, species-specific differences, injury type and time points have to be considered. © 2017 The Author(s).

  13. Baseball and softball injuries.

    Science.gov (United States)

    Wang, Quincy

    2006-05-01

    Baseball and softball injuries can be a result of both acute and overuse injuries. Soft tissue injuries include contusions, abrasions, and lacerations. Return to play is allowed when risk of further injury is minimized. Common shoulder injuries include those to the rotator cuff, biceps tendon, and glenoid labrum. Elbow injuries are common in baseball and softball and include medial epicondylitis, ulnar collateral ligament injury, and osteochondritis dissecans. Typically conservative treatment with relative rest, medication, and a rehabilitation program will allow return to play. Surgical intervention may be needed for certain injuries or conservative treatment failure.

  14. Preventing playground injuries.

    Science.gov (United States)

    Fuselli, Pamela; Yanchar, Natalie L

    2012-06-01

    With concerns increasing around childhood obesity and inactivity, playgrounds offer a chance for children to be active. But playgrounds also have risks, with injuries from falls being the most common. Research has shown that playground injuries can be reduced by lowering the heights of play equipment and using soft, deep surfaces to cushion falls. The Canadian Standards Association has published voluntary standards for playgrounds to address these risks for several years. Parents can further reduce injury risks by following simple playground strategies. This statement outlines the burden of playground injuries. It also provides parents and health care providers with opportunities to reduce injury incidence and severity through education and advocacy, and to implement evidence-informed safety standards and safer play strategies in local playgrounds. This document replaces a previous Canadian Paediatric Society position statement published in 2002.

  15. The role of platelet factor 4 in local and remote tissue damage in a mouse model of mesenteric ischemia/reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Peter H Lapchak

    Full Text Available The robust inflammatory response that occurs during ischemia reperfusion (IR injury recruits factors from both the innate and adaptive immune systems. However the contribution of platelets and their products such as Platelet Factor 4 (PF4; CXCL4, during the pathogenesis of IR injury has not been thoroughly investigated. We show that a deficiency in PF4 protects mice from local and remote tissue damage after 30 minutes of mesenteric ischemia and 3 hours of reperfusion in PF4-/- mice compared to control B6 mice. This protection was independent from Ig or complement deposition in the tissues. However, neutrophil and monocyte infiltration were decreased in the lungs of PF4-/- mice compared with B6 control mice. Platelet-depleted B6 mice transfused with platelets from PF4-/- mice displayed reduced tissue damage compared with controls. In contrast, transfusion of B6 platelets into platelet depleted PF4-/- mice reconstituted damage in both intestine and lung tissues. We also show that PF4 may modulate the release of IgA. Interestingly, we show that PF4 expression on intestinal epithelial cells is increased after IR at both the mRNA and protein levels. In conclusion, these findings demonstrate that may PF4 represent an important mediator of local and remote tissue damage.

  16. Subcutaneous Emphysema in Non-Necrotizing Soft Tissue Injury

    Directory of Open Access Journals (Sweden)

    Hamid Ehsani-Nia

    2017-09-01

    Full Text Available History of present illness: 63-year-old male with a history of diabetes mellitus and rheumatoid arthritis who was sent to the emergency department by his primary care provider for further evaluation of left upper extremity crepitus. The patient fell onto his left elbow two days prior to presentation resulting in immediate swelling and a small laceration. He complained of minimal pain and denied fevers or chills. His medications included metformin, tocilizumab, methotrexate and prednisone. In the ED, the patient was well-appearing, afebrile, with a normal heart rate and in no acute distress. Examination of the left upper extremity revealed no tenderness to palpation but marked crepitus with a scabbed laceration over his olecranon process and was neurovascularly intact. White blood cell count (WBC, sodium, glucose, inflammatory markers and lactate were all within normal limits. Significant findings: X-Rays of the elbow revealed diffuse striated lucencies throughout the soft tissue, consistent with extensive subcutaneous air throughout the superficial and deep tissues. There was no evidence of a fracture. Discussion: The initiating mechanism for necrotizing soft tissue infections (NSTIs is a disruption of the fascial planes, most commonly by trauma. The inoculated bacteria rapidly spread and surgical debridement is necessary.1-3 Early recognition and disposition to the operating room in 51 are correlated with increased morbidity and mortality.5 Additionally, it has been found that immunocompromised patients exhibit atypical presentations of NSTIs.6 The Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC score is often used to risk stratify patients when there is suspicion for an NSTI.7 The patient discussed here had a LRINEC score of 0. However, the physical exam finding of crepitus, coupled with his history of immunocompromised status and subcutaneous air on X-ray made the diagnosis of NSTI seem likely. However, upon surgical exploration

  17. Functional Regulation of the Plasma Protein Histidine-Rich Glycoprotein by Zn2+ in Settings of Tissue Injury

    Directory of Open Access Journals (Sweden)

    Kristin M. Priebatsch

    2017-03-01

    Full Text Available Divalent metal ions are essential nutrients for all living organisms and are commonly protein-bound where they perform important roles in protein structure and function. This regulatory control from metals is observed in the relatively abundant plasma protein histidine-rich glycoprotein (HRG, which displays preferential binding to the second most abundant transition element in human systems, Zinc (Zn2+. HRG has been proposed to interact with a large number of protein ligands and has been implicated in the regulation of various physiological and pathological processes including the formation of immune complexes, apoptotic/necrotic and pathogen clearance, cell adhesion, antimicrobial activity, angiogenesis, coagulation and fibrinolysis. Interestingly, these processes are often associated with sites of tissue injury or tumour growth, where the concentration and distribution of Zn2+ is known to vary. Changes in Zn2+ levels have been shown to modify HRG function by altering its affinity for certain ligands and/or providing protection against proteolytic disassembly by serine proteases. This review focuses on the molecular interplay between HRG and Zn2+, and how Zn2+ binding modifies HRG-ligand interactions to regulate function in different settings of tissue injury.

  18. Treatment of chronic deltoid ligament injury using suture anchors.

    Science.gov (United States)

    Wang, Xu; Ma, Xin; Zhang, Chao; Wang, Chen; Huang, Jia-zhang

    2014-08-01

    To explore the efficacy of overlapping suture-anchor fixation for treatment of chronic deltoid ligament injury. Seventeen patients (11 men, 6 women of mean age 32.1 years [range, 18-58 years]) who had undergone surgery for chronic deltoid ligament injury from January 2007 to December 2011 were retrospectively analyzed. Preoperatively, they had undergone bilateral weight-bearing posterior-anterior radiographs, (MRI) and ultrasound examinations of the ankle. Ankle arthroscopy was performed to confirm the diagnosis, followed by surgery to clear intra-articular proliferating synovial tissues and remove cartilage debris and scar tissue. The deep layer of the deltoid ligament was sutured onto the tip of the medial malleolus and its superficial layer sutured onto its periosteum and fixed with suture anchors. American Orthopedic Foot and Ankle Society (AOFAS) scoring system for the ankle-hindfoot was used to evaluate the ankles pre- and post-operatively. The 17 patients were followed up for 12-34 months (mean 20.1 months). The angle between the long axes of the talus and first metatarsal and the hindfoot angle measured in a hindfoot alignment view (as described by Saltzman) were reduced from 5.4° ± 1.8° and 8.2° ± 2.6° preoperatively to 4.0° ± 0.9° and 5.3° ± 1.3° postoperatively, respectively. The mean AOFAS ankle-hindfoot score was 76.8 ± 7.0 preoperatively and 94.1 ± 3.3 at the last follow-up visit. Ten patients were scored as excellent, six as good, and one as fair. Pain was relieved in all patients and no patients had recurrent deltoid ligament injury. Using suture anchors to treat chronic deltoid ligament injury has relatively satisfactory outcomes. © 2014 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  19. A Loss in the Plasma Membrane ATPase Activity and Its Recovery Coincides with Incipient Freeze-Thaw Injury and Postthaw Recovery in Onion Bulb Scale Tissue 1

    Science.gov (United States)

    Arora, Rajeev; Palta, Jiwan P.

    1991-01-01

    Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063

  20. Effect of Fucoidan Extracted from Mozuku on Experimental Cartilaginous Tissue Injury 

    Directory of Open Access Journals (Sweden)

    Saburo Minami

    2012-11-01

    Full Text Available We investigated the effect of fucoidan, a sulfated polysaccharide, on acceleration of healing of experimental cartilage injury in a rabbit model. An injured cartilage model was surgically created by introduction of three holes, one in the articular cartilage of the medial trochlea and two in the trochlear sulcus of the distal femur. Rabbits in three experimental groups (F groups were orally administered fucoidan of seven different molecular weights (8, 50, 146, 239, 330, 400, or 1000 kD for 3 weeks by screening. Control (C group rabbits were provided water ad libitum. After the experimental period, macroscopic examination showed that the degree of filling in the fucoidan group was higher than that in the C group. Histologically, the holes were filled by collagen fiber and fibroblasts in the C group, and by chondroblasts and fibroblasts in the F groups. Image analysis of Alcian blue- and safranin O-stained F-group specimens showed increased production of glycosaminoglycans (GAGs and proteoglycans (PGs, respectively. Some injured holes were well repaired both macroscopically and microscopically and were filled with cartilage tissues; cartilage matrices such as PGs and GAGs were produced in groups F 50, F 146, and F 239. Thus, fucoidan administration enhanced morphologically healing of cartilage injury.

  1. Molecular imaging needles: dual-modality optical coherence tomography and fluorescence imaging of labeled antibodies deep in tissue

    Science.gov (United States)

    Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.

    2015-01-01

    Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379

  2. Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Andresen, Morten; Donnelly, Joseph; Aries, Marcel

    2018-01-01

    arterial pressure and intracranial pressure. A new ORx index based on brain tissue oxygenation and cerebral perfusion pressure (CPP) has been proposed that similarly allows for evaluation of cerebrovascular reactivity. Conflicting results exist concerning its clinical utility. METHODS: Retrospective......BACKGROUND: Continuous monitoring of cerebral autoregulation is considered clinically useful due to its ability to warn against brain ischemic insults, which may translate to a relationship with adverse outcome. It is typically performed using the pressure reactivity index (PRx) based on mean...... analysis was performed in 85 patients with traumatic brain injury (TBI). ORx was calculated using three time windows of 5, 20, and 60 min. Correlation coefficients and individual "optimal CPP" (CPPopt) were calculated using both PRx and ORx, and relation to patient outcome investigated. RESULTS...

  3. Acute pain in an emergency clinic: latency of onset and descriptor patterns related to different injuries.

    Science.gov (United States)

    Melzack, R; Wall, P D; Ty, T C

    1982-09-01

    Features of acute pain were examined in patients at an emergency clinic. Patients who had severe, life-threatening injuries or who were agitated, drunk, or 'in shock' were excluded from the study. Of 138 patients who were alert, rational and coherent, 51 (37%) stated that they did not feel pain at the time of injury. The majority of these patients reported onset of pain within an hour of injury, although the delays were as long as 9 h or more in some patients. The predominant emotions of the patients were embarrassment at appearing careless or worry about loss of wages. None expressed any pleasure or indicated any prospect of gain as a result of the injury. The occurrence of delays in pain onset was related to the nature of the injury. Of 46 patients whose injuries were limited to skin (lacerations, cuts, abrasions, burns), 53% had a pain-free period. Of 86 patients with deep-tissue injuries (fractures, sprains, bruises, amputation of a finger, stabs and crushes), only 28% had a pain-free period. The McGill Pain Questionnaire was administered to patients who felt pain immediately after injury or after a delay, and revealed a normal distribution of sensory scores but very low affective scores compared to patients with chronic pain. The results indicate that the relationship between injury and pain is highly variable and complex.

  4. Clinical use of fungal PCR from deep tissue samples in the diagnosis of invasive fungal diseases: a retrospective observational study.

    Science.gov (United States)

    Ala-Houhala, M; Koukila-Kähkölä, P; Antikainen, J; Valve, J; Kirveskari, J; Anttila, V-J

    2018-03-01

    To assess the clinical use of panfungal PCR for diagnosis of invasive fungal diseases (IFDs). We focused on the deep tissue samples. We first described the design of panfungal PCR, which is in clinical use at Helsinki University Hospital. Next we retrospectively evaluated the results of 307 fungal PCR tests performed from 2013 to 2015. Samples were taken from normally sterile tissues and fluids. The patient population was nonselected. We classified the likelihood of IFD according to the criteria of the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG), comparing the fungal PCR results to the likelihood of IFD along with culture and microscopy results. There were 48 positive (16%) and 259 negative (84%) PCR results. The sensitivity and specificity of PCR for diagnosing IFDs were 60.5% and 91.7%, respectively, while the negative predictive value and positive predictive value were 93.4% and 54.2%, respectively. The concordance between the PCR and the culture results was 86% and 87% between PCR and microscopy, respectively. Of the 48 patients with positive PCR results, 23 had a proven or probable IFD. Fungal PCR can be useful for diagnosing IFDs in deep tissue samples. It is beneficial to combine fungal PCR with culture and microscopy. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy.

    Science.gov (United States)

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E; Puppala, Dheeraj; Armoundas, Antonis A; Hindle, Allyson; Bloch, Kenneth D; Buys, Emmanuel S; Scherrer-Crosbie, Marielle

    2015-07-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1(-/-)) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1(-/-) mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1(-/-) mice. UCP1(-/-) mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1(-/-) mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1(-/-) BAT transplanted to either UCP1(-/-) or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1(-/-) mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1(-/-) mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. General Information about Adult Soft Tissue Sarcoma

    Science.gov (United States)

    ... deep (in the muscle and may be in connective or subcutaneous tissue). In stage IB , the tumor is low-grade (likely to grow and spread ... deep (in the muscle and may be in connective or subcutaneous tissue). In stage IIB , the tumor is mid-grade (somewhat likely to grow and ...

  7. An update-tissue engineered nerve grafts for the repair of peripheral nerve injuries.

    Science.gov (United States)

    Patel, Nitesh P; Lyon, Kristopher A; Huang, Jason H

    2018-05-01

    Peripheral nerve injuries (PNI) are caused by a range of etiologies and result in a broad spectrum of disability. While nerve autografts are the current gold standard for the reconstruction of extensive nerve damage, the limited supply of autologous nerve and complications associated with harvesting nerve from a second surgical site has driven groups from multiple disciplines, including biomedical engineering, neurosurgery, plastic surgery, and orthopedic surgery, to develop a suitable or superior alternative to autografting. Over the last couple of decades, various types of scaffolds, such as acellular nerve grafts (ANGs), nerve guidance conduits, and non-nervous tissues, have been filled with Schwann cells, stem cells, and/or neurotrophic factors to develop tissue engineered nerve grafts (TENGs). Although these have shown promising effects on peripheral nerve regeneration in experimental models, the autograft has remained the gold standard for large nerve gaps. This review provides a discussion of recent advances in the development of TENGs and their efficacy in experimental models. Specifically, TENGs have been enhanced via incorporation of genetically engineered cells, methods to improve stem cell survival and differentiation, optimized delivery of neurotrophic factors via drug delivery systems (DDS), co-administration of platelet-rich plasma (PRP), and pretreatment with chondroitinase ABC (Ch-ABC). Other notable advancements include conduits that have been bioengineered to mimic native nerve structure via cell-derived extracellular matrix (ECM) deposition, and the development of transplantable living nervous tissue constructs from rat and human dorsal root ganglia (DRG) neurons. Grafts composed of non-nervous tissues, such as vein, artery, and muscle, will be briefly discussed.

  8. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair; Gorocs, Zoltan; Gunaydin, Harun; Zhang, Yibo; Wang, Hongda; Ozcan, Aydogan

    2017-01-01

    regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably

  9. Cellular proliferation and regeneration following tissue damage. Progress report. [Eyes

    Energy Technology Data Exchange (ETDEWEB)

    Harding, C.V.

    1976-10-01

    Results are reported from a study of wound healing in tissues of the eye, particularly lens, cornea, and surrounding tissues. The reactions of these tissues to mechanical injuries, as well as injuries induced by chemotoxic agents were studied. It is postulated that a better understanding of the basic reactions of the eye to injurious agents may be of importance in the evaluation of potential environmental hazards.

  10. The development and application of a cold atmospheric plasma generator for treatment of skin and soft-tissue injuries in animals

    Science.gov (United States)

    Emelyanov, O. A.; Petrova, N. O.; Smirnova, N. V.; Shemet, M. V.

    2017-08-01

    We describe a device for obtaining cold plasma in air at atmospheric pressure using a system of positive high-voltage pin electrodes, which is intended for the treatment of skin and soft-tissue injuries in animals. Plasma is generated due to the development of periodic pulsed discharge of nanosecond duration at current pulse amplitudes 10-20 mA, characteristic frequencies 10-20 kHz, and applied voltages within 8-10 kV. The high efficacy of the proposed device and method is confirmed by the good clinical results of treating large domestic animals with traumatic injuries.

  11. 3D printed optical phantoms and deep tissue imaging for in vivo applications including oral surgery

    Science.gov (United States)

    Bentz, Brian Z.; Costas, Alfonso; Gaind, Vaibhav; Garcia, Jose M.; Webb, Kevin J.

    2017-03-01

    Progress in developing optical imaging for biomedical applications requires customizable and often complex objects known as "phantoms" for testing, evaluation, and calibration. This work demonstrates that 3D printing is an ideal method for fabricating such objects, allowing intricate inhomogeneities to be placed at exact locations in complex or anatomically realistic geometries, a process that is difficult or impossible using molds. We show printed mouse phantoms we have fabricated for developing deep tissue fluorescence imaging methods, and measurements of both their optical and mechanical properties. Additionally, we present a printed phantom of the human mouth that we use to develop an artery localization method to assist in oral surgery.

  12. Effect of pigment epithelium derived factor on NO and the expression of caspase-3 in retinal tissues of model rats with optic nerve crush injury

    Directory of Open Access Journals (Sweden)

    Xiao-Xiao Yan

    2017-06-01

    Full Text Available AIM: To analyze the effect of pigment epithelium derived factor(PEDFon nitrogen monoxide(NOand expression of cysteine-containing, aspartate-specific proteases-3(caspase-3in retinal tissues of model rats with optic nerve crush injury. METHODS: A total of 60 SD rats were randomly divided into the blank control group, model group and PEDF group, with 20 rats in each group. Except the blank control group, the optic nerve crush injury rat models were established in the other groups, and left eyeballs were taken as samples. After successfully modeling, the model group were treated with intravitreal injection of 5μL of balanced salt solution while PEDF group were treated with intravitreal injection of 5μL of PEDF(0.2μg/μL. Two weeks later, the retinal tissues were collected, and changes of shape were observed under microscope after HE staining. The changes of NO level were measured by colorimetry assay, the expression of caspase-3 mRNA and caspase-3 protein was detected by reverse transcription-polymerase chain reaction(RT-PCRand Western-blot. RESULTS: HE staining showed that retinal tissues of the blank control group arranged neatly and clearly. Retinal ganglion cells(RGCsarranged in a monolayer, and cells were oval, uniform in size and distribution, the cell nuclei were clear, closely arranged, with clear boundaries. The retinal tissues of the model group were sparse in shape, RGCs showed vacuolar changes, the overall number of cells was reduced, and cell nuclei of residual RGCs showed pyknosis and uneven staining. RGCs in PEDF group were with slightly edema and arranged closely, and the degree of injury was significantly milder than that in the model group. Levels of Caspase-3 mRNA and protein and NO levels in the three groups showed the model group > PEDF group > blank control group(all P CONCLUSION: The application of PEDF can down regulate the expression of Caspase-3 and NO in rates with optic nerve injury and reduce RGCs injury.

  13. Deep tissue single cell MSC ablation using a fiber laser source to evaluate therapeutic potential in osteogenesis imperfecta

    Science.gov (United States)

    Tehrani, Kayvan F.; Pendleton, Emily G.; Lin, Charles P.; Mortensen, Luke J.

    2016-04-01

    Osteogenesis imperfecta (OI) is a currently uncurable disease where a mutation in collagen type I yields brittle bones. One potential therapy is transplantation of mesenchymal stem cells (MSCs), but controlling and enhancing transplanted cell survival has proven challenging. Therefore, we use a 2- photon imaging system to study individual transplanted cells in the living bone marrow. We ablated cells deep in the bone marrow and observed minimal collateral damage to surrounding tissue. Future work will evaluate the local impact of transplanted MSCs on bone deposition in vivo.

  14. Muscle-splitting approach to superior and inferior gluteal vessels: versatile source of recipient vessels for free-tissue transfer to sacral, gluteal, and ischial regions.

    Science.gov (United States)

    Park, S

    2000-07-01

    The superior gluteal vessel has been reported as a recipient in free-tissue transfer for the coverage of complex soft-tissue defects in the lumbosacral region, where a suitable recipient vessel is difficult to find. The characteristics of proximity, vessel caliber, and constancy make the superior gluteal vessel preferable to previously reported recipient vessels. However, there are technical difficulties in microsurgery (e.g., short pedicle length and deep location) and muscle injury (transection of the muscle) associated with use of the superior gluteal vessel. The purpose of this article is to present a modification of an approach to the gluteal vessel to alleviate technical difficulties and minimize muscle injury. From August of 1997 to January of 1999, six patients received microvascular transfer of the latissimus dorsi muscle or myocutaneous flap to the sacral (4) and ischial (2) regions. The causes of defects were tumor (1), trauma (1), and pressure sores (4). A muscle-splitting approach was used on the superior gluteal vessel and was later applied to the inferior gluteal vessel. The gluteus maximus muscle was split as needed in the direction of its fibers, and the perforators were dissected down to the superior or inferior gluteal artery and vein deep into the muscle. The follow-up period ranged from 6 to 22 months, and all of the flaps survived with complete recovery of the lesion. The major drawbacks of using the superior and inferior gluteal vessels can be overcome with the muscle-splitting approach, which provides increased accessibility and additional length to the vascular pedicle while causing minimal injury to the muscle itself. It also proves to be an easy, safe, and reliable method of dissection. When free-tissue transfer to sacral, gluteal, and ischial regions is indicated, the muscle-splitting approach to the superior and inferior gluteal vessels is a recommended option in the selection of a recipient vessel.

  15. Deep penetrating brain injury with 20 years asymptomatic survival. Case report

    International Nuclear Information System (INIS)

    Buczek, M.; Pieninski, A.

    1993-01-01

    Authors report the case of penetrating injury of the head with large metallic fragment embedded to the brain with 20 years asymptomatic survival. Patient sustained head injury during work, 20 years ago and for these period of time was not aware of having foreign body intracranially with excellent general condition and no signs of neurological deficit. Metal nail was detected incidentally by plain skull X-ray films( and subsequent CT scan) during routine procedures when patient was admitted for surgical procedure. In our opinion presented case is uncommon because of asymptomatic course. Most of penetrating head injuries are considered as life threatening due to sudden onset, severe general patient condition and possible deterioration according to the type of injury and extent of cerebral destruction. For those reasons earliest possible neurosurgical treatment is recommended. We emphasize the role of debridement for most of brain penetration injuries. (author)

  16. Blood brain barrier and brain tissue injury by Gd-DTPA in uremia-induced rabbits

    International Nuclear Information System (INIS)

    Choi, Sun Seob; Huh, Ki Yeong; Han, Jin Yeong; Lee, Yong Chul; Eun, Choong Gi; Yang, Yeong Il

    1996-01-01

    An experimental study was carried out to evaluate the morphological changes in the blood brain barrier and neighbouring brain tissue caused by Gd-DTPA in uremia-induced rabbits. Bilateral renal arteries and veins of ten rabbits were ligated. Gd-DTPA(0.2mmol/kg) was intravenously injected into seven rabbits immediately after ligation. After MRI, they were sacrificed 2 or 3 days after ligation in order to observe light and electron microscopic changes in the blood brain barrier and brain tissue. MRI findings were normal, except for enhancement of the superior and inferior sagittal sinuses on T1 weighted images in uremia-induced rabbits injected with Gd-DTPA. On light microscopic examination, these rabbits showed perivascular edema and glial fibrillary acidic protein expression: electron microscopic examination showed separation of tight junctions of endothelial cells, duplication/rarefaction of basal lamina, increased lysosomes of neurons with neuronal death, demyelination of myelin, and extravasation of red blood cells. Uremia-induced rabbits injected with Gd-DTPA showed more severe changes than those without Gd-DTPA injection. Injuries to the blood brain barrier and neighbouring brain tissue were aggravated by Gd-DTPA administration in uremia-induced rabbits. These findings appear to be associated with the neurotoxicity of Gd-DTPA

  17. Assessment of Severe Extremity Wound Bioburden at the Time of Definitive Wound Closure or Coverage: Correlation With Subsequent Postclosure Deep Wound Infection (Bioburden Study).

    Science.gov (United States)

    Bosse, Michael J; Murray, Clinton K; Carlini, Anthony R; Firoozabadi, Reza; Manson, Theodore; Scharfstein, Daniel O; Wenke, Joseph C; Zadnik, Mary; Castillo, Renan C

    2017-04-01

    Infection remains the most common and significant complication after high-energy fractures. The Bioburden Study is a multicenter, prospective, observational cohort study of wound bacterial bioburden and antibiotic care in severe open lower extremity fractures. The aims of this study are to (1) characterize the contemporary extremity wound "bioburden" at the time of definitive wound closure; (2) determine the concordance between polymerase chain reaction results and hospital microbiology; (3) determine, among those who develop deep infections, the concordance between the pathogens at wound closure and at deep infection; and (4) compare the probability of deep infection between those who did and did not receive an appropriate course of antibiotics based on bioburden at the time of wound closure. To address these aims, sites collected tissue samples from severe lower extremity injuries at the time of wound closure and at first surgery for treatment of a deep infection, nonunion, flap failure, amputation, or other complications (because these surgeries may be due to undetected infection). Otherwise, if no further surgical treatment occurred, participants were followed for 12 months. The study was conducted at 38 US trauma centers and has enrolled 655 participants aged 18-64 years. This is the first large multi-institutional study evaluating the wound bioburden of severe open tibia fractures and correlating this bioburden with the risk of wound complications after definitive soft tissue closure.

  18. Dietary Docosahexaenoic Acid Improves Cognitive Function, Tissue Sparing, and Magnetic Resonance Imaging Indices of Edema and White Matter Injury in the Immature Rat after Traumatic Brain Injury.

    Science.gov (United States)

    Schober, Michelle E; Requena, Daniela F; Abdullah, Osama M; Casper, T Charles; Beachy, Joanna; Malleske, Daniel; Pauly, James R

    2016-02-15

    Traumatic brain injury (TBI) is the leading cause of acquired neurologic disability in children. Specific therapies to treat acute TBI are lacking. Cognitive impairment from TBI may be blunted by decreasing inflammation and oxidative damage after injury. Docosahexaenoic acid (DHA) decreases cognitive impairment, oxidative stress, and white matter injury in adult rats after TBI. Effects of DHA on cognitive outcome, oxidative stress, and white matter injury in the developing rat after experimental TBI are unknown. We hypothesized that DHA would decrease early inflammatory markers and oxidative stress, and improve cognitive, imaging and histologic outcomes in rat pups after controlled cortical impact (CCI). CCI or sham surgery was delivered to 17 d old male rat pups exposed to DHA or standard diet for the duration of the experiments. DHA was introduced into the dam diet the day before CCI to allow timely DHA delivery to the pre-weanling pups. Inflammatory cytokines and nitrates/nitrites were measured in the injured brains at post-injury Day (PID) 1 and PID2. Morris water maze (MWM) testing was performed at PID41-PID47. T2-weighted and diffusion tensor imaging studies were obtained at PID12 and PID28. Tissue sparing was calculated histologically at PID3 and PID50. DHA did not adversely affect rat survival or weight gain. DHA acutely decreased oxidative stress and increased anti-inflammatory interleukin 10 in CCI brains. DHA improved MWM performance and lesion volume late after injury. At PID12, DHA decreased T2-imaging measures of cerebral edema and decreased radial diffusivity, an index of white matter injury. DHA improved short- and long-term neurologic outcomes after CCI in the rat pup. Given its favorable safety profile, DHA is a promising candidate therapy for pediatric TBI. Further studies are needed to explore neuroprotective mechanisms of DHA after developmental TBI.

  19. Effect of MgSO4 on the contents of Ca2+ in brain cell and NO in brain tissue of rats with radiation-induced acute brain injury

    International Nuclear Information System (INIS)

    Yuan Wenjia; Cui Fengmei; Liu Ping; He Chao; Tu Yu; Wang Lili

    2009-01-01

    The work is to explore the protection of magnesium sulfate(MgSO 4 ) on radiation-induced acute brain injury. Thirty six mature Sprague-Dawley(SD) rats were randomly divided into 3 groups of control, experimental control and experimental therapy group. The whole brains of SD rats of experimental control and experimental therapy group were irradiated with a dose of 20 Gy using 6 MeV electron beam. MgSO 4 was injected into the abdomen of experimental therapy rats group 1 day before, immediately and continue for 5 days after irradiation respectively. The brain tissues were taken on 3, 10, 17 and 24 d after irradiation. Ca 2+ content in brain cell was measured by laser scanning confocal microscopy, and the NO content in brain tissue was detected by the method of nitric acid reductase. Compared with the blank control group, the contents of Ca 2+ in brain cell and NO in brain tissue of the experimental control group increase (P 4 used in early stage can inhibit the contents of Ca 2+ in brain cell and NO in brain tissue after radiation-induced acute brain injury. It means that MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)

  20. Different tissue type categories of overuse injuries to cricket fast ...

    African Journals Online (AJOL)

    Background. Cricket fast bowlers have a high incidence of injury and have been the subject of previous research investigating the effects of previous injury, workload and technique. Bone stress injuries are of particular concern as they lead to prolonged absences from the game, with younger bowlers appearing to be at ...

  1. Paediatric treadmill friction injuries.

    Science.gov (United States)

    Jeremijenko, Luke; Mott, Jonathan; Wallis, Belinda; Kimble, Roy

    2009-05-01

    The aim of this study was to report on the severity and incidence of children injured by treadmills and to promote the implementation of safety standards. This retrospective review of children with treadmill friction injuries was conducted in a single tertiary-level burns centre in Australia between January 1997 and June 2007. The study revealed 37 children who sustained paediatric treadmill friction injuries. This was a presentation of 1% of all burns. Thirty-three (90%) of the injuries occurred in the last 3.5 years (January 2004 to June 2007). The modal age was 3.2 years. Thirty-three (90%) injuries were either full thickness or deep partial friction burns. Eleven (30%) required split thickness skin grafts. Of those who became entrapped, 100% required skin grafting. This study found that paediatric treadmill friction injuries are severe and increasing in incidence. Australian standards should be developed, implemented and mandated to reduce this preventable and severe injury.

  2. Utilization of laser Doppler flowmetry and tissue spectrophotometry for burn depth assessment using a miniature swine model.

    Science.gov (United States)

    Lotter, Oliver; Held, Manuel; Schiefer, Jennifer; Werner, Ole; Medved, Fabian; Schaller, Hans-Eberhard; Rahmanian-Schwarz, Afshin; Jaminet, Patrick; Rothenberger, Jens

    2015-01-01

    Currently, the diagnosis of burn depth is primarily based on a visual assessment and can be dependent on the surgeons' experience. The goal of this study was to determine the ability of laser Doppler flowmeter combined with a tissue spectrophotometer to discriminate burn depth in a miniature swine burn model. Burn injuries of varying depth, including superficial-partial, deep-partial, and full thickness, were created in seven Göttingen minipigs using an aluminium bar (100 °C), which was applied to the abdominal skin for periods of 1, 3, 6, 12, 30, and 60 seconds with gravity alone. The depth of injury was evaluated histologically using hematoxylin and eosin staining. All burns were assessed 3 hours after injury using a device that combines a laser light and a white light to determine blood flow, hemoglobin oxygenation, and relative amount of hemoglobin. The blood flow (41 vs. 124 arbitrary units [AU]) and relative amount of hemoglobin (32 vs. 52 AU) were significantly lower in full thickness compared with superficial-partial thickness burns. However, no significant differences in hemoglobin oxygenation were observed between these depths of burns (61 vs. 60%). These results show the ability of laser Doppler flowmeter and tissue spectrophotometer in combination to discriminate between various depths of injury in the minipig model, suggesting that this device may offer a valuable tool for burn depth assessment influencing burn management. © 2014 by the Wound Healing Society.

  3. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Directory of Open Access Journals (Sweden)

    Jean Guezennec

    2013-04-01

    Full Text Available Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair.

  4. Unusual Glycosaminoglycans from a Deep Sea Hydrothermal Bacterium Improve Fibrillar Collagen Structuring and Fibroblast Activities in Engineered Connective Tissues

    Science.gov (United States)

    Senni, Karim; Gueniche, Farida; Changotade, Sylvie; Septier, Dominique; Sinquin, Corinne; Ratiskol, Jacqueline; Lutomski, Didier; Godeau, Gaston; Guezennec, Jean; Colliec-Jouault, Sylvia

    2013-01-01

    Biopolymers produced by marine organisms can offer useful tools for regenerative medicine. Particularly, HE800 exopolysaccharide (HE800 EPS) secreted by a deep-sea hydrothermal bacterium displays an interesting glycosaminoglycan-like feature resembling hyaluronan. Previous studies demonstrated its effectiveness to enhance in vivo bone regeneration and to support osteoblastic cell metabolism in culture. Thus, in order to assess the usefulness of this high-molecular weight polymer in tissue engineering and tissue repair, in vitro reconstructed connective tissues containing HE800 EPS were performed. We showed that this polysaccharide promotes both collagen structuring and extracellular matrix settle by dermal fibroblasts. Furthermore, from the native HE800 EPS, a low-molecular weight sulfated derivative (HE800 DROS) displaying chemical analogy with heparan-sulfate, was designed. Thus, it was demonstrated that HE800 DROS mimics some properties of heparan-sulfate, such as promotion of fibroblast proliferation and inhibition of matrix metalloproteinase (MMP) secretion. Therefore, we suggest that the HE800EPS family can be considered as an innovative biotechnological source of glycosaminoglycan-like compounds useful to design biomaterials and drugs for tissue engineering and repair. PMID:23612369

  5. Primary blast-induced traumatic brain injury: lessons from lithotripsy

    Science.gov (United States)

    Nakagawa, A.; Ohtani, K.; Armonda, R.; Tomita, H.; Sakuma, A.; Mugikura, S.; Takayama, K.; Kushimoto, S.; Tominaga, T.

    2017-11-01

    Traumatic injury caused by explosive or blast events is traditionally divided into four mechanisms: primary, secondary, tertiary, and quaternary blast injury. The mechanisms of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury mechanism is associated with the response of brain tissue to the initial blast wave. Among the four mechanisms of bTBI, there is a remarkable lack of information regarding the mechanism of primary bTBI. On the other hand, 30 years of research on the medical application of shock waves (SWs) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by shock-accelerated flow. The resultant tissue injury includes several features observed in primary bTBI, such as hemorrhage, edema, pseudo-aneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation are all important factors in determining the extent of SW-induced tissue and cellular injury. In addition, neuropsychiatric aspects of blast events need to be taken into account, as evidenced by reports of comorbidity and of some similar symptoms between physical injury resulting in bTBI and the psychiatric sequelae of post-traumatic stress. Research into blast injury biophysics is important to elucidate specific pathophysiologic mechanisms of blast injury, which enable accurate differential diagnosis, as well as development of effective treatments. Herein we describe the requirements for an adequate experimental setup when investigating blast-induced tissue and cellular injury; review SW physics

  6. The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading

    NARCIS (Netherlands)

    Loerakker, S.; Manders, E.; Strijkers, G.J.; Nicolay, K.; Baaijens, F.P.T.; Bader, D.L.; Oomens, C.W.J.

    2011-01-01

    Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period.

  7. Deep venous thrombosis and pulmonary embolism in patients with acute spinal cord injury: a comparison with nonparalyzed patients immobilized due to spinal fractures

    International Nuclear Information System (INIS)

    Myllynen, P.; Kammonen, M.; Rokkanen, P.; Boestman, O.L.; Lalla, M.; Laasonen, E.

    1985-01-01

    The occurrence of deep venous thrombosis (DVT) was studied in the series of 23 consecutive patients with acute spinal cord injury and 14 immobilized patients with spinal fractures without paralysis. The incidence of DVT in paralyzed patients was 100% as detected by the 125 I-labeled fibrinogen test and confirmed by contrast venography, and 64% as detected by repeated clinical examinations and confirmed by contrast venography. The respective incidence of DVT in nonparalyzed patients with spinal fractures was 0%. The diagnosis of DVT was reached earlier with the radiofibrinogen test than with the clinical followup (5 days vs. 25 days). Two of the 23 paralyzed patients (9%) developed nonfatal clinical pulmonary embolism (PE). There were no differences in the values of routine coagulation tests. The result justifies prophylactic anticoagulant therapy in all cases of spinal cord injury during the acute post-traumatic phase

  8. Aquatic antagonists: cutaneous sea urchin spine injury.

    Science.gov (United States)

    Hsieh, Clifford; Aronson, Erica R; Ruiz de Luzuriaga, Arlene M

    2016-11-01

    Injuries from sea urchin spines are commonly seen in coastal regions with high levels of participation in water activities. Although these injuries may seem minor, the consequences vary based on the location of the injury. Sea urchin spine injuries may cause arthritis and synovitis from spines in the joints. Nonjoint injuries have been reported, and dermatologic aspects of sea urchin spine injuries rarely have been discussed. We present a case of a patient with sea urchin spines embedded in the thigh who subsequently developed painful skin nodules. Tissue from the site of the injury demonstrated foreign-body type granulomas. Following the removal of the spines and granulomatous tissue, the patient experienced resolution of the nodules and associated pain. Extraction of sea urchin spines can attenuate the pain and decrease the likelihood of granuloma formation, infection, and long-term sequelae.

  9. Inducible nitric oxide synthase in heart tissue and nitric oxide in serum of Trypanosoma cruzi-infected rhesus monkeys: association with heart injury.

    Directory of Open Access Journals (Sweden)

    Cristiano Marcelo Espinola Carvalho

    Full Text Available BACKGROUND: The factors contributing to chronic Chagas' heart disease remain unknown. High nitric oxide (NO levels have been shown to be associated with cardiomyopathy severity in patients. Further, NO produced via inducible nitric oxide synthase (iNOS/NOS2 is proposed to play a role in Trypanosoma cruzi control. However, the participation of iNOS/NOS2 and NO in T. cruzi control and heart injury has been questioned. Here, using chronically infected rhesus monkeys and iNOS/NOS2-deficient (Nos2(-/- mice we explored the participation of iNOS/NOS2-derived NO in heart injury in T. cruzi infection. METHODOLOGY: Rhesus monkeys and C57BL/6 and Nos2(-/- mice were infected with the Colombian T. cruzi strain. Parasite DNA was detected by polymerase chain reaction, T. cruzi antigens and iNOS/NOS2(+ cells were immunohistochemically detected in heart sections and NO levels in serum were determined by Griess reagent. Heart injury was assessed by electrocardiogram (ECG, echocardiogram (ECHO, creatine kinase heart isoenzyme (CK-MB activity levels in serum and connexin 43 (Cx43 expression in the cardiac tissue. RESULTS: Chronically infected monkeys presented conduction abnormalities, cardiac inflammation and fibrosis, which resembled the spectrum of human chronic chagasic cardiomyopathy (CCC. Importantly, chronic myocarditis was associated with parasite persistence. Moreover, Cx43 loss and increased CK-MB activity levels were primarily correlated with iNOS/NOS2(+ cells infiltrating the cardiac tissue and NO levels in serum. Studies in Nos2(-/- mice reinforced that the iNOS/NOS2-NO pathway plays a pivotal role in T. cruzi-elicited cardiomyocyte injury and in conduction abnormalities that were associated with Cx43 loss in the cardiac tissue. CONCLUSION: T. cruzi-infected rhesus monkeys reproduce features of CCC. Moreover, our data support that in T. cruzi infection persistent parasite-triggered iNOS/NOS2 in the cardiac tissue and NO overproduction might contribute

  10. The role of the plastic surgeon in dealing with soft tissue injuries: experience from the second Israel-Lebanon war, 2006.

    Science.gov (United States)

    Sharony, Zach; Eldor, Liron; Klein, Yuval; Ramon, Yitzchak; Rissin, Yaron; Berger, Yosef; Lerner, Alexander; Ullmann, Yehuda

    2009-01-01

    During the 2006 war between Israel and Lebanon, 282 Israeli soldiers were evacuated to Rambam Health Care Campus. Of these, 210 were admitted for observation or treatment, and 15 of these were admitted to the Department of Plastic and Reconstructive Surgery. Thirty-five other soldiers, hospitalized in other departments, required the care of Plastic Surgeons, either for conservative or surgical treatment. The injury profile observed was consistent with data from previous low-intensity warfare, which demonstrated that over 80% of injuries were produced by fragmentation weapons, such as artillery, mortarshells, rockets, and missiles. It differs, however, from our experience in previous wars and our expectations regarding burn wounds, both in incidence and severity, which were significantly lower as compared with the past. This article presents our management of extensive soft tissue injuries, and details 3 representative cases. It highlights the role of the Plastic Surgeon as part of the whole treatment in this type of injury and helps to predict the needs of the medical system in preparation for the future.

  11. Radiation Injury to the Brain

    Science.gov (United States)

    ... Hits since January 2003 RADIATION INJURY TO THE BRAIN Radiation treatments affect all cells that are targeted. ... fractions, duration of therapy, and volume of [healthy brain] nervous tissue irradiated influence the likelihood of injury. ...

  12. Facial transplantation for massive traumatic injuries.

    Science.gov (United States)

    Alam, Daniel S; Chi, John J

    2013-10-01

    This article describes the challenges of facial reconstruction and the role of facial transplantation in certain facial defects and injuries. This information is of value to surgeons assessing facial injuries with massive soft tissue loss or injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Ligamentous Injuries and the Risk of Associated Tissue Damage in Acute Ankle Sprains in Athletes: A Cross-sectional MRI Study.

    Science.gov (United States)

    Roemer, Frank W; Jomaah, Nabil; Niu, Jingbo; Almusa, Emad; Roger, Bernard; D'Hooghe, Pieter; Geertsema, Celeste; Tol, Johannes L; Khan, Karim; Guermazi, Ali

    2014-07-01

    Ankle joint injuries are extremely common sports injuries, with the anterior talofibular ligament involved in the majority of ankle sprains. There have been only a few large magnetic resonance imaging (MRI) studies on associated structural injuries after ankle sprains. To describe the injury pattern in athletes who were referred to MRI for the assessment of an acute ankle sprain and to assess the risk of associated traumatic tissue damage including lateral and syndesmotic ligament involvement. Cross-sectional study; Level of evidence, 3. A total of 261 ankle MRI scans of athletes with acute ankle sprains were evaluated for: lateral and syndesmotic ligament injury; concomitant injuries to the deltoid and spring ligaments and sinus tarsi; peroneal, flexor, and extensor retinacula and tendons; traumatic and nontraumatic osteochondral and osseous changes; and joint effusion. Patients were on average 22.5 years old, and the average time from injury to MRI was 5.7 days. Six exclusive injury patterns were defined based on lateral and syndesmotic ligament involvement. The risk for associated injuries was assessed by logistic regression using ankles with no or only low-grade lateral ligament injuries and no syndesmotic ligament damage as the reference. With regard to the injury pattern, there were 103 ankles (39.5%) with complete anterior talofibular ligament disruption and no syndesmotic injury, and 53 ankles (20.3%) had a syndesmotic injury with or without lateral ligament damage. Acute osteochondral lesions of the lateral talar dome were seen in 20 ankles (7.7%). The percentage of chronic lateral osteochondral lesions was 1.1%. The risk for talar bone contusions increased more than 3-fold for ankles with complete lateral ligament ruptures (adjusted odds ratio [aOR], 3.43; 95% CI, 1.72-6.85) but not for ankles with syndesmotic involvement. The risk for associated deltoid ligament injuries increased for ankles with complete lateral ligament injuries (aOR, 4.04; 95% CI, 1

  14. Assessment of the Effectiveness of Extracorporeal Shock Wave Therapy (ESWT) For Soft Tissue Injuries (ASSERT): An Online Database Protocol.

    Science.gov (United States)

    Maffulli, G; Hemmings, S; Maffulli, N

    2014-09-01

    Soft tissue injuries and tendinopathies account for large numbers of chronic musculoskeletal disorders. Extracorporeal shockwave therapy (ESWT) is popular, and effective in the management of chronic tendon conditions in the elbow, shoulder, and pain at and around the heel. Ethical approval was granted from the South East London Research Ethics Committee to implement a database for the Assessment of Effectiveness of Extracorporeal Shock Wave Therapy for Soft Tissue Injuries (ASSERT) to prospectively collect information on the effectiveness of ESWT across the UK. All participants will give informed consent. All clinicians follow a standardised method of administration of the ESWT. The primary outcome measures are validated outcome measures specific to the condition being treated. A Visual Analogue Score for pain and the EuroQol will be completed alongside the condition specific outcome tool at baseline, 3, 6, 12 and 24 months post treatment. The development of the ASSERT database will enable the evaluation of the effectiveness of ESWT for patients suffering from chronic conditions (plantar fasciopathy, tennis elbow, Achilles tendinopathy, greater trochanter pain syndrome and patellar tendinopathy). The results will aid the clinicians in the decision making process when managing these patients.

  15. Tissue adhesives for simple traumatic lacerations.

    Science.gov (United States)

    Beam, Joel W

    2008-01-01

    Farion K, Osmond MH, Hartling L, et al. Tissue adhesives for traumatic lacerations in children and adults. Cochrane Database Syst Rev. 2001(4);CD003326. What is the clinical evidence base for tissue adhesives in the management of simple traumatic lacerations? Studies were identified by searches of the following databases: Cochrane Wounds Group Specialized Trials Register (September 2003), Cochrane Central Register of Controlled Trials (CENTRAL) (CDROM 2003, issue 3), MEDLINE (1966 to September 2003, week 1), EMBASE (1988 to 2003, week 36), Web of Science Science Citation Index (1975 to September 13, 2003) and various clinical trials registers (September 2003). Investigators and product manufacturers were contacted to identify additional eligible studies. The search terms included wounds and injuries, laceration, face injury, nose injury, tissue adhesives, and acrylates. Each study fulfilled the following criteria: (1) The study was a randomized controlled trial that compared tissue adhesives with standard wound closure (SWC) (sutures, staples, adhesive strips) or tissue adhesive with tissue adhesive. (2) The wounds were acute, linear lacerations less than 12 hours old, resulting from blunt or sharp trauma. (3) The wound length, width, and depth allowed for approximation of the edges with minimal tension after deep sutures were placed, if required. Studies were included with no language or publication status restriction, with participants of any age recruited in an emergency department, outpatient clinic, walk-in clinic, or other primary care setting. Studies were excluded if the wounds were stellate lacerations, puncture wounds, mammalian bites, infected, heavily contaminated or devitalized, crossing joints or mucocutaneous junctions, in hair-bearing areas, or in patients with keloid formation or chronic illness. The characteristics of the study and participants, interventions, outcome measures, and findings were extracted by one author and verified by a second

  16. Influence of Bone and Muscle Injuries on the Osteogenic Potential of Muscle Progenitors: Contribution of Tissue Environment to Heterotopic Ossification.

    Science.gov (United States)

    Molligan, Jeremy; Mitchell, Reed; Schon, Lew; Achilefu, Samuel; Zahoor, Talal; Cho, Young; Loube, Jeffery; Zhang, Zijun

    2016-06-01

    : By using surgical mouse models, this study investigated how the tissue environment influences the osteogenic potential of muscle progenitors (m-progenitors) and potentially contributes to heterotopic ossification (HO). Injury was induced by clamping the gluteus maximus and medius (group M) or osteotomy of greater trochanter (group O) on the right hip, as well as combined muscle injury and osteotomy of greater trochanter (group M+O). The gluteus maximus and medius of the operated hips were harvested at days 1, 3, 5, and 10 for isolation of m-progenitors. The cells were cultured in an osteogenic medium for 3 weeks, and osteogenesis was evaluated by matrix mineralization and the expression of osteogenesis-related genes. The expression of type I collagen, RUNX2 (runt-related transcription factor 2), and osteocalcin by the m-progenitors of group M+O was significantly increased, compared with groups M and O. Osteogenic m-progenitors in group O increased the expression of bone morphogenetic protein 2 and also bone morphogenetic protein antagonist differential screening-selected gene aberrative in neuroblastoma. On histology, there was calcium deposition mostly in the muscles of group M+O harvested at day 10. CD56, representing myogenic progenitors, was highly expressed in the m-progenitors isolated from group M (day 10), but m-progenitors of group M+O (day 10) exhibited the highest expression of platelet-derived growth factor receptor α (PDGFR-α), a marker of muscle-derived mesenchymal stem cells (M-MSCs). The expressions of PDGFR-α and RUNX2 were colocalized in osteogenic m-progenitors. The data indicate that the tissue environment simulated in the M+O model is a favorable condition for HO formation. Most likely, M-MSCs, rather than myogenic progenitors, in the m-progenitors participate in HO formation. The prevalence of traumatic heterotopic ossification (HO) is high in war injury. The pathogenesis of HO is still unknown. This study clarified the contribution of a

  17. Automated detection and categorization of genital injuries using digital colposcopy

    DEFF Research Database (Denmark)

    Fernandes, Kelwin; Cardoso, Jaime S.; Astrup, Birgitte Schmidt

    2017-01-01

    handcrafted features and deep learning techniques in the automated processing of colposcopic images for genital injury detection. Positive results where achieved by both paradigms in segmentation and classification subtasks, being traditional and deep models the best strategy for each subtask type...

  18. Increased levels of dioxin-like substances in adipose tissue in patients with deep infiltrating endometriosis.

    Science.gov (United States)

    Martínez-Zamora, M A; Mattioli, L; Parera, J; Abad, E; Coloma, J L; van Babel, B; Galceran, M T; Balasch, J; Carmona, F

    2015-05-01

    Are the levels of biologically active and the most toxic dioxin-like substances in adipose tissue of patients with deep infiltrating endometriosis (DIE) higher than in a control group without endometriosis? DIE patients have higher levels of dioxins and polychlorinated biphenyls (PCBs) in adipose tissue compared with controls without endometriosis. Some studies have investigated the levels of dioxin-like substances, in serum samples, in patients with endometriosis, with inconsistent results. Case-control study including two groups of patients. The study group (DIE group) consisted of 30 patients undergoing laparoscopic surgery because of DIE. In all patients, an extensive preoperative work-up was performed including clinical exploration, magnetic resonance imaging (MRI) and transvaginal sonography. All patients with DIE underwent a confirmatory histological study for DIE after surgery. The non-endometriosis control group (control group), included the next consecutive patient undergoing laparoscopic surgery in our center due to adnexal benign gynecological disease (ovarian or tubal procedures other than endometriosis) after each DIE patient, and who did not present any type of endometriosis. During the surgical procedure 1-2 g of adipose tissue from the omentum were obtained. Dioxin-like substances were analyzed in adipose tissue in DIE patients and controls without endometriosis. The total toxic equivalence and concentrations of both dioxins and PCBs were significantly higher in patients with DIE in comparison with the control group (P dioxins (2,3,7,8-tetrachlorodibenzo-p-dioxin [2,3,7,8-TCDD] and 1,2,3,7,8-pentachlorodibenzo-p-dioxin [1,2,3,7,8-PeCDD]) (P dioxins and PCBs widely vary in different countries. Furthermore, the strict eligibility criteria used may preclude generalization of the results to other populations and the surgery-based sampling frame may induce a selection bias. Finally, adipose tissue was obtained only from the omentum, and not from other

  19. Review of the efficacy and tolerability of the diclofenac epolamine topical patch 1.3% in patients with acute pain due to soft tissue injuries.

    Science.gov (United States)

    Kuehl, Kerry S

    2010-06-01

    The diclofenac epolamine topical patch 1.3% (DETP) was approved by the US Food and Drug Administration in January 2007 for the treatment of soft tissue injuries such as strains, sprains, and contusions, although it has been available for many years in >40 countries worldwide. The aim of this study was to review the efficacy and tolerability of the DETP in relieving acute pain caused by soft tissue injuries. The MEDLINE, Derwent Drug File, BIOSIS, and EMBASE databases were searched for literature published between 1984 and October 30, 2009, in any language, using the terms diclofenac epolamine patch, diclofenac hydroxyethylpyrrolidine patch, and FLECTOR Patch. Clinical studies of the efficacy and/or tolerability of the DETP in patients with acute pain due to soft tissue injuries or localized periarticular disorders were included. Efficacy studies that enrolled patients with other medical conditions were excluded, except for reports that focused on tolerability, which were included to supplement tolerability data. The bibliographies of included studies were reviewed manually for relevant articles based on inclusion and exclusion criteria, and the manufacturer was contacted for additional relevant postmarketing surveillance information and presentations from scientific meetings. The search identified 6 placebo-controlled clinical studies, 1 active-comparator-controlled clinical study, and 1 open-label comparator clinical study of the efficacy and tolerability of the DETP in patients with soft tissue injuries. Three studies reported on tolerability. Primary analyses among the 8 studies reported DETP-associated reductions in spontaneous pain from baseline, assessed using a visual analog scale, ranging from 26% to 88% on day 7 and 56% to 61% on day 14. The use of the DETP was associated with significantly greater reductions in pain scores compared with a placebo patch (2 studies) on day 7 (88% vs 74%; P = 0.001) and day 14 (56.5% vs 46.8%; P = 0.001) and compared with

  20. Sports injuries in adolescent boarding school boys.

    OpenAIRE

    Briscoe, J H

    1985-01-01

    A survey is presented of 346 sports injuries admitted to the Eton College Sanatorium between 1971 and 1982. The incidence of injury was lowest in 13 year olds perhaps because of their lighter weight. The injuries were classified into four groups--minor head injury, soft tissue injury, fractures and dislocations, and eye injury. Football caused 75 per cent of all injuries except eye injury where it accounted for only a third. Comparison of the incidence of injury at the three types of football...

  1. Rollerblading and skateboarding injuries in children in northeast England.

    Science.gov (United States)

    Hassan, I; Dorani, B J

    1999-01-01

    OBJECTIVES: To establish the demographic profile and injury characteristics of children presenting with rollerblading or skateboarding associated injuries. This study also examines the circumstances leading to these injuries with a view to suggesting preventive measures. METHODS: A prospective study using a proforma to collect data from each child presenting with rollerblading or skateboarding related injuries. Injury details were obtained from clinical and radiological records. The injury severity score (ISS) was calculated for each child and statistical analysis was done using chi2. RESULTS: Eighty one children presented with rollerblading associated injuries accounting for 7% of childhood injuries seen during the eight month study period. The mean age was 10.3 years and sex distribution was equal. Soft tissue injuries accounted for 51% and fractures for 49% of the injuries. Wrist fractures alone accounted for 86% of all fractures seen. Seventy per cent of soft tissue injuries involved the upper limb. The overall mean ISS was 3.0 with a range from 1 to 9. Injury was attributed to fall secondary to loss of control or collision with an obstacle while rollerblading in the majority of children. Injury occurred while rollerblading in residential or public places in 99% of the children. In contrast skateboarding related injuries were much rarer and caused soft tissue injuries only. CONCLUSION: This study has revealed a higher incidence of rollerblading injuries than previously suspected. Effective management strategies should include not only the treatment of these injuries but also attention to their causes and prevention. PMID:10505916

  2. Mobilization of Circulating Vascular Progenitors in Cancer Patients Receiving External Beam Radiation in Response to Tissue Injury

    International Nuclear Information System (INIS)

    Allan, David S.; Morgan, Scott C.; Birch, Paul E.; Yang, Lin; Halpenny, Michael J.; Gunanayagam, Angelo; Li Yuhua; Eapen, Libni

    2009-01-01

    Purpose: Endothelial-like vascular progenitor cells (VPCs) are associated with the repair of ischemic tissue injury in several clinical settings. Because the endothelium is a principal target of radiation injury, VPCs may be important in limiting toxicity associated with radiotherapy (RT) in patients with cancer. Methods and Materials: We studied 30 patients undergoing RT for skin cancer (n = 5), head-and-neck cancer (n = 15), and prostate cancer (n = 10) prospectively, representing a wide range of irradiated mucosal volumes. Vascular progenitor cell levels were enumerated from peripheral blood at baseline, midway through RT, at the end of treatment, and 4 weeks after radiation. Acute toxicity was graded at each time point by use of the National Cancer Institute's Common Toxicity Criteria, version 3.0. Results: Significant increases in the proportion of CD34 + /CD133 + VPCs were observed after completion of RT, from 0.012% at baseline to 0.048% (p = 0.029), and the increase in this subpopulation was most marked in patients with Grade 2 peak toxicity or greater after RT (p = 0.034). Similarly, CD34 + /vascular endothelial growth factor receptor 2-positive VPCs were increased after the completion of radiation therapy in comparison to baseline (from 0.014% to 0.027%, p = 0.043), and there was a trend toward greater mobilization in patients with more significant toxicity (p = 0.08). The mobilization of CD34 + hematopoietic stem cells did not increase after treatment (p = 0.58), and there was no relationship with toxicity. Conclusions: We suggest that VPCs may play an important role in reducing radiation-induced tissue damage. Interventions that increase baseline VPC levels or enhance their mobilization and recruitment in response to RT may prove useful in facilitating more rapid and complete tissue healing.

  3. Lawnmower injuries in children.

    LENUS (Irish Health Repository)

    Nugent, Nora

    2012-02-03

    OBJECTIVE: Power lawnmowers can pose significant danger of injury to both the operator and the bystander, from direct contact with the rotary blades or missile injury. Our objective was to review our experience with paediatric lawnmower-associated trauma, and the safety recommendations available to operators of power lawnmowers. METHODS: The patient cohort comprised paediatric (<16 years of age) patients treated for lawnmower-associated trauma, by the plastic surgery service, between 1996 and 2003. These patients were identified retrospectively. Age at the time of injury, location and extent of bony and soft tissue injuries sustained, treatment instituted and clinical outcome were recorded. Brochures and instruction manuals of six lawnmower manufacturers were reviewed, and safety recommendations noted. RESULTS: Fifteen patients were identified. The majority of injuries occurred from direct contact with the rotary blades (93%); the remaining child sustained a burn injury. Fourteen children (93%) required operative intervention. Seven patients (46%) sustained injuries resulting in amputation, two of whom had major limb amputations. All children, except the burns patient, underwent wound debridement and received antibiotic therapy. Reconstructive methods ranged from primary closure to free tissue transfer. Many patients required multiple procedures. In all instruction manuals, instructions to keep children and pets indoors or out of the yard when mowing were found. CONCLUSIONS: Lawnmower injuries can be devastating, particularly in children. Many victims have lasting deformities as a result of their injuries. Awareness of and stringent adherence to safety precautions during use of power lawnmowers can prevent many of these accidents.

  4. Localized bioimpedance to assess muscle injury

    International Nuclear Information System (INIS)

    Nescolarde, L; Rosell-Ferrer, J; Yanguas, J; Lukaski, H; Alomar, X; Rodas, G

    2013-01-01

    Injuries to lower limb muscles are common among football players. Localized bioimpedance analysis (BIA) utilizes electrical measurements to assess soft tissue hydration and cell membrane integrity non-invasively. This study reports the effects of the severity of muscle injury and recovery on BIA variables. We made serial tetra-polar, phase-sensitive 50 kHz localized BIA measurements of quadriceps, hamstring and calf muscles of three male football players before and after injury and during recovery until return-to-play, to determine changes in BIA variables (resistance (R), reactance (Xc) and phase angle (PA)) in different degrees of muscle injury. Compared to non-injury values, R, Xc and PA decreased with increasing muscle injury severity: grade III (23.1%, 45.1% and 27.6%), grade II (20.6%, 31.6% and 13.3%) and grade I (11.9%, 23.5% and 12.1%). These findings indicate that decreases in R reflect localized fluid accumulation, and reductions in Xc and PA highlight disruption of cellular membrane integrity and injury. Localized BIA measurements of muscle groups enable the practical detection of soft tissue injury and its severity. (paper)

  5. Effective photodynamic therapy against microbial populations in human deep tissue abscess aspirates.

    Science.gov (United States)

    Haidaris, Constantine G; Foster, Thomas H; Waldman, David L; Mathes, Edward J; McNamara, Joanne; Curran, Timothy

    2013-10-01

    The primary therapy for deep tissue abscesses is drainage accompanied by systemic antimicrobial treatment. However, the long antibiotic course required increases the probability of acquired resistance, and the high incidence of polymicrobial infections in abscesses complicates treatment choices. Photodynamic therapy (PDT) is effective against multiple classes of organisms, including those displaying drug resistance, and may serve as a useful adjunct to the standard of care by reduction of abscess microbial burden following drainage. Aspirates were obtained from 32 patients who underwent image-guided percutaneous drainage of the abscess cavity. The majority of the specimens (24/32) were abdominal, with the remainder from liver and lung. Conventional microbiological techniques and nucleotide sequence analysis of rRNA gene fragments were used to characterize microbial populations from abscess aspirates. We evaluated the sensitivity of microorganisms to methylene blue-sensitized PDT in vitro both within the context of an abscess aspirate and as individual isolates. Most isolates were bacterial, with the fungus Candida tropicalis also isolated from two specimens. We examined the sensitivity of these microorganisms to methylene blue-PDT. Complete elimination of culturable microorganisms was achieved in three different aspirates, and significant killing (P abscess treatment. © 2013 Wiley Periodicals, Inc.

  6. Imaging of musculoskeletal soft tissue infections

    Energy Technology Data Exchange (ETDEWEB)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F. [University of Arizona HSC, Department of Radiology, Tucson, AZ (United States); Stubbs, Alana Y. [Southern Arizona VA Health Care System, Department of Radiology, Tucson, AZ (United States); Graham, Anna R. [University of Arizona HSC, Department of Pathology, Tucson, AZ (United States)

    2010-10-15

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  7. Imaging of musculoskeletal soft tissue infections

    International Nuclear Information System (INIS)

    Turecki, Marcin B.; Taljanovic, Mihra S.; Holden, Dean A.; Hunter, Tim B.; Rogers, Lee F.; Stubbs, Alana Y.; Graham, Anna R.

    2010-01-01

    Prompt and appropriate imaging work-up of the various musculoskeletal soft tissue infections aids early diagnosis and treatment and decreases the risk of complications resulting from misdiagnosis or delayed diagnosis. The signs and symptoms of musculoskeletal soft tissue infections can be nonspecific, making it clinically difficult to distinguish between disease processes and the extent of disease. Magnetic resonance imaging (MRI) is the imaging modality of choice in the evaluation of soft tissue infections. Computed tomography (CT), ultrasound, radiography and nuclear medicine studies are considered ancillary. This manuscript illustrates representative images of superficial and deep soft tissue infections such as infectious cellulitis, superficial and deep fasciitis, including the necrotizing fasciitis, pyomyositis/soft tissue abscess, septic bursitis and tenosynovitis on different imaging modalities, with emphasis on MRI. Typical histopathologic findings of soft tissue infections are also presented. The imaging approach described in the manuscript is based on relevant literature and authors' personal experience and everyday practice. (orig.)

  8. Braque and Kokoschka: Brain Tissue Injury and Preservation of Artistic Skill.

    Science.gov (United States)

    Zaidel, D W

    2017-08-19

    The neural underpinning of art creation can be gleaned following brain injury in professional artists. Any alteration to their artistic productivity, creativity, skills, talent, and genre can help understand the neural underpinning of art expression. Here, two world-renown and influential artists who sustained brain injury in World War I are the focus, namely the French artist Georges Braque and the Austrian artist Oskar Kokoschka. Braque is particularly associated with Cubism, and Kokoschka with Expressionism. Before enlisting, they were already well-known and highly regarded. Both were wounded in the battlefield where they lost consciousness and treated in European hospitals. Braque's injury was in the left hemisphere while Kokoschka's was in the right hemisphere. After the injury, Braque did not paint again for nearly a whole year while Kokoschka commenced his artistic works when still undergoing hospital treatment. Their post-injury art retained the same genre as their pre-injury period, and their artistic skills, talent, creativity, and productivity remained unchanged. The quality of their post-injury artworks remained highly regarded and influential. These neurological cases suggest widely distributed and diffuse neural control by the brain in the creation of art.

  9. Release of Tissue-specific Proteins into Coronary Perfusate as a Model for Biomarker Discovery in Myocardial Ischemia/Reperfusion Injury

    DEFF Research Database (Denmark)

    Cordwell, Stuart; Edwards, Alistair; Liddy, Kiersten

    2012-01-01

    -rich plasma, in which the wide dynamic range of the native protein complement hinders classical proteomic investigations. We employed an ex vivo rabbit model of myocardial ischemia/reperfusion (I/R) injury using Langendorff buffer perfusion. Nonrecirculating perfusate was collected over a temporal profile...... reperfusion post-15I. Proteins released during irreversible I/R (60I/60R) were profiled using gel-based (2-DE and one-dimensional gel electrophoresis coupled to liquid chromatography and tandem mass spectrometry; geLC–MS) and gel-free (LC–MS/MS) methods. A total of 192 tissue-specific proteins were identified...... release using ex vivo buffer perfused tissue to limit the presence of obfuscating plasma proteins may identify candidates for further study in humans....

  10. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing.

    Science.gov (United States)

    Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki

    2008-10-01

    The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (6 h), method of soft-tissue management, skin closure time (1 week), existence of polytrauma (ISS or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (Prate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with occurrence of nonunion (P < 0.05). Gustilo type and existence of deep infection were significantly correlated

  11. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health.

    Science.gov (United States)

    Kehrer, James P; Klotz, Lars-Oliver

    2015-01-01

    A radical is any molecule that contains one or more unpaired electrons. Radicals are normal products of many metabolic pathways. Some exist in a controlled (caged) form as they perform essential functions. Others exist in a free form and interact with various tissue components. Such interactions can cause both acute and chronic dysfunction, but can also provide essential control of redox regulated signaling pathways. The potential roles of endogenous or xenobiotic-derived free radicals in several human pathologies have stimulated extensive research linking the toxicity of numerous xenobiotics and disease processes to a free radical mechanism. In recent years, improvements in analytical methodologies, as well as the realization that subtle effects induced by free radicals and oxidants are important in modulating cellular signaling, have greatly improved our understanding of the roles of these reactive species in toxic mechanisms and disease processes. However, because free radical-mediated changes are pervasive, and a consequence as well as a cause of injury, whether such species are a major cause of tissue injury and human disease remains unclear. This concern is supported by the fact that the bulk of antioxidant defenses are enzymatic and the findings of numerous studies showing that exogenously administered small molecule antioxidants are unable to affect the course of most toxicities and diseases purported to have a free radical mechanism. This review discusses cellular sources of various radical species and their reactions with vital cellular constituents, and provides examples of selected disease processes that may have a free radical component.

  12. In Vivo Effects of Quercetin in Association with Moderate Exercise Training in Improving Streptozotocin-Induced Aortic Tissue Injuries

    Directory of Open Access Journals (Sweden)

    Irina C. Chis

    2015-12-01

    Full Text Available Background: Diabetes mellitus (DM is a chronic endocrine-metabolic disorder associated with endothelial dysfunction. Hyperglycemia, dyslipidemia and abnormal nitric oxide-mediated vasodilatation are the major causal factors in the development of endothelial dysfunction in DM. The prevention of endothelial dysfunction may be a first target against the appearance of atherosclerosis and cardiovascular diseases. We have investigated the synergistic protective effects of quercetin administration and moderate exercise training on thoracic aorta injuries induced by diabetes. Methods: Diabetic rats that performed exercise training were subjected to a swimming training program (1 h/day, 5 days/week, 4 weeks. The diabetic rats received quercetin (30 mg/kg body weight/day for 4 weeks. At the end of the study, the thoracic aorta was isolated and divided into two parts; one part was immersed in 10% formalin for histopathological evaluations and the other was frozen for the assessment of oxidative stress markers (malondialdehyde, MDA and protein carbonyls groups, PC, the activity of antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT, nitrite plus nitrate (NOx production and inducible nitric oxide synthase (iNOS protein expression. Results: Diabetic rats showed significantly increased MDA and PC levels, NOx production and iNOS expression and a reduction of SOD and CAT activity in aortic tissues. A decrease in the levels of oxidative stress markers, NOx production and iNOS expression associated with elevated activity of antioxidant enzymes in the aortic tissue were observed in quercetin-treated diabetic trained rats. Conclusions: These findings suggest that quercetin administration in association with moderate exercise training reduces vascular complications and tissue injuries induced by diabetes in rat aorta by decreasing oxidative stress and restoring NO bioavailability.

  13. Dismounted Complex Blast Injury.

    Science.gov (United States)

    Andersen, Romney C; Fleming, Mark; Forsberg, Jonathan A; Gordon, Wade T; Nanos, George P; Charlton, Michael T; Ficke, James R

    2012-01-01

    The severe Dismounted Complex Blast Injury (DCBI) is characterized by high-energy injuries to the bilateral lower extremities (usually proximal transfemoral amputations) and/or upper extremity (usually involving the non-dominant side), in addition to open pelvic injuries, genitourinary, and abdominal trauma. Initial resuscitation and multidisciplinary surgical management appear to be the keys to survival. Definitive treatment follows general principals of open wound management and includes decontamination through aggressive and frequent debridement, hemorrhage control, viable tissue preservation, and appropriate timing of wound closure. These devastating injuries are associated with paradoxically favorable survival rates, but associated injuries and higher amputation levels lead to more difficult reconstructive challenges.

  14. Radiation processing of biological tissues for nuclear disaster management

    International Nuclear Information System (INIS)

    Singh, Rita

    2012-01-01

    A number of surgical procedures require tissue substitutes to repair or replace damaged or diseased tissues. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Allograft tissues provide an excellent alternative to autografts. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. However, the risk of infectious disease transmission via tissue allografts is a major concern. Therefore, tissue allografts should be sterilized to make them safe for clinical use. Radiation processing has well appreciated technological advantages and is the most suitable method for sterilization of biological tissues. Radiation processed biological tissues can be provided by the tissue banks for the management of injuries due to a nuclear disaster. A nuclear detonation will result in a large number of casualties due to the heat, blast and radiation effects of the weapon. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone grafts can be employed for repairing fracture defects, filling in destroyed regions of bone, management of open fractures and joint injuries. Radiation processed tissues have the potential to repair or reconstruct damaged tissues and can be of great assistance in the treatment of injuries due to the nuclear weapon. (author)

  15. Mean cortical curvature reflects cytoarchitecture restructuring in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Jace B. King

    2016-01-01

    Full Text Available In the United States alone, the number of persons living with the enduring consequences of traumatic brain injuries is estimated to be between 3.2 and 5 million. This number does not include individuals serving in the United States military or seeking care at Veterans Affairs hospitals. The importance of understanding the neurobiological consequences of mild traumatic brain injury (mTBI has increased with the return of veterans from conflicts overseas, many of who have suffered this type of brain injury. However, identifying the neuroanatomical regions most affected by mTBI continues to prove challenging. The aim of this study was to assess the use of mean cortical curvature as a potential indicator of progressive tissue loss in a cross-sectional sample of 54 veterans with mTBI compared to 31 controls evaluated with MRI. It was hypothesized that mean cortical curvature would be increased in veterans with mTBI, relative to controls, due in part to cortical restructuring related to tissue volume loss. Mean cortical curvature was assessed in 60 bilateral regions (31 sulcal, 29 gyral. Of the 120 regions investigated, nearly 50% demonstrated significantly increased mean cortical curvature in mTBI relative to controls with 25% remaining significant following multiple comparison correction (all, pFDR < .05. These differences were most prominent in deep gray matter regions of the cortex. Additionally, significant relationships were found between mean cortical curvature and gray and white matter volumes (all, p < .05. These findings suggest potentially unique patterns of atrophy by region and indicate that changes in brain microstructure due to mTBI are sensitive to measures of mean curvature.

  16. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  17. MR imaging of acute cervical spine injuries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Hwa; Lee, Jung Hyung; Joo, Yang Goo [School of Medicine, Keimyung University, Daegu (Korea, Republic of)

    1995-01-15

    To describe magnetic resonance (MR) findings of the patients with acute cervical spinal injury and to assess the usefulness of the MR imagings. We retrospectively reviewed the MR images of 32 patients with acute cervical spinal injury. MR images were obtained with a 2.0 T superconductive MR imaging units (Spectro-20000, Gold-Star, Seoul), using spin-echo and gradient-echo technique. Most of patients were in their 3rd-4th decades and motor vehicle accident was the most frequent cause of acute cervical trauma. We assessed the MR findings with respect to the spinal cord, ligaments, paravertebral soft tissues, intervertebral disk, and bony spine. Spinal cord injury was the most common (65%), where cord swelling, edema, and/or hematoma were demonstrated most frequently at C5-6 level. Traumatic intervertebral disk herniations were the second most common (62.5%) and frequently occurred at the lower cervical levels, mostly at C5-6. Paravertebral soft tissue injury, vertebral body fracture, bone marrow edema and displacement were also well shown on MR images. MR imaging appears to be essential for the evaluation of traumatic disk herniations, spinal cord abnormalities, and injury of paravertebral soft tissue in the acute injury of the cervical spine.

  18. MR imaging of acute cervical spine injuries

    International Nuclear Information System (INIS)

    Kim, Kyu Hwa; Lee, Jung Hyung; Joo, Yang Goo

    1995-01-01

    To describe magnetic resonance (MR) findings of the patients with acute cervical spinal injury and to assess the usefulness of the MR imagings. We retrospectively reviewed the MR images of 32 patients with acute cervical spinal injury. MR images were obtained with a 2.0 T superconductive MR imaging units (Spectro-20000, Gold-Star, Seoul), using spin-echo and gradient-echo technique. Most of patients were in their 3rd-4th decades and motor vehicle accident was the most frequent cause of acute cervical trauma. We assessed the MR findings with respect to the spinal cord, ligaments, paravertebral soft tissues, intervertebral disk, and bony spine. Spinal cord injury was the most common (65%), where cord swelling, edema, and/or hematoma were demonstrated most frequently at C5-6 level. Traumatic intervertebral disk herniations were the second most common (62.5%) and frequently occurred at the lower cervical levels, mostly at C5-6. Paravertebral soft tissue injury, vertebral body fracture, bone marrow edema and displacement were also well shown on MR images. MR imaging appears to be essential for the evaluation of traumatic disk herniations, spinal cord abnormalities, and injury of paravertebral soft tissue in the acute injury of the cervical spine

  19. Recreational mountain biking injuries.

    Science.gov (United States)

    Aitken, S A; Biant, L C; Court-Brown, Charles M

    2011-04-01

    Mountain biking is increasing in popularity worldwide. The injury patterns associated with elite level and competitive mountain biking are known. This study analysed the incidence, spectrum and risk factors for injuries sustained during recreational mountain biking. The injury rate was 1.54 injuries per 1000 biker exposures. Men were more commonly injured than women, with those aged 30-39 years at highest risk. The commonest types of injury were wounding, skeletal fracture and musculoskeletal soft tissue injury. Joint dislocations occurred more commonly in older mountain bikers. The limbs were more commonly injured than the axial skeleton. The highest hospital admission rates were observed with head, neck and torso injuries. Protective body armour, clip-in pedals and the use of a full-suspension bicycle may confer a protective effect.

  20. Camellia sinensis Prevents Perinatal Nicotine-Induced Neurobehavioral Alterations, Tissue Injury, and Oxidative Stress in Male and Female Mice Newborns

    Science.gov (United States)

    Ajarem, Jamaan S.; Al-Basher, Gadh; Allam, Ahmed A.

    2017-01-01

    Nicotine exposure during pregnancy induces oxidative stress and leads to behavioral alterations in early childhood and young adulthood. The current study aimed to investigate the possible protective effects of green tea (Camellia sinensis) against perinatal nicotine-induced behavioral alterations and oxidative stress in mice newborns. Pregnant mice received 50 mg/kg C. sinensis on gestational day 1 (PD1) to postnatal day 15 (D15) and were subcutaneously injected with 0.25 mg/kg nicotine from PD12 to D15. Nicotine-exposed newborns showed significant delay in eye opening and hair appearance and declined body weight at birth and at D21. Nicotine induced neuromotor alterations in both male and female newborns evidenced by the suppressed righting, rotating, and cliff avoidance reflexes. Nicotine-exposed newborns exhibited declined memory, learning, and equilibrium capabilities, as well as marked anxiety behavior. C. sinensis significantly improved the physical development, neuromotor maturation, and behavioral performance in nicotine-exposed male and female newborns. In addition, C. sinensis prevented nicotine-induced tissue injury and lipid peroxidation and enhanced antioxidant defenses in the cerebellum and medulla oblongata of male and female newborns. In conclusion, this study shows that C. sinensis confers protective effects against perinatal nicotine-induced neurobehavioral alterations, tissue injury, and oxidative stress in mice newborns. PMID:28588748

  1. Protective Effect of Unacylated Ghrelin on Compression-Induced Skeletal Muscle Injury Mediated by SIRT1-Signaling

    Directory of Open Access Journals (Sweden)

    Felix N. Ugwu

    2017-11-01

    Full Text Available Unacylated ghrelin, the predominant form of circulating ghrelin, protects myotubes from cell death, which is a known attribute of pressure ulcers. In this study, we investigated whether unacylated ghrelin protects skeletal muscle from pressure-induced deep tissue injury by abolishing necroptosis and apoptosis signaling and whether these effects were mediated by SIRT1 pathway. Fifteen adult Sprague Dawley rats were assigned to receive saline or unacylated ghrelin with or without EX527 (a SIRT1 inhibitor. Animals underwent two 6-h compression cycles with 100 mmHg static pressure applied over the mid-tibialis region of the right limb whereas the left uncompressed limb served as the intra-animal control. Muscle tissues underneath the compression region, and at the similar region of the opposite uncompressed limb, were collected for analysis. Unacylated ghrelin attenuated the compression-induced muscle pathohistological alterations including rounding contour of myofibers, extensive nucleus accumulation in the interstitial space, and increased interstitial space. Unacylated ghrelin abolished the increase in necroptosis proteins including RIP1 and RIP3 and attenuated the elevation of apoptotic proteins including p53, Bax, and AIF in the compressed muscle. Furthermore, unacylated ghrelin opposed the compression-induced phosphorylation and acetylation of p65 subunit of NF-kB. The anti-apoptotic effect of unacylated ghrelin was shown by a decrease in apoptotic DNA fragmentation and terminal dUTP nick-end labeling index in the compressed muscle. The protective effects of unacylated ghrelin vanished when co-treated with EX527. Our findings demonstrated that unacylated ghrelin protected skeletal muscle from compression-induced injury. The myoprotective effects of unacylated ghrelin on pressure-induced tissue injury were associated with SIRT1 signaling.

  2. A preliminary study into injuries due to non-perforating ballistic impacts into soft body armour over the spine.

    Science.gov (United States)

    Jennings, Rosalind M; Malbon, Chris; Brock, Fiona; Harrisson, Stuart; Carr, Debra J

    2018-05-22

    The UK Home Office test method for ballistic protective police body armours considers anterior torso impacts to be the worst-case scenario and tests rear armour panels to the same standards as front panels. The aim of this paper was to examine the injuries from spinal behind armour blunt trauma (BABT) impacts. This study used a cadaveric 65 kg, female pig barrel and 9 mm Luger ammunition (9 × 19 mm, FMJ Nammo Lapur Oy) into HG1/A + KR1 soft armour panels over the spine. Injuries were inspected and sections removed for x-radiography and micro-CT assessment. All shots over the spine resulted in deep soft tissue injuries from pencilling of the armour and the shirt worn under the armour. The wounds had embedded fabric debris which would require surgery to remove resulting in increased recovery time over injuries usually seen in anterior torso BABT impacts, which are typically haematoma and fractured ribs. The shot with the deepest soft tissue wound (41 mm) also resulted in a fractured spinous process. Shots were also fired at the posterior and anterior rib area of the pig barrel, for comparison to the spine. Similar wounds were seen on the shots to the posterior rib area while shallower, smaller wounds were seen on the anterior and one anterior rib shot resulted in a single, un-displaced rib fracture. The anatomical differences between pigs and humans would most likely mean that injury to a human from these impacts would be more serious. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model.

    Science.gov (United States)

    Jain, Sumeet V; Kollisch-Singule, Michaela; Satalin, Joshua; Searles, Quinn; Dombert, Luke; Abdel-Razek, Osama; Yepuri, Natesh; Leonard, Antony; Gruessner, Angelika; Andrews, Penny; Fazal, Fabeha; Meng, Qinghe; Wang, Guirong; Gatto, Louis A; Habashi, Nader M; Nieman, Gary F

    2017-12-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH 2 O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + H DS , n = 6) and (2) over-distension + low dynamic strain (OD + L DS , n = 6). OD was caused by setting the inspiratory pressure at 40 cmH 2 O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. In normal tissue (N T ), OD + L DS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + H DS . In acutely injured tissue (ALI T ), OD + L DS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + H DS . Both N T and ALI T are resistant to VILI caused by OD alone, but when combined with a H DS , significant tissue injury develops.

  4. Athletic Hip Injuries.

    Science.gov (United States)

    Lynch, T Sean; Bedi, Asheesh; Larson, Christopher M

    2017-04-01

    Historically, athletic hip injuries have garnered little attention; however, these injuries account for approximately 6% of all sports injuries and their prevalence is increasing. At times, the diagnosis and management of hip injuries can be challenging and elusive for the team physician. Hip injuries are seen in high-level athletes who participate in cutting and pivoting sports that require rapid acceleration and deceleration. Described previously as the "sports hip triad," these injuries consist of adductor strains, osteitis pubis, athletic pubalgia, or core muscle injury, often with underlying range-of-motion limitations secondary to femoroacetabular impingement. These disorders can happen in isolation but frequently occur in combination. To add to the diagnostic challenge, numerous intra-articular disorders and extra-articular soft-tissue restraints about the hip can serve as pain generators, in addition to referred pain from the lumbar spine, bowel, bladder, and reproductive organs. Athletic hip conditions can be debilitating and often require a timely diagnosis to provide appropriate intervention.

  5. [Experimental study on the treatment of serious soft tissue injuries with strengthening the spleen and replenishing qi].

    Science.gov (United States)

    Chen, Xun-wen; Zhu, Yong-zhan; Chen, Zhi-wei; Wu, Zheng-jie; He, Li-lei

    2008-09-01

    To study the effects of Chinese drugs based on strengthening the spleen and replenishing qi treatment rule on neoformative capillaries and fibroblast during the soft tissue repair after serious trauma in rats, so as to explore the biological basis of the TCM theory "the spleen dominate extremities and muscles" applied to the treatment of soft tissue injuries. The model rats were established by bleeding from femoral artery and lancing method, and the rats were randomly divided into the control group, strengthening the spleen group and activating blood and resolving stasis group. The samples were got from the tissue of the wounded area at the 5th, 10th and 15th days after oral administration of the traditional Chinese medicine. After fixation and section, the tissues were stained by CD31 and PCNA staining. The amount of the capillaries and fibroblasts in the tissue of the wounded area were observed through multi-purpose microscope (ZEISS Axioskop2). Quantitative analysis was carried out on Image-ProPlus image analyzer. The amount of the capillaries and fibroblasts in the wounded tissue in the strengthening the spleen group were larger than that in the control group at the 5th, 10th and 15th day. And the proliferation speed of capillaries and fibroblasts was faster than those in the control group or the activating blood and resolving stasis group. The Chinese drugs according to strengthening the spleen and replenishing qi treatment rule were effective to promote growth of the granulation tissue and facilitate healing of the wounded area. And it has better effect than the treatment of promoting blood circulation and removing stasis.

  6. Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers.

    Directory of Open Access Journals (Sweden)

    Leila Etemadi

    Full Text Available Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29 were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose. Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN. The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved.

  7. Tissue Damage Characterization Using Non-invasive Optical Modalities

    Science.gov (United States)

    Diaz, David

    The ability to determine the degree of cutaneous and subcutaneous tissue damage is essential for proper wound assessment and a significant factor for determining patient treatment and morbidity. Accurate characterization of tissue damage is critical for a number of medical applications including surgical removal of nonviable tissue, severity assessment of subcutaneous ulcers, and depth assessment of visually open wounds. The main objective of this research was to develop a non-invasive method for identifying the extent of tissue damage underneath intact skin that is not apparent upon visual examination. This work investigated the relationship between tissue optical properties, blood flow, and tissue viability by testing the hypotheses that (a) changes in tissue oxygenation and/or microcirculatory blood flow measurable by Diffuse Near Infrared Spectroscopy (DNIRS) and Diffuse Correlation Spectroscopy (DCS) differ between healthy and damaged tissue and (b) the magnitude of those changes differs for different degrees of tissue damage. This was accomplished by developing and validating a procedure for measuring microcirculatory blood flow and tissue oxygenation dynamics at multiple depths (up to 1 centimeter) using non-invasive DCS and DNIRS technologies. Due to the lack of pressure ulcer animal models that are compatible with our optical systems, a proof of concept was conducted in a porcine burn model prior to conducting clinical trials in order to assess the efficacy of the system in-vivo. A reduction in total hemoglobin was observed for superficial (5%) and deep burns (35%) along with a statistically significant difference between the optical properties of superficial and deep burns (p differences detected in optical properties and hemoglobin content by optical measurements correlated with the extent of tissue injury observed in histological stains. After proof of concept in animals, a human study was conducted and optical data was collected from 20 healthy

  8. Comparative outcome of bomb explosion injuries versus high-powered gunshot injuries of the upper extremity in a civilian setting.

    Science.gov (United States)

    Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram

    2013-03-01

    Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.

  9. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Topical nonsteroidal anti-inflammatory drugs for the treatment of pain due to soft tissue injury: diclofenac epolamine topical patch

    OpenAIRE

    Lionberger, David

    2010-01-01

    David R Lionberger1, Michael J Brennan21Southwest Orthopedic Group, Houston, TX, USA; 2Department of Medicine, Bridgeport Hospital, Bridgeport, CT, USAAbstract: The objective of this article is to review published clinical data on diclofenac epolamine topical patch 1.3% (DETP) in the treatment of acute soft tissue injuries, such as strains, sprains, and contusions. Review of published literature on topical nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac, and DETP in patients with ac...

  11. Time to significant pain reduction following DETP application vs placebo for acute soft tissue injuries.

    Science.gov (United States)

    Yanchick, J; Magelli, M; Bodie, J; Sjogren, J; Rovati, S

    2010-08-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) provide fast and effective acute pain relief, but systemic administration has increased risk for some adverse reactions. The diclofenac epolamine 1.3% topical patch (DETP) is a topical NSAID with demonstrated safety and efficacy in treatment of acute pain from minor soft tissue injuries. Significant pain reduction has been observed in clinical trials within several hours following DETP application, suggesting rapid pain relief; however, this has not been extensively studied for topical NSAIDs in general. This retrospective post-hoc analysis examined time to onset of significant pain reduction after DETP application compared to a placebo patch for patients with mild-to-moderate acute ankle sprain, evaluating the primary efficacy endpoint from two nearly identical studies. Data from two double-blind, randomized, parallel-group, placebo-controlled studies (N = 274) of safety and efficacy of the DETP applied once daily for 7 days for acute ankle sprain were evaluated post-hoc using statistical modeling to estimate time to onset of significant pain reduction following DETP application. Pain on active movement on a 100 mm Visual Analog Scale (VAS) recorded in patient diaries; physician- and patient-assessed tolerability; and adverse events. DETP treatment resulted in significant pain reduction within approximately 3 hours compared to placebo. Within-treatment post-hoc analysis based on a statistical model suggested significant pain reduction occurred as early as 1.27 hours for the DETP group. The study may have been limited by the retrospective nature of the analyses. In both studies, the DETP was well tolerated with few adverse events, limited primarily to application site skin reactions. The DETP is an effective treatment for acute minor soft tissue injury, providing pain relief as rapidly as 1.27 hours post-treatment. Statistical modeling may be useful in estimating time to onset of pain relief for comparison of topical

  12. Blast injury face: An exemplified review of management

    Science.gov (United States)

    Kumar, Vijay; Singh, Arun Kumar; Kumar, Parmod; Shenoy, Yogesh Ramdas; Verma, Anoop K.; Borole, Ateesh Jayram; Prasad, Veerendra

    2013-01-01

    Facial injuries are extremely common due to increased incidence of vehicular and industrial trauma and warfare injuries. But isolated injury to the face due to low voltage cells exploding is rare. In blast injury, the force can cause massive soft tissue injury, along with injury to facial fractures and damage to adnexa. Facial injury is not life threatening unless associated with other injuries of the skull and airway. The major risks to airway in facial trauma are due to anatomic alteration of patient's airway through bony and soft tissue disruption and increased chances of aspiration. The past several decades have seen a rapid growth in the range of procedures available for reconstructive purposes. However, the essential preliminary management is a must and needs to be structured. The patient, a 10-year-old boy, was joining three pencil batteries in series and twisting the wire with his teeth when one battery exploded causing severe injuries to midface and mandibular region. After stabilization, the patient was taken up for surgery. A cap splint with zygomatic suspension was done for the maxilla, and wiring of residual mandibular segments with lining and skin cover provided by a deltopectoral flap was done. Reconstructive surgeries for reconstruction of the upper lip and maintenance of oral continence were planned for the future. The present case stresses the importance of educating the masses about unsafe handling of low voltage devices, management of airway, massive soft tissue injury, along with facial fractures and damage to adnexa. PMID:24163550

  13. Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries.

    Science.gov (United States)

    Trzeciak, Tomasz; Richter, Magdalena; Suchorska, Wiktoria; Augustyniak, Ewelina; Lach, Michał; Kaczmarek, Małgorzata; Kaczmarczyk, Jacek

    2016-03-01

    Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.

  14. A distinct regulatory region of the Bmp5 locus activates gene expression following adult bone fracture or soft tissue injury.

    Science.gov (United States)

    Guenther, Catherine A; Wang, Zhen; Li, Emma; Tran, Misha C; Logan, Catriona Y; Nusse, Roel; Pantalena-Filho, Luiz; Yang, George P; Kingsley, David M

    2015-08-01

    Bone morphogenetic proteins (BMPs) are key signaling molecules required for normal development of bones and other tissues. Previous studies have shown that null mutations in the mouse Bmp5 gene alter the size, shape and number of multiple bone and cartilage structures during development. Bmp5 mutations also delay healing of rib fractures in adult mutants, suggesting that the same signals used to pattern embryonic bone and cartilage are also reused during skeletal regeneration and repair. Despite intense interest in BMPs as agents for stimulating bone formation in clinical applications, little is known about the regulatory elements that control developmental or injury-induced BMP expression. To compare the DNA sequences that activate gene expression during embryonic bone formation and following acute injuries in adult animals, we assayed regions surrounding the Bmp5 gene for their ability to stimulate lacZ reporter gene expression in transgenic mice. Multiple genomic fragments, distributed across the Bmp5 locus, collectively coordinate expression in discrete anatomic domains during normal development, including in embryonic ribs. In contrast, a distinct regulatory region activated expression following rib fracture in adult animals. The same injury control region triggered gene expression in mesenchymal cells following tibia fracture, in migrating keratinocytes following dorsal skin wounding, and in regenerating epithelial cells following lung injury. The Bmp5 gene thus contains an "injury response" control region that is distinct from embryonic enhancers, and that is activated by multiple types of injury in adult animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces

    Science.gov (United States)

    Boys, Alexander J.; McCorry, Mary Clare; Rodeo, Scott; Bonassar, Lawrence J.; Estroff, Lara A.

    2017-01-01

    Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors. PMID:29333332

  16. Lawn mower-related projectile injury.

    Science.gov (United States)

    McNamara, William F; Yamout, Sani Z; Escobar, Mauricio A; Glick, Philip L

    2009-07-01

    Lawn mower injuries are a potentially devastating, yet preventable cause of morbidity and mortality in the pediatric population. The sequelae to these injuries can become even worse if the initial presentation goes unsuspected by medical staff, leading to a delay in treatment. The authors report the case of a lawn mower-related penetrating missile injury, where the extent of injury was not appreciated by the patient until signs and symptoms of a soft-tissue infection developed, prompting the patient to seek medical attention the next day.

  17. Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II: A Phase II Randomized Trial.

    Science.gov (United States)

    Okonkwo, David O; Shutter, Lori A; Moore, Carol; Temkin, Nancy R; Puccio, Ava M; Madden, Christopher J; Andaluz, Norberto; Chesnut, Randall M; Bullock, M Ross; Grant, Gerald A; McGregor, John; Weaver, Michael; Jallo, Jack; LeRoux, Peter D; Moberg, Dick; Barber, Jason; Lazaridis, Christos; Diaz-Arrastia, Ramon R

    2017-11-01

    A relationship between reduced brain tissue oxygenation and poor outcome following severe traumatic brain injury has been reported in observational studies. We designed a Phase II trial to assess whether a neurocritical care management protocol could improve brain tissue oxygenation levels in patients with severe traumatic brain injury and the feasibility of a Phase III efficacy study. Randomized prospective clinical trial. Ten ICUs in the United States. One hundred nineteen severe traumatic brain injury patients. Patients were randomized to treatment protocol based on intracranial pressure plus brain tissue oxygenation monitoring versus intracranial pressure monitoring alone. Brain tissue oxygenation data were recorded in the intracranial pressure -only group in blinded fashion. Tiered interventions in each arm were specified and impact on intracranial pressure and brain tissue oxygenation measured. Monitors were removed if values were normal for 48 hours consecutively, or after 5 days. Outcome was measured at 6 months using the Glasgow Outcome Scale-Extended. A management protocol based on brain tissue oxygenation and intracranial pressure monitoring reduced the proportion of time with brain tissue hypoxia after severe traumatic brain injury (0.45 in intracranial pressure-only group and 0.16 in intracranial pressure plus brain tissue oxygenation group; p injury after severe traumatic brain injury based on brain tissue oxygenation and intracranial pressure values was consistent with reduced mortality and increased proportions of patients with good recovery compared with intracranial pressure-only management; however, the study was not powered for clinical efficacy. Management of severe traumatic brain injury informed by multimodal intracranial pressure and brain tissue oxygenation monitoring reduced brain tissue hypoxia with a trend toward lower mortality and more favorable outcomes than intracranial pressure-only treatment. A Phase III randomized trial to assess

  18. Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis.

    Science.gov (United States)

    Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon

    2018-05-01

    Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All

  19. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    International Nuclear Information System (INIS)

    Antoniades, H.N.; Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P.; Lynch, S.E.

    1991-01-01

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth

  20. Age peculiarities of postraumatic repair of open fractures in case of combined radiation injuries

    International Nuclear Information System (INIS)

    Shantyr', V.I.; Korzh, A.A.; Frenkel', L.A.; Kazitskij, V.M.; Lan'ko, A.I.; Yakovenko, M.G.

    1982-01-01

    Results of investigation of recovery in rabbit soft tissues (skin, muscle tissue) and in bones following bone fractures and whole-body X-irradiation are presented. Heavier damages developed in connective tissue in adolescent than in adult rabbits in conditions of combined radiation injuries. Normalization of connective tissue in skin and muscles was observed by 90 day in adolescent rabbits, where as connective tissue remained inferior in adult animals. Bone tissue recovery remained unfinished by 90 day in adolescent and adult rabbits in conditions of combined radiation injuries. The main reason for slowing-down of recovery of damaged tissues in case of open fracture is radiation injury in the irradiated organism

  1. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.

    Science.gov (United States)

    Liu, Fang; Zhou, Zhaoye; Jang, Hyungseok; Samsonov, Alexey; Zhao, Gengyan; Kijowski, Richard

    2018-04-01

    To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med 79:2379-2391, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Adaptation of a MR imaging protocol into a real-time clinical biometric ultrasound protocol for persons with spinal cord injury at risk for deep tissue injury: A reliability study.

    Science.gov (United States)

    Swaine, Jillian M; Moe, Andrew; Breidahl, William; Bader, Daniel L; Oomens, Cees W J; Lester, Leanne; O'Loughlin, Edmond; Santamaria, Nick; Stacey, Michael C

    2018-02-01

    High strain in soft tissues that overly bony prominences are considered a risk factor for pressure ulcers (PUs) following spinal cord impairment (SCI) and have been computed using Finite Element methods (FEM). The aim of this study was to translate a MRI protocol into ultrasound (US) and determine between-operator reliability of expert sonographers measuring diameter of the inferior curvature of the ischial tuberosity (IT) and the thickness of the overlying soft tissue layers on able-bodied (AB) and SCI using real-time ultrasound. Part 1: Fourteen AB participants with a mean age of 36.7 ± 12.09 years with 7 males and 7 females had their 3 soft tissue layers in loaded and unloaded sitting measured independently by 2 sonographers: tendon/muscle, skin/fat and total soft tissue and the diameter of the IT in its short and long axis. Part 2: Nineteen participants with SCI were screened, three were excluded due to abnormal skin signs, and eight participants (42%) were excluded for abnormal US signs with normal skin. Eight SCI participants with a mean age of 31.6 ± 13.6 years and all male with 4 paraplegics and 4 tetraplegics were measured by the same sonographers for skin, fat, tendon, muscle and total. Skin/fat and tendon/muscle were computed. AB between-operator reliability was good (ICC = 0.81-0.90) for 3 soft tissues layers in unloaded and loaded sitting and poor for both IT short and long axis (ICC = -0.028 and -0.01). SCI between-operator reliability was good in unloaded and loaded for total, muscle, fat, skin/fat, tendon/muscle (ICC = 0.75-0.97) and poor for tendon (ICC = 0.26 unloaded and ICC = -0.71 loaded) and skin (ICC = 0.37 unloaded and ICC = 0.10). A MRI protocol was successfully adapted for a reliable 3 soft tissue layer model and could be used in a 2-D FEM model designed to estimate soft tissue strain as a novel risk factor for the development of a PU. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: A multivariate analysis of factors affecting deep infection and fracture healing

    Directory of Open Access Journals (Sweden)

    Yokoyama Kazuhiko

    2008-01-01

    Full Text Available Background: The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN by multivariate analysis. Materials and Methods: We examined 99 open tibial fractures (98 patients treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (≤6 h or> 6 h, method of soft-tissue management, skin closure time (≤1 week or> 1 week, existence of polytrauma (ISS< 18 or ISS≥18, existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Results: Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5 of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection ( P < 0.0001. In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA ( P = 0.016. Nonunion occurred in 17 fractures (20.3%, 17/84. Multivariate analysis revealed that Gustilo type, skin closure time, and

  4. Subepidermal moisture detection of heel pressure injury: The pressure ulcer detection study outcomes.

    Science.gov (United States)

    Bates-Jensen, Barbara M; McCreath, Heather E; Nakagami, Gojiro; Patlan, Anabel

    2018-04-01

    We examined subepidermal moisture (SEM) and visual skin assessment of heel pressure injury (PrI) among 417 nursing home residents in 19 facilities over 16 weeks. Participants were older (mean age 77 years), 58% were female, over half were ethnic minorities (29% African American, 12% Asian American, 21% Hispanic), and at risk for PrI (mean Braden Scale Risk score = 15.6). Blinded concurrent visual assessments and SEM measurements were obtained at heels weekly. Visual skin damage was categorised as normal, erythema, stage 1 PrI, deep tissue injury (DTI) or stage 2 or greater PrI. PrI incidence was 76%. Off-loading occurred with pillows (76% of residents) rather than heel boots (21%) and often for those with DTI (91%). Subepidermal moisture was measured with a device where higher readings indicate greater moisture (range: 0-70 tissue dielectric constant), with normal skin values significantly different from values in the presence of skin damage. Subepidermal moisture was associated with concurrent damage and damage 1 week later in generalised multinomial logistic models adjusting for age, diabetes and function. Subepidermal moisture detected DTI and differentiated those that resolved, remained and deteriorated over 16 weeks. Subepidermal moisture may be an objective method for detecting PrI. © 2017 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  5. Inhibition of COX1/2 alters the host response and reduces ECM scaffold mediated constructive tissue remodeling in a rodent model of skeletal muscle injury.

    Science.gov (United States)

    Dearth, Christopher L; Slivka, Peter F; Stewart, Scott A; Keane, Timothy J; Tay, Justin K; Londono, Ricardo; Goh, Qingnian; Pizza, Francis X; Badylak, Stephen F

    2016-02-01

    Extracellular matrix (ECM) has been used as a biologic scaffold material to both reinforce the surgical repair of soft tissue and serve as an inductive template to promote a constructive tissue remodeling response. Success of such an approach is dependent on macrophage-mediated degradation and remodeling of the biologic scaffold. Macrophage phenotype during these processes is a predictive factor of the eventual remodeling outcome. ECM scaffolds have been shown to promote an anti-inflammatory or M2-like macrophage phenotype in vitro that includes secretion of downstream products of cycolooxygenases 1 and 2 (COX1/2). The present study investigated the effect of a common COX1/2 inhibitor (Aspirin) on macrophage phenotype and tissue remodeling in a rodent model of ECM scaffold treated skeletal muscle injury. Inhibition of COX1/2 reduced the constructive remodeling response by hindering myogenesis and collagen deposition in the defect area. The inhibited response was correlated with a reduction in M2-like macrophages in the defect area. The effects of Aspirin on macrophage phenotype were corroborated using an established in vitro macrophage model which showed a reduction in both ECM induced prostaglandin secretion and expression of a marker of M2-like macrophages (CD206). These results raise questions regarding the common peri-surgical administration of COX1/2 inhibitors when biologic scaffold materials are used to facilitate muscle repair/regeneration. COX1/2 inhibitors such as nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely administered post-surgically for analgesic purposes. While COX1/2 inhibitors are important in pain management, they have also been shown to delay or diminish the healing process, which calls to question their clinical use for treating musculotendinous injuries. The present study aimed to investigate the influence of a common NSAID, Aspirin, on the constructive remodeling response mediated by an ECM scaffold (UBM) in a rat skeletal

  6. Ultrasound imaging of sports-related musculoskeletal injuries

    International Nuclear Information System (INIS)

    Craig, J.G.; Holsbeek, M.T. van; Gauthier, T.P.; Cook, W.J.

    2006-01-01

    Sports-related injuries of the musculoskeletal system affect millions of individuals every year. Integrating high-frequency Tissue Harmonic Imaging ultrasound with MRI and CT gives the greatest opportunity for diagnosing specific injuries. (orig.)

  7. Tissue kallikrein protects neurons from hypoxia/reoxygenation-induced cell injury through Homer1b/c.

    Science.gov (United States)

    Su, Jingjing; Tang, Yuping; Zhou, Houguang; Liu, Ling; Dong, Qiang

    2012-11-01

    Previous studies have demonstrated that human tissue kallikrein (TK) gene delivery protects against mouse cerebral ischemia/reperfusion (I/R) injury through bradykinin B2 receptor (B2R) activation. We have also reported that exogenous TK administration can suppress glutamate- or acidosis-induced neurotoxicity through the extracellular signal-regulated kinase1/2 (ERK1/2) pathway. To further explore the neuroprotection mechanisms of TK, in the present study we performed immunoprecipitation analysis and identified a scaffolding protein Homer1b/c using MALDI-TOF MS analysis. Here, we tested the hypothesis that TK reduces cell injury induced by oxygen and glucose deprivation/reoxygenation (OGD/R) through activating Homer1b/c. We found that TK increased the expression of Homer1b/c in a concentration- and time-dependent manner. Moreover, TK facilitated the translocation of Homer1b/c to the plasma membrane under OGD/R condition by confocal microscope assays. We also observed that overexpression of Homer1b/c showed the neuroprotection against OGD/R-induced cell injury by enhancing cell survival, reducing LDH release, caspase-3 activity and cell apoptosis. However, the knockdown of Homer1b/c by small interfering RNA showed the opposite effects, indicating that Homer1b/c had protective effects against OGD/R-induced neuronal injury. More interestingly, TK exerted its much more significantly neuroprotective effects after Homer1b/c overexpression, whereas it exerted its reduced effects after Homer1b/c knockdown. In addition, TK pretreatment increased the phosphorylation of the ERK1/2 and Akt-GSK3β through Homer1b/c activation. The beneficial effects of Homer1b/c were abolished by the ERK1/2 or PI3K antagonist. Therefore, we propose novel signaling mechanisms involved in the anti-hypoxic function of TK through activation of Homer1b/c-ERK1/2 and Homer1b/c-PI3K-Akt signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Tissue-engineering strategies for the tendon/ligament-to-bone insertion.

    Science.gov (United States)

    Smith, Lester; Xia, Younan; Galatz, Leesa M; Genin, Guy M; Thomopoulos, Stavros

    2012-01-01

    Injuries to connective tissues are painful and disabling and result in costly medical expenses. These injuries often require reattachment of an unmineralized connective tissue to bone. The uninjured tendon/ligament-to-bone insertion (enthesis) is a functionally graded material that exhibits a gradual transition from soft tissue (i.e., tendon or ligament) to hard tissue (i.e., mineralized bone) through a fibrocartilaginous transition region. This transition is believed to facilitate force transmission between the two dissimilar tissues by ameliorating potentially damaging interfacial stress concentrations. The transition region is impaired or lost upon tendon/ligament injury and is not regenerated following surgical repair or natural healing, exposing the tissue to risk of reinjury. The need to regenerate a robust tendon-to-bone insertion has led a number of tissue engineering repair strategies. This review treats the tendon-to-bone insertion site as a tissue structure whose primary role is mechanical and discusses current and emerging strategies for engineering the tendon/ligament-to-bone insertion in this context. The focus lies on strategies for producing mechanical structures that can guide and subsequently sustain a graded tissue structure and the associated cell populations.

  9. Imaging findings and significance of deep neck space infection

    International Nuclear Information System (INIS)

    Zhuang Qixin; Gu Yifeng; Du Lianjun; Zhu Lili; Pan Yuping; Li Minghua; Yang Shixun; Shang Kezhong; Yin Shankai

    2004-01-01

    Objective: To study the imaging appearance of deep neck space cellulitis and abscess and to evaluate the diagnostic criteria of deep neck space infection. Methods: CT and MRI findings of 28 cases with deep neck space infection proved by clinical manifestation and pathology were analyzed, including 11 cases of retropharyngeal space, 5 cases of parapharyngeal space infection, 4 cases of masticator space infection, and 8 cases of multi-space infection. Results: CT and MRI could display the swelling of the soft tissues and displacement, reduction, or disappearance of lipoid space in the cellulitis. In inflammatory tissues, MRI imaging demonstrated hypointense or isointense signal on T 1 WI, and hyperintense signal changes on T 2 WI. In abscess, CT could display hypodensity in the center and boundary enhancement of the abscess. MRI could display obvious hyperintense signal on T 2 WI and boundary enhancement. Conclusion: CT and MRI could provide useful information for deep neck space cellulitis and abscess

  10. Critical role of acrolein in secondary injury following ex vivo spinal cord trauma.

    Science.gov (United States)

    Hamann, Kristin; Durkes, Abigail; Ouyang, Hui; Uchida, Koji; Pond, Amber; Shi, Riyi

    2008-11-01

    The pathophysiology of spinal cord injury (SCI) is characterized by the initial, primary injury followed by secondary injury processes in which oxidative stress is a critical component. Secondary injury processes not only exacerbate pathology at the site of primary injury, but also result in spreading of injuries to the adjacent, otherwise healthy tissue. The lipid peroxidation byproduct acrolein has been implicated as one potential mediator of secondary injury. To further and rigorously elucidate the role of acrolein in secondary injury, a unique ex vivo model is utilized to isolate the detrimental effects of mechanical injury from toxins such as acrolein that are produced endogenously following SCI. We demonstrate that (i) acrolein-Lys adducts are capable of diffusing from compressed tissue to adjacent, otherwise uninjured tissue; (ii) secondary injury by itself produces significant membrane damage and increased superoxide production; and (iii) these injuries are significantly attenuated by the acrolein scavenger hydralazine. Furthermore, hydralazine treatment results in significantly less membrane damage 2 h following compression injury, but not immediately after. These findings support our hypothesis that, following SCI, acrolein is increased to pathologic concentrations, contributes significantly to secondary injury, and thus represents a novel target for scavenging to promote improved recovery.

  11. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Jerry R. [Department of Radiology, Rady Children' s Hospital and Health Center, San Diego, CA (United States); Cardoso, Fabiano; Chung, Christine B. [University of California at San Diego, Department of Radiology, San Diego, CA (United States)

    2009-12-15

    In the pediatric gymnast, stress-related physeal injuries have been well described with characteristic imaging findings. However, a spectrum of overuse injuries, some rarely reported in the literature, can be encountered in the gymnast's hand and wrist. To demonstrate the MR appearance of a spectrum of overuse injuries in the skeletally immature wrist and hand of pediatric gymnasts. A total of 125 MR exams of the hand and wrist in skeletally immature children were performed at our institution during a 2-year period. Clinical histories were reviewed for gymnastics participation. MR studies of that subpopulation were reviewed and abnormalities tabulated. Of the MR studies reviewed, ten gymnasts were identified, all girls age 12-16 years (mean age 14.2 years) who presented with wrist or hand pain. Three of these children had bilateral MR exams. Abnormalities included chronic physeal injuries in three children. Two girls exhibited focal lunate osteochondral defects. Triangular fibrocartilage tears were present in three girls, one of whom had a scapholunate ligament tear. Two girls manifested metacarpal head flattening and necrosis. A variety of soft-tissue and osseous lesions can be encountered in the skeletally immature gymnast. Familiarity with these stress-related injuries is important for accurate diagnosis. (orig.)

  12. MR imaging of overuse injuries in the skeletally immature gymnast: spectrum of soft-tissue and osseous lesions in the hand and wrist

    International Nuclear Information System (INIS)

    Dwek, Jerry R.; Cardoso, Fabiano; Chung, Christine B.

    2009-01-01

    In the pediatric gymnast, stress-related physeal injuries have been well described with characteristic imaging findings. However, a spectrum of overuse injuries, some rarely reported in the literature, can be encountered in the gymnast's hand and wrist. To demonstrate the MR appearance of a spectrum of overuse injuries in the skeletally immature wrist and hand of pediatric gymnasts. A total of 125 MR exams of the hand and wrist in skeletally immature children were performed at our institution during a 2-year period. Clinical histories were reviewed for gymnastics participation. MR studies of that subpopulation were reviewed and abnormalities tabulated. Of the MR studies reviewed, ten gymnasts were identified, all girls age 12-16 years (mean age 14.2 years) who presented with wrist or hand pain. Three of these children had bilateral MR exams. Abnormalities included chronic physeal injuries in three children. Two girls exhibited focal lunate osteochondral defects. Triangular fibrocartilage tears were present in three girls, one of whom had a scapholunate ligament tear. Two girls manifested metacarpal head flattening and necrosis. A variety of soft-tissue and osseous lesions can be encountered in the skeletally immature gymnast. Familiarity with these stress-related injuries is important for accurate diagnosis. (orig.)

  13. Skeletal injuries associated with sexual abuse

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Karl; Chapman, Stephen [Department of Radiology, Birmingham Children' s Hospital, Steelhouse Lane, B4 6NH, Birmingham (United Kingdom); Hall, Christine M. [Department of Radiology, Great Ormond Street Hospital for Children, London (United Kingdom)

    2004-08-01

    Background: Sexual abuse is often associated with physical abuse, the most common injuries being bruising and other soft-tissue injuries, but fractures occur in 5% of sexually abused children. The fractures described to date have formed part of the spectrum of injuries in these children and have not been specifically related to the abusive act. Objective: To describe concurrent sexual abuse and fractures. Materials and methods: Three children with pelvic or femoral shaft injuries in association with sexual abuse. Results: A 3-year-old girl with extensive soft-tissue injuries to the arms, legs and perineum also sustained fractures of both pubic rami and the sacral side of the right sacro-iliac joint. A 5-month-old girl with an introital tear was shown to have an undisplaced left femoral shaft fracture. A 5-year-old girl presented with an acute abdomen and pneumoperitoneum due to a ruptured rectum following sexual abuse. She had old healed fractures of both pubic rami with disruption of the symphysis pubis. Conclusions: Although the finding of a perineal injury in a young child may be significant enough for the diagnosis of abuse, additional skeletal injuries revealed by radiography will assist in confirmation of that diagnosis and may be more common than hitherto suspected. (orig.)

  14. Skeletal injuries associated with sexual abuse

    International Nuclear Information System (INIS)

    Johnson, Karl; Chapman, Stephen; Hall, Christine M.

    2004-01-01

    Background: Sexual abuse is often associated with physical abuse, the most common injuries being bruising and other soft-tissue injuries, but fractures occur in 5% of sexually abused children. The fractures described to date have formed part of the spectrum of injuries in these children and have not been specifically related to the abusive act. Objective: To describe concurrent sexual abuse and fractures. Materials and methods: Three children with pelvic or femoral shaft injuries in association with sexual abuse. Results: A 3-year-old girl with extensive soft-tissue injuries to the arms, legs and perineum also sustained fractures of both pubic rami and the sacral side of the right sacro-iliac joint. A 5-month-old girl with an introital tear was shown to have an undisplaced left femoral shaft fracture. A 5-year-old girl presented with an acute abdomen and pneumoperitoneum due to a ruptured rectum following sexual abuse. She had old healed fractures of both pubic rami with disruption of the symphysis pubis. Conclusions: Although the finding of a perineal injury in a young child may be significant enough for the diagnosis of abuse, additional skeletal injuries revealed by radiography will assist in confirmation of that diagnosis and may be more common than hitherto suspected. (orig.)

  15. Sports injuries in adolescent boarding school boys.

    Science.gov (United States)

    Briscoe, J H

    1985-06-01

    A survey is presented of 346 sports injuries admitted to the Eton College Sanatorium between 1971 and 1982. The incidence of injury was lowest in 13 year olds perhaps because of their lighter weight. The injuries were classified into four groups--minor head injury, soft tissue injury, fractures and dislocations, and eye injury. Football caused 75 per cent of all injuries except eye injury where it accounted for only a third. Comparison of the incidence of injury at the three types of football played at Eton--Rugby, Association and Eton--showed Rugby football to be the most dangerous and Eton football the safest game. Advice on the management and prevention of injury is given.

  16. Repair of radiation injury by transplantation of hemopoietic tissue

    International Nuclear Information System (INIS)

    Smith, L.H.

    1978-01-01

    The following topics are discussed: endogenous repair of tissue by surviving cells; exogenous repair by transplantation of tissue from unirradiated donor; repair of hematopoietic tissue following sublethal exposure or exposure in the LD 1 to LD 100 range; early studies on regeneration of hematopoietic tissue in x-irradiated dogs by giving bone marrow; hypotheses as to how bone marrow injections result in regeneration of blood-forming tissue; effects of rat bone marrow transplants on survival of lethally irradiated mice; and effect of tissue transplants on dose-response curve

  17. Designing the stem cell microenvironment for guided connective tissue regeneration.

    Science.gov (United States)

    Bogdanowicz, Danielle R; Lu, Helen H

    2017-12-01

    Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration. © 2017 New York Academy of Sciences.

  18. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation.

    Science.gov (United States)

    Miller, Sean J; Rothstein, Jeffrey D

    2017-01-01

    Pathological analyses and methodology has recently undergone a dramatic revolution. With the creation of tissue clearing methods such as CLARITY and CUBIC, groups can now achieve complete transparency in tissue samples in nano-porous hydrogels. Cleared tissue is then imagined in a semi-aqueous medium that matches the refractive index of the objective being used. However, one major challenge is the ability to control tissue movement during imaging and to relocate precise locations post sequential clearing and re-staining. Using 3D printers, we designed tissue molds that fit precisely around the specimen being imaged. First, images are taken of the specimen, followed by importing and design of a structural mold, then printed with affordable plastics by a 3D printer. With our novel design, we have innovated tissue molds called innovative molds (iMolds) that can be generated in any laboratory and are customized for any organ, tissue, or bone matter being imaged. Furthermore, the inexpensive and reusable tissue molds are made compatible for any microscope such as single and multi-photon confocal with varying stage dimensions. Excitingly, iMolds can also be generated to hold multiple organs in one mold, making reconstruction and imaging much easier. Taken together, with iMolds it is now possible to image cleared tissue in clearing medium while limiting movement and being able to relocate precise anatomical and cellular locations on sequential imaging events in any basic laboratory. This system provides great potential for screening widespread effects of therapeutics and disease across entire organ systems.

  19. Deep Learning MR Imaging-based Attenuation Correction for PET/MR Imaging.

    Science.gov (United States)

    Liu, Fang; Jang, Hyungseok; Kijowski, Richard; Bradshaw, Tyler; McMillan, Alan B

    2018-02-01

    Purpose To develop and evaluate the feasibility of deep learning approaches for magnetic resonance (MR) imaging-based attenuation correction (AC) (termed deep MRAC) in brain positron emission tomography (PET)/MR imaging. Materials and Methods A PET/MR imaging AC pipeline was built by using a deep learning approach to generate pseudo computed tomographic (CT) scans from MR images. A deep convolutional auto-encoder network was trained to identify air, bone, and soft tissue in volumetric head MR images coregistered to CT data for training. A set of 30 retrospective three-dimensional T1-weighted head images was used to train the model, which was then evaluated in 10 patients by comparing the generated pseudo CT scan to an acquired CT scan. A prospective study was carried out for utilizing simultaneous PET/MR imaging for five subjects by using the proposed approach. Analysis of covariance and paired-sample t tests were used for statistical analysis to compare PET reconstruction error with deep MRAC and two existing MR imaging-based AC approaches with CT-based AC. Results Deep MRAC provides an accurate pseudo CT scan with a mean Dice coefficient of 0.971 ± 0.005 for air, 0.936 ± 0.011 for soft tissue, and 0.803 ± 0.021 for bone. Furthermore, deep MRAC provides good PET results, with average errors of less than 1% in most brain regions. Significantly lower PET reconstruction errors were realized with deep MRAC (-0.7% ± 1.1) compared with Dixon-based soft-tissue and air segmentation (-5.8% ± 3.1) and anatomic CT-based template registration (-4.8% ± 2.2). Conclusion The authors developed an automated approach that allows generation of discrete-valued pseudo CT scans (soft tissue, bone, and air) from a single high-spatial-resolution diagnostic-quality three-dimensional MR image and evaluated it in brain PET/MR imaging. This deep learning approach for MR imaging-based AC provided reduced PET reconstruction error relative to a CT-based standard within the brain compared

  20. Effects of compression injury on brain mitochondrial and tissue viability evaluated by a multiparametric monitoring system

    Science.gov (United States)

    Barbiro-Michaely, Efrat; Bachbut, Galit; Mayevsky, Avraham

    2008-02-01

    Neurosurgical procedures involve brain compression created by retractors. Although it is clear that retractors are causing damage to the brain tissue, the pathophysiology of the retraction was not investigated in details. In the present study we used the multiparametric monitoring approach for real time evaluation of mitochondrial function, hemodynamic, ionic and electrical activities monitored contralaterally to the retractor placement on the brain. The aims of the study were to test the effects of retractor size and severity of the compression on the degree of damage to the cerebral tissue. A special probe was lowered towards the cerebral cortex, (2mm and 4mm in depth) using a micromanipulator. Compression lasted for 30 minutes, than the retractor was elevated back to its initial position and monitoring continued for two hours. Additionally, two sizes of retractors were used 6mm and 3mm in diameter, the 3mm retractor included an intracranial pressure (ICP) probe. The results show that the combination of a large retractor with the depth of 4mm yielded high mortality rate (62%) of the rats while the use of a smaller retractor decreased significantly the percentage of mortality. Also, compression to the depth of 4mm increased tissue injury as compared to 2mm depth. In conclusion, the present study raises the importance and significance of multiparametric monitoring, and not only ICP and cerebral blood flow of the areas nearby the retractor position and not only the retraction site, as well as the effect of the retractor size on the damage induced to the cerebral tissue.

  1. MRI of acute cervical injury: correlation with neurologic deficit

    International Nuclear Information System (INIS)

    Hyun, Chang Dong; Kwon, Soon Tae; Lim, Seung Chul; Shin, Myung Jin; Han, Boo Kyung; Kim, Sang Joon; Park, Man Soo; Yoon, Hyun Ki; Suh, Dae Chul

    1995-01-01

    To evaluate MRI findings of spinal cord according to mechanism in acute cervical spinal injury. 25 patients under went MRI within 1 month after acute cervical trauma. Axial T1Wl (TR/TE: 500/20), gradient-echo (TR/TE: 300/14), sagittal T1Wl (TR/TE: 500/20), proton (TR/TE: 2000. 20 msec), T2Wl (TR/TE: 2000/80) were performed. In 11 patients, post-enhancement T1Wl was done. Change of spinal cord signal intensity on MRI in addition to the presence of abnormal changes of vertebral body, intervertebral disc and paraspinal soft tissue were evaluated. 15 patients had flexion injury, seven had extension injury and three had injury of unknown mechanism. Twelve patients showed iso-signal intensity on T2Wl and high signal intensity on T2Wl. Three patients showed low signal intensity on T1Wl and high signal intensity on T2Wl. Spinal cord hemorrhage occured in 10 patients. We found cord swelling in nine patients and cord compression in 12 patients. In nine patients with cord swelling, extent of cord injury was more than one segment of vertebral body. Ligamentous injury, disc injury, soft tissue injury occurred in 16 (64%), 17 (68%), 15 (60%) patients respectively. Vertebral body fracture was found in 17 patients (68%). The levels of fracture were C6 (eight patients) and C5 (five patients). MRI is valuable in exaluetion of the spinal cord, intervertebral disc, and soft tissue lesions in acute cervical spinal injury. Prognosis is worse in flexion injury than in extension injury, and is well correlated with cord hemorrhage and lesion extent

  2. Mouse genetic approaches applied to the normal tissue radiation response

    International Nuclear Information System (INIS)

    Haston, Christina K.

    2012-01-01

    The varying responses of inbred mouse models to radiation exposure present a unique opportunity to dissect the genetic basis of radiation sensitivity and tissue injury. Such studies are complementary to human association studies as they permit both the analysis of clinical features of disease, and of specific variants associated with its presentation, in a controlled environment. Herein I review how animal models are studied to identify specific genetic variants influencing predisposition to radiation-induced traits. Among these radiation-induced responses are documented strain differences in repair of DNA damage and in extent of tissue injury (in the lung, skin, and intestine) which form the base for genetic investigations. For example, radiation-induced DNA damage is consistently greater in tissues from BALB/cJ mice, than the levels in C57BL/6J mice, suggesting there may be an inherent DNA damage level per strain. Regarding tissue injury, strain specific inflammatory and fibrotic phenotypes have been documented for principally, C57BL/6 C3H and A/J mice but a correlation among responses such that knowledge of the radiation injury in one tissue informs of the response in another is not evident. Strategies to identify genetic differences contributing to a trait based on inbred strain differences, which include linkage analysis and the evaluation of recombinant congenic (RC) strains, are presented, with a focus on the lung response to irradiation which is the only radiation-induced tissue injury mapped to date. Such approaches are needed to reveal genetic differences in susceptibility to radiation injury, and also to provide a context for the effects of specific genetic variation uncovered in anticipated clinical association studies. In summary, mouse models can be studied to uncover heritable variation predisposing to specific radiation responses, and such variations may point to pathways of importance to phenotype development in the clinic.

  3. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  4. Four different diode lasers comparison on soft tissues surgery: a preliminary ex vivo study

    Science.gov (United States)

    Merigo, Elisabetta; Sozzi, Michele; Rocca, Jean-Paul; Poli, Federica; Selleri, Stefano; Cucinotta, Annamaria

    2016-01-01

    Objectives: The introduction of diode lasers in dentistry had several advantages, principally consisting on the reduced size, reduced cost and possibility to beam delivering by optical fibbers. Up today only the wavelengths around 810 and 980 nm were the most utilized in oral surgery but recently more different lasers had been proposed. The aim of this study was to compare the efficacy of four diode laser wavelengths (810, 980, 1470 and 1950 nm) for the ablation of soft tissues. Material and methods: Specimens were surgically collected from the dorsal surface of four bovine tongues and irradiated by four different diode wavelengths. Thermal increase was measured by two thermocouples, the first at a depth of 0.5 mm, and the second at a depth of 2 mm. Initial and final surface temperatures were recorded by IR thermometer. Epithelial changes, connective tissue modifications, presence of vascular modification and incision morphology were histologically evaluated by two blind pathologists. Results: The time necessary to perform the excision varied between 271 seconds (808 nm, 2W) and 112 seconds (1950 nm, 4W). Temperature increase superficial level varied from 16.3° (980 nm, 4W) and 9.2° (1950 nm, 2 W). The most significant deep temperature increase was recorded by 980 nm, 4 W (17.3°) and the lowest by 1950 nm, 2 W (9.7°). The width of epithelial tissue injuries varied between 74 pm from 1950 nm diode laser at 2 W to 540 pm for 1470 nm diode laser at 4 W. Conclusion: The quality of incision was better and the width of overall tissue injuries was minor in the specimens obtained with higher wavelength (1950 nm) at lower power (2W). PMID:27721562

  5. A validated clinical MRI injury scoring system in neonatal hypoxic-ischemic encephalopathy

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Shamik B.; Vesoulis, Zachary A.; Rao, Rakesh; Liao, Steve M.; Mathur, Amit M. [Washington University School of Medicine, Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, St. Louis, MO (United States); Shimony, Joshua S.; McKinstry, Robert C. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2017-10-15

    Deep nuclear gray matter injury in neonatal hypoxic-ischemic encephalopathy (HIE) is associated with worse neurodevelopmental outcomes. We previously published a qualitative MRI injury scoring system utilizing serial T1-weighted, T2-weighted and diffusion-weighted imaging (DWI), weighted for deep nuclear gray matter injury. To establish the validity of the MRI scoring system with neurodevelopmental outcome at 18-24 months. MRI scans from neonates with moderate to severe HIE treated with therapeutic hypothermia were evaluated. Signal abnormality was scored on T1-weighted, T2-weighted and DWI sequences and assessed using an established system in five regions: (a) subcortical: caudate nucleus, globus pallidus and putamen, thalamus and the posterior limb of the internal capsule; (b) white matter; (c) cortex, (d) cerebellum and (e) brainstem. MRI injury was graded as none, mild, moderate or severe. Inter-rater reliability was tested on a subset of scans by two independent and blinded neuroradiologists. Surviving infants underwent the Bayley Scales of Infant and Toddler Development-III (Bayley-III) at 18-24 months. Data were analyzed using univariate and multivariate linear and logistic regression. Fifty-seven eligible neonates underwent at least one MRI scan in the first 2 weeks of life. Mean postnatal age at scan 1 was 4±2 days in 50/57 (88%) neonates and 48/54 (89%) surviving infants underwent scan 2 at 10±2 days. In 54/57 (95%) survivors, higher MRI injury grades were significantly associated with worse outcomes in the cognitive, motor and language domains of the Bayley-III. A qualitative MRI injury scoring system weighted for deep nuclear gray matter injury is a significant predictor of neurodevelopmental outcome at 18-24 months in neonates with HIE. (orig.)

  6. A validated clinical MRI injury scoring system in neonatal hypoxic-ischemic encephalopathy

    International Nuclear Information System (INIS)

    Trivedi, Shamik B.; Vesoulis, Zachary A.; Rao, Rakesh; Liao, Steve M.; Mathur, Amit M.; Shimony, Joshua S.; McKinstry, Robert C.

    2017-01-01

    Deep nuclear gray matter injury in neonatal hypoxic-ischemic encephalopathy (HIE) is associated with worse neurodevelopmental outcomes. We previously published a qualitative MRI injury scoring system utilizing serial T1-weighted, T2-weighted and diffusion-weighted imaging (DWI), weighted for deep nuclear gray matter injury. To establish the validity of the MRI scoring system with neurodevelopmental outcome at 18-24 months. MRI scans from neonates with moderate to severe HIE treated with therapeutic hypothermia were evaluated. Signal abnormality was scored on T1-weighted, T2-weighted and DWI sequences and assessed using an established system in five regions: (a) subcortical: caudate nucleus, globus pallidus and putamen, thalamus and the posterior limb of the internal capsule; (b) white matter; (c) cortex, (d) cerebellum and (e) brainstem. MRI injury was graded as none, mild, moderate or severe. Inter-rater reliability was tested on a subset of scans by two independent and blinded neuroradiologists. Surviving infants underwent the Bayley Scales of Infant and Toddler Development-III (Bayley-III) at 18-24 months. Data were analyzed using univariate and multivariate linear and logistic regression. Fifty-seven eligible neonates underwent at least one MRI scan in the first 2 weeks of life. Mean postnatal age at scan 1 was 4±2 days in 50/57 (88%) neonates and 48/54 (89%) surviving infants underwent scan 2 at 10±2 days. In 54/57 (95%) survivors, higher MRI injury grades were significantly associated with worse outcomes in the cognitive, motor and language domains of the Bayley-III. A qualitative MRI injury scoring system weighted for deep nuclear gray matter injury is a significant predictor of neurodevelopmental outcome at 18-24 months in neonates with HIE. (orig.)

  7. Reduction of myocardial ischemia-reperfusion injury by mechanical tissue resuscitation using sub-atmospheric pressure.

    Science.gov (United States)

    Argenta, Louis C; Morykwas, Michael J; Mays, Jennifer J; Thompson, Edreca A; Hammon, John W; Jordan, James E

    2010-03-01

    Reperfusion-induced injury after myocardial infarction is associated with a well-defined sequence of early and late cardiomyocyte death. Most present attempts to ameliorate this sequence focus on a single facet of the complex process in an attempt to salvage cardiomyocytes. We examined, as proof of concept, the effects of mechanical tissue resuscitation (MTR) with controlled negative pressure on myocardial injury following acute myocardial infarction. Anesthetized swine were subjected to 75 minutes of left coronary artery occlusion and three hours of reperfusion. Animals were assigned to one of three groups: (A) untreated control; treatment of involved myocardium for 180 minutes of MTR with (B) -50 mmHg, or (C) -125 mmHg. All three groups were subjected to equivalent ischemic stress. Treatment of the ischemic area with MTR for 180 minutes significantly (p control: 9.3 +/- 1.8% (-50 mmHg) and 11.9 +/- 1.2% (-125 mmHg) versus 26.4 +/- 2.1% (control). Total area of cell death was reduced by 65% with -50 mmHg treatment and 55% in the -125 mmHg group. Treatment of ischemic myocardium with MTR, for a controlled period of time during reperfusion, successfully reduced the extent of myocardial death after acute myocardial infarction. These data provide evidence that MTR using subatmospheric pressure may be a simple, efficacious, nonpharmacological, mechanical strategy for decreasing cardiomyocyte death following myocardial infarction, which can be delivered in the operating room.

  8. Exploring the effects of dimensionality reduction in deep networks for force estimation in robotic-assisted surgery

    Science.gov (United States)

    Aviles, Angelica I.; Alsaleh, Samar; Sobrevilla, Pilar; Casals, Alicia

    2016-03-01

    Robotic-Assisted Surgery approach overcomes the limitations of the traditional laparoscopic and open surgeries. However, one of its major limitations is the lack of force feedback. Since there is no direct interaction between the surgeon and the tissue, there is no way of knowing how much force the surgeon is applying which can result in irreversible injuries. The use of force sensors is not practical since they impose different constraints. Thus, we make use of a neuro-visual approach to estimate the applied forces, in which the 3D shape recovery together with the geometry of motion are used as input to a deep network based on LSTM-RNN architecture. When deep networks are used in real time, pre-processing of data is a key factor to reduce complexity and improve the network performance. A common pre-processing step is dimensionality reduction which attempts to eliminate redundant and insignificant information by selecting a subset of relevant features to use in model construction. In this work, we show the effects of dimensionality reduction in a real-time application: estimating the applied force in Robotic-Assisted Surgeries. According to the results, we demonstrated positive effects of doing dimensionality reduction on deep networks including: faster training, improved network performance, and overfitting prevention. We also show a significant accuracy improvement, ranging from about 33% to 86%, over existing approaches related to force estimation.

  9. 3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT.

    Science.gov (United States)

    Montoya, J C; Li, Y; Strother, C; Chen, G-H

    2018-05-01

    Deep learning is a branch of artificial intelligence that has demonstrated unprecedented performance in many medical imaging applications. Our purpose was to develop a deep learning angiography method to generate 3D cerebral angiograms from a single contrast-enhanced C-arm conebeam CT acquisition in order to reduce image artifacts and radiation dose. A set of 105 3D rotational angiography examinations were randomly selected from an internal data base. All were acquired using a clinical system in conjunction with a standard injection protocol. More than 150 million labeled voxels from 35 subjects were used for training. A deep convolutional neural network was trained to classify each image voxel into 3 tissue types (vasculature, bone, and soft tissue). The trained deep learning angiography model was then applied for tissue classification into a validation cohort of 8 subjects and a final testing cohort of the remaining 62 subjects. The final vasculature tissue class was used to generate the 3D deep learning angiography images. To quantify the generalization error of the trained model, we calculated the accuracy, sensitivity, precision, and Dice similarity coefficients for vasculature classification in relevant anatomy. The 3D deep learning angiography and clinical 3D rotational angiography images were subjected to a qualitative assessment for the presence of intersweep motion artifacts. Vasculature classification accuracy and 95% CI in the testing dataset were 98.7% (98.3%-99.1%). No residual signal from osseous structures was observed for any 3D deep learning angiography testing cases except for small regions in the otic capsule and nasal cavity compared with 37% (23/62) of the 3D rotational angiographies. Deep learning angiography accurately recreated the vascular anatomy of the 3D rotational angiography reconstructions without a mask. Deep learning angiography reduced misregistration artifacts induced by intersweep motion, and it reduced radiation exposure

  10. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Dickenson Anthony H

    2009-02-01

    Full Text Available Abstract Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1 has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal

  11. Enhanced pre-synaptic glutamate release in deep-dorsal horn contributes to calcium channel alpha-2-delta-1 protein-mediated spinal sensitization and behavioral hypersensitivity

    Science.gov (United States)

    Nguyen, David; Deng, Ping; Matthews, Elizabeth A; Kim, Doo-Sik; Feng, Guoping; Dickenson, Anthony H; Xu, Zao C; Luo, Z David

    2009-01-01

    Nerve injury-induced expression of the spinal calcium channel alpha-2-delta-1 subunit (Cavα2δ1) has been shown to mediate behavioral hypersensitivity through a yet identified mechanism. We examined if this neuroplasticity modulates behavioral hypersensitivity by regulating spinal glutamatergic neurotransmission in injury-free transgenic mice overexpressing the Cavα2δ1 proteins in neuronal tissues. The transgenic mice exhibited hypersensitivity to mechanical stimulation (allodynia) similar to the spinal nerve ligation injury model. Intrathecally delivered antagonists for N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA)/kainate receptors, but not for the metabotropic glutamate receptors, caused a dose-dependent allodynia reversal in the transgenic mice without changing the behavioral sensitivity in wild-type mice. This suggests that elevated spinal Cavα2δ1 mediates allodynia through a pathway involving activation of selective glutamate receptors. To determine if this is mediated by enhanced spinal neuronal excitability or pre-synaptic glutamate release in deep-dorsal horn, we examined wide-dynamic-range (WDR) neuron excitability with extracellular recording and glutamate-mediated excitatory postsynaptic currents with whole-cell patch recording in deep-dorsal horn of the Cavα2δ1 transgenic mice. Our data indicated that overexpression of Cavα2δ1 in neuronal tissues led to increased frequency, but not amplitude, of miniature excitatory post synaptic currents mediated mainly by AMPA/kainate receptors at physiological membrane potentials, and also by NMDA receptors upon depolarization, without changing the excitability of WDR neurons to high intensity stimulation. Together, these findings support a mechanism of Cavα2δ1-mediated spinal sensitization in which elevated Cavα2δ1 causes increased pre-synaptic glutamate release that leads to reduced excitation thresholds of post-synaptic dorsal horn neurons to innocuous

  12. Deep-Dive Targeted Quantification for Ultrasensitive Analysis of Proteins in Nondepleted Human Blood Plasma/Serum and Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Song [Biological Sciences Division; Shi, Tujin [Biological Sciences Division; Fillmore, Thomas L. [Biological Sciences Division; Schepmoes, Athena A. [Biological Sciences Division; Brewer, Heather [Biological Sciences Division; Gao, Yuqian [Biological Sciences Division; Song, Ehwang [Biological Sciences Division; Wang, Hui [Biological Sciences Division; Rodland, Karin D. [Biological Sciences Division; Qian, Wei-Jun [Biological Sciences Division; Smith, Richard D. [Biological Sciences Division; Liu, Tao [Biological Sciences Division

    2017-08-11

    Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low ng/mL to sub-ng/mL level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundant but biologically important proteins (e.g., ≤100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging. To address this need, we have developed an antibody-independent Deep-Dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide enrichment combined with precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ~5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue has been demonstrated to enable precise quantification of endogenous proteins at ~10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibody is not available.

  13. Long-term outcome of combined modality therapy in retroperitoneal and deep-trunk soft-tissue sarcoma: analysis of prognostic factors

    International Nuclear Information System (INIS)

    Youssef, Emad; Fontanesi, James; Mott, Michael; Kraut, Michael; Lucas, David; Mekhael, Hany; Ben-Josef, Edgar

    2002-01-01

    Purpose: To evaluate the long-term outcome of surgery and postoperative radiotherapy (RT) in retroperitoneal and deep-trunk soft-tissue sarcoma, and to identify the prognostic factors for local control, disease-free survival, and overall survival. Methods and Materials: Between January 1980 and December 1998, 60 patients with nonmetastatic retroperitoneal and deep-trunk soft-tissue sarcoma were treated at Wayne State University using combined surgery and RT. The location was retroperitoneal in 38 patients (63%) and deep trunk in 22 (27%). Forty-six patients (76%) were treated for primary disease and 14 (24%) for recurrent disease. The resection margins were negative in 24 patients (40%), close in 3 (5%), and positive in 33 (55%; 18 microscopic and 15 macroscopic). The median tumor size was 8.6 cm (range 2-55). External beam RT (EBRT; median dose 5220 cGy) was given to 44 patients (73%) and combined EBRT (median dose 4200 cGy) and brachytherapy (median dose 1600 cGy) to 16 patients (27%). Univariate and multivariate Cox regression analyses were conducted to identify the possible associations between patient age, race, gender, tumor site, histologic features, grade, size, stage, surgical margin, RT dose, modality (EBRT vs. EBRT plus brachytherapy), and presentation (primary vs. recurrent) and disease control. Results: The actuarial 5- and 10-year disease-free survival rate was 53% and 44%, respectively. Disease-free survival was significantly associated with female gender on univariate analysis (67% for female patients and 37% for male patients at 5 years, p=0.05). On multivariate analysis, both gender and surgical margin had borderline significance (p=0.06). The actuarial local control rate was 71% and 54% at 5 and 10 years, respectively. The median time to local relapse was 10.2 months, with 75% of all failures occurring within 29 months. The surgical margin status was significantly associated with local control (78% for patients with negative or close margins vs

  14. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  15. Trampoline-related injuries to children.

    Science.gov (United States)

    Smith, G A; Shields, B J

    1998-07-01

    To describe the epidemiological features of trampoline-related injuries among children treated in an urban pediatric emergency department. A descriptive study of a consecutive series of patients. The emergency department of a large, urban, academic children's hospital. Children treated for trampoline-related injuries from May 1, 1995, through April 30, 1997. Two hundred fourteen children were treated for trampoline-related injuries during the study period, representing, on average, 1 child treated approximately every 3 days. Children ranged in age from 1 to 16 years (mean [SD], 9.4 [3.6] years). The area of the body most commonly injured was a lower extremity (36.0%), followed by an upper extremity (31.8%), the head (14.5%), the trunk (9.8%), and the neck (7.9%). The most common type of injury was a soft tissue injury (51.9%), followed by fracture (34.6%) and laceration (11.7%). Several patterns of trampoline-related injury were identified. Extremity fractures were more common in the upper extremities (P=.006; relative risk [RR]=1.64; 95% confidence interval [CI], 1.16-2.31); however, soft tissue injuries were more common in the lower extremities (P=.006; RR=1.66; 95% CI, 1.16-2.38). Lacerations were associated with injury to the head region (Ptrampoline was located in the backyard in 96% (119/124) of cases. Adult supervision was present at the time of injury for 55.6% (65/117) of children, including 73.3% (22/30) of children younger than 6 years. Parents reported that they had been aware of the potential dangers of trampolines before the injury event (73% [81/111]), that their child had previously attempted a flip on a trampoline (56.9% [66/116]), that this was not the child's first injury on a trampoline (10% [12/120]), and that their child continued to use a trampoline after the current injury event (54.8% [63/115]). Trampoline-related injuries to children treated in the emergency department are almost exclusively associated with the use of backyard trampolines

  16. Application of stem cells in tissue engineering for defense medicine.

    Science.gov (United States)

    Ude, Chinedu Cletus; Miskon, Azizi; Idrus, Ruszymah Bt Hj; Abu Bakar, Muhamad Bin

    2018-02-26

    The dynamic nature of modern warfare, including threats and injuries faced by soldiers, necessitates the development of countermeasures that address a wide variety of injuries. Tissue engineering has emerged as a field with the potential to provide contemporary solutions. In this review, discussions focus on the applications of stem cells in tissue engineering to address health risks frequently faced by combatants at war. Human development depends intimately on stem cells, the mysterious precursor to every kind of cell in the body that, with proper instruction, can grow and differentiate into any new tissue or organ. Recent reports have suggested the greater therapeutic effects of the anti-inflammatory, trophic, paracrine and immune-modulatory functions associated with these cells, which induce them to restore normal healing and tissue regeneration by modulating immune reactions, regulating inflammation, and suppressing fibrosis. Therefore, the use of stem cells holds significant promise for the treatment of many battlefield injuries and their complications. These applications include the treatment of injuries to the skin, sensory organs, nervous system tissues, the musculoskeletal system, circulatory/pulmonary tissues and genitals/testicles and of acute radiation syndrome and the development of novel biosensors. The new research developments in these areas suggest that solutions are being developed to reduce critical consequences of wounds and exposures suffered in warfare. Current military applications of stem cell-based therapies are already saving the lives of soldiers who would have died in previous conflicts. Injuries that would have resulted in deaths previously now result in wounds today; similarly, today's permanent wounds may be reduced to tomorrow's bad memories with further advances in stem cell-based therapies.

  17. Preventing running injuries. Practical approach for family doctors.

    OpenAIRE

    Johnston, C. A. M.; Taunton, J. E.; Lloyd-Smith, D. R.; McKenzie, D. C.

    2003-01-01

    OBJECTIVE: To present a practical approach for preventing running injuries. QUALITY OF EVIDENCE: Much of the research on running injuries is in the form of expert opinion and comparison trials. Recent systematic reviews have summarized research in orthotics, stretching before running, and interventions to prevent soft tissue injuries. MAIN MESSAGE: The most common factors implicated in running injuries are errors in training methods, inappropriate training surfaces and running shoes, malalign...

  18. NK1.1+ cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock.

    Science.gov (United States)

    Chen, Shuhua; Hoffman, Rosemary A; Scott, Melanie; Manson, Joanna; Loughran, Patricia; Ramadan, Mostafa; Demetris, Anthony J; Billiar, Timothy R

    2017-07-01

    Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1 + cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1 + cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1 + cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1 + cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut. © Society for Leukocyte Biology.

  19. Iso-effect tables for tolerance of irradiated normal human tissues

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on a radiation injury to human tissues (lung, brain, kidney and intestine) was surveyed. A parameter search program (RAD3) was used to derive best-fitting cell kinetic parameters, on the assumption that radiation injury arises from depletion of parenchymal cells in the irradiated organs. From these parameters iso-effect tables were constructed for a wide range of treatment schedules, including daily treatment as well as fractionation at longer intervals, for each tissue. The tables provide a set of limiting doses, above which the risk of radiation injury becomes substantial. Tolerance limits and dose-time-factors were substantially different in the four tissues. It is concluded that computed iso-effect tables provide a more reliable guide to treatment than conventional time-dose equations

  20. Pathophysiology of overuse tendon injury

    International Nuclear Information System (INIS)

    Kannus, P.; Paavola, M.; Paakkala, T.; Parkkari, J.; Jaervinen, T.; Jaervinen, M.

    2002-01-01

    Overuse tendon injury is one of the most common injuries in sports.The etiology as well as the pathophysilogical mechanisms leading to tendinopathy are of crucial medical importance.At the moment intrinsic and extrinsic factors are assumed as mechanisms of overuse tendon injury. Except for the acute, extrinsic trauma, the chronic overuse tendon injury is a multifactorial process. There are many other factors, such as local hypoxia, less of nutrition, impaired metabolism and local inflammatory that may also contribute to the development of tissue damage.The exact interaction of these factors cannot be explained entirely at the moment.Further studies will be necessary in order to get more information. (orig.) [de

  1. The use of antioxidants in the treatment of traumatic brain injury.

    Science.gov (United States)

    Venegoni, Whitney; Shen, Qiuhua; Thimmesch, Amanda R; Bell, Meredith; Hiebert, John B; Pierce, Janet D

    2017-06-01

    The aim of this study was to discuss secondary traumatic brain injury, the mitochondria and the use of antioxidants as a treatment. One of the leading causes of death globally is traumatic brain injury, affecting individuals in all demographics. Traumatic brain injury is produced by an external blunt force or penetration resulting in alterations in brain function or pathology. Often, with a traumatic brain injury, secondary injury causes additional damage to the brain tissue that can have further impact on recovery and the quality of life. Secondary injury occurs when metabolic and physiologic processes alter after initial injury and includes increased release of toxic free radicals that cause damage to adjacent tissues and can eventually lead to neuronal necrosis. Although antioxidants in the tissues can reduce free radical damage, the magnitude of increased free radicals overwhelms the body's reduced defence mechanisms. Supplementing the body's natural supply of antioxidants, such as coenzyme Q10, can attenuate oxidative damage caused by reactive oxygen species. Discussion paper. Research literature published from 2011-2016 in PubMed, CINAHL and Cochrane. Prompt and accurate assessment of patients with traumatic brain injury by nurses is important to ensure optimal recovery and reduced lasting disability. Thus, it is imperative that nurses be knowledgeable about the secondary injury that occurs after a traumatic brain injury and aware of possible antioxidant treatments. The use of antioxidants has potential to reduce the magnitude of secondary injury in patients who experience a traumatic brain injury. © 2017 John Wiley & Sons Ltd.

  2. Local cooling does not prevent hyperalgesia following burn injury in humans

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Pedersen, Juri L

    2002-01-01

    One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti-inflammato......One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti...

  3. Transcutaneous electrical neurostimulation in musculoskeletal pain of acute spinal cord injuries.

    Science.gov (United States)

    Richardson, R R; Meyer, P R; Cerullo, L J

    1980-01-01

    Cervical, thoracic, thoracolumbar, and lumbar fractures associated with physiologic complete or incomplete spinal cord injuries frequently have severe soft-tissue injury as well as severe pain associated with the site or area of injury. Transcutaneous electrical neurostimulation has proved effective in the treatment of various causes of severe acute and chronic intractable pains. We applied this modality to a group of 20 patients who had acute spinal cord injuries and pain associated with severe, extensive soft-tissue injury. Its advantages include ease of application, lack of major complications, increased intestinal peristalsis, and avoidance of narcotic analgesic medications. It also produced significant (greater than 50%) pain relief in 75% of patients treated by transcutaneous electrical neurostimulation.

  4. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury.

    Directory of Open Access Journals (Sweden)

    Cordelia Ziraldo

    2015-06-01

    Full Text Available People with spinal cord injury (SCI are predisposed to pressure ulcers (PU. PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM of ischemia/reperfusion-induced inflammation and PU (the PUABM was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to "better" vs. "worse" outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.

  5. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury.

    Science.gov (United States)

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M Kristi; Sowa, Gwendolyn A; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-06-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to "better" vs. "worse" outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU.

  6. A Computational, Tissue-Realistic Model of Pressure Ulcer Formation in Individuals with Spinal Cord Injury

    Science.gov (United States)

    Ziraldo, Cordelia; Solovyev, Alexey; Allegretti, Ana; Krishnan, Shilpa; Henzel, M. Kristi; Sowa, Gwendolyn A.; Brienza, David; An, Gary; Mi, Qi; Vodovotz, Yoram

    2015-01-01

    People with spinal cord injury (SCI) are predisposed to pressure ulcers (PU). PU remain a significant burden in cost of care and quality of life despite improved mechanistic understanding and advanced interventions. An agent-based model (ABM) of ischemia/reperfusion-induced inflammation and PU (the PUABM) was created, calibrated to serial images of post-SCI PU, and used to investigate potential treatments in silico. Tissue-level features of the PUABM recapitulated visual patterns of ulcer formation in individuals with SCI. These morphological features, along with simulated cell counts and mediator concentrations, suggested that the influence of inflammatory dynamics caused simulations to be committed to “better” vs. “worse” outcomes by 4 days of simulated time and prior to ulcer formation. Sensitivity analysis of model parameters suggested that increasing oxygen availability would reduce PU incidence. Using the PUABM, in silico trials of anti-inflammatory treatments such as corticosteroids and a neutralizing antibody targeted at Damage-Associated Molecular Pattern molecules (DAMPs) suggested that, at best, early application at a sufficiently high dose could attenuate local inflammation and reduce pressure-associated tissue damage, but could not reduce PU incidence. The PUABM thus shows promise as an adjunct for mechanistic understanding, diagnosis, and design of therapies in the setting of PU. PMID:26111346

  7. Observation of deep oscillation usage and its effectiveness on burn scars – case report

    Directory of Open Access Journals (Sweden)

    Justyna A. Pogorzelska

    2017-03-01

    Full Text Available An organism that has undergone tissue damage pursues its immediate recovery. In order to do so, it uses a dynamic and congeneric process of regeneration consisting of several phases. Currently, innovative methods are being sought influencing tissue healing. One such system is deep oscillation, which is based on an intermittent electrostatic field created between the device and the patient’s skin. It causes a unique, deep, and resonant vibration. It is a noninvasive and painless method. The aim of deep oscillation is purposeful interfering in the physiological processes of tissue trophism. In the thesis, the case of 16-month-old girl is presented, who experienced a thermal scald to her left arm and her chest. The aim of the following thesis is observation of deep oscillation use and its effectiveness in the event of newly formed burn scars that undergo remodelling and can lead to curtailment of the healing process.

  8. Proposal of a new classification scheme for periocular injuries

    Directory of Open Access Journals (Sweden)

    Devi Prasad Mohapatra

    2017-01-01

    Full Text Available Background: Eyelids are important structures and play a role in protecting the globe from trauma, brightness, in maintaining the integrity of tear films and moving the tears towards the lacrimal drainage system and contribute to aesthetic appearance of the face. Ophthalmic trauma is an important cause of morbidity among individuals and has also been responsible for additional cost of healthcare. Periocular trauma involving eyelids and adjacent structures has been found to have increased recently probably due to increased pace of life and increased dependence on machinery. A comprehensive classification of periocular trauma would help in stratifying these injuries as well as study outcomes. Material and Methods: This study was carried out at our institute from June 2015 to Dec 2015. We searched multiple English language databases for existing classification systems for periocular trauma. We designed a system of classification of periocular soft tissue injuries based on clinico-anatomical presentations. This classification was applied prospectively to patients presenting with periocular soft tissue injuries to our department. Results: A comprehensive classification scheme was designed consisting of five types of periocular injuries. A total of 38 eyelid injuries in 34 patients were evaluated in this study. According to the System for Peri-Ocular Trauma (SPOT classification, Type V injuries were most common. SPOT Type II injuries were more common isolated injuries among all zones. Discussion: Classification systems are necessary in order to provide a framework in which to scientifically study the etiology, pathogenesis, and treatment of diseases in an orderly fashion. The SPOT classification has taken into account the periocular soft tissue injuries i.e., upper eyelid, lower eyelid, medial and lateral canthus injuries., based on observed clinico-anatomical patterns of eyelid injuries. Conclusion: The SPOT classification seems to be a reliable

  9. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration

    Science.gov (United States)

    Chen, Mingxue; Guo, Weimin; Gao, Shunag; Hao, Chunxiang; Shen, Shi; Zhang, Zengzeng; Wang, Zhenyong; Wang, Zehao; Li, Xu; Jing, Xiaoguang; Zhang, Xueliang; Yuan, Zhiguo; Wang, Mingjie; Zhang, Yu; Peng, Jiang; Wang, Aiyuan; Wang, Yu; Sui, Xiang

    2018-01-01

    Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation. PMID:29581987

  10. Optical measurement of blood flow changes in spinal cord injury

    International Nuclear Information System (INIS)

    Phillips, J P; Kyriacou, P A; George, K J; Langford, R M

    2010-01-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  11. Optical measurement of blood flow changes in spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A [Biomedical Engineering Research Group, City University London, Northampton Square, London (United Kingdom); George, K J [Neuroscience Centre, Queen Mary, University of London, Mile End, London (United Kingdom); Langford, R M, E-mail: justin.phillips.1@city.ac.u [Pain and Anaesthesia Research Centre, St Bartholomew' s Hospital, West Smithfield, London (United Kingdom)

    2010-07-01

    Little is known about cell death in spinal cord tissue following compression injury, despite compression being a key component of spinal injuries. Currently models are used to mimic compression injury in animals and the effects of the compression evaluated by observing the extent and duration of recovery of normal motor function in the days and weeks following the injury. A fibreoptic photoplethysmography system was used to investigate whether pulsation of the small arteries in the spinal cord occurred before, during and after compressive loads were applied to the tissue. It was found that the signal amplitudes were reduced and this reduction persisted for at least five minutes after the compression ceased. It is hoped that results from this preliminary study may improve knowledge of the mechanism of spinal cord injury.

  12. CT of peroneal tendon injury in patients with calcaneal fractures

    International Nuclear Information System (INIS)

    Rosenberg, Z.S.; Feldman, F.; Singson, R.D.

    1986-01-01

    Injury to the peroneal tendons is a major complication of intraarticular calcaneal fractures. Heretofore, the injury has been difficult to diagnose by routine imaging modalities. However, CT studies of 24 intraarticular calcaneal fractures revealed evidence of peroneal tendon injury in 22 cases. The pathologic conditions included lateral displacement, subluxation, dislocation, and impingement on the tendons by bony fragments, hematomas, and scar tissue. Patients studied 6-12 months after injury had CT evidence consistent with clinical symptoms of peroneal tenosynovitis. Since peroneal tendon injury is surgically correctable, it should be differentiated from other known and more obvious complications, of calcaneal fractures. CT therefore serves as a valuable, noninvasive tool in evaluating these otherwise nonvisualized soft tissue structures in the immediate posttraumatic period as well as during long-term follow up

  13. Taurine content of tissues of irradiated rats

    International Nuclear Information System (INIS)

    Akhalaya, M.Ya.; Bogatyrev, G.P.; Kudryashov, Yu.B.; Yartsev, E.I.

    1976-01-01

    The taurine content of tissues (liver, stomach, small intestine and spleen) of rats irradiated with doses of 700 and 450 rads has been studied. Phase changes have been found in the taurine content of radiosensitive tissues in the course of radiation injury development

  14. CT Imaging of facial trauma. The role of different types of reconstruction. Part II - soft tissues

    International Nuclear Information System (INIS)

    Myga-Porosilo, J.; Sraga, W.; Borowiak, H.; Jackowska, Z.; Kluczewska, E.; Skrzelewski, S.

    2011-01-01

    Background: Injury to facial soft tissues as a complication of skeleton fractures is an important problem among patients with facial trauma. The aim of this work was to assess the value of multiplanar and three-dimensional (3D) reconstruction computed tomography (CT) images obtained by using multi-detector row technology in spiral data acquisition in patients with facial injuries of soft tissue. Material/Methods: Sixty-seven patients diagnosed with injury to the facial skeleton underwent a CT scan with the use of GE Hispeed Qx/i scanner. For each patient: a two-dimensional (2D) multiplanar reconstruction (MPR), maximum intensity projection (MIP), and 3D volume rendering (VR) were conducted. Post-injury lesions of soft tissues were assessed. During the assessment of the post-injury lesions of soft tissues, the following features were evaluated: Extra ocular muscle and fat tissue herniation through fractures in the medial and inferior orbital walls. Fluid in the sinuses and in the nasal cavity. Subcutaneous tissue emphysema. Results: For subcutaneous emphysema and sinus fluid imaging, both the axial and the 2D image reconstruction proved comparably effective. However, 2D reconstructions were superior to transverse plane images with regard to herniations into fractures of the inferior orbital wall. 3D reconstruction has no importance in diagnosing soft tissue injuries. Conclusions: Multiplanar CT reconstructions increase the effectiveness of imaging of orbital tissue herniations, especially in case of fractures in the inferior orbital wall. In suspected soft tissue herniations, as well as prior to surgical treatment, spiral CT with 2D multiplanar reconstructions should be the method of choice. (authors)

  15. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L. [Dept.of Radiation Oncology, Henry Ford Health System, Detroit (United States)

    2014-09-15

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  16. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

    International Nuclear Information System (INIS)

    Kim, Jae Ho; Jenrow, Kenneth A.; Brown, Stephen L.

    2014-01-01

    To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

  17. Nail-gun injury of the cervical spine: simple technique for removal of a barbed nail.

    Science.gov (United States)

    Nathoo, Narendra; Sarkar, Atom; Varma, Gandhi; Mendel, Ehud

    2011-07-01

    Although nail-gun injuries are a common form of penetrating low-velocity injury, impalement with barbed nails has been underreported to date. Barbed nails are designed to resist dislodgment once embedded, and any attempt at removal may splay open the barbs along the path of entry, with the potential for significant soft-tissue and neurovascular injury. A 25-year-old man sustained a nail impalement of the cervical spine from accidental discharge of a nail gun. The patient was noted to be fully conscious with no neurological deficits. Cervical Zone 2 impalement was noted, with only the head of the nail visible. Angiography revealed the nail lying just anterior to the right vertebral artery (VA), with compression of the vessel. Preoperatively, analysis of a similar nail revealed that orientation of the head determined position of the barbs. A deep neck dissection was then performed to the lateral aspect of the C-3 body, using the nail as a guide. Prior to removal, the nail was turned 180° to change the position of the barbs, to prevent injury to the VA. Nail removal was uneventful. The authors present a simple technique for treatment of a nail-gun injury with a barbed nail. Prior to removal, radiographic analysis of the impaled nail must be performed to determine the presence of barbs. If possible, the surgeon should request a similar nail for analysis prior to surgery. Last, the treating surgeon must have knowledge of the barbs' position at all times during nail removal, to prevent damage to critical structures.

  18. Lethal and sublethal cellular injury in multifraction irradiation

    International Nuclear Information System (INIS)

    Withers, H.R.

    1975-01-01

    Work has been carried out on cellular injury in multifraction irradiation of mouse tissues and compared with similar work on human skin reported earlier by Dutreix et al (Eur. J. Cancer.; 9:159 (1973)). In agreement with Dutreix et al it is emphasized that the absolute amount of sublethal injury repaired per fractionation interval (Dsub(r)) is not as important to radiotherapists as the change in the amount repaired (ΔDsub(r)) when the dose-per-fraction is altered. It was found that although there is a critical divergence at low doses, the data for mouse tissues are similar to those previously given for human skin and support the conclusions: (i) That the capacity of many normal cells for accumulating and repairing sublethal radiation injury is probably not greatly different. (ii) That fixed exponents used for fraction number and time in iso-effect formulae are inaproporiate. At low doses-per-fraction, repair of sublethal injury is complete, or nearly so, and hence, additional fractionation of dose does not give appreciable additional sparing, whereas rapidly-regenerating tissues, due to the lengthening of overall time, would continue being spared by repopulation. (U.K.)

  19. Oxidative muscular injury and its relevance to hyperthyroidism.

    Science.gov (United States)

    Asayama, K; Kato, K

    1990-01-01

    In experimental hyperthyroidism, acceleration of lipid peroxidation occurs in heart and slow-oxidative muscles, suggesting the contribution of reactive oxygen species to the muscular injury caused by thyroid hormones. This article reviews various models of oxidative muscular injury and considers the relevance of the accompanying metabolic derangements to thyrotoxic myopathy and cardiomyopathy, which are the major complications of hyperthyroidism. The muscular injury models in which reactive oxygen species are supposed to play a role are ischemia/reperfusion syndrome, exercise-induced myopathy, heart and skeletal muscle diseases related to the nutritional deficiency of selenium and vitamin E and related disorders, and genetic muscular dystrophies. These models provide evidence that mitochondrial function and the glutathione-dependent antioxidant system are important for the maintenance of the structural and functional integrity of muscular tissues. Thyroid hormones have a profound effect on mitochondrial oxidative activity, synthesis and degradation of proteins and vitamin E, the sensitivity of the tissues to catecholamine, the differentiation of muscle fibers, and the levels of antioxidant enzymes. The large volume of circumstantial evidence presented here indicates that hyperthyroid muscular tissues undergo several biochemical changes that predispose them to free radical-mediated injury.

  20. Radiation injuries of the oral cavity

    International Nuclear Information System (INIS)

    Galantseva, G.F.

    1982-01-01

    The review is given of factors which cause the beginning of radiation injuries of oral cavity in oncologic patients following radiotherapy: dose rate absorbed with tumor and surrounding healthy tissues; irradiation procedures; size of irradiated volume. Pathogenesis and clinical picture are considered as well as prophylaxis and tactics of treatments of patients with radiation injuries of oral cavity

  1. High pressure injection injuries: an overview.

    Science.gov (United States)

    Fialkov, J A; Freiberg, A

    1991-01-01

    Injuries resulting from the use of high pressure injectors and spray guns are relatively rare; however, the potential tissue damage caused by the injury as well as the extent of the injury itself may go unrecognized by the primary physician. The purpose of this paper is to inform the emergency physician of the nature and standard management of this type of injury. A basic understanding of the pathophysiology of the high pressure injection injury (HPII) is essential in avoiding the mistakes in management that have been reported in the literature. The emergency management of the HPII includes: evaluation and immobilization, tetanus and antimicrobial prophylaxis, supportive and resuscitative measures, analgesia, and minimizing the time to definitive surgical treatment.

  2. Deep RNA-Seq profile reveals biodiversity, plant-microbe interactions and a large family of NBS-LRR resistance genes in walnut (Juglans regia) tissues.

    Science.gov (United States)

    Chakraborty, Sandeep; Britton, Monica; Martínez-García, P J; Dandekar, Abhaya M

    2016-03-01

    Deep RNA-Seq profiling, a revolutionary method used for quantifying transcriptional levels, often includes non-specific transcripts from other co-existing organisms in spite of stringent protocols. Using the recently published walnut genome sequence as a filter, we present a broad analysis of the RNA-Seq derived transcriptome profiles obtained from twenty different tissues to extract the biodiversity and possible plant-microbe interactions in the walnut ecosystem in California. Since the residual nature of the transcripts being analyzed does not provide sufficient information to identify the exact strain, inferences made are constrained to the genus level. The presence of the pathogenic oomycete Phytophthora was detected in the root through the presence of a glyceraldehyde-3-phosphate dehydrogenase. Cryptococcus, the causal agent of cryptococcosis, was found in the catkins and vegetative buds, corroborating previous work indicating that the plant surface supported the sexual cycle of this human pathogen. The RNA-Seq profile revealed several species of the endophytic nitrogen fixing Actinobacteria. Another bacterial species implicated in aerobic biodegradation of methyl tert-butyl ether (Methylibium petroleiphilum) is also found in the root. RNA encoding proteins from the pea aphid were found in the leaves and vegetative buds, while a serine protease from mosquito with significant homology to a female reproductive tract protease from Drosophila mojavensis in the vegetative bud suggests egg-laying activities. The comprehensive analysis of RNA-seq data present also unraveled detailed, tissue-specific information of ~400 transcripts encoded by the largest family of resistance (R) genes (NBS-LRR), which possibly rationalizes the resistance of the specific walnut plant to the pathogens detected. Thus, we elucidate the biodiversity and possible plant-microbe interactions in several walnut (Juglans regia) tissues in California using deep RNA-Seq profiling.

  3. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron.

    Science.gov (United States)

    Haider, Lukas; Simeonidou, Constantina; Steinberger, Günther; Hametner, Simon; Grigoriadis, Nikolaos; Deretzi, Georgia; Kovacs, Gabor G; Kutzelnigg, Alexandra; Lassmann, Hans; Frischer, Josa M

    2014-12-01

    In multiple sclerosis (MS), diffuse degenerative processes in the deep grey matter have been associated with clinical disabilities. We performed a systematic study in MS deep grey matter with a focus on the incidence and topographical distribution of lesions in relation to white matter and cortex in a total sample of 75 MS autopsy patients and 12 controls. In addition, detailed analyses of inflammation, acute axonal injury, iron deposition and oxidative stress were performed. MS deep grey matter was affected by two different processes: the formation of focal demyelinating lesions and diffuse neurodegeneration. Deep grey matter demyelination was most prominent in the caudate nucleus and hypothalamus and could already be seen in early MS stages. Lesions developed on the background of inflammation. Deep grey matter inflammation was intermediate between low inflammatory cortical lesions and active white matter lesions. Demyelination and neurodegeneration were associated with oxidative injury. Iron was stored primarily within oligodendrocytes and myelin fibres and released upon demyelination. In addition to focal demyelinated plaques, the MS deep grey matter also showed diffuse and global neurodegeneration. This was reflected by a global reduction of neuronal density, the presence of acutely injured axons, and the accumulation of oxidised phospholipids and DNA in neurons, oligodendrocytes and axons. Neurodegeneration was associated with T cell infiltration, expression of inducible nitric oxide synthase in microglia and profound accumulation of iron. Thus, both focal lesions as well as diffuse neurodegeneration in the deep grey matter appeared to contribute to the neurological disabilities of MS patients. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. CT analysis of missile head injury

    International Nuclear Information System (INIS)

    Besenski, N.; Jadro-Santel, D.; Jelavic-Koic, F.; Pavic, D.; Mikulic, D.; Glavina, K.; Maskovic, J.

    1995-01-01

    Between August 1991 and December 1992, CT was performed in 154 patients who had suffered missile head injury during the war in the Republic of Croatia. In 54% CT was performed 1-24 h after injury, and in 27% follow-up CT was also obtained. The wounds were penetrating, tangential or perforating (45%, 34% and 21%, respectively). Haemorrhage was the most frequent lesion in the brain (84%). Follow-up CT evolution of haemorrhage, oedema, cerebritis, abscess, secondary vascular lesions, necrosis, encephalomalacia and hydrocephalus. The most dynamic changes occurred 7-14 days after injury. In 14% of cases, deep cerebral lesions were found in the corpus callosum, septum pellucidum periventricular region and pons, although bone and shell fragments were in a different part of the brain parenchyma. Such lesions were found in penetrating injuries only. CT proved very useful for assessing the extent and type of lesions. Although different mechanisms of brain damage in missile head injury are known, here they are, to the best of our knowledge, shown for the first time by CT. (orig.)

  5. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  6. Open extensor tendon injuries: an epidemiologic study.

    Science.gov (United States)

    Patillo, Dominic; Rayan, Ghazi M

    2012-01-01

    To report the epidemiology, mechanism, anatomical location, distribution, and severity of open extensor tendon injuries in the digits, hand, and forearm as well as the frequency of associated injuries to surrounding bone and soft tissue. Retrospective chart review was conducted for patients who had operative repair of open digital extensor tendon injuries in all zones within an 11-year period. Data was grouped according to patient characteristics, zone of injury, mechanism of injury, and presence of associated injury. Statistical analysis was used to determine the presence of relevant associations. Eighty-six patients with 125 severed tendons and 105 injured digits were available for chart reviews. Patients were predominantly males (83%) with a mean age of 34.2 years and the dominant extremity was most often injured (60%). The thumb was the most commonly injured (25.7%), followed by middle finger (24.8), whereas small finger was least affected (10.5%). Sharp laceration was the most common mechanism of injury (60%), and most of these occurred at or proximal to the metacarpophalangeal joints. Most saw injuries occurred distal to the metacarpophalangeal joint. Zone V was the most commonly affected in the fingers (27%) while zone VT was the most commonly affected in the thumb (69%). Associated injuries to bone and soft tissue occurred in 46.7% of all injuries with saw and crush/avulsions being predictive of fractures and damage to the underlying joint capsule. The extensor mechanism is anatomically complex, and open injuries to the dorsum of the hand, wrist, and forearm, especially of crushing nature and those inflicted by saws, must be thoroughly evaluated. Associated injuries should be ruled out in order to customize surgical treatment and optimize outcome.

  7. Trampoline-related injury in children.

    Science.gov (United States)

    Shankar, Amitabh; Williams, Kim; Ryan, Mary

    2006-09-01

    To quantify and describe trampoline-related injuries in children attending an urban pediatric emergency department. Retrospective cohort study of consecutive patients attending a children's emergency department with trampoline-related injuries over a 3-month period (May-July 2005). One hundred and sixty-eight children were treated for trampoline-related injuries during the period reviewed. Sixty-three percent were girls. Their age ranged between 4 months and 16 years (mean, 10.4 years [SD, 3 years and 10 months]). Lower limb injuries (51%) were more common overall. The most common injuries were to the ankle (31%), followed by foot (9.2%), and neck (8.4%). Sprain or soft tissue injuries (68%) were the most common type of injury, followed by fracture (12.2%). The most common mechanism of injury was inversion of the ankle on a trampoline (18.4%). Trampoline-related injuries represented 2.5% of morbidity from accidental trauma in children presenting to emergency department in our study. The rate and severity of injury has become a significant public health concern. It appears that current preventative strategies are inadequate in making children's carers aware of the potential risks of trampoline use, particularly when used recreationally.

  8. Review of adult head injury admissions into the intensive care unit of ...

    African Journals Online (AJOL)

    The most common mode of injury was road traffic accident. All the patients admitted to ICU had either moderate or severe head injury, with 73.7% having severe head injury. About 26.3% of the patients had associated cervical spine injuries and 50% had various musculoskeletal and soft tissue injuries. Cranial computed ...

  9. Nanomedicine strategies for treatment of secondary spinal cord injury

    Directory of Open Access Journals (Sweden)

    White-Schenk D

    2015-01-01

    Full Text Available Désirée White-Schenk,1,4 Riyi Shi,1–3 James F Leary1–4 1Interdisciplinary Biomedical Sciences Program, 2Weldon School of Biomedical Engineering, 3Department of Basic Medical Sciences, Lynn School of Veterinary Medicine, 4Birck Nanotechnology Center, Discovery Park, Purdue University, West Lafayette, IN, USA Abstract: Neurological injury, such as spinal cord injury, has a secondary injury associated with it. The secondary injury results from the biological cascade after the primary injury and affects previous uninjured, healthy tissue. Therefore, the mitigation of such a cascade would benefit patients suffering a primary injury and allow the body to recover more quickly. Unfortunately, the delivery of effective therapeutics is quite limited. Due to the inefficient delivery of therapeutic drugs, nanoparticles have become a major field of exploration for medical applications. Based on their material properties, they can help treat disease by delivering drugs to specific tissues, enhancing detection methods, or a mixture of both. Incorporating nanomedicine into the treatment of neuronal injury and disease would likely push nanomedicine into a new light. This review highlights the various pathological issues involved in secondary spinal cord injury, current treatment options, and the improvements that could be made using a nanomedical approach. Keywords: spinal cord injury, acrolein, drug delivery, methylprednisolone, secondary injury

  10. The Robust Running Ape: Unraveling the Deep Underpinnings of Coordinated Human Running Proficiency

    Directory of Open Access Journals (Sweden)

    John Kiely

    2017-06-01

    Full Text Available In comparison to other mammals, humans are not especially strong, swift or supple. Nevertheless, despite these apparent physical limitations, we are among Natures most superbly well-adapted endurance runners. Paradoxically, however, notwithstanding this evolutionary-bestowed proficiency, running-related injuries, and Overuse syndromes in particular, are widely pervasive. The term ‘coordination’ is similarly ubiquitous within contemporary coaching, conditioning, and rehabilitation cultures. Various theoretical models of coordination exist within the academic literature. However, the specific neural and biological underpinnings of ‘running coordination,’ and the nature of their integration, remain poorly elaborated. Conventionally running is considered a mundane, readily mastered coordination skill. This illusion of coordinative simplicity, however, is founded upon a platform of immense neural and biological complexities. This extensive complexity presents extreme organizational difficulties yet, simultaneously, provides a multiplicity of viable pathways through which the computational and mechanical burden of running can be proficiently dispersed amongst expanded networks of conditioned neural and peripheral tissue collaborators. Learning to adequately harness this available complexity, however, is a painstakingly slowly emerging, practice-driven process, greatly facilitated by innate evolutionary organizing principles serving to constrain otherwise overwhelming complexity to manageable proportions. As we accumulate running experiences persistent plastic remodeling customizes networked neural connectivity and biological tissue properties to best fit our unique neural and architectural idiosyncrasies, and personal histories: thus neural and peripheral tissue plasticity embeds coordination habits. When, however, coordinative processes are compromised—under the integrated influence of fatigue and/or accumulative cycles of injury, overuse

  11. Evaluation of Vacuum Assisted Closure Therapy for Soft Tissue Injury in Open Musculoskeletal Trauma.

    Science.gov (United States)

    Raj, Manish; Gill, S P S; Sheopaltan, Sunil Kumar; Singh, Pulkesh; Dinesh; Sigh, Jasveer; Rastogi, Prateek; Mishra, L N

    2016-04-01

    The application of controlled levels of negative or sub atmospheric pressure for a prolonged period of time on a wound had shown to accelerate removal of excess fluid and promote hyperaemia, which eventually promote wound healing. The study was conducted with the aim to evaluate the effectiveness of Vacuum Assisted Closure (VAC) therapy for soft tissue injury in open musculoskeletal trauma. Twenty cases of complex musculoskeletal wound involving different parts of body were included in this progressive randomized study. In patients, aggressive debridement was done before the application of VAC therapy. Controlled negative pressure was uniformly applied to the wound. Dressings were changed after every 4 to 5 days. The evaluation of results included healing rate of the wound, eradication of infection, complication rate, and number of secondary procedures. VAC therapy over the wound was administered for an average of 20.4 days ±6.72 days (range 14 to 42 days). There was decrease in wound size attained by VAC therapy ranged from 2.6 to 24.4cm(2), with an average reduction of 10.55 cm(2). Three wounds were infected at the start of VAC therapy. However, all patients were cleared of bacterial infection by the end of VAC therapy. VAC therapy using negative pressure promote Wound healing by increasing local capillary perfusion and increased rate of granulation tissue formation, decreases the duration of wound healing and requires fewer painful dressing change.

  12. Effect of ionizing radiations on connective tissue

    International Nuclear Information System (INIS)

    Altman, K.I.; Gerber, G.B.

    1980-01-01

    The effects of ionizing radiations on connective tissue in lung, heart, vasculature, kidney, skin, and skeletal tissues are reviewed. Special emphasis is given to the effect of ionizing radiations on vasculo-connective tissue and fibrotic changes following radiation-induced injury to organs and tissues. In order to put the subject matter in proper prospective, the general biochemistry, physiology, and pathology of connective tissue is reviewed briefly together with the participation of connective tissue in disease. The review closes with an assessment of future problems and an enumeration and discussion of important, as yet unanswered questions

  13. Phenylalanine kinetics in human adipose tissue.

    OpenAIRE

    Coppack, S W; Persson, M; Miles, J M

    1996-01-01

    Very little is known about the regulation of protein metabolism in adipose tissue. In this study systemic, adipose tissue, and forearm phenylalanine kinetics were determined in healthy postabsorptive volunteers before and during a 2-h glucose infusion (7 mg.kg-1.min-1). [3H]Phenylalanine was infused and blood was sampled from a radial artery, a subcutaneous abdominal vein, and a deep forearm vein. Adipose tissue and forearm blood flow were measured with 133Xe and plethysmography, respectively...

  14. Dexamethasone minimizes the risk of cranial nerve injury during CEA.

    Science.gov (United States)

    Regina, Guido; Angiletta, Domenico; Impedovo, Giovanni; De Robertis, Giovanni; Fiorella, Marialuisa; Carratu', Maria Rosaria

    2009-01-01

    The incidence of cranial and cervical nerve injury during carotid endarterectomy (CEA) ranges from less than 7.6% to more than 50%. Lesions are mainly due to surgical maneuvers such as traction, compression, tissue electrocoagulation, clamping, and extensive dissections. The use of dexamethasone (DEX) and its beneficial effects in spinal cord injuries have already been described. We investigated whether DEX could also be beneficial to minimize the incidence of cranial and cervical nerve injury during CEA. To evaluate whether dexamethasone is able to reduce the incidence of cranial nerve injuries. From March 1999 through April 2006, 1126 patients undergoing CEA because of high-grade carotid stenosis were enrolled and randomized by predetermined randomization tables into two groups. The first group, "A", included 586 patients that all received an intravenous administration of dexamethasone following a therapeutic scheme. The second group, "B", included 540 control subjects that received the standard pre- and postoperative therapy. All patients were submitted to a deep cervical plexus block, eversion carotid endarterectomy, and selective shunting. Three days after the operation, an independent neurologist and otorhinolaryngologist evaluated the presence of cranial nerve deficits. All patients (group A and group B) showing nerve injuries continued the treatment (8 mg of dexamethasone once in the morning) for 7 days and were re-evaluated after 2 weeks, 30 days, and every 3 months for 1 year. Recovery time took from 2 weeks to 12 months, with a mean time of 3.6 months. The chi(2) test was used to compare the two groups and to check for statistical significance. The incidence of cranial nerve dysfunction was higher in group B and the statistical analysis showed a significant effect of dexamethasone in preventing the neurological damage (P = .0081). The incidence of temporary lesions was lower in group A and the chi(2) test yielded a P value of .006. No statistically

  15. Deep Learning in Medical Image Analysis.

    Science.gov (United States)

    Shen, Dinggang; Wu, Guorong; Suk, Heung-Il

    2017-06-21

    This review covers computer-assisted analysis of images in the field of medical imaging. Recent advances in machine learning, especially with regard to deep learning, are helping to identify, classify, and quantify patterns in medical images. At the core of these advances is the ability to exploit hierarchical feature representations learned solely from data, instead of features designed by hand according to domain-specific knowledge. Deep learning is rapidly becoming the state of the art, leading to enhanced performance in various medical applications. We introduce the fundamentals of deep learning methods and review their successes in image registration, detection of anatomical and cellular structures, tissue segmentation, computer-aided disease diagnosis and prognosis, and so on. We conclude by discussing research issues and suggesting future directions for further improvement.

  16. MRI in diagnostic of soft tissue damages by fractures of lateral tibial plate

    International Nuclear Information System (INIS)

    Dimitrova, D.; Proichev, V.; Popov, I.

    2015-01-01

    Full text: The knee is one of the most often injured joint. Fractures of tibial condyles are the most common articular damages. Koton and Berg call them „bumper“ fractures the tibia plateau is vulnerable to both high- and low-energy injury mechanisms due to its vulnerable position in the lower extremity. It must bear significant weight and sustain significant impact and deceleration forces with little skeletal constraint, and has scant surrounding soft tissue and a tethered medial and lateral integument. Furthermore, the tibial plateau has relatively forgiving ligamentous attachments that must allow for a large range of motion in a single plane. Not surprisingly, given the diversity of injury, management of these fractures has come to include a wide variety of treatment strategies. traditionally, ligament injury associated with plateau fractures has been diagnosed indirectly with stress radiographs and physical examination. With increasing use of more sensitive MRI and arthroscopy, associated ligament and meniscus injuries have been found in significant percentages of plateau fractures. these soft tissue injuries consist primarily of MCL lesions, meniscal injuries, and ACL disruptions. However, studies addressing associated soft tissue injuries all agree that neither the type of plateau fracture nor the presence or absence of ligament injury correlates with the incidence of meniscal tears

  17. Radiation injury to the nervous system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system

  18. Isolation and Tissue Distribution of an Insulin-Like Androgenic Gland Hormone (IAG of the Male Red Deep-Sea Crab, Chaceon quinquedens

    Directory of Open Access Journals (Sweden)

    Amanda Lawrence

    2017-08-01

    Full Text Available The insulin-like androgenic gland hormone (IAG found in decapod crustaceans is known to regulate sexual development in males. IAG is produced in the male-specific endocrine tissue, the androgenic gland (AG; however, IAG expression has been also observed in other tissues of decapod crustacean species including Callinectes sapidus and Scylla paramamosain. This study aimed to isolate the full-length cDNA sequence of IAG from the AG of male red deep-sea crabs, Chaceon quinquedens (ChqIAG, and to examine its tissue distribution. To this end, we employed polymerase chain reaction cloning with degenerate primers and 5′ and 3′ rapid amplification of cDNA ends (RACE. The full-length ChqIAG cDNA sequence (1555 nt includes a 366 nt 5′ untranslated region a 453 nt open reading frame encoding 151 amino acids, and a relatively long 3′ UTR of 733 nt. The ORF consists of a 19 aa signal peptide, 32 aa B chain, 56 aa C chain, and 44 aa A chain. The putative ChqIAG amino acid sequence is most similar to those found in other crab species, including C. sapidus and S. paramamosain, which are clustered together phylogenetically.

  19. The Triaging and Treatment of Cold-Induced Injuries.

    Science.gov (United States)

    Sachs, Christoph; Lehnhardt, Marcus; Daigeler, Adrien; Goertz, Ole

    2015-10-30

    In Central Europe, cold-induced injuries are much less common than burns. In a burn center in western Germany, the mean ratio of these two types of injury over the past 10 years was 1 to 35. Because cold-induced injuries are so rare, physicians often do not know how to deal with them. This article is based on a review of publications (up to December 2014) retrieved by a selective search in PubMed using the terms "freezing," "frostbite injury," "non-freezing cold injury," and "frostbite review," as well as on the authors' clinical experience. Freezing and cold-induced trauma are part of the treatment spectrum in burn centers. The treatment of cold-induced injuries is not standardized and is based largely on case reports and observations of use. distinction is drawn between non-freezing injuries, in which there is a slow temperature drop in tissue without freezing, and freezing injuries in which ice crystals form in tissue. In all cases of cold-induced injury, the patient should be slowly warmed to 22°-27°C to prevent reperfusion injury. Freezing injuries are treated with warming of the body's core temperature and with the bathing of the affected body parts in warm water with added antiseptic agents. Any large or open vesicles that are already apparent should be debrided. To inhibit prostaglandin-mediated thrombosis, ibuprofen is given (12 mg/kg body weight b.i.d.). The treatment of cold-induced injuries is based on their type, severity, and timing. The recommendations above are grade C recommendations. The current approach to reperfusion has yielded promising initial results and should be further investigated in prospective studies.

  20. Herd-level risk factors for hock injuries in freestall-housed dairy cows in the northeastern United States and California.

    Science.gov (United States)

    Barrientos, A K; Chapinal, N; Weary, D M; Galo, E; von Keyserlingk, M A G

    2013-06-01

    The aim of this study was to investigate the associations between management and facility design factors and the prevalence of hock injuries in high-producing dairy cows in 76 freestall herds in the northeastern United States (NE-US; Vermont, New York, Pennsylvania) and California (CA). One group of high-production multiparous cows was monitored on each farm, and data on management, facility and stall design, and the conditions of the hocks were collected. Focal cows [n=38 ± 3 (mean ± standard deviation)] were evaluated for hock injuries using a 3-point scale (where 1=healthy and 3=evidently swollen or severe injury). Measures associated with the proportion (logit-transformed) of cows having injuries (score ≥ 2) or severe injuries (score=3) at the univariable level were submitted to multivariable general linear models. In NE-US, overall hock injuries increased with the percentage of stalls with fecal contamination [odds ratio (OR)=1.26; 95% confidence interval (CI)=1.02-1.54, for a 10% increase], and with the use of sawdust as bedding (OR=3.47; CI=1.14-10.62), and decreased with deep bedding (i.e., at least 10 cm depth of any type of bedding; OR=0.05; CI=0.02-0.14), use of sand as bedding (OR=0.06; CI=0.02-0.15), bedding dry matter (DM) ≥ 83.9% (OR=0.08; CI=0.03-0.20), and access to pasture during the dry period (OR=0.17; CI=0.05-0.53). When these variables were submitted to a multivariable model, the presence of deep bedding was the only factor that remained significant, explaining 54% of the variation in overall injuries. Severe hock injuries increased with the use of automatic scrapers (OR=2.29; CI=1.11-4.71) and the percentage of stalls with fecal contamination (OR=1.14; CI=1.00-1.31, for a 10% increase), and decreased with sand bedding (OR=0.22; CI=0.10-0.49), deep bedding (OR=0.24; CI=0.11-0.52), bedding DM ≥ 83.9% (OR=0.28; CI=0.14-0.58), and access to pasture during the dry period (OR=0.42; CI=0.18-0.97). The final multivariable model, which

  1. Inflammation reduces physiological tissue tolerance in the development of work-related musculoskeletal disorders.

    Science.gov (United States)

    Barr, Ann E; Barbe, Mary F

    2004-02-01

    Work-related musculoskeletal disorders (MSDs) cause substantial worker discomfort, disability and loss of productivity. Due to the difficulty in analyzing the tissues of patients in the early stages of work-related MSD, there is controversy concerning the pathomechanisms of the development of these disorders. The pathophysiology of work-related MSD can be studied more easily in animal models. The purpose of this review is to relate theories of the development of tissue injury due to repeated motion to findings of recent investigations in animals that address the role of the inflammatory response in propagating tissue injury and contributing to chronic or recurring tissue injury. These tissue effects are related to behavioral indicators of discomfort and movement dysfunction with the aim of clarifying key time points for specific intervention approaches. The results from animal models of MSD are discussed in the light of findings in patients, whose tissues are examined at a much later phase of MSD development. Finally, a conceptual model of the potentially negative impact of inflammation on tissue tolerance is proposed along with suggestions for future research directions.

  2. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  3. MR Histoanatomical Distribution of 290 Soft-tissue Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Tae Yong; Lee, In Sook; Lee, Gee Won; Kim, Jeung Il; Choi, Kyung Un; Kim, Won Taek [Pusan National University Hospital, Busan (Korea, Republic of)

    2008-12-15

    This study was designed too identify the MR histoanatomical distribution of soft-tissue tumors. A total of 290 soft-tissue tumors of 281 patients were analyzed by the use of MR imaging and were pathologically confirmed after surgical resection or a biopsy. There were 120 malignant soft-tissue tumors including tumors of an intermediate malignancy and 170 benign tumors. The histoanatomical locations were divided into three types: 'type I' with superficial layer tumors that involved the cutaneous and subcutaneous tissue, 'type II' with deep layer tumors that involved the muscle or tendon and 'type III' with soft tissue tumors that involved both the superficial and deep layers. Soft-tissue tumors with more than three cases with a frequency of more than 75% included dermatofibrosarcoma protuberans, glomus tumor, angiolipoma, leiomyosarcoma and lymphoma as 'type I' tumors. 'Type II' tumors with more than three cases with a frequency of more than 75% included liposarcoma, fibromatosis, papillary endothelial hyperplasia and rhabdomyosarcoma. 'Type III' tumors with more than three cases with a frequency of more than 50% included neurofibromatosis. The MR histoanatomical distributions of soft tissue tumors are useful in the differential pathological diagnosis when a soft-tissue tumor has a nonspecific MR appearance.

  4. Experience with esthetic reconstruction of complex facial soft tissue trauma: application of the pulsed dye laser.

    Science.gov (United States)

    Ebrahimi, Ali; Kazemi, Hossein Mohammad; Nejadsarvari, Nasrin

    2014-08-01

    Facial soft tissue injury can be one of the most challenging cases presenting to the plastic surgeon. The life quality and self-esteem of the patients with facial injury may be compromised temporarily or permanently. Immediate reconstruction of most defects leads to better restoration of form and function as well as early rehabilitation. The aim of this study was to present our experience in management of facial soft tissue injuries from different causes. We prospectively studied patients treated by plastic surgeons from 2010 to 2012 suffering from different types of blunt or sharp (penetrating) facial soft tissue injuries to the different areas of the face. All soft tissue injuries were treated primarily. Photography from all patients before, during, and after surgical reconstruction was performed and the results were collected. We used early pulsed dye laser (PDL) post-operatively. In our study, 63 patients including 18 (28.5%) women and 45 (71.5%) men aged 8-70 years (mean 47 years) underwent facial reconstruction due to soft tissue trauma in different parts of the face. Sharp wounds were seen in 15 (23%) patients and blunt trauma lacerations were seen in 52 (77%) patients. Overall, 65% of facial injuries were repaired primary and the remainder were reconstructed with local flaps or skin graft from adjacent tissues. Postoperative PDL therapy done two weeks following surgery for all scars yielded good results in our cases. Analysis of the injury including location, size, and depth of penetration as well as presence of associated injuries can aid in the formulation of a proper surgical plan. We recommend PDL in the early post operation period (two weeks) after suture removal for better aesthetic results.

  5. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ren [Department of Pathology, University of Southern California, Los Angeles (United States); Trindade, Alexandre [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Sun, Zhanfeng [Department of Vascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Kumar, Ram; Weaver, Fred A. [Department of Surgery, University of Southern California, Los Angeles (United States); Krasnoperov, Valery; Naga, Kranthi [Vasgene Therapeutics, Los Angeles, CA (United States); Duarte, Antonio [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Gill, Parkash S., E-mail: parkashg@usc.edu [Department of Pathology, University of Southern California, Los Angeles (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  6. Therapeutic efficacy of guided tissue regeneration and connective tissue autotransplants with periosteum in the management of gingival recession

    Directory of Open Access Journals (Sweden)

    Jovičić Bojan

    2008-01-01

    Full Text Available Background/Aim. Gingival recession progression in clinical practice as an ethiological factor of periodontal diseases, and symptoms of the disease have caused the development of various surgical procedures and techniques of the reconstruction of periodontal defects. The aim of this study was to verify efficacy of surgical procedures that include connective tissue autotransplants with periosteum and guided tissue regeneration for the treatment of gingival recession. Methods. The study included 20 teet with gingival recession, Müller class II and III. Ten teeth with gingival recession were treated with resorptive membrane and coronary guided surgical flap (GTR group. On the contralateral side 10 teeth with gingival recession were treated with connective tissue autotransplants with periosteum in combination with coronary guided surgical flap (TVT group. We measured the degree of epithelial attachment (DEA, width of subgingival curettage (WGC and vertical deepness of recession (VDR. For statistical significance we used Student's ttest. Results. The study revealed statistical significance in reducing VDR by both used treatments. Root deepness in GTR and TVT group was 63.5%, and 90%, respectively. With both surgical techniques we achieved coronary dislocation of the epithelial attachment, larger zone of gingival curettage, and better oral hygiene. Conclusion. Current surgical techniques are effective in the regeneration of deep periodontal spaces and the treatment of gingival recession. Significantly better results were achieved with the used coronary guided surgical flap than with guided tissue regeneration.

  7. Functional tissue engineering of ligament healing

    Directory of Open Access Journals (Sweden)

    Hsu Shan-Ling

    2010-05-01

    Full Text Available Abstract Ligaments and tendons are dense connective tissues that are important in transmitting forces and facilitate joint articulation in the musculoskeletal system. Their injury frequency is high especially for those that are functional important, like the anterior cruciate ligament (ACL and medial collateral ligament (MCL of the knee as well as the glenohumeral ligaments and the rotator cuff tendons of the shoulder. Because the healing responses are different in these ligaments and tendons after injury, the consequences and treatments are tissue- and site-specific. In this review, we will elaborate on the injuries of the knee ligaments as well as using functional tissue engineering (FTE approaches to improve their healing. Specifically, the ACL of knee has limited capability to heal, and results of non-surgical management of its midsubstance rupture have been poor. Consequently, surgical reconstruction of the ACL is regularly performed to gain knee stability. However, the long-term results are not satisfactory besides the numerous complications accompanied with the surgeries. With the rapid development of FTE, there is a renewed interest in revisiting ACL healing. Approaches such as using growth factors, stem cells and scaffolds have been widely investigated. In this article, the biology of normal and healing ligaments is first reviewed, followed by a discussion on the issues related to the treatment of ACL injuries. Afterwards, current promising FTE methods are presented for the treatment of ligament injuries, including the use of growth factors, gene delivery, and cell therapy with a particular emphasis on the use of ECM bioscaffolds. The challenging areas are listed in the future direction that suggests where collection of energy could be placed in order to restore the injured ligaments and tendons structurally and functionally.

  8. The irreducible floating hip: a unique presentation of a rare injury.

    Science.gov (United States)

    Tiedeken, Nathan C; Saldanha, Vilas; Handal, John; Raphael, James

    2013-10-04

    A floating hip injury occurs in the setting of poly-trauma and is a rare and difficult problem to manage. Floating hip injuries require vigilant attention not only to the osseous injuries but also the surrounding compartments and soft tissue envelope. We report the case of a 35-year-old male with a lower extremity posterior wall acetabular fracture, ipsilateral femoral shaft fracture and a postero-superior hip dislocation. Closed reduction failed, necessitating an open reduction internal fixation of his hip dislocation and acetabular fracture. The patient then developed a thigh compartment syndrome requiring a fasciotomy. Despite the obvious bony injuries, orthopedic surgeons must be vigilant of the neurovascular structures and soft tissues that have absorbed a great amount of force. A treatment plan should be formulated based on the status of the overlying soft tissue, fracture pattern and the patient's physiologic stability. Published by Oxford University Press and JSCR Publishing Ltd. All rights reserved. © The Author 2013.

  9. First biological measurements of deep-sea corals from the Red Sea

    OpenAIRE

    C. Roder; M. L. Berumen; J. Bouwmeester; E. Papathanassiou; A. Al-Suwailem; C. R. Voolstra

    2013-01-01

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with ?deep-sea? and ?cold-water? corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20?C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the ...

  10. Irradiation-induced hypoxia in bones and soft tissues: an experimental study

    International Nuclear Information System (INIS)

    Aitasalo, K.; Aro, H.

    1986-01-01

    Bone marrow and subcutaneous tissue pO 2 and pCO 2 were measured by means of implanted tissue tonometers in irradiated and nonirradiated rabbit hind limbs. The x-ray dose was 500, 1000, 1500, 2000, and 3000 rads. Tissue gas tensions were measured 1 day and 5 and 11 weeks after radiation. The pCO 2 changes in both tissues were slight but not statistically significant. The subcutaneous tissue pO 2 decreased during the acute phase of irradiation injury, and the effect of irradiation was dose-dependent. Later on, irradiation had no significant effects on the subcutaneous pO 2 , although light microscopy of the affected tissues showed fibrosis and blood vessel changes. The response of the subcutaneous pO 2 to systemic hyperoxia also increased in the chronic phase of irradiation injury as a sign of improved microcirculation. The bone marrow showed a high radiosensitivity. Irradiation caused a rapid dose-dependent decrease of the marrow pO 2 , and the marrow pO 2 decreased with time during the chronic phase of irradiation injury. The marrow pO 2 responded slowly and marginally to an increment of arterial pO 2 during breathing 100% oxygen as further evidence of impaired vascular pattern. The results showed that irradiation causes only a transient impairment of tissue perfusion in the skin. However, irradiation-damaged marrow was characterized by progressive tissue hypoxia

  11. Evaluation of functional outcome of the floating knee injury using multivariate analysis.

    Science.gov (United States)

    Yokoyama, Kazuhiko; Tsukamoto, Tatsuro; Aoki, Shinichi; Wakita, Ryuji; Uchino, Masataka; Noumi, Takashi; Fukushima, Nobuaki; Itoman, Moritoshi

    2002-11-01

    The objective of this study is to evaluate significant contributing factors affecting the functional prognosis of floating knee injuries using multivariate analysis. A total of 68 floating knee injuries (67 patients) were treated at Kitasato University Hospital from 1986 to 1999. Both the femoral fractures and the tibial fractures were managed surgically by various methods. The functional results of these injuries were evaluated using the grading system of Karlström and Olerud. Follow-up periods ranged from 2 to 19 years (mean 50.2 months) after the original injury. We defined satisfactory (S) outcomes as those cases with excellent or good results and unsatisfactory (US) outcomes as those cases with acceptable or poor results. Logistic regression analysis was used as a multivariate analysis, and the dependent variables were defined as a satisfactory outcome or as an unsatisfactory outcome. The explanatory variables were predicting factors influencing the functional outcome such as age at trauma, gender, severity of soft-tissue injury in the femur and the tibia, AO fracture grade in the femur and the tibia, Fraser type (type I or type II), Injury Severity Score (ISS), and fixation time after injury (less than 1 week or more than 1 week) in the femur and the tibia. The final functional results were as follows: 25 cases had excellent results, 15 cases good results, 16 cases acceptable results, and 12 cases poor results. The predictive logistic regression equation was as follows: Log 1-p/p = 3.12-1.52 x Fraser type - 1.65 x severity of soft-tissue injury in the tibia - 1.31 x fixation time after injury in the tibia - 0.821 x AO fracture grade in the tibia + 1.025 x fixation time after injury in the femur - 0.687 x AO fracture grade in the femur ( p=0.01). Among the variables, Fraser type and the severity of soft-tissue injury in the tibia were significantly related to the final result. The multivariate analysis showed that both the involvement of the knee joint and

  12. Dermofat graft in deep nasolabial fold and facial rhytidectomy.

    Science.gov (United States)

    Hwang, Kun; Han, Jin Yi; Kim, Dae Joong

    2003-01-01

    Fat and dermis or the combined tissues are used commonly in augmentation of the nasolabial fold. Guyuron obtained the dermofat graft from either the suprapubic or the groin region. The thickness of the preauricular skin was measured in seven Korean cadavers, five male and two female. We used the dermofat graft out of the preauricular skin remnant after facial rhytidectomy to augment the deep nasolabial fold in a patient. The average thickness of the epidermis was 56 +/- 12 microm, the dermis was 1820 +/- 265 microm thick, and the subcutaneous tissue was 4783 +/- 137 microm. More dense connective tissues, such as SMAS, are seen in the preauricular skin. The dermofat graft was easily obtained and prepared from the leftover preauricular skin after dissection of the lax skin in face lifting. This technique could be employed effectively and successfully to alleviate a deep nasolabial fold and concomitant facial rhytidectomy in an Asian with a thick preauricular skin.

  13. Comparison of endoscope- versus microscope-assisted resection of deep-seated intracranial lesions using a minimally invasive port retractor system.

    Science.gov (United States)

    Hong, Christopher S; Prevedello, Daniel M; Elder, J Bradley

    2016-03-01

    Tubular brain retractors may improve access to deep-seated brain lesions while potentially reducing the risks of collateral neurological injury associated with standard microsurgical approaches. Here, microscope-assisted resection of lesions using tubular retractors is assessed to determine if it is superior to endoscope-assisted surgery due to the technological advancements associated with modern tubular ports and surgical microscopes. Following institutional approval of the tubular port, data obtained from the initial 20 patients to undergo transportal resection of deep-seated brain lesions were analyzed in this study. The pathological entities of the resected tissues included metastatic tumors (8 patients), glioma (7), meningioma (1), neurocytoma (1), radiation necrosis (1), primitive neuroectodermal tumor (1), and hemangioblastoma (1). Surgery incorporated endoscopic (5 patients) or microscopic (15) assistance. The locations included the basal ganglia (11 patients), cerebellum (4), frontal lobe (2), temporal lobe (2), and parietal lobe (1). Cases were reviewed for neurological outcomes, extent of resection (EOR), and complications. Technical data for the port, surgical microscope, and endoscope were analyzed. EOR was considered total in 14 (70%), near total (> 95%) in 4 (20%), and subtotal (microscope rather than the endoscope due to a wider and 3D field of view. Improved microscope optics and tubular retractor design allows for binocular vision with improved lighting for the resection of deep-seated brain lesions.

  14. Therapeutic impact of CT-guided percutaneous catheter drainage in treatment of deep tissue abscesses

    International Nuclear Information System (INIS)

    Asai, Nobuhiro; Ohkuni, Yoshihiro; Kaneko, Norihiro; Aoshima, Masahiro; Yamazaki, Ikuo; Kawamura, Yasutaka

    2013-01-01

    Combination therapy of CT-guided percutaneous drainage and antibiotics is the first-line treatment for abscesses. Its effectiveness has been demonstrated. However, the therapeutic impact of this procedure for infection treatment has never been reported. We retrospectively analyzed all 47 patients who received CT-guided percutaneous drainage for infection treatment. Patients' characteristics, pathogens isolated, antibiotics administered, technical and clinical outcomes, complications related to this procedure and therapeutic impacts were investigated. Patients were 26 males and 21 females. The mean age was 63.5 years (±18.7). The diseases targeted were 19 retroperitoneal abscesses, 18 intraabdominal abscesses, three pelvic abscesses, and seven others. As for technical outcomes, all of the 54 procedures (100%) were successful. As for clinical outcomes, 44 (93.6%) were cured and three patients (6.4%) died. No complications related to this procedure were found in this study. A total of 42 patients (88%) had a change in the management of their infection as a result of CT-guided percutaneous drainage, such as selection and discontinuation of antibiotics. In conclusion, CT-guided percutaneous drainage is a safe and favorable procedure in the treatment of deep tissue abscesses. Therapeutic impact of these procedures helped physicians make a rational decision for antibiotics selection. (author)

  15. Therapeutic impact of CT-guided percutaneous catheter drainage in treatment of deep tissue abscesses

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Nobuhiro; Ohkuni, Yoshihiro; Kaneko, Norihiro; Aoshima, Masahiro; Yamazaki, Ikuo; Kawamura, Yasutaka, E-mail: nobuhiro0204@hotmail.com [Kameda Medical Center, Chiba (Japan)

    2013-03-15

    Combination therapy of CT-guided percutaneous drainage and antibiotics is the first-line treatment for abscesses. Its effectiveness has been demonstrated. However, the therapeutic impact of this procedure for infection treatment has never been reported. We retrospectively analyzed all 47 patients who received CT-guided percutaneous drainage for infection treatment. Patients' characteristics, pathogens isolated, antibiotics administered, technical and clinical outcomes, complications related to this procedure and therapeutic impacts were investigated. Patients were 26 males and 21 females. The mean age was 63.5 years ({+-}18.7). The diseases targeted were 19 retroperitoneal abscesses, 18 intraabdominal abscesses, three pelvic abscesses, and seven others. As for technical outcomes, all of the 54 procedures (100%) were successful. As for clinical outcomes, 44 (93.6%) were cured and three patients (6.4%) died. No complications related to this procedure were found in this study. A total of 42 patients (88%) had a change in the management of their infection as a result of CT-guided percutaneous drainage, such as selection and discontinuation of antibiotics. In conclusion, CT-guided percutaneous drainage is a safe and favorable procedure in the treatment of deep tissue abscesses. Therapeutic impact of these procedures helped physicians make a rational decision for antibiotics selection. (author)

  16. Hardwiring stem cell communication through tissue structure

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-01-01

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. PMID:26967287

  17. Morphological aspects of radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Congdon, C C; Fliedner, T M

    1971-04-01

    The injury to haemopoietic and lymphatic tissues produced by ionizing irradiation in various species of mammals including man is one of the major features of the biological effects of radiation (Bond et al. 1965,' Cottier, 1961). At the moment of injury and for a short time thereafter relatively little morphological evidence of cell damage in bone marrow other than cessation of cell division and DNA synthesis is seen. Within a few hours, however, depending on the level of exposure, major destruction of red bone marrow tissue can occur. In this chapter the histologic changes in bone marrow are summarized for correlation with the functional aspects of the change in the target tissue, particularly its cell renewal features and where possible the remarkable flux or migration of cells through bone marrow and lymphatic tissues. This latter topic of cellular traffic represents the outcome of extensive physiological studies on haemopoiesis and lymphopoiesis by mammalian radiobiologists. The initial injury, the structural changes and the physiological consequences are the first half of the radiation injury sequence. Regeneration also has morphological features of major importance to the understanding of radiation haematology. It is common to discuss radiation effects on biological materials from the point of view of external or internal sources of exposure. In addition exposure rate, whole body or partial body, type and quality of the ionizing source are features that must be taken into account. While these features are extremely important, the simplest approach to understanding histologic effects on the bone marrow is to assume acute penetrating whole-body exposure in the lethal range. With this background the differences related to variations in the conditions of exposure can usually be understood. The individual human or animal organism receiving the exposure must also be considered in the final outcome of the experience because age, sex, nutritional status and presence

  18. Anatomy of the subcutaneous tissue of the trunk and lower extremity.

    Science.gov (United States)

    Markman, B; Barton, F E

    1987-08-01

    Dissections on 8 fresh and 10 embalmed cadavers were used to determine the anatomy of the subcutaneous adipose tissue in the trunk and extremities. These dissections, along with CT scans, confirmed Gray's original description of the subcutaneous tissue consisting of a superficial and deep adipose layer. The superficial adipose layer is contained within organized, compact fascial septa. The deep adipose layer demonstrated regional variations with respect to its fascial framework, but was contained within a relatively loose, less organized, and more widely spaced fascial septa. We observed that the adipose layers are partitioned by a discrete subcutaneous fascia which fuses with the underlying muscle fascia at particular anatomic locations. The deep layer is thus contained by the subcutaneous fascia above and the muscle fascia below to form what we termed the deep adipose compartments. The deep adipose compartments contributed significantly to overall adipose thickness, are bilateral, and are found in the abdomen and paralumbar and gluteal-thigh regions.

  19. Soft-tissue injuries from sports activities and traffic accidents--treatment with low-level laser therapy: a multicenter double-blind placebo-controlled clinical study on 132 patients

    Science.gov (United States)

    Simunovic, Zlatko; Trobonjaca, Tatjana

    2000-06-01

    The aim of current multicenter clinical study was to assess the efficacy of low energy-level laser therapy (LLLT) in the treatment of soft tissue injuries compared to the placebo and classical phyiotherapeutic procedures. This clinical study was conducted in two centers located in Locarno, Switzerland and Opatija, Croatia. Two types of irradiation techniques were used: (1) direct, skin contact technique for treatment of trigger points where IR diode laser 830 nm continuous wave was applied; and (2) scanning technique for irradiation of larger surface area with use of Helium Neon laser 632.8 nm combined with IR diode laser 904 nm pulsed wave. Results were evaluated according to clinical parameters like: hematoma, swelling, heat, pan and loss of function. The findings were statistically analyzed via chi- square test. Results have demonstrated that the recovery process was accelerated in 85 percent of patients treated with LLLT compared to the control group of patients. The results and advantages obtained proved once again the efficacy of LLLT as a new and successful way to treat soft tissue injuries.

  20. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  1. Photoplethysmographic sensors for perfusion measurements in spinal cord tissue

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J P; Kyriacou, P A, E-mail: Justin.Phillips.1@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, EC1V 0HB (United Kingdom)

    2011-08-17

    Sensors for recording photoplethysmographic signals from the nervous tissue of the spinal cord are described. The purpose of these sensors is to establish whether perfusion is compromised in various states of injury which occur in certain animal models of spinal cord injury, for example compression injury. Various measures of perfusion are applicable such as the amplitude of the photoplethysmograph signal and the oxygen saturation, measured using a dual wavelength configuration. Signals are usually compared to baseline measurements made in uninjured subjects. This paper describes two types of probe, one based on optical fibres, and one in which optotes are placed in direct contact with the tissue surface. Results from a study based on a compression model utilising a fibreoptic sensor are presented.

  2. Cerebrospinal fluid pressures resulting from experimental traumatic spinal cord injuries in a pig model.

    Science.gov (United States)

    Jones, Claire F; Lee, Jae H T; Burstyn, Uri; Okon, Elena B; Kwon, Brian K; Cripton, Peter A

    2013-10-01

    Despite considerable effort over the last four decades, research has failed to translate into consistently effective treatment options for spinal cord injury (SCI). This is partly attributed to differences between the injury response of humans and rodent models. Some of this difference could be because the cerebrospinal fluid (CSF) layer of the human spine is relatively large, while that of the rodents is extremely thin. We sought to characterize the fluid impulse induced in the CSF by experimental SCIs of moderate and high human-like severity, and to compare this with previous studies in which fluid impulse has been associated with neural tissue injury. We used a new in vivo pig model (n = 6 per injury group, mean age 124.5 days, 20.9 kg) incorporating four miniature pressure transducers that were implanted in pairs in the subarachnoid space, cranial, and caudal to the injury at 30 mm and 100 mm. Tissue sparing was assessed with Eriochrome Cyanine and Neutral Red staining. The median peak pressures near the injury were 522.5 and 868.8 mmHg (range 96.7-1430.0) and far from the injury were 7.6 and 36.3 mmHg (range 3.8-83.7), for the moderate and high injury severities, respectively. Pressure impulse (mmHg.ms), apparent wave speed, and apparent attenuation factor were also evaluated. The data indicates that the fluid pressure wave may be sufficient to affect the severity and extent of primary tissue damage close to the injury site. However, the CSF pressure was close to normal physiologic values at 100 mm from the injury. The high injury severity animals had less tissue sparing than the moderate injury severity animals; this difference was statistically significant only within 1.6 mm of the epicenter. These results indicate that future research seeking to elucidate the mechanical origins of primary tissue damage in SCI should consider the effects of CSF. This pig model provides advantages for basic and preclinical SCI research due to its

  3. Seizure-related injuries in children and adolescents with epilepsy.

    Science.gov (United States)

    Lagunju, IkeOluwa A; Oyinlade, Alexander O; Babatunde, Olubusayo D

    2016-01-01

    Children with epilepsy are reported to be at a greater risk of injuries compared with their peers who do not have epilepsy. We set out to determine the frequency and pattern of seizure-related injuries in children with epilepsy seen at the University College Hospital (UCH), Ibadan, Nigeria. Consecutive cases of epilepsy seen at the pediatric neurology clinic of the UCH, Ibadan over a period of 6months were evaluated for injuries in the preceding 12months using a structured questionnaire. These were compared with age- and sex-matched controls. A total of 125 children with epilepsy and 125 age- and sex-matched controls were studied. Injuries occurred more frequently in children with epilepsy than in their peers (p=0.01, OR 1.935, 95% CI 1.142-3.280). Epilepsy was generalized in 80 (64.0%), and localization-related in 45 (36.0%). Idiopathic epilepsy accounted for 74 (59.2%), and the remaining 51 (40.8%) had remote symptomatic epilepsy. Fifty-seven (45.6%) children had suffered seizure-related injuries with multiple injuries in 31 (24.8%). The most frequent were skin/soft tissue lacerations (26.4%), injuries to the tongue and soft tissues of the mouth (19.2%), minor head injuries (15.2%), and dental injuries with tooth loss (8.0%). There was a statistically significant association between seizure frequency and seizure-related injuries (p=0.002). Children on polytherapy had a significantly higher frequency of seizure-related injuries (pEpilepsy is a major risk factor for injuries in childhood. High seizure frequency increases the risk of multiple injuries in children with epilepsy. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The bone scan in traumatic and sports injuries

    International Nuclear Information System (INIS)

    Matin, P.

    1987-01-01

    There are several types of injuries which are not diagnosable by routine radiographic methods but can be detected easily by nuclear medicine techniques. This chapter describes four primary categories of injury where nuclear medicine techniques may be of use: stress fracture and periosteal injury; covert fractures; joint abnormalities and injuries to connective tissues, especially where they attach to bone; and acute skeletal muscle injury and rhabdomyolysis. One of the most important features of the use of nuclear medicine techniques in the evaluation of sports and traumatic injury is the ability, in most cases, to be able to differentiate among these various categories. Other uses of nuclear medicine techniques are discussed in this chapter

  5. Decellularized Tissue and Cell-Derived Extracellular Matrices as Scaffolds for Orthopaedic Tissue Engineering

    Science.gov (United States)

    Cheng, Christina W.; Solorio, Loran D.; Alsberg, Eben

    2014-01-01

    The reconstruction of musculoskeletal defects is a constant challenge for orthopaedic surgeons. Musculoskeletal injuries such as fractures, chondral lesions, infections and tumor debulking can often lead to large tissue voids requiring reconstruction with tissue grafts. Autografts are currently the gold standard in orthopaedic tissue reconstruction; however, there is a limit to the amount of tissue that can be harvested before compromising the donor site. Tissue engineering strategies using allogeneic or xenogeneic decellularized bone, cartilage, skeletal muscle, tendon and ligament have emerged as promising potential alternative treatment. The extracellular matrix provides a natural scaffold for cell attachment, proliferation and differentiation. Decellularization of in vitro cell-derived matrices can also enable the generation of autologous constructs from tissue specific cells or progenitor cells. Although decellularized bone tissue is widely used clinically in orthopaedic applications, the exciting potential of decellularized cartilage, skeletal muscle, tendon and ligament cell-derived matrices has only recently begun to be explored for ultimate translation to the orthopaedic clinic. PMID:24417915

  6. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    Science.gov (United States)

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p OSI were found to be significantly increased in the control group compared to others groups (p model.

  7. Studies of the reproductive biology of deep sea megabenthos VIII. Biochemical and calorific content of the reproductive organs of deep sea holothurians

    International Nuclear Information System (INIS)

    Tyler, P.A.; Walker, M.

    1987-01-01

    The data for protein, lipid, carbohydrate and ash content of the ovary, testes, gut and body wall of a variety of deep sea holothurians are presented. The dominant biochemical is insoluble protein in all tissues followed by lipid in the ovary. The ash content was lowest in the gonads and highest in the body wall of most species. The mean calorific content of the species studied is 25.08Jmg -1 thus representing a significant energy store in the deep sea. The data suggest active metabolic pathways in these species which may pass radionuclides to the developing gametes and after spawning to dispersal in deep waters. (author)

  8. Venous thromboembolism in acute spinal cord injury patients

    Directory of Open Access Journals (Sweden)

    Saraf Shyam

    2007-01-01

    Full Text Available Background : The western literature on deep vein thrombosis (DVT and pulmonary embolism (PE following spinal cord injury (SCI report an alarmingly high incidence, necessitating thromboprophylaxis. The literature on incidence from the Asian subcontinent is scanty and from India is almost nonexistent. Materials and Methods : Seventy hospitalized acute SCI patients presenting within five days of the injury were included in the present analysis. Forty-two cases were subjected to color Doppler studies and 28 cases had to be subjected to venography due to lack of facility at some point of time. The clinical course of the patients was closely observed during the period of hospitalization. All except 14 were managed nonoperatively. Thromboprophylaxis was not given to any patient at any stage; however, treatment was instituted in those showing the features of DVT on investigations. Results : Twelve patients died during the period of hospitalization. Deep vein thrombosis could be detected in seven patients only, three in the proximal and four in the distal segment of the lower limb and of these three died. Based on the clinical course and positive investigation report in favor of DVT, we presumed that the cause of death in these three patients was pulmonary embolism. In the other nine, in the absence of an autopsy report, the cause of deaths was considered as pulmonary infection, asphyxia, diaphragmatic paralysis, hematemesis, cervicomedullary paralysis etc. Clinical features to diagnose DVT were of little help. Conclusions : There is a much lower incidence (10% of DVT and PE following spinal cord injury (SCI in India than what is reported from the western countries. Higher age group and quadriplegia were the only factors which could be correlated. Deep vein thrombosis extending proximal to the knee was significant. In the absence of autopsy and other screening tests like D-dimer test or 125I fibrogen uptake study, the true incidence of venous

  9. Pathomorphological features of the skin and muscle tissue of experimental animals in the case of lifetime and postmortem damage

    Directory of Open Access Journals (Sweden)

    A. V. Kis

    2013-04-01

    Full Text Available The problem of forensic medical diagnosis of tissue injury is currently the subject of numerous investigations. Pathomorphological changes of the skin and muscle tissue of experimental animals, resulting in the case of lifetime and postmortem traumatic injuries, depending on the time and temperature, were revealed by the author. Data obtained by the author is very necessary for improving the forensic medical diagnosis of traumatic soft tissue injuries.

  10. Managing Carious Lesions: Consensus Recommendations on Carious Tissue Removal.

    Science.gov (United States)

    Schwendicke, F; Frencken, J E; Bjørndal, L; Maltz, M; Manton, D J; Ricketts, D; Van Landuyt, K; Banerjee, A; Campus, G; Doméjean, S; Fontana, M; Leal, S; Lo, E; Machiulskiene, V; Schulte, A; Splieth, C; Zandona, A F; Innes, N P T

    2016-05-01

    The International Caries Consensus Collaboration undertook a consensus process and here presents clinical recommendations for carious tissue removal and managing cavitated carious lesions, including restoration, based on texture of demineralized dentine. Dentists should manage the disease dental caries and control activity of existing cavitated lesions to preserve hard tissues and retain teeth long-term. Entering the restorative cycle should be avoided as far as possible. Controlling the disease in cavitated carious lesions should be attempted using methods which are aimed at biofilm removal or control first. Only when cavitated carious lesions either are noncleansable or can no longer be sealed are restorative interventions indicated. When a restoration is indicated, the priorities are as follows: preserving healthy and remineralizable tissue, achieving a restorative seal, maintaining pulpal health, and maximizing restoration success. Carious tissue is removed purely to create conditions for long-lasting restorations. Bacterially contaminated or demineralized tissues close to the pulp do not need to be removed. In deeper lesions in teeth with sensible (vital) pulps, preserving pulpal health should be prioritized, while in shallow or moderately deep lesions, restoration longevity becomes more important. For teeth with shallow or moderately deep cavitated lesions, carious tissue removal is performed according toselective removal to firm dentine.In deep cavitated lesions in primary or permanent teeth,selective removal to soft dentineshould be performed, although in permanent teeth,stepwise removalis an option. The evidence and, therefore, these recommendations support less invasive carious lesion management, delaying entry to, and slowing down, the restorative cycle by preserving tooth tissue and retaining teeth long-term. © International & American Associations for Dental Research 2016.

  11. The comparison of thermal tissue injuries caused by ultrasonic scalpel and electrocautery use in rabbit tongue tissue

    Science.gov (United States)

    Beriat, Guclu Kaan; Akmansu, Sefik Halit; Ezerarslan, Hande; Dogan, Cem; Han, Unsal; Saglam, Mehmet; Senel, Oytun Okan; Kocaturk, Sinan

    2012-01-01

    The aim of this study compares to the increase in tissue temperature and the thermal histological effects of ultrasonic scalpel, bipolar and unipolar electrosurgery incisions in the tongue tissue of rabbits. This study evaluates the histopathological changes related to thermal change and the maximum temperature values in the peripheral tissue brought about by the incisions carried out by the three methods in a comparative way. To assess thermal tissue damage induced by the three instruments, maximum tissue temperatures were measured during the surgical procedure and tongue tissue samples were examined histopathologically following the surgery. The mean maximum temperature values of the groups were 93.93±2.76 C° for the unipolar electrocautery group, whereas 85.07±5.95 C° for the bipolar electrocautery group, and 108.23±7.64 C° for the ultrasonic scalpel group. There was a statistically significant relationship between the increase in maximum temperature values and the separation among tissue layers, edema, congestion, necrosis, hemorrhage, destruction in blood vessel walls and fibrin accumulation, and between the existence of fibrin thrombus and tissue damage depth (pelectrocautery use gives way to less temperature increase in the tissues and less thermal tissue damage in comparison to the other methods. PMID:22938541

  12. Oxidative Stress and Lung Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Renata Salatti Ferrari

    2015-01-01

    Full Text Available Ischemia-reperfusion (IR injury is directly related to the formation of reactive oxygen species (ROS, endothelial cell injury, increased vascular permeability, and the activation of neutrophils and platelets, cytokines, and the complement system. Several studies have confirmed the destructiveness of the toxic oxygen metabolites produced and their role in the pathophysiology of different processes, such as oxygen poisoning, inflammation, and ischemic injury. Due to the different degrees of tissue damage resulting from the process of ischemia and subsequent reperfusion, several studies in animal models have focused on the prevention of IR injury and methods of lung protection. Lung IR injury has clinical relevance in the setting of lung transplantation and cardiopulmonary bypass, for which the consequences of IR injury may be devastating in critically ill patients.

  13. An anatomo-pathological study of injury development in the pig following acute local irradiation

    International Nuclear Information System (INIS)

    Lefaix, J.L.; Daburon, F.; Tricaud, Y.; Haag, J.; Verola, O.; Brocheriou, C.

    1984-01-01

    The clinical and anatomo-pathological evolution of the injuries due to acute collimated exposure ( 192 Ir) of pigs' thigh has been studied. After a first stage of superficial injuries -coagulation and ischemic necrosis- spreading on during the first three weeks, there followed a stage of fast extension of deep injuries, especially at the beginning of the third month following exposure. Together with the destructive injuries, a very large mutilating sclerosis developed from the fourth week; its particular characteristics -pseudosarcomatous aspect and anarchistic vascularization- did not allow to stop the evolution of tissular impairment [fr

  14. Protecting exposed tissues with external ultrasonic super-hydration.

    Science.gov (United States)

    Silberg, Barry Neil

    2006-01-01

    The author contends that a technique preventing dehydration of exposed tissues, such as external ultrasonic super-hydration, will result in a lower morbidity rate, decreasing deep tissue pain, susceptibility to infection, fat necrosis, wound dehiscence, and improving recovery times. He discusses how he uses this technique in his aesthetic surgery practice.

  15. Non-invasive assessment of radiation injury with electrical impedance spectroscopy

    International Nuclear Information System (INIS)

    Osterman, K Sunshine; Hoopes, P Jack; De Lorenzo, Christine; Gladstone, David J; Paulsen, Keith D

    2004-01-01

    A detailed understanding of non-targeted normal tissue response is necessary for the optimization of radiation treatment plans in cancer therapy. In this study, we evaluate the ability of electrical impedance spectroscopy (EIS) to non-invasively determine and quantify the injury response in soft tissue after high dose rate (HDR) irradiation, which is characterized by large localized dose distributions possessing steep spatial gradients. The HDR after-loading technique was employed to irradiate small volumes of muscle tissue with single doses (26-52 Gy targeted 5 mm away from the source). Impedance measurements were performed on 29 rats at 1, 2 and 3 month post-irradiation, employing 31 frequencies in the 1 kHz to 1 MHz range. Over the first 3 months, conductivity increased by 48% and 26% following target doses of 52 Gy and 26 Gy 5 mm from the HDR source, respectively. Injury, assessed independently through a grid-based scoring method showed a quadratic dependence on distance from source. A significant injury (50% of cells atrophied, necrotic or degenerating) in 1.2% of the volume, accompanied by more diffuse injury (25% of cells atrophied, necrotic or degenerating) in 9% of the tissue produced a conductivity increase of 0.02 S m -1 (8% over a baseline of 0.24 S m -1 ). This was not statistically significant at p 0.01. Among treatment groups, injury differences in 22% of the volume led to statistically significant differences in conductivity of 0.07 S m -1 (23% difference in conductivity). Despite limitations, the success of EIS in detecting responses in a fraction of the tissue probed, during these early post-irradiation time-points, is encouraging. Electrical impedance spectroscopy may provide a useful metric of atrophy and the development of fibrosis secondary to radiation that could be further developed into a low-cost imaging method for radiotherapy monitoring and assessment

  16. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  17. Inflammatory and apoptotic alterations in serum and injured tissue after experimental polytrauma in mice: distinct early response compared with single trauma or "double-hit" injury.

    Science.gov (United States)

    Weckbach, Sebastian; Hohmann, Christoph; Braumueller, Sonja; Denk, Stephanie; Klohs, Bettina; Stahel, Philip F; Gebhard, Florian; Huber-Lang, Markus S; Perl, Mario

    2013-02-01

    The exact alterations of the immune system after polytrauma leading to sepsis and multiple-organ failure are poorly understood. Thus, the early local and systemic inflammatory and apoptotic response was characterized in a new polytrauma model and compared with the alterations seen after single or combined injuries. Anesthetized C57BL/6 mice were subjected to either blunt bilateral chest trauma (Tx), closed head injury, right femur fracture including contralateral soft tissue injury, or a combination of injuries (PTx). After 2 hours or 6 hours, animals were sacrificed, and the systemic as well as the local pulmonary immune response (bronchoalveolar lavage [BAL]/plasma cytokines, lung myeloperoxidase [MPO] activity, and alveolocapillary barrier dysfunction) were evaluated along with lung/brain apoptosis (lung caspase 3 Western blotting, immunohistochemistry, and polymorphonuclear leukocytes [PMN] Annexin V). Hemoglobin, PO2 saturation, and pH did not differ between the experimental groups. Local BAL cytokines/chemokines were significantly increased in almost all groups, which included Tx. There was no further enhancement of this local inflammatory response in the lungs in case of PTx. At 2 hours, all groups except sham and closed head injury alone revealed an increased activity of lung MPO. However, 6 hours after injury, lung MPO remained increased only in the PTx group. Increased BAL protein levels were found, reflecting enhanced lung leakage in all groups with Tx 6 hours after trauma. Only after PTx was neutrophil apoptosis significantly decreased, whereas lung caspase 3 and plasma interleukin 6/keratinocyte chemoattractant (KC) were substantially increased. The combination of different injuries leads to an earlier systemic inflammatory response when compared with the single insults. Interestingly, only after PTx but not after single or double hits was lung apoptosis increased, and PMN apoptosis was decreased along with a prolonged presence of neutrophils in the

  18. Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury

    Directory of Open Access Journals (Sweden)

    Yuewen Tang

    2017-02-01

    Full Text Available Abstract Tissue damage induces cells into reprogramming-like cellular state, which contributes to tissue regeneration. However, whether factors promoting the cell reprogramming favor tissue regeneration remains elusive. Here we identified combination of small chemical compounds including drug cocktails robustly promoting in vitro cell reprogramming. We then administrated the drug cocktails to mice with acute liver injuries induced by partial hepatectomy or toxic treatment. Our results demonstrated that the drug cocktails which promoted cell reprogramming in vitro improved liver regeneration and hepatic function in vivo after acute injuries. The underlying mechanism could be that expression of pluripotent genes activated after injury is further upregulated by drug cocktails. Thus our study offers proof-of-concept evidence that cocktail of clinical compounds improving cell reprogramming favors tissue recovery after acute damages, which is an attractive strategy for regenerative purpose.

  19. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE

    DEFF Research Database (Denmark)

    Valen, Eivind; Pascarella, Giovanni; Chalk, Alistair

    2009-01-01

    in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth...

  20. Recovery from distal ulnar motor conduction block injury: serial EMG studies.

    Science.gov (United States)

    Montoya, Liliana; Felice, Kevin J

    2002-07-01

    Acute conduction block injuries often result from nerve compression or trauma. The temporal pattern of clinical, electrophysiologic, and histopathologic changes following these injuries has been extensively studied in experimental animal models but not in humans. Our recent evaluation of a young man with an injury to the deep motor branch of the ulnar nerve following nerve compression from weightlifting exercises provided the opportunity to follow the course and recovery of a severe conduction block injury with sequential nerve conduction studies. The conduction block slowly and completely resolved, as did the clinical deficit, over a 14-week period. The reduction in conduction block occurred at a linear rate of -6.1% per week. Copyright 2002 Wiley Periodicals, Inc.

  1. Sodium hypochlorite-induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Brandon W Peck

    2014-01-01

    Full Text Available Sodium hypochlorite (bleach is commonly used as an irrigant during dental proce-dures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI. In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis.

  2. The Effects of Motorcycle Helmet Legislation on Craniomaxillofacial Injuries.

    Science.gov (United States)

    Adams, Nicholas S; Newbury, Patrick A; Eichhorn, Mitchell G; Davis, Alan T; Mann, Robert J; Polley, John W; Girotto, John A

    2017-06-01

    Motorcycle helmet legislation has been a contentious topic for over a half-century. Benefits of helmet use in motorcycle trauma patients are well documented. In 2012, Michigan repealed its universal motorcycle helmet law in favor of a partial helmet law. The authors describe the early clinical effects on facial injuries throughout Michigan. Retrospective data from the Michigan Trauma Quality Improvement Program trauma database were evaluated. Included were 4643 motorcycle trauma patients presenting to 29 Level I and II trauma centers throughout Michigan 3 years before and after the law repeal (2009 to 2014). Demographics, external cause of injury codes, International Classification of Diseases, Ninth Revision diagnosis codes, and injury details were gathered. The proportion of unhelmeted trauma patients increased from 20 percent to 44 percent. Compared with helmeted trauma patients, unhelmeted patients were nearly twice as likely to sustain craniomaxillofacial injuries (relative risk, 1.90), including fractures (relative risk, 2.02) and soft-tissue injuries (relative risk, 1.94). Unhelmeted patients had a lower Glasgow Coma Scale score and higher Injury Severity Scores. Patients presenting after helmet law repeal were more likely to sustain craniomaxillofacial injuries (relative risk, 1.46), including fractures (relative risk, 1.28) and soft-tissue injuries (relative risk, 1.56). No significant differences were observed for age, sex, Injury Severity Score, or Glasgow Coma Scale score (p > 0.05). This study highlights the significant negative impact of relaxed motorcycle helmet laws leading to an increase in craniomaxillofacial injuries. The authors urge state and national legislators to reestablish universal motorcycle helmet laws.

  3. The Effects of Dexmedetomidine on Secondary Acute Lung and Kidney Injuries in the Rat Model of Intra-Abdominal Sepsis

    Directory of Open Access Journals (Sweden)

    Uğur Koca

    2013-01-01

    Full Text Available In the present study, the effects of dexmedetomidine on secondary lung and kidney injuries were studied in the rat model of intra-abdominal sepsis by immunohistological and biochemical examinations. We measured serum creatinine, kidney tissue malondialdehide and plasma neutrophil gelatinase-associated lipocalin levels. In order to evaluate tissue injury we determined kidney tissue mononuclear cell infiltration score, alveolar macrophage count, histological kidney and lung injury scores and kidney and lung tissue immunoreactivity scores. We demonstrated that dexmedetomidine attenuates sepsis-induced lung and kidney injuries and apoptosis in the rat model of sepsis. There is still need for comparative studies in order to determine the effects of dexmedetomidine on organ functions in early human sepsis.

  4. Hardwiring Stem Cell Communication through Tissue Structure.

    Science.gov (United States)

    Xin, Tianchi; Greco, Valentina; Myung, Peggy

    2016-03-10

    Adult stem cells across diverse organs self-renew and differentiate to maintain tissue homeostasis. How stem cells receive input to preserve tissue structure and function largely relies on their communication with surrounding cellular and non-cellular elements. As such, how tissues are organized and patterned not only reflects organ function, but also inherently hardwires networks of communication between stem cells and their environment to direct tissue homeostasis and injury repair. This review highlights how different methods of stem cell communication reflect the unique organization and function of diverse tissues. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Firework injuries: a ten-year study.

    Science.gov (United States)

    Puri, Vinita; Mahendru, Sanjay; Rana, Roshani; Deshpande, Manish

    2009-09-01

    Fireworks are used worldwide to celebrate popular events (e.g. festivals, official celebrations, weddings). The festival of lights (Diwali) is celebrated with fireworks in India. During this period, many patients from all age groups present to hospital with injuries due to fireworks. Prevalence, period of occurrence, sex and age variation, adult supervision, causative fireworks, mode of lighting, age groups prone to injury, patterns of injury caused by individual fireworks, and the body parts injured were studied. One hundred and fifty-seven cases (92 retrospective, 65 prospective) with injury due to fireworks presenting to the Department of Plastic Surgery at KEM Hospital between 1997 and 2006 were studied. The prevalence of injuries has decreased steadily over the last 10 years (41 cases in 1997, 3 cases in 2006). The maximum number of injuries (35%) was seen in the age group 5-14 years; 92% of these children were unsupervised. The commonest cause of injury was firework misuse (41% of cases), followed by device failure (35%). Device failure was commonest with flares/fountains (ground firework emitting sparks upwards) and aerial devices. Flare/fountains caused most injury (39%), sparklers the least (0.6%). Flare/fountains, ground spinners, sparklers, and gunpowder (explosive material from cracker, obtained by tearing paper wrapper and obtaining chemicals) caused only soft tissue burns; stringbombs (high-intensity fire cracker made by wrapping chemicals with jute strings/coir in layers) and rockets (aerial device that zooms upwards and bursts) caused blast injuries, leading to soft tissue disruption and bony injuries. Emergency surgery was done if indicated: tendon and/or neurovascular repair, fracture fixation, flap cover or amputation. Superficial burns were treated with dressings. Certain wounds needed only thorough cleansing of the wound and primary suturing. We concluded that, over a 10-year period, the prevalence of firework injury decreased due to increased

  6. Engineering Musculoskeletal Tissue Interfaces

    Directory of Open Access Journals (Sweden)

    Ece Bayrak

    2018-04-01

    Full Text Available Tissue engineering aims to bring together biomaterials, cells, and signaling molecules within properly designed microenvironments in order to create viable treatment options for the lost or malfunctioning tissues. Design and production of scaffolds and cell-laden grafts that mimic the complex structural and functional features of tissues are among the most important elements of tissue engineering strategy. Although all tissues have their own complex structure, an even more complex case in terms of engineering a proper carrier material is encountered at the tissue interfaces, where two distinct tissues come together. The interfaces in the body can be examined in four categories; cartilage-bone and ligament-bone interfaces at the knee and the spine, tendon-bone interfaces at the shoulder and the feet, and muscle-tendon interface at the skeletal system. These interfaces are seen mainly at the soft-to-hard tissue transitions and they are especially susceptible to injury and tear due to the biomechanical inconsistency between these tissues where high strain fields are present. Therefore, engineering the musculoskeletal tissue interfaces remain a challenge. This review focuses on recent advancements in strategies for musculoskeletal interface engineering using different biomaterial-based platforms and surface modification techniques.

  7. Review of Injuries from Terrorist Bombings and Earthquakes

    Science.gov (United States)

    2016-08-31

    8.50% Compartment Syndrome 28 5.18% Hemopneumothorax 17 3.14% Abdominal Injury 17 3.14% Head Injury 14 2.59% Acute Renal Failure 22 4.07...typically involved the head and neck, extremities, and soft tissues. Glass shattering was a common source of injury. Eight earthquake case studies...car bomb equivalent to 80 kg of TNT exploded at 2:50 pm at The Old Bailey in London, resulting in 160 casualties (Frykberg and Tepas 1988; Caro and

  8. On associations between different factors and whiplash injury

    OpenAIRE

    Berglund, Anita

    2002-01-01

    The overall aim of this thesis was to evaluate associations between different factors and whiplash injury (defined as a soft tissue injury to the neck without fracture or dislocation), focusing on risk of initial and future complaints. The objectives in Paper 1 and II was to determine whether exposure to a rear-end collision, with or without whiplash injury, is associated with future neck or shoulder pain (Paper 1) and other health complaints, besides neck pain (Paper II). T...

  9. En-bloc excision debridement of spray paint injection injury to the ...

    African Journals Online (AJOL)

    Background: High pressure injection injuries to the hand are relatively uncommon. The potential and actual tissue injuries are often underestimated by the primary care giver. Patient: This is a report on a 27 year old dock worker who sustained a spray paint gun injury to the left hand with resulting digital neurovascular ...

  10. Cell-based and biomaterial approaches to connective tissue repair

    Science.gov (United States)

    Stalling, Simone Suzette

    Connective tissue injuries of skin, tendon and ligament, heal by a reparative process in adults, filling the wound site with fibrotic, disorganized scar tissue that poorly reflects normal tissue architecture or function. Conversely, fetal skin and tendon have been shown to heal scarlessly. Complete regeneration is not intrinsically ubiquitous to all fetal tissues; fetal diaphragmatic and gastrointestinal injuries form scars. In vivo studies suggest that the presence of fetal fibroblasts is essential for scarless healing. In the orthopaedic setting, adult anterior cruciate ligament (ACL) heals poorly; however, little is known about the regenerative capacity of fetal ACL or fetal ACL fibroblasts. We characterized in vitro wound healing properties of fetal and adult ACL fibroblasts demonstrating that fetal ACL fibroblasts migrate faster and elaborate greater quantities of type I collagen, suggesting the healing potential of the fetal ACL may not be intrinsically poor. Similar to fetal ACL fibroblasts, fetal dermal fibroblasts also exhibit robust cellular properties. We investigated the age-dependent effects of dermal fibroblasts on tendon-to-bone healing in rat supraspinatus tendon injuries, a reparative injury model. We hypothesized delivery of fetal dermal fibroblasts would increase tissue organization and mechanical properties in comparison to adult dermal fibroblasts. However, at 1 and 8 weeks, the presence of dermal fibroblasts, either adult or fetal, had no significant effect on tissue histology or mechanical properties. There was a decreasing trend in cross-sectional area of repaired tendons treated with fetal dermal fibroblasts in comparison to adult, but this finding was not significant in comparison to controls. Finally, we synthesized a novel polysaccharide, methacrylated methylcellulose (MA-MC), and fabricated hydrogels using a well-established photopolymerization technique. We characterized the physical and mechanical properties of MA-MC hydrogels in

  11. Injuries prevalence in elite male artistic gymnasts

    Directory of Open Access Journals (Sweden)

    Natália Batista Albuquerque GOULART

    2016-03-01

    Full Text Available Abstract The purpose of this study was to investigate the injuries prevalence in men elite artistic gymnasts. Twenty Brazilian senior gymnasts, aged 23.1 ± 6.5 years, 13.9 ± 5.0 years of practice and 36.5 ± 4.7 hours per week training, participated in this study. The athletes answered a morbidity questionnaire, formulated according to studies from the literature, for information on the injuries’ characteristics and circumstances. Information about the injury circumstances (gymnastic apparatus, overload training and physical exercises, the anatomic site injured, the affect biological tissue and the return to training after injury treatment were evaluated. Data were analyzed by descriptive statistics, absolute and relative frequencies. The training overload, and floor, pommel horse and vault were the events that presented higher injuries frequency. In relation to anatomic site, ankle, hands/fingers and shoulder were the most cited regions. The ligament, bone and articular capsule were the most affected biological tissues. In relation to gymnasts’ return to their sports activities, 56% of them reported a better condition at return, 33% reported to have returned at the same fitness level and 10% indicated that they were in a worse condition when they returned to the sports activities. The men’s artistic gymnastics injuries are related to the mechanical demands of this sport. The analysis of risk factors helps in understanding the injuries mechanisms in gymnastics, and provides relevant information that can assist in effective prevention strategies.

  12. Badminton injuries in youth competitive players.

    Science.gov (United States)

    Goh, S L; Mokhtar, A H; Mohamad Ali, M R

    2013-02-01

    The aim of the study was to examine sports injury pattern and establish cost of injuries in relation to training of 58 competitive badminton players in a Malaysian National Sports School. This one-year prospective observational study recruited all the 13-16 year old students after obtaining informed consent from their appointed guardian. All participants were requested to report any injuries, which were pain or disabilities that occur within the study period (September 1, 2008 to August 31, 2009) either during training or competition. Injured students were to seek treatment from the researcher(s) who made weekly visits and they were then followed up accordingly until they return to full training. Details and progress of the injuries were documented during each visit. Sixty-three injuries were recorded. Soft tissue sprains/strains were the commonest injury (64%). About one third of the injuries occurred in the lower limb especially the knees and was followed by back injuries; 38% of the injuries did not require training modification, half of these injuries resumed training within one week. Upon full training, half of them were still symptomatic. Injury risk was 57%; injury rate was 0.9 injuries/ player/1000 training hours. Badminton injuries mostly involved the lower limb and almost all overuse injuries occurred in the lower limb. However, badminton injuries as a whole were predominantly sprains and strains, and not overuse in nature as widely believed.

  13. Systematic Review on the Effects of Serious Games and Wearable Technology Used in Rehabilitation of Patients With Traumatic Bone and Soft Tissue Injuries.

    Science.gov (United States)

    Meijer, Henriëtte A; Graafland, Maurits; Goslings, J Carel; Schijven, Marlies P

    2017-11-11

    To assess the effects on functional outcomes and treatment adherence of wearable technology and serious games (ie, interactive computer applications with specific purposes useful in the "real world") currently used in physical rehabilitation of patients after traumatic bone and soft tissue injuries. PubMed, EMBASE, Cochrane Library, and Current Index to Nursing and Allied Health Literature were searched without publication date restrictions for the terms wearable, serious game, videogame or mobile application, and rehabilitation, exercise therapy, and physiotherapy. The search yielded 2704 eligible articles, which were screened by 2 independent reviewers. Studies comparing serious games to standard therapy were included. Methodology and results of the studies were critically appraised in conformity with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Twelve articles were included, all of which tested "off-the-shelf" games. No studies on "wearable-controlled" games or games specifically developed for rehabilitation could be included. Medical conditions included postoperative rehabilitation and acute traumatic injuries. All studies were of low to moderate quality. Only 2 studies found beneficial effects of serious games compared to conventional therapy. One of 3 studies reporting pain scores found beneficial effects of serious games compared to physiotherapy. One of 5 trials reporting treatment adherence found a statistically significant advantage in the game group compared to conventional physiotherapy. Because of heterogeneity in study design and outcome measures, pooling of data was not possible. Serious games seem a safe alternative or addition to conventional physiotherapy after traumatic bone and soft tissue injuries. Future research should determine their validity and effectiveness in rehabilitation therapy, next to their cost-effectiveness and effect on treatment adherence. Copyright © 2017 American Congress of Rehabilitation

  14. Epimorphic regeneration approach to tissue replacement in adult mammals

    Science.gov (United States)

    Urodeles and fetal mammals are capable of impressive epimorphic regeneration in a variety of tissues, whereas the typical default response to injury in adult mammals consists of inflammation and scar tissue formation. One component of epimorphic regeneration is the recruitment of resident progenitor...

  15. Role of endothelium in radiation-induced normal tissue damages

    International Nuclear Information System (INIS)

    Milliat, F.

    2007-05-01

    More than half of cancers are treated with radiation therapy alone or in combination with surgery and/or chemotherapy. The goal of radiation therapy is to deliver enough ionising radiation to destroy cancer cells without exceeding the level that the surrounding healthy cells can tolerate. Unfortunately, radiation-induced normal tissue injury is still a dose limiting factor in the treatment of cancer with radiotherapy. The knowledge of normal tissue radiobiology is needed to determine molecular mechanisms involved in normal tissue pathogenic pathways in order to identify therapeutic targets and develop strategies to prevent and /or reduce side effects of radiation therapy. The endothelium is known to play a critical role in radiation-induced injury. Our work shows that endothelial cells promote vascular smooth muscle cell proliferation, migration and fibro-genic phenotype after irradiation. Moreover, we demonstrate for the first time the importance of PAI-1 in radiation-induced normal tissue damage suggesting that PAI-1 may represent a molecular target to limit injury following radiotherapy. We describe a new role for the TGF-b/Smad pathway in the pathogenesis of radiation-induced damages. TGF-b/Smad pathway is involved in the fibro-genic phenotype of VSMC induced by irradiated EC as well as in the radiation-induced PAI-1 expression in endothelial cells. (author)

  16. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    International Nuclear Information System (INIS)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J.

    2014-01-01

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na + -K + -ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na + -K + -ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na + -K + -ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis

  17. [Algorithms for treatment of complex hand injuries].

    Science.gov (United States)

    Pillukat, T; Prommersberger, K-J

    2011-07-01

    The primary treatment strongly influences the course and prognosis of hand injuries. Complex injuries which compromise functional recovery are especially challenging. Despite an apparently unlimited number of injury patterns it is possible to develop strategies which facilitate a standardized approach to operative treatment. In this situation algorithms can be important guidelines for a rational approach. The following algorithms have been proven in the treatment of complex injuries of the hand by our own experience. They were modified according to the current literature and refer to prehospital care, emergency room management, basic strategy in general and reconstruction of bone and joints, vessels, nerves, tendons and soft tissue coverage in detail. Algorithms facilitate the treatment of severe hand injuries. Applying simple yes/no decisions complex injury patterns are split into distinct partial problems which can be managed step by step.

  18. Meat grinder injuries to the upper extremity.

    Science.gov (United States)

    Brandner, M; Bunkis, J; Trengove-Jones, G

    1985-05-01

    Three cases of hand injury caused by meat grinders are presented. All 3 injuries involved the dominant hand and resulted in varying degrees of deformity. Two of the 3 patients arrived in the emergency room with the injured hand still firmly wedged in the meat grinder. Although these injuries continue to prove very mutilating, maximum restoration of the injured hand can be accomplished by careful extrication, followed by preservation and reconstruction of all viable tissues. Perioperative antibiotics and wound irrigation with antibiotic solution are recommended. Microsurgical technique can be of value in treating selected patients.

  19. Injuries in synchronized skating.

    Science.gov (United States)

    Dubravcic-Simunjak, S; Kuipers, H; Moran, J; Simunjak, B; Pecina, M

    2006-06-01

    those that go beyond the soft tissue and include head injuries and fractures. We feel that these more significant injuries MAY TO SOME EXTENT BE attributable to the increasing physical demands and technical difficulty required of the teams now participating in a more competitive environment over the last four years.

  20. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics

    Science.gov (United States)

    Chen, Shuo; Weitemier, Adam Z.; Zeng, Xiao; He, Linmeng; Wang, Xiyu; Tao, Yanqiu; Huang, Arthur J. Y.; Hashimotodani, Yuki; Kano, Masanobu; Iwasaki, Hirohide; Parajuli, Laxmi Kumar; Okabe, Shigeo; Teh, Daniel B. Loong; All, Angelo H.; Tsutsui-Kimura, Iku; Tanaka, Kenji F.; Liu, Xiaogang; McHugh, Thomas J.

    2018-02-01

    Optogenetics has revolutionized the experimental interrogation of neural circuits and holds promise for the treatment of neurological disorders. It is limited, however, because visible light cannot penetrate deep inside brain tissue. Upconversion nanoparticles (UCNPs) absorb tissue-penetrating near-infrared (NIR) light and emit wavelength-specific visible light. Here, we demonstrate that molecularly tailored UCNPs can serve as optogenetic actuators of transcranial NIR light to stimulate deep brain neurons. Transcranial NIR UCNP-mediated optogenetics evoked dopamine release from genetically tagged neurons in the ventral tegmental area, induced brain oscillations through activation of inhibitory neurons in the medial septum, silenced seizure by inhibition of hippocampal excitatory cells, and triggered memory recall. UCNP technology will enable less-invasive optical neuronal activity manipulation with the potential for remote therapy.

  1. Study of arsenic injury to rice plant

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimoto, T; Matsumoto, H; Okahashi, C; Wada, M

    1968-01-01

    Growth injury happened to rice plants when waste liquid flowed from a mercury refinery into paddy fields in July 1967. Arsenic turned out to be the main cause of the growth injury. Investigation of the contaminated fields revealed that the injury was the most severe at the water inlet to the field, and was comparatively slight in the middle of it. The quantity of arsenic absorbed in the soil was very large at the inlet and was decreasingly small towards the centre of them. Moreover, excessive quantities of arsenic were often found on the surface of the fields. The constituent was seen permeating the lower layers of the soil. The permeation was deep in proportion to the good drainage of soil. Drastic measures should be taken with a special reference to quantity of arsenic and type of soil.

  2. Comparative Study of Injury Models for Studying Muscle Regeneration in Mice.

    Directory of Open Access Journals (Sweden)

    David Hardy

    Full Text Available A longstanding goal in regenerative medicine is to reconstitute functional tissues or organs after injury or disease. Attention has focused on the identification and relative contribution of tissue specific stem cells to the regeneration process. Relatively little is known about how the physiological process is regulated by other tissue constituents. Numerous injury models are used to investigate tissue regeneration, however, these models are often poorly understood. Specifically, for skeletal muscle regeneration several models are reported in the literature, yet the relative impact on muscle physiology and the distinct cells types have not been extensively characterised.We have used transgenic Tg:Pax7nGFP and Flk1GFP/+ mouse models to respectively count the number of muscle stem (satellite cells (SC and number/shape of vessels by confocal microscopy. We performed histological and immunostainings to assess the differences in the key regeneration steps. Infiltration of immune cells, chemokines and cytokines production was assessed in vivo by Luminex®.We compared the 4 most commonly used injury models i.e. freeze injury (FI, barium chloride (BaCl2, notexin (NTX and cardiotoxin (CTX. The FI was the most damaging. In this model, up to 96% of the SCs are destroyed with their surrounding environment (basal lamina and vasculature leaving a "dead zone" devoid of viable cells. The regeneration process itself is fulfilled in all 4 models with virtually no fibrosis 28 days post-injury, except in the FI model. Inflammatory cells return to basal levels in the CTX, BaCl2 but still significantly high 1-month post-injury in the FI and NTX models. Interestingly the number of SC returned to normal only in the FI, 1-month post-injury, with SCs that are still cycling up to 3-months after the induction of the injury in the other models.Our studies show that the nature of the injury model should be chosen carefully depending on the experimental design and desired

  3. Motorcycle accident is the main cause of maxillofacial injuries in the Penang Mainland, Malaysia.

    Science.gov (United States)

    Hashim, Hasnah; Iqbal, Syed

    2011-02-01

    Maxillofacial injuries are among the commonest forms of body injuries. There are three divisions, namely, facial bone fractures, soft tissue injuries, and dentoalveolar injuries. Etiologies include motor vehicle accidents, assaults, falls, and sporting injuries. The aim of this study was to determine the profiles including the causes of maxillofacial injuries seen in an urban government hospital in the mainland of Penang State, Malaysia. This was a cross-sectional study that recruited cases reported within a period of 1 year. The source population was maxillofacial injury patients presenting to the Oral and Maxillofacial Surgery Department of an urban hospital in the Penang Mainland, North Malaysia between May 2007 and May 2008. Cases of patients involved in accidents that occurred outside the reference vicinity were excluded. A case report form was developed and completed by the attending clinicians. Data were analyzed using spss version 12.0. A total of 194 cases were studied, with the mean patient age being 27.8 (SD 15.20) years. The majority of patients were Malay men between 20 and 29 years of age. The main cause of injury was motorcycle accident (53.6%). The commonest injury (in isolation/combination with other injuries) involved the soft tissues (87.2%), dentoalveolar region (33.4%), and facial bones (23.9%). Laceration was the commonest soft tissue injury, and crown fracture was the most frequent dentoalveolar injury. The facial bone that was most highly involved in the injury was the zygoma. Subjects involved in motorcycle accidents had a significantly higher incidence of sustaining facial bone fractures. Motorcycle accidents were the commonest cause of maxillofacial injuries in the Penang Mainland, Malaysia. Most patients were young men. Hence, it is prudent to reinforce appropriate road safety and awareness interventions particularly focusing young male motorcyclists so as to reduce the risk of accidents. © 2011 John Wiley & Sons A/S.

  4. Traumatic deep vein thrombosis in a soccer player: A case study

    Directory of Open Access Journals (Sweden)

    Upshur Ross EG

    2004-10-01

    Full Text Available Abstract A 42 year-old male former semi-professional soccer player sustained a right lower extremity popliteal contusion during a soccer game. He was clinically diagnosed with a possible traumatic deep vein thrombosis (DVT, and sent for confirmatory tests. A duplex doppler ultrasound was positive for DVT, and the patient was admitted to hospital for anticoagulation (unfractionated heparin, warfarin. Upon discharge from hospital the patient continued oral warfarin anticoagulation (six months, and the use of compression stockings (nine months. He followed up with his family doctor at regular intervals for serial coagulation measurements, and ultrasound examinations. The patient's only identified major thrombotic risk factor was the traumatic injury. One year after the initial deep vein thrombosis (DVT the patient returned to contact sport, however he continued to have intermittent symptoms of right lower leg pain and right knee effusion. Athletes can develop vascular injuries in a variety of contact and non-contact sports. Trauma is one of the most common causes of lower extremity deep vein thrombosis (DVT, however athletic injuries involving lower extremity traumatic DVT are seldom reported. This diagnosis and the associated risk factors must be considered during the initial physical examination. The primary method of radiological diagnosis of lower extremity DVT is a complete bilateral duplex sonography, which can be augmented by other methods such as evidence-based risk factor analysis. Antithrombotic medication is the current standard of treatment for DVT. Acute thrombolytic treatment has demonstrated an improved therapeutic efficacy, and a decrease in post-DVT symptoms. There is a lack of scientific literature concerning the return to sport protocol following a DVT event. Athletic individuals who desire to return to sport after a DVT need to be fully informed about their treatment and risk of reoccurrence, so that appropriate decisions can be

  5. Iso-effect tables and therapeutic ratios for epidermoid cancer and normal tissue stroma

    International Nuclear Information System (INIS)

    Cohen, L.; Creditor, M.

    1983-01-01

    Available literature on radiation injury to normal tissue stroma and ablation of epidermoid carcinoma was surveyed. Computer programs (RAD3 and RAD1) were then used to derive cell kinetic parameters and generate iso-effect tables for the relevant tissues. The two tables provide a set of limiting doses for tolerance of normal connective tissue (16% risk of injury) and for ablation of epidermoid cancer (16% risk of recurrence) covering a wide range of treatment schedules. Calculating the ratios of normal tissue tolerance to tumor control doses for each treatment scheme provides an array of therapeutic ratios, from which appropriate treatment schemes can be selected

  6. Electrocautery causes more ischemic peritoneal tissue damage than ultrasonic dissection.

    NARCIS (Netherlands)

    Broek, R.P.G ten; Wilbers, J.; Goor, H. van

    2011-01-01

    BACKGROUND: Minimizing peritoneal tissue injury during abdominal surgery has the benefit of reducing postoperative inflammatory response, pain, and adhesion formation. Ultrasonic dissection seems to reduce tissue damage. This study aimed to compare electrocautery and ultrasonic dissection in terms

  7. Risk factors for deep surgical site infection following operative treatment of ankle fractures.

    Science.gov (United States)

    Ovaska, Mikko T; Mäkinen, Tatu J; Madanat, Rami; Huotari, Kaisa; Vahlberg, Tero; Hirvensalo, Eero; Lindahl, Jan

    2013-02-20

    Surgical site infection is one of the most common complications following ankle fracture surgery. These infections are associated with substantial morbidity and lead to increased resource utilization. Identification of risk factors is crucial for developing strategies to prevent these complications. We performed an age and sex-matched case-control study to identify patient and surgery-related risk factors for deep surgical site infection following operative ankle fracture treatment. We identified 1923 ankle fracture operations performed in 1915 patients from 2006 through 2009. A total of 131 patients with deep infection were identified and compared with an equal number of uninfected control patients. Risk factors for infection were determined with use of conditional logistic regression analysis. The incidence of deep infection was 6.8%. Univariate analysis showed diabetes (odds ratio [OR] = 2.2, 95% confidence interval [CI] = 1.0, 4.9), alcohol abuse (OR = 3.8, 95% CI = 1.6, 9.4), fracture-dislocation (OR = 2.0, 95% CI = 1.2, 3.5), and soft-tissue injury (a Tscherne grade of ≥1) (OR = 2.6, 95% CI = 1.3, 5.3) to be significant patient-related risk factors for infection. Surgery-related risk factors were suboptimal timing of prophylactic antibiotics (OR = 1.9, 95% CI = 1.0, 3.4), difficulties encountered during surgery, (OR = 2.1, 95% CI = 1.1, 4.0), wound complications (OR = 4.8, 95% CI = 1.6, 14.0), and fracture malreduction (OR = 3.4, 95% CI = 1.3, 9.2). Independent risk factors for infection identified by multivariable analyses were tobacco use (OR = 3.7, 95% CI = 1.6, 8.5) and a duration of surgery of more than ninety minutes (OR = 2.5, 95% CI = 1.1, 5.7). Cast application in the operating room was independently associated with a decreased infection rate (OR = 0.4, 95% CI = 0.2, 0.8). We identified several modifiable risk factors for deep surgical site infection following operative treatment of ankle fractures.

  8. Skateboarding injuries of today

    Science.gov (United States)

    Forsman, L; Eriksson, A

    2001-01-01

    Background—Skateboarding injuries have increased with the rise in popularity of the sport, and the injury pattern can be expected to have changed with the development of both skateboard tricks and the materials used for skateboard construction. Objective—To describe the injury pattern of today. Methods—The pattern of injuries, circumstances, and severity were investigated in a study of all 139 people injured in skateboarding accidents during the period 1995–1998 inclusive and admitted to the University Hospital of Umeå. This is the only hospital in the area, serving a population of 135 000. Results—Three of the 139 injured were pedestrians hit by a skateboard rider; the rest were riders. The age range was 7–47 years (mean 16). The severity of the injuries was minor (AIS 1) to moderate (AIS 2); fractures were classified as moderate. The annual number of injuries increased during the study period. Fractures were found in 29% of the casualties, and four children had concussion. The most common fractures were of the ankle and wrist. Older patients had less severe injuries, mainly sprains and soft tissue injuries. Most children were injured while skateboarding on ramps and at arenas; only 12 (9%) were injured while skateboarding on roads. Some 37% of the injuries occurred because of a loss of balance, and 26% because of a failed trick attempt. Falls caused by surface irregularities resulted in the highest proportion of the moderate injuries. Conclusions—Skateboarding should be restricted to supervised skateboard parks, and skateboarders should be required to wear protective gear. These measures would reduce the number of skateboarders injured in motor vehicle collisions, reduce the personal injuries among skateboarders, and reduce the number of pedestrians injured in collisions with skateboarders. Key Words: skateboard; injury; prevention PMID:11579065

  9. Realistic tissue visualization using photoacoustic image

    Science.gov (United States)

    Cho, Seonghee; Managuli, Ravi; Jeon, Seungwan; Kim, Jeesu; Kim, Chulhong

    2018-02-01

    Visualization methods are very important in biomedical imaging. As a technology that understands life, biomedical imaging has the unique advantage of providing the most intuitive information in the image. This advantage of biomedical imaging can be greatly improved by choosing a special visualization method. This is more complicated in volumetric data. Volume data has the advantage of containing 3D spatial information. Unfortunately, the data itself cannot directly represent the potential value. Because images are always displayed in 2D space, visualization is the key and creates the real value of volume data. However, image processing of 3D data requires complicated algorithms for visualization and high computational burden. Therefore, specialized algorithms and computing optimization are important issues in volume data. Photoacoustic-imaging is a unique imaging modality that can visualize the optical properties of deep tissue. Because the color of the organism is mainly determined by its light absorbing component, photoacoustic data can provide color information of tissue, which is closer to real tissue color. In this research, we developed realistic tissue visualization using acoustic-resolution photoacoustic volume data. To achieve realistic visualization, we designed specialized color transfer function, which depends on the depth of the tissue from the skin. We used direct ray casting method and processed color during computing shader parameter. In the rendering results, we succeeded in obtaining similar texture results from photoacoustic data. The surface reflected rays were visualized in white, and the reflected color from the deep tissue was visualized red like skin tissue. We also implemented the CUDA algorithm in an OpenGL environment for real-time interactive imaging.

  10. Suicide bomb attack causing penetrating craniocerebral injury

    Directory of Open Access Journals (Sweden)

    Hussain Manzar

    2013-02-01

    Full Text Available 【Abstract】Penetrating cerebral injuries caused by foreign bodies are rare in civilian neurosurgical trauma, al-though there are various reports of blast or gunshot inju-ries in warfare due to multiple foreign bodies like pellets and nails. In our case, a 30-year-old man presented to neurosur-gery clinic with signs and symptoms of right-sided weak-ness after suicide bomb attack. The skull X-ray showed a single intracranial nail. Small craniotomy was done and the nail was removed with caution to avoid injury to surround-ing normal brain tissue. At 6 months’ follow-up his right-sided power improved to against gravity. Key words: Head injury, penetrating; Bombs; Nails

  11. [Estimation of Time-Dependent microRNA Expression Patterns in Brain Tissue, Leukocytes, and Blood Plasma of Rats under Photochemically Induced Focal Cerebral Ischemia].

    Science.gov (United States)

    Gusar, V A; Timofeeva, A V; Zhanin, I S; Shram, S I; Pinelis, V G

    2017-01-01

    miRNA expression over different time periods (24 and 48 h) using the quantitative RT-PCR and deep sequencing has been evaluated in a model of photochemically induced thrombosis. A combination of two approaches allowed us to determine the miRNA expression patterns caused by ischemia. Nine miRNAs, including let-7f-5p, miR-221-3p, miR-21-5p, miR-30c-5p, miR-30a-3p, miR-223-3p, miR-23a-3p, miR-22-5p, and miR-99a-5p, were differentially expressed in brain tissue and leukocytes of rats 48 h after onset of ischemia. In addition, six miRNAs were differentially expressed in the brain tissue and blood plasma of rats 24 h after exposure, among which miR-145-3p and miR-375-3p were downregulated and miR-19a-3p, miR-92a-3p, miR-188-5p, and miR-532-5p were upregulated. In our opinion, miR-188-5p and miR-532-5p may be considered to be new potential markers of ischemic injury. The level of miRNA expression tended to increase 48 h after the onset of ischemia in brain tissue and leukocytes, which reflects not only the local response in brain tissue due to inflammation, vascular endothelial dysfunction, and disorders of the permeability of the blood-brain barrier, but also the systemic response of the organism to multifactor molecular processes induced by ischemic injury.

  12. Nanomedicine for treating spinal cord injury

    Science.gov (United States)

    Tyler, Jacqueline Y.; Xu, Xiao-Ming; Cheng, Ji-Xin

    2013-09-01

    Spinal cord injury results in significant mortality and morbidity, lifestyle changes, and difficult rehabilitation. Treatment of spinal cord injury is challenging because the spinal cord is both complex to treat acutely and difficult to regenerate. Nanomaterials can be used to provide effective treatments; their unique properties can facilitate drug delivery to the injury site, enact as neuroprotective agents, or provide platforms to stimulate regrowth of damaged tissues. We review recent uses of nanomaterials including nanowires, micelles, nanoparticles, liposomes, and carbon-based nanomaterials for neuroprotection in the acute phase. We also review the design and neural regenerative application of electrospun scaffolds, conduits, and self-assembling peptide scaffolds.

  13. Atelocollagen sponge and recombinant basic fibroblast growth factor combination therapy for resistant wounds with deep cavities.

    Science.gov (United States)

    Nakanishi, Asako; Hakamada, Arata; Isoda, Ken-ichi; Mizutani, Hitoshi

    2005-05-01

    Recent advances in bioengineering have introduced materials that enhance wound healing. Even with such new tools, some deep ulcers surrounded by avascular tissues, including bone, tendon, and fascia, are resistant to various therapies and easily form deep cavities with loss of subcutaneous tissue. Atelocollagen sponges have been used as an artificial dermis to cover full-thickness skin defects. Topical recombinant human basic fibroblast growth factor has been introduced as a growth factor to induce fibroblast proliferation in skin ulcers. We applied these materials in combination in two patients with deep resistant wounds: one with a cavity reaching the mediastinum through a divided sternum and one with deep necrotic wounds caused by electric burns. These wounds did not respond to the topical basic fibroblast growth factor alone. In contrast, the combination therapy closed the wounds rapidly without further surgical treatment. This combination therapy is a potent treatment for resistant wounds with deep cavities.

  14. Research progress of immune tolerance in the treatment of brain injury

    Directory of Open Access Journals (Sweden)

    Hua YAN

    2014-08-01

    Full Text Available Due to its special anatomical structures and immune pathophysiological mechanisms, brain damage repair is greatly different from damage repair of other systems. Secondary brain injury and inflammation are closely related. As a "double-edged sword", inflammation scavenges hazardous substances on the early stage of injury, but has side effects on normal brain tissue. The use of immunosuppressive therapy or hypothermia can inhibit immune injury, but the presence of reduced immunity may result in infection and tumorigenesis in the long term. Only reducing the autoimmune attack against brain tissue without affecting other immune capacity of the body will be optimized solution, and this paper will make a review on the research of immune tolerance in the treatment of brain injury with optimized program. doi: 10.3969/j.issn.1672-6731.2014.08.017

  15. Injuries in competitive boxing. A prospective study.

    Science.gov (United States)

    Siewe, J; Rudat, J; Zarghooni, K; Sobottke, R; Eysel, P; Herren, C; Knöll, P; Illgner, U; Michael, J

    2015-03-01

    Boxing remains a subject of controversy and is often classified as dangerous. But the discussion is based mostly on retrospective studies. This survey was conducted as a prospective study. From October 2012 to September 2013, 44 competitive boxers were asked to report their injuries once a month. The questionnaire collected general information (training, competition) and recorded the number of bouts fought, injuries and resulting lost days. A total of 192 injuries were recorded, 133 of which resulted in interruption of training or competition. Each boxer sustained 3 injuries per year on average. The injury rate was 12.8 injuries per 1 000 h of training. Boxers fighting more than 3 bouts per year sustain more injuries (p=0.0075). The injury rate does is not a function of age (age≤19 vs. > 19a, p=0.53). Injuries to the head and the upper limbs occur most frequently. The most common injuries are soft tissue lacerations and contusions. Head injuries with neurological symptoms rarely occur (4.2%). Boxing has a high injury rate that is comparable with other contact sports, but most injuries are minor. Injury frequency is not a function of whether the boxer competes in the junior or adult category. Athletes fighting many bouts per year have a greater risk of injury. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Whiplash Injuries: An Update

    Directory of Open Access Journals (Sweden)

    Robert W Teasell

    1998-01-01

    Full Text Available Whiplash injuries remain a significant public health problem throughout the developed industrialized world, with significant socioeconomic consequences. Studies looking at the natural history of whiplash injuries have suffered from problems of selection bias, retrospective reviewing and unclear outcomes. Etiology continues to be controversial, largely because of the misconception that all soft tissue injuries heal within six weeks. Recent studies have implicated the cervical facet joint as a cause of whiplash injury pain. A recent treatment study that successfully eliminated whiplash-associated facet joint pain demonstrated abnormal psychological profiles secondary to pain which normalized with successful pain elimination. The impact of compensation on recovery remains controversial, while the concept that mild traumatic brain injury occurs in the absence of loss of consciousness has been largely refuted. The Quebec Task Force on Whiplash-Associated Disorders recently published a report in which the scientific literature was exhaustively reviewed and has made recommendations regarding the prevention and treatment of whiplash and its associated disorders. The Quebec Task Force highlighted the paucity of good scientific evidence; however, they still provided consensus treatment guidelines, which have not been validated. There continues to be a need for further research.

  17. Deep Learning in Gastrointestinal Endoscopy.

    Science.gov (United States)

    Patel, Vivek; Armstrong, David; Ganguli, Malika; Roopra, Sandeep; Kantipudi, Neha; Albashir, Siwar; Kamath, Markad V

    2016-01-01

    Gastrointestinal (GI) endoscopy is used to inspect the lumen or interior of the GI tract for several purposes, including, (1) making a clinical diagnosis, in real time, based on the visual appearances; (2) taking targeted tissue samples for subsequent histopathological examination; and (3) in some cases, performing therapeutic interventions targeted at specific lesions. GI endoscopy is therefore predicated on the assumption that the operator-the endoscopist-is able to identify and characterize abnormalities or lesions accurately and reproducibly. However, as in other areas of clinical medicine, such as histopathology and radiology, many studies have documented marked interobserver and intraobserver variability in lesion recognition. Thus, there is a clear need and opportunity for techniques or methodologies that will enhance the quality of lesion recognition and diagnosis and improve the outcomes of GI endoscopy. Deep learning models provide a basis to make better clinical decisions in medical image analysis. Biomedical image segmentation, classification, and registration can be improved with deep learning. Recent evidence suggests that the application of deep learning methods to medical image analysis can contribute significantly to computer-aided diagnosis. Deep learning models are usually considered to be more flexible and provide reliable solutions for image analysis problems compared to conventional computer vision models. The use of fast computers offers the possibility of real-time support that is important for endoscopic diagnosis, which has to be made in real time. Advanced graphics processing units and cloud computing have also favored the use of machine learning, and more particularly, deep learning for patient care. This paper reviews the rapidly evolving literature on the feasibility of applying deep learning algorithms to endoscopic imaging.

  18. Google DeepMind and healthcare in an age of algorithms.

    Science.gov (United States)

    Powles, Julia; Hodson, Hal

    2017-01-01

    Data-driven tools and techniques, particularly machine learning methods that underpin artificial intelligence, offer promise in improving healthcare systems and services. One of the companies aspiring to pioneer these advances is DeepMind Technologies Limited, a wholly-owned subsidiary of the Google conglomerate, Alphabet Inc. In 2016, DeepMind announced its first major health project: a collaboration with the Royal Free London NHS Foundation Trust, to assist in the management of acute kidney injury. Initially received with great enthusiasm, the collaboration has suffered from a lack of clarity and openness, with issues of privacy and power emerging as potent challenges as the project has unfolded. Taking the DeepMind-Royal Free case study as its pivot, this article draws a number of lessons on the transfer of population-derived datasets to large private prospectors, identifying critical questions for policy-makers, industry and individuals as healthcare moves into an algorithmic age.

  19. Terrorist attacks in the largest metropolitan city of Pakistan: Profile of soft tissue and skeletal injuries from a single trauma center.

    Science.gov (United States)

    Khan, Muhammad Shahid; Waheed, Shahan; Ali, Arif; Mumtaz, Narjis; Feroze, Asher; Noordin, Shahryar

    2015-01-01

    Pakistan has been hugely struck with massive bomb explosions (car and suicide bombs) resulting in multiple casualties in the past few years. The aim of this study is to present the patterns of skeletal and soft tissue injuries and to review the outcome of the victims who presented to our hospital. This is a retrospective chart review from January 2008 to December 2012. The medical record numbers of patients were obtained from the hospital Health Information and Management Sciences (HIMS) as per the ICD-9 coding. During the study period, more than 100 suicide and implanted bomb blast attacks took place in the public proceedings, government offices, residential areas and other places of the city. Altogether 262 patients were enrolled in the study. The mean age of the patients was 31±14 years. The shrapnel inflicted wounds were present on to the upper limb in 24 patients and the lower limb in 50. Long bone fractures were the most common skeletal injuries. The fractures were complicated by penetrating fragments and nails which result in post operative infections and prolonged hospital stay.

  20. Technical Note: Deep learning based MRAC using rapid ultra-short echo time imaging.

    Science.gov (United States)

    Jang, Hyungseok; Liu, Fang; Zhao, Gengyan; Bradshaw, Tyler; McMillan, Alan B

    2018-05-15

    In this study, we explore the feasibility of a novel framework for MR-based attenuation correction for PET/MR imaging based on deep learning via convolutional neural networks, which enables fully automated and robust estimation of a pseudo CT image based on ultrashort echo time (UTE), fat, and water images obtained by a rapid MR acquisition. MR images for MRAC are acquired using dual echo ramped hybrid encoding (dRHE), where both UTE and out-of-phase echo images are obtained within a short single acquisition (35 sec). Tissue labeling of air, soft tissue, and bone in the UTE image is accomplished via a deep learning network that was pre-trained with T1-weighted MR images. UTE images are used as input to the network, which was trained using labels derived from co-registered CT images. The tissue labels estimated by deep learning are refined by a conditional random field based correction. The soft tissue labels are further separated into fat and water components using the two-point Dixon method. The estimated bone, air, fat, and water images are then assigned appropriate Hounsfield units, resulting in a pseudo CT image for PET attenuation correction. To evaluate the proposed MRAC method, PET/MR imaging of the head was performed on 8 human subjects, where Dice similarity coefficients of the estimated tissue labels and relative PET errors were evaluated through comparison to a registered CT image. Dice coefficients for air (within the head), soft tissue, and bone labels were 0.76±0.03, 0.96±0.006, and 0.88±0.01. In PET quantification, the proposed MRAC method produced relative PET errors less than 1% within most brain regions. The proposed MRAC method utilizing deep learning with transfer learning and an efficient dRHE acquisition enables reliable PET quantification with accurate and rapid pseudo CT generation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Tissue banking for management of nuclear casualties

    International Nuclear Information System (INIS)

    Singh, Rita

    2014-01-01

    The proliferation of nuclear material and technology has made the acquisition and adversarial use more probable than ever. Devastating medical consequences would follow a nuclear detonation due to the thermal, blast and radiation effects of the weapon. Atomic explosions at Hiroshima and Nagasaki demonstrated the human agonies on vast scale. A full range of medical modalities are required to decrease the morbidity and mortality as a result of the use of nuclear weapons. Biological tissues from human donor like bone, skin, amniotic membrane and other soft tissues can be used for repair or reconstruction of the injured part of the body. Tissues from human donor can be processed and banked for orthopaedic, spinal, trauma and other surgical procedures. Processed tissues can be provided by the tissue banks and can be of great assistance in the treatment of injuries due to the nuclear weapon. The use of allograft tissue avoids the donor site morbidity and reduces the operating time, expense and trauma associated with the acquisition of autografts. Further, allografts have the added advantage of being available in large quantities. This has led to a global increase in allogeneic transplantation and development of tissue banking. The aim of the tissue bank is to provide a wide range of processed biological tissues free from any transmissible disease, that help to restore the growth and function of the damaged tissues. Skin dressings or skin substitutes like allograft skin, xenograft skin and amniotic membrane can be used for the treatment of thermal burns and radiation induced skin injuries. Bone allografts can be used for reconstructive approaches to the skeletal system. Tissue banking would thus ensure health care to the military personnel and population following a nuclear detonation. (author)

  2. Characterization of American Football Injuries in Children and Adolescents.

    Science.gov (United States)

    Smith, Patrick J; Hollins, Anthony M; Sawyer, Jeffrey R; Spence, David D; Outlaw, Shane; Kelly, Derek M

    2018-02-01

    As a collision sport, football carries a significant risk of injury, as indicated by the large number of pediatric football-related injuries seen in emergency departments. There is little information in the medical literature focusing on the age-related injury patterns of this sport. Our purpose was to evaluate the types of football-related injuries that occur in children and adolescents and assess which patient characteristics, if any, affect injury pattern. Retrospective chart review was performed of football-related injuries treated at a level 1 pediatric referral hospital emergency department and surrounding urgent care clinics between January 2010 and January 2014. Patients with e-codes for tackle football selected from the electronic medical record were divided into 4 age groups: younger than 8 years old, 8 to 11, 12 to 14, and 15 to 18 years. Data collected included diagnosis codes, procedure codes, and hospital admission status. Review identified 1494 patients with 1664 football-related injuries, including 596 appendicular skeleton fractures, 310 sprains, 335 contusions, 170 closed head injuries, 62 dislocations, 9 spinal cord injuries, and 14 solid organ injuries. There were 646 (43.2%) athletes with upper extremity injuries and 487 (32.6%) with injuries to the lower extremity. Hospital admissions were required in 109 (7.3%) patients. Fracture was the most common injury in all four patient age groups, but occurred at a lower rate in the 15 to 18 years old age group. The rate of soft tissue injury was higher in the 15 to 18 years old age group. The rate of closed head injury, which included concussions, was highest in the younger than 8 years old age group. Age does influence the rates of certain football-related injuries in children and adolescents. Fractures decrease with increasing age, while the rate of soft tissue trauma increases with increasing age. Younger patients (younger than 8 y old) trended toward higher rates of closed head injury compared

  3. Co-micellized Pluronic mixture with thermo-sensitivity and residence stability as an injectable tissue adhesion barrier hydrogel.

    Science.gov (United States)

    Oh, Se Heang; Kang, Jun Goo; Lee, Jin Ho

    2018-01-01

    Although the tissue adhesion which leads to various complications frequently occurs after surgery, the development of an ideal tissue adhesion barrier is still a challenge. In this study, a thermo-sensitive hydrogel, which can fulfill the essential requirements of tissue adhesion barrier (that is, ease of handling for surgeon, flowing down prevention after application, stable residence on the injury during wound healing, and no use of toxic additives), was developed using biocompatible polyethylene glycol-polypropylene glycol copolymers (Pluronic F127/F68/P123 mixture). From the in vitro cell culture and in vivo animal study, it was observed that the Pluronic mixtures showed sol-gel transition at approximately body temperature (for easy injection or coating on the injury site and flowing down prevention after application) and prolonged residence stability in aqueous environment (> ∼7 days for stable protection of injury tissues/organs during wound healing), and thus was highly effective for the prevention of tissue adhesion without adverse tissue responses. Based on these results, the Pluronic F127/F68/P123 mixture itself (without any additives) can be a good candidate as an injectable or coatable tissue adhesion barrier hydrogel applicable to various injury tissues in terms of ease of use, effectiveness, and safety. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 172-182, 2018. © 2016 Wiley Periodicals, Inc.

  4. Traumatic injuries of the hip.

    LENUS (Irish Health Repository)

    Marshall, Nina

    2009-11-01

    Traumatic lesions of the hip in athletes may be clinically challenging because of the overlap in clinical presentation due to differing pathologies and the presence of multiple injuries. Imaging of the hip in the athlete has undergone a recent resurgence of interest and understanding related to the increasing accessibility and use of hip arthroscopy, which expands the treatment options available for intra-articular pathology. MR imaging and MR arthrography have a unique role in diagnosis of these pathologies, guiding the surgeon, arthroscopist, and referring clinician in their management of bony and soft tissue injury.

  5. Maggot therapy in treatment of a complex hand injury complicated by mycotic infection.

    Science.gov (United States)

    Bohac, M; Cambal, M; Zamborsky, R; Takac, P; Fedeles, J

    2015-01-01

    Complex injuries of the hand remain a therapeutic challenge for surgeons. We present the case of a male who suffered a devastating injury of the hand caused by a conveyor belt. The patient developed a progressive Absidia corymbifera infection of the affected soft tissues. Initial treatments with serial surgical debridement and topical and intravenous itraconazole were unsuccessful in eliminating the infection. We decided to use maggot debridement therapy in a new special design to debride all necrotic, devitalized tissue and preserve only healthy tissue and functioning structures. This maneuverer followed by negative pressure therapy allowed progressive healing. In such complex hand injuries, maggot debridement combined with negative pressure therapy could be considered to achieve effective and considerable results, although future functional morbidity may occur (Fig. 4, Ref. 18).

  6. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Directory of Open Access Journals (Sweden)

    Z.G. Zhao

    2014-02-01

    Full Text Available The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL on lipopolysaccharide (LPS-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1, myeloperoxidase (MPO, and Na+-K+-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT and aspartate aminotransferase (AST in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na+-K+-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na+-K+-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  7. Exogenous normal lymph reduces liver injury induced by lipopolysaccharides in rats

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Z.G.; Zhang, L.L.; Niu, C.Y.; Zhang, J. [Institute of Microcirculation, Hebei North University, Zhangjiakou, China, Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei (China)

    2014-02-17

    The liver is one of the target organs damaged by septic shock, wherein the spread of endotoxins begins. This study aimed to investigate the effects of exogenous normal lymph (ENL) on lipopolysaccharide (LPS)-induced liver injury in rats. Male Wistar rats were randomly divided into sham, LPS, and LPS+ENL groups. LPS (15 mg/kg) was administered intravenously via the left jugular vein to the LPS and LPS+ENL groups. At 15 min after the LPS injection, saline or ENL without cell components (5 mL/kg) was administered to the LPS and LPS+ENL groups, respectively, at a rate of 0.5 mL/min. Hepatocellular injury indices and hepatic histomorphology, as well as levels of P-selectin, intercellular adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO), and Na{sup +}-K{sup +}-ATPase, were assessed in hepatic tissues. Liver tissue damage occurred after LPS injection. All levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in plasma as well as the wet/dry weight ratio of hepatic tissue in plasma increased. Similarly, P-selectin, ICAM-1, and MPO levels in hepatic tissues were elevated, whereas Na{sup +}-K{sup +}-ATPase activity in hepatocytes decreased. ENL treatment lessened hepatic tissue damage and decreased levels of AST, ALT, ICAM-1, and MPO. Meanwhile, the treatment increased the activity of Na{sup +}-K{sup +}-ATPase. These results indicated that ENL could alleviate LPS-induced liver injury, thereby suggesting an alternative therapeutic strategy for the treatment of liver injury accompanied by severe infection or sepsis.

  8. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies

    Directory of Open Access Journals (Sweden)

    Arumugam S

    2011-01-01

    Full Text Available Introduction: The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury Materials & Methods: Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain and Immunohistochemistry (S-100 staining.Results: The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Conclusion: Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any

  9. Repair of Cartilage injuries using in vitro engineered 3D cartilage tissue- Preliminary Results of Our Animal Studies.

    Science.gov (United States)

    Arumugam, S; Manjunath, S; Senthilkumar, R; Rajendiran, S; Yoshioka, H; Mori, Y; Abraham, S

    2011-01-01

    The cartilage injuries demand novel therapeutic approaches as the success rates of the current conventional strategies for the repair of injured articular cartilages are not that encouraging. Earlier we have reported that the Thermoreversible Gelation Polymer (TGP) is an ideal scaffold for human chondrocyte expansion in vitro. In this study, we report the preliminary results of the in vitro expansion, characterization and experimental in vivo transplantation of chondrocytes in a rabbit model of cartilage injury. Nine rabbits were included in this study scheduled for two years, after approval by the ethics committee. In the first animal, Chondrocytes were isolated from the weight bearing area of patellar groove in the left hindlimb and cultured in TGP Scaffold and maintained at 37°C in 5% carbon dioxide incubator for 64 days without growth factors. Then the TGP-Chondrocyte construct was transplanted into an experimental defect created in the knee of the right forelimb of the same rabbit. After a period of 10 weeks, a biopsy was taken from the transplanted region and subjected to morphological analysis, characterization by histopathology (H&E stain) and Immunohistochemistry (S-100 staining). The chondrocytes in the 3D TGP culture had round to oval shaped morphology without any de-differentiation which is otherwise observed in Conventional 2D cultures. A macroscopic structure which resembled cartilage was appreciated in the TGP construct in vitro after 64 days which was then transplanted to the rabbit. The H&E and Immunohistochemistry studies confirmed the presence of chondrocytes in the biopsy tissue. Based on the results, we conclude that the TGP significantly supports the in vitro expansion of chondrocytes for a longer period and the 3D culture using TGP preserves the phenotype of the articular chondrocytes. The tissue thus grown when implanted with the TGP has engrafted well without any adverse reactions and upon confirmation of safety following completion of the

  10. The safety of transcranial magnetic stimulation with deep brain stimulation instruments.

    Science.gov (United States)

    Shimojima, Yoshio; Morita, Hiroshi; Nishikawa, Noriko; Kodaira, Minori; Hashimoto, Takao; Ikeda, Shu-Ichi

    2010-02-01

    Transcranial magnetic stimulation (TMS) has been employed in patients with an implanted deep brain stimulation (DBS) device. We investigated the safety of TMS using simulation models with an implanted DBS device. The DBS lead was inserted into plastic phantoms filled with dilute gelatin showing impedance similar to that of human brain. TMS was performed with three different types of magnetic coil. During TMS (1) electrode movement, (2) temperature change around the lead, and (3) TMS-induced current in various situations were observed. The amplitude and area of each evoked current were measured to calculate charge density of the evoked current. There was no movement or temperature increase during 0.2 Hz repetitive TMS with 100% stimulus intensity for 1 h. The size of evoked current linearly increased with TMS intensity. The maximum charge density exceeded the safety limit of 30 muC/cm(2)/phase during stimulation above the loops of the lead with intensity over 50% using a figure-eight coil. Strong TMS on the looped DBS leads should not be administered to avoid electrical tissue injury. Subcutaneous lead position should be paid enough attention for forthcoming situations during surgery. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Experimental evaluation of neural probe’s insertion induced injury based on digital image correlation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenguang, E-mail: zhwg@sjtu.edu.cn; Ma, Yakun; Li, Zhengwei [State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-01-15

    Purpose: The application of neural probes in clinic has been challenged by probes’ short lifetime when implanted into brain tissue. The primary goal is to develop an evaluation system for testing brain tissue injury induced by neural probe’s insertion using microscope based digital image correlation method. Methods: A brain tissue phantom made of silicone rubber with speckle pattern on its surface was fabricated. To obtain the optimal speckle pattern, mean intensity gradient parameter was used for quality assessment. The designed testing system consists of three modules: (a) load module for simulating neural electrode implantation process; (b) data acquisition module to capture micrographs of speckle pattern and to obtain reactive forces during the insertion of the probe; (c) postprocessing module for extracting tissue deformation information from the captured speckle patterns. On the basis of the evaluation system, the effects of probe wedge angle, insertion speed, and probe streamline on insertion induced tissue injury were investigated. Results: The optimal quality speckle pattern can be attained by the following fabrication parameters: spin coating rate—1000 r/min, silicone rubber component A: silicone rubber component B: softener: graphite = 5 ml: 5 ml: 2 ml: 0.6 g. The probe wedge angle has a significant effect on tissue injury. Compared to wedge angle 40° and 20°, maximum principal strain of 60° wedge angle was increased by 40.3% and 87.5%, respectively; compared with a relatively higher speed (500 μm/s), the maximum principle strain within the tissue induced by slow insertion speed (100 μm/s) was increased by 14.3%; insertion force required by probe with convex streamline was smaller than the force of traditional probe. Based on the experimental results, a novel neural probe that has a rounded tip covered by a biodegradable silk protein coating with convex streamline was proposed, which has both lower insertion and micromotion induced tissue

  12. Complex Foot Injury: Early and Definite Management.

    Science.gov (United States)

    Schepers, Tim; Rammelt, Stefan

    2017-03-01

    Complex foot injuries occur infrequently, but are life-changing events. They often present with other injuries as the result of a high-energy trauma. After initial stabilization, early assessment should be regarding salvagability. All treatment strategies are intensive. The initial treatment includes prevention of progression ischemia/necrosis, prevention of infection, and considering salvage or amputation. Definitive treatment for salvage includes anatomic reconstruction with stable internal fixation and early soft tissue coverage followed by aggressive rehabilitation. Prognosis after complex injuries is hard to predict. The various stages of the treatment are reviewed and recommendations are made. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control.

    Science.gov (United States)

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G

    2015-08-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Common injuries related to weightlifting: MR imaging perspective.

    Science.gov (United States)

    Yu, Joseph S; Habib, Paula A

    2005-12-01

    Weightlifting has evolved to become a ubiquitous form of exercise. Resistance training has been shown to have beneficial effects on both muscle and osseous maintenance and development. Competitive weightlifting sports continue to enjoy tremendous popularity, with participants striving to establish new standards in performance and more demanding personal goals. Thus, it is not surprising that we have also seen an increase in injuries related to weightlifting. Many of these injuries are radiographically occult and are best suited for evaluation by magnetic resonance (MR) imaging because many involve the soft tissues. In this article, we discuss some of the factors that contribute to these injuries and address the mechanisms of injury and the MR imaging manifestations of the more common injuries.

  15. NF-kappaB-driven STAT2 and CCL2 expression in astrocytes in response to brain injury

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Babcock, Alicia A; Owens, Trevor

    2008-01-01

    Tissue response to injury includes expression of genes encoding cytokines and chemokines. These regulate entry of immune cells to the injured tissue. The synthesis of many cytokines and chemokines involves NF-kappaB and signal transducers and activators of transcription (STAT). Injury to the CNS ...

  16. Long-term outcome of high-energy open Lisfranc injuries: a retrospective study.

    Science.gov (United States)

    Nithyananth, Manasseh; Boopalan, Palapattu R J V C; Titus, Vijay T K; Sundararaj, Gabriel D; Lee, Vernon N

    2011-03-01

    The outcome of open Lisfranc injuries has been reported infrequently. Should these injuries be managed as closed injuries and is their outcome different? We undertook a retrospective study of high-energy, open Lisfranc injuries treated between 1999 and 2005. The types of dislocation, the associated injuries to the same foot, the radiologic and functional outcome, and the complications were studied. There were 22 patients. Five patients died. One had amputation. Of the remaining 16 patients, 13 men were followed up at a mean of 56 months (range, 29-88 months). The average age was 36 years (range, 7-55 years). According to the modified Hardcastle classification, type B2 injury was the commonest. Ten patients had additional forefoot or midfoot injury. All patients were treated with debridement, open reduction, and multiple Kirschner (K) wire fixation. All injuries were Gustilo Anderson type IIIa or IIIb. Nine patients had split skin graft for soft tissue cover. Mean time taken for wound healing was 16 days (range, 10-30 days). Ten patients (77%) had fracture comminution. Eight patients had anatomic reduction, whereas five had nonanatomic reduction. Ten of 13 (77%) patients had at least one spontaneous tarsometatarsal joint fusion. The mean American Orthopaedic Foot and Ankle Society score was 82 (range, 59-100). Nonanatomic reduction, osteomyelitis, deformity of toes, planus foot, and mild discomfort on prolonged walking were the unfavorable outcomes present. In open Lisfranc injuries, multiple K wire fixation should be considered especially in the presence of comminution and soft tissue loss. Although anatomic reduction is always not obtained, the treatment principles should include adequate debridement, maintaining alignment with multiple K wires, and obtaining early soft tissue cover. There is a high incidence of fusion across tarsometatarsal joints. Copyright © 2011 by Lippincott Williams & Wilkins

  17. Pediatric sports injuries: an age comparison of children versus adolescents.

    Science.gov (United States)

    Stracciolini, Andrea; Casciano, Rebecca; Levey Friedman, Hilary; Meehan, William P; Micheli, Lyle J

    2013-08-01

    Significant knowledge deficits exist regarding sports injuries in the young child. Children continue to engage in physically demanding, organized sports to a greater extent despite the lack of physical readiness, predisposing themselves to injury. To evaluate sports injuries sustained in very young children (5-12 years) versus their older counterparts (13-17 years) with regard to the type and location of injuries, severity, and diagnosis. Cross-sectional study; Level of evidence, 3. A retrospective chart review was performed on a 5% random probability sample (final N = 2133) of 5- to 17-year-old patients treated for sports injuries in the Division of Sports Medicine at a large, academic pediatric medical center between 2000 and 2009. Using descriptive statistics, correlates of injuries by age group, injury type, and body area are shown. Five- to 12-year-old patients differed in key ways from older patients. Children in this category sustained injuries that were more often traumatic in nature and more commonly of the upper extremity. Older patients (13-17 years) were more likely to be treated for injuries to the chest, hip/pelvis, and spine. A greater proportion of the older children were treated for overuse injuries, as compared with their younger counterparts (54.4% vs. 49.2%, respectively), and a much larger proportion of these injuries were classified as soft tissue injuries as opposed to bony injuries (37.9% vs. 26.1%, respectively). Injury diagnosis differed between the 2 age groups. The 13- to 17-year age group sustained more anterior cruciate ligament injuries, meniscal tears, and spondylolysis, while younger children were diagnosed with fractures, including physeal fractures, apophysitis, and osteochondritis dissecans. The 5- to 12-year-old patients treated for spine injuries were disproportionately female (75.8%); most of these injuries were overuse (78.8%) and bony (60.6%); over one third of the youngest children were diagnosed with spondylolysis. Surgery

  18. Venous Thromboembolism: A Comparison of Chronic Spinal Cord Injury and General Surgery Patients in a Metropolitan Veterans Affairs Hospital.

    Science.gov (United States)

    Moore, Ryan M; Rimler, Jonathan; Smith, Brian R; Wirth, Garrett A; Paydar, Keyianoosh Z

    2016-11-01

    Venous thromboembolic events result in significant morbidity, mortality, and costly therapeutic interventions. As medical resource allocation strategies are becoming more pervasive, appropriate risk stratification and prophylactic regimens are essential. Previous studies have shown a decreased incidence of perioperative venous thromboembolism in the chronic spinal cord injury population. The question remains of whether chronic spinal cord injury is protective against venous thromboembolism. A retrospective review of all cases involving chronic spinal cord injury patients who underwent plastic and reconstructive surgery operations (n = 424) and general surgery patients (n = 777) with a primary outcome of deep venous thrombosis or pulmonary embolism within 90 days of surgery was performed. The incidence of postoperative deep venous thrombosis in the control and spinal cord injury groups was 1.7 percent and 0.2 percent, respectively (p = 0.027). However, such significance was not observed with regard to postoperative pulmonary embolism incidence (p = 0.070). Collectively, the incidence of postoperative venous thromboembolism-specifically, deep venous thrombosis or pulmonary embolism-was significantly greater in the general surgery population (p = 0.014). A nearly 10-fold increased risk of venous thromboembolism was seen among the control group (1.9 percent versus 0.2 percent) despite administration of optimal prophylaxis. This study demonstrates a profoundly low incidence of venous thromboembolism among chronic spinal cord injury patients compared with general surgery patients. Future efforts to elucidate how chronic spinal cord injury confers a protective mechanism may potentially influence the evolution of venous thromboembolism prevention guidelines, and spark the development of alternative prophylactic agents or customized application of prevention efforts.

  19. Strain and rate-dependent neuronal injury in a 3D in vitro compression model of traumatic brain injury

    Science.gov (United States)

    Bar-Kochba, Eyal; Scimone, Mark T.; Estrada, Jonathan B.; Franck, Christian

    2016-01-01

    In the United States over 1.7 million cases of traumatic brain injury are reported yearly, but predictive correlation of cellular injury to impact tissue strain is still lacking, particularly for neuronal injury resulting from compression. Given the prevalence of compressive deformations in most blunt head trauma, this information is critically important for the development of future mitigation and diagnosis strategies. Using a 3D in vitro neuronal compression model, we investigated the role of impact strain and strain rate on neuronal lifetime, viability, and pathomorphology. We find that strain magnitude and rate have profound, yet distinctively different effects on the injury pathology. While strain magnitude affects the time of neuronal death, strain rate influences the pathomorphology and extent of population injury. Cellular injury is not initiated through localized deformation of the cytoskeleton but rather driven by excess strain on the entire cell. Furthermore we find that, mechanoporation, one of the key pathological trigger mechanisms in stretch and shear neuronal injuries, was not observed under compression. PMID:27480807

  20. Evolution of the Deep-space Galactic Cosmic Ray Lineal Energy Transfer Spectrum through Tissue Equivalent Plastic

    Science.gov (United States)

    Case, A. W.; Kasper, J. C.; Spence, H. E.; Golightly, M. J.; Schwadron, N. A.; Mazur, J. E.; Blake, J. B.; Looper, M. D.; Townsend, L.; Zeitlin, C. J.

    2011-12-01

    The Cosmic Ray Telescope for the Effects of Radiation is an energetic particle telescope that resides on the Lunar Reconnaissance Orbiter spacecraft, currently in a 50 km circular lunar polar orbit. The telescope consists of 6 silicon semi-conductor detectors placed in pairs that surround two pieces of Tissue Equivalent Plastic (TEP), which serve to absorb energy from particles as they transit through the instrument. Particles with energies greater than 12 MeV/nucleon can penetrate the outermost shield and be measured by the instrument. The primary measurement made by the instrument is of the Linear Energy Transfer (LET) of energetic particles as they transit through the telescope. CRaTER measures the LET spectrum with unprecedented energy resolution and has done so during a period of historically low solar activity that led to record high intensities of Galactic Cosmic Rays (GCR). These LET spectra are used to study changes in the properties of the incoming particles, and to make detailed measurements of the radiation doses human explorers will experience in deep space on missions to the moon, to asteroids, or to Mars. We present LET spectra accumulated during 2009 and 2010. We show how the LET spectrum evolves through the instrument as the GCR interact with the TEP. Due to the importance of these measurements for human effects, our extensive absolute calibration procedures are presented. Of particular note is a significant reduction in the flux of particles with LET greater than 10 keV/um for detectors that lie deeper within the telescope stack, due to the attenuation of high LET particles within the TEP. By measuring this attenuation we can estimate the depth in human tissue where the highest LET particles that are most likely to cause genetic damage pose the greatest threat to humans in space.

  1. Giant cell tumor of soft tissue: a case report with emphasis on MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Moon Young; Jee, Won-Hee [The Catholic University of Korea, Department of Radiology, Seoul St. Mary' s Hospital, School of Medicine, Seocho-gu, Seoul (Korea, Republic of); Jung, Chan Kwon [The Catholic University of Korea, Department of Pathology, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of); Yoo, Ie Ryung [The Catholic University of Korea, Department of Nuclear Medicine, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of); Chung, Yang-Guk [The Catholic University of Korea, Department of Orthopedic Surgery, Seoul St. Mary' s Hospital, College of Medicine, Seocho-gu, Seoul (Korea, Republic of)

    2015-04-03

    Giant cell tumor of soft tissue is a rare neoplasm, histologically resembling giant cell tumor of bone. In this report, we describe a deep and solid giant cell tumor of soft tissue interpreted as a benign soft tissue tumor based on magnetic resonance (MR) findings with hypointense to intermediate signals on T2-weighted images and impeded diffusivity (water movement) on diffusion-weighted imaging (DWI), which could suggest a giant-cell-containing benign soft tissue tumor, despite the malignancy suggested by {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography in a 35-year-old male. To our knowledge, this report introduces the first deep, solid giant cell tumor of soft tissue with MR features of a giant-cell-containing benign soft tissue tumor, despite the malignancy-mimicking findings on {sup 18}F-FDG PET-CT. (orig.)

  2. Mechanisms of injury and protection in cells and tissues at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P.

    1976-06-01

    The survival of frozen-thawed cells is importantly influenced by the cooling rate. In general, cells exhibit maximum survival at an intermediate cooling rate, the numerical value of which depends on the type of cell, the additive present, and the warming rate. Theory and experiment now strongly indicate that death at supraoptimal cooling rates is the result of the formation of intracellular ice crystals during cooling and their growth to damaging size during warming. The causes of death in cells cooled at suboptimal rates, on the other hand, are more complex and more uncertain. Although additives like glycerol and dimethyl sulfoxide do not protect against injury at supraoptimal rates, they are generally essential for the survival of slowly frozen mammalian cells. The two major theories of slow freezing injury predict that protection is chiefly a colligative effect and that it requires the presence of additive inside the cell as well as outside. The evidence of the colligative aspects of protection is conflicting. The evidence on the requirement for permeation is increasingly negative, a fact which suggests that to protect the whole cell it may be sufficient to protect the cell surface. Slow freezing injury appears due to a number of sequential events. The first may well be high electrolyte concentrations. Additives protect against these, but may themselves introduce other forms of injury, the most likely of which is osmotic shock.

  3. Tissue-Derived Extracellular Matrix Bioscaffolds: Emerging Applications in Cartilage and Meniscus Repair.

    Science.gov (United States)

    Monibi, Farrah A; Cook, James L

    2017-08-01

    Musculoskeletal injuries are a common problem in orthopedic practice. Given the long-term consequences of unaddressed cartilage and meniscal pathology, a number of treatments have been attempted to stimulate repair or to replace the injured tissue. Despite advances in orthopedic surgery, effective treatments for cartilage and meniscus injuries remain a significant clinical challenge. Tissue engineering is a developing field that aims to regenerate injured tissues with a combination of cells, scaffolds, and signals. Many natural and synthetic scaffold materials have been developed and tested for the repair and restoration of a number of musculoskeletal tissues. Among these, biological scaffolds derived from cell and tissue-derived extracellular matrix (ECM) have shown great promise in tissue engineering given the critical role of the ECM for maintaining the biological and biomechanical properties, structure, and function of native tissues. This review article presents emerging applications for tissue-derived ECM scaffolds in cartilage and meniscus repair. We examine normal ECM composition and the current and future methods for potential treatment of articular cartilage and meniscal defects with decellularized scaffolds.

  4. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  5. Thermometry system development for thermoradiotherapy of deep-seated tumours

    Science.gov (United States)

    Fadeev, A. M.; Ivanov, S. M.; Perelstein, E. A.; Polozov, S. M.

    2017-12-01

    Therapeutic hyperthermia (including RF hyperthermia) in combination with radiotherapy (called thermoradiotherapy) is one of widely used contemporary cancer treatment methods. The independent electron linac and RF system or their combinations are necessary for effective therapy. Whole-body hyperthermia is used for treatment of metastatic cancer that was spread throughout the body, regional one is used for treatment of part of the body (for instance leg or abdominal cavity). Local hyperthermia with characteristic size of heating volume of 20-100 mm permits to heat tumour without overheating of healthy tissues. The thermometry of deep suited tissues during the hyperthermia process is an important and complex task. Invasive methods as thermistors, optical sensors or thermo-couples can not be widely used because all of them are able to transport tumor cells to the healthy region of the patient body. Distant methods of the temperature measurement such, as radiothermometry and acoustic thermometry can not be used for tissues seated deeper than 5-7 cm. One of possible ways to solve the problem of temperature measurement of the deep suited tissues is discussed in this article: it was proposed to use the same electrodes for RF hyperthermia and thermometry. As known electrodynamics characteristics of tissues are sufficiently depends on temperature. It was proposed to use this effect for active radiothermometry in local hyperthermia. Two opposite RF dipoles can be used as generator and receiver of pick-up signal.

  6. Comparison of whole-body post mortem 3D CT and autopsy evaluation in accidental blunt force traumatic death using the abbreviated injury scale classification.

    Science.gov (United States)

    Daly, Barry; Abboud, Samir; Ali, Zabiullah; Sliker, Clint; Fowler, David

    2013-02-10

    Although 3D CT imaging data are available on survivors of accidental blunt trauma, little similar data has been collected and classified on major injuries in victims of fatal injuries. This study compared the sensitivity of post mortem computed tomography (PMCT) with that of conventional autopsy for major trauma findings classified according to the trauma Abbreviated Injury Scale (AIS). Whole-body 3D PMCT imaging data and full autopsy findings were analyzed on 21 victims of accidental blunt force trauma death. All major injuries were classified on the AIS scale with ratings from 3 (serious) to 6 (unsurvivable). Agreement between sensitivity of autopsy and PMCT for major injuries was determined. A total of 195 major injuries were detected (mean per fatality, 9.3; range, 1-14). Skeletal injuries by AIS grade included 37 grade 3, 45 grade 4, 12 grade 5, and 2 grade 6 major findings. Soft tissue injuries included 10 grade 3, 68 grade 4, 16 grade 5, and 5 grade 6 major findings. Of these, PMCT detected 165 (88 skeletal, 77 soft tissue), and autopsy detected 127 (59 skeletal, 68 soft tissue). PMCT agreed with autopsy in 86% and 76% of skeletal and soft tissue injuries, respectively. PMCT detected an additional 37 skeletal and 31 soft tissue injuries that were not identified at autopsy. Autopsy detected 8 skeletal and 22 soft tissue injuries that were not detected by PMCT. PMCT was more sensitive for skeletal (P=0.05) and head and neck region injury (P=0.043) detection. PMCT showed a trend for greater sensitivity than autopsy, but this did not reach statistical significance (P=0.083). 3D PMCT detected significantly more skeletal injuries than autopsy and a similar number of soft tissue injuries to autopsy and promises to be a sensitive tool for detection and classification of skeletal injuries in fatal blunt force accidental trauma. Use of the AIS scale allows standardized categorization and quantification of injuries that contribute to death in such cases and allows more

  7. Deep Learning Microscopy

    KAUST Repository

    Rivenson, Yair

    2017-05-12

    We demonstrate that a deep neural network can significantly improve optical microscopy, enhancing its spatial resolution over a large field-of-view and depth-of-field. After its training, the only input to this network is an image acquired using a regular optical microscope, without any changes to its design. We blindly tested this deep learning approach using various tissue samples that are imaged with low-resolution and wide-field systems, where the network rapidly outputs an image with remarkably better resolution, matching the performance of higher numerical aperture lenses, also significantly surpassing their limited field-of-view and depth-of-field. These results are transformative for various fields that use microscopy tools, including e.g., life sciences, where optical microscopy is considered as one of the most widely used and deployed techniques. Beyond such applications, our presented approach is broadly applicable to other imaging modalities, also spanning different parts of the electromagnetic spectrum, and can be used to design computational imagers that get better and better as they continue to image specimen and establish new transformations among different modes of imaging.

  8. Local cooling does not prevent hyperalgesia following burn injury in humans

    DEFF Research Database (Denmark)

    Werner, Mads U; Lassen, Birgit Vibeke; Pedersen, Juri L

    2002-01-01

    One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti-inflammato......One of the oldest methods of pain relief following a burn injury is local application of ice or cold water. Experimental data indicate that cooling may also reduce the severity of tissue injury and promote wound healing, but there are no controlled studies in humans evaluating the anti...... and mechanical detection thresholds, thermal and mechanical pain responses, area of secondary hyperalgesia), first degree burn injuries were induced on both calves by contact thermodes (12.5 cm(2), 47 degrees C for 7 min). Eight minutes after the burn injury, contact thermodes (12.5 cm(2)) were again applied...... on the burns. One of the thermodes cooled the burn (8 degrees C for 30 min) whereas the other thermode was a non-active dummy on the control burn. Inflammatory and sensory variables were followed for 160 min after end of the cooling procedure. The burn injury induced significant increases in skin temperature...

  9. PEDLA: predicting enhancers with a deep learning-based algorithmic framework.

    Science.gov (United States)

    Liu, Feng; Li, Hao; Ren, Chao; Bo, Xiaochen; Shu, Wenjie

    2016-06-22

    Transcriptional enhancers are non-coding segments of DNA that play a central role in the spatiotemporal regulation of gene expression programs. However, systematically and precisely predicting enhancers remain a major challenge. Although existing methods have achieved some success in enhancer prediction, they still suffer from many issues. We developed a deep learning-based algorithmic framework named PEDLA (https://github.com/wenjiegroup/PEDLA), which can directly learn an enhancer predictor from massively heterogeneous data and generalize in ways that are mostly consistent across various cell types/tissues. We first trained PEDLA with 1,114-dimensional heterogeneous features in H1 cells, and demonstrated that PEDLA framework integrates diverse heterogeneous features and gives state-of-the-art performance relative to five existing methods for enhancer prediction. We further extended PEDLA to iteratively learn from 22 training cell types/tissues. Our results showed that PEDLA manifested superior performance consistency in both training and independent test sets. On average, PEDLA achieved 95.0% accuracy and a 96.8% geometric mean (GM) of sensitivity and specificity across 22 training cell types/tissues, as well as 95.7% accuracy and a 96.8% GM across 20 independent test cell types/tissues. Together, our work illustrates the power of harnessing state-of-the-art deep learning techniques to consistently identify regulatory elements at a genome-wide scale from massively heterogeneous data across diverse cell types/tissues.

  10. Burn Injury: A Challenge for Tissue Engineers

    Directory of Open Access Journals (Sweden)

    Yerneni LK

    2009-01-01

    Full Text Available Ever since man invented fire he has been more frequently burning himself by this creation than by the naturally occurring bushfires. It is estimated that over 1.152 million people in India suffer from burn injuries requiring treatment every year and majority of them are women aged between 16-40 years and most of them occur in the kitchen. The treatment for burns basically involves autologous skin grafting, which originated in India more than two thousand years ago (Sushruta Samhita, is still the gold standard for the wound resurfacing, although, autografting is difficult where graftable donor sites are limited. Although, Cadaver skin, porcine or bovine xenografts are used alternatively over the past thirty years, modern approaches like the Bioengineering of skin substitutes emerged during the past 20 years as advanced wound management technologies with no social impediment. They can be broadly categorized as Acellular and Cellular biotechnological products. The acellular products like Alloderm (LifeCell Corporation, Integra (Integra Life Sciences act like template and depend on natural regeneration, while the cellular ones are either ‘Off-the-Shelf’ products like Apligraf (Organogenesis Inc and Orcel (Ortec International have allogenic elements and ‘home grown’ autologous cell products like Cultured Epithelial Autograft (CEA and epidermal-dermal composite skin use synthetic or natural non-human matrices. The CEA is based on the ex-vivo epidermal stem cell-expansion and our laboratory has been engaged in CEA technique development with innovative cost-effective approach and yielded promising preliminary clinical success. The basic methodological approach in CEA technique which is still clinically adopted by several developed countries involves the use of growth arrested mouse dermal fibroblasts as growth supportive matrix and is thus considered a drawback as a whole. Additionally, there is no superior enough method available to augment the

  11. Apophysomyces trapeziformis infection associated with a tornado-related injury.

    Science.gov (United States)

    Weddle, Gina; Gandy, Kimberly; Bratcher, Denise; Pahud, Barbara; Jackson, Mary Anne

    2012-06-01

    This report defines the role of Apophysomyces as an aggressive fungal pathogen seen after a tornado injury. Clinical and laboratory manifestations of infections after environmentally contaminated wounds incurred during a tornado are outlined, emphasizing mechanism of injury, comorbidities, and diagnostic and treatment challenges. Therapy with systemic antifungal therapy and aggressive serial tissue debridement was successful in achieving cure.

  12. First biological measurements of deep-sea corals from the Red Sea.

    Science.gov (United States)

    Roder, C; Berumen, M L; Bouwmeester, J; Papathanassiou, E; Al-Suwailem, A; Voolstra, C R

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with 'deep-sea' and 'cold-water' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  13. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  14. Proteomic Analysis of Lung Tissue in a Rat Acute Lung Injury Model: Identification of PRDX1 as a Promoter of Inflammation

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS remains a high morbidity and mortality disease entity in critically ill patients, despite decades of numerous investigations into its pathogenesis. To obtain global protein expression changes in acute lung injury (ALI lung tissues, we employed a high-throughput proteomics method to identify key components which may be involved in the pathogenesis of ALI. In the present study, we analyzed lung tissue proteomes of Pseudomonas aeruginosa-induced ALI rats and identified eighteen proteins whose expression levels changed more than twofold as compared to normal controls. In particular, we found that PRDX1 expression in culture medium was elevated by a lipopolysaccharide (LPS challenge in airway epithelial cells in vitro. Furthermore, overexpression of PRDX1 increased the expression of proinflammatory cytokines interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor-α (TNF-α, whereas knockdown of PRDX1 led to downregulated expression of cytokines induced by LPS. In conclusion, our findings provide a global alteration in the proteome of lung tissues in the ALI rat model and indicate that PRDX1 may play a critical role in the pathogenesis of ARDS by promoting inflammation and represent a novel strategy for the development of new therapies against ALI.

  15. Medial patellofemoral ligament: Research progress in anatomy and injury imaging

    International Nuclear Information System (INIS)

    Zheng Lei; Zhao Bin

    2013-01-01

    The medial patellofemoral ligament (MPFL) is considered as the most important soft tissue restraint providing medial stability of the patellofemoral joint. During patellar dislocation, the MPFL is subjected to severe stretching forces, resulting in injuries of the ligament in the most patients. With the development of medical imaging technology, a variety of non-invasive diagnostic imaging methods have been becoming important means in diagnosis of MPFL injury. In this paper, MPFL anatomy, the applications of medical imaging technology in diagnosis of MPFL injury and the distributions of MPFL injury site were reviewed. (authors)

  16. Protective effect of gel form of gastric gavage applicated aloe vera on ischemia reperfusion injury in renal and lung tissue.

    Science.gov (United States)

    Sahin, Hasan; Yener, Ali Umit; Karaboga, Ihsan; Sehitoglu, Muserref Hilal; Dogu, Tugba; Altinisik, Hatice Betul; Altinisik, Ugur; Simsek, Tuncer

    2017-12-30

    The aloe vera plant has become increasingly popular in recent years. This study aimed to research the effect of aloe vera to prevent renal and lung tissue damage in an experimental ischemia-reperfusion (I/R) injury model. The study included 21 male Wistar Albino rats, which were categorized into control group, n = 7 (no procedures), Sham group n = 7 (I/R); and aloe vera therapy group, n = 7 (aloe vera and I/R). Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) were evaluated from lung and kidney tissues for biochemical investigations. As histopathological, hematoxylin and eosin and anti-iNOS were also examined. In biochemical investigations, SOD, CAT, and GPx levels of the Sham group were found to be lower compared with the other groups (P < 0.05). The aloe vera therapy group was not statistically different from control groups but significantly different compared with the Sham group. In the same way, the MDA levels of kidney and lung tissues were statistically significant in the aloe vera therapy group, compared to the Sham group. In the Sham group, the peribronchial and perialveolar edema were observed in lung parenchyma. Also, excess interstitial hemorrhage, leukocyte infiltration, and alveolar wall thickening were identified in ischemic groups. The histopathological changes were much lighter than in the aloe vera therapy group. In renal tissues, excess epithelial cell deterioration, tubular desqumination, and glomerular atrophy were observed in the Sham group. The histopathological changes were markedly reduced in the aloe vera therapy  group. In the kidney and lung tissue, the level of iNOS activity in the Sham group was significantly higher than in the control and aloe vera therapy group. This study indicated that aloe vera is protective against oxidative damage formed by I/R in distant organs like the lungs and kidneys.

  17. [Expression of various matrix metalloproteinases in mice with hyperoxia-induced acute lung injury].

    Science.gov (United States)

    Zhang, Xiang-feng; Ding, Shao-fang; Gao, Yuan-ming; Liang, Ying; Foda, Hussein D

    2006-08-01

    To investigate the role of matrix metalloproteinases (MMPs) and extracellular matrix metalloproteinase inducer (EMMPRIN) in the pathogenesis of acute lung injury induced by hyperoxia. Fifty four mice were exposed in sealed cages to >98% oxygen (for 24-72 hours), and another 18 mice to room air. The severity of lung injury was assessed, and the expression of mRNA and protein of MMP-2, MMP-9 and EMMPRIN in lung tissue, after exposure for 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Hyperoxia caused acute lung injury; this was accompanied by increased expression of an upregulation of MMP-2, MMP-9 and EMMPRIN mRNA and protein in lung tissues. Hyperoxia causes acute lung injury in mice; increases in MMP-2, MMP-9 and EMMPRIN may play an important role in the development of hyperoxia induced lung injury in mice.

  18. Fingertip injuries: an update on management.

    Science.gov (United States)

    Lee, Donald H; Mignemi, Megan E; Crosby, Samuel N

    2013-12-01

    Injuries to the fingertip are common. The goal of treatment is restoration of a painless, functional digit with protective sensation. The amount of soft-tissue loss, the integrity of the nail bed, and the age and physical demands of the patient should be considered when selecting a treatment method. Some new products are effective for management of injuries to the fingertip. The use of 2-octylcyanoacrylate for nail bed repair is faster than suture repair, with equivalent results reported. Dermal regeneration template is effective for coverage of digital injuries with exposed tendons or bones that lack peritenon or periosteum. Although fingertip replantation offers better functional results than does revision amputation, replantation is more technically demanding and requires longer recovery time. Complications associated with management of injuries to the fingertip include nail deformities, insensate digits, and painful neuromas.

  19. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy

    International Nuclear Information System (INIS)

    Horton, Jureta W.

    2003-01-01

    Burn trauma produces significant fluid shifts that, in turn, reduce cardiac output and tissue perfusion. Treatment approaches to major burn injury include administration of crystalloid solutions to correct hypovolemia and to restore peripheral perfusion. While this aggressive postburn volume replacement increases oxygen delivery to previously ischemic tissue, this restoration of oxygen delivery is thought to initiate a series of deleterious events that exacerbate ischemia-related tissue injury. While persistent hypoperfusion after burn trauma would produce cell death, volume resuscitation may exacerbate the tissue injury that occurred during low flow state. It is clear that after burn trauma, tissue adenosine triphosphate (ATP) levels gradually fall, and increased adenosine monophosphate (AMP) is converted to hypoxanthine, providing substrate for xanthine oxidase. These complicated reactions produce hydrogen peroxide and superoxide, clearly recognized deleterious free radicals. In addition to xanthine oxidase related free radical generation in burn trauma, adherent-activated neutrophils produce additional free radicals. Enhanced free radical production is paralleled by impaired antioxidant mechanisms; as indicated by burn-related decreases in superoxide dismutase, catalase, glutathione, alpha tocopherol, and ascorbic acid levels. Burn related upregulation of inducible nitric oxide synthase (iNOS) may produce peripheral vasodilatation, upregulate the transcription factor nuclear factor kappa B (NF-κB), and promote transcription and translation of numerous inflammatory cytokines. NO may also interact with the superoxide radical to yield peroxynitrite, a highly reactive mediator of tissue injury. Free radical mediated cell injury has been supported by postburn increases in systemic and tissue levels of lipid peroxidation products such as conjugated dienes, thiobarbituric acid reaction products, or malondialdehyde (MDA) levels. Antioxidant therapy in burn therapy

  20. Tissue Engineering Strategies in Ligament Regeneration

    OpenAIRE

    Yilgor, Caglar; Yilgor Huri, Pinar; Huri, Gazi

    2011-01-01

    Ligaments are dense fibrous connective tissues that connect bones to other bones and their injuries are frequently encountered in the clinic. The current clinical approaches in ligament repair and regeneration are limited to autografts, as the gold standard, and allografts. Both of these techniques have their own drawbacks that limit the success in clinical setting; therefore, new strategies are being developed in order to be able to solve the current problems of ligament grafting. Tissue eng...