WorldWideScience

Sample records for deep subseafloor sediments

  1. Human-associated fungi in deep subseafloor sediment?

    Science.gov (United States)

    Fulfer, V. M.; Kirkpatrick, J. B.; D'Hondt, S.

    2015-12-01

    Recent studies have reported fungi in marine sediment samples from depths as great as 1740 meters below seafloor (mbsf) (Rédou et al., 2014). Such studies have utilized a variety of techniques to identify fungi, including cultivation of isolates, amplicon sequencing, and metagenomics. Six recent studies of marine sediment collectively identify nearly 100 fungal taxa at the genus and species levels (Damare et al., 2006; Lai et al., 2007; Edgcomb et al., 2010; Singh et al., 2010; Orsi et al., 2013; Rédou et al., 2014). Known marine taxa are rarely identified by these studies. For individual studies with more than two taxa, between 16% and 57% of the fungal taxa are human microflora or associated with human environments (e.g., human skin or indoor air). For example, three of the six studies identified Malassezia species that are common skin inhabitants of humans and dogs. Although human-associated taxa have been identified in both shallow and deep sediment, they pose a particularly acute problem for deep subseafloor samples, where claims of a eukaryotic deep biosphere are most striking; depending on the study, 25% to 38% of species identified in sediment taken at depths greater than 40 meters are human-associated. Only one to three species have been reported from each of the four samples taken at depths greater than one km (eight species total; Rédou et al., 2014). Of these eight species, three are human-associated. This ubiquity of human-associated microflora is very problematic for interpretations of an indigenous deep subseafloor fungal community; either human-associated taxa comprise a large fraction of marine sedimentary fungi, or sample and analytical contamination is so widespread that the extent and ubiquity of a deep subseafloor fungal community remains uncertain. This highlights the need for stringent quality control measures throughout coring, sampling, and recovery of marine sediment, and when cultivating, extracting, and/or sequencing fungi from

  2. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG)

    OpenAIRE

    Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik

    2009-01-01

    Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use...

  3. Growth of sulfate reducers in deep-subseafloor sediments stimulated by crustal fluids

    Directory of Open Access Journals (Sweden)

    Katja eFichtel

    2012-02-01

    Full Text Available On a global scale, crustal fluids fuel a substantial part of the deep subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from a sediment column of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301 which is divided into three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone and a second (~140 m thick sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. Sulfate reducers were isolated from near-surface and near-basement sediments. All initial enrichments harboured specific communities of heterotrophic microorganisms. Among those, the number of isolated spore-forming Firmicutes decreased from 60% to 21% with sediment depth. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp. and Desulfovibrio aespoeensis were recovered from the upper sediment layers (1.3-9.1 meters below seafloor, mbsf. Several strains of Desulfovibrio indonesiensis and one relative of Desulfotignum balticum were isolated from near-basement sediments (240-262 mbsf. The physiological investigation of strains affiliated to D. aespoeensis, D. indonesiensis and D. balticum indicated that they were all able to use sulfate, thiosulfate and sulfite as electron acceptors. In the presence of sulfate, they grew strain-specifically on a few short-chain n-alcohols and fatty acids, only. The strains fermented either ethanol, pyruvate or betaine. Interestingly, all strains utilized hydrogen and the isolate affiliated to D. indonesiensis even exhibited an autotrophic life-mode. Thus, in the deep subseafloor where organic substrates are limited or hardly degradable, hydrogen might become an essential electron donor. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from

  4. Isolation of sulfate-reducing bacteria from sediments above the deep-subseafloor aquifer.

    Science.gov (United States)

    Fichtel, Katja; Mathes, Falko; Könneke, Martin; Cypionka, Heribert; Engelen, Bert

    2012-01-01

    On a global scale, crustal fluids fuel a large part of the deep-subseafloor biosphere by providing electron acceptors for microbial respiration. In this study, we examined bacterial cultures from sediments of the Juan de Fuca Ridge, Northeast Pacific (IODP Site U1301). The sediments comprise three distinctive compartments: an upper sulfate-containing zone, formed by bottom-seawater diffusion, a sulfate-depleted zone, and a second (∼140 m thick) sulfate-containing zone influenced by fluid diffusion from the basaltic aquifer. In order to identify and characterize sulfate-reducing bacteria, enrichment cultures from different sediment layers were set up, analyzed by molecular screening, and used for isolating pure cultures. The initial enrichments harbored specific communities of heterotrophic microorganisms. Strains affiliated to Desulfosporosinus lacus, Desulfotomaculum sp., and Desulfovibrio aespoeensis were isolated only from the top layers (1.3-9.1 meters below seafloor, mbsf), while several strains of Desulfovibrio indonesiensis and a relative of Desulfotignum balticum were obtained from near-basement sediments (240-262 mbsf). Physiological tests on three selected strains affiliated to Dv. aespoeensis, Dv. indonesiensis, and Desulfotignum balticum indicated that all reduce sulfate with a limited number of short-chain n-alcohols or fatty acids and were able to ferment either ethanol, pyruvate, or betaine. All three isolates shared the capacity of growing chemolithotrophically with H(2) as sole electron donor. Strain P23, affiliating with Dv. indonesiensis, even grew autotrophically in the absence of any organic compounds. Thus, H(2) might be an essential electron donor in the deep-subseafloor where the availability of organic substrates is limited. The isolation of non-sporeforming sulfate reducers from fluid-influenced layers indicates that they have survived the long-term burial as active populations even after the separation from the seafloor hundreds

  5. Carbon and nitrogen assimilation in deep subseafloor microbial cells

    OpenAIRE

    Morono, Yuki; Terada, Takeshi; Nishizawa, Manabu; Ito, Motoo; Hillion, François; Takahata, Naoto; Sano, Yuji; Inagaki, Fumio

    2011-01-01

    Remarkable numbers of microbial cells have been observed in global shallow to deep subseafloor sediments. Accumulating evidence indicates that deep and ancient sediments harbor living microbial life, where the flux of nutrients and energy are extremely low. However, their physiology and energy requirements remain largely unknown. We used stable isotope tracer incubation and nanometer-scale secondary ion MS to investigate the dynamics of carbon and nitrogen assimilation activities in individua...

  6. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323)

    DEFF Research Database (Denmark)

    Wehrmann, Laura M.; Risgaard-Petersen, Nils; Schrum, Heather

    2011-01-01

    We studied microbially mediated diagenetic processes driven by carbon mineralization in subseafloor sediment of the northeastern Bering Sea Slope to a depth of 745 meters below seafloor (mbsf). Sites U1343, U1344 and U1345 were drilled during Integrated Ocean Drilling Program (IODP) Expedition 323......) and between 300 and 400 mbsf. The SMTZ at the three sites is located between 6 and 9 mbsf. The upward methane fluxes into the SMTZ are similar to fluxes in SMTZs underlying high-productivity surface waters off Chile and Namibia. Our Bering Sea results show that intense organic carbon mineralization drives...... microbially mediated carbon mineralization leaves DIC isotope composition unaffected. Ongoing carbonate formation between 300 and 400 mbsf strongly influences pore-water DIC and magnesium concentration profiles. The linked succession of organic carbon mineralization and carbonate dissolution and precipitation...

  7. The stable carbon isotope biogeochemistry of acetate and other dissolved carbon species in deep subseafloor sediments at the northern Cascadia Margin

    Science.gov (United States)

    Heuer, Verena B.; Pohlman, John W.; Torres, Marta E.; Elvert, Marcus; Hinrichs, Kai-Uwe

    2009-01-01

    Ocean drilling has revealed the existence of vast microbial populations in the deep subseafloor, but to date little is known about their metabolic activities. To better understand the biogeochemical processes in the deep biosphere, we investigate the stable carbon isotope chemistry of acetate and other carbon-bearing metabolites in sediment pore-waters. Acetate is a key metabolite in the cycling of carbon in anoxic sediments. Its stable carbon isotopic composition provides information on the metabolic processes dominating acetate turnover in situ. This study reports our findings for a methane-rich site at the northern Cascadia Margin (NE Pacific) where Expedition 311 of the Integrated Ocean Drilling Program (IODP) sampled the upper 190 m of sediment. At Site U1329, δ13C values of acetate span a wide range from −46.0‰ to −11.0‰ vs. VPDB and change systematically with sediment depth. In contrast, δ13C values of both the bulk dissolved organic carbon (DOC) (−21.6 ± 1.3‰ vs. VPDB) and the low-molecular-weight compound lactate (−20.9 ± 1.8‰ vs. VPDB) show little variability. These species are interpreted to represent the carbon isotopic composition of fermentation products. Relative to DOC, acetate is up to 23.1‰ depleted and up to 9.1‰ enriched in 13C. Broadly, 13C-depletions of acetate relative to DOC indicate flux of carbon from acetogenesis into the acetate pool while 13C-enrichments of pore-water acetate relative to DOC suggest consumption of acetate by acetoclastic methanogenesis. Isotopic relationships between acetate and lactate or DOC provide new information on the carbon flow and the presence and activity of specific functional microbial communities in distinct biogeochemical horizons of the sediment. In particular, they suggest that acetogenic CO2-reduction can coexist with methanogenic CO2-reduction, a notion contrary to the hypothesis that hydrogen levels are controlled by the thermodynamically most favorable electron

  8. Global Distribution of Net Electron Acceptance in Subseafloor Sediment

    Science.gov (United States)

    Fulfer, V. M.; Pockalny, R. A.; D'Hondt, S.

    2017-12-01

    We quantified the global distribution of net electron acceptance rates (e-/m2/year) in subseafloor sediment (>1.5 meters below seafloor [mbsf]) using (i) a modified version of the chemical-reaction-rate algorithm by Wang et al. (2008), (ii) physical properties and dissolved oxygen and sulfate data from interstitial waters of sediment cores collected by the Ocean Drilling Program, Integrated Ocean Drilling Program, International Ocean Discovery Program, and U.S. coring expeditions, and (iii) correlation of net electron acceptance rates to global oceanographic properties. Calculated net rates vary from 4.8 x 1019 e-/m2/year for slowly accumulating abyssal clay to 1.2 x 1023 e-/m2/year for regions of high sedimentation rate. Net electron acceptance rate correlates strongly with mean sedimentation rate. Where sedimentation rate is very low (e.g., 1 m/Myr), dissolved oxygen penetrates more than 70 mbsf and is the primary terminal electron acceptor. Where sedimentation rate is moderate (e.g., 3 to 60 m/Myr), dissolved sulfate penetrates as far as 700 mbsf and is the principal terminal electron acceptor. Where sedimentation rate is high (e.g., > 60 m/Myr), dissolved sulfate penetrates only meters, but is the principal terminal electron acceptor in subseafloor sediment to the depth of sulfate penetration. Because microbial metabolism continues at greater depths than the depth of sulfate penetration in fast-accumulating sediment, complete quantification of subseafloor metabolic rates will require consideration of other chemical species.

  9. Phylogenetic Diversity of aprA Genes in Subseafloor Sediments on the Northwestern Pacific Margin off Japan.

    Science.gov (United States)

    Aoki, Masataka; Kakiuchi, Ryota; Yamaguchi, Takashi; Takai, Ken; Inagaki, Fumio; Imachi, Hiroyuki

    2015-01-01

    Markedly diverse sequences of the adenosine-5'-phosphosulfate reductase alpha subunit gene (aprA), which encodes a key enzyme in microbial sulfate reduction and sulfur oxidation, were detected in subseafloor sediments on the northwestern Pacific off Japan. The aprA gene sequences were grouped into 135 operational taxonomic units (90% sequence identity), including genes related to putative sulfur-oxidizing bacteria predominantly detected in sulfate-depleted deep sediments. Our results suggest that microbial ecosystems in the subseafloor biosphere have phylogenetically diverse genetic potentials to mediate cryptic sulfur cycles in sediments, even where sulfate is rarely present.

  10. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2013-01-01

    Full Text Available The stable isotopes of nitrogen offer a unique perspective on changes in the nitrogen cycle, past and present. However, the presence of multiple forms of nitrogen in marine sediments can complicate the interpretation of bulk nitrogen isotope measurements. Although the large-scale global patterns of seafloor δ15N have been shown to match process-based expectations, small-scale heterogeneity on the seafloor, or alterations of isotopic signals during translation into the subseafloor record, could obscure the primary signals. Here, a public database of nitrogen isotope measurements is described, including both seafloor and subseafloor sediment samples ranging in age from modern to the Pliocene, and used to assess these uncertainties. In general, good agreement is observed between neighbouring seafloor sites within a 100 km radius, with 85% showing differences of < 1‰. There is also a good correlation between the δ15N of the shallowest (< 5 ka subseafloor sediments and neighbouring seafloor sites within a 100 km radius (R2 = 0.83, which suggests a reliable translation of sediments into the buried sediment record. Meanwhile, gradual δ15N decreases over multiple glacial–interglacial cycles appear to reflect post-depositional alteration in records from the deep sea (below 2000 m. We suggest a simple conceptual model to explain these 100-kyr-timescale changes in well-oxygenated, slowly accumulating sediments, which calls on differential loss rates for pools of organic N with different δ15N. We conclude that bulk sedimentary nitrogen isotope records are reliable monitors of past changes in the marine nitrogen cycle at most locations, and could be further improved with a better understanding of systematic post-depositional alteration. Furthermore, geochemical or environmental criteria should be developed in order to effectively identify problematic locations and to account for

  11. Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds.

    Science.gov (United States)

    Navarri, Marion; Jégou, Camille; Meslet-Cladière, Laurence; Brillet, Benjamin; Barbier, Georges; Burgaud, Gaëtan; Fleury, Yannick

    2016-03-10

    The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites.

  12. Deep sequencing of subseafloor eukaryotic rRNA reveals active Fungi across marine subsurface provinces.

    Directory of Open Access Journals (Sweden)

    William Orsi

    Full Text Available The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC, nitrate, sulfide, and dissolved inorganic carbon (DIC. These correlations are supported by terminal restriction length polymorphism (TRFLP analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.

  13. Distribution of dehalogenation activity in subseafloor sediments of the Nankai Trough subduction zone.

    Science.gov (United States)

    Futagami, Taiki; Morono, Yuki; Terada, Takeshi; Kaksonen, Anna H; Inagaki, Fumio

    2013-04-19

    Halogenated organic matter buried in marine subsurface sediment may serve as a source of electron acceptors for anaerobic respiration of subseafloor microbes. Detection of a diverse array of reductive dehalogenase-homologous (rdhA) genes suggests that subseafloor organohalide-respiring microbial communities may play significant ecological roles in the biogeochemical carbon and halogen cycle in the subseafloor biosphere. We report here the spatial distribution of dehalogenation activity in the Nankai Trough plate-subduction zone of the northwest Pacific off the Kii Peninsula of Japan. Incubation experiments with slurries of sediment collected at various depths and locations showed that degradation of several organohalides tested only occurred in the shallow sedimentary basin, down to 4.7 metres below the seafloor, despite detection of rdhA in the deeper sediments. We studied the phylogenetic diversity of the metabolically active microbes in positive enrichment cultures by extracting RNA, and found that Desulfuromonadales bacteria predominate. In addition, for the isolation of genes involved in the dehalogenation reaction, we performed a substrate-induced gene expression screening on DNA extracted from the enrichment cultures. Diverse DNA fragments were obtained and some of them showed best BLAST hit to known organohalide respirers such as Dehalococcoides, whereas no functionally known dehalogenation-related genes such as rdhA were found, indicating the need to improve the molecular approach to assess functional genes for organohalide respiration.

  14. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Science.gov (United States)

    Ciobanu, M.-C.; Rabineau, M.; Droz, L.; Révillon, S.; Ghiglione, J.-F.; Dennielou, B.; Jorry, S.-J.; Kallmeyer, J.; Etoubleau, J.; Pignet, P.; Crassous, P.; Vandenabeele-Trambouze, O.; Laugier, J.; Guégan, M.; Godfroy, A.; Alain, K.

    2012-09-01

    An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion). Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG), within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG) and Halobacteria) within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence analyses (CCA) showed that the availability of electron acceptors and the quality of electron donors (indicated by age

  15. Sedimentological imprint on subseafloor microbial communities in Western Mediterranean Sea Quaternary sediments

    Directory of Open Access Journals (Sweden)

    M.-C. Ciobanu

    2012-09-01

    Full Text Available An interdisciplinary study was conducted to evaluate the relationship between geological and paleoenvironmental parameters and the bacterial and archaeal community structure of two contrasting subseafloor sites in the Western Mediterranean Sea (Ligurian Sea and Gulf of Lion. Both depositional environments in this area are well-documented from paleoclimatic and paleooceanographic point of views. Available data sets allowed us to calibrate the investigated cores with reference and dated cores previously collected in the same area, and notably correlated to Quaternary climate variations. DNA-based fingerprints showed that the archaeal diversity was composed by one group, Miscellaneous Crenarchaeotic Group (MCG, within the Gulf of Lion sediments and of nine different lineages (dominated by MCG, South African Gold Mine Euryarchaeotal Group (SAGMEG and Halobacteria within the Ligurian Sea sediments. Bacterial molecular diversity at both sites revealed mostly the presence of the classes Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria within Proteobacteria phylum, and also members of Bacteroidetes phylum. The second most abundant lineages were Actinobacteria and Firmicutes at the Gulf of Lion site and Chloroflexi at the Ligurian Sea site. Various substrates and cultivation conditions allowed us to isolate 75 strains belonging to four lineages: Alpha-, Gammaproteobacteria, Firmicutes and Actinobacteria. In molecular surveys, the Betaproteobacteria group was consistently detected in the Ligurian Sea sediments, characterized by a heterolithic facies with numerous turbidites from a deep-sea levee. Analysis of relative betaproteobacterial abundances and turbidite frequency suggested that the microbial diversity was a result of main climatic changes occurring during the last 20 ka. Statistical direct multivariate canonical correspondence

  16. Ion migration in ocean sediments: subseafloor radioactive waste disposal

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Ray, A.K.; Davis, E.J.

    1980-01-01

    In this study of seabed disposal, analytical ion transport models were developed and used to elucidate ion migration through ocean sediments and to study the escape of ions from the ocean floor into the water column. An unsteady state isothermal diffusion model was developed for the region far from the canister to examine the effects of ion diffusion, adsorption, radioactive decay, sediment thickness and canister position. Analytical solutions were derived to represent the transient concentration profiles within the sediment, ion flux and the ion discharge rate to the water column for two types of initial conditions: instantaneous dissolution of the canister and constant canister leakage. Generalized graphs showing ion migration and behavior are presented

  17. In situ time-series measurements of subseafloor sediment properties

    Science.gov (United States)

    Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.

    2007-01-01

    The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.

  18. Cultivation of methanogenic community from 2-km deep subseafloor coalbeds using a continuous-flow bioreactor

    Science.gov (United States)

    Imachi, H.; Tasumi, E.; Morono, Y.; Ito, M.; Takai, K.; Inagaki, F.

    2013-12-01

    Deep subseafloor environments associated with hydrocarbon reservoirs have been least explored by previous scientific drilling and hence the nature of deep subseafloor life and its ecological roles in the carbon cycle remain largely unknown. In this study, we performed cultivation of subseafloor methanogenic communities using a continuous-flow bioreactor with polyurethane sponges, called down-flow hanging sponge (DHS) reactor. The sample used for the reactor cultivation was obtained from 2 km-deep coalbeds off the Shimokita Peninsula of Japan, the northwestern Pacific, during the Integrated Ocean Drilling Program (IODP) Expedition 337 using a riser drilling technology of the drilling vessel Chikyu. The coalbed samples were incubated anaerobically in the DHS reactor at the in-situ temperature of 40°C. Synthetic seawater supplemented with a tiny amount of yeast extract, acetate, propionate and butyrate was provided into the DHS reactor. After 34 days of the bioreactor operation, a small production of methane was observed. The methane concentration was gradually increased and the stable carbon isotopic composition of methane was consistency 13C-depleted during the bioreactor operation, indicating the occurrence of microbial methanogenesis. Microscopic observation showed that the enrichment culture contained a variety of microorganisms, including methanogen-like rod-shaped cells with F420 auto-fluorescence. Interestingly, many spore-like particles were observed in the bioreactor enrichment. Phylogenetic analysis of 16S rRNA genes showed the growth of phylogenetically diverse bacteria and archaea in the DHS reactor. Predominant archaeal components were closely related to hydrogenotrophic methanogens within the genus Methanobacterium. Some predominant bacteria were related to the spore-formers within the class Clostridia, which are overall in good agreement with microscopic observations. By analyzing ion images using a nano-scale secondary ion mass spectrometry (Nano

  19. Ship space to database: emerging infrastructures for studies of the deep subseafloor biosphere

    Directory of Open Access Journals (Sweden)

    Peter T. Darch

    2016-11-01

    Full Text Available Background An increasing array of scientific fields face a “data deluge.” However, in many fields data are scarce, with implications for their epistemic status and ability to command funding. Consequently, they often attempt to develop infrastructure for data production, management, curation, and circulation. A component of a knowledge infrastructure may serve one or more scientific domains. Further, a single domain may rely upon multiple infrastructures simultaneously. Studying how domains negotiate building and accessing scarce infrastructural resources that they share with other domains will shed light on how knowledge infrastructures shape science. Methods We conducted an eighteen-month, qualitative study of scientists studying the deep subseafloor biosphere, focusing on the Center for Dark Energy Biosphere Investigations (C-DEBI and the Integrated Ocean Drilling Program (IODP and its successor, the International Ocean Discovery Program (IODP2. Our methods comprised ethnographic observation, including eight months embedded in a laboratory, interviews (n = 49, and document analysis. Results Deep subseafloor biosphere research is an emergent domain. We identified two reasons for the domain’s concern with data scarcity: limited ability to pursue their research objectives, and the epistemic status of their research. Domain researchers adopted complementary strategies to acquire more data. One was to establish C-DEBI as an infrastructure solely for their domain. The second was to use C-DEBI as a means to gain greater access to, and reconfigure, IODP/IODP2 to their advantage. IODP/IODP2 functions as infrastructure for multiple scientific domains, which creates competition for resources. C-DEBI is building its own data management infrastructure, both to acquire more data from IODP and to make better use of data, once acquired. Discussion Two themes emerge. One is data scarcity, which can be understood only in relation to a domain

  20. High frequency of phylogenetically diverse reductive dehalogenase-homologous genes in deep subseafloor sedimentary metagenomes

    Directory of Open Access Journals (Sweden)

    Mikihiko eKawai

    2014-03-01

    Full Text Available Marine subsurface sediments on the Pacific margin harbor diverse microbial communities even at depths of several hundreds meters below the seafloor (mbsf or more. Previous PCR-based molecular analysis showed the presence of diverse reductive dehalogenase gene (rdhA homologs in marine subsurface sediment, suggesting that anaerobic respiration of organohalides is one of the possible energy-yielding pathways in the organic-rich sedimentary habitat. However, primer-independent molecular characterization of rdhA has remained to be demonstrated. Here, we studied the diversity and frequency of rdhA homologs by metagenomic analysis of five different depth horizons (0.8, 5.1, 18.6, 48.5 and 107.0 mbsf at Site C9001 off the Shimokita Peninsula of Japan. From all metagenomic pools, remarkably diverse rdhA-homologous sequences, some of which are affiliated with novel clusters, were observed with high frequency. As a comparison, we also examined frequency of dissimilatory sulfite reductase genes (dsrAB, key functional genes for microbial sulfate reduction. The dsrAB were also widely observed in the metagenomic pools whereas the frequency of dsrAB genes was generally smaller than that of rdhA-homologous genes. The phylogenetic composition of rdhA-homologous genes was similar among the five depth horizons. Our metagenomic data revealed that subseafloor rdhA homologs are more diverse than previously identified from PCR-based molecular studies. Spatial distribution of similar rdhA homologs across wide depositional ages indicates that the heterotrophic metabolic processes mediated by the genes can be ecologically important, functioning in the organic-rich subseafloor sedimentary biosphere.

  1. Distributions of microbial activities in deep subseafloor sediments RID D-2690-2009 RID C-7675-2009 RID B-8817-2009 RID C-2958-2008 RID B-1731-2010

    DEFF Research Database (Denmark)

    D'Hondt, S.; Jørgensen, BB; Miller, DJ

    2004-01-01

    Diverse microbial communities and numerous energy-yielding activities occur in deeply buried sediments of the eastern Pacific Ocean. Distributions of metabolic activities often deviate from the standard model. Rates of activities, cell concentrations, and populations of cultured bacteria vary...

  2. Relationship of subseafloor microbial diversity to sediment age and organic carbon content

    Science.gov (United States)

    Walsh, E. A.; Kirkpatrick, J. B.; Sogin, M. L.; D'Hondt, S. L.

    2013-12-01

    Our tag pyrosequencing investigation of four globally distant sites reveals sediment age and total organic carbon content to be significant components in understanding subseafloor diversity. Our sampling locations include two sites from high-productivity regions (Indian Ocean and Bering Sea) and two from moderate-productivity (eastern and central equatorial Pacific Ocean). Sediment from the high-productivity sites has much higher TOC than sediment from the moderate-productivity equatorial sites. We applied a high-resolution 16S V4-V6 tag pyrosequencing approach to 24 bacterial and 17 archaeal samples, totaling 602,502 reads. We identified1,291 archaeal and 15,910 bacterial OTUs (97%) from these reads. We analyzed bacterial samples from all four sites in addition to archaeal samples from our high productivity sites. These high productivity, high TOC sites have a pronounced methane-rich sulfate-free zone at depth from which archaea have been previously considered to dominate (Biddle et al., 2006). At all four locations, microbial diversity is highest near the seafloor and drops rapidly to low but stable values with increasing sediment depth. The depth at which diversity stabilizes varies greatly from site to site, but the age at which it stabilizes is relatively constant. At all four sites, diversity reaches low stable values a few hundred thousand years after sediment deposition. The sites with high total organic carbon (high productivity sites) generally exhibit higher diversity at each sediment age than the sites with lower total organic carbon (moderate-productivity sites). Archaeal diversity is lower than bacterial diversity at every sampled depth. Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R. et al. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. PNAS 103: 3846-3851.

  3. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts.

    Science.gov (United States)

    Bengtson, S; Ivarsson, M; Astolfo, A; Belivanova, V; Broman, C; Marone, F; Stampanoni, M

    2014-11-01

    The deep biosphere of the subseafloor crust is believed to contain a significant part of Earth's biomass, but because of the difficulties of directly observing the living organisms, its composition and ecology are poorly known. We report here a consortium of fossilized prokaryotic and eukaryotic micro-organisms, occupying cavities in deep-drilled vesicular basalt from the Emperor Seamounts, Pacific Ocean, 67.5 m below seafloor (mbsf). Fungal hyphae provide the framework on which prokaryote-like organisms are suspended like cobwebs and iron-oxidizing bacteria form microstromatolites (Frutexites). The spatial inter-relationships show that the organisms were living at the same time in an integrated fashion, suggesting symbiotic interdependence. The community is contemporaneous with secondary mineralizations of calcite partly filling the cavities. The fungal hyphae frequently extend into the calcite, indicating that they were able to bore into the substrate through mineral dissolution. A symbiotic relationship with chemoautotrophs, as inferred for the observed consortium, may be a pre-requisite for the eukaryotic colonization of crustal rocks. Fossils thus open a window to the extant as well as the ancient deep biosphere. © 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

  4. Temperature Limit of the Deep Subseafloor Biosphere in the Nankai Trough Subduction Zone off Cape Muroto (IODP T-Limit Expedition 370)

    Science.gov (United States)

    Morono, Y.; Hauer, V. B.; Inagaki, F.; Kubo, Y.; Maeda, L.; Scientists, E.

    2017-12-01

    Expedition 370 of the International Ocean Discovery Program (IODP) aimed to explore the limits of life in the deep subseafloor biosphere at a location where elevated heat flow lets temperature increase with sediment depth beyond the known maximum of microbial life ( 120°C) at 1.2 km below the seafloor. Such conditions are met in the protothrust zone of the Nankai Trough off Cape Muroto, Japan, where Site C0023 was established in the vicinity of ODP Sites 808 and 1174 at a water depth of 4776 m using the drilling vessel DV Chikyu. Hole C0023A was cored down to a total depth of 1180 meters below seafloor, offshore sampling and research was combined with simultaneous shore-based investigations at the Kochi Core Center (KCC), and long-term temperature observations were started (Heuer et al., 2017). The primary scientific objectives of Expedition 370 are (a) to detect and investigate the presence or absence of life and biological processes at the biotic-abiotic transition of the deep subseafloor with unprecedented analytical sensitivity and precision; (b) to comprehensively study the factors that control biomass, activity, and diversity of microbial communities; and (c) to elucidate if continuous or episodic flow of fluids containing thermogenic and/or geogenic nutrients and energy substrates support subseafloor microbial communities in the Nankai Trough accretionary complex (Hinrichs et al., 2016). This contribution will highlight the scientific approach of our field-work and preliminary expedition results by shipboard and shorebased activities. Hinrichs K-U, Inagaki F, Heuer VB, Kinoshita M, Morono Y, Kubo Y (2016) Expedition 370 Scientific Prospectus: T-Limit of the Deep Biosphere off Muroto (T-Limit). International Ocean Discovery Program. http://dx.doi.org/10.14379/iodp.sp.370.2016 Heuer VB, Inagaki F, Morono Y, Kubo Y, Maeda L, the Expedition 370 Scientists (2017) Expedition 370 Preliminary Report: Temperature Limit of the Deep Biosphere off Muroto. International

  5. Size and Carbon Content of Sub-seafloor Microbial Cells at Landsort Deep, Baltic Sea

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Littmann, Sten

    2016-01-01

    determined the volume and the carbon content of microbial cells from a marine sediment drill core retrieved by the Integrated Ocean Drilling Program (IODP), Expedition 347, at Landsort Deep, Baltic Sea. To determine their shape and volume, cells were separated from the sediment matrix by multi-layer density......-specific carbon content was 19–31 fg C cell−1, which is at the lower end of previous estimates that were used for global estimates of microbial biomass. The cell-specific carbon density increased with sediment depth from about 200 to 1000 fg C μm−3, suggesting that cells decrease their water content and grow...... small cell sizes as adaptation to the long-term subsistence at very low energy availability in the deep biosphere. We present for the first time depth-related data on the cell volume and carbon content of sedimentary microbial cells buried down to 60 m below the seafloor. Our data enable estimates...

  6. Viral abundance and activity in the deep sub-seafloor biosphere

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Glud, Ronnie N.; Filippini, Manuela

    2011-01-01

    of undiluted, but homogenized, sediment samples (13.3 and 79.8 mbsf) in anaerobic bags. Viral abundance decreased rapidly (decay rates of 0.010 +/- 0.002 [SD] and 0.022 +/- 0.018 [SD] h(-1), respectively) in the incubations, suggesting that homogenization exposed the viruses to degradation processes. We...... hypothesize that most of the deep subsurface viral communities inhabit a microenvironment where the viruses are protected against decay, and can therefore persist in undisturbed sediments for hundreds of thousands, perhaps even millions, of years....

  7. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin

    DEFF Research Database (Denmark)

    Inagaki, F.; Nunoura, T.; Nakagawa, S.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their ......The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes...... of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members...

  8. Buried deep: How data about subseafloor life becomes dark and why

    Science.gov (United States)

    Darch, P. T.; Cummings, R.

    2013-12-01

    Earth scientists increasingly work in distributed, multidisciplinary projects. To promote the sharing of data across such a project, it is vital to improve long-term preservation of data in formats accessible to scientists in multiple disciplines with diverse needs, tools and scientific practices. When developing data management plans and infrastructure, it is important to ask: - What data are generated? - Where are these data preserved and shared? - What are the processes by which these data become 'dark'? - What are the infrastructural and social factors that shape these processes? In response to these questions, we present findings from the first year of a case study of the Center for Dark Energy Biosphere Investigations (C-DEBI), an NSF Science and Technology Center studying microbial life in the deep subseafloor biosphere. Our case study is funded by the Sloan Foundation and the NSF. It involves observation in laboratories, interviews, attendance of scientific meetings, and document analysis. At the laboratory level, we observed scientists mainly working on individual projects, or in a team of two or three. There is infrequent sharing of laboratory-generated data across C-DEBI. Where it does happen, it often takes place following discovery of the data through informal networks or serendipitous encounters with the data's creator. Instead, most of the laboratory-generated data become dark data. These data are typically preserved on a scientist's personal computer in ways particular to the individual, frequently not in a form meaningful to others. Other scientists are often not even aware that these data exist. Furthermore, the scientist tends to take care to preserve these data only as long as they require them: data loss can occur over time. Some data - those which support findings in a paper - may be deposited in a disciplinary database. However, these data are the end result of extensive processing: earlier versions of datasets can be lost. Also, in some

  9. Molecular diversity of bacterial communities from subseafloor rock samples in a deep-water production basin in Brazil.

    Science.gov (United States)

    von der Weid, Irene; Korenblum, Elisa; Jurelevicius, Diogo; Rosado, Alexandre Soares; Dino, Rodolfo; Sebastian, Gina Vasquez; Seldin, Lucy

    2008-01-01

    The deep subseafloor rock in oil reservoirs represents a unique environment in which a high oilcontamination and very low biomass can be observed. Sampling this environment has been a challenge owing to the techniques used for drilling and coring. In this study, the facilities developed by the Brazilian oil company PETROBRAS for accessing deep subsurface oil reservoirs were used to obtain rock samples at 2,822-2,828 m below the ocean floor surface from a virgin field located in the Atlantic Ocean, Rio de Janeiro. To address the bacterial diversity of these rock samples, PCR amplicons were obtained using the DNA from four core sections and universal primers for 16S rRNA and for APS reductase (aps) genes. Clone libraries were generated from these PCR fragments and 87 clones were sequenced. The phylogenetic analyses of the 16S rDNA clone libraries showed a wide distribution of types in the domain bacteria in the four core samples, and the majority of the clones were identified as belonging to Betaproteobacteria. The sulfate-reducing bacteria community could only be amplified by PCR in one sample, and all clones were identified as belonging to Gammaproteobacteria. For the first time, the bacterial community was assessed in such deep subsurface environment.

  10. Atribacteria from the Subseafloor Sedimentary Biosphere Disperse to the Hydrosphere through Submarine Mud Volcanoes.

    Science.gov (United States)

    Hoshino, Tatsuhiko; Toki, Tomohiro; Ijiri, Akira; Morono, Yuki; Machiyama, Hideaki; Ashi, Juichiro; Okamura, Kei; Inagaki, Fumio

    2017-01-01

    Submarine mud volcanoes (SMVs) are formed by muddy sediments and breccias extruded to the seafloor from a source in the deep subseafloor and are characterized by the discharge of methane and other hydrocarbon gasses and deep-sourced fluids into the overlying seawater. Although SMVs act as a natural pipeline connecting the Earth's surface and subsurface biospheres, the dispersal of deep-biosphere microorganisms and their ecological roles remain largely unknown. In this study, we investigated the microbial communities in sediment and overlying seawater at two SMVs located on the Ryukyu Trench off Tanegashima Island, southern Japan. The microbial communities in mud volcano sediments were generally distinct from those in the overlying seawaters and in the well-stratified Pacific margin sediments collected at the Peru Margin, the Juan de Fuca Ridge flank off Oregon, and offshore of Shimokita Peninsula, northeastern Japan. Nevertheless, in-depth analysis of different taxonomic groups at the sub-species level revealed that the taxon affiliated with Atribacteria , heterotrophic anaerobic bacteria that typically occur in organic-rich anoxic subseafloor sediments, were commonly found not only in SMV sediments but also in the overlying seawater. We designed a new oligonucleotide probe for detecting Atribacteria using the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH). CARD-FISH, digital PCR and sequencing analysis of 16S rRNA genes consistently showed that Atribacteria are abundant in the methane plumes of the two SMVs (0.58 and 1.5 × 10 4 cells/mL, respectively) but not in surrounding waters, suggesting that microbial cells in subseafloor sediments are dispersed as "deep-biosphere seeds" into the ocean. These findings may have important implications for the microbial transmigration between the deep subseafloor biosphere and the hydrosphere.

  11. Methods in mooring deep sea sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Fernando, V.; Rajaraman, V.S.; Janakiraman, G.

    The experience gained during the process of deployment and retrieval of nearly 39 sets of deep sea sediment trap moorings on various ships like FS Sonne, ORV Sagarkanya and DSV Nand Rachit are outlined. The various problems encountered...

  12. A Moessbauer study of deep sea sediments

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Furuta, T.; Kobayashi, K.

    1981-01-01

    In order to determine the chemical states of iron in deep sea sediments, Moessbauer spectra of the sediments collected from various areas of the Pacific have been measured. The Moessbauer spectra were composed of paramagnetic ferric, high-spin ferrous, and magnetic components. The correlation of their relative abundance to the sampling location and the kind of sediments may afford clues to infer the origin of each iron-bearing phase. (author)

  13. Acetogenesis in the energy-starved deep biosphere - a paradox?

    DEFF Research Database (Denmark)

    Lever, Mark

    2012-01-01

    Under anoxic conditions in sediments, acetogens are often thought to be outcompeted by microorganisms performing energetically more favorable metabolic pathways, such as sulfate reduction or methanogenesis. Recent evidence from deep subseafloor sediments suggesting acetogenesis in the presence of...... to be taken into account to understand microbial survival in the energy-depleted deep biosphere....

  14. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.; Bengtson, S.

    2013-12-01

    The oceanic crust makes up the largest potential habitat for life on Earth, yet next to nothing is known about the abundance, diversity and ecology of its biosphere. Our understanding of the deep biosphere of subseafloor crust is, with a few exceptions, based on a fossil record. Surprisingly, a majority of the fossilized microorganisms have been interpreted or recently re-interpreted as remnants of fungi rather than prokaryotes. Even though this might be due to a bias in fossilization the presence of fungi in these settings can not be neglected. We have examined fossilized microorganisms in drilled basalt samples collected at the Emperor Seamounts in the Pacific Ocean. Synchrotron-radiation X-ray tomography microscopy (SRXTM) studies has revealed a complex morphology and internal structure that corresponds to characteristic fungal morphology. Chitin was detected in the fossilized hyphae, which is another strong argument in favour of a fungal interpretation. Chitin is absent in prokaryotes but a substantial constituent in fungal cell walls. The fungal colonies consist of both hyphae and yeast-like growth states as well as resting structures and possible fruit bodies, thus, the fungi exist in vital colonies in subseafloor basalts. The fungi have also been involved in extensive weathering of secondary mineralisations. In terrestrial environments fungi are known as an important geobiological agent that promotes mineral weathering and decomposition of organic matter, and they occur in vital symbiosis with other microorganisms. It is probable to assume that fungi would play a similar role in subseafloor basalts and have great impact on the ecology and on biogeochemical cycles in such environments.

  15. Ion transport in deep-sea sediments

    International Nuclear Information System (INIS)

    Heath, G.R.

    1979-01-01

    Initial assessment of the ability of deep-sea clays to contain nuclear waste is optimistic. Yet, the investigators have no delusions about the complexity of the natural geochemical system and the perturbations that may result from emplacement of thermally-hot waste cannisters. Even though they may never be able to predict the exact nature of all these perturbations, containment of the nuclides by the waste form/cannister system until most of the heat has decayed, and burial of the waste to a sufficient depth that the altered zone can be treated as a black box source of dissolved nuclides to the enclosing unperturbed sediment, encourage them to believe that ion migration in the deep seabed can be modeled accurately and that our preliminary estimates of migration rates are likely to be reasonably realistic

  16. Subseafloor basalts as fungal habitats

    Directory of Open Access Journals (Sweden)

    M. Ivarsson

    2012-09-01

    Full Text Available The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50–200 µm in diameter body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  17. Phosphate solubilizing bacteria: Comparison between coastal and deep sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Biche, S.; Pandey, S.; Gonsalves, M.J.B.D.; Das, A.; Mascarenhas-Pereira, M.B.L.; LokaBharathi, P.A.

    in the CIB sediments (r=0.59) than in the coastal sediments (r= 0.22). It is apparent that the enzyme activity in the coastal sediments could be more for P mobilization and in the oligotrophic deep sea it could be both for P and C mobilization....

  18. Gene expression in the deep biosphere.

    Science.gov (United States)

    Orsi, William D; Edgcomb, Virginia P; Christman, Glenn D; Biddle, Jennifer F

    2013-07-11

    Scientific ocean drilling has revealed a deep biosphere of widespread microbial life in sub-seafloor sediment. Microbial metabolism in the marine subsurface probably has an important role in global biogeochemical cycles, but deep biosphere activities are not well understood. Here we describe and analyse the first sub-seafloor metatranscriptomes from anaerobic Peru Margin sediment up to 159 metres below the sea floor, represented by over 1 billion complementary DNA (cDNA) sequence reads. Anaerobic metabolism of amino acids, carbohydrates and lipids seem to be the dominant metabolic processes, and profiles of dissimilatory sulfite reductase (dsr) transcripts are consistent with pore-water sulphate concentration profiles. Moreover, transcripts involved in cell division increase as a function of microbial cell concentration, indicating that increases in sub-seafloor microbial abundance are a function of cell division across all three domains of life. These data support calculations and models of sub-seafloor microbial metabolism and represent the first holistic picture of deep biosphere activities.

  19. Fungi and macroaggregation in deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.R.; Raghukumar, C.

    Whereas fungi in terrestrial soils have been well studied, little is known of them in deep-sea sediments. Recent studies have demonstrated the presence of fungal hyphae in such sediments but in low abundance. We present evidence in this study...

  20. Avalanches of sediment form deep-marine depositions

    NARCIS (Netherlands)

    Pohl, Florian|info:eu-repo/dai/nl/34309424X

    2017-01-01

    The deep ocean is the largest sedimentary system basin on the planet. It serves as the primary storage point for all terrestrially weathered sediment that makes it beyond the near-shore environment. These deep-marine offshore deposits have become a focus of attention in exploration due to the

  1. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331).

    Science.gov (United States)

    Yanagawa, Katsunori; Breuker, Anja; Schippers, Axel; Nishizawa, Manabu; Ijiri, Akira; Hirai, Miho; Takaki, Yoshihiro; Sunamura, Michinari; Urabe, Tetsuro; Nunoura, Takuro; Takai, Ken

    2014-10-01

    The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Sorption of americium and neptunium by deep-sea sediments

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.

    1983-01-01

    The sorption and desorption of americium and neptunium by a wide range of deep-sea sediments from natural sea water at 4 0 C has been studied using a carefully controlled batch technique. All the sediments studied should form an excellent barrier to the migration of americium since distribution coefficients were uniformly greater than 10 5 and the sorption-desorption reaction may not be reversible. The sorption of neptunium was reversible and, except for one red clay, the distribution coefficients were greater than 10 3 for all the sediments investigated. Nevertheless the migration of neptunium should also be effectively retarded by most deep-sea sediments even under relatively oxidizing conditions. The neptunium in solution remained in the V oxidation state throughout the experiments. Under the experimental conditions used colloidal americium was trapped by the sediment and solubility did not seem to be the controlling factor in the desorption of americium. (Auth.)

  3. Age-dependent mixing of deep-sea sediments

    International Nuclear Information System (INIS)

    Smith, C.R.; Maggaard, L.; Pope, R.H.; DeMaster, D.J.

    1993-01-01

    Rates of bioturbation measured in deep-sea sediments commonly are tracer dependent; in particular, shorter lived radiotracers (such as 234 Th) often yield markedly higher diffusive mixing coefficients than their longer-lived counterparts (e.g., 210 Pb). At a single station in the 1,240-m deep Santa Catalina Basin, the authors document a strong negative correlation between bioturbation rate and tracer half-life. Sediment profiles of 234 Th (half-life = 24 days) yield an average mixing coefficient (60 cm 2 y -1 ) two orders of magnitude greater than that for 210 Pb (half-life = 22 y, mean mixing coefficient = 0.4 cm 2 y -1 ). A similar negative relationship between mixing rate and tracer time scale is observed at thirteen other deep-sea sites in which multiple radiotracers have been used to assess diffusive mixing rates. This relationship holds across a variety of radiotracer types and time scales. The authors hypothesize that this negative relationship results from age-dependent mixing, a process in which recently sedimented, food-rich particles are ingested and mixed at higher rates by deposit feeders than are older, food-poor particles. Results from an age-dependent mixing model demonstrate that this process indeed can yield the bioturbation-rate vs. tracer-time-scale correlations observed in deep-sea sediments. Field data on mixing rates of recently sedimented particles, as well as the radiotracer activity of deep-sea deposit feeders, provide strong support for the age-dependent mixing model. The presence of age-dependent mixing in deep-sea sediments may have major implications for diagenetic modeling, requiring a match between the characteristic time scales of mixing tracers and modeled reactants. 102 refs., 6 figs., 5 tabs

  4. Thermophysical properties of deep ocean sediments

    International Nuclear Information System (INIS)

    Hadley, G.R.; McVey, D.F.; Morin, R.

    1980-01-01

    Here we report measurements of the thermal conductivity and diffusivity of reconsolidated illite and smectite ocean sediments at a pore pressure of 600 bars and temperatures ranging from 25 to 420 0 C. The conductivity and diffusivity were found to be in the range of 0.8 to 1.0 W/m-K and 2.2 to 2.8 x 10 -7 m 2 /s, respectively. These data are consistent with a mixture model which predicts sediment thermal properties as a function of constituent properties and porosity. Comparison of pre- and post-test physical properties indicated a decrease in pore water content and an order of magnitude increase in shear strength and permeability

  5. Microplastic pollution in deep-sea sediments

    International Nuclear Information System (INIS)

    Van Cauwenberghe, Lisbeth; Vanreusel, Ann; Mees, Jan; Janssen, Colin R.

    2013-01-01

    Microplastics are small plastic particles ( 3 was observed. •The depths from where these microplastics were recovered range from 1176 to 4843 m. •The sizes of the particles range from 75 to 161 μm at their largest cross-section. -- Here, we demonstrate that microplastics have invaded the marine environment to an extent that they appear to even be present in the remote deep sea

  6. The onset of fabric development in deep marine sediments

    NARCIS (Netherlands)

    Maffione, Marco; Morris, Antony

    2017-01-01

    Post-depositional compaction is a key stage in the formation of sedimentary rocks that results in porosity reduction, grain realignment and the production of sedimentary fabrics. The progressive time-depth evolution of the onset of fabric development in deep marine sediments is poorly constrained

  7. Automatic Slide-Loader Fluorescence Microscope for Discriminative Enumeration of Subseafloor Life

    Directory of Open Access Journals (Sweden)

    Fumio Inagaki

    2010-04-01

    Full Text Available The marine subsurface environment is considered the potentially largest ecosystem on Earth, harboring one-tenth of all living biota (Whitman et al., 1998 and comprising diverse microbial components (Inagaki et al., 2003, 2006; Teske, 2006; Inagaki and Nakagawa, 2008. In deep marine sediments, the discrimination of life is significantly more difficult than in surface sediments and terrestrial soils because buried cells generally have extremely low metabolic activities (D’Hondt et al., 2002, 2004, and a highly consolidated sediment matrix produces auto-fluorescence fromdiatomaceous spicules and other mineral particles (Kallmeyer et al., 2008. The cell abundance in marine subsurface sediments has conventionally been evaluated by acridine orange direct count (AODC; Cragg et al., 1995; Parkes et al., 2000 down to 1613 meters below the seafloor (mbsf (Roussel et al., 2008. Since the cell-derived AOsignals often fade out in a short exposure time, recognizing and counting cells require special training. Hence, such efforts to enumerate AO-stained cells from the subseafloor on photographic images have been difficult, and a verification of counts by other methods has been impossible. In addition, providing mean statistical values from low biomass sedimentary habitats has been complicated byphysical and time limitations, yet these habitats are considered critical for understanding the Earth’s biosphere close to the limits of habitable zones (Hoehler, 2004; D’Hondt et al., 2007.

  8. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time RID B-1731-2010 RID A-1877-2008 RID D-2690-2009 RID A-2970-2010

    DEFF Research Database (Denmark)

    Parkes, RJ; Webster, G.; Cragg, BA

    2005-01-01

    in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatom-rich sediments ( about 9 Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity...... Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90 m depth in the margin site, stimulation was such that prokaryote numbers were higher ( about 13-fold) and activity rates...

  9. The permeability and consolidation of deep-sea sediments

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Gunn, D.E.

    1985-01-01

    This report presents permeability and consolidation data for a wide range of sediment types. Permeability is one of the two parameters which are needed to directly quantify pore water advection in deep sea sediments and which are being investigated in high-level radioactive waste study areas. While it is desirable that these parameters should be measured in situ it is argued that values of permeability can be measured sufficiently accurately in the laboratory from core samples. Consequently, an apparatus has been developed which enables sediment permeability to be measured at decreasing void ratios during a back-pressured consolidation test. Data presented in this report from over 60 samples have established the major differences in permeability between various sediment types and how permeability changes as a function of burial depth and void ratio. Samples from two study areas in the North Atlantic Ocean, King's Trough Flank (KTF) and Great Meteor East (GME), have been compared with samples of Red Clay (RC) obtained from the NW Pacific Ocean. Results are presented and discussed. (author)

  10. Reactive Fe(II) layers in deep-sea sediments

    Science.gov (United States)

    König, Iris; Haeckel, Matthias; Drodt, Matthias; Suess, Erwin; Trautwein, Alfred X.

    1999-05-01

    The percentage of the structural Fe(II) in clay minerals that is readily oxidized to Fe(III) upon contact with atmospheric oxygen was determined across the downcore tan-green color change in Peru Basin sediments. This latent fraction of reactive Fe(II) was only found in the green strata, where it proved to be large enough to constitute a deep reaction layer with respect to the pore water O 2 and NO 3-. Large variations were detected in the proportion of the reactive Fe(II) concentration to the organic matter content along core profiles. Hence, the commonly observed tan-green color change in marine sediments marks the top of a reactive Fe(II) layer, which may represent the major barrier to the movement of oxidation fronts in pelagic subsurface sediments. This is also demonstrated by numerical model simulations. The findings imply that geochemical barriers to pore water oxidation fronts form diagenetically in the sea floor wherever the stage of iron reduction is reached, provided that the sediments contain a significant amount of structural iron in clay minerals.

  11. Consolidation properties and stress history of some deep sea sediments

    International Nuclear Information System (INIS)

    Silva, A.J.; Jordan, S.A.

    1983-09-01

    This paper summarizes results of 180 consolidation tests on samples from 52 cores taken with a variety of samplers in deep sea regimes of the North Western Atlantic and North Central Pacific. Most of the samplers were of large cross sectional area (over 10-cm dia) and attention was given to improving field techniques and reducing structural disturbance to the sediments. Good quality samples have been recovered to depths in excess of 25 m in several locations. The sediments were primarily fine-grained clays and silty clays with the predominant clay mineral being illite; however, the presence of smectite and calcium carbonate in some samples had significant influence on the properties. 34 references, 11 figures, 2 tables

  12. Pollutants' Release, Redistribution and Remediation of Black Smelly River Sediment Based on Re-Suspension and Deep Aeration of Sediment.

    Science.gov (United States)

    Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang

    2017-04-01

    Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.

  13. Dynamic hole closure behind a deep ocean sediment penetrator

    International Nuclear Information System (INIS)

    Dzwilewski, P.T.; Karnes, C.H.

    1982-01-01

    A freefall or boosted penetrator is one concept being considered to dispose of nuclear waste in the deep ocean seabed. For this technique to be acceptable, the sediment must be an effective barrier to the migration of radioactive nuclides, which means that the hole behind the advancing penetrator must close. One mechanism which can cause the hole to close immediately behind the penetrator is the reduction in water pressure in the wake as water tries to follow the penetrator into the sediment. An approximate solution to this complex problem is presented which analyzes the deformation of the sediment with a nonlinear, large displacement and strain, Lagrangian finite-difference computer code (STEALTH). The water was treated by Bernoulli's Principle for flow in a pipe resulting in a pressure boundary condition applied to the sediment surface along the path after passage of the penetrator. Two one-dimensional and eight two-dimensional calculations were performed with various penetrator velocities (15, 30, and 60 m/s) and sediment shear strengths. In two of the calculations, the dynamic pressure reduction was neglected to see if geostatic stresses alone would close the hole. The results of this study showed that geostatic stresses alone would not close the hole but the dynamic pressure reduction would. The largest uncertainty in the analysis was the pressure conditions in the water behind the penetrator in which frictionless, steady-state flow, in a uniform diameter pipe was assumed. A more sophisticated and realistic pressure condition has been formulated and will be implemented in the computer code in the near future

  14. Desiccation-crack-induced salinization in deep clay sediment

    Directory of Open Access Journals (Sweden)

    S. Baram

    2013-04-01

    Full Text Available A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water content and on the chemical and isotopic composition of the sediment and pore water in it. The isotopic composition of water stable isotopes (δ18O and δ2H in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ~ 3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl− concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a desiccation-crack-induced salinization (DCIS conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.

  15. Cellular content of biomolecules in sub-seafloor microbial communities

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.

    2016-01-01

    the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density...... content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates......Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than...

  16. DEEP BIOSPHERE. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor.

    Science.gov (United States)

    Inagaki, F; Hinrichs, K-U; Kubo, Y; Bowles, M W; Heuer, V B; Hong, W-L; Hoshino, T; Ijiri, A; Imachi, H; Ito, M; Kaneko, M; Lever, M A; Lin, Y-S; Methé, B A; Morita, S; Morono, Y; Tanikawa, W; Bihan, M; Bowden, S A; Elvert, M; Glombitza, C; Gross, D; Harrington, G J; Hori, T; Li, K; Limmer, D; Liu, C-H; Murayama, M; Ohkouchi, N; Ono, S; Park, Y-S; Phillips, S C; Prieto-Mollar, X; Purkey, M; Riedinger, N; Sanada, Y; Sauvage, J; Snyder, G; Susilawati, R; Takano, Y; Tasumi, E; Terada, T; Tomaru, H; Trembath-Reichert, E; Wang, D T; Yamada, Y

    2015-07-24

    Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10(4) cells cm(-3). Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed. Copyright © 2015, American Association for the Advancement of Science.

  17. Features of deep cave sediments: their influence on fossil preservation

    Directory of Open Access Journals (Sweden)

    Cobo, R.

    2003-08-01

    Full Text Available We analyse how physical and chemical deep-cave sediment features preserve the morphological and geochemical characteristics of paleontological materials. Detrital sediment chemistry and clast size are fundamental because they provide a soft, impervious and plastic environment in which fossil remains are transported with minimal erosion. Sediment mineralogy provides a carbonate- and phosphate-buffered environment in which molecules of biological origin hydrolyze slower than in open-air environments or even at cave entrance sites. Because permafrost did not develop in the Iberian Peninsula (at least at the altitudes of inhabited caves, sediment desiccation never took place. In addition, sediment -pores were not aerated, which protected fossil remains from air (oxygen-linked weathering. The annual-temperature variation inside sediment was negligible, which contributed to amino acid racemization dating. Collagen amino acid and amino acid racemization analysis of cave bear and man samples from cave sediments dated from different Oxygen Isotope Stages (4": Sidrón, Amutxate, Troskaeta, El Toll, Coro Tracito, Ekain, Lezetxiki, La Pasada, Eirós; 5": Reguerillo and Arrikrutz; 6"-7": Sima de los Huesos demonstrate that important amounts of almost intact collagen still remain in teeth dentine. Fossil DNA search seems to be very promising.En este trabajo se analiza el papel que juegan las características físicas y químicas de los sedimentos de galerías profundas de cuevas en la preservación de los caracteres morfológicos y paleobiomoleculares del material paleontológico incluido en dichos sedimentos. Los aspectos geoquímicos y de tamaño de grano del sedimento son críticos: las características generan un medio blando, plástico e impermeable que permite el transporte -mecánico sin grave deterioro del material (en coladas de barro; las características químicas mineralogía del sediment* proporcionan un ambiente con tampón fosfatado

  18. Eddy correlation measurements of oxygen uptake in deep ocean sediments

    DEFF Research Database (Denmark)

    Berg, P.; Glud, Ronnie Nøhr; Hume, A.

    2010-01-01

    .62 +/- 0.23 (SE, n = 7), 1.65 +/- 0.33 (n = 2), and 1.43 +/- 0.15 (n = 25) mmol m(-2) d(-1). The very good agreement between the eddy correlation flux and the chamber flux serves as a new, important validation of the eddy correlation technique. It demonstrates that the eddy correlation instrumentation......Abstract: We present and compare small sediment-water fluxes of O-2 determined with the eddy correlation technique, with in situ chambers, and from vertical sediment microprofiles at a 1450 m deep-ocean site in Sagami Bay, Japan. The average O-2 uptake for the three approaches, respectively, was 1...... available today is precise and can resolve accurately even very small benthic O-2 fluxes. The correlated fluctuations in vertical velocity and O-2 concentration that give the eddy flux had average values of 0.074 cm s(-1) and 0.049 mu M. The latter represents only 0.08% of the 59 mu M mean O-2 concentration...

  19. Isoprenoid quinones resolve the stratification of microbial redox processes in a biogeochemical continuum from the photic zone to deep anoxic sediments of the Black Sea.

    Science.gov (United States)

    Becker, Kevin W; Elling, Felix J; Schröder, Jan M; Lipp, Julius S; Goldhammer, Tobias; Zabel, Matthias; Elvert, Marcus; Overmann, Jörg; Hinrichs, Kai-Uwe

    2018-03-09

    The stratified water column of the Black Sea serves as a model ecosystem for studying the interactions of microorganisms with major biogeochemical cycles. Here we provide detailed analysis of isoprenoid quinones to study microbial redox processes in the ocean. In a continuum from the photic zone through the chemocline into deep anoxic sediments of the southern Black Sea, diagnostic quinones and inorganic geochemical parameters indicate niche segregation between redox processes and corresponding shifts in microbial community composition. Quinones specific for oxygenic photosynthesis and aerobic respiration dominate oxic waters, while quinones associated with thaumarchaeal ammonia-oxidation and bacterial methanotrophy, respectively, dominate a narrow interval in suboxic waters. Quinone distributions indicate highest metabolic diversity within the anoxic zone, with anoxygenic photosynthesis being a major process in its photic layer. In the dark anoxic layer, quinone profiles indicate occurrence of bacterial sulfur and nitrogen cycling, archaeal methanogenesis, and archaeal methanotrophy. Multiple novel ubiquinone isomers, possibly originating from unidentified intra-aerobic anaerobes, occur in this zone. The respiration modes found in the anoxic zone continue into shallow subsurface sediments, but quinone abundances rapidly decrease within the upper 50 cm below sea floor, reflecting the transition to lower energy availability. In the deep subseafloor sediments, quinone distributions and geochemical profiles indicate archaeal methanogenesis/methanotrophy and potentially bacterial fermentative metabolisms. We observed that sedimentary quinone distributions track lithology, which supports prior hypotheses that deep biosphere community composition and metabolisms are determined by environmental conditions during sediment deposition. Importance Microorganisms play crucial roles in global biogeochemical cycles. Yet, we have only a fragmentary understanding of the diversity

  20. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    Full Text Available Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp. We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m. We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla, Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm of sediment was significantly different from deeper layers. We found that qualitative (presence-absence and quantitative (relative number of reads data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation

  1. Bacterial Diversity in Deep-Sea Sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Meena, R.M.; Deobagkar, D.D.

    Deep-sea sediments can reveal much about the last 200 million years of Earth history, including the history of ocean life and climate. Microbial diversity in Afanasy Nikitin seamount located at Equatorial East Indian Ocean (EEIO) was investigated...

  2. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Directory of Open Access Journals (Sweden)

    Michael F. Graw

    2018-04-01

    Full Text Available The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics.

  3. Energy Gradients Structure Microbial Communities Across Sediment Horizons in Deep Marine Sediments of the South China Sea

    Science.gov (United States)

    Graw, Michael F.; D'Angelo, Grace; Borchers, Matthew; Thurber, Andrew R.; Johnson, Joel E.; Zhang, Chuanlun; Liu, Haodong; Colwell, Frederick S.

    2018-01-01

    The deep marine subsurface is a heterogeneous environment in which the assembly of microbial communities is thought to be controlled by a combination of organic matter deposition, electron acceptor availability, and sedimentology. However, the relative importance of these factors in structuring microbial communities in marine sediments remains unclear. The South China Sea (SCS) experiences significant variability in sedimentation across the basin and features discrete changes in sedimentology as a result of episodic deposition of turbidites and volcanic ashes within lithogenic clays and siliceous or calcareous ooze deposits throughout the basin's history. Deep subsurface microbial communities were recently sampled by the International Ocean Discovery Program (IODP) at three locations in the SCS with sedimentation rates of 5, 12, and 20 cm per thousand years. Here, we used Illumina sequencing of the 16S ribosomal RNA gene to characterize deep subsurface microbial communities from distinct sediment types at these sites. Communities across all sites were dominated by several poorly characterized taxa implicated in organic matter degradation, including Atribacteria, Dehalococcoidia, and Aerophobetes. Sulfate-reducing bacteria comprised only 4% of the community across sulfate-bearing sediments from multiple cores and did not change in abundance in sediments from the methanogenic zone at the site with the lowest sedimentation rate. Microbial communities were significantly structured by sediment age and the availability of sulfate as an electron acceptor in pore waters. However, microbial communities demonstrated no partitioning based on the sediment type they inhabited. These results indicate that microbial communities in the SCS are structured by the availability of electron donors and acceptors rather than sedimentological characteristics. PMID:29696012

  4. Uranium in Pacific Deep-Sea Sediments and Manganese Nodules

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Pluger, W. L.; Friedrich, G. H.

    1983-01-01

    A total of 1344 manganese nodules and 187 pelagic sediments from 9 areas in the North and the South Pacific were analyzed for U by the delayed-neutron counting technique. A strong positive correlation between U and Fe in nodules and sediments suggests a co-precipitative removal from sea water int...

  5. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  6. Heavy mineral variation in the deep sea sediment of southeastern ...

    Indian Academy of Sciences (India)

    instability of the sediments and rapid erosion in the source region. The characteristic HM .... stable domain/superparamagnetic boundary and their delayed response ..... offshore areas – their nature, origin, economic potential and exploration ...

  7. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior

    DEFF Research Database (Denmark)

    Li, Jiying; Crowe, Sean Andrew; Miklesh, David

    2012-01-01

    To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep ...... volume-specific carbon degradation rates were 0.3–1.5 µmol cm−3 d−1; bioturbation coefficient near the sediment surface was 3–8 cm2 yr−1. These results indicate that carbon cycling in large freshwater systems conforms to many of the same trends as in marine systems.......To understand carbon and oxygen dynamics in sediments with deep oxygen penetration, we investigated eight locations (160–318-m depth) throughout Lake Superior. Despite the 2–4 weight percent organic carbon content, oxygen penetrated into the sediment by 3.5 to > 12 cm at all locations. Such deep......, suggesting that temporal variability in deeply oxygenated sediments may be greater than previously acknowledged. The oxygen uptake rates (4.4–7.7 mmol m−2 d−1, average 6.1 mmol m−2 d−1) and carbon mineralization efficiency (∼ 90% of deposited carbon) were similar to those in marine hemipelagic and pelagic...

  8. Geotechnical properties of deep-ocean sediments: a critical state approach

    International Nuclear Information System (INIS)

    Ho, E.W.L.

    1988-11-01

    The possible disposal of high-level radioactive waste using the sediments of the deep-ocean floor as repositories has initiated research to establish an understanding of the fundamental behaviour of deep-ocean sediments. The work described in this thesis consisted of a series of triaxial stress path tests using microcomputer controlled hydraulic triaxial cells to investigate the strength and stress-strain behaviour for mainly anisotropically (K o ) consolidated 'undisturbed' (tubed) and reconstituted specimens of deep-ocean sediments taken from two study areas in the North Atlantic Ocean. The test results have been analysed within the framework of critical state soil mechanics to investigate sediment characteristics such as the state boundary surface, drained and undrained strength and stress-strain behaviour. While marked anisotropic behaviour is found in a number of respects, the results indicate that analysis in a critical state framework is as valid as for terrestrial sediments. Differences in behaviour between tubed and reconstituted specimens have been observed and the effect of the presence of carbonate has been investigated. An attempt has been made to develop an elasto-plastic constitutive K o model based on critical state concepts. This model has been found to agree reasonably well with experimental data for kaolin and deep-ocean sediments. (author)

  9. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa

    2016-09-06

    The central rift of the Red Sea has 25 brine pools with different physical and geochemical characteristics. Atlantis II (ATIID), Discovery Deeps (DD) and Chain Deep (CD) are characterized by high salinity, temperature and metal content. Several studies reported microbial communities in these brine pools, but few studies addressed the brine pool sediments. Therefore, sediment cores were collected from ATIID, DD, CD brine pools and an adjacent brine-influenced site. Sixteen different lithologic sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness of the deepest ATIID sulfur-rich brine pool sediments. In contrary to all other sediment sections, bacteria dominate the deepest ATIID sulfur-rich brine pool sediments. This decrease in virus-to-bacteria ratio in selected sections and depth coincided with an overrepresentation of mobile genetic elements. Skewing in the composition of viruses-to-mobile genetic elements may uniquely contribute to the distinct microbial consortium in sediments in proximity to hydrothermally active vents of the Red Sea and possibly in their surroundings, through differential horizontal gene transfer.

  10. Bacterial Sulfate Reduction Above 100-Degrees-C in Deep-Sea Hydrothermal Vent Sediments

    DEFF Research Database (Denmark)

    JØRGENSEN, BB; ISAKSEN, MF; JANNASCH, HW

    1992-01-01

    -reducing bacteria was done in hot deep-sea sediments at the hydrothermal vents of the Guaymas Basin tectonic spreading center in the Gulf of California. Radiotracer studies revealed that sulfate reduction can occur at temperatures up to 110-degrees-C, with an optimum rate at 103-degrees to 106-degrees......-C. This observation expands the upper temperature limit of this process in deep-ocean sediments by 20-degrees-C and indicates the existence of an unknown groUp of hyperthermophilic bacteria with a potential importance for the biogeochemistry of sulfur above 100-degrees-C....

  11. Finite element analysis of thermal convection in deep ocean sediments

    International Nuclear Information System (INIS)

    Gartling, D.K.

    1980-01-01

    Of obvious importance to the study and engineering of a seabed disposal is the determination of the temperature and fluid flow fields existing in the sediment layer and the perturbation of these fields due to the implantation of localized heat sources. The fluid mechanical and heat transfer process occurring in oceanic sediments may be characterized as free (or natural) convection in a porous material. In the case of an undisturbed sediment layer, the driving force for the natural circulation of pore water comes from the geothermal heat flux. Current theories for heat flow from the sea floor suggest the possibility of large scale hydrothermal circulation in the oceanic crust (see e.g., Ribando, et al. 1976) which is in turn coupled with a convection process in the overlying sediment layer (Anderson 1980, Anderson, et al. 1979). The introduction of a local heat source, such as a waste canister, into a saturated sediment layer would by itself initiate a convection process due to buoyancy forces. Since the mathematical description of natural convection in a porous medium is of sufficient complexity to preclude the use of most analytic methods of analysis, approximate numerical procedures are often employed. In the following sections, a particular type of numerical method is described that has proved useful in the solution of a variety of porous flow problems. However, rather than concentrate on the details of the numerical algorithm the main emphasis of the presentation will be on the types of problems and results that are encountered in the areas of oceanic heat flow and seabed waste disposal

  12. Short-chain alkane cycling in deep Gulf of Mexico cold-seep sediments

    Science.gov (United States)

    Sibert, R.; Joye, S. B.; Hunter, K.

    2015-12-01

    Mixtures of light hydrocarbon gases are common in deep Gulf of Mexico cold-seep sediments, and are typically dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is usually methane (>80% C1), but ethane (C2) and propane (C3) are nearly always present in trace amounts (95% of the methane produced at depth never reaches the water column. Production of C1 and C2 in deep-sea sediments has been historically attributed only to thermocatalytic processes, though limited data suggests production of C2/C3 compounds through the activity of archaea at depth. Furthermore, carbon isotopic data on ethane and propane from deep cores of Gulf of Mexico sediments suggest alkanogenesis at >3 m depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Additional studies have also isolated microorganisms capable of oxidizing ethane and propane in the laboratory, but field studies of microbial-driven dynamics of C2/C3 gases in cold-seep sediments are rare. Here, we present the results of a series of incubation experiments using sediment slurries culled from surface sediments from one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of alkane oxidation were measured under a variety of conditions to assess the surface-driven microbial controls on C2/C3 cycling in cold-seep environments. Such microbial processes are important in terms of the possible 'oxidative overprinting' of alkane isotopic signatures produced at depth, possibly obscuring typical microbial isotopic signals.

  13. Experimental studies on the geochemical behaviour of 54-Mn considering coastal and deep sea sediments

    International Nuclear Information System (INIS)

    Guegueniat, P.; Boust, D.; Aprosi, G.

    1986-01-01

    In order to study the geochemical behaviour of 54-Mn in the marine environment (Mn 2+ ) 200 sediments gathered in deep sea and in coastal waters were contaminated experimentally. To correlate the various results, the oxidation processes occuring with or without sediments should be specified. Without sediments, in 'blanks', the deposition rate of 54-Mn on the walls brings into play oxidation developing approximately according to a single order linear function. Consequently, it is characterized by a half-life (time for half 54-Mn to be retained) very similar to a residence time (Tsub(R)). In our water samples, Tsub(R) ranged from 12 to 150 days. (author)

  14. Microbial processes in North Atlantic pelagic sediments, and potential risks of deep-sea waste disposal

    International Nuclear Information System (INIS)

    Bolliger, R.; Hanselmann, K.W.; Bachofen, R.

    1989-01-01

    From the results for waste disposal on deep sea sediments, it was concluded: As waste canisters are buried in the sediment to a depth of 15 to 20 cm, they are in contact with the zone that contains the highest potential bacterial activity through a relatively large surface. An input of oxidizable organic matter to the sediment surface zone will stimulate microbial activity and therefore increase the risk for solubilization and redistribution of elements in the ocean water. Waste canisters lying on the sediment surface cut off the oxygen supply from the ocean water and ease the shift to anaerobiosis. This initiates microbial activities through which metals are changed into their mobile species as a consequence of the altered environmental redox potential. The risk for steel corrosion by hydrogen sulfide, which could be produced by sulfate reducing bacteria, is minimal since this physiological group is not active in the North Atlantic sediments examined

  15. Uranium in Pacific deep-sea sediments and manganese nodules

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Plueger, W.L.; Friedrich, G.H.

    1983-01-01

    A total of 1344 manganese nodules and 187 pelagic sediments from 9 areas in the North and the South Pacific were analyzed for U by the delayed-neutron counting technique. A strong positive correlation between U and Fe in nodules and sediments suggests a co-precipitative removal from sea water into the Fe-rich (ferromanganese mineral phase MnO 2 . Enrichment of U and Fe in nodules from the northwestern slopes of two submarine hills (U between 6 and 9 ppm) in the equatorial nodule belt is thought to be caused by directional bottom water flow creating elevated oxygenized conditions in areas opposed to the flow. Economically important nodule deposits from the nodule belt and the Peru Basin have generally low U contents, between 3 and 5 ppm. Insignificant resources of U of about 4 x 10 5 in the Pacific manganese nodules are estimated. (orig.)

  16. Turnover of microbial lipids in the deep biosphere and growth of benthic archaeal populations.

    Science.gov (United States)

    Xie, Sitan; Lipp, Julius S; Wegener, Gunter; Ferdelman, Timothy G; Hinrichs, Kai-Uwe

    2013-04-09

    Deep subseafloor sediments host a microbial biosphere with unknown impact on global biogeochemical cycles. This study tests previous evidence based on microbial intact polar lipids (IPLs) as proxies of live biomass, suggesting that Archaea dominate the marine sedimentary biosphere. We devised a sensitive radiotracer assay to measure the decay rate of ([(14)C]glucosyl)-diphytanylglyceroldiether (GlcDGD) as an analog of archaeal IPLs in continental margin sediments. The degradation kinetics were incorporated in model simulations that constrained the fossil fraction of subseafloor IPLs and rates of archaeal turnover. Simulating the top 1 km in a generic continental margin sediment column, we estimated degradation rate constants of GlcDGD being one to two orders of magnitude lower than those of bacterial IPLs, with half-lives of GlcDGD increasing with depth to 310 ky. Given estimated microbial community turnover times of 1.6-73 ky in sediments deeper than 1 m, 50-96% of archaeal IPLs represent fossil signals. Consequently, previous lipid-based estimates of global subseafloor biomass probably are too high, and the widely observed dominance of archaeal IPLs does not rule out a deep biosphere dominated by Bacteria. Reverse modeling of existing concentration profiles suggest that archaeal IPL synthesis rates decline from around 1,000 pg⋅mL(-1) sediment⋅y(-1) at the surface to 0.2 pg⋅mL(-1)⋅y(-1) at 1 km depth, equivalent to production of 7 × 10(5) to 140 archaeal cells⋅mL(-1) sediment⋅y(-1), respectively. These constraints on microbial growth are an important step toward understanding the relationship between the deep biosphere and the carbon cycle.

  17. Late Eocene impact events recorded in deep-sea sediments

    Science.gov (United States)

    Glass, B. P.

    1988-01-01

    Raup and Sepkoski proposed that mass extinctions have occurred every 26 Myr during the last 250 Myr. In order to explain this 26 Myr periodicity, it was proposed that the mass extinctions were caused by periodic increases in cometary impacts. One method to test this hypothesis is to determine if there were periodic increases in impact events (based on crater ages) that correlate with mass extinctions. A way to test the hypothesis that mass extinctions were caused by periodic increases in impact cratering is to look for evidence of impact events in deep-sea deposits. This method allows direct observation of the temporal relationship between impact events and extinctions as recorded in the sedimentary record. There is evidence in the deep-sea record for two (possibly three) impact events in the late Eocene. The younger event, represented by the North American microtektite layer, is not associated with an Ir anomaly. The older event, defined by the cpx spherule layer, is associated with an Ir anomaly. However, neither of the two impact events recorded in late Eocene deposits appears to be associated with an unusual number of extinctions. Thus there is little evidence in the deep-sea record for an impact-related mass extinction in the late Eocene.

  18. A new macrofaunal limit in the deep biosphere revealed by extreme burrow depths in ancient sediments.

    Science.gov (United States)

    Cobain, S L; Hodgson, D M; Peakall, J; Wignall, P B; Cobain, M R D

    2018-01-10

    Macrofauna is known to inhabit the top few 10s cm of marine sediments, with rare burrows up to two metres below the seabed. Here, we provide evidence from deep-water Permian strata for a previously unrecognised habitat up to at least 8 metres below the sediment-water interface. Infaunal organisms exploited networks of forcibly injected sand below the seabed, forming living traces and reworking sediment. This is the first record that shows sediment injections are responsible for hosting macrofaunal life metres below the contemporaneous seabed. In addition, given the widespread occurrence of thick sandy successions that accumulate in deep-water settings, macrofauna living in the deep biosphere are likely much more prevalent than considered previously. These findings should influence future sampling strategies to better constrain the depth range of infaunal animals living in modern deep-sea sands. One Sentence Summary: The living depth of infaunal macrofauna is shown to reach at least 8 metres in new habitats associated with sand injections.

  19. Biogeochemical malfunctioning in sediments beneath a deep-water fish farm.

    Science.gov (United States)

    Valdemarsen, Thomas; Bannister, Raymond J; Hansen, Pia K; Holmer, Marianne; Ervik, Arne

    2012-11-01

    We investigated the environmental impact of a deep water fish farm (190 m). Despite deep water and low water currents, sediments underneath the farm were heavily enriched with organic matter, resulting in stimulated biogeochemical cycling. During the first 7 months of the production cycle benthic fluxes were stimulated >29 times for CO(2) and O(2) and >2000 times for NH(4)(+), when compared to the reference site. During the final 11 months, however, benthic fluxes decreased despite increasing sedimentation. Investigations of microbial mineralization revealed that the sediment metabolic capacity was exceeded, which resulted in inhibited microbial mineralization due to negative feed-backs from accumulation of various solutes in pore water. Conclusions are that (1) deep water sediments at 8 °C can metabolize fish farm waste corresponding to 407 and 29 mmol m(-2) d(-1) POC and TN, respectively, and (2) siting fish farms at deep water sites is not a universal solution for reducing benthic impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water masses, suggesting a high dispersal......Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial...... communities in three basins of the eastern South Atlantic Ocean to determine diversity and biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521 phylotypes with 98% identity...

  1. Paleocorrosion studies in deep sea sediments and the geological disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fehrenbach, L.; Maurette, M.; Guichard, F.; Havette, A.; Monaco, A.

    1984-01-01

    Uncertainties still surround assessment of the safety of disposal of nuclear wastes incorporated into 'radwaste' matrices. This is mostly due to the long time required for radioactive decay of 237 Np. The present work explores the usefulness of an experimental approach in 'paleocorrosion', which should help in minimizing such uncertainties. In this approach, polished sections of sediments containing high concentrations of natural analogues of radwaste matrices are subjected to element micromapping. Thus it is possible to characterize the long-term interactions of such analogues in their geological repositories, and to identify which generate reaction aureoles and protective and/or unprotective coatings. These analogues include grains incorporated in deep sea sediments (uraninite and quartz from the Oklo uranium ore deposit; volcanic ash particles; magnetic cosmic spherules). The present results indicate that uraninite should be a much more durable radwaste matrix than any type of glass in deep sea sediments. (orig./TWO)

  2. Molecular Phylogeny Of Microbes In The Deep-Sea Sediments From Tropical West Pacific Warm Pool

    Science.gov (United States)

    Wang, F.; Xiao, X.; Wang, P.

    2005-12-01

    The presence and phylogeny of bacteria and archaea in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1cm-, 3cm-, 6cm-, 10cm-, 12cm- layer) of the 12-cm sediment core of WP-0 were checked and compared. The microbial diversity in the five deep-sea sediments were similar as revealed by denaturing gradient gel electrophoresis, and all of them contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. The composition of methylotrophs including methanotrophs, sulfate reducing bacteria in the WP-0 sediment core were further investigated by molecular marker based analysis of mxaF, pmoA, dsrAB, specific anoxic methane oxidation archaeal and sulfate reducing bacterial 16S rRNA genes. From MxaF amino acid sequence analysis, it was demonstrated that microbes belonging to α - Proteobacteria most related to Hyphomicrobium and Methylobacterium were dominant aerobic methylotrophs in this deep-sea sediment; and small percentage of type II methanotrophs affiliating closest to Methylocystis and Methylosinus were also detected in this environment. mxaF quantitative PCR results showed that in the west Pacific WP sediment there existed around 3× 10 4-5 methylotrophs per gram sediment, 10-100 times more than that in samples collected from several other deep-sea Pacific sediment sample, but about 10 times less than that present in samples collected from rice and flower garden soil. Diverse groups of novel archaea (named as WPA), not belonging to any known archaeal lineages were checked out. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. Possible sulfate reducing bacterial related with Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus were also detected in our study. The vertical distributions of WPA

  3. Distribution of artificial radionuclides in deep sediments of the Mediterranean Sea

    International Nuclear Information System (INIS)

    Garcia-Orellana, J.; Pates, J.M.; Masque, P.; Bruach, J.M.; Sanchez-Cabeza, J.A.

    2009-01-01

    Artificial radionuclides enter the Mediterranean Sea mainly through atmospheric deposition following nuclear weapons tests and the Chernobyl accident, but also through the river discharge of nuclear facility effluents. Previous studies of artificial radionuclides impact of the Mediterranean Sea have focussed on shallow, coastal sediments. However, deep sea sediments have the potential to store and accumulate pollutants, including artificial radionuclides. Deep sea marine sediment cores were collected from Mediterranean Sea abyssal plains (depth > 2000 m) and analysed for 239,240 Pu and 137 Cs to elucidate the concentrations, inventories and sources of these radionuclides in the deepest areas of the Mediterranean. The activity - depth profiles of 210 Pb, together with 14 C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2.5 cm of the sedimentary column. The excess 210 Pb inventory was used to normalize 239,240 Pu and 137 Cs inventories for variable sediment fluxes. The 239,240 Pu/ 210 Pb xs ratio was uniform across the entire sea, with a mean value of 1.24 x 10 -3 , indicating homogeneous fallout of 239,240 Pu. The 137 Cs/ 210 Pb xs ratio showed differences between the eastern (0.049) and western basins (0.030), clearly significant impact of deep sea sediments from the Chernobyl accident. The inventory ratios of 239,240 Pu/ 137 Cs were 0.041 and 0.025 in the western and eastern basins respectively, greater than the fallout ratio, 0.021, showing more efficient scavenging of 239,240 Pu in the water column and major sedimentation of 137 Cs in the eastern basin. Although areas with water depths of > 2000 m constitute around 40% of the entire Mediterranean basin, the sediments in these regions only contained 2.7% of the 239,240 Pu and 0.95% of the 137 Cs deposited across the Sea in 2000. These data show that the accumulation of artificial radionuclides in deep Mediterranean environments is much lower than predicted by

  4. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province.

    Science.gov (United States)

    Dong, Yi; Li, Jinhua; Zhang, Wuchang; Zhang, Wenyan; Zhao, Yuan; Xiao, Tian; Wu, Long-Fei; Pan, Hongmiao

    2016-04-01

    Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2011-07-01

    Full Text Available The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.

  6. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    Science.gov (United States)

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  7. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  8. Supernova-produced radionuclides in deep-sea sediments measured with AMS

    International Nuclear Information System (INIS)

    Feige, J.

    2014-01-01

    This thesis is dedicated to computational micromagnetics, where several new numerical methods are In this work a set of long-lived radionuclides is measured to detect supernova-traces presumably deposited on Earth 2-3 Myr ago. Approximately 100 samples of four deep-sea sediment cores (Indian Ocean) were analyzed for 26 Al, 53Mn, and 60 Fe with accelerator mass spectrometry (AMS). Additionally, 10 Be was measured to confirm the existing paleomagnetic chronology of the sediments. A signal of extraterrestrial 60 Fe, which is not produced in-situ on Earth, was detected in a time period of 1.7-3.2 Myr in the sediments used for this work. 60 Fe/ 26 Al ratios were used to calculate limits on theoretical nucleosynthesis models. A supernova-signature of 26 Al is hidden behind a terrestrial background. The measured 26 Al/ 10 Be ratios indicate, that the major source of 26 Al detected in the sediments is of atmospheric origin. Because of the extraordinarily good depth profile for the deep-sea sediments from the measured 26 Al data, this radionuclide was used for dating. (author) [de

  9. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Guang-Hua; Xu, Xin-Ya; Nong, Xu-Hua; Wang, Jie; Amin, Muhammad; Qi, Shu-Hua

    2016-10-01

    The present study investigated the fungal diversity in four different deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing of the nuclear ribosomal internal transcribed spacer-1 (ITS1). A total of 40,297 fungal ITS1 sequences clustered into 420 operational taxonomic units (OTUs) with 97% sequence similarity and 170 taxa were recovered from these sediments. Most ITS1 sequences (78%) belonged to the phylum Ascomycota, followed by Basidiomycota (17.3%), Zygomycota (1.5%) and Chytridiomycota (0.8%), and a small proportion (2.4%) belonged to unassigned fungal phyla. Compared with previous studies on fungal diversity of sediments from deep-sea environments by culture-dependent approach and clone library analysis, the present result suggested that Illumina sequencing had been dramatically accelerating the discovery of fungal community of deep-sea sediments. Furthermore, our results revealed that Sordariomycetes was the most diverse and abundant fungal class in this study, challenging the traditional view that the diversity of Sordariomycetes phylotypes was low in the deep-sea environments. In addition, more than 12 taxa accounted for 21.5% sequences were found to be rarely reported as deep-sea fungi, suggesting the deep-sea sediments from Okinawa Trough harbored a plethora of different fungal communities compared with other deep-sea environments. To our knowledge, this study is the first exploration of the fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing.

  10. Lithogenic fluxes to the deep Arabian Sea measurEd. by sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nair, R.R; Manganini, S.J.; Haake, B.; Ittekkot, V.

    . 38. No. 2. pp 1~g-\\[~44 It,lqt. fllC~g...4)i49tql $31~) 4- 0.till Pnnted m Great Britain. ~ lg~t Pergamon Press pie Lithogenic fluxes to the deep Arabian Sea measured by sediment traps V. RAMASWAMY,* R. R. NAIR,* S. MANGANINI,# B. HAAKE~. and V... (MIct, lrdAN et al., 1984). Most of the present suspended sediment discharge is in July and August, during the peak of the southwest monsoon period, with negligible discharge during other times (I'rrEKKO'r and ARAIN, 1986). The Narmada and Tapti...

  11. Chemosynthetic activity prevails in deep-sea sediments of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Sujith, P.P.; Mourya, B.S.; Biche, S.U.; LokaBharathi, P.A.

    difference between the results at 4±2°C, 1 atm and 4±2°C, 500 atm. The difference could not be discerned in the time frame used for the experiment (Table 1). C/N ratios, TOC, TIC, LOM and bacterial counts In the CIB sediments, elemental C/N ratios... varied from 0.7 to infinitely large values due to very low levels of total nitrogen. TOC varied from <0.05-1.54%, TIC varied from non detectable in most of the deep-sea sediment to 10% in carbonaceous oozes. LOM varied from 0.025-0.14%. Bacterial...

  12. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment.

    Science.gov (United States)

    Veyisoglu, Aysel; Cetin, Demet; Inan Bektas, Kadriye; Guven, Kiymet; Sahin, Nevzat

    2016-11-01

    The taxonomic position of a Gram-staining-positive strain, designated strain S4702T was isolated from a marine sediment collected from the southern Black Sea coast, Turkey, determined using a polyphasic approach. The isolate was found to have chemotaxonomic, morphological and phylogenetic properties consistent with its classification as representing a member of the genus Streptomyces and formed a distinct phyletic line in the 16S rRNA gene tree. S4702T was found to be most closely related to the type strains of Streptomyces marinus(DSM 41968T; 97.8 % sequence similarity) and Streptomyces abyssalis (YIM M 10400T; 97.6 %). 16S rRNA gene sequence similarities with other members of the genus Streptomyces were lower than 97.5 %. DNA-DNA relatedness of S4702T and the most closely related strain S. marinus DSM 41968T was 21.0 %. The G+C content of the genomic DNA was 72.5 mol%. The cell wall of the strain contained l,l-diaminopimelic acid and the cell-wall sugars were glucose and ribose. The major cellular fatty acids were identified as anteiso-C15 : 0, iso-C16 : 0, anteiso-C17 : 0 and iso-C15 : 0. The predominant menaquinone was MK-9(H8). The polar lipid profile of S4702T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. S4702T could be distinguished from its closest phylogenetic neighbours using a combination of chemotaxonomic, morphological and physiological properties. Consequently, it is proposed that S4702T represents a novel species of the genus Streptomyces, for which the name Streptomyces ovatisporus sp. nov. is proposed. The type strain is S4702T (DSM 42103T=KCTC 29206T=CGMCC 4.7357T).

  13. Organic geochemistry of continental margin and deep ocean sediments

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, J.K.; Hunt, J.M.; Eglinton, T.; Dickinson, P.; Johnson, C.; Buxton, L.; Tarafa, M.E.

    1990-08-01

    The objective of this research continues to be the understanding of the complex processes of fossil fuel formation and migration. DOE funded research to date has focused on case histories'' of down-hole well profiles of light hydrocarbons, pyrograms, pyrolysis-GC and -GCMS parameters, and biomarker data from wells in the Louisiana and Texas Gulf Coasts the Alaskan North Slope. In the case of the Alaskan North Slope, geological data and one-dimensional maturation modeling have been integrated in order to better constrain possible source rocks, timing, and migration routes for oil and gas generation and expulsion processes.This period, biomarker analyses and organic petrographic analyses were completed for the Ikpikpuk well. In the case of the Gulf Coast, we have obtained a one-dimensional maturation model of the Cost B-1 well in E. Cameron field of the Louisiana Gulf Coast. The completed E. Cameron data set adds to the enigma of the Gulf Coast oils found on the continental shelf of Louisiana. If significant quantities of the oil are coming from relatively organic lean Tertiary rocks, then non-conventional'' expulsion and migration mechanisms, such as gas dissolved in oil must be invoked to explain the Gulf Coast oils reservoired on the Louisiana continental shelf. We are designing and starting to assemble a hydrous pyrolysis apparatus to follow, the laboratory, rates of generation and expulsion of sediment gases. Initiation of some new research to examine {delta}{sup 13}C of individual compounds from pyrolysis is also described. We are beginning to examine both the laboratory and field data from the Gulf Coast in the context of a Global Basin Research Network (GBRN). The purpose is to better understand subsurface fluid flow processes over geologic time in sedimentary basins and their relation to resource accumulation (i.e., petroleum and metal ores). 58 refs.

  14. Exploring frontiers of the deep biosphere through scientific ocean drilling

    Science.gov (United States)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  15. Iron oxide reduction in methane-rich deep Baltic Sea sediments

    DEFF Research Database (Denmark)

    Egger, Matthias; Hagens, Mathilde; Sapart, Celia J.

    2017-01-01

    /L transition. Our results reveal a complex interplay between production, oxidation and transport of methane showing that besides organoclastic Fe reduction, oxidation of downward migrating methane with Fe oxides may also explain the elevated concentrations of dissolved ferrous Fe in deep Baltic Sea sediments...... profiles and numerical modeling, we propose that a potential coupling between Fe oxide reduction and methane oxidation likely affects deep Fe cycling and related biogeochemical processes, such as burial of phosphorus, in systems subject to changes in organic matter loading or bottom water salinity....

  16. Biscogniauxone, a New Isopyrrolonaphthoquinone Compound from the Fungus Biscogniauxia mediterranea Isolated from Deep-Sea Sediments

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2016-11-01

    Full Text Available The properties and the production of new metabolites from the fungal strain LF657 isolated from the Herodotes Deep (2800 m depth in the Mediterranean Sea are reported in this study. The new isolate was identified as Biscogniauxia mediterranea based on ITS1-5.8S-ITS2 and 28S rRNA gene sequences. A new isopyrrolonaphthoquinone with inhibitory activity against glycogen synthase kinase (GSK-3β was isolated from this fungus. This is the first report of this class of compounds from a fungus isolated from a deep-sea sediment, as well as from a Biscogniauxia species.

  17. Small fractures in deep sea sediments: indicators of pore fluid migration along compaction faults

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1989-01-01

    A long piston core taken from the Southern Nares Abyssal Plain, intersected four fractures in plastic sediments between 17 and 25 m below the sea floor. Faults have been identified from seismic reflection surveys of sediments in this area. The sampled fractures all occurred in oxidized brown clays. Each fracture consisted of a simple plane having apparent dips ranging from 52-63 0 . One fracture had a well developed pale brown alteration halo extending out to 1.5 cm along this plane. Two fractures had no apparent alteration halo, but one fracture appeared to have fine-scale anastomosing features surrounding the main slip plane. Selective chemical tests for labile metal content in sediments surrounding the fractures revealed that about 70% of the reducible manganese, and 40% of the reducible iron had been leached from the sediments in the alteration halo surrounding the fracture plane. These results suggest that reducing pore fluids had migrated along the fracture plane to cause the observed effects. Implications of this study are that compaction faults may act as episodic conduits for vertical advection of pore water during dewatering of unconsolidated sediments. This may be a significant factor to be considered in assessing the effectiveness of deep sea sediment barriers for radioactive waste disposal. (author)

  18. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments.

    Science.gov (United States)

    Bernhard, Joan M; Kormas, Konstantinos; Pachiadaki, Maria G; Rocke, Emma; Beaudoin, David J; Morrison, Colin; Visscher, Pieter T; Cobban, Alec; Starczak, Victoria R; Edgcomb, Virginia P

    2014-01-01

    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.

  19. Alterations in geochemical associations in artificially disturbed deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Parthiban, G.; Banaulikar, S.; Sarkar, S.

    Alterations in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. NAGENDER NATH, G. PARTHIBAN, AND S. BANAULIKAR National Institute of Oceanography, Dona Paula, Goa, India SUBHADEEP SARKAR Department of Geology and Geophysics, Indian... the lithogenic component by transporting it from other locations within the Basin during commercial mining operations. Keywords manganese nodule mining, artificial benthic disturbance experiment, environmental impact assessment, metals Trace metals in marine...

  20. Piracicaba River Basin: evaluation of chemical elements in deep sediment profile by INAA

    Energy Technology Data Exchange (ETDEWEB)

    França, Elvis J. de; Santos, Robson A.; Santos, Katarine M. Barbosa; Silva, Gleyce K. A. [Centro Regional de Ciencias Nucleares do Nordeste (DIAMB/CRCN-NE/CNEN-PE), Recife, PE (Brazil). Div, de Monitoração Ambiental; Fernandes, Elisabete A. de Nadai; Rodrigues, Vanessa S.; Cavalca, Isabel P.O., E-mail: ejfranca@cnen.gov.br, E-mail: lis@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil)

    2017-07-01

    Many hydrographic basins have been impacted by anthropogenic sources, the Piracicaba River Basin of the State of São Paulo, is one of that. The total concentrations of chemical elements in deep sediments of basin may be indicate those available in ecosystem. Therefore, in this research concentration of chemical elements on deep sediment profile sampled of Piracicaba River Basin was determined by k0-Instrumental Neutron Activation Analysis. After collecting the 60 cm depth profile, samples were obtained by sectioning the sediment profile in 5 cm layers, totalizing 12 samples. Analytical portions were transferred to polyethylene vials for neutron irradiation at the Nuclear Research Reactor IEA-R1 from the Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN. After waiting for radiation safe levels, irradiated samples were transported to the Radioisotopes Laboratory from the Centro de Energia Nuclear na Agricultura CENA/USP. High Resolution Gamma-Ray Spectrometry using HPGe detectors was applied to measure the induced radioactivity. The chemical element mass fractions and their respective expanded analytical uncertainties (95% confidence level) were determined by k0-INAA using the in-house software Quantu. Geological reference materials were analyzed with samples to evaluate the quality of the analytical procedure. Results indicated the presence of enriched surface sediments (0-10 cm depth) for As, Ba, Ca, Co, Cs, Fe, Sb, Sc, Sr, Yb and Zn, despite no alteration was observed for Eu, Ta and Tb. Therefore, the evaluation of deep sediment profile afford the chemical element dynamics for the Piracicaba Basin. (author)

  1. Piracicaba River Basin: evaluation of chemical elements in deep sediment profile by INAA

    International Nuclear Information System (INIS)

    França, Elvis J. de; Santos, Robson A.; Santos, Katarine M. Barbosa; Silva, Gleyce K. A.

    2017-01-01

    Many hydrographic basins have been impacted by anthropogenic sources, the Piracicaba River Basin of the State of São Paulo, is one of that. The total concentrations of chemical elements in deep sediments of basin may be indicate those available in ecosystem. Therefore, in this research concentration of chemical elements on deep sediment profile sampled of Piracicaba River Basin was determined by k0-Instrumental Neutron Activation Analysis. After collecting the 60 cm depth profile, samples were obtained by sectioning the sediment profile in 5 cm layers, totalizing 12 samples. Analytical portions were transferred to polyethylene vials for neutron irradiation at the Nuclear Research Reactor IEA-R1 from the Instituto de Pesquisas Energéticas e Nucleares IPEN/CNEN. After waiting for radiation safe levels, irradiated samples were transported to the Radioisotopes Laboratory from the Centro de Energia Nuclear na Agricultura CENA/USP. High Resolution Gamma-Ray Spectrometry using HPGe detectors was applied to measure the induced radioactivity. The chemical element mass fractions and their respective expanded analytical uncertainties (95% confidence level) were determined by k0-INAA using the in-house software Quantu. Geological reference materials were analyzed with samples to evaluate the quality of the analytical procedure. Results indicated the presence of enriched surface sediments (0-10 cm depth) for As, Ba, Ca, Co, Cs, Fe, Sb, Sc, Sr, Yb and Zn, despite no alteration was observed for Eu, Ta and Tb. Therefore, the evaluation of deep sediment profile afford the chemical element dynamics for the Piracicaba Basin. (author)

  2. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    KAUST Repository

    Siam, Rania; Mustafa, Ghada A; Sharaf, Hazem; Moustafa, Ahmed; Ramadan, Adham R; Antunes, Andre; Bajic, Vladimir B.; Stingl, Ulrich; Marsis, Nardine G R; Coolen, Marco J L; Sogin, Mitchell; Ferreira, Ari J S; Dorry, Hamza El

    2012-01-01

    )-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota

  3. Elemental composition of a deep sediment core from Lake Stocksjoen in the Forsmark area

    Energy Technology Data Exchange (ETDEWEB)

    Stroemgren, Maarten [Umeaa Univ. (Sweden). Dept. of Ecology and Environmental Sciences; Brunberg, Anna-Kristina [Uppsala Univ. (Sweden). Dept. of Ecology and Evolution/Limnology

    2006-10-15

    A deep sediment core was taken from Lake Stocksjoen, situated within the Forsmark site investigation area. The 55 cm long sediment core, representing the entire history of the lake (approx 430 years) was sliced in 5 cm portions and analysed for various chemical elements, using ICP-MS technique. In total, 54 different elements - classified as main elements, heavy metals and trace elements - were analysed. In general terms, three different patterns of stratigraphy were derived from all the analysed elements. Calcium, manganese, lead and mercury occurred in highest concentrations in the upper sediments (<30 cm depth). Phosphorus, zinc, cadmium, antimony, tin and strontium occurred in more even proportions throughout the sediment core. All the other elements were substantially reduced in the upper parts (<30 cm) compared to the deeper parts of the sediment core. Metals that are considered as airborne pollutants were found in low or moderate concentrations. This is in concert with other investigations of pollutants that have been performed in the Forsmark area. The sediment of Lake Stocksjoen is highly organic, and has been so during the entire history of the lake. Much of the organic Material seems to be refractory and less susceptible for mineralisation and respiration during the prevailing environmental conditions. This corresponds well with the characteristic gelatinous cyanophycee gyttja found in the lower parts of the sediment core. Although speculative, the pronounced changes in elemental composition of the sediment at 30 cm depth may correspond to the final isolation of the lake from the Baltic Sea, which occurred approximately 230 years ago. The deeper parts (below 30 cm depth) thus may represent the time period with regular intrusions of brackish water into the lake basin. One important factor governing the environmental conditions and the resulting elemental composition of the sediment is the unusually thick 'microbial mat', which is characteristic

  4. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong; Yang, Jiang Ke; Lee, On On; Li, Tie Gang; Al-Suwailem, Abdulaziz M.; Danchin, Antoine; Qian, Pei-Yuan

    2011-01-01

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  5. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments

    KAUST Repository

    Wang, Yong

    2011-12-21

    The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers) of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed. © 2011 Wang et al.

  6. Bacterial niche-specific genome expansion is coupled with highly frequent gene disruptions in deep-sea sediments.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available The complexity and dynamics of microbial metagenomes may be evaluated by genome size, gene duplication and the disruption rate between lineages. In this study, we pyrosequenced the metagenomes of microbes obtained from the brine and sediment of a deep-sea brine pool in the Red Sea to explore the possible genomic adaptations of the microbes in response to environmental changes. The microbes from the brine and sediments (both surface and deep layers of the Atlantis II Deep brine pool had similar communities whereas the effective genome size varied from 7.4 Mb in the brine to more than 9 Mb in the sediment. This genome expansion in the sediment samples was due to gene duplication as evidenced by enrichment of the homologs. The duplicated genes were highly disrupted, on average by 47.6% and 70% for the surface and deep layers of the Atlantis II Deep sediment samples, respectively. The disruptive effects appeared to be mainly due to point mutations and frameshifts. In contrast, the homologs from the Atlantis II Deep brine sample were highly conserved and they maintained relatively small copy numbers. Likely, the adaptation of the microbes in the sediments was coupled with pseudogenizations and possibly functional diversifications of the paralogs in the expanded genomes. The maintenance of the pseudogenes in the large genomes is discussed.

  7. Particle mixing processes of Chernobyl fallout in deep Norwegian Sea sediments: Evidence for seasonal effects

    Science.gov (United States)

    Balzer, W.

    1996-09-01

    A 1430 m deep station in the Norwegian Sea (Voering Plateau) was occupied five times between May 1986 and February 1987 to investigate the seasonal variation in sediment mixing rates. Cherbnbyl-derived radiocesium, identified by its high proportion of short-lived 134Cs, was used as a tracer for mixing. Most of the nuclide input arrived at the sediment within a narrow time span in June/early July during the beginning of the seasonal biogenic sedimentation pulse. Measured 137Cs profiles in the sediment over time were compared with modelled distributions calculated with a finite difference scheme. The input function of radiocesium to the sea floor was evaluated from the increase of the total inventory with time. Time-invariant mixing coefficients did not provide reasonable fits to either summer or winter distributions. The best fit was obtained with a rate of mixing proportional to the radiocesium input flux, with an average enhancement factor of 6.6 during the two summer months. It appears that the benthic macrofauna are more active during the food supply season and rapidly ingest/bury freshly sedimented materials.

  8. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat

    OpenAIRE

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-01-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community struct...

  9. Bacterial Community Response in Deep Faroe-Shetland Channel Sediments Following Hydrocarbon Entrainment With and Without Dispersant Addition

    Directory of Open Access Journals (Sweden)

    Luis J. Perez Calderon

    2018-05-01

    Full Text Available Deep sea oil exploration is increasing and presents environmental challenges for deep ocean ecosystems. Marine oil spills often result in contamination of sediments with oil; following the Deepwater Horizon (DwH disaster up to 31% of the released oil entrained in the water column was deposited as oily residues on the seabed. Although the aftermath of DwH was studied intensely, lessons learned may not be directly transferable to other deep-sea hydrocarbon exploration areas, such as the Faroe-Shetland Channel (FSC which comprises cold temperatures and a unique hydrodynamic regime. Here, transport of hydrocarbons into deep FSC sediments, subsequent responses in benthic microbial populations and effects of dispersant application on hydrocarbon fate and microbial communities were investigated. Sediments from 1,000 m in the FSC were incubated at 0°C for 71 days after addition of a 20-hydrocarbon component oil-sediment aggregate. Dispersant was added periodically from day 4. An additional set of cores using sterilized and homogenized sediment was analyzed to evaluate the effects of sediment matrix modification on hydrocarbon entrainment. Sediment layers were independently analyzed for hydrocarbon content by gas chromatography with flame ionization detection and modeled with linear mixed effects models. Oil was entrained over 4 cm deep into FSC sediments after 42 days and dispersant effectiveness on hydrocarbon removal from sediment to the water column decreased with time. Sterilizing and homogenizing sediment resulted in hydrocarbon transport over 4 cm into sediments after 7 days. Significant shifts in bacterial populations were observed (DGGE profiling in response to hydrocarbon exposure after 42 days and below 2 cm deep. Dispersant application resulted in an accelerated and modified shift in bacterial communities. Bacterial 16S rRNA gene sequencing of oiled sediments revealed dominance of Colwellia and of Fusibacter when dispersant was applied over

  10. Global distribution of radiolytic H2 production in marine sediment and implications for subsurface life

    Science.gov (United States)

    Sauvage, J.; Flinders, A. F.; Spivack, A. J.; D'Hondt, S.

    2017-12-01

    We present the first global estimate of radiolytic H2production in marine sediment. Knowledge of microbial electron donor production rates is critical to understand the bioenergetics of Earth's subsurface ecosystems In marine sediment, radiolysis of water by radiation from naturally occurring radionuclides leads to production of reduced (H2) and oxidized (H2O2, O2) species. Water radiolysis is catalyzed by marine sediment. The magnitude of catalysis depends on sediment composition and radiation type. Deep-sea clay is especially effective at enhancing H2 yields, increasing yield by more than an order of magnitude relative to pure water. This previously unrecognized catalytic effect of geological materials on radiolytic H2 production is important for fueling microbial life in the subseafloor, especially in sediment with high catalytic power. Our estimate of radiolytic H2 production is based on spatially integrating a previously published model and uses (i) experimentally constrained radiolytic H2 yields for the principal marine sediment types, (ii) bulk sediment radioactive element content of sediment cores in three ocean basins (N. Atlantic, N. and S. Pacific), and global distributions of (iii) seafloor lithology, (iv) sediment porosity, and (v) sediment thickness. We calculate that global radiolytic H2 production in marine sediment is 1.6E+12 mol H2 yr-1. This production rate is small relative to the annual rate of photosynthetic organic-matter production in the surface ocean. The globally integrated ratio of radiolytic H2 production relative to photosynthetic primary production is 4.1E-4, based on electron equivalences. Although small relative to global photosynthetic biomass production, sediment-catalyzed production of radiolytic products is significant in the subseafloor. Our analysis of 9 sites in the N. Atlantic, N. and S. Pacific suggests that H2 is the primary microbial fuel in organic-poor sediment older than a few million years; at these sites, calculated

  11. Microbial diversity in methane hydrate-bearing deep marine sediments core preserved in the original pressure.

    Science.gov (United States)

    Takahashi, Y.; Hata, T.; Nishida, H.

    2017-12-01

    In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).

  12. Experimental studies on the geochemical behaviour of 54-Mn considering coastal and deep sea sediments

    International Nuclear Information System (INIS)

    Guegueniat, P.; Boust, D.; Dupont, J.P.; Aprosi, G.

    1985-01-01

    In order to study the geochemical behaviour of 54-Mn in the marine environment (Mn/sup 2+/) 200 sediments gathered in deep sea and in coastal waters were contaminated experimentally. To correlate the various results, the oxidation processes occurring with or without sediments should be specified. During this experimental work, the geochemical behaviour of manganese is dealt with using a radioactive tracer (54-Mn) in the divalent state and sediments collected on french littoral (160) in deep sea (30). The latest data published offer an excellent assessment of research findings on manganese in marine and estuary environments and testify to the interest constantly generated by this subject. It is difficult to establish a priori any predictions on the behaviour of manganese based on the properties of a given environment, notably as concerns redox conditions. The oxidation of manganese was found to be governed by a very slow autocatalysis mechanism capable of being concealed by surface catalyses on mineral phases in suspension or oxidation due to bacteria. The residence time in sea water vary considerably depending on the case from a few days to some tens of years

  13. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    Science.gov (United States)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  14. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    Science.gov (United States)

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  15. Event sedimentation in low-latitude deep-water carbonate basins, Anegada passage, northeast Caribbean

    Science.gov (United States)

    Chaytor, Jason D.; ten Brink, Uri S.

    2015-01-01

    The Virgin Islands and Whiting basins in the Northeast Caribbean are deep, structurally controlled depocentres partially bound by shallow-water carbonate platforms. Closed basins such as these are thought to document earthquake and hurricane events through the accumulation of event layers such as debris flow and turbidity current deposits and the internal deformation of deposited material. Event layers in the Virgin Islands and Whiting basins are predominantly thin and discontinuous, containing varying amounts of reef- and slope-derived material. Three turbidites/sandy intervals in the upper 2 m of sediment in the eastern Virgin Islands Basin were deposited between ca. 2000 and 13 600 years ago, but do not extend across the basin. In the central and western Virgin Islands Basin, a structureless clay-rich interval is interpreted to be a unifite. Within the Whiting Basin, several discontinuous turbidites and other sand-rich intervals are primarily deposited in base of slope fans. The youngest of these turbidites is ca. 2600 years old. Sediment accumulation in these basins is low (−1) for basin adjacent to carbonate platform, possibly due to limited sediment input during highstand sea-level conditions, sediment trapping and/or cohesive basin walls. We find no evidence of recent sediment transport (turbidites or debris flows) or sediment deformation that can be attributed to the ca. M7.2 1867 Virgin Islands earthquake whose epicentre was located on the north wall of the Virgin Islands Basin or to recent hurricanes that have impacted the region. The lack of significant appreciable pebble or greater size carbonate material in any of the available cores suggests that submarine landslide and basin-wide blocky debris flows have not been a significant mechanism of basin margin modification in the last several thousand years. Thus, basins such as those described here may be poor recorders of past natural hazards, but may provide a long-term record of past oceanographic

  16. Study of elementary absorption in the marine sediments of the North Atlantic ocean deeps

    International Nuclear Information System (INIS)

    Rancon, D.; Guegueniat, P.

    1984-01-01

    We have studied the retention of actinide elements (Np, Pu, Am) and of Cs in the sediments of the ocean deeps around Cap-Vert. Plutonium: retention increases with temperatures of 4 to 30 0 C, then stays constant from 30 to 80 0 C. Desorption is slow. Americium: absorption is very strong at any temperature. Measurements of a wide variety of sediments show that retention is not affected by facies (including carbonated sediments). Neptunium: retention is more or less constant between 4 and 15 0 C, and distinctly higher at 30-50 0 C. It is reversible. Caesium: absorption decreases slightly from 4 to 30 0 C, but increases rapidly at 50 to 80 0 C. At the lowest temperatures it is reversible, but it appears to be irreversible at 50 0 . Cs absorption is subject to ponderal concentration. With equal amounts of activity, retention of Cs-135 is weaker than that of Cs-137: likewise the addition of the stable isotope causes in the amounts of Kd in Cs-137. Finally, this paper presents preliminary results showing the natural metallic element content of the sediments

  17. Sorption of redox-sensitive radionuclides to deep-sea sediments in the absence of oxygen

    International Nuclear Information System (INIS)

    Higgo, J.J.W.; Rees, L.V.C.; Cronan, D.S.; Cole, T.G.

    1986-03-01

    Sediments were recovered from the GME area of the mid-Atlantic and stored in an inert atmosphere from the time of collection Pore-water analysis showed them to be post-oxic. Sorption tests in an inert atmosphere showed that they were not sufficiently reducing to affect the distribution ratios of the redox-sensitive elements, technetium and neptunium. This may mean that previous results obtained under oxic conditions can be used in modelling. Ferrous iron was strongly sorbed onto the sediments but this iron had no effect on technetium sorption, which was negligible. Only if a large excess of Fe ++ was added so that the concentration of Fe ++ in solution exceeded 100um (Eh probably < -0.2V) was the technetium reduced and adsorption appreciable. The indications are, therefore, that ferrous iron from dissolved canisters will not increase the sorption of technetium to deep-sea sediments. Moessbauer analysis showed that a high proportion (up to 15%) of the iron in the high-carbonate turbidites was in the ferrous state but that all the iron in the clay-rich layer, containing less carbonate, was in the ferric state. This may explain the fact that, in general, neptunium is more strongly adsorbed by high-carbonate than by other types of sediment. (author)

  18. Feasibility of high level radioactive waste disposal in deep sea sediments

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1987-01-01

    For the past ten years, an international program has been conducted to investigate the concept feasibility for disposing of spent nuclear fuel waste in deep ocean sediments. These studies by the Seabed Working Group were coordinated by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. Penetrators have been considered as the primary method of waste emplacement. This required emphasis on studies of the nature of the plastic sediments which would form the primary barrier to the release of radionuclides into the biosphere. Site qualification guidelines, included criteria for tectonic and sedimentary stability over periods of at least 10 5 years. Using these guidelines two potential areas were identified: one in the Madeira Abyssal Plain; and one in the Southern Nares Abyssal Plain, both in the North Atlantic

  19. Application of Moessbauer spectroscopy to the study of neptunium adsorbed on deep-sea sediments

    International Nuclear Information System (INIS)

    Bennett, B.A.; Rees, L.V.C.

    1987-03-01

    A Neptunium Moessbauer spectrometer (the first in Great Britain) was constructed and the Moessbauer spectra of NpAl Laves phase alloy obtained. Neptunium was sorbed onto a calcareous deep-sea sediment from sea water, using a successive-loading technique. Sorption appeared to be by an equilibrium reaction, and because of the low solubility of neptunium in seawater, this meant that the maximum loading that could be achieved was 8mg 237 Np/g sediment. This proved to be an adequate concentration for Moessbauer measurements and a Moessbauer spectrum was obtained. This showed that most of the neptunium was in exchange sites and not present as precipitates of neptunium compounds. It was probably in the 4+ state indicating that reduction had occurred during sorption. This work has demonstrated that Moessbauer Spectroscopy has great potential as an aid to understanding the mechanism of actinide sorption in natural systems. (author)

  20. Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments

    Science.gov (United States)

    Reed, Daniel C.; Gustafsson, Bo G.; Slomp, Caroline P.

    2016-01-01

    Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea - the world's largest anthropogenic dead zone - yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Fårö basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

  1. Long-term viability of carbon sequestration in deep-sea sediments

    Science.gov (United States)

    Teng, Y.; Zhang, D.

    2017-12-01

    Sequestration of carbon dioxide in deep-sea sediments has been proposed for the long-term storage of anthropogenic CO2, due to the negative buoyancy effect and hydrate formation under conditions of high pressure and low temperature. However, the multi-physics process of injection and post-injection fate of CO2 and the feasibility of sub-seabed disposal of CO2 under different geological and operational conditions have not been well studied. On the basis of a detailed study of the coupled processes, we investigate whether storing CO2 into deep-sea sediments is viable, efficient, and secure over the long term. Also studied are the evolution of the multiphase and multicomponent flow and the impact of hydrate formation on storage efficiency during the upward migration of the injected CO2. It is shown that low buoyancy and high viscosity slow down the ascending plume and the forming of the hydrate cap effectively reduces the permeability and finally becomes an impermeable seal, thus limiting the movement of CO2 towards the seafloor. Different flow patterns at varied time scales are identified through analyzing the mass distribution of CO2 in different phases over time. Observed is the formation of a fluid inclusion, which mainly consists of liquid CO2 and is encapsulated by an impermeable hydrate film in the diffusion-dominated stage. The trapped liquid CO2 and CO2 hydrate finally dissolve into the pore water through diffusion of the CO2 component. Sensitivity analyses are performed on storage efficiency under variable geological and operational conditions. It is found that under a deep-sea setting, CO2 sequestration in intact marine sediments is generally safe and permanent.

  2. Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Cordes, Erik E.; Stamler, Katherine

    2016-01-01

    Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH) oil spill, the extent of adverse effects on coral-associated sediment communities is unknown. In 2011, sediments were collected adjacent to several coral habitats located 6 to 183 km from the wellhead in order to quantify the extent of impact of the DWH spill on infaunal communities. Higher variance in macrofaunal abundance and diversity, and different community structure (higher multivariate dispersion) were associated with elevated hydrocarbon concentrations and contaminants at sites closest to the wellhead (MC294, MC297, and MC344), consistent with impacts from the spill. In contrast, variance in meiofaunal diversity was not significantly related to distance from the wellhead and no other community metric (e.g. density or multivariate dispersion) was correlated with contaminants or hydrocarbon concentrations. Concentrations of polycyclic aromatic hydrocarbons (PAH) provided the best statistical explanation for observed macrofaunal community structure, while depth and presence of fine-grained mud best explained meiofaunal community patterns. Impacts associated with contaminants from the DWH spill resulted in a patchwork pattern of infaunal community composition, diversity, and abundance, highlighting the role of variability as an indicator of disturbance. These data represent a useful baseline for tracking post-spill recovery of these deep-sea communities.

  3. A sterol and spiroditerpenoids from a Penicillium sp. isolated from a deep sea sediment sample.

    Science.gov (United States)

    Li, Yan; Ye, Dezan; Shao, Zongze; Cui, Chengbin; Che, Yongsheng

    2012-02-01

    A new polyoxygenated sterol, sterolic acid (1), three new breviane spiroditerpenoids, breviones I-K (2-4), and the known breviones (5-8), were isolated from the crude extract of a Penicillium sp. obtained from a deep sea sediment sample that was collected at a depth of 5115 m. The structures of 1-4 were elucidated primarily by NMR experiments, and 1 was further confirmed by X-ray crystallography. The absolute configurations of 2 and 3 were deduced by comparison of their CD spectra with those of the model compounds. Compounds 2 and 5 showed significant cytotoxicity against MCF-7 cells, which is comparable to the positive control cisplatin.

  4. A feasibility study of the disposal of radioactive waste in deep ocean sediments by drilled emplacement

    International Nuclear Information System (INIS)

    Bury, M.R.C.

    1983-08-01

    This report describes the second phase of a study of the feasibility of disposal and isolation of high level radioactive waste in holes drilled deep into the sediments of the ocean. In this phase, work has concentrated on establishing the state of the art of the various operations and developing the design, in particular the drilling operation, the loading of flasks containing waste canisters from supply vessels onto the platform, the handling of radioactive waste on board, and its emplacement into predrilled holes. In addition, an outline design of the offshore platform has been prepared. (author)

  5. Extraction of seawater-derived neodymium from different phases of deep sea sediments by selective leaching

    Science.gov (United States)

    Blaser, P.; Lippold, J. A.; Frank, N.; Gutjahr, M.; Böhm, E.

    2014-12-01

    In order to deduce reliable information about the interaction of the oceans with the climate system as a whole in the past, the reconstruction of water mass circulation is crucial. The analysis of seawater-derived neodymium isotopes (143Nd/144Nd, expressed as ɛNd) in marine sediments provides a unique proxy for deep water provenance in particular in the Atlantic [1]. The ɛNd signature and thus the mixing proportion of the local bottom water masses is archived in authigenic phases in the sediment. Obtaining seawater ɛNd from authigenic accretions bound to foraminiferal tests has lately become the preferred since most reliable method [2]. Attempts have also been made to extract the Nd-rich authigenic metal fraction by leaching it off the bulk sediment and thereby use this proxy with less effort, in the highest possible resolution and in sediments where foraminifera are not sufficiently present. However, often other sedimentary components are also leached in the process and contaminate the extracted Nd [3,4]. In this project several core-top and older sediments across the Atlantic have been leached in ten consecutive steps with either dilute buffered acetic acid or an acid-reductive solution. The leachates were analysed on their elemental and Nd isotope compositions, as well as rare earth element (REE) distributions. By graduating the total leaching procedure into smaller stages the results display which processes take place in the course of sediment leaching in the laboratory and which components of the sediment are most reactive. Thus, they help to better evaluate the quality of sediment leaches for ɛNd analysis. Clearly, organic calcite acts as a fast reacting buffer and at the point where its amount is sufficiently reduced the leaching of other components commences and the Nd concentration peaks. Corruption of the extracted ɛNd signal by non-authigenic sources in many cases occured early in the leaching sequence, indicating that only very cautious leaching

  6. Exploring Subseafloor Life with the Integrated Ocean Drilling Program

    Directory of Open Access Journals (Sweden)

    Patricia Sobecky

    2007-09-01

    Full Text Available Deep drilling of marine sediments and igneous crust offers a unique opportunity to explore how life persists and evolves in the Earth’s deepest subsurface ecosystems. Resource availability deep beneath the seafloor may impose constraints on microbial growth and dispersal patterns that differ greatly from those in the surface world. Processes that mediate microbial evolution and diversity may also be very different in these habitats, which approach and probably passthe extreme limits of life. Communities in parts of the deep subsurface may resemble primordial microbial ecosystems, and may serve as analogues of life on other planetary bodies, such as Mars or Europa, that have or once had water.

  7. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    Science.gov (United States)

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  8. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Qian, Pei-Yuan

    2015-01-01

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  9. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea)

    KAUST Repository

    Wang, Yong

    2015-10-20

    In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  10. Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.

  11. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    Science.gov (United States)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2015-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  12. Ca Isotope Geochemistry in Marine Deep Sea Sediments of the Eastern Pacific

    Science.gov (United States)

    Wittke, A.; Gussone, N. C.; Derigs, D.; Schälling, M.; Teichert, B. M.

    2017-12-01

    Ca isotope ratio analysis (δ44/40Ca) is a powerful tool to investigate diagenetic reactions in marine sedimentary porewater systems, as it is sensitive to processes such as carbonate dissolution, precipitation, recrystallization, ion exchange and deep fluid sources, due to the isotopic difference between dissolved Ca and solid carbonate minerals (e.g. [1];[2]). We analyzed eight sediment cores of the (paleo-) Pacific equatorial age transect. Two sediment cores show decreasing Ca isotope profiles starting at the sediment/water interface with seawater-like values down to sediment-like values due to recrystallization and an increasing in the bottom part again to seawater-like values. The other studied cores show different degrees of flattening of this middle bulge. We interpret this pattern either as an effect of sediment composition and thickness, decreasing recrystallization rates and/or fluid flux or a combination of all of these factors at the respective sampling sites. Element concentration profiles and Sr-isotope variations on some of these sediment cores show a similar behavior, supporting our findings ([3]; [4]). Seawater influx at (inactive) seamounts is supposed to cause seawater-like values at the bottom of the sediment cores by fluids migrating through the oceanic basement (e.g. [5]). While [6] hypothesizes that two seamounts or bathymetric pits are connected, with a recharge and a discharge site [7] say that uptaken fluids could be released through the surrounding seafloor as well due to diffusive exchange with the underlying oceanic crust. Our Ca isotope results combined with a transport reaction model approach support the latter hypothesis. References: [1] Teichert B. M., Gussone N. and Torres M. E. (2009) [2] Ockert C., Gussone N., Kaufhold S. and Teichert B. (2013) [3] Pälike H., Lyle M., Nishi H., Raffi I., Gamage K. and Klaus A. (eds.) (2010) [4] Voigt J., Hathorne E. C., Frank M., Vollstaedt H. and Eisenhauer A. (2015) [5] Villinger H. W

  13. Investigating Deep-Marine Sediment Waves in the Northern Gulf of Mexico Using 3D Seismic Data

    Science.gov (United States)

    Wang, Z.; Gani, M. R.

    2016-12-01

    Deep-water depositional elements have been studied for decades using outcrop, flume tank, sidescan sonar, and seismic data. Even though they have been well recognized by researchers, the improvements in the quality of 3D seismic data with increasingly larger dimension allow detailed analysis of deep-water depositional elements with new insights. This study focuses on the deep-marine sediment waves in the northern Gulf of Mexico. By interpreting a 3D seismic dataset covering 635 km2 at Mississippi Canyon and Viosca Knoll areas, large sediment waves, generated by sediment gravity flows, were mapped and analyzed with various seismic attributes. A succession of sediment waves, approximately 100 m in thickness, is observed on the marine slope that tapers out at the toe of the slope. The individual sediment wave exhibits up to 500 m in wavelength and up to 20 m in height. The wave crests oriented northeast-southwest are broadly aligned parallel to the regional slope-strike, indicating their sediment gravity flow origin. The crestlines are straight or slightly sinuous, with sinuosity increasing downslope. Their anti-dune patterns likely imply the presence of supercritical flows. The sediment waves have a retrogradational stacking pattern. Seismic amplitude maps of each sediment wave revealed that after depositing the majority of sheet-like sands on the upper slope, sediment gravity flows started to form large sediment waves on the lower slope. The steep and narrow upcurrent flanks of the sediment waves always display higher amplitudes than the gentle and wide downcurrent flanks, indicating that the sands were likely preferentially trapped along the upcurrent flanks, whereas the muds spread along the downcurrent flanks. The formation of sediment waves likely requires a moderate sand-mud ratio, as suggested by these observations: (1) absence of sediment waves on the upper slope where the sands were mainly deposited as unconfined sheets with a high sand-mud ratio; (2

  14. Radioisotope mobility across the sediment/water interface in the deep sea

    International Nuclear Information System (INIS)

    ten Brink, M.R.B.

    1987-01-01

    The removal of radiotracers from water to sediments and their partitioning between phases were used to study the rates and mechanisms of transfer for trace elements across the sediment/water interface in the deep sea. The in situ mobility of 22 Na, 134 Cs, 133 Ba, 65 Zn, 125 Sb, 7 Be, 203 Hg, 54 Mn, 60 Co, 59 Fe, 113 Gd, and 141 Ce was measured using MANOP Lander benthic chambers in the N. equatorial Pacific and in San Clemente Basin. The contributions to mobility of diffusion, bioturbation, advection of pore waters, and transport across the diffusive boundary layer was assessed. The penetration of particle reactive tracers in the upper cm suggested a mixing rate of ≤10 -7 cm 2 /s at Sites C and S and ≤10 -5 cm 2 /s at Sites M and H. Greater penetration could be correlated with worm tubes but no evidence of irrigation was found. The presence of nodules did not prevent transport of soluble tracers to the underlying sediment or concentrate tracers. Diffusion was the predominant mode of transport for radiotracers in the short-term in situ experiments

  15. ESR studies on CaCO3 of deep-sea sediments

    International Nuclear Information System (INIS)

    Mangini, A.; Segl, M.; Schmitz, W.

    1983-01-01

    We have measured depth profiles of the ESR signals on the calcite fraction in 3 deep-sea sediments with a well-established age stratigraphy and CaCO 3 contents around 50 percent. In the ESR spectra of the foraminifera we observe 3 lines (A, B and C, following Ikeya's notation) two of which (A and C) were analysed as depth profiles. The A signal displays a continuous increase with depth over the time periods covered by the sediment cores of 400,000 and 800,000 a B.P. This suggests that a) the lifetime of the electron traps is long compared to these time intervals and b) the traps as yet unsaturated with electrons. Despite our present ignorance of the nature of the traps, these results might indicate the possible future applicability of ESR as a tool for dating sediment cores over time periods up to 1 Ma. The more prominent C signal displays a linear increase over time periods of 100,000 to 200,000 a. Beyond this age we find an overall increase, on which is superimposed short-term noise of similar amplitude that is unrelated to the 232 Th and CaCO 3 contents. (author)

  16. Feasibility of high level radioactive waste disposal in deep sea sediments

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1987-01-01

    For the past ten years, an international program has been conducted to investigate the concept feasibility for disposing of spent nuclear fuel waste in deep ocean sediments. These studies by the Seabed Working Group were coordinated by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. Penetrators have been considered as the primary method of waste emplacement. This required emphasis on studies of the nature of the plastic sediments which would form the primary barrier to the release of radionuclides into the biosphere. Site qualification guidelines, included criteria for tectonic and sedimentary stability over periods of at least 10 5 years. Using these guidelines two potential areas were identified: one in the Madeira Abyssal Plain; and one in the Southern Nares Abyssal Plain, both in the North Atlantic. The sediment barrier properties are quite different in terms of dominant mineralogy (carbonates in MAP, and silicous clays in SNAP). The MAP is dominated by thick wide-spread turbidites, but SNAP is dominated by thin discontinuous turbidites

  17. Acetogenesis in the energy-starved deep biosphere – a paradox?

    Directory of Open Access Journals (Sweden)

    Mark Alexander Lever

    2012-01-01

    Full Text Available Under anoxic conditions in sediments, acetogens are often thought to be outcompeted by microorganisms performing energetically more favorable metabolic pathways, such as sulfate reduction or methanogenesis. Recent evidence from deep subseafloor sediments suggesting acetogenesis in the presence of sulfate reduction and methanogenesis has called this notion into question, however. Here I argue that acetogens can successfully coexist with sulfate reducers and methanogens for multiple reasons. These include (1 substantial energy yields from most acetogenesis reactions across the wide range of conditions encountered in the subseafloor, (2 wide substrate spectra that enable niche differentiation by use of different substrates and/or pooling of energy from a broad range of energy substrates, (3 reduced energetic cost of biosynthesis among acetogens due to use of the reductive acetyl CoA pathway for both energy production and biosynthesis coupled with the ability to use many organic precursors to produce the key intermediate acetyl CoA. This leads to the general conclusion that, beside Gibbs free energy yields, variables such as metabolic strategy and energetic cost of biosynthesis need to be taken into account to understand microbial survival in the energy-depleted deep biosphere.

  18. Indications of low macrobenthic activity in the deep sediments of the eastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Daniela Basso

    2004-12-01

    Full Text Available The fluxes and budget of organic matter from the oligotrophic surface waters of the eastern Mediterranean to the deep waters are poorly known, and little information is available on past and present macrobenthic activity on the sea floor. Evidence of macrobenthic activity can be direct, through recovery of living organisms or their autochthonous skeletal remains, or indirect, through bioturbation and trace fossils. The evidence of biological activity in deep eastern Mediterranean sediments has been evaluated and compared through 210Pb profiles from box-cores and study of dredge samples from sites on Medina Rise (1374 m water depth, the Messina Abyssal Plain (4135 m and several sites along the Mediterranean Ridge, SW and S of Crete (1783 to 3655 m. All these sites are remote from the continental shelves, so the biological benthic activity is expected to depend primarily on primary production from surface waters. The results show that present-day macrobenthos and trace fossils are generally scarce, especially at depths > 2500 m. This observation is supported by surface sediment 210Pb excess distributions that show a surface mixed layer (SML 2500 m. The historical layer of some box-cores and the Pleistocene hardgrounds collected in the Cleft area (Mediterranean Ridge do, however, record a macrobenthic activity that is apparently more intense than at present, which may be related to higher primary production of the Pleistocene glacial intervals. In contrast with most areas of the present-day deep eastern Mediterranean which depend on surface primary production based on photosynthesis, a relatively dense and diversified macrobenthic community based on chemosynthesis has been recognised at depths > 1100 m on the Napoli Dome mud volcano in the Olimpi area, and on the Kazan and other mud volcanoes in the Anaximander Mountains.

  19. Subseafloor Microbial Life in Venting Fluids from the Mid Cayman Rise Hydrothermal System

    Science.gov (United States)

    Huber, J. A.; Reveillaud, J.; Reddington, E.; McDermott, J. M.; Sylva, S. P.; Breier, J. A.; German, C. R.; Seewald, J.

    2012-12-01

    In hard rock seafloor environments, fluids emanating from hydrothermal vents are one of the best windows into the subseafloor and its resident microbial community. The functional consequences of an extensive population of microbes living in the subseafloor remains unknown, as does our understanding of how these organisms interact with one another and influence the biogeochemistry of the oceans. Here we report the abundance, activity, and diversity of microbes in venting fluids collected from two newly discovered deep-sea hydrothermal vents along the ultra-slow spreading Mid-Cayman Rise (MCR). Fluids for geochemical and microbial analysis were collected from the Von Damm and Piccard vent fields, which are located within 20 km of one another, yet have extremely different thermal, geological, and depth regimes. Geochemical data indicates that both fields are highly enriched in volatiles, in particular hydrogen and methane, important energy sources for and by-products of microbial metabolism. At both sites, total microbial cell counts in the fluids ranged in concentration from 5 x 10 4 to 3 x 10 5 cells ml-1 , with background seawater concentrations of 1-2 x 10 4 cells ml-1 . In addition, distinct cell morphologies and clusters of cells not visible in background seawater were seen, including large filaments and mineral particles colonized by microbial cells. These results indicate local enrichments of microbial communities in the venting fluids, distinct from background populations, and are consistent with previous enumerations of microbial cells in venting fluids. Stable isotope tracing experiments were used to detect utilization of acetate, formate, and dissolve inorganic carbon and generation of methane at 70 °C under anaerobic conditions. At Von Damm, a putatively ultra-mafic hosted site located at ~2200 m with a maximum temperature of 226 °C, stable isotope tracing experiments indicate methanogenesis is occurring in most fluid samples. No activity was detected

  20. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge

    OpenAIRE

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-01-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched w...

  1. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  2. The deep biosphere in terrestrial sediments in the chesapeake bay area, virginia, USA.

    Science.gov (United States)

    Breuker, Anja; Köweker, Gerrit; Blazejak, Anna; Schippers, Axel

    2011-01-01

    For the first time quantitative data on the abundance of Bacteria, Archaea, and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR, Q-PCR and catalyzed reporter deposition-fluorescence in situ hybridization, CARD-FISH). The oligotrophic (organic carbon content of ∼0.2%) deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 10(9) to 10(6) cells/g dry weight within the uppermost 20 m, and did not further decrease with depth below. Within the top 7 m, a significant proportion of the total cell counts could be detected with CARD-FISH. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III)- and Mn(IV)-reducing bacterial group Geobacteriaceae were almost exclusively found in the uppermost meter (arable soil), where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth in low copy numbers

  3. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Bourque, Jill R.; Frometa, Janessy

    2014-01-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L

  4. Biodiversity and community composition of sediment macrofauna associated with deep-sea Lophelia pertusa habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W. J.; Bourque, Jill R.; Frometa, Janessy

    2014-11-01

    Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350-500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm-2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher's α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa

  5. Siderophile element concentrations in magnetic spherules from deep sea sediments revealed by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nogami, Ken-ichi; Shimamura, Tadashi; Tazawa, Yuji; Yamakoshi, Kazuo.

    1980-01-01

    For the purpose of deciding the extraterrestrial origin of the magnetic spherules found in deep sea sediments, the siderophile elements Co, Ni, Ir and/or Au etc., were measured by instrumental neutron activation analysis. Spherules were collected from red clay samples which were dredged from Mid Pacific Ocean. Only spherules which had smooth surfaces and relatively high specific gravities were chosen for analysis. Existence of Co, Ni and Ir in most spherules suggests the possibility of an extraterrestrial origin for these spherules. It is not clear whether these spherules are droplets ablated from iron meteorites entering into the Earth's atmosphere or they are cosmic iron grains themselves. X-ray diffraction analysis suggested that these spherules are the products of rapid cooling materials. (author)

  6. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    Science.gov (United States)

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  7. Spatial and Temporal Changes in Fluid Chemistry and Microbial Community Diversity in Subseafloor Habitats at Axial Seamount Following the 1998 Eruption

    Science.gov (United States)

    Opatkiewicz, A. D.; Butterfield, D. A.; Baross, J. A.

    2006-12-01

    The subseafloor associated with hydrothermal vents has the potential to contribute significantly to primary production and biogeochemical cycling in the ocean. However, too little is known about the phylogenetic and physiological diversity of the microbial communities or their in situ activity to assess this potential. There are previous reports that subseafloor environments at active vent sites harbor a high diversity of microorganisms that include different thermal and metabolic groups of Bacteria and Archaea. However, little is known about how these communities change over time (minutes to years), at different vent sites, or in response to perturbations. In an effort to address these issues, the subseafloor microbial community diversity was examined from five diffuse-flow hydrothermal vent sites (distributed geographically over the seamount between three distinguishable vent fields) over the course of six years following the 1998 eruption at Axial Seamount (45° 58'N; 130° 00' W). PCR-based Terminal Restriction Fragment Length Polymorphism (TRFLP) analyses were used to follow changes in the microbial community structure. 16S rRNA gene sequence analysis was used to identify the specific groups of Bacteria and Archaea from the TRFLP analyses. Deep-sea background seawater microorganisms were detected in hydrothermal fluid samples (Bacteria: Alpha and Gamma Proteobacteria, Archaea: Marine Group I Crenarchaeota and Marine Group II Euryarchaeota). The unique subseafloor phylotypes detected included Epsilon, Delta and Beta Proteobacteria, Methanococcales and thermophilic Euryarchaeota. Temperature and key chemical species, which indicate the degree of mixing of hydrothermal fluid with seawater in the subsurface, have been shown previously to be important in affecting the diversity of the microbial communities (Huber et al., 2003). This work substantiates these earlier findings and furthermore presents evidence that additional chemical species, distinguishing the

  8. Astronomical calibration of the first Toba super-eruption from deep-sea sediments

    Science.gov (United States)

    Lee, M.; Chen, C.; Wei, K.; Iizuka, Y.

    2003-04-01

    Correlations between tephra layers interbedded within deep-sea cores and radiometrically dated volcanic eruptions provide an independent means of verifying dating techniques developed for sediment cores. Alternatively, the chronostratigraphic framework developed from marine sediments can be used to calibrate ages of land-base eruptions, if geochemical correlations can be established. In this study, we examined three deep-sea cores along an east-west transection across the South China Sea, with a distance of ~1800 to 2500 km away from the Toba caldera. The occurrence of the Oldest Toba Tuff was recognized on the basis of its geochemical characteristics, such as a high-silicate, high-potassium content and a distinct strontium isotope composition. The correlative tephra layer occurs slightly above the Australasian microtektite layer and below the Brunhes/Matuyama boundary, which in constitute three time-parallel markers for correlation and dating of Quaternary stratigraphic records. Against the astronomically tuned oxygen isotope chronostratigraphy, the rhyolitic ignimbrite erupted during the transition from marine isotope stage 20 (glacial) to stage 19 (interglacial) with an estimated age of 788 ka. The refined age is in good agreement with the radiometric age of 800+20 ka for Layer D of ODP Site 758 (Hall and Farrell, 1995), but significantly younger than the commonly referred age of 840+30 ka (Diehl et al., 1987). The mid-Pleistocene eruption expelled at least 800-1000 km3 dense-rock-equivalent of rhyolitic magma taking into account the widespread ashfall deposits in the Indian Ocean and the South China Sea basins. In spite of its exceptional magnitude, the timing of the first Toba super-eruption disputes a possible causal linkage between a major volcanic eruption and a long-term global climatic deterioration.

  9. Suspended sediment dynamics in a large-scale turbidity current: Direct measurements from the deep-water Congo Canyon

    Science.gov (United States)

    Simmons, S.; Azpiroz, M.; Cartigny, M.; Clare, M. A.; Parsons, D. R.; Sumner, E.; Talling, P. J.

    2016-12-01

    Turbidity currents that transport sediment to the deep ocean deposit a greater volume of sediment than any other process on Earth. To date, only a handful of studies have directly measured turbidity currents, with flow durations ranging from a few minutes to a few hours. Our understanding of turbidity current dynamics is therefore largely derived from scaled laboratory experiments and numerical modelling. Recent years have seen the first field-scale measurements of depth-resolved velocity profiles, but sediment concentration (a key parameter for turbidity currents) remains elusive. Here, we present high resolution measurements of deep-water turbidity currents from the Congo Canyon; one of the world's largest submarine canyons. Direct measurements using acoustic Doppler current profilers (ADCPs) show that flows can last for many days, rather than hours as seen elsewhere, and provide the first quantification of concentration and grain size within deep-water turbidity currents.Velocity and backscatter were measured at 5 second intervals by an ADCP suspended 80 m above the canyon floor, at 2000 m water depth. A novel inversion method using multiple ADCP frequencies enabled quantification of sediment concentration and grain size within the flows. We identify high concentrations of coarse sediment within a thin frontal cell, which outruns a thicker, trailing body. Thus, the flows grow in length while propagating down-canyon. This is distinct from classical models and other field-scale measurements of turbidity currents. The slow-moving body is dominated by suspended fine-grained sediment. The body mixes with the surrounding fluid leaving diffuse clouds of sediment that persist for days after initial entrainment. Ambient tidal flow also controls the mixing within the body and the surrounding fluid. Our results provide a new quantification of suspended sediment within flows and the interaction with the surrounding fluid.

  10. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (HAUSGARTEN, Fram Strait).

    Science.gov (United States)

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-01-01

    Marine bacteria colonizing deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometers and across water depths of several thousand meters (Jacob et al., 2013). Jacob et al. (2013) adopted what has become a classical view of microbial diversity - based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene - and observed a very large microbial community replacement at the HAUSGARTEN Long Term Ecological Research station (Eastern Fram Strait). Here, we revisited these data using the oligotyping approach and aimed to obtain new insight into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments. We also assessed the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterized dataset of high relevance for global change biology.

  11. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (Hausgarten, Fram Strait

    Directory of Open Access Journals (Sweden)

    Pier Luigi eButtigieg

    2015-01-01

    Full Text Available Marine bacteria colonising deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometres and across water depths reaching several thousands of metres (Jacob et al., 2013. Jacob et al. adopted what has become a classical view of microbial diversity based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene and observed a very large microbial community replacement at the Hausgarten Long-Term Ecological Research station (Eastern Fram Strait. Here, we revisited these data using the oligotyping approach with the aims of obtaining new insights into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments and of assessing the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterised dataset of high relevance for global change biology.

  12. Sediment resuspension events induced by the wake wash of deep-draft vessels

    Science.gov (United States)

    Garel, Erwan; López Fernández, Laura; Collins, Mike

    2008-08-01

    Hydrodynamics and sediment resuspension events, induced at the shoreline by a deep-draft vessel passing nearby, are described. Measurements (pressure, currents and turbidity) were obtained at 4 Hz, on a lower beach ~50 m from a channel where large car ferries operate in Wootton Creek, Isle of Wight. The study focuses on a representative 8-min 32-s-long record, during which two large vessels passed the channel section. At the shore, the passage of each vessel induced a long-period water-level drawdown, followed by a water-level oscillation (seiche) of similar period, and the short-period waves of the wake. Both drawdowns were the main constituents of the prevailing wave pattern. The second drawdown was the largest in amplitude, in response to a higher speed of the ferry, and the influence of the seiche which had been activated during the preceding event. Two successive peaks of turbidity were observed shortly after this drawdown. Analyses of current velocity and direction indicate that the sediments resuspended originated from the shallower upper beach. Anthropogenically induced erosion of the foreshore is predicted at Wootton Creek.

  13. New insights into the mineralogy of the Atlantis II Deep metalliferous sediments, Red Sea

    Science.gov (United States)

    Laurila, Tea E.; Hannington, Mark D.; Leybourne, Matthew; Petersen, Sven; Devey, Colin W.; Garbe-Schönberg, Dieter

    2015-12-01

    The Atlantis II Deep of the Red Sea hosts the largest known hydrothermal ore deposit on the ocean floor and the only modern analog of brine pool-type metal deposition. The deposit consists mainly of chemical-clastic sediments with input from basin-scale hydrothermal and detrital sources. A characteristic feature is the millimeter-scale layering of the sediments, which bears a strong resemblance to banded iron formation (BIF). Quantitative assessment of the mineralogy based on relogging of archived cores, detailed petrography, and sequential leaching experiments shows that Fe-(oxy)hydroxides, hydrothermal carbonates, sulfides, and authigenic clays are the main "ore" minerals. Mn-oxides were mainly deposited when the brine pool was more oxidized than it is today, but detailed logging shows that Fe-deposition and Mn-deposition also alternated at the scale of individual laminae, reflecting short-term fluctuations in the Lower Brine. Previous studies underestimated the importance of nonsulfide metal-bearing components, which formed by metal adsorption onto poorly crystalline Si-Fe-OOH particles. During diagenesis, the crystallinity of all phases increased, and the fine layering of the sediment was enhanced. Within a few meters of burial (corresponding to a few thousand years of deposition), biogenic (Ca)-carbonate was dissolved, manganosiderite formed, and metals originally in poorly crystalline phases or in pore water were incorporated into diagenetic sulfides, clays, and Fe-oxides. Permeable layers with abundant radiolarian tests were the focus for late-stage hydrothermal alteration and replacement, including deposition of amorphous silica and enrichment in elements such as Ba and Au.

  14. Short-term impact of deep sand extraction and ecosystem-based landscaping on macrozoobenthos and sediment characteristics

    NARCIS (Netherlands)

    de Jong, Maarten F.; Baptist, Martin J.; Lindeboom, Han J.; Hoekstra, Piet

    2015-01-01

    We studied short-term changes in macrozoobenthos in a 20. m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were

  15. Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Parashar, K.; ShyamPrasad, M.

    We examined 378 micrometeorites collected from deep-sea sediments of the Indian Ocean of which 175, 180, and 23 are I-type, S-type, and G-type, respectively. Of the 175 I-type spherules, 13 contained platinum group element nuggets (PGNs...

  16. Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes

    Directory of Open Access Journals (Sweden)

    T. Steinsberger

    2017-07-01

    Full Text Available The flux of reduced substances, such as methane and ammonium, from the sediment to the bottom water (Fred is one of the major factors contributing to the consumption of oxygen in the hypolimnia of lakes and thus crucial for lake oxygen management. This study presents fluxes based on sediment porewater measurements from different water depths of five deep lakes of differing trophic states. In meso- to eutrophic lakes Fred was directly proportional to the total organic carbon mass accumulation rate (TOC-MAR of the sediments. TOC-MAR and thus Fred in eutrophic lakes decreased systematically with increasing mean hypolimnion depth (zH, suggesting that high oxygen concentrations in the deep waters of lakes were essential for the extent of organic matter mineralization leaving a smaller fraction for anaerobic degradation and thus formation of reduced compounds. Consequently, Fred was low in the 310 m deep meso-eutrophic Lake Geneva, with high O2 concentrations in the hypolimnion. By contrast, seasonal anoxic conditions enhanced Fred in the deep basin of oligotrophic Lake Aegeri. As TOC-MAR and zH are based on more readily available data, these relationships allow estimating the areal O2 consumption rate by reduced compounds from the sediments where no direct flux measurements are available.

  17. The deep biosphere in terrestrial sediments in the Chesapeake Bay area, Virginia, USA

    Directory of Open Access Journals (Sweden)

    Anja eBreuker

    2011-07-01

    Full Text Available For the first time quantitative data on the abundance of Bacteria, Archaea and Eukarya in deep terrestrial sediments are provided using multiple methods (total cell counting, quantitative real-time PCR (Q-PCR and catalyzed reporter deposition – fluorescence in situ hybridization (CARD-FISH. The oligotrophic (organic carbon content of ~ 0.2 % deep terrestrial sediments in the Chesapeake Bay area at Eyreville, Virginia, USA, were drilled and sampled up to a depth of 140 m in 2006. The possibility of contamination during drilling was checked using fluorescent microspheres. Total cell counts decreased from 109 to 106 cells per g dry weight (dw within the uppermost 20 m depth, and did not further decrease with depth below. A significant proportion of the total cell counts could be detected with CARD-FISH within the uppermost 7 m depth. The CARD-FISH numbers for Bacteria were about an order of magnitude higher than those for Archaea. The dominance of Bacteria over Archaea was confirmed by Q-PCR. The down core quantitative distribution of prokaryotic and eukaryotic small subunit ribosomal RNA genes as well as functional genes involved in different biogeochemical processes was revealed by Q-PCR for the uppermost 10 m and for 80-140 m depth. Eukarya and the Fe(III- and Mn(IV-reducing bacterial group Geobacteriaceae were almost only found in the uppermost meter (arable soil, where reactive iron was detected in higher amounts. The bacterial candidate division JS-1 and the classes Anaerolineae and Caldilineae of the phylum Chloroflexi, highly abundant in marine sediments, were found up to the maximum sampling depth in high copy numbers at this terrestrial site as well. A similar high abundance of the functional gene cbbL encoding for the large subunit of RubisCO suggests that autotrophic microorganisms could be relevant in addition to heterotrophs. The functional gene aprA of sulfate reducing bacteria was found within distinct layers up to ca. 100 m depth

  18. Analyses of outcrop and sediment grains observed and collected from the Sirena Deep and Middle Pond of the Mariana Trench

    Science.gov (United States)

    Hand, K. P.; Bartlett, D. H.; Fryer, P.

    2012-12-01

    During a March 2012 expedition we recovered sediments from two locales within the Marina Trench - Middle Pond and Sirena Deep. Samples were recovered from a Niskin bottle deployed on a passive lander platform that released an arm after touching down on the seafloor. The impact of the arm holding the Niskin bottle caused sediments to enter the bottle; this process was seen in images and on video captured by the lander. The combination of imagery and preliminary analyses of the sediments indicates that the Sirena Deep locale is a region of serpentinization and active microbial communities. Images show several outcrops consistent with serpentinization, some of which are coated with filamentous microbial mats. Results and analyses of these samples will be presented.

  19. Difference of nitrogen-cycling microbes between shallow bay and deep-sea sediments in the South China Sea.

    Science.gov (United States)

    Yu, Tiantian; Li, Meng; Niu, Mingyang; Fan, Xibei; Liang, Wenyue; Wang, Fengping

    2018-01-01

    In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.

  20. Mössbauer investigations to characterize Fe lattice sites in sheet silicates and Peru Basin deep-sea sediments

    Science.gov (United States)

    Lougear, André; König, Iris; Trautwein, Alfred X.; Suess, Erwin

    A procedure to classify different Fe lattice sites, i.e., OH-group geometries, in the clay mineral content of deep-sea sediments was developed using Mössbauer spectroscopy at low temperature (77 K). This speciation is of interest with regard to the redox behavior, reactivity and color of marine sediments, since substantial iron redox transitions (associated with sediment color change) have been documented for the structural sheet silicate iron. Lattice site classification was achieved for the Fe(II) fraction, all of which is structural clay Fe(II) in the sediments under investigation. Whereas the major part of the Fe(III) is structural clay iron as well, there is a small Fe(III) fraction in oxide minerals. Therefore, further elaboration of the procedure would be required to also achieve lattice site classification for the Fe(III) fraction. Analysis of the Mössbauer spectra is based on computer fits, the input parameters of which were derived from a separate study of Fe(II)-rich pure chlorites. The procedure of classification is qualified to investigate, e.g., in laboratory experiments, the site-specific reaction rates and the effects on sediment color of iron redox transitions in the sheet silicate content of sediments. The new skills were successfully applied in environmental impact studies on the mining of polymetallic nodules from the Peru Basin deep-sea floor.

  1. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    Science.gov (United States)

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  2. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    Science.gov (United States)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  3. Sedimentology, tephrostratigraphy, and chronology of the DEEP site sediment record, Lake Ohrid (Albania, FYROM)

    Science.gov (United States)

    Leicher, Niklas; Wagner, Bernd; Francke, Alexander; Just, Janna; Zanchetta, Giovanni; Sulpizio, Roberto; Giaccio, Biagio; Nomade, Sebastien

    2017-04-01

    Lake Ohrid, located on the Balkan Peninsula, is one of the very few lakes in the world that provides a continuous and high-resolution record of environmental change of >1.3 Ma. The sedimentary archive was drilled in spring 2013 within the scope of the International Continental Scientific Drilling Program (ICDP) and the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project in order to investigate local and regional geological and paleoclimatic processes, as well as triggers of evolutionary patterns and endemic biodiversity. The continuous composite profile (584 m) of the main drill site DEEP was logged (XRF, MSCL) and subsampled for biogeochemical (TIC, TOC, TN, TS) and sedimentological (grain size) analyses. The lithology of the DEEP site indicates that the history of Lake Ohrid can roughly be separated into two parts, with the older section between 584 and 450 m depth being characterised by a sedimentary facies indicating shallow water conditions, which is likely younger than ca. 1.9 Ma. In the lowermost few meters of the succession gravels and pebbles hampered a deeper drilling penetration and indicate that fluvial conditions existed during the onset of lake formation. Together with geotectonic, seismic, and biological information, the data imply that the Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and that the lake established between 1.9 and 1.3 Ma ago. The sediments of the younger part (DEEP site sequence and are subject of ongoing investigations aimed at identifying their specific volcanic sources and equivalent known tephra by using geochemical fingerprinting of glass fragments. This was already successfully approved for tephra horizons in the upper 247.8 m of the sequence, obtaining important chronological information from 11 well dated tephra layers. These tephrochronological constraints were complemented by ages obtained from tuning the consistent pattern of the

  4. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, R.P.; Irifune, T.; Shimizu, N.; Nishiyama, N.; Norman, M.D.; Inoue, T. (Ehime U); (WHOI); (UC); (ANU)

    2008-10-08

    Isotopic and trace element geochemical studies of ocean island basalts (OIBs) have for many years been used to infer the presence of long-lived ({approx} 1-2 Ga old) compositional heterogeneities in the deep mantle related to recycling of crustal lithologies and marine and terrigenous sediments via subduction [e.g., Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571; Weaver, B.L., 1991. The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth Planet. Sci. Lett. 104, 381-397; Chauvel, C., Hofmann, A.W., Vidal, P., 1992. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99-119; Hofmann, A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219-229; Willbold, M., Stracke, A., 2006. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. Q04004. 7, doi:10.1029/2005GC001005]. In particular, models for the EM-1 type ('enriched mantle') OIB reservoir have invoked the presence of subducted, continental-derived sediment to explain high {sup 87}Sr/{sup 86}Sr ratios, low {sup 143}Nd/{sup 144}Nd and {sup 206}Pb/{sup 204}Pb ratios, and extreme enrichments in incompatible elements observed in OIB lavas from, for example, the Pitcairn Island group in the South Pacific [Woodhead, J.D., McCulloch, M.T., 1989; Woodhead, J.D., Devey, C.W., 1993. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth Planet. Sci. Lett. 116, 81-99; Eisele, J., Sharma, M., Galer, S.J.G., Blichert-Toft, J., Devey, C.W., Hofmann, A.W., 2002. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet. Sci. Lett. 196, 197-212]. More recently, ultrapotassic, mantle-derived lavas (lamproites) from Gaussberg, Antarctica have been interpreted as

  5. Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin

    Science.gov (United States)

    Lacharité, Myriam; Metaxas, Anna

    2017-08-01

    Benthic habitats on deep continental margins (> 1000 m) are now considered heterogeneous - in particular because of the occasional presence of hard substrate in a matrix of sand and mud - influencing the distribution of megafauna which can thrive on both sedimented and rocky substrates. At these depths, optical imagery captured with high-definition cameras to describe megafauna can also describe effectively the fine-scale sediment properties in the immediate vicinity of the fauna. In this study, we determined the relationship between local heterogeneity (10-100 sm) in fine-scale sediment properties and the abundance, composition, and diversity of megafauna along a large depth gradient (1000-3000 m) in a previously-unexplored habitat: the Northeast Fan, which lies downslope of submarine canyons off the Gulf of Maine (northwest Atlantic). Substrate heterogeneity was quantified using a novel approach based on principles of computer vision. This approach proved powerful in detecting gradients in sediment, and sporadic complex features (i.e. large boulders) in an otherwise homogeneous environment because it characterizes sediment properties on a continuous scale. Sediment heterogeneity influenced megafaunal diversity (morphospecies richness and Shannon-Wiener Index) and community composition, with areas of higher substrate complexity generally supported higher diversity. However, patterns in abundance were not influenced by sediment properties, and may be best explained by gradients in food supply. Our study provides a new approach to quantify fine-scale sediment properties and assess their role in shaping megafaunal communities in the deep sea, which should be included into habitat studies given their potential ecological importance.

  6. Thermophilic subseafloor microorganisms from the 1996 North Gorda Ridge eruption

    Science.gov (United States)

    Summit, Melanie; Baross, John A.

    1998-12-01

    High-temperature microbes were present in two hydrothermal event plumes (EP96A and B) resulting from the February-March 1996 eruptions along the North Gorda Ridge. Anaerobic thermophiles were cultured from 17 of 22 plume samples at levels exceeding 200 organisms per liter; no thermophiles were cultured from any of 12 samples of background seawater. As these microorganisms grow at temperatures of 50-90°C, they could not have grown in the event plume and instead most probably derived from a subseafloor environment tapped by the event plume source fluids. Event plumes are thought to derive from a pre-existing subseafloor fluid reservoir, which implies that these thermophiles are members of a native subseafloor community that was present before the eruptive event. Thermophiles also were cultured from continuous chronic-style hydrothermal plumes in April 1996; these plumes may have formed from cooling lava piles. To better understand the nutritional, chemical, and physical constraints of pre-eruptive crustal environments, seven coccoidal isolates from the two event plumes were partially characterized. Results from nutritional and phylogenetic studies indicate that these thermophiles are heterotrophic archaea that represent new species, and probably a new genus, within the Thermococcales.

  7. Research on the neutron flux, secular equilibrium of chlorine-36 and groundwater age of the deep quaternary sediments, Hebei plain

    International Nuclear Information System (INIS)

    Dong Yuean; He Ming; Jiang Songsheng; Wu Shaoyong; Jiang Shan

    2001-01-01

    For the study of the neutron flux, secular equilibrium of chlorine-36 in the deep quaternary sediments of Hebei plain, the main chemical composition of water sand and confining bed was determined by neutron activation analysis. The mean neutron flux is 2.79 x 10 -5 cm -2 s -1 which was calculated by the chemical composition of the strata. The mean 36 Cl/Cl ratio in secular equilibrium is 1.27 x 10 -14 in the deep quaternary sediments, Hebei Plain. For the study of the groundwater age of the deep Quaternary sediments of Hebei Plain, the 36 Cl/Cl ratio of groundwater samples were determined by tandem accelerator mass spectrometry. The mixed groundwater 36 Cl/Cl ratio of the second and the third aquifer of Quaternary sediments in Baoding district is 247 x 10 -15 , that of the fourth aquifer in Baoding city is 224 x 10 -15 and the third aquifer in Cangzhou district is 40.5 x 10 -15 . The groundwater age of Baoding district was young and that of the third aquifer in Cangzhou was 229.2 ka

  8. Refining the Subseafloor Circulation Model of the Middle Valley Hydrothermal System Using Fluid Geochemistry

    Science.gov (United States)

    Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.

    2014-12-01

    Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.

  9. Unexpected and novel putative viruses in the sediments of a deep-dark permanently anoxic freshwater habitat.

    Science.gov (United States)

    Borrel, Guillaume; Colombet, Jonathan; Robin, Agnès; Lehours, Anne-Catherine; Prangishvili, David; Sime-Ngando, Télesphore

    2012-11-01

    Morphological diversity, abundance and community structure of viruses were examined in the deep and anoxic sediments of the volcanic Lake Pavin (France). The sediment core, encompassing 130 years of sedimentation, was subsampled every centimeter. High viral abundances were recorded and correlated to prokaryotic densities. Abundances of viruses and prokaryotes decreased with the depth, contrasting the pattern of virus-to-prokaryote ratio. According to fingerprint analyses, the community structure of viruses, bacteria and archaea gradually changed, and communities of the surface (0-10 cm) could be discriminated from those of the intermediate (11-27 cm) and deep (28-40 cm) sediment layers. Viral morphotypes similar to virions of ubiquitous dsDNA viruses of bacteria were observed. Exceptional morphotypes, previously never reported in freshwater systems, were also detected. Some of these resembled dsDNA viruses of hyperthermophilic and hyperhalophilic archaea. Moreover, unusual types of spherical and cubic virus-like particles (VLPs) were observed. Infected prokaryotic cells were detected in the whole sediment core, and their vertical distribution correlated with both viral and prokaryotic abundances. Pleomorphic ellipsoid VLPs were visible in filamentous cells tentatively identified as representatives of the archaeal genus Methanosaeta, a major group of methane producers on earth.

  10. Origins of the deep-sea sediments and their variations with time. Annual progress report No. 6, May 1975

    International Nuclear Information System (INIS)

    Biscaye, P.E.

    1975-05-01

    Techniques for studying water mass mixing and sediment transport in the benthic layer of the deep sea and the effects of these processes on the continental shelf specifically in the New York Bight were studied. Results are presented for the first major combined geochemistry-physical oceanography cruise. Data on the nature of the bottom sediments are presented principally in context of their potential as sources of both radon and methane in the lower water column. Preliminary data on the nature and composition of suspended particulates also indicate potential for tracing the mechanisms of solids dispersal in the Bight. (PCS)

  11. Application of systems analysis to the disposal of high level waste in deep ocean sediments

    International Nuclear Information System (INIS)

    De Marsily, G.; Dorp, F. van

    1982-01-01

    Emplacement in deep ocean sediments is one of the disposal options being considered for solidified high level radioactive waste. Task groups set up within the framework of the NEA Seabed Working Group have been studying many aspects of this option since 1976. The methods of systems analysis have been applied to enable the various parts of the problem to be assessed within an integrated framework. This paper describes the progress made by the Systems Analysis Task Group towards the development of an overall system model. The Task Group began by separating the problem into elements and defining the interfaces between these elements. A simple overall system model was then developed and used in both a preliminary assessment and a sensitivity analysis to identify the most important parameters. These preliminary analyses used a very simple model of the overall system and therefore the results cannot be used to draw any conclusions as to the acceptability of the sub-seabed disposal option. However they served to show the utility of the systems analysis method. The work of the other task groups will focus on the important parameters so that improved results can be fed back into an improved system model. Subsequent iterations will eventually provide an input to an acceptability decision. (Auth.)

  12. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  13. Microbiology and geochemistry of hydrocarbon-rich sediments erupted from the deep geothermal Lusi site, Indonesia

    Science.gov (United States)

    Krüger, Martin; Straten, Nontje; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin

    2016-04-01

    , using a remotely controlled drone as well as older, weathered samples for comparison. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade hydrocarbons (oils, alkanes, BTEX tested). The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms (deep biosphere). First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  14. Magnetic Hysteresis of Deep-Sea Sediments in Korea Deep Ocean Study(KODOS) Area, NE Pacific

    Science.gov (United States)

    Kim, K.; Park, C.; Yoo, C.

    2001-12-01

    The KODOS area within the Clarion-Clipperton fracture zone (C-C zone) is surrounded by the Hawaiian and Line Island Ridges to the west and the central American continent to the east. Topography of the seafloor consists of flat-topped abyssal hills and adjacent abyssal troughs, both of which run parallel in N-S direction. Sediments from the study area consist mainly of biogenic sediments. Latitudinal zonation of sedimentary facies was caused by the accumulation of biogenic materials associated with the equatorial current system and movement of the Pacific plate toward the north or northwest. The KODOS area belongs to the latitudinal transition zone having depositional characteristics between non-fossiliferous pelagic clay-dominated zone and calcareous sediment-dominated zone. The box core sediments of the KODOS area are analyzed in an attempt to obtain magnetic hysteresis information and to elucidate the relationship between hysteresis property and lithological facies. Variations in magnetic hysteresis parameters with unit layers reflect the magnetic grain-size and concentrations within the sediments. The ratios of remanant coercivity/coercive force (Hcr/Hc) and saturation remnance/saturation magnetization (Mrs/Ms) indicate that coarse magnetic grains are mainly distributed in dark brown sediments (lower part of the sediment core samples) reflecting high Hcr/Hc and low Mrs/Ms ratios. These results are mainly caused by dissolution differences with core depth. From the plotting of the ratios of hyteresis parameters, it is indicated that magnetic minerals in cubic samples are in pseudo-single domain (PSD) state.

  15. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean

    Science.gov (United States)

    Wu, Yue-Hong; Liao, Li; Wang, Chun-Sheng; Ma, Wei-Lin; Meng, Fan-Xu; Wu, Min; Xu, Xue-Wei

    2013-09-01

    Deep-sea polymetallic nodules, rich in metals such as Fe, Mn, and Ni, are potential resources for future exploitation. Early culturing and microscopy studies suggest that polymetallic nodules are at least partially biogenic. To understand the microbial communities in this environment, we compared microbial community composition and diversity inside nodules and in the surrounding sediments. Three sampling sites in the Pacific Ocean containing polymetallic nodules were used for culture-independent investigations of microbial diversity. A total of 1013 near full-length bacterial 16S rRNA gene sequences and 640 archaeal 16S rRNA gene sequences with ~650 bp from nodules and the surrounding sediments were analyzed. Bacteria showed higher diversity than archaea. Interestingly, sediments contained more diverse bacterial communities than nodules, while the opposite was detected for archaea. Bacterial communities tend to be mostly unique to sediments or nodules, with only 13.3% of sequences shared. The most abundant bacterial groups detected only in nodules were Pseudoalteromonas and Alteromonas, which were predicted to play a role in building matrix outside cells to induce or control mineralization. However, archaeal communities were mostly shared between sediments and nodules, including the most abundant OTU containing 290 sequences from marine group I Thaumarchaeota. PcoA analysis indicated that microhabitat (i.e., nodule or sediment) seemed to be a major factor influencing microbial community composition, rather than sampling locations or distances between locations.

  16. Comparison of the anaerobic microbiota of deep-water Geodia spp. and sandy sediments in the Straits of Florida.

    Science.gov (United States)

    Brück, Wolfram M; Brück, Thomas B; Self, William T; Reed, John K; Nitecki, Sonja S; McCarthy, Peter J

    2010-05-01

    Marine sediments and sponges may show steep variations in redox potential, providing niches for both aerobic and anaerobic microorganisms. Geodia spp. and sediment specimens from the Straits of Florida were fixed using paraformaldehyde and 95% ethanol (v/v) for fluorescence in situ hybridization (FISH). In addition, homogenates of sponge and sediment samples were incubated anaerobically on various cysteine supplemented agars. FISH analysis showed a prominent similarity of microbiota in sediments and Geodia spp. samples. Furthermore, the presence of sulfate-reducing and annamox bacteria as well as other obligate anaerobic microorganisms in both Geodia spp. and sediment samples were also confirmed. Anaerobic cultures obtained from the homogenates allowed the isolation of a variety of facultative anaerobes, primarily Bacillus spp. and Vibrio spp. Obligate anaerobes such as Desulfovibrio spp. and Clostridium spp. were also found. We also provide the first evidence for a culturable marine member of the Chloroflexi, which may enter into symbiotic relationships with deep-water sponges such as Geodia spp. Resuspended sediment particles, may provide a source of microorganisms able to associate or form a symbiotic relationship with sponges.

  17. Unique Prokaryotic Consortia in Geochemically Distinct Sediments from Red Sea Atlantis II and Discovery Deep Brine Pools

    Science.gov (United States)

    Siam, Rania; Mustafa, Ghada A.; Sharaf, Hazem; Moustafa, Ahmed; Ramadan, Adham R.; Antunes, Andre; Bajic, Vladimir B.; Stingl, Uli; Marsis, Nardine G. R.; Coolen, Marco J. L.; Sogin, Mitchell; Ferreira, Ari J. S.; Dorry, Hamza El

    2012-01-01

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The ‘polyextremophiles’ that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction. PMID:22916172

  18. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    Directory of Open Access Journals (Sweden)

    Rania Siam

    Full Text Available The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The 'polyextremophiles' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA revealed that one sulfur (S-rich Atlantis II and one nitrogen (N-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1, group II was characteristic for the N-rich Discovery sample (DD-1, and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  19. Chemical compositions of magnetic, stony spherules from deep-sea sediments determined by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yamakoshi, Kazuo

    1984-01-01

    Chemical compositions of magnetic, stony spherules from deep sea sediments were determined by instrumental neutron activation analysis. High Ir, Au, Ni and Co contents indicate their extraterrestrial origin. The obtained compositions are considerably different from those of chondrites. It can be qualitatively interpreted, however, that cosmic matters having the compositions of chondrites are changed into magnetic, stony spherules by thermal degenerations during their atmospheric entry. (author)

  20. Unique prokaryotic consortia in geochemically distinct sediments from Red Sea Atlantis II and discovery deep brine pools.

    KAUST Repository

    Siam, Rania

    2012-08-20

    The seafloor is a unique environment, which allows insights into how geochemical processes affect the diversity of biological life. Among its diverse ecosystems are deep-sea brine pools - water bodies characterized by a unique combination of extreme conditions. The \\'polyextremophiles\\' that constitute the microbial assemblage of these deep hot brines have not been comprehensively studied. We report a comparative taxonomic analysis of the prokaryotic communities of the sediments directly below the Red Sea brine pools, namely, Atlantis II, Discovery, Chain Deep, and an adjacent brine-influenced site. Analyses of sediment samples and high-throughput pyrosequencing of PCR-amplified environmental 16S ribosomal RNA genes (16S rDNA) revealed that one sulfur (S)-rich Atlantis II and one nitrogen (N)-rich Discovery Deep section contained distinct microbial populations that differed from those found in the other sediment samples examined. Proteobacteria, Actinobacteria, Cyanobacteria, Deferribacteres, and Euryarchaeota were the most abundant bacterial and archaeal phyla in both the S- and N-rich sections. Relative abundance-based hierarchical clustering of the 16S rDNA pyrotags assigned to major taxonomic groups allowed us to categorize the archaeal and bacterial communities into three major and distinct groups; group I was unique to the S-rich Atlantis II section (ATII-1), group II was characteristic for the N-rich Discovery sample (DD-1), and group III reflected the composition of the remaining sediments. Many of the groups detected in the S-rich Atlantis II section are likely to play a dominant role in the cycling of methane and sulfur due to their phylogenetic affiliations with bacteria and archaea involved in anaerobic methane oxidation and sulfate reduction.

  1. Clay mineralogical and Sr, Nd isotopic investigations in two deep-sea sediment cores from Northeast Indian Ocean

    International Nuclear Information System (INIS)

    Anil Babu, G.; Masood Ahmad, S.; Padmakumari, V.M.; Dayal, A.M.

    2004-01-01

    Sr and Nd isotopic studies in terrigenous component of the ocean sediments provide useful information about weathering patterns near source rock and climatic conditions existed on the continents. Variations in 87 Sr/ 86 Sr and 143 Nd/ 144 Nd isotopic ratios in clastic sediments depend on the source from the continents, volcanic input and circulation changes. The composition of clay minerals mainly depends on climate, geology and topography of the surrounding region. Chlorite and Illite are formed under physical weathering in arid cold climate and kaolinite and smectite are the characteristic products of chemical weathering in humid wet climatic conditions. Therefore, the variations in clay mineral composition in deep-sea sediments can be interpreted in terms of changes in the climatic conditions prevailed in the continental source areas

  2. An upper limit to interstellar Pu-224 abundance as deduced from radiochemical search in deep-sea sediment

    International Nuclear Information System (INIS)

    Paul, M.; Valenta, A.; Ahman, I.

    2005-01-01

    Short-lived radionuclides with halflives of a few 10 7 years, now-extinct in the solar system, are expected to be present in the interstellar medium (ISM) as freshly synthesized matter in supermovae. Grains of ISM origin recently discovered in the inner solar system and at Earth orbit may accrete onto Earth after ablation in the atmosphere. As pointed out by one of the authors (K.S.) in 1974, a favorable matrix of detection of such extraterrestrial material is deep-sea sediments with very low sedimentation rates of ∼1 mm.ky -1 . We report here a search for the 'live' Pu-244 in a 1 kg-deep-sea dry sediment collected in 1992 in the North Pacific. After a 546 day a-counting of a Pu fraction chemically separated from the alkaline-fused sediment sample at Kanazawa Univ. AMS analysis was performed at Hebrew Univ. and Weizmann Institute. Only one count of Pu-244 with no background ions was detected, indicating no excess over the expected stratospheric man-made fallout. A limit of 0.2 Pu-244 atoms cm -2 .y -1 for extra terrestrial deposition was set under reasonable assumptions and it was then concluded from this result and the available data on ISM that the abundance of Pu-244 in the ISM is less than 2 X 10 -11 g-Pu-244 (g ISM) -1 . Implications of the present result will be discussed.

  3. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  4. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  5. Systems analysis approach to the disposal of high-level waste in deep ocean sediments

    International Nuclear Information System (INIS)

    Marsily, G. de; Hill, M.D.; Murray, C.N.; Talbert, D.M.; Van Dorp, F.; Webb, G.A.M.

    1980-01-01

    Among the different options being studied for disposal of high-level solidified waste, increasing attention is being paid to that of emplacement of glasses incorporating the radioactivity in deep oceanic sediments. This option has the advantage that the areas of the oceans under investigation appear to be relatively unproductive biologically, are relatively free from cataclysmic events, and are areas in which the natural processes are slow. Thus the environment is stable and predictable so that a number of barriers to the release and dispersion of radioactivity can be defined. Task Groups set up in the framework of the International Seabed Working Group have been studying many aspects of this option since 1976. In order that the various parts of the problem can be assessed within an integrated framework, the methods of systems analysis have been applied. In this paper the Systems Analysis Task Group members report the development of an overall system model. This will be used in an iterative process in which a preliminary analysis, together with a sensitivity analysis, identifies the parameters and data of most importance. The work of the other task groups will then be focussed on these parameters and data requirements so that improved results can be fed back into an improved overall systems model. The major requirements for the development of a preliminary overall systems model are that the problem should be separated into identified elements and that the interfaces between the elements should be clearly defined. The model evolved is deterministic and defines the problem elements needed to estimate doses to man

  6. Microbial diversity in subseafloor fluids from Explorer Ridge, Northeast Pacific

    Science.gov (United States)

    Bolton, S.; Huber, J. A.; Embley, R.; Butterfield, D. A.; Baross, J. A.

    2003-12-01

    The Gorda, Juan de Fuca and Explorer Ridges are first order spreading centers located in the northeast Pacific. While the Gorda and Juan de Fuca Ridges have been extensively sampled for chemical and microbiological analyses, what little is known about the Explorer Ridge is from preliminary observations made in the mid-1980's. A cruise in 2002 revisited the area and discovered vigorous hydrothermal activity at Magic Mountain, a site located outside the primary rift valley. Explorer Ridge is an important site to compare with other well-described vent sites on the Juan de Fuca Ridge. Our research has focused on describing the phylogenetic and physiological diversity of bacteria and archaea in low temperature hydrothermal fluids in an effort to identify subseafloor indicator organisms and to use the physiological characteristics of these organisms to help constrain subseafloor habitat characteristics. We have previously established that there are microbial taxa that are unique to subseafloor habitats associated with diffuse flow fluids at Axial Seamount and at Endeavour both located on the Juan de Fuca Ridge. These included cultured anaerobic, thermophilic and hyperthermophilic heterotrophs, methanogens and sulfur metabolizers. Moreover, results from molecular phylogeny analyses using the 16S rRNA sequences identified a phylogenetically diverse group of bacteria belonging to the epsilon-proteobacteria. While anaerobic hyperthermophiles were cultured from some diffuse-flow vent sites at Explorer, they were less abundant than at Axial Volcano and Endeavour, and curiously, no methanogens were cultured or detected in 16S rRNA clonal libraries. Like Axial, a diverse group of epsilon-proteobacterial clones were found with many similar to those identified from Axial Seamount and other hydrothermal vent sites, although there appears to be some unique species. The overall bacterial diversity at Explorer appears different than at Axial, possibly linked to temperature or chemical

  7. Short-term impact of deep sand extraction and ecosystem-based landscaping on macrozoobenthos and sediment characteristics.

    Science.gov (United States)

    de Jong, Maarten F; Baptist, Martin J; Lindeboom, Han J; Hoekstra, Piet

    2015-08-15

    We studied short-term changes in macrozoobenthos in a 20m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were estimated with a hydrodynamic model. Two years after the cessation of sand extraction, macrozoobenthic biomass increased fivefold in the deepest areas. Species composition changed significantly and white furrow shell (Abra alba) became abundant. Several sediment characteristics also changed significantly in the deepest parts. Macrozoobenthic species composition and biomass significantly correlated with time after cessation of sand extraction, sediment and hydrographical characteristics. Ecosystem-based landscaped sand bars were found to be effective in influencing sediment characteristics and macrozoobenthic assemblage. Significant changes in epifauna occurred in deepest parts in 2012 which coincided with the highest sedimentation rate. We recommend continuing monitoring to investigate medium and long-term impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cold-seep-like macrofaunal communities in organic- and sulfide-rich sediments of the Congo deep-sea fan

    Science.gov (United States)

    Olu, K.; Decker, C.; Pastor, L.; Caprais, J.-C.; Khripounoff, A.; Morineaux, M.; Ain Baziz, M.; Menot, L.; Rabouille, C.

    2017-08-01

    Methane-rich fluids arising from organic matter diagenesis in deep sediment layers sustain chemosynthesis-based ecosystems along continental margins. This type of cold seep develops on pockmarks along the Congo margin, where fluids migrate from deep-buried paleo-channels of the Congo River, acting as reservoirs. Similar ecosystems based on shallow methane production occur in the terminal lobes of the present-day Congo deep-sea fan, which is supplied by huge quantities of primarily terrestrial material carried by turbiditic currents along the 800 km channel, and deposited at depths of up to nearly 5000 m. In this paper, we explore the effect of this carbon enrichment of deep-sea sediments on benthic macrofauna, along the prograding lobes fed by the current active channel, and on older lobes receiving less turbiditic inputs. Macrofaunal communities were sampled using either USNEL cores on the channel levees, or ROV blade cores in the chemosynthesis-based habitats patchily distributed in the active lobe complex. The exceptionally high organic content of the surface sediment in the active lobe complex was correlated with unusual densities of macrofauna for this depth, enhanced by a factor 7-8, compared with those of the older, abandoned lobe, whose sediment carbon content is still higher than in Angola Basin at same depth. Macrofaunal communities, dominated by cossurid polychaetes and tanaids were also more closely related to those colonizing low-flow cold seeps than those of typical deep-sea sediment. In reduced sediments, microbial mats and vesicomyid bivalve beds displayed macrofaunal community patterns that were similar to their cold-seep counterparts, with high densities, low diversity and dominance of sulfide-tolerant polychaetes and gastropods in the most sulfidic habitats. In addition, diversity was higher in vesicomyid bivalve beds, which appeared to bio-irrigate the upper sediment layers. High beta-diversity is underscored by the variability of geochemical

  9. Sedimentation

    Digital Repository Service at National Institute of Oceanography (India)

    Rixen, T.; Guptha, M.V.S.; Ittekkot, V.

    opal ratios. Such changes are assumed to have lowered the atmospheric CO sub(2) concentration significantly during glacial times. The differences between estimated deep ocean fluxes derived from satellite data and measured deep fluxes are lower than...

  10. Development of an assessment methodology for the disposal of high-level radioactive waste into deep ocean sediments

    International Nuclear Information System (INIS)

    Murray, C.N.; Stanners, D.A.

    1982-01-01

    This paper presents the results of a theoretical study concerning the option of disposal of vitrified high activity waste (HAW) into deep ocean sediments. The development of a preliminary methodology is presented which concerns the assessment of the possible effects of a release of radioactivity on the ecosystem and eventually on man. As the long-term hazard is considered basically to be due to transuranic elements (and daughter products) the period studied for the assessment is from 10 3 to 10 6 years. A simple ecosystem model is developed so that the transfer of activity between different compartments of the systems, e.g. the sediment column, sediment-water interface, deep sea water column, can be estimated. A critical pathway analysis is made for an imaginary critical group in order to complete the assessment. A sensitivity analysis is undertaken using the computed minimum-maximum credible values for the different parameters used in the calculations in order to obtain a minimum-maximum dose range for a critical group. (Auth.)

  11. Composition, oxygen isotope geochemistry, and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Cole, T G [Imperial Coll. of Science and Technology, London (UK). Geology Dept.

    1985-01-01

    The sediments of the Bauer Deep, an open ocean basin situated on the northwest Nazca Plate in the southeast Pacific, constitute a regional metalliferous deposit dominated by authigenic smectite. Two 2-metre long cores from the Bauer Deep were examined to investigate the nature and origin of the smectite. Infra-red and Mossbauer spectroscopy, and wet chemical analysis (LiBO/sub 2/ fusion) of isolated smectite, indicate the mineral is a Mg-rich, Al-rich nontronite. Oxygen isotopic compositions for isolated smectite are uniform and translate to a non-hydrothermal temperature of formation of about 3 deg C. SEM observations show an abundance of well-preserved biogenic opal in surface and near surface sediment but postburial dissolution and transformation of this phase to smectite is evident at depth. Smectite formation is the result of interaction between iron oxyhydroxide, ponded in the Bauer Deep following a hydrothermal origin at the adjacent East Pacific Rise, and biogenic opal. A reaction mechanism is proposed. Regional factors control smectite formation. In particular, formation is inhibited in areas of CaCO/sub 3/ accumulation (topographic elevations) but favoured in areas of oxyhydroxide and opal ponding (topographic depressions.)

  12. Composition, oxygen isotope geochemistry, and origin of smectite in the metalliferous sediments of the Bauer Deep, southeast Pacific

    International Nuclear Information System (INIS)

    Cole, T.G.

    1985-01-01

    The sediments of the Bauer Deep, an open ocean basin situated on the northwest Nazca Plate in the southeast Pacific, constitute a regional metalliferous deposit dominated by authigenic smectite. Two 2-metre long cores from the Bauer Deep were examined to investigate the nature and origin of the smectite. Infra-red and Mossbauer spectroscopy, and wet chemical analysis (LiBO 2 fusion) of isolated smectite, indicate the mineral is a Mg-rich, Al-rich nontronite. Oxygen isotopic compositions for isolated smectite are uniform and translate to a non-hydrothermal temperature of formation of about 3 deg C. SEM observations show an abundance of well-preserved biogenic opal in surface and near surface sediment but postburial dissolution and transformation of this phase to smectite is evident at depth. Smectite formation is the result of interaction between iron oxyhydroxide, ponded in the Bauer Deep following a hydrothermal origin at the adjacent East Pacific Rise, and biogenic opal. A reaction mechanism is proposed. Regional factors control smectite formation. In particular, formation is inhibited in areas of CaCO 3 accumulation (topographic elevations) but favoured in areas of oxyhydroxide and opal ponding (topographic depressions.) (author)

  13. Microbial Life in the Subseafloor at Mid-Ocean Ridges: A Key to Understanding Ancient Ecosystems on Earth and Elsewhere?

    Science.gov (United States)

    Baross, J. A.; Delaney, J. R.

    2001-12-01

    Some planets and moons in our solar system were similar to Earth in their geological properties during the first few hundred million years after accretion. This is the period when life arose and became established on Earth. It follows that understanding the geophysical and geochemical characteristics of early Earth could provide insight into life-supporting environments on other solar bodies that have not evolved "Garden of Eden" conditions. Hydrothermal systems are primordial and their emergence coincided with the accumulation of liquid water on Earth. The interactions of water and rock associated with hydrothermal systems result in predictable suites of dissolved elements and volatiles. While the concentrations of these chemicals vary at different vent locations and were certainly different during the early Archaean, the overall chemical composition of aqueous hydrothermal fluid is likely to be the same because of the basaltic nature of oceanic crust. In present-day hydrothermal systems, those environments not contaminated by electron acceptors produced from pelagic photosynthesis would most closely mimic the earliest conditions on Earth. These conditions include the subseafloor and high temperature, anaerobic environments associated with hydrothermal systems. The microorganisms associated with these environments derive energy from sulfur, iron, hydrogen and organic compounds. New seafloor eruptions and diffuse flow vents provide unprecedented access to deep subseafloor microbial communities. For example, 12 new eruptions have occurred in the past 15 years including five in the Northeast Pacific. Hyperthermophiles were isolated from 5-30oC diffuse vent fluids from new eruption sites at CoAxial within months of the June, 1993 eruption and from the 1998 eruption at Axial Volcano, and from plume fluids within days of the February, 1996 eruption at the N. Gorda Ridge. The presence of such organisms in fluids that are 20 to 50°C below their minimum growth temperature

  14. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment

    Energy Technology Data Exchange (ETDEWEB)

    Fang Di, E-mail: dfang@ouc.edu.cn [Department of Environmental Engineering, Ocean University of China, Qingdao 266100 (China); State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Zhang Ruichang [Department of Environmental Engineering, Ocean University of China, Qingdao 266100 (China); Zhou Lixiang [Department of Environmental Engineering, Nanjing Agricultural University, Nanjing 210095 (China); Li Jie [Department of Environmental Engineering, Ocean University of China, Qingdao 266100 (China)

    2011-08-15

    Highlights: {yields} Bioleaching-bioprecipitation can deeply cleanup sediment-borne metal contaminants. {yields} Bioleaching results in a sufficient solubilisation of sediment-borne metals. {yields} Bioprecipitation removes most of solubilised metals from sediment leachate at pH 3.7. {yields} Bioremoval of soluble Zn, Cu and Cr is due to the formation of ZnS, Cu{sub 2}S and CrOOH. {yields} Alkalization of bioleached sediment by Ca(OH){sub 2} excludes the risk of re-acidification. - Abstract: A linked microbial process comprising bioleaching with sulfate-oxidizing bacteria and bioprecipitation with sulfate-reducing bacteria operating sequentially was investigated to deeply remove contaminating metals from dredged sediment. The results showed that sediment bioleaching resulted in a sharp decrease in sediment pH from an initial pH {approx}7.6 to pH {approx}2.5 within 10-20 days, approximately 65% of the main heavy metals present (Zn + Cu + Cr) were solubilized, and most of the unsolubilized metals existed in residual form of sediment. The acidic leachate that resulted from sediment bioleaching was efficiently stripped of metal sulfates using a bioprecipitation reactor when challenged with influent as low as pH {approx}3.7. More than 99% of Zn{sup 2+}, 99% of Cu{sup 2+} and 90% of Cr{sup 3+} were removed from the leachate, respectively, due to the formation of ZnS, Cu{sub 2}S and CrOOH precipitates, as confirmed by SEM-EDS and XRD detection. It was also found that alkalization of bioleached sediment using Ca(OH){sub 2} excluded the risk of sediment re-acidification. The ability of the combined process developed in this study to deeply remove heavy metals in insoluble sulfides or hydroxides forms makes it particularly attractive for the treatment of different types of metal contaminants.

  15. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment

    International Nuclear Information System (INIS)

    Fang Di; Zhang Ruichang; Zhou Lixiang; Li Jie

    2011-01-01

    Highlights: → Bioleaching-bioprecipitation can deeply cleanup sediment-borne metal contaminants. → Bioleaching results in a sufficient solubilisation of sediment-borne metals. → Bioprecipitation removes most of solubilised metals from sediment leachate at pH 3.7. → Bioremoval of soluble Zn, Cu and Cr is due to the formation of ZnS, Cu 2 S and CrOOH. → Alkalization of bioleached sediment by Ca(OH) 2 excludes the risk of re-acidification. - Abstract: A linked microbial process comprising bioleaching with sulfate-oxidizing bacteria and bioprecipitation with sulfate-reducing bacteria operating sequentially was investigated to deeply remove contaminating metals from dredged sediment. The results showed that sediment bioleaching resulted in a sharp decrease in sediment pH from an initial pH ∼7.6 to pH ∼2.5 within 10-20 days, approximately 65% of the main heavy metals present (Zn + Cu + Cr) were solubilized, and most of the unsolubilized metals existed in residual form of sediment. The acidic leachate that resulted from sediment bioleaching was efficiently stripped of metal sulfates using a bioprecipitation reactor when challenged with influent as low as pH ∼3.7. More than 99% of Zn 2+ , 99% of Cu 2+ and 90% of Cr 3+ were removed from the leachate, respectively, due to the formation of ZnS, Cu 2 S and CrOOH precipitates, as confirmed by SEM-EDS and XRD detection. It was also found that alkalization of bioleached sediment using Ca(OH) 2 excluded the risk of sediment re-acidification. The ability of the combined process developed in this study to deeply remove heavy metals in insoluble sulfides or hydroxides forms makes it particularly attractive for the treatment of different types of metal contaminants.

  16. Persistence profile of polyaromatic hydrocarbons in shallow and deep Gulf waters and sediments: Effect of water temperature and sediment–water partitioning characteristics

    International Nuclear Information System (INIS)

    Tansel, B.; Fuentes, C.; Sanchez, M.; Predoi, K.; Acevedo, M.

    2011-01-01

    Highlights: ► The half-lives of PAHs in the deep waters (over 1000 m) are about twice longer than the shallow areas (100–150 m). ► In the water column, anthracene levels can decrease by 50% within 1–2 days. ► The half-lives of the PAHs in the sediments are significantly longer than those in the water column. ► The half-life of pyrene in the shallow and deep sediments is 9 and 16 years, respectively. - Abstract: Persistence profiles of selected polyaromatic hydrocarbons (PAHs) were analyzed depending on temperature variations in the water column and water–sediment interactions in the Gulf of Mexico. The PAHs studied include anthracene, fluoranthene, pyrene, and chrysene. The half-lives of PAHs in the deep waters (over 1000 m) are about twice as long as those in the shallow areas (100–150 m), and almost 2.5 times as long as those in the top layer (0–10 m) of the water column. The half-lives of the PAHs in the sediments are significantly longer. Among the PAHs studied, chrysene is the most persistent in the water column, and pyrene is the most persistent in the sediments. The half-life of chrysene in the shallow and deep waters is over 2.5 and about 5 years, respectively. For pyrene, the half-life in the shallow and deep sediments is about 9 and 16 years, respectively.

  17. Formation of carbonate concretions in deep-sea sediment below the CCD and above an active gas hydrate system

    Science.gov (United States)

    Dicus, C. M.; Snyder, G. T.; Dickens, G. R.

    2004-12-01

    Site 1230 of the Ocean Drilling Program targeted the chemistry and microbiology of an active deep-water gas hydrate system in the Peru Trench. The site is noteworthy because, at nearly 6000 m water depth, it lies well below the carbonate compensation depth and the sediments comprise mostly terrigenous clays and biogenic silica. Shipboard work at this site delineated a prominent sulfate-methane transition (SMT) at 8-10 m below seafloor (mbsf) as well as some carbonate horizons. In this study, we present calcium and strontium data for pore waters and sediments at this site, including across the SMT. Concentration profiles show that dissolved Ca2+ diffuses downward from the seafloor toward the SMT, where a sharp inflection indicates consumption of Ca2+ into an authigenic phase. Dissolved Sr2+, on the other hand, diffuses upward from depth toward the SMT. Again, however, a prominent inflection suggests removal of Sr2+ to sediment. The inferences from pore water profiles are borne out by sediment chemistry. Large peaks in the calcium and strontium content of sediment mark the SMT. The calcium and strontium fronts reach ˜2700 and ˜5 mmol/kg, respectively, at 9 mbsf, which are much greater than average background values of ˜10 and ˜1 mmol/kg. These authigenic fronts are primarily composed of carbonate minerals, as determined by acetic acid extractions and x-ray diffraction. Because the calcium and strontium fronts coincide with both the SMT and changes in dissolved chemistry, it is proposed that the carbonates are currently forming as follows: methane rising from the underlying gas hydrate system reacts with dissolved sulfate through anaerobic oxidation of methane which releases HCO3- and alkalinity and causes carbonate precipitation. The overall process has been observed elsewhere; the Peru Trench is interesting, however, because the process leads to carbonate in sediments otherwise devoid of carbonate.

  18. Sediment pollution characteristics and in situ control in a deep drinking water reservoir.

    Science.gov (United States)

    Zhou, Zizhen; Huang, Tinglin; Li, Yang; Ma, Weixing; Zhou, Shilei; Long, Shenghai

    2017-02-01

    Sediment pollution characteristics, in situ sediment release potential, and in situ inhibition of sediment release were investigated in a drinking water reservoir. Results showed that organic carbon (OC), total nitrogen (TN), and total phosphorus (TP) in sediments increased from the reservoir mouth to the main reservoir. Fraction analysis indicated that nitrogen in ion exchangeable form and NaOH-extractable P (Fe/Al-P) accounted for 43% and 26% of TN and TP in sediments of the main reservoir. The Risk Assessment Code for metal elements showed that Fe and Mn posed high to very high risk. The results of the in situ reactor experiment in the main reservoir showed the same trends as those observed in the natural state of the reservoir in 2011 and 2012; the maximum concentrations of total OC, TN, TP, Fe, and Mn reached 4.42mg/L, 3.33mg/L, 0.22mg/L, 2.56mg/L, and 0.61mg/L, respectively. An in situ sediment release inhibition technology, the water-lifting aerator, was utilized in the reservoir. The results of operating the water-lifting aerator indicated that sediment release was successfully inhibited and that OC, TN, TP, Fe, and Mn in surface sediment could be reduced by 13.25%, 15.23%, 14.10%, 5.32%, and 3.94%, respectively. Copyright © 2016. Published by Elsevier B.V.

  19. Viruses-to-mobile genetic elements skew in the deep Atlantis II brine pool sediments

    KAUST Repository

    Adel, Mustafa; Elbehery, Ali H. A.; Aziz, Sherry K.; Aziz, Ramy K.; Grossart, Hans-Peter; Siam, Rania

    2016-01-01

    sediment sections were subjected to shotgun DNA pyrosequencing to generate 1.47 billion base pairs (1.47 × 109 bp). We generated sediment-specific reads and attempted to annotate all reads. We report the phylogenetic and biochemical uniqueness

  20. Sedimentation

    Science.gov (United States)

    Cliff R. Hupp; Michael R. Schening

    2000-01-01

    Sedimentation is arguably the most important water-quality concern in the United States. Sediment trapping is cited frequently as a major function of riverine-forested wetlands, yet little is known about sedimcntation rates at the landscape scale in relation to site parameters, including woody vegetation type, elevation, velocity, and hydraulic connection to the river...

  1. Reconstruction of atmospheric trace metals pollution in Southwest China using sediments from a large and deep alpine lake: Historical trends, sources and sediment focusing.

    Science.gov (United States)

    Lin, Qi; Liu, Enfeng; Zhang, Enlou; Nath, Bibhash; Shen, Ji; Yuan, Hezhong; Wang, Rong

    2018-02-01

    Atmospheric pollution, one of the leading environmental problems in South and East Asia, and its impact on the terrestrial environmental quality remain poorly understood particularly in alpine areas where both historical and present-day mining and smelting operations might leave an imprint. Here, we reconstructed atmospheric trace metals pollution during the past century using core sediments from a large and deep alpine lake in Southwest China. The implication of in lake and/or in watershed sediment focusing in pollution quantification is discussed by analyzing 15 sediment cores. Factor analysis and enrichment factor indicated Cd, Pb and Sb as the typical pollutants. Distinct peaks of Pb and Sb pollution were observed around the 1920s, but little Pb pollution was detected in recent decades, different from other studies in similar regions. Cadmium pollution was observed until the mid-1980s synchronized with Sb. The distinctive variations in atmospheric trace metal pollution process in Southwest China highlight the regional and sub-regional sources of metal pollutants, which should be primarily attributed to non-ferrous metal smelting emissions. Both natural and anthropogenic metals showed wide concentration ranges though exhibited similar temporal trends in the 15 cores. Spatial variations of anthropogenic metals were influenced by the in-watershed pollutants remobilization, whereas, natural metals were regulated by the detrital materials in the sub-basin. In-lake sediment focusing had little influence on the spatial distributions of all metals, different from the traditional sediment focusing pattern observed in small lakes. Anthropogenic Cd accumulation in sediments ranged from 1.5 to 10.1mgm -2 in a specific core with an average of 6.5mgm -2 for the entire lake, highlighting that a reliable whole-lake pollutant budget requires an analysis of multiple cores. Our study suggests that the management of aquatic ecosystem health should take the remobilization of in

  2. Chronological study of 137Cs input to the Black Sea deep and shelf sediments

    International Nuclear Information System (INIS)

    Gulin, S.B.; Polikarpov, G.G.; Egorov, V.N.; Aarkrog, A.; Nielsen, S.P.

    1997-01-01

    The chart of the post-Chernobyl 137 Cs distribution in the upper Black Sea sediments was made. The field of sediments with the highest 137 Cs activity was found near the Danube River mouth. The age of sediment layers as well as the sedimentation rates were calculated from 137 Cs vertical profiles in the top of the uncompacted sediments nearby the Danube (11.5 mm yr -1 ), the NW Black Sea slope (2.2 mm yr -1 ) and the deepest western area (0.4 mm yr -1 ). Subsequent assessments showed the high distinction of 137 Cs sedimentary fluxes and inventories between these sites related to different contributions of terrigenous matter in the sediments, as traced by 40 K. The results allow to reconstruct chronology of 137 Cs input to the Black Sea over the last decades. The traced three most notable phases correspond well with the periods of active nuclear weapon testings in the 1950's and 1960's as well as of the Chernobyl NPP accident. The post-Chernobyl dynamics of 137 Cs activity in the near Danube sediments traced from its dated profile was like that observed during the annual monitoring. (author)

  3. Prevalence of the Ancient Wood-Ljungdahl Pathway in a Subseafloor Olivine Community

    Science.gov (United States)

    Smith, A. R.; Mueller, R.; Fisk, M. R.; Mason, O. U.; Popa, R.; Kieft, B.; Colwell, F. S.

    2018-05-01

    The ancient Wood-Ljungdahl pathway used for biosynthesis and energy generation was found to be the predominant metabolic pathway in a microbial community from olivine grains incubated in the Juan de Fuca subseafloor aquifer.

  4. Methane assimilation and trophic interactions with marine Methylomicrobium in deep-water coral reef sediment off the coast of Norway.

    Science.gov (United States)

    Jensen, Sigmund; Neufeld, Josh D; Birkeland, Nils-Kåre; Hovland, Martin; Murrell, John Colin

    2008-11-01

    Deep-water coral reefs are seafloor environments with diverse biological communities surrounded by cold permanent darkness. Sources of energy and carbon for the nourishment of these reefs are presently unclear. We investigated one aspect of the food web using DNA stable-isotope probing (DNA-SIP). Sediment from beneath a Lophelia pertusa reef off the coast of Norway was incubated until assimilation of 5 micromol 13CH4 g(-1) wet weight occurred. Extracted DNA was separated into 'light' and 'heavy' fractions for analysis of labelling. Bacterial community fingerprinting of PCR-amplified 16S rRNA gene fragments revealed two predominant 13C-specific bands. Sequencing of these bands indicated that carbon from 13CH4 had been assimilated by a Methylomicrobium and an uncultivated member of the Gammaproteobacteria. Cloning and sequencing of 16S rRNA genes from the heavy DNA, in addition to genes encoding particulate methane monooxygenase and methanol dehydrogenase, all linked Methylomicrobium with methane metabolism. Putative cross-feeders were affiliated with Methylophaga (Gammaproteobacteria), Hyphomicrobium (Alphaproteobacteria) and previously unrecognized methylotrophs of the Gammaproteobacteria, Alphaproteobacteria, Deferribacteres and Bacteroidetes. This first marine methane SIP study provides evidence for the presence of methylotrophs that participate in sediment food webs associated with deep-water coral reefs.

  5. Distribution of chemical warfare agent, energetics, and metals in sediments at a deep-water discarded military munitions site

    Science.gov (United States)

    Briggs, Christian; Shjegstad, Sonia M.; Silva, Jeff A. K.; Edwards, Margo H.

    2016-06-01

    There is a strong need to understand the behavior of chemical warfare agent (CWA) at underwater discarded military munitions (DMM) sites to determine the potential threat to human health or the environment, yet few studies have been conducted at sites in excess of 250 m, the depth at which most U.S. chemical munitions were disposed. As part of the Hawai'i Undersea Military Munitions Assessment (HUMMA), sediments adjacent to chemical and conventional DMM at depths of 400-650 m were sampled using human occupied vehicles (HOVs) in order to quantify the distribution of CWA, energetics, and select metals. Sites in the same general area, with no munitions within 50 m in any direction were sampled as a control. Sulfur mustard (HD) and its degradation product 1,4-dithiane were detected at each CWA DMM site, as well as a single sample with the HD degradation product 1,4-thioxane. An energetic compound was detected in sediment to a limited extent at one CWA DMM site. Metals common in munitions casings (i.e., Fe, Cu, and Pb) showed similar trends at the regional and site-wide scales, likely reflecting changes in marine sediment deposition and composition. This study shows HD and its degradation products can persist in the deep-marine environment for decades following munitions disposal.

  6. Hydrocarbons in Deep-Sea Sediments following the 2010 Deepwater Horizon Blowout in the Northeast Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Isabel C Romero

    Full Text Available The Deepwater Horizon (DWH spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000-1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC, aliphatic, polycyclic aromatic hydrocarbon (PAHs, and biomarker (hopanes, steranes, diasteranes compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1 sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material, and 2 advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related variability in the DeSoto Canyon, NE of the DWH wellhead.

  7. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge.

    Science.gov (United States)

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-08-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.

  8. Link between concentrations of sediment flux and deep crustal processes beneath the European Alps.

    Science.gov (United States)

    Garefalakis, Philippos; Schlunegger, Fritz

    2018-01-09

    Large sediment fluxes from mountain belts have the potential to cause megafans to prograde into the neighbouring sedimentary basins. These mechanisms have been documented based from numerical modelling and stratigraphic records. However, little attention has been focused on inferring temporal changes in the concentrations of supplied sediment from coarse-grained deposits. Here, we extract changes of this variable in the field from a Late Oligocene, c. 4 km-thick suite of fluvial conglomerates situated in the North Alpine foreland basin, which evolved in response to the tectonic and erosional history of the Alps. We measure a decrease in channel depths from >2 m to 20 cm from the base to the top of the suite. These constraints are used to calculate an increase in fan surface slopes from 1.0° based on the Shields criteria for sediment entrainment. We combine slope and bulk grain size data with the Bagnold equation for sediment transport to infer higher concentrations of the supplied sediment. We use these shifts to propose a change towards faster erosion and a steeper landscape in the Alpine hinterland, driven by mantle-scale processes beneath the Alps.

  9. Geo-hazard by sediment mass movements in submarine canyons

    Science.gov (United States)

    Ghaith, Afif; Fakhri, Milad; Ivaldi, Roberta; Ciavola, Paolo

    2017-04-01

    Submarine mass movements and their consequences are of major concern for coastal communities and infrastructures but also for the exploitation and the development of seafloor resources. Elevated awareness of the need for better understanding of the underwater mass movement is coupled with great advances in underwater mapping technologies over the past two decades. The seafloor in the Nahr Ibrahim and Saida regions (Lebanon) is characterized by deep canyons, reaching one thousand meters depths in proximity of the coast. Signs of submarine mass movement instability related to these canyons create a connection between shallow and deep water. The presence of these canyons in a tectonically active area generates a particular drained mechanism to the sediment in form of mass movement and slumping. Identification of potential areas where slope movements could be triggered requires data with high spatial resolution. Since this area is poorly explored, in the framework of an international project between Lebanese Navy, Lebanese National Center for Marine Sciences, University of Ferrara and Italian Hydrographic Institute, we analyse the morpho-bathymetric and sedimentological characters of the coastal and shelf sectors. Multibeam echosounder and sub-bottom profiler acoustic systems calibrated with ground truths (sediment grab and core samples) allow us to characterize the nature of seafloor and sub-seafloor with particular detail to the geotechnical properties of sediments and high resolution seismic stratigraphy of the shallow layers. The detection of particular undersea features provides detail maps which are in support to littoral morpho-dynamics, coastal transport and sediment budget. Multilayer hydro-oceanographic map, referring to the seafloor dynamics in connection with deep water environment and drainage system, in accordance to the International Hydrographic Standards and nautical supports, are produced. This high resolution multibeam bathymetry dataset, integrated

  10. High occurrence of Bathyarchaeota (MCG) in the deep-sea sediments of South China Sea quantified using newly designed PCR primers.

    Science.gov (United States)

    Yu, Tiantian; Liang, Qianyong; Niu, Mingyang; Wang, Fengping

    2017-08-01

    The archaeal phylum Bathyarchaeota, which is composed of a large number of diverse lineages, is widespread and abundant in marine sediments. Environmental factors that control the distribution, abundance and evolution of this largely diversified archaeal phylum are currently unclear. In this study, a new pair of specific primers that target the major marine subgroups of bathyarchaeotal 16S rRNA genes was designed and evaluated to investigate the distribution and abundance of Bathyarchaeota in marine sediments. The abundance of Bathyarchaeota along two sediment cores from the deep-sea sediments of South China Sea (SCS, each from the Dongsha and Shenhu area) was determined. A strong correlation was found between the bathyarchaeotal abundance and the content of total organic carbon (TOC), suggesting an important role of Bathyarchaeota in organic matter remineralisation in the sediments of SCS. Furthermore, diversity analysis revealed that subgroups Bathy-2, Bathy-8 and Bathy-10 were dominant bathyarchaeotal members of the deep-sea sediments in the SCS. Bathy-8 was found predominantly within the reducing and deeper sediment layers, while Bathy-10 occurred preferentially in the oxidizing and shallower sediment layers. Our study lays a foundation for the further understanding of the ecological functions and niche differentiation of the important but not well-understood sedimentary archaeal group. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Selective leaching studies of deep-sea sediments loaded with americium, neptunium and plutonium

    International Nuclear Information System (INIS)

    Cole, T.G.; Higgo, J.J.W.; Cronan, D.S.; Rees, L.V.C.

    1984-07-01

    A series of selective leaching experiments were undertaken to investigate the solid phase speciation and distribution of americium, neptunium and plutonium which had been experimentally loaded onto different marine sediment types. The chemical leaches employed showed rather poor selectivity but certain trends were evident. Adsorption was not by ion exchange. Americium showed a preferential affinity for carbonate and plutonium for organic matter. Neptunium appeared to have no preferential affinities. Americium was sorbed by acetic acid residues (CaCO 3 removed) and by unleached carbonate-rich sediments with equal efficiency. This indicates that it is able to diversify its solid phase affinity/distribution depending upon which solid phases are available. (author)

  12. Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the Deepwater Horizon oil spill

    Directory of Open Access Journals (Sweden)

    Nikole Elizabeth Kimes

    2013-03-01

    Full Text Available Marine subsurface environments, such as deep-sea sediments, house abundant and diverse microbial communities that are believed to influence large-scale geochemical processes. These processes include the biotransformation and mineralization of numerous petroleum constituents. Thus, microbial communities in the Gulf of Mexico are thought to be responsible for the intrinsic bioremediation of crude oil released by the Deepwater Horizon (DWH oil spill. While hydrocarbon contamination is known to enrich for aerobic, oil-degrading bacteria in deep-seawater habitats, relatively little is known about the response of communities in deep-sea sediments, where low oxygen levels may hinder such a response. Here, we examined the hypothesis that increased hydrocarbon exposure results in an altered sediment microbial community structure that reflects the prospects for oil biodegradation under the prevailing conditions. We explore this hypothesis using metagenomic analysis and metabolite profiling of deep-sea sediment samples following the DWH oil spill. The presence of aerobic microbial communities and associated functional genes was consistent among all samples, whereas, a greater number of Deltaproteobacteria and anaerobic functional genes were found in sediments closest to the DWH blowout site. Metabolite profiling also revealed a greater number of putative metabolites in sediments surrounding the blowout zone relative to a background site located 127 km away. The mass spectral analysis of the putative metabolites revealed that alkylsuccinates remained below detection levels, but a homologous series of benzylsuccinates (with carbon chain lengths from 5 to 10 could be detected. Our findings suggest that increased exposure to hydrocarbons enriches for Deltaproteobacteria, which are known to be capable of anaerobic hydrocarbon metabolism. We also provide evidence for an active microbial community metabolizing aromatic hydrocarbons in deep-sea sediments of the

  13. Contrasting impacts of light reduction on sediment biogeochemistry in deep- and shallow-water tropical seagrass assemblages (Green Island, Great Barrier Reef).

    Science.gov (United States)

    Schrameyer, Verena; York, Paul H; Chartrand, Kathryn; Ralph, Peter J; Kühl, Michael; Brodersen, Kasper Elgetti; Rasheed, Michael A

    2018-05-01

    Seagrass meadows increasingly face reduced light availability as a consequence of coastal development, eutrophication, and climate-driven increases in rainfall leading to turbidity plumes. We examined the impact of reduced light on above-ground seagrass biomass and sediment biogeochemistry in tropical shallow- (∼2 m) and deep-water (∼17 m) seagrass meadows (Green Island, Australia). Artificial shading (transmitting ∼10-25% of incident solar irradiance) was applied to the shallow- and deep-water sites for up to two weeks. While above-ground biomass was unchanged, higher diffusive O 2 uptake (DOU) rates, lower O 2 penetration depths, and higher volume-specific O 2 consumption (R) rates were found in seagrass-vegetated sediments as compared to adjacent bare sand (control) areas at the shallow-water sites. In contrast, deep-water sediment characteristics did not differ between bare sand and vegetated sites. At the vegetated shallow-water site, shading resulted in significantly lower hydrogen sulphide (H 2 S) levels in the sediment. No shading effects were found on sediment biogeochemistry at the deep-water site. Overall, our results show that the sediment biogeochemistry of shallow-water (Halodule uninervis, Syringodium isoetifolium, Cymodocea rotundata and C. serrulata) and deep-water (Halophila decipiens) seagrass meadows with different species differ in response to reduced light. The light-driven dynamics of the sediment biogeochemistry at the shallow-water site could suggest the presence of a microbial consortium, which might be stimulated by photosynthetically produced exudates from the seagrass, which becomes limited due to lower seagrass photosynthesis under shaded conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  15. Microbial and biochemical alterations due to storage of deep-sea sediments under ambient tropical conditions

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Fernandes, C.E.G.; Naik, S.S.; Mourya, B.S.; Sujith, P.P.; Sharma, R; LokaBharathi, P.A.

    -tight polythene containers. Changes in microbial and biochemical parameters were monitored once in every two months for a year. Bacterial counts and ATP decreased from ~108 to ~107 g-1 and ~103 to ~101 ng g-1 dry sediment respectively, within 8-10 months before...

  16. Geochemistry of deep-sea sediment cores from the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Mudholkar, A.V.; Pattan, J.N.; Parthiban, G.

    , thought to be of diagenetic origin. Metals are suppliEd. by upward migration from a suboxic to anoxic zone at an intermediate depth of 12-35 cm below the sediment-water interface in all the cores. Buried maxima in transition metal concentration at depth...

  17. Mössbauer spectroscopic studies on the iron forms of deep-sea sediments

    Science.gov (United States)

    Drodt, M.; Trautwein, A. X.; König, I.; Suess, E.; Koch, C. Bender

    Mössbauer spectroscopy was applied to characterize the valence states Fe(II) and Fe(III) in sedimentary minerals from a core of the Peru Basin. The procedure in unraveling this information includes temperature-dependent measurements from 275 K to very low temperature (300 mK) in zero-field and also at 4.2 K in an applied field (up to 6.2 T) and by mathematical procedures (least-squares fits and spectral simulations) in order to resolve individual spectral components. The depth distribution of the amount of Fe(II) is about 11% of the total Fe to a depth of 19 cm with a subsequent steep increase (within 3 cm) to about 37%, after which it remains constant to the lower end of the sediment core (at about 40 cm). The steep increase of the amount of Fe(II) defines a redox boundary which coincides with the position where the tan/green color transition of the sediment occurs. The isomer shifts and quadrupole splittings of Fe(II) and Fe(III) in the sediment are consistent with hexacoordination by oxygen or hydroxide ligands as in oxide and silicate minerals. Goethite and traces of hematite are observed only above the redox boundary, with a linear gradient extending from about 20% of the total Fe close to the sediment surface to about zero at the redox boundary. The superparamagnetic relaxation behavior allows to estimate the order of magnitude for the size of the largest goethite and hematite particles within the particle-site distribution, e.g. 170 Å and 50 Å, respectively. The composition of the sediment spectra recorded at 300 mK in zero-field, apart from the contributions due to goethite and hematite, resembles that of the sheet silicates smectite, illite and chlorite, which have been identified as major constituents of the sediment in the clay-mineral iron is redox sensitive. It is proposed that the color change of the sediment at the redox boundary from tan to green is related to the increase of Fe(II)-Fe(III) pairs in the layer silicates, because of the

  18. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea.

    Science.gov (United States)

    Dang, Hongyue; Luan, Xi-Wu; Chen, Ruipeng; Zhang, Xiaoxia; Guo, Lizhong; Klotz, Martin G

    2010-06-01

    The ecological characteristics of amoA-encoding archaea (AEA) in deep-sea sediments are largely unsolved. This paper aimed to study the diversity, structure, distribution and abundance of the archaeal community and especially its AEA components in the cold seep surface sediments of the Okhotsk Sea, a marginal sea harboring one of the largest methane hydrate reservoirs in the world. Diverse archaeal 16S rRNA gene sequences were identified, with the majority being related to sequences from other cold seep and methane-rich sediment environments. However, the AEA diversity and abundance were quite low as revealed by amoA gene analyses. Correlation analysis indicates that the abundance of the archaeal amoA genes was correlated with the sediment organic matter content. Thus, it is possible that the amoA-carrying archaea here might utilize organic matter for a living. The affiliation of certain archaeal amoA sequences to the GenBank sequences originally obtained from deep-sea hydrothermal vent environments indicated that the related AEA either have a wide range of temperature adaptation or they have a thermophilic evolutionary history in the modern cold deep-sea sediments of the Okhotsk Sea. The dominance of ammonia-oxidizing bacteria over AEA may indicate that bacteria play a significant role in nitrification in the Okhotsk Sea cold seep sediments.

  19. Chemical Warfare Materiel in Sediment at a Deep-Water Discarded Military Munitions Site

    Science.gov (United States)

    Briggs, C. W.; Bissonnette, M. C.; Edwards, M.; Shjegstad, S. M.

    2016-12-01

    Understanding the release and transformation of chemical agent (CA) at underwater discarded military munitions (DMM) sites is essential to determine the potential risk to human health and impact on the ocean environment; yet few studies have been conducted at sites in excess of 250 m, the depth at which most U.S. CA munitions were disposed. Maritime construction workers installing cables or pipelines at a CA DMM site, as well as fishermen and scientific researchers deploying bottom-contact gear, represent possible exposure pathways to human receptors. The Hawai`i Undersea Military Munitions Assessment (HUMMA) sought to characterize a historic munitions sea-disposal site at depths between 400-650 m. During the 2014 HUMMA Sampling Survey, the Jason 2 remotely operated vehicle was used to collect sediments within two meters of suspected World War II chemical munitions, confirmed to be 100-lb M47 series bombs containing sulfur mustard. When environmental media was brought to the surface, samples were screened for distilled sulfur mustard (HD) and related agent breakdown products (ABP) (collectively referred to as chemical warfare materiel [CWM]). Detectable concentrations of HD and/or its ABP 1,4-dithiane were found in sediments collected at all CA DMM sites; HD was also detected at two control sites. The location and extent of munitions casing deterioration strongly influenced the distribution and level of CWM in sediment. The interior of the casing contained levels of CWM orders of magnitudes higher than that observed in the surrounding sediment at one meter distance, indicating the majority of the CWM is hydrolyzed as it is released from the munitions casing and a fraction of the fill materiel persists in the environment for decades following disposal. Although the potential for future site users to become exposed to CWA in recovered sediments and debris exists, the level of risk is significantly mitigated by the depth and location of the sea-disposal site.

  20. Bacterial abundance and activity in deep-sea sediments from the eastern North Atlantic

    Science.gov (United States)

    Eardly, D. F.; Carton, M. W.; Gallagher, J. M.; Patching, J. W.

    Results are presented from four cruises to the Porcupine Abyssal Plain (PAP site) that took place during the BENGAL project from September 1996 to March 1998, and two cruises to the PAP and an oligotrophic site (EUMELI) that took place during the DEEPSEAS project between September 1993 and March 1994. Bacterial abundances in sediment and sediment contact water were measured by epifluorescence microscopy. Bacterial activity was determined by 3H-thymidine incorporation as a measure of DNA synthesis, and by 3H-leucine incorporation as a measure of protein synthesis. Activities were measured under atmospheric and in situ pressures and temperatures. Bacterial activity was usually higher in samples incubated at in situ pressure than those incubated at atmospheric pressure indicating that a barophilic community was dominant. Inter-cruise comparisons of abundance and activity during the BENGAL project showed no firm evidence of there being a seasonal response in the benthic microbial community to any episodic phytodetritus event. This was probably because of inter-annual variations in the quality and quantity of phytodetritus deposition at the PAP site, the rapid remineralization of fresh organic material by the microbial communities and the timing of cruises to the study area. 3H-thymidine and 3H-leucine incorporation in sediments was higher during the BENGAL period than the DEEPSEAS programme. A methodological change in the 3H-thymidine incorporation technique for sediments may explain the differences in DNA synthesis observed between the two projects, whereas the lower levels of protein synthesis observed during the DEEPSEAS programme probably reflected both inter-annual variations in activity at the PAP site and the lower productivity that prevailed at surface at the EUMELI oligotrophic site. Rates of 3H-thymidine incorporation in sediment contact water were similar during both projects.

  1. Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean)

    Science.gov (United States)

    Gambi, C.; Vanreusel, A.; Danovaro, R.

    2003-01-01

    was more evident at genus than at species level. Epistrate feeders dominated and increased their relevance, determining a reduction of the index of trophic diversity at hadal depths. According to trophic diversity, taxonomic diversity and distinctness also decreased with depth. All diversity indices from the Atacama Slope and Trench were lower than in other equally deep areas world wide (e.g. Puerto Rico Trench). We suggest that such reduction was related to the high nutrient loading observed in this system (up to two orders of magnitude higher than in typical oligotrophic deep-sea sediments).

  2. Clay as indicator of sediment plume movement in deep-sea environment

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.B.

    artificially disturbed and resuspended 5 m above the seabed in 1997 during the Indian Deep-Sea Experiment. Initial studies have shown that the clay content during monitoring-1 phase significantly increased compared to post-disturbance, by 15 and 24...

  3. Similar rapid response to phytodetritus deposition in shallow and deep-sea sediments

    NARCIS (Netherlands)

    Moodley, L.; Middelburg, J.J.; Soetaert, K.E.R.; Boschker, H.T.S.; Herman, P.M.J.; Heip, C.H.R.

    2005-01-01

    The short-term benthic response to an input of fresh organic matter was examined in vastly contrasting benthic environments (estuarine intertidal to deep-sea) using 13C-labeled diatoms as a tracer of labile carbon. Benthic processing was assessed in major compartments through 13C-enrichment in CO2,

  4. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  5. Dating and assessing the recent sediments of three deep basins of the Baltic Sea: Indication of natural and anthropogenic changes

    DEFF Research Database (Denmark)

    Kunzendorf, H.

    1999-01-01

    -Mn are followed by about 300 years lasting sections with low Ca-Mn. Mo accumulations with peak valuesexceeding 300 mg/kg are found in all cores. The Mo transport to the seafloor is thought to be coupled with the nitrogen fixation processes by cyanobacteria being known for their need of Mo as central element......A 3-years EU-MAST-3 project (Baltic Sea System Study, BASYS) recovered short and long sediment cores from 3 deep basins of the Baltic Sea (Bornholm Basin, Gotland Basin and North Central Basin). During a paleoenvironmental study, lead-210 dating andgeochemical data were generated.Dating of cores...... to rhodochrosite formation which is thought to be coupled to saltwater inflows in that oxygen and HCO_3- rich saltwater converts bacterially re-dissolved Mninto the carbonate mineral. There is a clear indication for cyclic rhodochrosite deposition in that about 300 year long periods with relatively high Ca...

  6. A new cytotoxic sesquiterpene quinone produced by Penicillium sp. F00120 isolated from a deep sea sediment sample.

    Science.gov (United States)

    Lin, Xiuping; Zhou, Xuefeng; Wang, Fazuo; Liu, Kaisheng; Yang, Bin; Yang, Xianwen; Peng, Yan; Liu, Juan; Ren, Zhe; Liu, Yonghong

    2012-01-01

    A new fungal strain, displaying strong toxic activity against brine shrimp larvae, was isolated from a deep sea sediment sample collected at a depth of 1300 m. The strain, designated as F00120, was identified as a member of the genus Penicillium on the basis of morphology and ITS sequence analysis. One new sesquiterpene quinone, named penicilliumin A (1), along with two known compounds ergosterol (2) and ergosterol peroxide (3), were isolated and purified from the cultures of F00120 by silica gel column, Sephadex LH-20 column, and preparative thin layer chromatography. Their structures were elucidated by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analysis as well as comparison with literature data. The new compound penicilliumin A inhibited in vitro proliferation of mouse melanoma (B16), human melanoma (A375), and human cervical carcinoma (Hela) cell lines moderately.

  7. Sulfate reduction controlled by organic matter availability in deep sediment cores from the saline, alkaline Lake Van (Eastern Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    Clemens eGlombitza

    2013-07-01

    Full Text Available As part of the International Continental Drilling Program (ICDP deep lake drilling project PaleoVan, we investigated sulfate reduction (SR in deep sediment cores of the saline, alkaline (salinity 21.4 ‰, alkalinity 155 m mEq-1, pH 9.81 Lake Van, Turkey. The cores were retrieved in the Northern Basin (NB and at Ahlat Ridge (AR and reached a maximum depth of 220 m. Additionally, 65-75 cm long gravity cores were taken at both sites. Sulfate reduction rates (SRR were low (≤ 22 nmol cm-3 d-1 compared to lakes with higher salinity and alkalinity, indicating that salinity and alkalinity are not limiting SR in Lake Van. Both sites differ significantly in rates and depth distribution of SR. In NB, SRR are up to 10 times higher than at AR. Sulfate reduction (SR could be detected down to 19 meters below lake floor (mblf at NB and down to 13 mblf at AR. Although SRR were lower at AR than at NB, organic matter (OM concentrations were higher. In contrast, dissolved OM in the pore water at AR contained more macromolecular OM and less low molecular weight OM. We thus suggest, that OM content alone cannot be used to infer microbial activity at Lake Van but that quality of OM has an important impact as well. These differences suggest that biogeochemical processes in lacustrine sediments are reacting very sensitively to small variations in geological, physical or chemical parameters over relatively short distances. 

  8. New technological developments provide deep-sea sediment density flow insights: the Monterey Coordinated Canyon Experiment

    Science.gov (United States)

    O'Reilly, T. C.; Kieft, B.; Chaffey, M. R.; Wolfson-Schwehr, M.; Herlien, R.; Bird, L.; Klimov, D.; Paull, C. K.; Gwiazda, R.; Lundsten, E. M.; Anderson, K.; Caress, D. W.; Sumner, E. J.; Simmons, S.; Parsons, D. R.; Talling, P.; Rosenberger, K. J.; Xu, J.; Maier, K. L.; Gales, J. A.

    2017-12-01

    The Monterey Coordinated Canyon Experiment (CCE) deployed an array of instruments along the Monterey Canyon floor to characterize the structure, velocity and frequency of sediment flows. CCE utilized novel technologies developed at MBARI to capture sediment flow data in unprecedented detail. 1. The Seafloor Instrument Node (SIN) at 1850 meters depth housed 3 ADCPs at 3 different frequencies, CTD, current meter, oxygen optode, fluorometer/backscatter sensor, and logged data at 10 second intervals or faster. The SIN included an acoustic modem for communication with shore through a Wave Glider relay, and provided high-resolution measurements of three flow events during three successive deployments over 1.5 years. 2. Beachball-sized Benthic Event Detectors (BEDs) were deployed on or under the seafloor to measure the characteristics of sediment density flows. Each BED recorded data from a pressure sensor and a 3-axis accelerometer and gyro to characterize motions during transport events (e.g. tumble vs rotation). An acoustic modem capable of operating through more than a meter of sediment enabled communications with a ship or autonomous surface vehicle. Multiple BEDs were deployed at various depths in the canyon during CCE, detecting and measuring many transport events; one BED moved 9 km down canyon in 50 minutes during one event. 3. Wave Glider Hot Spot (HS), equipped with acoustic and RF modems, acted as data relay between SIN, BEDs and shore, and acoustically located BEDs after sediment density flows.. In some cases HS relayed BED motion data to shore within a few hours of the event. HS provided an acoustic console to the SIN, allowing shore-based users to check SIN health and status, perform maintenance, etc. 4. Mapping operations were conducted 4 times at the SIN site to quantify depositional and erosional patterns, utilizing a prototype ultra-high-resolution mapping system on the ROV Doc Ricketts. The system consists of a 400-kHz Reson 7125 multibeam sonar, a 3

  9. Magnesian calcite and the problem of the origin of carbonates in the deep-sea Old Black Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Georgiev, V M

    1988-04-01

    The Old Black Sea (Lower-Middle Holocene) deep-sea sediments in the Black Sea basin contain carbonate laminae with a fixed position in the section - in the base of the typical sapropelic muds. The areal distribution of these laminae covers the whole continental slope and rise. They are usually lacking in the sediments of the abyssal plain. XRD, SEM and EDS studies show that the laminae comprise mainly authigenic carbonates - aragonite and magnesian calcite. Aragonite occurs as elongated rice-shaped monocrystals or as diverse aggregates of elongated crystal platelets. The magnesian calcite (6-14 mol % MgCO/sub 3/) forms aggregates of isometric grains with submicritic dimensions between the aragonite grains or individual laminae consisting of idiomorphic rhombohedral and/or skeleton crystals. Low-magnesian calcite is also found sometimes. Usually it is related to Holocene coccoliths without traces of recrystallization. The laminae do not show traces of lithification. A hemogenic-synsedimentary genesis of the carbonate laminae is suggested; their mineral composition witnesses marine chemical composition of the initial solutions with a high Mg/Ca ratio.

  10. Laminae type and possible mechanisms for the formation of laminated sediments in the Shaban Deep, northern Red Sea

    Directory of Open Access Journals (Sweden)

    I. A. Seeberg-Elverfeldt

    2005-01-01

    Full Text Available Laminated sediments in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed with backscattered electron imagery. Here we present possible mechanisms involved in the formation of laminae of various types and homogenous intervals arising from the detailed investigation of multicore GeoB 7805-1 (26°13.9' N and 35°22.6' E; water depth 1447 m and gravity core GeoB 5836-2 (26°12.61' N, 35°21.56' E; water depth 1475 m. Sediment makeup includes six types: a a laminated structure with alternating light (mainly coccoliths and dark (diatom frustules layers, where the diatom component is indicative of the intra-annual variability between stratification and mixing events; b a pocket-like structure attributed to the sinking of particles within fecal pellets and aggregates; c a matrix of tightly packed diatoms that relates to extended stratification/mixing periods of the water column; d homogenous intervals that result from turbidity deposition; e silt accumulations which origin may lie in agglutinated foraminifers; and f pyrite layers with pyrite formation initiated at the seawater-brine interface.

  11. Four Years of Chemical Measurements from the Deepwater Horizon Oil Spill Define the Deep Sea Sediment footprint and Subsequent Recovery

    Science.gov (United States)

    Boehm, P.

    2016-02-01

    Chemical data acquired during and after the DWHOS showed that several mechanisms were responsible for transport of oil from the water column to the sediments in the deep sea off the continental shelf. Three primary pathways were identified:Sorption onto and sinking of drilling mud particles during "Top Kill" response activity, highly scattered deposition of residuesfrom in situ burns, and deposition of oil combined with microbial organic matter from diffuse oil plumes ("marine snow"). Data collected during 2010, 2011 and 2014 were used to define the oil footprint and estimate time to recovery. More than 1200 stations were sampled. Of these, 27 stations were visited all three years, providing a time series from which recovery rates were calculated using the loss of total polycyclic aromatic hydrocarbons (TPAH) over time fit to first order kinetics. Results showed that the footprint of the oil was limited to the area around the wellhead and in patches to the southwest. Mostsamples had returned to background levels by 2015, with some exceptions close to the wellhead. Deposition to the northeast (DeSoto Canyon) was minor as evidenced by the absence of oil in sediments in that area. Samples with the longest recovery times were within 2 nautical miles of the wellhead, and often contained drilling mud, as shown by olefin signatures on the GC/FID chromatogram. Detailed chemistry data evaluation and chemical fingerprinting provided evidence that oil was being degraded in situ.

  12. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the arctic mid-ocean spreading ridge

    Directory of Open Access Journals (Sweden)

    Steffen Leth eJørgensen

    2013-10-01

    Full Text Available In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~ 50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001. Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000, indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

  13. High- and low-latitude forcing of the Nile River regime during the Holocene inferred from laminated sediments of the Nile deep-sea fan

    NARCIS (Netherlands)

    Blanchet, C.; Tjallingii, R.; Frank, M.; Lorenzen, J.; Reitz, A.; Brown, K.; Feseker, T.; Brückmann, W.

    2013-01-01

    Sediments deposited on deep-sea fans are an excellent geological archive to reconstruct past changes in fluvial discharge. Here we present a reconstruction of changes in the regime of the Nile River during the Holocene obtained using bulk elemental composition, grain-size analyses and radiogenic

  14. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone.

    Science.gov (United States)

    Wang, Xing; Lin, Danqiu; Jing, Xiaohuan; Zhu, Sidong; Yang, Jifang; Chen, Jigang

    2018-01-20

    Staphylococcus sp. AntiMn-1 is a deep-sea bacterium inhabiting seafloor sediment in the Clarion-Clipperton Zone (CCZ) that is highly tolerant to Mn(II) and displays efficient Mn(II) oxidation. Herein, we present the assembly and annotation of its genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. N2 production and fixation in deep-tier burrows of Squilla empusa in muddy sediments of Great Peconic Bay

    Science.gov (United States)

    Waugh, Stuart; Aller, Robert C.

    2017-11-01

    Global marine N budgets often show deficits due to dominance of benthic N2 production relative to pelagic N2 fixation. Recent studies have argued that benthic N2 fixation in shallow water environments has been underestimated. In particular, N2 fixation associated with animal burrows may be significant as indicated by high rates of N2 fixation reported in muddy sands populated by the ghost shrimp, Neotrypaea californiensis (Bertics et al., 2010). We investigated whether N2 fixation occurs at higher rates in the burrow-walls of the deep-burrowing ( 0.5-4 m) mantis shrimp, Squilla empusa, compared to ambient, estuarine muds and measured seasonal in-situ N2 concentrations in burrow-water relative to bottom-water. Acetylene reduction assays showed lower N2 fixation in burrow-walls than in un-populated sediments, likely due to inhibitory effects of O2 on ethylene production. Dissolved N2 was higher in burrow-water than proximate bottom-water at all seasons, demonstrating a consistent balance of net N2 production relative to fixation in deep-tier biogenic structures.

  16. Subseafloor seawater-basalt-microbe reactions: Continuous sampling of borehole fluids in a ridge flank environment

    Science.gov (United States)

    Wheat, C. Geoffrey; Jannasch, Hans W.; Fisher, Andrew T.; Becker, Keir; Sharkey, Jessica; Hulme, Samuel

    2010-07-01

    Integrated Ocean Drilling Program (IODP) Hole 1301A was drilled, cased, and instrumented with a long-term, subseafloor observatory (CORK) on the eastern flank of the Juan de Fuca Ridge in summer 2004. This borehole is located 1 km south of ODP Hole 1026B and 5 km north of Baby Bare outcrop. Hole 1301A penetrates 262 m of sediment and 108 m of the uppermost 3.5 Ma basaltic basement in an area of warm (64°C) hydrothermal circulation. The borehole was instrumented, and those instruments were recovered 4 years later. Here we report chemical data from two continuous fluid samplers (OsmoSamplers) and temperature recording tools that monitored changes in the state of borehole (formation) fluids. These changes document the effects of drilling, fluid overpressure and flow, seawater-basalt interactions, and microbial metababolic activity. Initially, bottom seawater flowed into the borehole through a leak between concentric CORK casing strings. Eventually, the direction of flow reversed, and warm, altered formation fluid flowed into the borehole and discharged at the seafloor. This reversal occurred during 1 week in September 2007, 3 years after drilling operations ceased. The composition of the formation fluid around Hole 1301A generally lies within bounds defined by springs on Baby Bare outcrop (to the south) and fluids that discharged from Hole 1026B (to the north); deviations likely result from reactions with drilling products. Simple conservative mixing of two end-member fluids reveals reactions occurring within the crust, including nitrate reduction presumably by denitrifying microbes. The observed changes in borehole fluid composition provide the foundation for a conceptual model of chemical and microbial change during recharge of a warm ridge-flank hydrothermal system. This model can be tested through future scientific ocean drilling experiments.

  17. In situ measurement of nitrate in deep-sea sediments with a microscale biosensor

    DEFF Research Database (Denmark)

    Marzocchi, Ugo; Revsbech, Niels Peter; Glud, Ronnie

    around 2°C. By isolation of psychrotrophic nitrate-reducing and N2O producing bacteria from arctic environments and by application of a new procedure for making microscale ion-permeable membranes we have now succeeded in making biosensors that function reproducibly at low temperatures. It has thus been......When a bacteria-based nitrate biosensor with tip diameter down to 20 µm was invented about 12 years ago it became possible to measure detailed nitrate profiles in marine sediments, but functional tip membranes in the sensors were difficult to make, and the sensors did not work at temperatures below...

  18. Studies of iron in deep-sea sediments by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Drodt, M.; Lougear, A.; Trautwein, A.X.; Koenig, I.; Suess, E.; Koch, C. Bender

    1998-01-01

    The distribution of the forms of Fe in the solid phases in core samples of sediments from the Peru Basin has been investigated by Moessbauer spectroscopy with special attention to the cause of the sharp color transition between an upper green colored and a lower tan colored part. An important part of sample handling includes strict exclusion of oxygen during preparation of absorbers and measurements at cryogenic temperatures. The measurement strategy includes measurements between 77 K and 300 mK in zero external magnetic field, supplemented by measurements in external magnetic fields at 4.2 and 300 mK (up to 6.2 and 1 T, respectively). The temperature scans allow detection, identification and quantification of superparamagnetic iron oxides (goethite and hematite). The oxides are only present in samples from the upper tan-colored part of the core. The major part of the Fe(II) and Fe(III) (>80%) is present in a magnetic structure similar to that of layer silicates. The relative Fe(II) content of the layer silicates is practically identical to that determined from the paramagnetic components measured at liquid nitrogen temperature. This shows that the color transition in the sediment coincides with a change in the relative Fe(II) content in layer silicates from 11 to 37%. The color change can thus be explained by an increase in occurrence of Fe(II)-Fe(III) pairs exhibiting absorption bands due to intervalence electron transfer

  19. A New Sensitive GC-MS-based Method for Analysis of Dipicolinic Acid and Quantifying Bacterial Endospores in Deep Marine Subsurface Sediment

    Science.gov (United States)

    Fang, J.

    2015-12-01

    Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.

  20. The permafrost carbon inventory on the Tibetan Plateau: a new evaluation using deep sediment cores.

    Science.gov (United States)

    Ding, Jinzhi; Li, Fei; Yang, Guibiao; Chen, Leiyi; Zhang, Beibei; Liu, Li; Fang, Kai; Qin, Shuqi; Chen, Yongliang; Peng, Yunfeng; Ji, Chengjun; He, Honglin; Smith, Pete; Yang, Yuanhe

    2016-08-01

    The permafrost organic carbon (OC) stock is of global significance because of its large pool size and the potential positive feedback to climate warming. However, due to the lack of systematic field observations and appropriate upscaling methodologies, substantial uncertainties exist in the permafrost OC budget, which limits our understanding of the fate of frozen carbon in a warming world. In particular, the lack of comprehensive estimates of OC stocks across alpine permafrost means that current knowledge on this issue remains incomplete. Here, we evaluated the pool size and spatial variations of permafrost OC stock to 3 m depth on the Tibetan Plateau by combining systematic measurements from a substantial number of pedons (i.e. 342 three-metre-deep cores and 177 50-cm-deep pits) with a machine learning technique (i.e. support vector machine, SVM). We also quantified uncertainties in permafrost carbon budget by conducting Monte Carlo simulations. Our results revealed that the combination of systematic measurements with the SVM model allowed spatially explicit estimates to be made. The OC density (OC amount per unit area, OCD) exhibited a decreasing trend from the south-eastern to the north-western plateau, with the exception that OCD in the swamp meadow was substantially higher than that in surrounding regions. Our results also demonstrated that Tibetan permafrost stored a large amount of OC in the top 3 m, with the median OC pool size being 15.31 Pg C (interquartile range: 13.03-17.77 Pg C). 44% of OC occurred in deep layers (i.e. 100-300 cm), close to the proportion observed across the northern circumpolar permafrost region. The large carbon pool size together with significant permafrost thawing suggests a risk of carbon emissions and positive climate feedback across the Tibetan alpine permafrost region. © 2016 John Wiley & Sons Ltd.

  1. Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R; Nath, B.N.; Parthiban, G.; Sankar, S.J.

    -sea mining. r 2001 Elsevier Science Ltd. All rights reserved. 1. Introduction Discovery of deep-sea minerals, such as manganese nodules, as an alternative source of strategic metals, such as copper, nickel and cobalt (Mero, 1965; Glasby, 1977), has generated...-832-223340. E-mail address: rsharma@darya.nio.org (R. Sharma). 0967-0645/01/$ - see front matter r 2001 Elsevier Science Ltd. All rights reserved. PII: S 0 9 6 7 - 0 645(01)00046-7 by the mining device (Thiel et al., 1997). It is likely to resuspend...

  2. Piezophilic Bacteria Isolated from Sediment of the Shimokita Coalbed, Japan

    Science.gov (United States)

    Fang, J.; Kato, C.; Hori, T.; Morono, Y.; Inagaki, F.

    2013-12-01

    The Earth is a cold planet as well as pressured planet, hosting both the surface biosphere and the deep biosphere. Pressure ranges over four-orders of magnitude in the surface biosphere and probably more in the deep biosphere. Pressure is an important thermodynamic property of the deep biosphere that affects microbial physiology and biochemistry. Bacteria that require high-pressure conditions for optimal growth are called piezophilic bacteria. Subseafloor marine sediments are one of the most extensive microbial habitats on Earth. Marine sediments cover more than two-thirds of the Earth's surface, and represent a major part of the deep biosphere. Owing to its vast size and intimate connection with the surface biosphere, particularly the oceans, the deep biosphere has enormous potential for influencing global-scale biogeochemical processes, including energy, climate, carbon and nutrient cycles. Therefore, studying piezophilic bacteria of the deep biosphere has important implications in increasing our understanding of global biogeochemical cycles, the interactions between the biosphere and the geosphere, and the evolution of life. Sediment samples were obtained during IODP Expedition 337, from 1498 meters below sea floor (mbsf) (Sample 6R-3), 1951~1999 mbsf (19R-1~25R-3; coalbed mix), and 2406 mbsf (29R-7). The samples were mixed with MB2216 growth medium and cultivated under anaerobic conditions at 35 MPa (megapascal) pressure. Growth temperatures were adjusted to in situ environmental conditions, 35°C for 6R-3, 45°C for 19R-1~25R-3, and 55°C for 29R-7. The cultivation was performed three times, for 30 days each time. Microbial cells were obtained and the total DNA was extracted. At the same time, isolation of microbes was also performed under anaerobic conditions. Microbial communities in the coalbed sediment were analyzed by cloning, sequencing, and terminal restriction fragment length polymorphism (t-RFLP) of 16S ribosomal RNA genes. From the partial 16S r

  3. Radionuclide distributions in deep-ocean sediment cores. Progress report, 1 October 1976 -- 31 December 1977

    International Nuclear Information System (INIS)

    Bowen, V.T.

    1978-04-01

    Disruption, in the past year, of the supply of 237 Pu tracer from Oak Ridge caused us to put more of effort into analyses of core samples previously collected, and into data collation, than into the laboratory experiments originally projected. Accompanying this report are two review papers, one for a Congressional Committee and one in press, a report in press of a device for conducting microbiological tracer experiments under controlled atmospheres, and a description of radionuclide distributions in sediments of Atlantic and Pacific solid waste dump sites. Described in the body of the report are experiments relating the time course of association of 237 Pu tracer with diatoms (dead or alive) or glass beads, to the constitution of the media, the history of the cells, or the presence of exometabolites. Also described are studies of the differential removal of 239 240 Pu, 241 Am, and 137 Cs from coastal seawater currents contaminated by waste released from a fuel-reprocessing facility

  4. Anaerobic consortia of fungi and sulfate reducing bacteria in deep granite fractures.

    Science.gov (United States)

    Drake, Henrik; Ivarsson, Magnus; Bengtson, Stefan; Heim, Christine; Siljeström, Sandra; Whitehouse, Martin J; Broman, Curt; Belivanova, Veneta; Åström, Mats E

    2017-07-04

    The deep biosphere is one of the least understood ecosystems on Earth. Although most microbiological studies in this system have focused on prokaryotes and neglected microeukaryotes, recent discoveries have revealed existence of fossil and active fungi in marine sediments and sub-seafloor basalts, with proposed importance for the subsurface energy cycle. However, studies of fungi in deep continental crystalline rocks are surprisingly few. Consequently, the characteristics and processes of fungi and fungus-prokaryote interactions in this vast environment remain enigmatic. Here we report the first findings of partly organically preserved and partly mineralized fungi at great depth in fractured crystalline rock (-740 m). Based on environmental parameters and mineralogy the fungi are interpreted as anaerobic. Synchrotron-based techniques and stable isotope microanalysis confirm a coupling between the fungi and sulfate reducing bacteria. The cryptoendolithic fungi have significantly weathered neighboring zeolite crystals and thus have implications for storage of toxic wastes using zeolite barriers.Deep subsurface microorganisms play an important role in nutrient cycling, yet little is known about deep continental fungal communities. Here, the authors show organically preserved and partly mineralized fungi at 740 m depth, and find evidence of an anaerobic fungi and sulfate reducing bacteria consortium.

  5. Potential sources of hydrocarbons and their microbial degradation in sediments from the deep geothermal Lusi site, Indonesia

    Science.gov (United States)

    Krueger, Martin; Mazzini, Adriano; Scheeder, Georg; Blumenberg, Martin

    2017-04-01

    The Lusi eruption represents one of the largest ongoing sedimentary hosted geothermal systems, which started in 2006 following an earthquake on Java Island. Since then it has been continuously producing hot and hydrocarbon rich mud from a central crater with peaks reaching 180.000 m3 per day. Numerous investigations focused on the study of microbial communities which thrive at offshore methane and oil seeps and mud volcanoes, however very little has been done on onshore seeping structures. Lusi represents a unique opportunity to complete a comprehensive study of onshore microbial communities fed by the seepage of CH4 as well as of liquid hydrocarbons originating from one or more km below the surface. While the source of the methane at Lusi is unambiuous, the origin of the seeping oil is still discussed. Both, source and maturity estimates from biomarkers, are in favor of a type II/III organic matter source. Likely the oils were formed from the studied black shales (deeper Ngimbang Fm.) which contained a Type III component in the Type II predominated organic matter. In all samples large numbers of active microorganisms were present. Rates for aerobic methane oxidation were high, as was the potential of the microbial communities to degrade different hydrocarbons. The data suggests a transition of microbial populations from an anaerobic, hydrocarbon-driven metabolism in fresher samples from center or from small seeps to more generalistic, aerobic microbial communities in older, more consolidated sediments. Ongoing microbial activity in crater sediment samples under high temperatures (80-95C) indicate a deep origin of the involved microorganisms. First results of molecular analyses of the microbial community compositions confirm the above findings. This study represents an initial step to better understand onshore seepage systems and provides an ideal analogue for comparison with the better investigated offshore structures.

  6. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    Science.gov (United States)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal

  7. Eruption of a deep-sea mud volcano triggers rapid sediment movement

    Science.gov (United States)

    Feseker, Tomas; Boetius, Antje; Wenzhöfer, Frank; Blandin, Jerome; Olu, Karine; Yoerger, Dana R.; Camilli, Richard; German, Christopher R.; de Beer, Dirk

    2014-01-01

    Submarine mud volcanoes are important sources of methane to the water column. However, the temporal variability of their mud and methane emissions is unknown. Methane emissions were previously proposed to result from a dynamic equilibrium between upward migration and consumption at the seabed by methane-consuming microbes. Here we show non-steady-state situations of vigorous mud movement that are revealed through variations in fluid flow, seabed temperature and seafloor bathymetry. Time series data for pressure, temperature, pH and seafloor photography were collected over 431 days using a benthic observatory at the active Håkon Mosby Mud Volcano. We documented 25 pulses of hot subsurface fluids, accompanied by eruptions that changed the landscape of the mud volcano. Four major events triggered rapid sediment uplift of more than a metre in height, substantial lateral flow of muds at average velocities of 0.4 m per day, and significant emissions of methane and CO2 from the seafloor. PMID:25384354

  8. Distribution of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and organochlorinated pollutants in deep-sea sediments of the Southern Cretan margin, Eastern Mediterranean Sea: a baseline assessment.

    Science.gov (United States)

    Mandalakis, Manolis; Polymenakou, Paraskevi N; Tselepides, Anastasios; Lampadariou, Nikolaos

    2014-07-01

    Deep sediments from the southern Cretan margin were analyzed to establish baseline levels for various types of organic pollutants before the anticipated intensification of anthropogenic activities. The total concentration of aliphatic hydrocarbons (ΣAH:326-3758ngg(-1), dry weight) was similar to those reported for deep sediments of the western Mediterranean Sea, while considerably lower levels were measured for polycyclic aromatic hydrocarbons (ΣPAH:9-60ngg(-1)). Source-diagnostic ratios suggested that the aliphatic hydrocarbons in sediments were mainly of terrestrial biogenic origin, while polycyclic aromatic hydrocarbons stemmed from the deposition of long-range transported combustion aerosols. Among the organochlorinated compounds analyzed, β-hexachlorocyclohexane (β-HCH:222-7052pgg(-1)), 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (p,p'-DDT:37-2236pgg(-1)) and polychlorinated biphenyls (ΣPCB:38-1182pgg(-1)) showed the highest abundance in sediments. The presence of HCHs and PCBs was attributed to historical inputs that have undergone extensive weathering, whereas an ongoing fresh input was suggested for p,p'-DDT. Multiple linear regression analysis revealed that the levels of the various pollutants in sediments were controlled by different factors, but with organic carbon content playing a prominent role in most cases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Diversity, biogeography and biodegradation potential of actinobacteria in the deep-sea sediments along the Southwest Indian Ridge

    Directory of Open Access Journals (Sweden)

    Ping Chen

    2016-08-01

    Full Text Available The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.

  10. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge

    Science.gov (United States)

    Chen, Ping; Zhang, Limin; Guo, Xiaoxuan; Dai, Xin; Liu, Li; Xi, Lijun; Wang, Jian; Song, Lei; Wang, Yuezhu; Zhu, Yaxin; Huang, Li; Huang, Ying

    2016-01-01

    The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling. PMID:27621725

  11. Crassaminicella profunda gen. nov., sp. nov., an anaerobic marine bacterium isolated from deep-sea sediments.

    Science.gov (United States)

    Lakhal, Raja; Pradel, Nathalie; Postec, Anne; Ollivier, Bernard; Cayol, Jean-Luc; Godfroy, Anne; Fardeau, Marie-Laure; Galés, Grégoire

    2015-09-01

    A novel, anaerobic, chemo-organotrophic bacterium, designated strain Ra1766H(T), was isolated from sediments of the Guaymas basin (Gulf of California, Mexico) taken from a depth of 2002  m. Cells were thin, motile, Gram-stain-positive, flexible rods forming terminal endospores. Strain Ra1766H(T) grew at temperatures of 25-45 °C (optimum 30 °C), pH 6.7-8.1 (optimum 7.5) and in a salinity of 5-60 g l(-1) NaCl (optimum 30 g l(-1)). It was an obligate heterotrophic bacterium fermenting carbohydrates (glucose and mannose) and organic acids (pyruvate and succinate). Casamino acids and amino acids (glutamate, aspartate and glycine) were also fermented. The main end products from glucose fermentation were acetate, butyrate, ethanol, H2 and CO2. Sulfate, sulfite, thiosulfate, elemental sulfur, fumarate, nitrate, nitrite and Fe(III) were not used as terminal electron acceptors. The predominant cellular fatty acids were C14  : 0, C16 : 1ω7, C16 : 1ω7 DMA and C16 : 0. The main polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phospholipids. The G+C content of the genomic DNA was 33.7 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain Ra1766H(T) was affiliated to cluster XI of the order Clostridiales, phylum Firmicutes. The closest phylogenetic relative of Ra1766H(T) was Geosporobacter subterraneus (94.2% 16S rRNA gene sequence similarity). On the basis of phylogenetic inference and phenotypic properties, strain Ra1766H(T) ( = DSM 27501(T) = JCM 19377(T)) is proposed to be the type strain of a novel species of a novel genus, named Crassaminicella profunda.

  12. Palaeococcus pacificus sp. nov., an archaeon from deep-sea hydrothermal sediment.

    Science.gov (United States)

    Zeng, Xiang; Zhang, Xiaobo; Jiang, Lijing; Alain, Karine; Jebbar, Mohamed; Shao, Zongze

    2013-06-01

    A hyperthermophilic, anaerobic, piezophilic archaeon (strain DY20341(T)) was isolated from a sediment sample collected from an East Pacific Ocean hydrothermal field (1° 37' S 102° 45' W) at a depth of 2737 m. The cells were irregular cocci, 0.8-1.5 µm in diameter. Growth was observed between 50 and 90 °C (optimum 80 °C), pH 5.0 and 8.0 (optimum pH 7.0), 1% and 7% (w/v) sea salts (Sigma, optimum 3%), 1% and 4% (w/v) NaCl (optimum 3%) and 0.1 and 80 MPa (optimum 30 MPa). The minimum doubling time was 66 min at 30 MPa and 80 °C. The isolate was an obligate chemoorganoheterotroph, capable of utilizing complex organic compounds and organic acids including yeast extract, peptone, tryptone, casein, starch, Casamino acids, citrate, lactate, acetate, fumarate, propanoate and pyruvate for growth. It was strictly anaerobic and facultatively dependent on elemental sulfur or sulfate as electron acceptors, but did not reduce sulfite, thiosulfate, Fe(III) or nitrate. The presence of elemental sulfur enhanced growth. The G+C content of the genomic DNA was 43.6 ± 1 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Palaeococcus ferrophilus DMJ(T) (95.7% 16S rRNA gene similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Palaeococcus pacificus sp. nov. is proposed. The type strain is strain DY20341(T) (=JCM 17873(T)=DSM 24777(T)).

  13. Internal tides and sediment dynamics in the deep sea-Evidence from radioactive Th-234/U-238 disequilibria

    International Nuclear Information System (INIS)

    Turnewitsch, R.; Turnewitsch, R.; Waniek, J.J.; Reyss, J.L.; Nycander, J.; Lampitt, R.S.

    2008-01-01

    ). These conclusions are supported by the horizontal distribution and magnitude of the modeled total (baro-tropic + baro-clinic) tidal current velocities of the predominating tidal M 2 constituent: on (near-)critical sea mount slopes baro-clinic tides lead to localized [∼ O (1 km)] increases of the overall tidal current velocity by a factor of ∼ 2, thereby pushing the total current velocity well above the threshold for sediment erosion. The results of this and a previous study show that kilometer-scale flow/topography interactions leave a marine geochemical imprint.This imprint may help develop new sediment proxies for there construction of past changes of fluid dynamics in the deep sea, including residual and tidal flow. Sedimentary records controlled by kilometer-scale sea floor elevations are promising systems for there construction of paleo-changes of deep-ocean fluid dynamics. For the sediment-based reconstruction of paleo-parameters other than physical oceanographic ones it may be advisable to avoid kilometer-scale topography altogether. (authors)

  14. Moessbauer, X-ray fluorescence and paleomagnetic studies of deep-sea sediments from Peru Basin: two million years of sedimentation history

    International Nuclear Information System (INIS)

    Drodt, M.; Trautwein, A.X.; Dekkers, M.J.

    1996-01-01

    Sediment cores with different sub-bottom depths (I: 45 cm and II: 700 cm) from the Peru Basin have been investigated. From the depth profile of the relative amount of Fe(II) a redox zone is obtained which correlates with the organic carbon flux into the sediment (core I). Moessbauer parameters suggest that the iron in the sediments is mainly contained in clay minerals and to varying extent also in goethite

  15. Analysis of Low-Biomass Microbial Communities in the Deep Biosphere.

    Science.gov (United States)

    Morono, Y; Inagaki, F

    2016-01-01

    Over the past few decades, the subseafloor biosphere has been explored by scientific ocean drilling to depths of about 2.5km below the seafloor. Although organic-rich anaerobic sedimentary habitats in the ocean margins harbor large numbers of microbial cells, microbial populations in ultraoligotrophic aerobic sedimentary habitats in the open ocean gyres are several orders of magnitude less abundant. Despite advances in cultivation-independent molecular ecological techniques, exploring the low-biomass environment remains technologically challenging, especially in the deep subseafloor biosphere. Reviewing the historical background of deep-biosphere analytical methods, the importance of obtaining clean samples and tracing contamination, as well as methods for detecting microbial life, technological aspects of molecular microbiology, and detecting subseafloor metabolic activity will be discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Feasibility of disposal of high-level radioactive waste into the seabed. volume 7: Review of laboratory investigations of radionuclide migration through deep-sea sediments

    International Nuclear Information System (INIS)

    Brush, L.H.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This volume contains a review of the laboratory investigations of radionuclide migration through deep-sea sediments. In addition, it discusses the data selected for the radiological assessment, on the basis of both field and laboratory studies

  17. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part II - Iron-sulfur coupling

    Science.gov (United States)

    Taillefert, Martial; Beckler, Jordon S.; Cathalot, Cécile; Michalopoulos, Panagiotis; Corvaisier, Rudolph; Kiriazis, Nicole; Caprais, Jean-Claude; Pastor, Lucie; Rabouille, Christophe

    2017-08-01

    Deep-sea fans are well known depot centers for organic carbon that should promote sulfate reduction. At the same time, the high rates of deposition of unconsolidated metal oxides from terrigenous origin may also promote metal-reducing microbial activity. To investigate the eventual coupling between the iron and sulfur cycles in these environments, shallow sediment cores (Congo River deep-sea fan ( 5000 m) were profiled using a combination of geochemical methods. Interestingly, metal reduction dominated suboxic carbon remineralization processes in most of these sediments, while dissolved sulfide was absent. In some 'hotspot' patches, however, sulfate reduction produced large sulfide concentrations which supported chemosynthetic-based benthic megafauna. These environments were characterized by sharp geochemical boundaries compared to the iron-rich background environment, suggesting that FeS precipitation efficiently titrated iron and sulfide from the pore waters. A companion study demonstrated that methanogenesis was active in the deep sediment layers of these patchy ecosystems, suggesting that sulfate reduction was promoted by alternative anaerobic processes. These highly reduced habitats could be fueled by discrete, excess inputs of highly labile natural organic matter from Congo River turbidites or by exhumation of buried sulfide during channel flank erosion and slumping. Sulfidic conditions may be maintained by the mineralization of decomposition products from local benthic macrofauna or bacterial symbionts or by the production of more crystalline Fe(III) oxide phases that are less thermodynamically favorable than sulfate reduction in these bioturbated sediments. Overall, the iron and sulfur biogeochemical cycling in this environment is unique and much more similar to a coastal ecosystem than a deep-sea environment.

  18. Geochemical fractionation of Ni, Cu and Pb in the deep sea sediments from the Central Indian Ocean Basin: An insight into the mechanism of metal enrichment in sediment

    Digital Repository Service at National Institute of Oceanography (India)

    Sensarma, S.; Chakraborty, P.; Banerjee, R.; Mukhopadhyay, S.

    speciation study suggests that Fe–Mn oxyhydroxide phase was the major binding phase for Ni, Cu and Pb in the sediments. The second highest concentrations of all these metals were present within the structure of the sediments. Easily reducible oxide phase...

  19. Applying machine learning to global surface ocean and seabed data to reveal the controls on the distribution of deep-sea sediments

    Science.gov (United States)

    Dutkiewicz, Adriana; Müller, Dietmar; O'Callaghan, Simon

    2017-04-01

    World's ocean basins contain a rich and nearly continuous record of environmental fluctuations preserved as different types of deep-sea sediments. The sediments represent the largest carbon sink on Earth and its largest geological deposit. Knowing the controls on the distribution of these sediments is essential for understanding the history of ocean-climate dynamics, including changes in sea-level and ocean circulation, as well as biological perturbations. Indeed, the bulk of deep-sea sediments comprises the remains of planktonic organisms that originate in the photic zone of the global ocean implying a strong connection between the seafloor and the sea surface. Machine-learning techniques are perfectly suited to unravelling these controls as they are able to handle large sets of spatial data and they often outperform traditional spatial analysis approaches. Using a support vector machine algorithm we recently created the first digital map of seafloor lithologies (Dutkiewicz et al., 2015) based on 14,400 surface samples. This map reveals significant deviations in distribution of deep-sea lithologies from hitherto hand-drawn maps based on far fewer data points. It also allows us to explore quantitatively, for the first time, the relationship between oceanographic parameters at the sea surface and lithologies on the seafloor. We subsequently coupled this global point sample dataset of 14,400 seafloor lithologies to bathymetry and oceanographic grids (sea-surface temperature, salinity, dissolved oxygen and dissolved inorganic nutrients) and applied a probabilistic Gaussian process classifier in an exhaustive combinatorial fashion (Dutkiewicz et al., 2016). We focused on five major lithologies (calcareous sediment, diatom ooze, radiolarian ooze, clay and lithogenous sediment) and used a computationally intensive five-fold cross-validation, withholding 20% of the data at each iteration, to assess the predictive performance of the machine learning method. We find that

  20. Sequence of structures in fine-grained turbidites: Comparison of recent deep-sea and ancient flysch sediments

    Science.gov (United States)

    Stow, Dorrik A. V.; Shanmugam, Ganapathy

    1980-01-01

    A comparative study of the sequence of sedimentary structures in ancient and modern fine-grained turbidites is made in three contrasting areas. They are (1) Holocene and Pleistocene deep-sea muds of the Nova Scotian Slope and Rise, (2) Middle Ordovician Sevier Shale of the Valley and Ridge Province of the Southern Appalachians, and (3) Cambro-Ordovician Halifax Slate of the Meguma Group in Nova Scotia. A standard sequence of structures is proposed for fine-grained turbidites. The complete sequence has nine sub-divisions that are here termed T 0 to T 8. "The lower subdivision (T 0) comprises a silt lamina which has a sharp, scoured and load-cast base, internal parallel-lamination and cross-lamination, and a sharp current-lineated or wavy surface with 'fading-ripples' (= Type C etc. …)." (= Type C ripple-drift cross-lamination, Jopling and Walker, 1968). The overlying sequence shows textural and compositional grading through alternating silt and mud laminae. A convolute-laminated sub-division (T 1) is overlain by low-amplitude climbing ripples (T 2), thin regular laminae (T 3), thin indistinct laminae (T 4), and thin wipsy or convolute laminae (T 5). The topmost three divisions, graded mud (T 6), ungraded mud (T 7) and bioturbated mud (T 8), do not have silt laminae but rare patchy silt lenses and silt pseudonodules and a thin zone of micro-burrowing near the upper surface. The proposed sequence is analogous to the Bouma (1962) structural scheme for sandy turbidites and is approximately equivalent to Bouma's (C)DE divisions. The repetition of partial sequences characterizes different parts of the slope/base-of-slope/basin plain environment, and represents deposition from different stages of evolution of a large, muddy, turbidity flow. Microstructural detail and sequence are well preserved in ancient and even slightly metamorphosed sediments. Their recognition is important for determining depositional processes and for palaeoenvironmental interpretation.

  1. Biotic and a-biotic Mn and Fe cycling in deep sediments across a gradient of sulfate reduction rates along the California margin

    Science.gov (United States)

    Schneider-Mor, A.; Steefel, C.; Maher, K.

    2011-12-01

    The coupling between the biological and a-biotic processes controlling trace metals in deep marine sediments are not well understood, although the fluxes of elements and trace metals across the sediment-water interface can be a major contribution to ocean water. Four marine sediment profiles (ODP leg 167 sites 1011, 1017, 1018 and 1020)were examined to evaluate and quantify the biotic and abiotic reaction networks and fluxes that occur in deep marine sediments. We compared biogeochemical processes across a gradient of sulfate reduction (SR) rates with the objective of studying the processes that control these rates and how they affect major elements as well as trace metal redistribution. The rates of sulfate reduction, methanogenesis and anaerobic methane oxidation (AMO) were constrained using a multicomponent reactive transport model (CrunchFlow). Constraints for the model include: sediment and pore water concentrations, as well as %CaCO3, %biogenic silica, wt% carbon and δ13C of total organic carbon (TOC), particulate organic matter (POC) and mineral associated carbon (MAC). The sites are distinguished by the depth of AMO: a shallow zone is observed at sites 1018 (9 to 19 meters composite depth (mcd)) and 1017 (19 to 30 mcd), while deeper zones occur at sites 1011 (56 to 76 mcd) and 1020 (101 to 116 mcd). Sulfate reduction rates at the shallow AMO sites are on the order 1x10-16 mol/L/yr, much faster than rates in the deeper zone sulfate reduction (1-3x10-17 mol/L/yr), as expected. The dissolved metal ion concentrations varied between the sites, with Fe (0.01-7 μM) and Mn (0.01-57 μM) concentrations highest at Site 1020 and lowest at site 1017. The highest Fe and Mn concentrations occurred at various depths, and were not directly correlated with the rates of sulfate reduction and the maximum alkalinity values. The main processes that control cycling of Fe are the production of sulfide from sulfate reduction and the distribution of Fe-oxides. The Mn distribution

  2. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

    Science.gov (United States)

    Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z.

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants that can be transferred long distances and tend to accumulate in marine sediments. However, less is known regarding the distribution of PAHs and their natural bioattenuation in the open sea, especially the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to the Makarov Basin in the summer of 2010. PAH compositions and total concentrations were examined with GC-MS. The concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g-1 dry weight and decreased with sediment depth and movement from the southern to the northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. The 16S rRNA gene of the total environmental DNA was analyzed with Illumina high-throughput sequencing (IHTS) to determine the diversity of bacteria involved in PAH degradation in situ. The potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant, occurred in all sediment samples. Meanwhile, enrichment with PAHs was initiated onboard and transferred to the laboratory for further enrichment and to obtain the degrading consortia. Most of the abovementioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas occurred alternately as predominant members in the enrichment cultures from different sediments based on IHTS and PCR-DGGE analysis. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus Pseudomonas showed the best degradation capability under low temperatures. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may

  3. Early diagenesis in the sediments of the Congo deep-sea fan dominated by massive terrigenous deposits: Part III - Sulfate- and methane- based microbial processes

    Science.gov (United States)

    Pastor, L.; Toffin, L.; Decker, C.; Olu, K.; Cathalot, C.; Lesongeur, F.; Caprais, J.-C.; Bessette, S.; Brandily, C.; Taillefert, M.; Rabouille, C.

    2017-08-01

    Geochemical profiles (SO42-, H2S, CH4, δ13CH4) and phylogenetic diversity of Archaea and Bacteria from two oceanographic cruises dedicated to the lobes sediments of the Congo deep-sea fan are presented in this paper. In this area, organic-rich turbidites reach 5000 m and allow the establishment of patchy cold-seep-like habitats including microbial mats, reduced sediments, and vesicomyid bivalves assemblages. These bivalves live in endosymbiosis with sulfur-oxidizing bacteria and use sulfides to perform chemosynthesis. In these habitats, unlike classical abyssal sediments, anoxic processes are dominant. Total oxygen uptake fluxes and methane fluxes measured with benthic chambers are in the same range as those of active cold-seep environments, and oxygen is mainly used for reoxidation of reduced compounds, especially in bacterial mats and reduced sediments. High concentrations of methane and sulfate co-exist in the upper 20 cm of sediments, and evidence indicates that sulfate-reducing microorganisms and methanogens co-occur in the shallow layers of these sediments. Simultaneously, anaerobic oxidation of methane (AOM) with sulfate as the electron acceptor is evidenced by the presence of ANMEs (ANaerobic MEthanotroph). Dissolved sulfide produced through the reduction of sulfate is reoxidized through several pathways depending on the habitat. These pathways include vesicomyid bivalves uptake (adults or juveniles in the bacterial mats habitats), reoxidation by oxygen or iron phases within the reduced sediment, or reoxidation by microbial mats. Sulfide uptake rates by vesicomyids measured in sulfide-rich sea water (90±18 mmol S m-2 d-1) were similar to sulfide production rates obtained by modelling the sulfate profile with different bioirrigation constants, highlighting the major control of vesicomyids on sulfur cycle in their habitats.

  4. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin

    Science.gov (United States)

    Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.

    2017-08-01

    Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.

  5. Biogeochemical Regeneration of a Nodule Mining Disturbance Site: Trace Metals, DOC and Amino Acids in Deep-Sea Sediments and Pore Waters

    Directory of Open Access Journals (Sweden)

    Sophie A. L. Paul

    2018-04-01

    Full Text Available Increasing interest in deep-sea mineral resources, such as polymetallic nodules, calls for environmental research about possible impacts of mineral exploitation on the deep-sea ecosystem. So far, little geochemical comparisons of deep-sea sediments before and after mining induced disturbances have been made, and thus long-term environmental effects of deep-sea mining are unknown. Here we present geochemical data from sediment cores from an experimental disturbance area at 4,100 m water depth in the Peru Basin. The site was revisited in 2015, 26 years after a disturbance experiment mimicking nodule mining was carried out and compared to sites outside the experimental zone which served as a pre-disturbance reference. We investigated if signs of the disturbance are still visible in the solid phase and the pore water after 26 years or if pre-disturbance conditions have been re-established. Additionally, a new disturbance was created during the cruise and sampled 5 weeks later to compare short- and longer-term impacts. The particulate fraction and pore water were analyzed for major and trace elements to study element distribution and processes in the surface sediment. Pore water and bottom water samples were also analyzed for oxygen, nitrate, dissolved organic carbon, and dissolved amino acids, to examine organic matter degradation processes. The study area of about 11 km2 was found to be naturally more heterogeneous than expected, requiring an analysis of spatial variability before the disturbed and undisturbed sites can be compared. The disturbed sites exhibit various disturbance features: some surface sediments were mixed through, others had the top layer removed and some had additional material deposited on top. Pore water constituents have largely regained pre-disturbance gradients after 26 years. The solid phase, however, shows clear differences between disturbed and undisturbed sites in the top 20 cm so that the impact is still visible in the

  6. Buried in time: Culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Raghukumar, S.; Sheelu, G.; Gupta, S.M.; Nath, B.N.; Rao, B.R.

    of sediments was determined by the ?Karbonat-Bombe? method (M?ller and Gastner, 1971). The DBD is one among the several physical properties of sediment including porosity and is inversely related to porosity as shown by the equation of Garg (1987... Karbonat-Bombe?, a simple device for the determination of carbonate content in sediments, soils and other material. Neues Jahrbuch Minearalogie, 10, 466-469. Mueller, V., Sengbusch, P. V., 1983. Visualization of aquatic fungi (Chytridiales...

  7. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions

    Directory of Open Access Journals (Sweden)

    M. Stabholz

    2013-02-01

    Full Text Available The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity, currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW–SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION" located at 42°02.5′ N, 4°41′ E, at 2350-m depth, show that open-ocean convection reached mid-water depth (≈ 1000-m depth during winter 2007–2008, and reached the seabed (≈ 2350-m depth during winter 2008–2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008–2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008–2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5%, were abnormally low (≤ 1% during winter 2008–2009 and approached those observed in surface sediments (≈ 0.6%. Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization

  8. Characterization of Paleoredox Changes In Nw-pacific Deep-sea Sediments Using Environmental Magnetic In Combination With Geochemical-mineralogic Data

    Science.gov (United States)

    Urbat, M.; Pletsch, T.

    The understanding of environmental and oceanic controls on deep-sea sediments in the NW Pacific Ocean (ODP Site 1149A, Nadezhda Basin) benefits from the inte- gration of environmental magnetic methodology with geochemical-mineralogic XRD (x-ray defraction) and XRF (x-ray fluorescence) data. Crucially, the inherently grad- ual diagenetic processes related to paleo-redox changes in the sediment column may be more sensitively monitored using the integration of non-magnetic and magnetic data, because they do reflect various aspects of the entire postdepositional alteration. The studied 32 m long quaternary interval at Hole ODP 1149A provides an expanded record of eolian dust supply from the Asian continent, siliceous plankton accumulation and varying contributions of both discrete ash layers and disperse ash to a truly deep- sea environment (Plank et al. 2000). Recurrent diagenetic intervals appear to be related to changes in the Ocean water circulation (Kuriosho current) and concomitant produc- tivity variations as a function of glacial-interglacial paleoclimatic changes. Diagenetic intervals correspond to paleo-redox boundaries, where suboxic conditions promoted the destruction of the primary magnetic signal (iron oxides) and the precipitation of rhodochrosite (MnCO3). We used simple normative calculations on the basis of of Al and Cr contents to discriminate between the major groups of components (terrigenous, volcanogenic, biogenic, diagenetic) in combination with our magnetic results. These results form the grounds for the discrimation and independent interpretation of the genetically various sediment components in the paleoceanograhic context.

  9. Impaired Short-Term Functioning of a Benthic Community from a Deep Norwegian Fjord Following Deposition of Mine Tailings and Sediments

    Directory of Open Access Journals (Sweden)

    Lisa Mevenkamp

    2017-05-01

    Full Text Available The extraction of minerals from land-based mines necessitates the disposal of large amounts of mine tailings. Dumping and storage of tailings into the marine environment, such as fjords, is currently being performed without knowing the potential ecological consequences. This study investigated the effect of short-term exposure to different deposition depths of inert iron ore tailings (0.1, 0.5, and 3 cm and dead subsurface sediment (0.5 and 3 cm on a deep water (200 m fjord benthic assemblage in a microcosm experiment. Biotic and abiotic variables were measured to determine structural and functional changes of the benthic community following an 11 and 16 day exposure with tailings and dead sediment, respectively. Structural changes of macrofauna, meiofauna, and bacteria were measured in terms of biomass, density, community composition and mortality while measures of oxygen penetration depth, sediment community oxygen consumption and 13C-uptake and processing by biota revealed changes in the functioning of the system. Burial with mine tailings and natural sediments modified the structure and functioning of the benthic community albeit in a different way. Mine tailings deposition of 0.1 cm and more resulted in a reduced capacity of the benthic community to remineralize fresh 13C-labeled algal material, as evidenced by the reduced sediment community oxygen consumption and uptake rates in all biological compartments. At 3 cm of tailings deposition, it was evident that nematode mortality was higher inside the tailings layer, likely caused by reduced food availability. In contrast, dead sediment addition led to an increase in oxygen consumption and bacterial carbon uptake comparable to control conditions, thereby leaving deeper sediment layers anoxic and in turn causing nematode mortality at 3 cm deposition. This study clearly shows that even small levels (0.1 cm of instantaneous burial by mine tailings may significantly reduce benthic ecosystem

  10. Microbial Sulfate Reduction in Deep-Sea Sediments at the Guaymas Basin - Hydrothermal Vent Area - Influence of Temperature and Substrates

    DEFF Research Database (Denmark)

    ELSGAARD, L.; ISAKSEN, MF; JØRGENSEN, BB

    1994-01-01

    Microbial sulfate reduction was studied by a S-35 tracer technique in sediments from the hydrothermal vent site in Guaymas Basin, Gulf of California, Mexico. In situ temperatures ranged from 2.7-degrees-C in the overlying seawater to > 120-degrees-C at 30 cm depth in the hydrothermal sediment...

  11. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments

    DEFF Research Database (Denmark)

    Jørgensen, BB; Bottcher, ME; Luschen, H.

    2004-01-01

    to isotopically heavy pyrite in a sediment open to diffusion. These results have general implications for the marine sulfur cycle and for the interpretation of sulfur isotopic data in modern sediments and in sedimentary rocks throughout earth's history. Copyright (C) 2004 Elsevier Ltd...

  12. Petroleum hydrocarbon pollution after the tasman spirit oil spill of coastal/deep sea sediment along the clifton beach karachi, Pakistan

    International Nuclear Information System (INIS)

    Munshi, A.B.; Ansari, F.A.; Siddiqi, H.A.; Zeeshan, M.

    2011-01-01

    An oil tanker,Tasman Spirit, carrying 67000 to nsc rude oil, got damaged near the Clifton Beach of Karachi, Pakistan and approx. 31,000 ton oil spilled into the sea. The distribution of aliphatic and aromatic hydrocarbons was determined in deep sea and surface sediment collected at 12 stations along the Clifton beach of Karachi, following the oil spill. Sampling was performed during 2003-2006, starting just after the accident of the oil tanker. Concentrations of PAHs (sigma 16 parent components) and aliphatics were in the range of 0.09-560 macro g/kg dw and 0.12-685 macro g/kg dw, respectively, since the date of accident and after bio remedial measures. The highest concentrations were found within the radius of 50 km around the site, the area most heavily impacted by the spill, whereas at the stations, away from the ship, the concentrations were in the lower range without alkylated compounds Addition of increasing amounts of ship fuel oil (taken from a Pakistani ship) to a representatives sediment samples showed that measurable concentration of the Tasman Spirit oil was > 1 g/kg of sediment The toxicity of selected samples of surface sediment from the coastal area near oil spill showed higher PAH concentrations the average number of dead fauna was 90-95% within 3 days of oil spill which gradually decreased with the time. (author)

  13. Collection, processing, and interpretation of ground-penetrating radar data to determine sediment thickness at selected locations in Deep Creek Lake, Garrett County, Maryland, 2007

    Science.gov (United States)

    Banks, William S.L.; Johnson, Carole D.

    2011-01-01

    The U.S. Geological Survey collected geophysical data in Deep Creek Lake in Garrett County, Maryland, between September 17 through October 4, 2007 to assist the Maryland Department of Natural Resources to better manage resources of the Lake. The objectives of the geophysical surveys were to provide estimates of sediment thickness in shallow areas around the Lake and to test the usefulness of three geophysical methods in this setting. Ground-penetrating radar (GPR), continuous seismic-reflection profiling (CSP), and continuous resistivity profiling (CRP) were attempted. Nearly 90 miles of GPR radar data and over 70 miles of CSP data were collected throughout the study area. During field deployment and testing, CRP was determined not to be practical and was not used on a large scale. Sediment accumulation generally could be observed in the radar profiles in the shallow coves. In some seismic profiles, a thin layer of sediment could be observed at the water bottom. The radar profiles appeared to be better than the seismic profiles for the determination of sediment thickness. Although only selected data profiles were processed, all data were archived for future interpretation.

  14. Impact of protists on a hydrocarbon-degrading bacterial community from deep-sea Gulf of Mexico sediments: A microcosm study

    Science.gov (United States)

    Beaudoin, David J.; Carmichael, Catherine A.; Nelson, Robert K.; Reddy, Christopher M.; Teske, Andreas P.; Edgcomb, Virginia P.

    2016-07-01

    In spite of significant advancements towards understanding the dynamics of petroleum hydrocarbon degrading microbial consortia, the impacts (direct or indirect via grazing activities) of bacterivorous protists remain largely unknown. Microcosm experiments were used to examine whether protistan grazing affects the petroleum hydrocarbon degradation capacity of a deep-sea sediment microbial community from an active Gulf of Mexico cold seep. Differences in n-alkane content between native sediment microcosms and those treated with inhibitors of eukaryotes were assessed by comprehensive two-dimensional gas chromatography following 30-90 day incubations and analysis of shifts in microbial community composition using small subunit ribosomal RNA gene clone libraries. More biodegradation was observed in microcosms supplemented with eukaryotic inhibitors. SSU rRNA gene clone libraries from oil-amended treatments revealed an increase in the number of proteobacterial clones (particularly γ-proteobacteria) after spiking sediments with diesel oil. Bacterial community composition shifted, and degradation rates increased, in treatments where protists were inhibited, suggesting protists affect the hydrocarbon degrading capacity of microbial communities in sediments collected at this Gulf of Mexico site.

  15. Seabed disposal program: sorption and other geochemical and sedimentological studies of mid-plate, mid-gyre deep-sea sediments

    International Nuclear Information System (INIS)

    Heath, G.R.

    1977-07-01

    Studies of Eu sorption from 0.68M NaCl solution at 15 0 C by typical deep-sea sediments show less than an order-of-magnitude variation between partition coefficients (Kp) for calcareous oozes, red clays and siliceous oozes. Similarly, the concentration (C) dependence of Kp is comparable for all sediments (d log Kp/d C lies between -0.8 and -1.0 ml g -1 M -1 ). Sorption and desorption reactions are rapid and yield similar Kp's, suggesting that the process is primarily ion exchange. Magnetic studies of North Pacific core LL44-GPC3 (30 0 20'N, 157 0 49'W) support the ichthyolith time-scale of P. Doyle, and imply continuous deposition at 0.2 to 2.5 m/million years for the past 70 million years

  16. Gas hydrate formation in deep-sea sediments - on the role of sediment-mechanical process determination; Gashydratbildung in Tiefseesedimenten - zur Rolle der sedimentmechanischen Prozesssteuerung

    Energy Technology Data Exchange (ETDEWEB)

    Feeser, V. [Kiel Univ. (Germany). Geologisch-Palaeontologisches Inst.

    1997-12-31

    Slope failures in gas hydrate regions are encountered throughout the oceans. The stability of seafloor slopes can be assessed and predicted by means of calculation methods based on mechanical laws and parameters which describe the deformation behaviour and/or mechanical strength of the slope-forming sediments. Thermodynamic conditions conducive to the formation of gas hydrates in marine sediments differ from conditions prevailing in exclusively water-filled systems. The present contribution describes the relevant energetic conditions on the basis of a simple spherical model giving due consideration to petrographic parameters. Depending on pore size distribution, lithological stress conditions, pore water pressure, and sediment strength gas hydrates will either develop as a cementing phase or as segregated lenses. (MSK) [Deutsch] In den Weltmeeren ereignen sich immer wieder Hangrutschungen in Gashydratgebieten. Die zur Beurteilung und Prognonse von Hangstabilitaeten zu verwendenden Berechnungsverfahren erfordern Stoffgesetze und Parameter, welche das Deformations-und/oder Festigkeitsverhalten der hangbildenden Sedimente beschreiben. Die thermodynamischen Bildungsbedingungen von Gashydraten in marinen Sedimenten unterscheiden sich von den Bedingungen in ausschliesslich wassergefuellten Systemen. Unter Einbeziehung petrographischer Eigenschaften werden die energetischen Bedingungen beschrieben. Dazu dient ein einfaches Kugelmodell. Je nach vorhandenem Porenraumspektrum, lithostatischen Spannungsverhaeltnissen, Porenwasserdruck und Sedimentfestigkeit wachsen Gashydrate als Porenraumzement oder als segregierte Linsen.

  17. Geomechanical, Hydraulic and Thermal Characteristics of Deep Oceanic Sandy Sediments Recovered during the Second Ulleung Basin Gas Hydrate Expedition

    Directory of Open Access Journals (Sweden)

    Yohan Cha

    2016-09-01

    Full Text Available This study investigates the geomechanical, hydraulic and thermal characteristics of natural sandy sediments collected during the Ulleung Basin gas hydrate expedition 2, East Sea, offshore Korea. The studied sediment formation is considered as a potential target reservoir for natural gas production. The sediments contained silt, clay and sand fractions of 21%, 1.3% and 77.7%, respectively, as well as diatomaceous minerals with internal pores. The peak friction angle and critical state (or residual state friction angle under drained conditions were ~26° and ~22°, respectively. There was minimal or no apparent cohesion intercept. Stress- and strain-dependent elastic moduli, such as tangential modulus and secant modulus, were identified. The sediment stiffness increased with increasing confining stress, but degraded with increasing strain regime. Variations in water permeability with water saturation were obtained by fitting experimental matric suction-water saturation data to the Maulem-van Genuchen model. A significant reduction in thermal conductivity (from ~1.4–1.6 to ~0.5–0.7 W·m−1·K−1 was observed when water saturation decreased from 100% to ~10%–20%. In addition, the electrical resistance increased quasi-linearly with decreasing water saturation. The geomechanical, hydraulic and thermal properties of the hydrate-free sediments reported herein can be used as the baseline when predicting properties and behavior of the sediments containing hydrates, and when the hydrates dissociate during gas production. The variations in thermal and hydraulic properties with changing water and gas saturation can be used to assess gas production rates from hydrate-bearing deposits. In addition, while depressurization of hydrate-bearing sediments inevitably causes deformation of sediments under drained conditions, the obtained strength and stiffness properties and stress-strain responses of the sedimentary formation under drained loading conditions

  18. Deep-sea nematodes actively colonise sediments, irrespective of the presence of a pulse of organic matter: results from an in-situ experiment.

    Directory of Open Access Journals (Sweden)

    Katja Guilini

    Full Text Available A colonisation experiment was performed in situ at 2500 m water depth at the Arctic deep-sea long-term observatory HAUSGARTEN to determine the response of deep-sea nematodes to disturbed, newly available patches, enriched with organic matter. Cylindrical tubes,laterally covered with a 500 µm mesh, were filled with azoic deep-sea sediment and (13C-labelled food sources (diatoms and bacteria. After 10 days of incubation the tubes were analysed for nematode response in terms of colonisation and uptake. Nematodes actively colonised the tubes, however with densities that only accounted for a maximum of 2.13% (51 ind.10 cm(-2 of the ambient nematode assemblages. Densities did not differ according to the presence or absence of organic matter, nor according to the type of organic matter added. The fact that the organic matter did not function as an attractant to nematodes was confirmed by the absence of notable (13C assimilation by the colonising nematodes. Overall, colonisation appears to be a process that yields reproducible abundance and diversity patterns, with certain taxa showing more efficiency. Together with the high variability between the colonising nematode assemblages, this lends experimental support to the existence of a spatio-temporal mosaic that emerges from highly localised, partially stochastic community dynamics.

  19. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea

    Directory of Open Access Journals (Sweden)

    Oluwatobi Emmanuel Oni

    2015-05-01

    Full Text Available Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR (Q-PCR-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250-350 cm. The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments.

  20. Rock magnetic and geochemical analyses of surface sediment characteristics in deep ocean environments: A case study across the Ryukyu Trench

    Science.gov (United States)

    Kawamura, N.; Kawamura, K.; Ishikawa, N.

    2008-03-01

    Magnetic minerals in marine sediments are often dissolved or formed with burial depth, thereby masking the primary natural remanent magnetization and paleoclimate signals. In order to clarify the present sedimentary environment and the progressive changes with burial depth in the magnetic properties, we studied seven cores collected from the Ryukyu Trench, southwest Japan. Magnetic properties, organic geochemistry, and interstitial water chemistry of seven cores are described. Bottom water conditions at the landward slope, trench floor, and seaward slope are relatively suboxic, anoxic, and oxic, respectively. The grain size of the sediments become gradually finer with the distance from Okinawa Island and finer with increasing water depth. The magnetic carriers in the sediments are predominantly magnetite and maghemized magnetite, with minor amounts of hematite. In the topmost sediments from the landward slope, magnetic minerals are diluted by terrigenous materials and microfossils. The downcore variations in magnetic properties and geochemical data provided evidence for the dissolution of fine-grained magnetite with burial depth under an anoxic condition.

  1. A study on sedimentation of tidal rivers and channels flowing into deep bay with a Delft3D model

    NARCIS (Netherlands)

    Wang, Z.B.; Tse, M.L.; Lau, S.C.

    2011-01-01

    For supporting Drainage Services Department of the Government of the Hong Kong SAR to develop a comprehensive strategy for overall land drainage and flood control in Yuen Long and North Districts, 3D hydrodynamic and sediment transport model is set up. The model deploys Domain Decomposition

  2. Respiration of bivalves from three different deep-sea areas: Cold seeps, hydrothermal vents and organic carbon-rich sediments

    Science.gov (United States)

    Khripounoff, A.; Caprais, J. C.; Decker, C.; Le Bruchec, J.; Noel, P.; Husson, B.

    2017-08-01

    We studied bivalves (vesicomyids and mytilids) inhabiting four different areas of high sulfide and methane production: (1) in the Gulf of Guinea, two pockmarks (650 m and 3150 m depth) and one site rich in organic sediments in the deepest zone (4950 m average depth), (2) at the Azores Triple Junction on the Mid-Atlantic Ridge, one hydrothermal site (Lucky Strike vent field, 1700 m depth). Two types of Calmar benthic chambers were deployed, either directly set into the sediment (standard Calmar chamber) or fitted with a tank to isolate organisms from the sediment (modified Calmar chamber), to assess gas and solute exchanges in relation to bivalve bed metabolism. Fluxes of oxygen, total carbon dioxide, ammonium and methane were measured. At the site with organic-rich sediments, oxygen consumption by clams measured in situ with the standard benthic chamber was variable (1.3-6.7 mmol m-2 h-1) as was total carbon dioxide production (1-9.6 mmol m-2 h-1). The observed gas and solute fluxes were attributed primarily to bivalve respiration (vesicomyids or mytilids), but microbial and geochemical processes in the sediment may be also responsible for some of variations in the deepest stations. The respiration rate of isolated vesicomyids (16.1-0.25.7 μmol g-1 dry weight h-1) was always lower than that of mytilids (33 μmol g-1 dry weight h-1). This difference was attributed to the presence of a commensal scaleworm in the mytilids. The respiratory coefficient (QR) ≥1 indicated high levels of anaerobic metabolism. The O:N index ranged from 5 to 25, confirming that vesicomyids and mytilids, living in symbiosis with bacteria, have a protein-based food diet.

  3. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments

    Digital Repository Service at National Institute of Oceanography (India)

    German, C.R.; Legendre, L.L.; Sander, S.G.;; Niquil, N.; Luther-III, G.W.; LokaBharathi, P.A.; Han, X.; LeBris, N.

    by more than ~10% over background values, what the model does indicate is that scavenging of carbon in association with Fe-rich hydrothermal plume particles should play a significant role in the delivery of particulate organic carbon to deep ocean...

  4. Soft-sediment deformation structures in seismically affected deep-sea Miocene turbidites (Cilento Basin, southern Italy

    Directory of Open Access Journals (Sweden)

    Valente Alessio

    2014-07-01

    Full Text Available Soft-sediment deformation structures (SSDS are widespread in the upper part of the S. Mauro Formation (Cilento Group, Middle-Late Miocene. The succession is represented mainly by thick and very thick, massive, coarse-grained sandstones, deposited by rapid sedimentation of high-density turbidity currents. The most common SSDS are short pillars, dishes, sedimentary sills and convolutions. They occur mostly in the upper parts of sandstone beds. Vertical tubes of 4-5 cm in diameter and up to 50 cm long constitute the most striking structures. They begin in the middle part of sandstone beds, which are basically massive or contain faint dish structures. These tubes can bifurcate upwards and/ or pass into bedding-parallel veins or dikes. The vertical tubes sometimes form sand volcanoes on the then sedimentary surface.

  5. Rare earth element geochemistry of South Atlantic deep sea sediments: Ce anomaly change at approx. 54 My

    International Nuclear Information System (INIS)

    Wang, Y.L.; Liu, Y.-G.; Schmitt, R.A.; Oregon State Univ., Corvallis; Oregon State Univ., Corvallis; Oregon State Univ., Corvallis

    1986-01-01

    The geochemistry of the REE (rare earth elements) in oceanic sediments is discussed, based mainly on samples from DSDP Holes 530A and 530B, Leg 75, and Hole 525A, Leg 74. The proposed mechanisms for incorporation of the REE into the marine carbonate phases are adsorption, chiefly onto the carbonate minerals and on Sc, Hf, and Ta-rich FE-Mn hydroxide flocs as carbonate coatings. The Ce anomaly of marine carbonate was used as an indicator of paleo-ocean water redox conditions: the bottom water of the Angola Basin was in a reducing condition in the Cretaceous. At ca. 54 My, the South Atlantic water condition became oxidizing, similar to the present seawater redox condition. This change was related to the improvement of circulation due to the widening of South Atlantic and the subsidence of water circulation barriers such as the Walvis Ridge and perhaps the Romanche Fracture Zone. The REE abundances and patterns of younger sediments in the Angola Basin (YSAB) are very similar to those observed in NASC, PAAS, and ES sediments. The YSAB REE abundances and patterns may represent the average REE distribution of the exposed African continental crust. The strong resemblance of REE distributions of YSAB, NASC, PAAS and ES suggests thorough REE mixing from different sources and the uniformity of the average crustal compositions of different continents: Africa, North America, Australia, and Europe. (author)

  6. The flux and recovery of bioactive substances in the surface sediments of deep basins off southern California

    Energy Technology Data Exchange (ETDEWEB)

    Jahnke, R.A.

    1990-06-11

    Sediment microbial community biomass and activity in Santa Monica Basin, a nearshore basin in the California Continental Borderland, were examined in October 1985, 1986 and 1987, May 1986, April 1987 and January 1990. Millimeter-scale ATP profiles and incubation of intact cores with {sup 3}H-adenine indicated a high-biomass interface microbial population in the low-oxygen central basin, which was absent in samples from the basin slope sediments. A majority of microbial activity and organic matter mineralization occurred in the top cm of sediment. Comparison of measured ATP and total organic carbon profiles suggest that the C:ATP ratio (wt:wt) ranges between 47:1 and 77:1 in central basin interfacial populations, substantially lower than reported for other aquatic environments. Carbon production estimated from DNA synthesis measurements via {sup 3}H-adenine incorporation was compared with TCO{sub 2} fluxes measured by in situ benthic chamber experiments. Within the uncertainty of the C:ATP ratio, an overall microbial carbon assimilation efficiency of 75--90% was indicated. The low C:ATP ratios and high carbon assimilation efficiencies significantly affect estimates of microbial growth and respiration and are substantially different than those often assumed in the literature. These results suggest that without independent knowledge of these ratios, the uncertainty in tracer-derived microbial growth and respiration rates may be larger than previously reported. 66 refs., 8 figs., 3 tabs.

  7. The flux and recovery of bioactive substances in the surface sediments of deep basins off southern California

    International Nuclear Information System (INIS)

    Jahnke, R.A.

    1990-01-01

    Sediment microbial community biomass and activity in Santa Monica Basin, a nearshore basin in the California Continental Borderland, were examined in October 1985, 1986 and 1987, May 1986, April 1987 and January 1990. Millimeter-scale ATP profiles and incubation of intact cores with 3 H-adenine indicated a high-biomass interface microbial population in the low-oxygen central basin, which was absent in samples from the basin slope sediments. A majority of microbial activity and organic matter mineralization occurred in the top cm of sediment. Comparison of measured ATP and total organic carbon profiles suggest that the C:ATP ratio (wt:wt) ranges between 47:1 and 77:1 in central basin interfacial populations, substantially lower than reported for other aquatic environments. Carbon production estimated from DNA synthesis measurements via 3 H-adenine incorporation was compared with TCO 2 fluxes measured by in situ benthic chamber experiments. Within the uncertainty of the C:ATP ratio, an overall microbial carbon assimilation efficiency of 75--90% was indicated. The low C:ATP ratios and high carbon assimilation efficiencies significantly affect estimates of microbial growth and respiration and are substantially different than those often assumed in the literature. These results suggest that without independent knowledge of these ratios, the uncertainty in tracer-derived microbial growth and respiration rates may be larger than previously reported. 66 refs., 8 figs., 3 tabs

  8. Appraisal of gas hydrate resources based on a P- and S-impedance reflectivity template: case study from the deep sea sediments in Iran

    International Nuclear Information System (INIS)

    Hosseini Shoar, Behnam; Javaherian, Abdolrahim; Farajkhah, Nasser Keshavarz; Seddigh Arabani, Mojtaba

    2013-01-01

    The occurrence of a bottom simulating reflector (BSR) in the 2D seismic data from Makran's accretionary prism reveals the presence of gas hydrate and free gas several hundred meters below the seafloor of Iran's deep sea. According to the global distribution of marine hydrates, they are widely present in deep sea sediments, where high operational costs and hazards cause a lack of well log information. Therefore, developing a method to quantify the hydrate resources with seismic data is an ultimate goal for unexplored regions. In this study, the so-called reflectivity templates (RTs) are introduced for quantification of the hydrate and free gas near the BSR. These RTs are intuitive crossplots of P-impedance and S-impedance contrasts across the BSR. They are calculated theoretically based on the effective medium theory for different hydrate distribution modes with some assumptions on porosity and mineralogical composition of unconsolidated sediments. This technique suggests the possibility of using the amplitude variation versus offset (AVO) analysis of the BSR for a quantitative interpretation when well log data are not available. By superimposing the AVO-derived P-impedance and S-impedance contrasts across the BSR on these RTs, the saturations of the hydrate and free gas near the BSR could be estimated. Validation of this approach by synthetic data showed that a reliable quantification could be achieved if the model parameters were rearranged to a form in which the AVO inversion was independent of the S-wave to P-wave velocity-ratio assumption. Based on this approach applied on the 2D marine pre-stack time migrated seismic line in offshore Iran, 4% to 28% of the gas hydrate and 1% to 2% of the free gas are expected to be accumulated near the thrusted-ridge and thrusted-footwall types of BSRs. (paper)

  9. Mineralizing Filamentous Bacteria from the Prony Bay Hydrothermal Field Give New Insights into the Functioning of Serpentinization-Based Subseafloor Ecosystems.

    Science.gov (United States)

    Pisapia, Céline; Gérard, Emmanuelle; Gérard, Martine; Lecourt, Léna; Lang, Susan Q; Pelletier, Bernard; Payri, Claude E; Monnin, Christophe; Guentas, Linda; Postec, Anne; Quéméneur, Marianne; Erauso, Gaël; Ménez, Bénédicte

    2017-01-01

    Despite their potential importance as analogs of primitive microbial metabolisms, the knowledge of the structure and functioning of the deep ecosystems associated with serpentinizing environments is hampered by the lack of accessibility to relevant systems. These hyperalkaline environments are depleted in dissolved inorganic carbon (DIC), making the carbon sources and assimilation pathways in the associated ecosystems highly enigmatic. The Prony Bay Hydrothermal Field (PHF) is an active serpentinization site where, similar to Lost City (Mid-Atlantic Ridge), high-pH fluids rich in H 2 and CH 4 are discharged from carbonate chimneys at the seafloor, but in a shallower lagoonal environment. This study aimed to characterize the subsurface microbial ecology of this environment by focusing on the earliest stages of chimney construction, dominated by the discharge of hydrothermal fluids of subseafloor origin. By jointly examining the mineralogy and the microbial diversity of the conduits of juvenile edifices at the micrometric scale, we find a central role of uncultivated bacteria belonging to the Firmicutes in the ecology of the PHF. These bacteria, along with members of the phyla Acetothermia and Omnitrophica , are identified as the first chimneys inhabitants before archaeal Methanosarcinales . They are involved in the construction and early consolidation of the carbonate structures via organomineralization processes. Their predominance in the most juvenile and nascent hydrothermal chimneys, and their affiliation with environmental subsurface microorganisms, indicate that they are likely discharged with hydrothermal fluids from the subseafloor. They may thus be representative of endolithic serpentinization-based ecosystems, in an environment where DIC is limited. In contrast, heterotrophic and fermentative microorganisms may consume organic compounds from the abiotic by-products of serpentinization processes and/or from life in the deeper subsurface. We thus propose

  10. 87Sr/86Sr and 18O/16O ratios, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau

    International Nuclear Information System (INIS)

    Elderfield, H.; Oldfield, R.K.; Hawkesworth, C.J.

    1982-01-01

    Interstitial waters and sediments from DSDP sites 288 and 289 contain information on the chemistry and diagenesis of carbonate in deep-sea sediments and on the role of volcanic matter alteration processes. Sr/Ca ratios are species dependent in unaltered foraminifera from site 289 and atom ratios exceed those predicted by distribution coefficient data. During diagenesis Sr/Ca ratios of carbonates decrease and reach the theoretical distribution at a depth which is identical to the depth of Sr isotopic equilibration, where 87 Sr/ 86 Sr ratios of interstitial waters and carbonates converge. Mg/Ca ratios in the carbonates do not increase with depth as found in some other DSDP sites, possibly because of diagenetic re-equilibration with interstitial waters showing decreasing Mg 2+ /Ca 2+ ratios with depth due to Ca input and Mg removal by alteration of volcanic matter. Interstitial 18 O/ 16 O ratios increase with depth at site 289 to delta 18 O = 0.67 per thousand (SMOW), reflecting carbonate recrystallization at elevated temperatures, the first recorded evidence of this effect in interstitial waters. Interstitial Sr 2+ concentrations reach high levels, up to 1 mM, chiefly because of carbonate recrystallization. However, 87 Sr/ 86 Sr ratios decrease from 0.7092 to less than 0.7078, lower than for contemporaneous sea water, showing that there is a volcanic input of strontium at depth. (author)

  11. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan

    Science.gov (United States)

    Baudin, François; Martinez, Philippe; Dennielou, Bernard; Charlier, Karine; Marsset, Tania; Droz, Laurence; Rabouille, Christophe

    2017-08-01

    Geochemical data (total organic carbon-TOC content, δ13Corg, C:N, Rock-Eval analyses) were obtained on 150 core tops from the Angola basin, with a special focus on the Congo deep-sea fan. Combined with the previously published data, the resulting dataset (322 stations) shows a good spatial and bathymetric representativeness. TOC content and δ13Corg maps of the Angola basin were generated using this enhanced dataset. The main difference in our map with previously published ones is the high terrestrial organic matter content observed downslope along the active turbidite channel of the Congo deep-sea fan till the distal lobe complex near 5000 m of water-depth. Interpretation of downslope trends in TOC content and organic matter composition indicates that lateral particle transport by turbidity currents is the primary mechanism controlling supply and burial of organic matter in the bathypelagic depths.

  12. Evaluating the earliest traces of Archean sub-seafloor life by NanoSIMS

    Science.gov (United States)

    Mcloughlin, N.; Grosch, E. G.; Kilburn, M.; Wacey, D.

    2012-12-01

    The Paleoarchean sub-seafloor has been proposed as an environment for the emergence of life with titanite microtextures in pillow lavas argued to be the earliest traces of microbial micro-tunneling (Furnes et al. 2004). Here we use a nano-scale ion microprobe (NanoSIMS) to evaluate possible geochemical traces of life in 3.45 Ga pillow lavas of the Barberton Greenstone Belt, South Africa. We investigated both surface and drill core samples from the original "Biomarker" outcrop in the Hooggenoeg Fm. Pillow lava metavolcanic glass contain clusters of segmented microcrystalline titanite filaments, ~4μm across and sedimentary sulfides (δ34S = +8 to -23‰). We propose that the Hooggenoeg sulfides probably formed during early fluid-rock-microbe interaction involving sulfate-reducing microbes (c.f. Rouxel et al. 2008). The pillow lavas were then metamorphosed, the glass transformed to a greenschist facies assemblage and titanite growth encapsulated the microbial sulfides. In summary, the extreme sulfur isotope fractionations reported here independently point towards the potential involvement of microbes in the alteration of Archean volcanic glass. In situ sulfur isotope analysis of basalt-hosted sulfides may provide an alternative approach to investigating the existence of an Archean sub-seafloor biosphere that does not require the mineralization of early microbial microborings with organic linings.

  13. Using Interactive eBooks To Educate Children About Sub-seafloor Science

    Science.gov (United States)

    Kurtz, K.

    2016-02-01

    Sub-seafloor scientific research has the power to spark the imaginations of elementary age children with its mysterious nature, cutting-edge research, and its connections to kid friendly science topics, such as volcanoes, the extinction of dinosaurs and the search for extraterrestrial life. These factors have been utilized to create two interactive eBooks for elementary students and teachers, integrating high quality science information, highly engaging and age-appropriate illustrations, and rhyming text. The first eBook introduces children to the research and discoveries of the JOIDES Resolution research vessel. The creators were able to build-on the knowledge gained in creating the first eBook to create a second eBook that focuses on the discoveries of microbial life in the sub-seafloor. The eBooks present information as traditional, linear, illustrated children's books, but the eBook format allows the book to be available online for free to anyone and allows teachers to project the book on a classroom screen so all students can easily see the illustrations. The iPad versions also provide an interactive, learner-led educational experience, where cognitively appropriate videos, photos and other forms of information can be accessed with the tap of a finger to answer reader questions and enrich their learning experience. These projects provide an example and model of the products that can result from high level and meaningful partnerships between scientists, educators, artists and writers.

  14. Where the Wild Microbes Are: Education and Outreach on Sub-Seafloor Microbes

    Science.gov (United States)

    Cooper, S. K.; Kurtz, K.; Orcutt, B.; Strong, L.; Collins, J.; Feagan, A.

    2014-12-01

    Sub-seafloor microbiology has the power to spark the imaginations of children, students and the general public with its mysterious nature, cutting-edge research, and connections to the search for extraterrestrial life. These factors have been utilized to create a number of educational and outreach products to bring subsurface microbes to non-scientist audiences in creative and innovative ways. The Adopt a Microbe curriculum for middle school students provides hands-on activities and investigations for students to learn about microbes and the on-going research about them, and provides opportunities to connect with active expeditions. A new series of videos engages non-scientists with stories about research expeditions and the scientists themselves. A poster and associated activities explore the nature of science using a microbiologist and her research as examples. A new e-book for young children will engage them with age-appropriate text and illustrations. These projects are multidisciplinary, involve science and engineering practices, are available to all audiences and provide examples of high level and meaningful partnerships between scientists and educators and the kinds of products that can result. Subseafloor microbiology projects such as these, aimed at K-12 students and the general public, have the potential to entice the interest of the next generation of microbe scientists and increase general awareness of this important science.

  15. Controls on the composition and extraction of rare earth elements and yttrium (REY) in deep sea polymetallic nodules and sediments

    OpenAIRE

    Menendez Gamella, Amaya

    2017-01-01

    Rising demand for metals is driving a search for new mineral resources and mining of seafloor deposits is likely to commence in the next few years. These include polymetallic nodules and crusts that are highly enriched in Mn, Co, Ni, Cu, Mo, Li and Te, and deep-sea clays that can contain high concentrations of the rare earth elements and yttrium (REY). The potential environmental impacts of mining these deposits are, however, poorly constrained and a better understanding of the processes that...

  16. Fungal community analysis in the deep-sea sediments of the central Indian Basin by culture-independent approach

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.; Raghukumar, C.; Verma, P.; Shouche, Y.

    -Bio gene Soil DNA extraction kit (MP Biomedicals, Ohio, U.S.) according to the manufacturer’s instructions. DNA samples from the three stations were amplified using fungal-specific ITS1F/ITS4 [13], primer pair a, as well as universal ITS1/ITS4, primer...NTPs (0.2 mM each), primers (0.5 μM each), and 1 X PCR buffer (Roche, Switzerland.). Reaction mixture without template DNA was used as a negative control and sediments spiked with fungal DNA was used as a positive control. Amplified products were gel...

  17. Fate of copper complexes in hydrothermally altered deep-sea sediments from the Central Indian Ocean Basin.

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, P.; Sander, S.G.; Jayachandran, S.; Nath, B.N.; Nagaraju, G.; Chennuri, K.; Vudamala, K.; Lathika, N.; Mascarenhas-Pereira, M.B.L.

    concentrations of TOC in the studied sediments reduced the concentrations of Cu associated with organic matter in all the studied sediments. Cu present as residual fraction (Fraction 4, Cures) were within the range of (~ 58-82%) and possibly bound to sulphides... Fraction 2 CuFe Fraction 3 CuCorg Fraction 4 Cures Cu- Feox1 Cu- Feox2 Cu- Femag AAS-61 BC 8 4-10cm 354±6 0.3±1 40.7±3.1 0.3±0.1 58.5±3.2 69.3±4.6 29.7±1.2 1.0±0.2 10-15cm 253±7 0.1±0.1 20.7±2.5 0.0 79.2±5.8 63.0±3.2 33.9±2.2 3...

  18. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Science.gov (United States)

    Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong

    2013-01-01

    Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  19. Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes.

    Directory of Open Access Journals (Sweden)

    Daochen Zhu

    Full Text Available BACKGROUND: Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. METHODOLOGY/PRINCIPAL FINDINGS: Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. CONCLUSIONS: This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.

  20. Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific

    International Nuclear Information System (INIS)

    Jahnke, R.A.; Emerson, S.R.; Cochran, J.K.; Hirschberg, D.J.

    1986-01-01

    Sediment samples were recovered from the central equatorial Pacific Ocean, sectioned at 1-mm intervals, and analyzed for porosity, organic carbon, excess 210 Pb and CaCO 3 . Steep porosity gradients were measured in the upper 1 cm of the sediment column with extremely high values observed near the sediment surface. Similarly, particulate organic carbon contents are highest at the sediment surface, decrease sharply in the upper 1 cm, and are relatively constant between 1 and 5 cm. CaCO 3 values, on the other hand, are lowest at the sediment surface and increase to a constant value below 5-10 mm depth. At the carbonate ooze sites, excess 210 Pb is present throughout the upper 5 cm of the sediments suggesting relatively rapid particle mixing rates. However, extremely high excess 210 Pb activities (> 100 dpm/g) are observed at the sediment surface with sharp gradients present in the upper 1 cm which would suggest slow rates of mixing. This apparent contradiction along with the major features of the CaCO 3 and particulate organic carbon profiles can be explained by a particle-selective feeding mechanism in which organic carbon, excess 210 Pb-enriched particles are preferentially maintained at the sediment surface via ingestion and defecation by benthic organisms. (orig.)

  1. The effect of sediment mimicking drill cuttings on deep water rhodoliths in a flow-through system: Experimental work and modeling

    International Nuclear Information System (INIS)

    Figueiredo, Marcia A.O.; Eide, Ingvar; Reynier, Marcia; Villas-Bôas, Alexandre B.; Tâmega, Frederico T.S.

    2015-01-01

    Highlights: • Collection of rhodoliths and calcareous algae from Campos Basin, Brazil. • Impact of sediment mimicking drill cuttings on photosynthetic efficiency. • Exposure–response for photosynthetic efficiency as function of sediment coverage. • Factorial design and multivariate regression used for a structured approach. - Abstract: The impact of sediment coverage on two rhodolith-forming calcareous algae species collected at 100 m water depth off the coast of Brazil was studied in an experimental flow-through system. Natural sediment mimicking drill cuttings with respect to size distribution was used. Sediment coverage and photosynthetic efficiency (maximum quantum yield of charge separation in photosystem II, ϕ PSIImax ) were measured as functions of light intensity, flow rate and added amount of sediment once a week for nine weeks. Statistical experimental design and multivariate data analysis provided statistically significant regression models which subsequently were used to establish exposure–response relationship for photosynthetic efficiency as function of sediment coverage. For example, at 70% sediment coverage the photosynthetic efficiency was reduced 50% after 1–2 weeks of exposure, most likely due to reduced gas exchange. The exposure–response relationship can be used to establish threshold levels and impact categories for environmental monitoring

  2. Meta-Analysis of Quantification Methods Shows that Archaea and Bacteria Have Similar Abundances in the Subseafloor

    Science.gov (United States)

    May, Megan K.; Kevorkian, Richard T.; Steen, Andrew D.

    2013-01-01

    There is no universally accepted method to quantify bacteria and archaea in seawater and marine sediments, and different methods have produced conflicting results with the same samples. To identify best practices, we compiled data from 65 studies, plus our own measurements, in which bacteria and archaea were quantified with fluorescent in situ hybridization (FISH), catalyzed reporter deposition FISH (CARD-FISH), polyribonucleotide FISH, or quantitative PCR (qPCR). To estimate efficiency, we defined “yield” to be the sum of bacteria and archaea counted by these techniques divided by the total number of cells. In seawater, the yield was high (median, 71%) and was similar for FISH, CARD-FISH, and polyribonucleotide FISH. In sediments, only measurements by CARD-FISH in which archaeal cells were permeabilized with proteinase K showed high yields (median, 84%). Therefore, the majority of cells in both environments appear to be alive, since they contain intact ribosomes. In sediments, the sum of bacterial and archaeal 16S rRNA gene qPCR counts was not closely related to cell counts, even after accounting for variations in copy numbers per genome. However, qPCR measurements were precise relative to other qPCR measurements made on the same samples. qPCR is therefore a reliable relative quantification method. Inconsistent results for the relative abundance of bacteria versus archaea in deep subsurface sediments were resolved by the removal of CARD-FISH measurements in which lysozyme was used to permeabilize archaeal cells and qPCR measurements which used ARCH516 as an archaeal primer or TaqMan probe. Data from best-practice methods showed that archaea and bacteria decreased as the depth in seawater and marine sediments increased, although archaea decreased more slowly. PMID:24096423

  3. Early diagenesis in the Congo deep-sea fan sediments dominated by massive terrigenous deposits: Part I - Oxygen consumption and organic carbon mineralization using a micro-electrode approach

    Science.gov (United States)

    Pozzato, Lara; Cathalot, Cécile; Berrached, Chabha; Toussaint, Flora; Stetten, Elsa; Caprais, Jean-Claude; Pastor, Lucie; Olu, Karine; Rabouille, Christophe

    2017-08-01

    Organic matter (OM) transfer from the continent to the ocean occurs across margins which constitute a major area of OM recycling and burial. The lobe complex of the Congo deep-sea fan is connected to the river mouth by a canyon and alimented by recurrent turbidity currents, containing a large proportion of labile terrigenous OM and producing high sedimentation rates. These inputs support the development of ecosystems harboring rich assemblages of vesicomyid bivalves and bacterial mats, called Habitats. Here, we present O2 microprofiles and diffusive oxygen uptake rates (DOUs) obtained during the CONGOLOBE project at six sites of this active lobe complex by in situ and on-board methods based on micro-electrode profiling. The dataset is used to determine remineralization rates and study the biogeochemical dynamics of different ecosystems of the lobe area, in order to compare levee and background sediments to the Habitats developed on the flanks of the main turbiditic channel. Levee and background sediments are characterized by significantly higher DOUs than abyssal sediments at 5000 m meters depth (2-5 mmol O2 m-2 d-1versus 1.5-2.5 mmol O2 m-2 d-1) and the Habitats are hotspots of OM remineralization with DOU values ranging between 8 and 40 mmol O2 m-2 d-1. By comparing sites near the active channel to a site located 50 km away, we show that the lobe connection to the main turbiditic channel is vital to the dense benthic communities.

  4. In situ experimentation at the water/sediment interface in the deep sea: 2. Biotransformation of dissolved organic substrates by microbial communities at 2000m depth in the Bay of Biscay

    Science.gov (United States)

    Cahet, Guy; Daumas, Raoul; Sibuet, Myriam

    Few attempts have been made to quantify the utilization of organic matter by the bacteria of the superficial layers of deep sea sediment. During two BIOCYAN cruises (August 1986 and June 1987) we used the submersible Cyana, to incubate sediment samples in situ in a specially designed box core in presence of 14C-glutamic acid and 3H leucine. These experiments were conducted at 2000m depth in the Bay of Biscay. Bacterial activity was stopped by the injection of formaldehyde. Samples were retrieved with the research submersible Cyana and its accompanying free vehicle shuttle. Sediment organic matter was fractioned into four components: 1) 14CO 2; 2) nucleic components and polysacharids; 3) labile proteins; and 4) condensed hydrolysable polymers. To evaluate the barotolerance of deep-sea bacteria, undisturbed superficial layer samples were also incubated with the same labelled substrates at 4°C at the atmospheric pressure. In both cases, and except for glucose, our results show that distributions of radioactivity in the different components of the organic material were almost similar. However, the rate of incorporation was usually higher for in situ experiments than for decompressed samples. Bacterial utilization of both 14C glutamic acid and 14C glucose were higher in June than in August. Such differences may result from changes in the food supply arriving as sinking particles and deriving from the photosynthetically productive surface waters. Food input was probably more important in June than in August leading to corresponding increases in: 1) the abundance of derived bacteria, and 2) deep-sea bacterial activities.

  5. Induced and catalysed mineral precipitation in the deep biosphere

    Science.gov (United States)

    Meister, Patrick

    2017-04-01

    Authigenic and early diagenetic minerals provide archives of past (bio)geochemical processes. In particular, isotopic signatures preserved in the diagenetic phases have been shown to document drastic changes of subsurface microbial activity (the deep biosphere) over geological time periods (Contreras et al., 2013; Meister, 2015). Geochemical and isotopic signatures in authigenic minerals may also document surface conditions and past climate. Nevertheless, such use of authigenic mineral phases as (bio)geochemical archives is often hampered by the insufficient understanding of mineral precipitation mechanisms. Accordingly the time, place and rate of mineral precipitation are often not well constrained. Also, element partitioning and isotopic fractionation may be modified as a result of the precipitation mechanism. Early diagenetic dolomite and quartz from drilled sequences in the Pacific were compared with adjacent porewater compositions and isotope signatures to gain fundamental insight into the factors controlling mineral precipitation. The formation of dolomite in carbonate-free organic carbon-rich ocean margin sediments (e.g. Peru Margin; Ocean Drilling Program, ODP, Site 1229; Meister et al., 2007) relies on the alkalinity-increase driven by anaerobic oxidation of methane and, perhaps, by alteration of clay minerals. In contrast, quartz is often significantly oversaturated in marine porewaters as the dissolved silica concentration is buffered by more soluble opal-A. For example, quartz does not form throughout a 400 metre thick sedimentary sequence in the Eastern Equatorial Pacific (ODP Site 1226; Meister et al., 2014) because it is kinetically inhibited. This behaviour can be explained by Ostwald's step rule, which suggests that the metastable phase forms faster. However, hard-lithified quartz readily forms where silica concentration drops sharply below opal-saturation. This violation of Ostwald's step rule must be driven by an auxiliary process, such as the

  6. Where The Wild Seafloor Scientists Are: Using Interactive Picture Books To Educate Children About Sub-seafloor Science

    Science.gov (United States)

    Kurtz, K.

    2015-12-01

    Sub-seafloor scientific research has the power to spark the imaginations of elementary age children with its mysterious nature, cutting-edge research, and its connections to kid friendly science topics, such as volcanoes, the extinction of dinosaurs and the search for extraterrestrial life. These factors have been utilized to create two interactive eBooks for elementary students and teachers, integrating high quality science information, highly engaging and age-appropriate illustrations, and rhyming text. One book introduces children to the research and discoveries of the JOIDES Resolution research vessel. The second focuses on the discoveries of microbial life in the sub-seafloor. The eBooks present information as traditional, linear, illustrated children's books, but the eBook format allows the book to be available online for free to anyone and allows teachers to project the book on a classroom screen so all students can easily see the illustrations. The iPad versions also provide an interactive, learner-led educational experience, where cognitively appropriate videos, photos and other forms of information can be accessed with the tap of a finger to answer reader questions and enrich their learning experience. These projects provide an example and model of the products that can result from high level and meaningful partnerships between scientists, educators, artists and writers.

  7. The influence of temperature on migration of radionuclides in deep-sea sediments: Simulation experiments concerning sorption and heat flow related to deep-sea disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Geldermalsen, L.A. van

    1985-02-01

    This report presents the results of a study on the effects of temperatures up to 90 0 C on the migration of the radionuclides plutonium, neptunium and americium through marine sediments in the near field of a canister with radioactive waste. Topics entered were; (i) the influence of temperature on the distribution coefficients of the transuranics plutonium, americium and neptunium, (ii) the effect of temperature on the composition and characteristics of interstitial water and (iii) the effects of a point heat source on the temperature distributions and flow velocities in interstitial water of sediments. (Auth.)

  8. Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin

    Science.gov (United States)

    Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.

    2014-12-01

    Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.

  9. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.

    Science.gov (United States)

    Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D

    2015-09-29

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.

  10. Microbial anaerobic methane cycling in the subseafloor at the Von Damm hydrothermal vent field, Mid-Cayman Rise

    Science.gov (United States)

    Huber, J. A.; Reveillaud, J. C.; Stepanauskas, R.; McDermott, J. M.; Sylva, S. P.; Seewald, J.

    2013-12-01

    The Mid-Cayman Rise (MCR) is Earth's deepest and slowest spreading mid-ocean ridge located in the western Caribbean. With an axial rift valley floor at a depth of ~4200-6500 m, it represents one of the deepest sections of ridge crest worldwide. In 2009, the world's deepest hydrothermal vents (Piccard at 4960 m) and an ultramafic-influenced system only 20 km away on top of an oceanic core complex (Von Damm at 2350 m) were discovered along the MCR. Each site is hosted in a distinct geologic setting with different thermal and chemical regimes. The Von Damm site is a particularly interesting location to examine chemolithoautotrophic subseafloor microbial communities due to the abundant hydrogen, methane, and organic compounds in the venting fluids. Here, we used a combination of stable isotope tracing, next-generation sequencing, and single cell techniques to determine the identity, activity, and genomic repertoire of subseafloor anaerobic archaea involved in methane cycling in hydrothermal fluids venting at the Von Damm site. Molecular sequencing of phylogenetic marker genes revealed the presence of diverse archaea that both generate and consume methane across a geochemical and thermal spectrum of vents. Stable isotope tracing experiments were used to detect biological utilization of formate and dissolved inorganic carbon, and methane generation at 70 °C under anaerobic conditions. Results indicate that methanogenesis with formate as a substrate is occurring at 70 °C at two Von Damm sites, Ginger Castle and the Main Orifice. The results are consistent with thermodynamic predictions for carbon speciation at the temperatures encountered at the ultramafic-hosted Von Damm, where formate is predicted to be thermodynamically stable, and may thus serve as a an important source of carbon. Diverse thermophilic methanogenic archaea belonging to the genera Methanothermococcus were detected at all vent sites with both 16S rRNA tag sequencing and single cell sorting. Other

  11. Analysis of the archaeal sub-seafloor community at Suiyo Seamount on the Izu-Bonin Arc.

    Science.gov (United States)

    Hara, Kurt; Kakegawa, Takeshi; Yamashiro, Kan; Maruyama, Akihiko; Ishibashi, Jun-Ichiro; Marumo, Katsumi; Urabe, Tetsuro; Yamagishi, Akihiko

    2005-01-01

    A sub-surface archaeal community at the Suiyo Seamount in the Western Pacific Ocean was investigated by 16S rRNA gene sequence and whole-cell in situ hybridization analyses. In this study, we drilled and cased holes at the hydrothermal area of the seamount to minimize contamination of the hydrothermal fluid in the sub-seafloor by penetrating seawater. PCR clone analysis of the hydrothermal fluid samples collected from a cased hole indicated the presence of chemolithoautotrophic primary biomass producers of Archaeoglobales and the Methanococcales-related archaeal HTE1 group, both of which can utilize hydrogen as an electron donor. We discuss the implication of the microbial community on the early history of life and on the search for extraterrestrial life. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  12. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan: impact of the Nile freshwater inflow for the Mediterranean thermo-haline circulation

    Science.gov (United States)

    Revel, Marie; Colin, Christophe; Bernasconi, Stephano; Combourieu-Nebout, Nathalie; Ducassou, Emmanuelle; Rolland, Yann; Bosch, Delphine

    2014-05-01

    eastern Mediterranean. We propose that the large hydrological change in Ethiopian latitude could be a trigger for the 8.2 ka cooling event recorded in high latitude. Revel R., Colin C., Bernasconi S., Combourieu-Nebout N., Ducassou E., Grousset F.E., Rolland Y., Migeon S., Brunet P., Zhaa Y., Bosch D., Mascle J.,. "21,000 years of Ethiopian African moonsoon variability recorded in sediments of the western Nile deep sea fan", Regional Environmental Change, in press.

  13. Deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C; Damare, S.R.

    significant in terms of carbon sequestration (5, 8). In light of this, the diversity, abundance, and role of fungi in deep-sea sediments may form an important link in the global C biogeochemistry. This review focuses on issues related to collection...

  14. A feasibility study of the disposal of radioactive waste in deep ocean sediments by drilled emplacement: 1. A review of alternatives

    International Nuclear Information System (INIS)

    1983-01-01

    This report describes the first stage of an engineering study of the disposal of high level radioactive waste in holes formed deep in the ocean floor. In this phase, the emphasis has been on establishing reference criteria, assessing the problems and evaluating potential solutions. The report concludes that there are no aspects that appear technically infeasible, but questions of safety and reliability of certain aspects require further investigation. (author)

  15. A new genus of Nanaloricidae (Loricifera) from deep-sea sediments of volcanic origin in the Kilinailau Trench north of Papua New Guinea

    Science.gov (United States)

    Gad, Gunnar

    2004-02-01

    A new genus and species of Nanaloricidae (Loricifera), Phoeniciloricus simplidigitatus, is described inhabiting fine sand covered by a layer of volcanic ash at a water depth of 1,813 m in the New Ireland Basin near the Kilinailau Trench (north of Papua New Guinea). The described specimen is a postlarva enclosed in a larval exuvium. This is the first report of a species belonging to the Nanaloricidae from the deep sea. This occurrence is surprising, because Nanaloricidae are typical inhabitants of coarse sands in the intertidal or littoral zone. Preference for these shallow water habitats is reflected in many morphological features which characterize the Nanaloricidae, and are not normally found in Loricifera inhabiting fine-grained, clayish, deep-sea bottoms. The postlarva of the new species is characterized by a long narrow mouth tube, an urn-shaped lorica divided into ten plates, and 13 small lorica spikes. Distinguishing features of the Higgins-larva include short spinose toes lacking mucros but having small and slightly enlarged bases, short scalids on the introvert, many thoracic plates arranged in 6-8 rows, numerous small papillate flosculi in the collar and caudal regions, and three pairs of filiform, short locomotory appendages on the ventral side. Some features of the new species, especially of the Higgins-larva, are discussed as adaptations to the deep-sea environment.

  16. The use of amino acid indices for assessing organic matter quality and microbial abundance in deep-sea Antarctic sediments of IODP Expedition 318

    Science.gov (United States)

    Carr, Stephanie A; Mills, Christopher T.; Mandernack, Kevin W

    2016-01-01

    The Adélie Basin, located offshore of the Wilkes Land margin, experiences unusually high sedimentation rates (~ 2 cm yr− 1) for the Antarctic coast. This study sought to compare depthwise changes in organic matter (OM) quantity and quality with changes in microbial biomass with depth at this high-deposition site and an offshore continental margin site. Sediments from both sites were collected during the International Ocean Drilling (IODP) Program Expedition 318. Viable microbial biomass was estimated from concentrations of bacterial-derived phospholipid fatty acids, while OM quality was assessed using four different amino acid degradation proxies. Concentrations of total hydrolysable amino acids (THAA) measured from the continental margin suggest an oligotrophic environment, with THAA concentrations representing only 2% of total organic carbon with relative proportions of non-protein amino acids β-alanine and γ-aminobutyric acid as high as 40%. In contrast, THAA concentrations from the near-shore Adélie Basin represent 40%–60% of total organic carbon. Concentrations of β-alanine and γ-aminobutyric acid were often below the detection limit and suggest that the OM of the basin as labile. DI values in surface sediments at the Adélie and margin sites were measured to be + 0.78 and − 0.76, reflecting labile and more recalcitrant OM, respectively. Greater DI values in deeper and more anoxic portions of both cores correlated positively with increased relative concentrations of phenylalanine plus tyrosine and may represent a change of redox conditions, rather than OM quality. This suggests that DI values calculated along chemical profiles should be interpreted with caution. THAA concentrations, the percentage of organic carbon (CAA%) and total nitrogen (NAA%) represented by amino acids at both sites demonstrated a significant positive correlation with bacterial abundance estimates. These data suggest that the selective degradation of amino acids, as

  17. Application of RNA Stable Isotope Probing (SIP) to Link Community Activity with Microorganisms Responsible for Autotrophy in the Subseafloor at Axial Seamount

    Science.gov (United States)

    Huber, J. A.; Fortunato, C. S.

    2014-12-01

    The global ocean comprises the Earth's largest biome, with microorganisms playing a dominant biogeochemical role. However, the potential for production of new microbial biomass within the subseafloor is rarely considered in traditional oceanographic paradigms of carbon cycling or microbial food webs. In this study, we used RNA Stable Isotope Probing (RNA SIP) to determine the microbial community composition and genetic repertoire of active subseafloor autotrophs in warm venting fluids from Axial Seamount. RNA is a responsive biomarker because it is a reflection of cellular activity independent of replication, and RNA SIP thus provides access to both the function of a microbial community and the phylogeny of the organisms accountable for key functions. Diffuse fluids were incubated shipboard at 30°C, 55°C, and 80°C with 13DIC and H2. Metatranscriptomic sequencing of both the enriched and non-enriched RNA was carried out from 13C and 12C controls. In addition, filtered fluid samples were preserved in situ for comparative meta -transcriptomic and -genomic analyses. Diverse lineages of bacteria and archaea and accompanying metabolisms were detected in situ, but RNA SIP results show dominance of three different groups of autotrophs active under each experimental condition. At 30°C, members of the Sulfurimonas genus dominated, with genes for hydrogen oxidation, nitrate reduction, and carbon fixation via the rTCA cycle highly expressed. At 55°C, both Caminibacter and Nautilia transcripts were detected for rTCA cycle, hydrogen oxidation, and nitrate reduction. At 80°C, transcripts for hydrogenotrophic methanogenesis mediated by members of Methanocaldococcus were detected. These results suggest the subseafloor hosts various anaerobic chemolithoautotrophs that span a wide temperature range, with hydrogen playing a key role in microbial metabolism. Complementary experiments are currently being carried out on the seafloor with a novel in situ incubator unit to provide

  18. Radiological assessment of the disposal of high level radioactive waste on or within the sediments of the deep ocean bed: v. 1

    International Nuclear Information System (INIS)

    Kane, P.

    1987-11-01

    The contract report comprises a main report accompanied by three volumes detailing the probabilistic risk assessments carried out for each proposed mode of HLW emplacement. Following a section describing the methodology employed, the models developed for and used in the assessment are described. Aspects of design, testing and calibration are covered. The data employed are described in relation to components of the disposal system, giving sources and reasons for the distribution used. Uncertainties in model predictions are examined in relation to their origin. Detailed results are presented which illustrate the transport behaviour of radionuclides in deep ocean environments. Conclusions are drawn and recommendations made for further research. (author)

  19. Discrimination between discrete and continuum scattering from the sub-seafloor.

    Science.gov (United States)

    Holland, Charles W; Steininger, Gavin; Dosso, Stan E

    2015-08-01

    There is growing evidence that seabed scattering is often dominated by heterogeneities within the sediment volume as opposed to seafloor roughness. From a theoretical viewpoint, sediment volume heterogeneities can be described either by a fluctuation continuum or by discrete particles. In at-sea experiments, heterogeneity characteristics generally are not known a priori. Thus, an uninformed model selection is generally made, i.e., the researcher must arbitrarily select either a discrete or continuum model. It is shown here that it is possible to (acoustically) discriminate between continuum and discrete heterogeneities in some instances. For example, when the spectral exponent γ3>4, the volume scattering cannot be described by discrete particles. Conversely, when γ3≤2, the heterogeneities likely arise from discrete particles. Furthermore, in the range 2discrete vs continuum heterogeneities via acoustic remote sensing may lead to improved observations and concomitant increased understanding of the marine benthic environment.

  20. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  1. Sediments and aquatic indicators

    International Nuclear Information System (INIS)

    1987-01-01

    Determinations of 90 Sr, certain gamma emitting nuclides and 239,240 Pu in bottom sediment in the Baltic Sea area and in sedimenting material and biota near the Loviisa and Olkiluoto nuclear power stations were continued in 1984 and 1985. In the bottom sediments of the deep Baltic basins, the total amounts of 90 Sr, 137 Cs and Pu were 8.5-80 Bq m -2 , 83-3200 Bq m -2 and 4.7-190 Bq m -2 , respectively. The ranges were about the same as in the earlier reports 1,2 . In sedimenting material and biota the conentrations of 90 Sr and 239,240 Pu were roughly the same as in 1983. The amounts and selection of reactor originated activation products were not changed in the vicinity of the two nuclear power stations. Small amounts of 137 Cs and 134 Cs released from the Loviisa nuclear power station were detected in 1985

  2. The role of Internal Solitary Waves on deep-water sedimentary processes: the case of up-slope migrating sediment waves off the Messina Strait

    Science.gov (United States)

    Droghei, R.; Falcini, F.; Casalbore, D.; Martorelli, E.; Mosetti, R.; Sannino, G.; Santoleri, R.; Chiocci, F. L.

    2016-11-01

    Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal environments, and continental slopes exposed to strong currents, where they are formed by current shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily observed in marine environments where no such current exists; the physical processes driving their formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves. We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that ISWs formed at the interface between intermediate and surface waters are refracted by topography. Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave field is due to refraction of such ISWs. Combining field observations and numerical modelling, we show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom topography matches the observed deflection of the sand waves; and predicted migration rates of sand waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure of continental margins and it represents a promising link between the geological and oceanographic communities.

  3. Enhancement of the surface methane hydrate-bearing layer based on the specific microorganisms form deep seabed sediment in Japan Sea.

    Science.gov (United States)

    Hata, T.; Yoneda, J.; Yamamoto, K.

    2017-12-01

    A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.

  4. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: Implications for deep sulfur cycling

    Science.gov (United States)

    Treude, Tina; Krause, Stefan; Maltby, Johanna; Dale, Andrew W.; Coffin, Richard; Hamdan, Leila J.

    2014-11-01

    Two ∼6 m long sediment cores were collected along the ∼300 m isobath on the Alaskan Beaufort Sea continental margin. Both cores showed distinct sulfate-methane transition zones (SMTZ) at 105 and 120 cm below seafloor (cmbsf). Sulfate was not completely depleted below the SMTZ but remained between 30 and 500 μM. Sulfate reduction and anaerobic oxidation of methane (AOM) determined by radiotracer incubations were active throughout the methanogenic zone. Although a mass balance could not explain the source of sulfate below the SMTZ, geochemical profiles and correlation network analyses of biotic and abiotic data suggest a cryptic sulfur cycle involving iron, manganese and barite. Inhibition experiments with molybdate and 2-bromoethanesulfonate (BES) indicated decoupling of sulfate reduction and AOM and competition between sulfate reducers and methanogens for substrates. While correlation network analyses predicted coupling of AOM to iron reduction, the addition of manganese or iron did not stimulate AOM. Since none of the classical archaeal anaerobic methanotrophs (ANME) were abundant, the involvement of unknown or unconventional phylotypes in AOM is conceivable. The resistance of AOM activity to inhibitors implies deviation from conventional enzymatic pathways. This work suggests that the classical redox cascade of electron acceptor utilization based on Gibbs energy yields does not always hold in diffusion-dominated systems, and instead biotic processes may be more strongly coupled to mineralogy.

  5. Deep nirS amplicon sequencing of San Francisco Bay sediments enables prediction of geography and environmental conditions from denitrifying community composition.

    Science.gov (United States)

    Lee, Jessica A; Francis, Christopher A

    2017-12-01

    Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Heard Island and McDonald Islands Acoustic Plumes: Split-beam Echo sounder and Deep Tow Camera Observations of Gas Seeps on the Central Kerguelen Plateau

    Science.gov (United States)

    Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.

    2016-12-01

    Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.

  7. Hydrothermal alteration of deep sea sediments from the Izu-Bonin fore arc basin, leg 126, ODp. Izuter dot Ogasawara ko no shinkaitei taisekibutsu ni okeru netsusui henshitsu sayo

    Energy Technology Data Exchange (ETDEWEB)

    Tazaki, K. (Shimane Univ., Shimane (Japan). Faculty of Science)

    1991-08-25

    The deep sea drilling according to ODP has been performed in the Izu-Bonin arc during a period of April 22 to June 19 in 1989, and the drilling across the forearc, island arc and backarc was successful in the Leg 126 of it. The drill length of 1682 m at Site 793 was achieved and it is the deepest world record including the drilling of basement. In this report, the various measurements and observations were performed focussing the hydrothermal effects accompanied with the volcanic activities, on the Site 793 achieved the longest drilling in the forearc basin and the Site 792 in the same forearc. As a result, there are many dehydration veins, clastic dikes and small faults in the volcanic sediments, and the gypsum, smectite, zeolite and prehnite etc. are filled in these parts as a zonal distribution, suggesting the thermal gradient and thermal history at that time. The volcanic glass and feldspar etc. are changed partly to the smectite and zeolite etc. by the hydrothermal alteration. The effective keys as mentioned above were obtained about the temperature condition of hydrothermal alteration and the paleo-environment. 31 refs., 15figs.

  8. Identification of Two Novel Anti-Fibrotic Benzopyran Compounds Produced by Engineered Strains Derived from Streptomyces xiamenensis M1-94P that Originated from Deep-Sea Sediments

    Directory of Open Access Journals (Sweden)

    Lei Feng

    2013-10-01

    Full Text Available The benzopyran compound obtained by cultivating a mangrove-derived strain, Streptomyces xiamenensis strain 318, shows multiple biological effects, including anti-fibrotic and anti-hypertrophic scar properties. To increase the diversity in the structures of the available benzopyrans, by means of biosynthesis, the strain was screened for spontaneous rifampicin resistance (Rif, and a mutated rpsL gene to confer streptomycin resistance (Str, was introduced into the S. xiamenensis strain M1-94P that originated from deep-sea sediments. Two new benzopyran derivatives, named xiamenmycin C (1 and D (2, were isolated from the crude extracts of a selected Str-Rif double mutant (M6 of M1-94P. The structures of 1 and 2 were identified by analyzing extensive spectroscopic data. Compounds 1 and 2 both inhibit the proliferation of human lung fibroblasts (WI26, and 1 exhibits better anti-fibrotic activity than xiamenmycin. Our study presents the novel bioactive compounds isolated from S. xiamenensis mutant strain M6 constructed by ribosome engineering, which could be a useful approach in the discovery of new anti-fibrotic compounds.

  9. Profundibacterium mesophilum gen. nov., sp. nov., a novel member in the family Rhodobacteraceae isolated from deep-sea sediment in the Red Sea, Saudi Arabia

    KAUST Repository

    Lai, PokYui

    2012-06-08

    A slow-growing, strictly aerobic, Gram-negative, coccus bacterial strain, designated KAUST100406-0324T, was isolated from sea-floor sediment collected from the Red Sea, Saudi Arabia. The catalase- and oxidase-positive strain was non-sporulating and only slightly halophilic. Optimum growth occurred at 20-25 °C and at pH values ranging from 7.0 to 8.0. The major cellular fatty acids of the strain were unsaturated C18: 1ω6c and/or C18:1ω7c, C18:1ω7c 11-methyl and C16:1ω7c and/or C16:1ω6c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine and two unidentified phospholipids. Ubiquinone 10 was the predominant lipoquinone. The DNA G+C content of strain KAUST100406-0324T was 64.0 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that the novel strain belonged to the family Rhodobacteraceae of the class Alphaproteobacteria but formed a distinct evolutionary lineage from other bacterial species with validly published names. The 16S rRNA gene sequence of the novel strain was distantly related, but formed a monophyletic cluster with, those of bacteria from two moderately halophilic genera, Hwanghaeicola and Maribius. The similarity of the sequence between the novel strain KAUST100406-0324T and the type strains Hwanghaeicola aestuarii Y26T (accession number FJ230842), Maribius pelagius B5-6T (DQ514326) and Maribius salinus CL-SP27T (AY906863) were 94.5 %, 95.2 % and 95.3 %, respectively. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we propose that this strain represents a novel species of a new genus in the family Rhodobacteraceae, for which the name of Profundibacterium mesophilum gen. nov., sp. nov. was proposed, with KAUST100406-0324T (= JCM 17872T = NRRL B-59665T) as the type strain. © 2013 IUMS.

  10. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  11. Continuous monitoring of fluid flow rate and contemporaneous biogeochemical fluxes in the sub-seafloor; the Mosquito flux meter

    Science.gov (United States)

    Culling, D. P.; Solomon, E. A.; Kastner, M.; Berg, R. D.

    2013-12-01

    Fluid flow through marine sediments and oceanic crust impacts seawater chemistry as well as diagenetic, thermal, seismic, and magmatic processes at plate boundaries, creates ore and gas hydrate deposits at and below seafloor, and establishes and maintains deep microbial ecosystems. However, steady-state fluid flow rates, as well as the temporal and spatial variability of fluid flow and composition are poorly constrained in many marine environments. A new, low-cost instrument deployable by ROV or submersible, named the Mosquito, was recently developed to provide continuous, long-term and campaign style monitoring of fluid flow rate and contemporaneous solute fluxes at multiple depths below the sea floor. The Mosquito consists of a frame that houses several osmotic pumps (Osmo-Samplers [OS]) connected to coils of tubing that terminate with an attachment to long thin titanium (Ti) needles, all of which are mounted to a release plate. The OS's consist of an acrylic housing which contains a brine chamber (BC) and a distilled water chamber (DWC) separated by semi permeable membranes. The osmotic gradient between the chambers drives the flow of distilled water into the BC. The DWC is connected to the Teflon tubing coil and a Ti needle, both of which are also filled with distilled water, thus the OS pulls fluid from the base of the needle through the tubing coil. One central Ti needle is attached to a custom-made tracer injection assembly, filled with a known volume of tracer, which is triggered, injecting a point source in the sediment. On a typical Mosquito, 4 needles are mounted vertically at varying depths with respect to the tracer injection needle, and 4 needles are mounted at equal depth but set at variable horizontal distances away from the tracer injection. Once the Mosquito has been placed on the seafloor, the release plate is manually triggered pushing the Ti needles into the sediment, then the tracer injection assembly is actuated. As the tracer is advected

  12. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    Science.gov (United States)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  13. Ploughing the deep sea floor.

    Science.gov (United States)

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  14. Petrophysics of Palaeogene sediments

    DEFF Research Database (Denmark)

    Awadalkarim, Ahmed

    defined and understood this would benefit various areas in petroleum industry. The three studied litholgoies are relatively soft and weak sediments, but they are economically important especially in petroleum industry. Drilling through intervals of shale or siliceous ooze sediments could result in severe...... and very costly borehole instability problems which are closely connected with the "bulk properties" of shale. In practice, the main technological challenge is to keep the borehole sufficiently stable until casing is set. Knowing the real in-situ effective stress is crucial to understand and to predict...... related to borehole stability. This Ph.D. study stressed on the importance of using correct β value in estimation of vertical effective stress especially on deep-sea sediments. To assess the geomechanical stability and the stiffness of the three studied lithologies, their β was found and used to calculate...

  15. Beryllium-10 in continental sediments

    International Nuclear Information System (INIS)

    Brown, L.; Sacks, I.S.; Tera, F.; Klein, J.; Middleton, R.

    1981-01-01

    The concentration of 10 Be has been measured in 10 samples taken from a transect of surface sediments beginning in the Atchafalaya River and extending across the Bay 136 km into the Gulf of Mexico. If corrected for a lower retentivity of sand for Be, they have a concentration that is constant within 13%. This concentration is about an order of magnitude smaller than that of deep ocean sediments. For comparison, measurements of 10 Be in rainwater, in a sample of soil and in a deep ocean core were made. (orig.)

  16. Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov.

    Science.gov (United States)

    Balkwill, D L; Drake, G R; Reeves, R H; Fredrickson, J K; White, D C; Ringelberg, D B; Chandler, D P; Romine, M F; Kennedy, D W; Spadoni, C M

    1997-01-01

    Phylogenetic analyses of 16S rRNA gene sequences by distance matrix and parsimony methods indicated that six strains of bacteria isolated from deep saturated Atlantic coastal plain sediments were closely related to the genus Sphingomonas. Five of the strains clustered with, but were distinct from, Sphingomonas capsulata, whereas the sixth strain was most closely related to Blastobacter natatorius. The five strains that clustered with S. capsulata, all of which could degrade aromatic compounds, were gram-negative, non-spore-forming, non-motile, rod-shaped organisms that produced small, yellow colonies on complex media. Their G + C contents ranged from 60.0 to 65.4 mol%, and the predominant isoprenoid quinone was ubiquinone Q-10. All of the strains were aerobic and catalase positive. Indole, urease, and arginine dihydrolase were not produced. Gelatin was not liquified, and glucose was not fermented. Sphingolipids were present in all strains; 2OH14:0 was the major hydroxy fatty acid, and 18:1 was a major constituent of cellular lipids. Acid was produced oxidatively from pentoses, hexoses, and disaccharides, but not from polyalcohols and indole. All of these characteristics indicate that the five aromatic-degrading strains should be placed in the genus Sphingomonas as currently defined. Phylogenetic analysis of 16S rRNA gene sequences, DNA-DNA reassociation values, BOX-PCR genomic fingerprinting, differences in cellular lipid composition, and differences in physiological traits all indicated that the five strains represent three previously undescribed Sphingomonas species. Therefore, we propose the following new species: Sphingomonas aromaticivorans (type strain, SMCC F199), Sphingomonas subterranea (type strain, SMCC B0478), and Sphingomonas stygia (type strain, SMCC B0712).

  17. The oceanic sediment barrier

    International Nuclear Information System (INIS)

    Francis, T.J.G.; Searle, R.C.; Wilson, T.R.S.

    1986-01-01

    Burial within the sediments of the deep ocean floor is one of the options that have been proposed for the disposal of high-level radioactive waste. An international research programme is in progress to determine whether oceanic sediments have the requisite properties for this purpose. After summarizing the salient features of this programme, the paper focuses on the Great Meteor East study area in the Northeast Atlantic, where most oceanographic effort has been concentrated. The geological geochemical and geotechnical properties of the sediments in the area are discussed. Measurements designed to determine the rate of pore water movement through the sediment column are described. Our understanding of the chemistry of both the solid and pore-water phases of the sediment are outlined, emphasizing the control that redox conditions have on the mobility of, for example, naturally occurring manganese and uranium. The burial of instrumented free-fall penetrators to depths of 30 m beneath the ocean floor is described, modelling one of the methods by which waste might be emplaced. Finally, the nature of this oceanic environment is compared with geological environments on land and attention is drawn to the gaps in our knowledge that must be filled before oceanic burial can be regarded as an acceptable disposal option. (author)

  18. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    Science.gov (United States)

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.

  19. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  20. Characterization of deep-marine clastic sediments from foreland basins: Outcrop-derived concepts for exploration, production and reservoir modelling. Doctoral thesis; Karakterizering van diep-mariene klastische sedimenten uit voorland bekkens: Aan ontsluitingen ontleende concepten voor exploratie, produktie en reservoir modellering

    Energy Technology Data Exchange (ETDEWEB)

    Schuppers, J D

    1995-02-20

    Deep-marine clastic sediments are the host for many prolific hydrocarbon reservoirs. The sandbodies that form these reservoirs show a wide variety in shape, spatial arrangement, and internal structure. The outcrops studied for this thesis pertain to the fill of circum-mediterranean foreland basins in Spain and Greece. The outcrops have allowed the description of the multiscale anatomy of sandbodies that cover a wide range of depositional settings. The descriptions are focused on those features that are most likely to influence the flow of fluids through analogous reservoirs of similar construction. Extensive use was made of photomosaics to outline the large-scale geometries and stacking modes of the sandbodies. The sediments studied form the basis for seven `reservoir models` that are both descriptive and conceptual.

  1. Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)

    Science.gov (United States)

    Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.

    2017-12-01

    Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and form Mn-oxide crusts between 30 and 60 cm, in which Cu concentrations also increase. Our results demonstrate that metal mobilisation differs depending on the geological environment and their related accumulation processes, causing the absence of Cu on the top of inactive hydrothermal mounds but enriched

  2. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2......, 4 and 5, respectively. It is not the intention of the book to give a broad review of the literature on this very wide topic. The book tries to pick up information which is of engineering importance. An obstacle to the study of sedimentation is the scale effect in model tests. Whenever small...

  3. Deep frying

    NARCIS (Netherlands)

    Koerten, van K.N.

    2016-01-01

    Deep frying is one of the most used methods in the food processing industry. Though practically any food can be fried, French fries are probably the most well-known deep fried products. The popularity of French fries stems from their unique taste and texture, a crispy outside with a mealy soft

  4. Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, north-east Pacific Ocean.

    Science.gov (United States)

    Kennedy, C B; Scott, S D; Ferris, F G

    2003-03-01

    Iron oxides from the caldera of Axial Volcano, a site of hydrothermal vent activity along the Juan de Fuca Ridge, were found to consist predominantly of microbial structures in hydrated whole mounts examined using an environmental scanning electron microscope. Novel observations were made of the iron oxides revealing the spatial relationships of the bacteria within to be more consistent with microbial mats than mineral precipitates. The bacterial structures are attributed to the sheaths of Leptothrix ochracea, the stalks of Gallionella ferruginea, and the filaments of a novel iron oxidizing PV-1 strain, based on the distinctive morphological characteristics of these three bacteria. Energy dispersive X-ray spectroscopy revealed the presence and distribution of Fe, Si, and Cl on the bacterial sheaths, stalks and filaments. The iron oxides were identified by X-ray diffraction to be two-line ferrihydrite, a poorly ordered iron oxyhydroxide. Adsorption of Si in particular to two-line ferrihydrite likely contributes to its stability on the seafloor, and might also be a preservation mechanism creating microfossils of the bacterial structures encrusted with ferrihydrite. Presumptive evidence of the sub-seafloor presence of L. ochracea, G. ferruginea and PV-1 at Axial Volcano was obtained from the presence of these bacteria on a trap that had been placed within an active vent, and also in a vent fluid sample. If indeed these bacteria are present in the sub-seafloor, it may be an indication that the surface expression of iron oxide deposits at Axial Volcano is minimal in comparison to what exists beneath the seafloor.

  5. Deep learning

    CERN Document Server

    Goodfellow, Ian; Courville, Aaron

    2016-01-01

    Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language proces...

  6. Manganese cycling and its implication on methane related processes in the Andaman continental slope sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; Gonsalves, M.J.B.D.; Rajkumar, V.; Sheba, M.

    In the deep subsurface sediments of the Andaman continental slope, in situ methane generation/oxidation could be coupled to the cycling of Mn, as the fluid flow characterized by high methane and Mn could occur in accretionary wedge sediments...

  7. Bacterial response to contrasting sediment geochemistry in the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Fernandes, C.E.G.; Naik, S.S.; Nath, B.N.; Suresh, I.; Mascarenhas-Pereira, M.B.L.; Gupta, S.M.; Khadge, N.H.; PrakashBabu, C.; Borole, D.V.; Sujith, P.P.; Valsangkar, A.B.; Mourya, B.S.; Biche, S.U.; Sharma, R.; LokaBharathi, P.A.

    sediment is more hydrothermal source-controlled. Hydrothermal activity and associated rock alteration processes may be more relevant than organic matter delivery in these deep-sea sediments. Thus, this study highlights the relative importance...

  8. {sup 137}Cs in northern Adriatic sediments

    Energy Technology Data Exchange (ETDEWEB)

    Barisic, D; Lulic, S; Vdovic, N; Vertacnik, A [Center for Marine Research - Department Zagreb, ' Ruder Boskovic' Institute, Zagreb (Croatia); Juracic, M [Department of Geology, Faculty of Natural Sciences, University of Zagreb, Zagreb (Croatia)

    1996-01-01

    The activity of {sup 137}Cs in shallow northern Adriatic sediments was obtained on the basis of measurement results from 25 sediment box cores, sampled during the Adriatic Scientific COoperation Program (ASCOP) 16 cruise in the summer 1990. {sup 137}Cs was determined in surface sediments (0-3 cm) and 12-15 cm-deep sediment. It was found that the lowest caesium concentrations correspond to sands, which are spread along the Croatian coast. Parallel to the Italian coast, {sup 137}Cs concentrations in pelites are the highest. It seems that the influence of Po River is significant for {sup 137}Cs activities in recent marine sediments along Italian coast south of Po River delta. Significantly higher {sup 137}Cs activities in 0-3 cm sediment layer can be attributed to the deposition caused by Chernobyl accident. (author)

  9. 137Cs in northern Adriatic sediments

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.; Vdovic, N.; Vertacnik, A.; Juracic, M.

    1996-01-01

    The activity of 137 Cs in shallow northern Adriatic sediments was obtained on the basis of measurement results from 25 sediment box cores, sampled during the Adriatic Scientific COoperation Program (ASCOP) 16 cruise in the summer 1990. 137 Cs was determined in surface sediments (0-3 cm) and 12-15 cm-deep sediment. It was found that the lowest caesium concentrations correspond to sands, which are spread along the Croatian coast. Parallel to the Italian coast, 137 Cs concentrations in pelites are the highest. It seems that the influence of Po River is significant for 137 Cs activities in recent marine sediments along Italian coast south of Po River delta. Significantly higher 137 Cs activities in 0-3 cm sediment layer can be attributed to the deposition caused by Chernobyl accident. (author)

  10. The role of the sediment barrier

    International Nuclear Information System (INIS)

    Freeman, T.J.; Schultheiss, P.J.; Searle, R.C.; Sills, G.C.; Toolan, F.E.

    1989-01-01

    The conference 'Disposal of radioactive wastes in seabed sediments' was organized by the Society for Underwater Technology to review the potential of certain seabed sediments to provide a long-term containment for radioactive wastes. Its objectives were to assess: (1) what has been learned about the properties and nature of the sediments of the deep ocean; (2) the merits and demerits of the conceptual techniques that have been developed to dispose of waste; and (3) whether what has been learned about deep ocean disposal has any relevance to other areas of marine science. This chapter introduces the subject matter of the conference in the framework of the international research programme and discusses what has been learned about the role of the sediment barrier. (author)

  11. Deep ocean model penetrator experiments

    International Nuclear Information System (INIS)

    Freeman, T.J.; Burdett, J.R.F.

    1986-01-01

    Preliminary trials of experimental model penetrators in the deep ocean have been conducted as an international collaborative exercise by participating members (national bodies and the CEC) of the Engineering Studies Task Group of the Nuclear Energy Agency's Seabed Working Group. This report describes and gives the results of these experiments, which were conducted at two deep ocean study areas in the Atlantic: Great Meteor East and the Nares Abyssal Plain. Velocity profiles of penetrators of differing dimensions and weights have been determined as they free-fell through the water column and impacted the sediment. These velocity profiles are used to determine the final embedment depth of the penetrators and the resistance to penetration offered by the sediment. The results are compared with predictions of embedment depth derived from elementary models of a penetrator impacting with a sediment. It is tentatively concluded that once the resistance to penetration offered by a sediment at a particular site has been determined, this quantity can be used to sucessfully predict the embedment that penetrators of differing sizes and weights would achieve at the same site

  12. Deep sea radionuclides

    International Nuclear Information System (INIS)

    Kanisch, G.; Vobach, M.

    1993-01-01

    Every year since 1979, either in sping or in summer, the fishing research vessel 'Walther Herwig' goes to the North Atlantic disposal areas of solid radioactive wastes, and, for comparative purposes, to other areas, in order to collect water samples, plankton and nekton, and, from the deep sea bed, sediment samples and benthos organisms. In addition to data on the radionuclide contents of various media, information about the plankton, nekton and benthos organisms living in those areas and about their biomasses could be gathered. The investigations are aimed at acquiring scientifically founded knowledge of the uptake of radioactive substances by microorganisms, and their migration from the sea bottom to the areas used by man. (orig.) [de

  13. The microbiome of Brazilian mangrove sediments as revealed by metagenomics

    NARCIS (Netherlands)

    Andreote, Fernando Dini; Jiménez Avella, Diego; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares

    2012-01-01

    Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct

  14. Deep Learning

    DEFF Research Database (Denmark)

    Jensen, Morten Bornø; Bahnsen, Chris Holmberg; Nasrollahi, Kamal

    2018-01-01

    I løbet af de sidste 10 år er kunstige neurale netværk gået fra at være en støvet, udstødt tekno-logi til at spille en hovedrolle i udviklingen af kunstig intelligens. Dette fænomen kaldes deep learning og er inspireret af hjernens opbygning.......I løbet af de sidste 10 år er kunstige neurale netværk gået fra at være en støvet, udstødt tekno-logi til at spille en hovedrolle i udviklingen af kunstig intelligens. Dette fænomen kaldes deep learning og er inspireret af hjernens opbygning....

  15. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  16. Earth's portfolio of extreme sediment transport events

    Science.gov (United States)

    Korup, Oliver

    2012-05-01

    Quantitative estimates of sediment flux and the global cycling of sediments from hillslopes to rivers, estuaries, deltas, continental shelves, and deep-sea basins have a long research tradition. In this context, extremely large and commensurately rare sediment transport events have so far eluded a systematic analysis. To start filling this knowledge gap I review some of the highest reported sediment yields in mountain rivers impacted by volcanic eruptions, earthquake- and storm-triggered landslide episodes, and catastrophic dam breaks. Extreme specific yields, defined here as those exceeding the 95th percentile of compiled data, are ~ 104 t km- 2 yr- 1 if averaged over 1 yr. These extreme yields vary by eight orders of magnitude, but systematically decay with reference intervals from minutes to millennia such that yields vary by three orders of magnitude for a given reference interval. Sediment delivery from natural dam breaks and pyroclastic eruptions dominate these yields for a given reference interval. Even if averaged over 102-103 yr, the contribution of individual disturbances may remain elevated above corresponding catchment denudation rates. I further estimate rates of sediment (re-)mobilisation by individual giant terrestrial and submarine mass movements. Less than 50 postglacial submarine mass movements have involved an equivalent of ~ 10% of the contemporary annual global flux of fluvial sediment to Earth's oceans, while mobilisation rates by individual events rival the decadal-scale sediment discharge from tectonically active orogens such as Taiwan or New Zealand. Sediment flushing associated with catastrophic natural dam breaks is non-stationary and shows a distinct kink at the last glacial-interglacial transition, owing to the drainage of very large late Pleistocene ice-marginal lakes. Besides emphasising the contribution of high-magnitude and low-frequency events to the global sediment cascade, these findings stress the importance of sediment storage

  17. Hot, deep origin of petroleum: deep basin evidence and application

    Science.gov (United States)

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  18. Biogeochemical signals from deep microbial life in terrestrial crust.

    Directory of Open Access Journals (Sweden)

    Yohey Suzuki

    Full Text Available In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan. A large sulfur isotopic fractionation of 20-60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰ is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM, H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes.

  19. Investigating sediment size distributions and size-specific Sm-Nd isotopes as paleoceanographic proxy in the North Atlantic Ocean: reconstructing past deep-sea current speeds since Last Glacial Maximum

    OpenAIRE

    Li, Yuting

    2017-01-01

    To explore whether the dispersion of sediments in the North Atlantic can be related to modern and past Atlantic Meridional Overturning Circulation (AMOC) flow speed, particle size distributions (weight%, Sortable Silt mean grain size) and grain-size separated (0–4, 4–10, 10–20, 20–30, 30–40 and 40–63 µm) Sm-Nd isotopes and trace element concentrations are measured on 12 cores along the flow-path of Western Boundary Undercurrent and in the central North Atlantic since the Last glacial Maximum ...

  20. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  1. ISHTE deep-ocean corers and heater-implant system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. O.; Harrison, J. G.

    1982-09-01

    Seafloor instrumentation systems are being developed for the In-Situ Heat Transfer Experiment (ISHTE) to determine the thermal conductivity of deep ocean sediments. As part of the experiment, a heat canister will be implanted into the sediment. Also, after about one year on the seafloor, core samplers are to be actuated to gather sediment samples. This report describes the deep ocean piston corers and the heater-implant drive system.

  2. Diversity, Persistence and Evolution in Marine Sediments

    DEFF Research Database (Denmark)

    Starnawski, Piotr

    2016-01-01

    on the marine sediments communities was reviewed, it became apparent that there are some global trends in these populations ob- served in deep and shallow, organic rich and poor sediments. We have observed the same, often uncultured, organisms with very similar relative abundance profiles in reviewed sites...... communities as they transition from actively growing surface populations to barely dividing subsurface ones; (ii) evolutionary consequences of the prolonged residence in such environments and (iii) inferring function of the dominant groups found in deep sediments. When the current state of our knowledge....... In order to better understand this pattern we’ve reviewed the assembly processes that may lead to such situations, keeping in mind the limitations imposed by the environment.We’ve concluded, that due to low energy fluxes, and consequently low number of pos- sible cell divisions, selective survival of pre...

  3. Deep smarts.

    Science.gov (United States)

    Leonard, Dorothy; Swap, Walter

    2004-09-01

    When a person sizes up a complex situation and rapidly comes to a decision that proves to be not just good but brilliant, you think, "That was smart." After you watch him do this a few times, you realize you're in the presence of something special. It's not raw brainpower, though that helps. It's not emotional intelligence, either, though that, too, is often involved. It's deep smarts. Deep smarts are not philosophical--they're not"wisdom" in that sense, but they're as close to wisdom as business gets. You see them in the manager who understands when and how to move into a new international market, in the executive who knows just what kind of talk to give when her organization is in crisis, in the technician who can track a product failure back to an interaction between independently produced elements. These are people whose knowledge would be hard to purchase on the open market. Their insight is based on know-how more than on know-what; it comprises a system view as well as expertise in individual areas. Because deep smarts are experienced based and often context specific, they can't be produced overnight or readily imported into an organization. It takes years for an individual to develop them--and no time at all for an organization to lose them when a valued veteran walks out the door. They can be taught, however, with the right techniques. Drawing on their forthcoming book Deep Smarts, Dorothy Leonard and Walter Swap say the best way to transfer such expertise to novices--and, on a larger scale, to make individual knowledge institutional--isn't through PowerPoint slides, a Web site of best practices, online training, project reports, or lectures. Rather, the sage needs to teach the neophyte individually how to draw wisdom from experience. Companies have to be willing to dedicate time and effort to such extensive training, but the investment more than pays for itself.

  4. Phylogenetic and Physiological Diversity of Subseafloor Microbial Communities at Axial Seamount, Juan de Fuca Ridge: Summary of Results From the New Millenium Observatory (NeMO), 1998-2004

    Science.gov (United States)

    Baross, J. A.; Huber, J. A.; Mehta, M. P.; Opatkiewicz, A.; Bolton, S. A.; Butterfield, D. A.; Sogin, M. L.; Embley, R. W.

    2005-12-01

    Axial Seamount (45 ° 58' N; 130 ° 00' W) is an active submarine volcano located on the Juan de Fuca Ridge, approximately 300 miles off the coast of Oregon. Lying at the intersection of a seamount chain and a spreading axis, Axial is a unique study site from both the geological and biological perspective. In January of 1998, Axial experienced a week-long series of earthquakes, and subsequent water column and seafloor observations on the southeast portion of the caldera found temperature and chemical anomalies, extensive new seafloor lava flows, large "snow blower" type vents, and other characteristics commonly associated with diking-eruptive events. Due to its high activity and close proximity to shore, Axial was chosen as a site for a multi-year observatory (New Millenium Observatory, NeMO) to document changes and interactions between geology, chemistry, and biology on the mid-ocean ridge system. From 1998 through 2004, we extensively sampled diffuse vents at Axial Seamount to determine the physiological and phylogenetic diversity of subseafloor microbial communities and their relationship to the geochemical environment. Here we present a summary of those studies, including molecular-based phylogenetic surveys of bacteria, archaea, and potential nitrogen-fixing organisms, culturing results of thermophiles and hyperthermophiles from over 20 sites, and the distribution of one particular group of hyperthermophiles at diffuse vents throughout the caldera and how that distribution may be linked to the geochemical habitat. Results indicate that Axial supports a diverse subseafloor microbial community, including hydrogen and sulfur oxidizers, hyperthermophilic methane producers and heterotrophs, and many organisms with the potential to fix nitrogen. In addition, we find that the species composition of the microbial community changes in response to changes in the physical and chemical conditions at each vent site. The extent of seawater mixing with hydrothermal fluids

  5. Geotechnical aspects of deep ocean radioactive waste disposal

    International Nuclear Information System (INIS)

    Freeman, T.J.

    1990-01-01

    The methods that might be used to bury radioactive waste in the deep ocean, and their likely effect on the sediment barrier, have been the subject of an international research program performed during the last ten years. This paper reviews the geotechnical aspects of deep ocean disposal and discusses how far the research performed has gone towards providing the information needed to assess this form of disposal. Considerable progress has been made during the course of the international program towards understanding the processes involved in the emplacement of heat generating waste (HGW) into the deep ocean bed and the subsequent interactions between the waste and the sediments. These processes do not appear to have a deleterious effect on the barrier properties of the sediments, and it is concluded that it is likely that HGW could be emplaced in the deep ocean in such a way that the seabed would provide an effective containment for the radionuclides

  6. Chemistry of marine sediments

    International Nuclear Information System (INIS)

    Yen, T.F.

    1977-01-01

    Some topics considered are as follows: characterization of sediments in the vicinity of offshore petroleum production; thermal alteration experiments on organic matter in recent marine sediments as a model for petroleum genesis; composition of polluted bottom sediments in Great Lakes harbors; distribution of heavy metals in sediment fractions; recent deposition of lead off the coast of southern California; release of trace constituents from sediments resuspended during dredging operations; and migration of chemical constituents in sediment-seawater interfaces

  7. Demonstration of In Situ Treatment with Reactive Amendments for Contaminated Sediments in Active DoD Harbors

    Science.gov (United States)

    2017-06-30

    as hazardous wastes . The sediments are contaminated from the sediment bed surface to 1 foot below the sediment - water interface. The site is...enable deep water placement of the material on the sediment surface. The AquaGate, which is denser than water , sinks rapidly through the water column...zone (generally 10–20 centimeters [cm] below sediment - water interface) unless it is determined that there is little or no advective transport of

  8. On contemporary sedimentation at the titanic survey area

    Science.gov (United States)

    Lukashin, V. N.

    2009-12-01

    The basic parameters of the sedimentation environment are considered: the Western Boundary Deep Current that transports sedimentary material and distributes it on the survey area; the nepheloid layer, its features, and the distribution of the concentrations and particulate standing crop in it; the distribution of the horizontal and vertical fluxes of the sedimentary material; and the bottom sediments and their absolute masses. The comparison of the vertical fluxes of the particulate matter and the absolute masses of the sediments showed that the contemporary fluxes of sedimentary material to the bottom provided the distribution of the absolute masses of the sediments in the survey area during the Holocene.

  9. Autecology of crenarchaeotal and bacterial clades in marine sediments and microbial mats

    OpenAIRE

    Kubo, Kyoko

    2011-01-01

    The focus of this thesis was the autecology of the Miscellaneous Crenarchaeotal Group (MCG), a phylum-level clade of Archaea occurring mostly in marine sediments. Sequences of MCG 16S rRNA genes have been retrieved from a wide range of marine and terrestrial habitats, such as deep subsurface sediments, hydrothermal sediments, mud volcanoes, estuaries, hot springs and freshwater lake sediments. MCG members seem to have no general preferences for a particular temperature or salinity. So far, no...

  10. Bathymetric Signatures of Oceanic Detachment Faulting and Potential Ultramafic Lithologies at Outcrop or in the Shallow Subseafloor

    Science.gov (United States)

    Cann, J. R.; Smith, D. K.; Escartin, J.; Schouten, H.

    2008-12-01

    For ten years, domal bathymetric features capped by corrugated and striated surfaces have been recognized as exposures of oceanic detachment faults, and hence potentially as exposures of plutonic rocks from lower crust or upper mantle. Associated with these domes are other bathymetric features that indicate the presence of detachment faulting. Taken together these bathymetric signatures allow the mapping of large areas of detachment faulting at slow and intermediate spreading ridges, both at the axis and away from it. These features are: 1. Smooth elevated domes corrugated parallel to the spreading direction, typically 10-30 km wide parallel to the axis; 2. Linear ridges with outward-facing slopes steeper than 20°, running parallel to the spreading axis, typically 10-30 km long; 3. Deep basins with steep sides and relatively flat floors, typically 10-20 km long parallel to the spreading axis and 5-10 km wide. This characteristic bathymetric association arises from the rolling over of long-lived detachment faults as they spread away from the axis. The faults dip steeply close to their origin at a few kilometers depth near the spreading axis, and rotate to shallow dips as they continue to evolve, with associated footwall flexure and rotation of rider blocks carried on the fault surface. The outward slopes of the linear ridges can be shown to be rotated volcanic seafloor transported from the median valley floor. The basins may be formed by the footwall flexure, and may be exposures of the detachment surface. Critical in this analysis is that the corrugated domes are not the only sites of detachment faulting, but are the places where higher parts of much more extensive detachment faults happen to be exposed. The fault plane rises and falls along axis, and in some places is covered by rider blocks, while in others it is exposed at the sea floor. We use this association to search for evidence for detachment faulting in existing surveys, identifying for example an area

  11. Continental Shelf Sediments of Sarawak, Malaysian Borneo

    Science.gov (United States)

    Masron, Tarmiji; Rumpet, Richard; Musel, Jamil

    2017-01-01

    Sediment distributions in deep sea influence the benthic community structure and thus play an important role in shaping the marine ecosystem. Several studies on sediment characteristics had been conducted in South China Sea (SCS), but only limited to coastal areas of regions within SCS territories. Therefore, this study was carried out to analyze the benthic sediment profile in an area beyond 12 nautical miles off the coast of Sarawak, southern SCS. Sediment samples were collected from 31 stations, comprising three depth ranges: (I) 20–50 m, (II) 50–100 m, and (III) 100–200 m. The total organic matter (TOM) contents were determined and subjected to dry and wet sieving methods for particle size analysis. TOM contents in the deep area (>50 m) were significantly higher (p = 0.05) and positively correlated (r = 0.73) with silt-clay fraction. About 55% and 82% of stations in strata II and III, respectively, were dominated by silt-clay fractions (50 m) tend to be poorly sorted, very fine skewed, and platykurtic. Unlike data obtained 20 years ago which reported high content of silt-clay (58%), this study recorded a lower content (35%); therefore, changes in sediment load had been observed in southern SCS. PMID:29075660

  12. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  13. DeepPy: Pythonic deep learning

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces DeepPy – a deep learning framework built on top of NumPy with GPU acceleration. DeepPy bridges the gap between highperformance neural networks and the ease of development from Python/NumPy. Users with a background in scientific computing in Python will quickly...... be able to understand and change the DeepPy codebase as it is mainly implemented using high-level NumPy primitives. Moreover, DeepPy supports complex network architectures by letting the user compose mathematical expressions as directed graphs. The latest version is available at http...

  14. Sediment Supply as a Control on Plant-Morphodynamic Interactions

    Science.gov (United States)

    Manners, R.; Wilcox, A. C.; Kui, L.; Stella, J. C.; Lightbody, A.; Sklar, L. S.

    2014-12-01

    The caliber and quantity of sediment delivered to a channel influences its size and shape, yet we know little about how the sediment supply affects rivers whose geomorphic form is influenced by riparian vegetation. We present results from flume experiments that test the impact of sediment supply on plant-morphodynamic interactions. We introduced two sediment supply conditions to a 28-meter long, sand bedded flume (60 cm wide and 71 cm deep) at the UC-Berkeley Richmond Field Station: equilibrium (balance between sediment transport and supply) and deficit (transport exceeds sediment supply). We conducted ten runs with different riparian seedling configurations (individual plants or patches) and species (tamarisk or cottonwood), and stem and leaf density (0.003-0.47 cm2/cm2), under both sediment supply conditions. Plant species, size, and configuration were important in predicting the topographic adjustments that occurred during our experiments. These influences may be attributed to differences in plant morphology; tamarisk is shrubby while cottonwood is more tree-like, with a single stem and leaves concentrated higher on the plant. The plant-morphodynamic relationship, however, differed for the two sediment supply conditions. During sediment equilibrium, only patches of cottonwood served as sediment sinks compared to an unvegetated bed, but tamarisk patches had no impact on the sediment mass balance. During sediment deficit, in contrast, tamarisk patches accumulated more sediment than unvegetated beds. Stem and leaf density also controlled changes in bed elevation. During equilibrium conditions, increasing the density of cottonwood stems and leaves resulted in greater bed degradation. Conversely, aggradation occurred with increases in the density of tamarisk. For sediment deficit conditions, the relationship between stem and leaf density and the rate of bed change was negative for both species (i.e., higher density resulted in faster rate of scour). The shifting

  15. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos

    DEFF Research Database (Denmark)

    Sinniger, Frédéric; Pawlowski, Jan; Harii, Saki

    2016-01-01

    in 39 deep-sea sediment samples from bathyal and abyssal depths worldwide. The eDNA dataset was dominated by meiobenthic taxa and we identified all animal phyla commonly found in the deep-sea benthos; yet, the diversity within these phyla remains largely unknown. The large numbers of taxonomically...... for pure and applied deep-sea environmental research but also emphasizes the necessity to integrate such new approaches with traditional morphology-based examination of deep-sea organisms....

  16. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Thamdrup, B; Hansen, Jens Würgler

    1993-01-01

    ). In the deep portion of the basin, surface Mn enrichments reached 3.5 wt%, and Mn reduction was the only important anaerobic carbon oxidation process in the upper 10 cm of the sediment. In the less Mn-rich sediments from intermediate depths in the basin, Fe reduction ranged from somewhat less, to far more...... speculate that in shallow sediments of the Skagerrak, surface Mn oxides are present in a somewhat reduced oxidation level (deep basin....

  17. OU3 sediment dating and sedimentation rates

    International Nuclear Information System (INIS)

    Blair, R.B.; Wolaver, H.A.; Burger, V.M.

    1994-01-01

    Environmental Technologies at Rocky Flats Environmental Technology Site (RFS) investigated the sediment history of Standley Lake, Great Western Reservoir, and Mower Reservoir using 137 Cs and 239,240 Pu global fall-out as dating indicators. These Colorado Front Range reservoirs have been the subject of study by various city, state and national agencies due to suspected Department of Energy Rocky Flats Plant impacts. We performed sediment dating as part of the RCRA Facility Investigation/Remedial Investigation Report for Operable Unit 3. A sediment chronology profile assists scientist in determining the year of sedimentation for a particular peak concentration of contaminants. Radioisotope sediment dating for the three reservoirs indicated sedimentation rates of 0.7 to 0.8 in./yr. for Standley Lake (SL), 0.9 in./yr. for Great Western Reservoir (GWR), and 0.3 in./yr. in Mower Reservoir (MR). RFS sediment dating for Operable Unit 3 compared favorably with the Hardy, Livingston, Burke, and Volchok Standley Lake study. This report describes the cesium/plutonium sediment dating method, estimates sedimentation rates for Operable Unit 3 reservoirs, and compares these results to previous investigations

  18. Viral infections as controlling factors for the deep biosphere? (Invited)

    Science.gov (United States)

    Engelen, B.; Engelhardt, T.; Sahlberg, M.; Cypionka, H.

    2009-12-01

    The marine deep biosphere represents the largest biotope on Earth. Throughout the last years, we have obtained interesting insights into its microbial community composition. However, one component that was completely overlooked so far is the viral inventory of deep-subsurface sediments. While viral infections were identified to have a major impact on the benthic microflora of deep-sea surface sediments (Danavaro et al. 2008), no studies were performed on deep-biosphere samples, so far. As grazers probably play only a minor role in anoxic and highly compressed deep sediments, viruses might be the main “predators” for indigenous microorganisms. Furthermore, the release of cell components, called “the viral shunt”, could have a major impact on the deep biosphere in providing labile organic compounds to non-infected microorganisms in these generally nutrient depleted sediments. However, direct counting of viruses in sediments is highly challenging due to the small size of viruses and the high background of small particles. Even molecular surveys using “universal” PCR primers that target phage-specific genes fail due to the vast phage diversity. One solution for this problem is the lysogenic viral life cycle as many bacteriophages integrate their DNA into the host genome. It is estimated that up to 70% of cultivated bacteria contain prophages within their genome. Therefore, culture collections (Batzke et al. 2007) represent an archive of the viral composition within the respective habitat. These prophages can be induced to become free phage particles in stimulation experiments in which the host cells are set under certain stress situations such as a treatment with UV exposure or DNA-damaging antibiotics. The study of the viral component within the deep biosphere offers to answer the following questions: To which extent are deep-biosphere populations controlled by viral infections? What is the inter- and intra-specific diversity and the host-specific viral

  19. Greedy Deep Dictionary Learning

    OpenAIRE

    Tariyal, Snigdha; Majumdar, Angshul; Singh, Richa; Vatsa, Mayank

    2016-01-01

    In this work we propose a new deep learning tool called deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion, one layer at a time. This requires solving a simple (shallow) dictionary learning problem, the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like stacked autoencoder and deep belief network; and state of the art supervised dictionary learning t...

  20. The contribution of bank and surface sediments to fluvial sediment ...

    African Journals Online (AJOL)

    The contribution of bank and surface sediments to fluvial sediment transport of the Pra River. ... the relative contribution of surface and bank sediments to the fluvial sediment transport. ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  1. Transport zonation limits coupled nitrification-denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Kessler, Adam John; Glud, R.N.; Cardenas, M.B.

    2013-01-01

    - and N-15-N-2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N-2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification......-denitrification is severely limited in permeable sediments because the flow and transport field limits interaction between oxic and anoxic pore water. The approach allowed for new detailed insight into subsurface denitrification zones in complex permeable sediments....

  2. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  3. Center for Contaminated Sediments

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers Center for Contaminated Sediments serves as a clearinghouse for technology and expertise concerned with contaminated sediments. The...

  4. Geochemistry of sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    Considering the potential of elemental data in marine sediments as diagnostic tools of various geological and oceanographic processes, sediment geochemical data from the Indian Ocean region has been reviewed in this article. Emphasis is laid...

  5. Indicators: Sediment Enzymes

    Science.gov (United States)

    Sediment enzymes are proteins that are produced by microorganisms living in the sediment or soil. They are indicators of key ecosystem processes and can help determine which nutrients are affecting the biological community of a waterbody.

  6. Electrodialytic remediation of sediments

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland

    Sediments of harbors and freshwaters are regularly dredged for various reasons: maintenance of navigational depths, recovery of recreational locations, and even environmental recovery. In the past, sediments dredged from harbors have been dumped at sea, however, environmental regulations now, in ...

  7. A deep gold mine metagenome as a source of novel esterases

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... small metagenome library from the deep mine biofilm provided two esterolytic clones, ...... tuberosum) tubers, and its occurrence as genotype effect: processing .... diversity in freshwater sediment of a shallow eutrophic lake by.

  8. Accumulation rates and sediment deposition in the northwestern Mediterranean

    Science.gov (United States)

    Zuo, Z.; Eisma, D.; Gieles, R.; Beks, J.

    As part of the EROS 2000 programme, sediment mixing and accumulation rates in the northwestern Mediterranean Sea were determined, applying the 210Pb dating method to a total of 49 cores, and the results from 29 sediment cores are presented here. On the basis of the results from the 49 sediment cores, an attempt was made to present a general picture of sediment accumulation for the area of the northwestern Mediterranean. The total deposition of sediment in the area is estimated to be of the order of 34±15 × 106 ton year-1, which is half the value reported earlier by Got and Aloisi (1990) (Continental Shelf Research, 10, 841-855) for the same region. The activity-depth profiles of 210Pb show the presence of intensive mixing in the upper layer of near-shore sediments, but little or no mixing is observed in the deep-water sediments. Based on a diffusion model, sediment mixing rates calculated from excess 210Pb gradients vary from 0·002 to 7· cm2 year-1, and the deposition rates from 0·01 to 0·60 cm year-1. A linear dependence of sedimentation rate on water depth derived from the sediment cores indicates an inverse correlation between these two. The relatively high sedimentation rates and mixing rates found near the Rhône River suggest that the contribution from the river dominates the deposition system in the northwestern Mediterranean. In the deep-water basin, however, atmospheric input and biological production are clearly more important.

  9. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong; Sharp, Jonathan O.; Drewes, Jorg

    2015-01-01

    , sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast

  10. Sediment plume monitoring in the Clarion-Clipperton Zone

    OpenAIRE

    Van den Eynde, D.; Baeye, M.; Fettweis, M.; Francken, F.; Naudts, L.; Van Lancker, V.

    2014-01-01

    OD Nature has a vast experience in monitoring and modelling Suspended Particulate Matter concentration in shelf areas. In the framework of the JPI-Oceans cruise with the RV Sonne in the Belgian, French and German concession zones for deep-sea mining in the Clarion-Clipperton Zone, this experience will be used to monitor sediments plumes, caused by deep-sea mning exploration activities.

  11. The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes

    Science.gov (United States)

    Seyfried, W. E.; Pester, Nicholas J.; Tutolo, Benjamin M.; Ding, Kang

    2015-08-01

    dissolution and precipitation clarifies the feedback between permeability, heat loss, and changes in the dissolved Si of the vent fluids. Assuming both the Beehive and M6 vent fluids were sourced at similar subseafloor conditions (tremolite buffered at 200 °C), model results indicate loss of approximately 30% Si upon cooling to ∼150 °C during upflow. However, Si concentrations remained largely conservative with continued cooling to lower temperatures owing to unfavorable reaction kinetics. While consistent with the Beehive endmember composition, these results fail to explain the relative Si depletion in the lower temperature M6 fluids. Thus, it may be that more robust kinetic models for silicates are needed to accurately account for the mechanism and rate of silica removal in the unusually high pH of the Lost City vent fluids.

  12. A review on deep-sea fungi: Occurrence, diversity and adaptions

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Damare, S.R.; Singh, P.

    soil. In contrast to land, however, most studies on deep-sea sediments have focused exclusively on bacteria and have demonstrated their intense metabolic activities therein (Turley and Dixon 2002). The fungi and their role in the deep-sea sediments... polymerization and form brown-coloured products, constituting humus (Tisdall and Oades 1982). The humic material combines with soil particles to form microaggregates. Fungal hyphae further act as binding agents to form macroaggregates by trapping fine particles...

  13. Sedimentation rate in the Baltic Sea

    International Nuclear Information System (INIS)

    Ilus, E.; Mattila, J.; Klemola, S.; Ikaeheimonen, T.K.; Niemisto, L.

    2001-01-01

    Varying redox conditions may affect the occurrence and concentrations of certain radionuclides in the surface layers of sediments and in near-bottom waters by causing remobilization of radionuclides from surface sediments to the overlying water and their settling back into the sediment. In recent decades about 70.000 km 2 of the sea bottom in the deepest part of the Baltic Sea (about 19% of its total area) have withstood almost continuous anoxic conditions; thus, it is important to know to what extent depletion of oxygen can affect the behaviour of these radionuclides in near-bottom waters. The aim of the project was to resolve the above question in a coastal basin periodically undergoing anoxic conditions. Radioecological processes in sediments and in near-bottom water under varying redoxconditions were studied in the deep area of the Haestholmsfjaerden Bay in Loviisa (eastern Gulf of Finland) in 1995-1996. The Haestholmsfjaerden Bay is a semienclosed basin between the mainland and the archipelago and is connected with the open Gulf of Finland only through narrow, shallow sounds: In 1995, total depletion of oxygen occurred in the hypolimnion of Haestholmsfjaerden Bay during 2 periods in late summer and autumn. In 1996, oxygen conditions were the worst ever observed in the Haestholmsfjaerden deep. During early autumn anoxic conditions prevailed for more than 1 month in the near-bottom water. The highest total phosphorus and total nitrogen concentrations in the near-bottom water during these periods were 20- and 4- fold compared with the corresponding values in surface water. According to the results obtained in this project, remobilization of 137 Cs and 239,240 Pu from sediments to near-bottom water is negligible or non-existent in the Haestholmsfjaerden deep. If it does occur, however, it may be so slight that it is not possible to observe with the methods used in this study. Although the anoxic periods are quite short in the Haestholmsfjaerden deep, they are of

  14. Indian deep-sea environment experiment (INDEX): Monitoring the restoration of marine enviroment after artificial disturbance to simulate deep-sea mining in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin Guest Editor Rahul Sharma Note from guest editor A special issue on Indian Deep-sea Environment Experiment (INDEX) conducted by the scientists... in Geochemical Associations in Artificially Disturbed Deep-Sea Sediments B. Nagender Nath, G. Parthiban, S. Banaulikar, and Subhadeep Sarkar Marine Georesources and Geotechnology, 24:61–62, 2006 Copyright # Taylor & Francis Group, LLC ISSN: 1064-119X print/1521...

  15. Electric currents couple spatially separated biogeochemical processes in marine sediment

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik

    2010-01-01

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact 1, 2, 3, 4 . Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can...... be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water...... in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined...

  16. Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane

    Science.gov (United States)

    Briggs, B.R.; Pohlman, J.W.; Torres, M.; Riedel, M.; Brodie, E.L.; Colwell, F.S.

    2011-01-01

    Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10 7 to 10 8 cells cm -3. This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to-43%) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments. ?? 2011, American Society for Microbiology.

  17. 40K in the Black Sea: a proxy to estimate biogenic sedimentation

    International Nuclear Information System (INIS)

    Gulin, S.B.; Gulina, L.V.; Sidorov, I.G.; Proskurnin, V.Yu.; Duka, M.S.; Moseichenko, I.N.; Rodina, E.A.

    2014-01-01

    An approach to estimate the rate of biogenic sedimentation in the Black Sea using the naturally occurring radionuclide 40 K has been considered. It allows assessment of the contribution of suspended matter of biological origin to the overall sediment accumulation in the Black Sea coastal, shelf and deep-water areas. Based upon this method, a relationship between the biogenic fraction of the seabed sediments and the water depth has been established with a view to differentiating the contributions of allochthonous and autochthonous suspended matter to the sedimentation rate. Overall, 40 K can be considered as an easily applicable proxy to assess sedimentation rate of biogenic fraction of particulate matter in marine environments. - Highlights: • 40 K-based approach was developed to assess biogenic sedimentation in the Black Sea. • 40 K-derived relationship between biogenic sedimentation and water depth was traced. • 40 K is an easily applicable proxy to estimate rate of biogenic sedimentation in sea

  18. Marine meiofauna, carbon and nitrogen mineralization in sandy and soft sediments of Disko Bay, West Greenland

    DEFF Research Database (Denmark)

    Rysgaard, S.; Christensen, P.B.; Sørensen, Martin Vinther

    2000-01-01

    Organic carbon mineralization was studied in a shallow-water (4 m), sandy sediment and 2 comparatively deep-water (150 and 300 m), soft sediments in Disko Bay, West Greenland. Benthic microalgae inhabiting the shallow-water locality significantly affected diurnal O-2 conditions within the surface...... is regulated primarily by the availability of organic matter and not by temperature. The shallow-water sediment contained a larger meiofauna population than the deep-water muddy sediments. Crustacean nauplia dominated the upper 9 mm while nematodes dominated below. A typical interstitial fauna of species...... layers of the sediment. Algal photosynthetic activity and nitrogen uptake reduced nitrogen effluxes and denitrification rates. Sulfate reduction was the most important pathway for carbon mineralization in the sediments of the shallow-water station. In contrast, high bottom-water NO3- concentrations...

  19. Taoism and Deep Ecology.

    Science.gov (United States)

    Sylvan, Richard; Bennett, David

    1988-01-01

    Contrasted are the philosophies of Deep Ecology and ancient Chinese. Discusses the cosmology, morality, lifestyle, views of power, politics, and environmental philosophies of each. Concludes that Deep Ecology could gain much from Taoism. (CW)

  20. {sup 210}Pb-Excess and Sediment Accumulation Rates at the Iberian Continental Margin

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, F. P.; Oliveira, J. M.; Soares, A. M. [Nuclear and Technological Institute, Sacavem (Portugal)

    2013-07-15

    Sediments from the continental shelf, slope, and rise at the continental margin of northern Portugal and the adjacent Iberian abyssal basin were analysed for 210Pb, {sup 226}Ra, {sup 137}Cs and {sup 14}C. Pb-210 derived sedimentation rates at the continental shelf off the Portuguese coast were 0.2-0.6 cm/a. In some cores from fine sediment deposits at the outer shelf, the {sup 210}Pb excess continuum was interrupted and sediment layers were missing, suggesting that events such as sediment slides could have occurred. Higher sedimentation rates were determined in locations at the rise of the continental slope, confirming enhanced deposition by sediment slides. In the deeper Iberian Abyssal Basin, using the {sup 14}C age of sediment layers the sedimentation rate was determined at 3.2 cm/ka, thus four orders of magnitude lower than at the continental shelf. The spatial distribution of sedimentation rates determined by radionuclide based chronologies, suggested that fine sediments from river discharges are deposited mainly at the outer continental shelf. These deposits may became unstable with time and, occasionally, originate sediment slides that are drained by the canyons and reach the deep sea. The Iberian abyssal basin receives some advective contribution of these sediment slides and the sedimentation rate is one order of magnitude higher than in other abyssal basins of the NE Atlantic Ocean. (author)

  1. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip

    2016-01-01

    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly

  2. Remote assessment of permeability/thermal diffusivity of consolidated clay sediments

    International Nuclear Information System (INIS)

    Lovell, M.A.; Ogden, P.

    1984-02-01

    The aim of this project was to examine the feasibility of predicting marine sediment permeability and thermal diffusivity by remote geophysical observations. For this purpose a modified consolidation cell was developed and constructed and tests on deep sea sediment samples carried out. Results and conclusions of a nineteen month programme are presented. (U.K.)

  3. Creep of ocean sediments resulting from the isolation of radioactive wastes

    International Nuclear Information System (INIS)

    Dawson, P.R.; Chavez, P.F.; Lipkin, J.; Silva, A.J.

    1980-01-01

    Predictive models for the creep of deep ocean sediments resulting from the disposal of radioactive wastes are presented and preliminary observations of a program for evaluation of creep constitutive equation parameters are discussed. The models are used to provide calculated response of sediments under waste disposal conditions

  4. Deep Incremental Boosting

    OpenAIRE

    Mosca, Alan; Magoulas, George D

    2017-01-01

    This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep In...

  5. Deep Space Telecommunications

    Science.gov (United States)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  6. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    Science.gov (United States)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  7. Comparison of independent proxies in the reconstruction of deep ...

    African Journals Online (AJOL)

    Independent proxies were assessed in two Late Quaternary sediment cores from the eastern South Atlantic to compare deep-water changes during the last 400 kyr. ... is exclusively observed during interglacials, with maximum factor loadings in ... only slightly without a significant glacial-interglacial pattern, as measured in a ...

  8. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  9. Sediment Transport on Continental Shelves: Storm Bed Formation and Preservation in Heterogeneous Sediments

    Science.gov (United States)

    2012-01-01

    occurred during the Cretaceous period. The simulated storm bed for such an extratropical cyclone that lasts 4 days was deposited as deep as 75 m and had...Int. Assoc. Sedimentol. Spec. Publ. (2012) 44, 295-310 Sediment transport on continental shelves: storm bed formation and preservation in...xDept. of Earth Science, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada ABSTRACT Many storm beds are constructed of silt/sand

  10. Continuous In Situ Measurements of Near Bottom Chemistry and Sediment-Water Fluxes with the Chimney Sampler Array (CSA)

    Science.gov (United States)

    Martens, C. S.; Mendlovitz, H. P.; White, B. L.; Hoer, D.; Sleeper, K.; Chanton, J.; Wilson, R.; Lapham, L.

    2011-12-01

    The Chimney Sampler Array (CSA) was designed to measure in situ chemical and physical parameters within the benthic boundary layer plus methane and oxygen sediment-water chemical fluxes at upper slope sites in the northern Gulf of Mexico. The CSA can monitor temporal changes plus help to evaluate oceanographic and sub-seafloor processes that can influence the formation and stability of gas hydrates in underlying sediments. The CSA consists of vertical cylinders (chimneys) equipped with internal chemical sensors and with laboratory flume-calibrated washout rates. Chimney washout rates multiplied by chimney mean versus ambient concentrations allow calculation of net O2 and methane sediment-water fluxes. The CSA is emplaced on the seafloor by a ROVARD lander using a ROV for chimney deployments. The CSA presently includes two 30 cm diameter by 90 cm length cylinders that seal against the sediment with lead pellet beanbags; within each chimney cylinder are optode, conductivity and methane sensors. The CSA's data logger platform also includes pressure and turbidity sensors external to the chimneys along with an acoustic Doppler current meter to measure temporal variation in ambient current velocity and direction. The CSA was deployed aboard a ROVARD lander on 9/13/2010 in the northern Gulf of Mexico (Lat. 28 51.28440, Long. 088 29.39421) on biogeochemically active sediments within Block MC-118. A ROV was utilized for chimney deployment away from the ROVARD lander. The CSA monitored temporal changes in water column physical parameters, obtained near-bottom chemical data to compare with pore fluid and sediment core measurements and measured temporal variability in oxygen and methane sediment-water fluxes at two closely spaced stations at MC-118. A continuous, three-week data set was obtained that revealed daily cycles in chemical parameters and episodic flux events. Lower than ambient chimney dissolved O2 concentrations controlled by temporal variability in washout rates

  11. Early diagenesis of phosphorus in continental margin sediments

    NARCIS (Netherlands)

    Slomp, C.P.

    1997-01-01

    Most of the organic material in the oceans that reaches the sea floor is deposited on continental margins and not in the deep sea. This organic matter is the principal carrier of phosphorus (P) to sediments. A part of the organic material is buried definitely. The other part decomposes,

  12. Surficial sediments of the continental shelf off Karnataka

    Digital Repository Service at National Institute of Oceanography (India)

    Hashimi, N.H.; Nair, R.R.

    sediments occur betweenthe water depths of 15 to 50m corresponding to a distance of about 40 km from the coast. Beyond 50 m to the shelf edge are calcareous sands. Non-carbonate components of these deep water sands are essentially quartz, many of which...

  13. Extraterrestrial components from deep sea sediments of Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.

    meteorites as precursors, thus in a way unifying them. Further, Fe-Ni beads in all types of the investigated cosmic spherules further confirmed this finding. Oxygen isotopes of relict-grains in silicate cosmic spherules suggested chondrules from carbonaceous...

  14. Deep Magnetic Diagenesis in Sediments: Progressive and Punctuated Processes.

    Science.gov (United States)

    Musgrave, R. J.; Kars, M. A. C.; Vega, M. E.

    2017-12-01

    Magnetic diagenesis in the tuffaceous muds, mudstones and volcaniclastic rocks cored at IODP Site U1437 is a product of progressive processes that continue throughout the 1800-m-thick sequence, punctuated by superimposed features corresponding to a series of influxes of fluids and concentrations of hydrocarbons. XRD, visual examination and SEM images indicate the presence of both magnetite and the magnetic sulfide greigite. Inferences from high values of saturation isothermal remanence normalised by magnetic susceptibility (SIRM/χ), distribution of hysteresis data near a diagenetic greigite curve on a Day plot, and 'humping' of low-temperature cycles of SIRM suggest that detrital magnetite and diagenetic greigite are both significant contributors to the magnetic assemblage, with greigite constituting a higher proportion in shallower samples. Progressive magnetic diagenesis is expressed as a continuing background decrease in SIRM/χ. FORC curves indicate an initial diagenetic growth of one or more higher-coercivity phases, followed downhole by increasing loss of all but low-coercivity material. The downhole pattern is consistent with progressive loss of fine-grained magnetite, initial authigenesis of greigite, and progressive pyritisation of the greigite. Some coarse-grained samples from the base of the sequence buck the trend, exhibiting SD behavior probably related to surviving magnetite inclusions in silicates. Shipboard fluid analysis revealed a complex profile of interstitial-water geochemistry, marked by several fluid influxes, including inputs of sulfate-rich water at about 275 and 460 meters below seafloor (mbsf). Methane concentrations, mostly low, markedly increase in the interval between 750 and 1460 mbsf, and ethane appears below an inferred fault at 1104 mbsf. Each of these fluid events is marked by offsets in the rock magnetic parameters SIRM/χ, S-0.3T, and DJH, representing repeated phases of late diagenetic growth of greigite in response to supplies of sulfate, intervals of enhanced pyritisation of greigite where concentrations of deeply sourced methane may be accompanied by H2S, and a more enigmatic response to the thermogenic ethane interval which seems to both dissolve any remaining fine-grained magnetite and grow a new generation of greigite.

  15. Deep learning with Python

    CERN Document Server

    Chollet, Francois

    2018-01-01

    DESCRIPTION Deep learning is applicable to a widening range of artificial intelligence problems, such as image classification, speech recognition, text classification, question answering, text-to-speech, and optical character recognition. Deep Learning with Python is structured around a series of practical code examples that illustrate each new concept introduced and demonstrate best practices. By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects. KEY FEATURES • Practical code examples • In-depth introduction to Keras • Teaches the difference between Deep Learning and AI ABOUT THE TECHNOLOGY Deep learning is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more. AUTHOR BIO Francois Chollet is the author of Keras, one of the most widely used libraries for deep learning in Python. He has been working with deep neural ...

  16. Deep learning evaluation using deep linguistic processing

    OpenAIRE

    Kuhnle, Alexander; Copestake, Ann

    2017-01-01

    We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing 'deep' linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value ...

  17. Sediment supply to beaches

    DEFF Research Database (Denmark)

    Aagaard, Troels

    2014-01-01

    Many beaches have been built by an onshore supply of sand from the shoreface, and future long-term coastal evolution critically depends on cross-shore sediment exchange between the upper and the lower shorefaces. Even so, cross-shore sediment supply remains poorly known in quantitative terms...... and this reduces confidence in predictions of long-term shoreline change. In this paper, field measurements of suspended sediment load and cross-shore transport on the lower shoreface are used to derive a model for sediment supply from the lower to the upper shoreface at large spatial and temporal scales. Data...

  18. Sediment Core Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides instrumentation and expertise for physical and geoacoustic characterization of marine sediments.DESCRIPTION: The multisensor core logger measures...

  19. The dirt on sediments

    Science.gov (United States)

    Smith, Loren M.; Euliss, Ned H. "Chip"

    2010-01-01

    In the wetland science field, sediment deposition is often thought of as being beneficial especially when one thinks of coastal estuarine systems. For example, sediments deposited from streams and rivers are necessary to naturally build and maintain tidal marshes. These sediments come from eroded upland soils in the interior of the continent. When these sediments are diverted from natural coastal deposition areas, such as occurs from river channelization, we lose marshes through subsidence as is happening throughout coastal Louisiana. However, the value of eroded soils is all a matter of hydrogeomorphic perspective.

  20. An environmental reconstruction of the sediment infill of the Bogota basin (Columbia) during the last 3 million years from abiotic and biotic proxies

    NARCIS (Netherlands)

    Torres, V.; Vandenberghe, J.; Hooghiemstra, H.

    2005-01-01

    The lacustrine sediments of the intramontane basin of Bogotá (4°N, 2550 m altitude) were collected in a 586-m deep core Funza-2. Absolute datings show sediment infill started c. 3.2 Ma and continued almost without interruptions as a result of the balance between tectonic subsidence and sediment

  1. Continental shelf sediment dynamics in the Anthropocene: A global shift

    Science.gov (United States)

    Oberle, Ferdinand K. J.; Puig, Pere; Martin, Jacobo

    2017-04-01

    Recent technological advances in remote sensing and deep marine sampling have revealed the extent and magnitude of the anthropogenic impacts to the seafloor. In particular, bottom trawling, a fishing technique consisting of dragging a net and fishing gear over the seafloor to capture bottom-dwelling living resources has gained attention due to its destructive effects on the seabed. Trawling gear produces acute impacts on biota and the physical substratum of the seafloor by disrupting the sediment column structure, overturning boulders, resuspending sediments and imprinting deep scars on muddy bottoms. Also, the repetitive passage of trawling gear over the same areas creates long-lasting, cumulative impacts that modify the cohesiveness and texture of sediments. It can be asserted nowadays that due to its recurrence, mobility and wide geographical extent, industrial trawling has become a major force driving seafloor change and affecting not only its physical integrity on short spatial scales but also imprinting measurable modifications to the geomorphology of entire continental margins.

  2. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Wenzhoefer, Frank; Middelboe, Mathias

    2013-01-01

    Microbes control the decomposition of organic matter in marine sediments. Decomposition, in turn, contributes to oceanic nutrient regeneration and influences the preservation of organic carbon(1). Generally, rates of benthic decomposition decline with increasing water depth, although given the vast...... extent of the abyss, deep-sea sediments are quantitatively important for the global carbon cycle(2,3). However, the deepest regions of the ocean have remained virtually unexplored(4). Here, we present observations of microbial activity in sediments at Challenger Deep in the Mariana Trench in the central...

  3. Sediment transport through self-adjusting, bedrock-walled waterfall plunge pools

    Science.gov (United States)

    Scheingross, Joel S.; Lamb, Michael P.

    2016-05-01

    Many waterfalls have deep plunge pools that are often partially or fully filled with sediment. Sediment fill may control plunge-pool bedrock erosion rates, partially determine habitat availability for aquatic organisms, and affect sediment routing and debris flow initiation. Currently, there exists no mechanistic model to describe sediment transport through waterfall plunge pools. Here we develop an analytical model to predict steady-state plunge-pool depth and sediment-transport capacity by combining existing jet theory with sediment transport mechanics. Our model predicts plunge-pool sediment-transport capacity increases with increasing river discharge, flow velocity, and waterfall drop height and decreases with increasing plunge-pool depth, radius, and grain size. We tested the model using flume experiments under varying waterfall and plunge-pool geometries, flow hydraulics, and sediment size. The model and experiments show that through morphodynamic feedbacks, plunge pools aggrade to reach shallower equilibrium pool depths in response to increases in imposed sediment supply. Our theory for steady-state pool depth matches the experiments with an R2 value of 0.8, with discrepancies likely due to model simplifications of the hydraulics and sediment transport. Analysis of 75 waterfalls suggests that the water depths in natural plunge pools are strongly influenced by upstream sediment supply, and our model provides a mass-conserving framework to predict sediment and water storage in waterfall plunge pools for sediment routing, habitat assessment, and bedrock erosion modeling.

  4. Uranium Phases in Contaminated Sediments Below Hanford's U Tank Farm

    International Nuclear Information System (INIS)

    Um, Wooyong; Wang, Zheming; Serne, R. Jeffrey; Williams, Benjamin D.; Brown, Christopher F.; Dodge, Cleveland J.; Francis, Arokiasamy J.

    2009-01-01

    Macroscopic and spectroscopic investigations (XAFS, XRF and TRLIF) on Hanford contaminated vadose zone sediments from the U-tank farm showed that U(VI) exists as different surface phases as a function of depth below ground surface (bgs). Dominant U(VI) silicate precipitates (boltwoodite and uranophane) were present in shallow-depth sediments (15-16 m bgs). In the intermediate depth sediments (20-25 m bgs), adsorbed U(VI) phases dominated but small amounts of surface precipitates consisting of polynuclear U(VI) surface complex were also identified. The deep depth sediments (> 28 m bgs) showed no signs of contact with tank wastes containing Hanford-derived U(VI), but natural uranium solid phases were observed. Most of the U(VI) was preferentially associated with the silt and clay size fractions and showed strong correlation with Ca, especially for the precipitated U(VI) silicate phase in the shallow depth sediments. Because U(VI) silicate precipitates dominate the U(VI) phases in the shallow depth sediments, macroscopic (bi)carbonate leaching should result in U(VI) releases from both desorption and dissolution processes. Having several different U(VI) surface phases in the Hanford contaminated sediments indicates that the U(VI) release mechanism could be complicated and that detailed characterization of the sediments would be needed to estimate U(VI) fate and transport in vadose zone

  5. Desulfotomaculum spp. and related Gram-positive sulfate-reducing bacteria in deep subsurface environments.

    Directory of Open Access Journals (Sweden)

    Thomas eAullo

    2013-12-01

    Full Text Available Gram-positive spore-forming sulfate reducers and particularly members of the genus Desulfotomaculum are commonly found in the subsurface biosphere by culture based and molecular approaches. Due to their metabolic versatility and their ability to persist as endospores. Desulfotomaculum spp. are well adapted for colonizing environments through a slow sedimentation process. Because of their ability to grow autotrophically (H2/CO2 and produce sulfide or acetate, these microorganisms may play key roles in deep lithoautotrophic microbial communities. Available data about Desulfotomaculum spp. and related species from studies carried out from deep freshwater lakes, marine sediments, oligotrophic and organic rich deep geological settings are discussed in this review.

  6. Widespread Anthropogenic Nitrogen in Northwestern Pacific Ocean Sediment.

    Science.gov (United States)

    Kim, Haryun; Lee, Kitack; Lim, Dhong-Il; Nam, Seung-Il; Kim, Tae-Wook; Yang, Jin-Yu T; Ko, Young Ho; Shin, Kyung-Hoon; Lee, Eunil

    2017-06-06

    Sediment samples from the East China and Yellow seas collected adjacent to continental China were found to have lower δ 15 N values (expressed as δ 15 N = [ 15 N: 14 N sample / 15 N: 14 N air - 1] × 1000‰; the sediment 15 N: 14 N ratio relative to the air nitrogen 15 N: 14 N ratio). In contrast, the Arctic sediments from the Chukchi Sea, the sampling region furthest from China, showed higher δ 15 N values (2-3‰ higher than those representing the East China and the Yellow sea sediments). Across the sites sampled, the levels of sediment δ 15 N increased with increasing distance from China, which is broadly consistent with the decreasing influence of anthropogenic nitrogen (N ANTH ) resulting from fossil fuel combustion and fertilizer use. We concluded that, of several processes, the input of N ANTH appears to be emerging as a new driver of change in the sediment δ 15 N value in marginal seas adjacent to China. The present results indicate that the effect of N ANTH has extended beyond the ocean water column into the deep sedimentary environment, presumably via biological assimilation of N ANTH followed by deposition. Further, the findings indicate that N ANTH is taking over from the conventional paradigm of nitrate flux from nitrate-rich deep water as the primary driver of biological export production in this region of the Pacific Ocean.

  7. Uranium in pore waters from North Atlantic (GME and Southern Nares Abyssal Plain) sediments

    International Nuclear Information System (INIS)

    Santschi, P.H.; Bajo, C.; Mantovani, M.; Orciuolo, D.; Cranston, R.E.; Bruno, J.

    1988-01-01

    Here we report the measurement of low uranium concentrations in composite pore-water samples from the uppermost 20-30 m of deep-sea abyssal plain sediments from the Great Meteor East and Southern Nares Abyssal Plains Area. Many values are the lowest uranium concentrations ever measured in the pore waters of deep-sea sediments. Our lowest value, 0.05 ± 0.01 p.p.b., is orders of magnitude lower than the predicted solubility of U0 2 or U 4 0 9 . The uranium concentrations obtained from both sites correlate closely with measured redox potentials in the sediments. The low mobility of uranium in pore waters from turbiditic deep-sea abyssal plain sediments, which can be deduced from these measurements, has important implications for the sub-seabed disposal of high-level radioactive waste, and for marine geochemistry of uranium. (author)

  8. Corroded planktic foraminifer (Globorotalia menardii) in the southern Bay of Bengal sediment trap sample of February 1992

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, R.; Guptha, M.V.S.

    SEDIMENT TRAP 227 Fig.2. (a) Time series data of Total planktic foraminiferal flux [Yl axis Deep trap/ Left axis; Y2 axis Shallow trap/Right axis] for the period Feb.05, 1992 to Nov.20, 1992. (b) Time series data of Globorotalia menardii flux [Yl Deep... trap/ Left axis; Y2 axis Shallow trap /Right axis] for the period Feb.05, 1992 to Nov.20, 1992. (Note only 07 samples collected by the deep sediment trap). The Dotted Line indicates Deep trap;.Solid Line indicates Shallow trap. tests in plankton...

  9. Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma

    Science.gov (United States)

    Dutkiewicz, A.; Müller, R. D.; Wang, X.; O'Callaghan, S.; Cannon, J.; Wright, N. M.

    2017-12-01

    Tracing sedimentation through time on existing and vanished seafloor is imperative for constraining long-term eustasy and for calculating volumes of subducted deep-sea sediments that contribute to global geochemical cycles. We present regression algorithms that incorporate the age of the ocean crust and the mean distance to the nearest passive margin to predict sediment thicknesses and long-term decompacted sedimentation rates since 200 Ma. The mean sediment thickness decreases from ˜220 m at 200 Ma to a minimum of ˜140 m at 130 Ma, reflecting the replacement of old Panthalassic ocean floor with young sediment-poor mid-ocean ridges, followed by an increase to ˜365 m at present-day. This increase reflects the accumulation of sediments on ageing abyssal plains proximal to passive margins, coupled with a decrease in the mean distance of any parcel of ocean crust to the nearest passive margin by over 700 km, and a doubling of the total passive margin length at present-day. Mean long-term sedimentation rates increase from ˜0.5 cm/ky at 160 Ma to over 0.8 cm/ky today, caused by enhanced terrigenous sediment influx along lengthened passive margins, superimposed by the onset of ocean-wide carbonate sedimentation. Our predictive algorithms, coupled to a plate tectonic model, provide a framework for constraining the seafloor sediment-driven eustatic sea-level component, which has grown from ˜80 to 210 m since 120 Ma. This implies a long-term sea-level rise component of 130 m, partly counteracting the contemporaneous increase in ocean basin depth due to progressive crustal ageing.

  10. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  11. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.

  12. Dynamics of Cohesive Sediments

    DEFF Research Database (Denmark)

    Johansen, Claus

    The present thesis considers the transport processes of cohesive sediments. The cohesive sediment used in the laboratory experiments was kaolinite, a clay mineral, in order to be able to reproduce the individual experiments. In the first part of the thesis, the theoretical considerations regarding...

  13. Sediments and fossiliferous rocks from the eastern side of the Tongue of the Ocean, Bahamas

    Science.gov (United States)

    Gibson, T.G.; Schlee, J.

    1967-01-01

    In August 1966, two dives were made with the deep-diving submersible Alvin along the eastern side of the Tongue of the Ocean to sample the rock and sediment. Physiographically, the area is marked by steep slopes of silty carbonate sediment and precipitous rock cliffs dusted by carbonate debris. Three rocks, obtained from the lower and middle side of the canyon (914-1676 m depth), are late Miocene-early Pliocene to late Pleistocene-Recent in age; all are deep-water pelagic limestones. They show (i) that the Tongue of the Ocean has been a deep-water area at least back into the Miocene, and (ii) that much shallow-water detritus has been swept off neighbouring banks to be incorporated with the deep-water fauna in the sediment. ?? 1967 Pergamon Press Ltd.

  14. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  15. Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces

    Science.gov (United States)

    Pfannkuche, Olaf; Lochte, Karin

    1993-04-01

    Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.

  16. Experimental studies on behaviour of long-lived radionuclides in relation to deep-ocean disposal of nuclear waste

    International Nuclear Information System (INIS)

    Aston, S.R.; Fowler, S.W.

    1984-01-01

    Laboratory experiments have been carried out to investigate the interactions of long-lived radionuclides with sediments from present or potential deep-ocean radioactive waste disposal sites. The studies have been concerned with both geochemical aspects and sediment/animal radioecology. Examples drawn from the comparative behaviour of technetium and three transuranium nuclides (neptunium, plutonium and americium) are presented in relation to their uptake from sea water by deep-ocean sediments, ease of desorption and transfer from contaminated sediments to benthic invertebrates. The results provide information for the prediction of the behaviour of long-lived radionuclides in the deep-sea water/sediment boundary after their release from wastes. (author)

  17. Comparison. US P-61 and Delft sediment samplers

    Science.gov (United States)

    Beverage, Joseph P.; Williams, David T.

    1990-01-01

    The Delft Bottle (DB) is a flow-through device designed by the Delft Hydraulic Laboratory (DHL), The Netherlands, to sample sand-sized sediment suspended in streams. The US P-61 sampler was designed by the Federal Interagency Sedimentation Project (FISP) at the St. Anthony Falls Hydraulic Laboratory, Minneapolis, Minnesota, to collect suspended sediment from deep, swift rivers. The results of two point-sampling tests in the United States, the Mississippi River near Vicksburg, Mississippi, in 1983 and the Colorado River near Blythe, California, in 1984, are provided in this report. These studies compare sand-transport rates, rather than total sediment-transport rates, because fine material washes through the DB sampler. In the United States, the commonly used limits for sand-sized material are 0.062 mm to 2.00 mm (Vanoni 1975).

  18. Biostratigraphic analysis of the top layer of sediment cores from the reference and test sites of the INDEX area

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.

    Radiolarian fossil study in the sediment cores collected during the pre- and postdisturbance cruises of the Environmental Impact Assessment (EIA) Indian Ocean Experiment (INDEX) program of deep sea mining in the Central Indian Ocean Basin suggests a...

  19. WHATS-3: An improved flow-through multi-bottle fluid sampler for deep-sea geofluid research

    Science.gov (United States)

    Miyazaki, Junichi; Makabe, Akiko; Matsui, Yohei; Ebina, Naoya; Tsutsumi, Saki; Ishibashi, Jun-ichiro; Chen, Chong; Kaneko, Sho; Takai, Ken; Kawagucci, Shinsuke

    2017-06-01

    Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information towards elucidating the physical, chemical and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each) is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean and three in Okinawa Trough (max. depth 3,300 m). Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high-quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  20. WHATS-3: An Improved Flow-Through Multi-bottle Fluid Sampler for Deep-Sea Geofluid Research

    Directory of Open Access Journals (Sweden)

    Junichi Miyazaki

    2017-06-01

    Full Text Available Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information toward elucidating the physical, chemical, and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean, and three in Okinawa Trough (max. depth 3,300 m. Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  1. Contribution to the study of sedimentation rates in some french Polynesian lakes and lagoon

    International Nuclear Information System (INIS)

    Serra, C.; Poletiko, C.; Badie, C.

    1991-03-01

    210 Pb measurements using 210 Po deposition technique were performed in several marine and lacustrine sediments of French Polynesia to determine sedimentation rates in lakes and lagoons. Some results in terrigeneous sediments were acceptable and permit rate measurements; on the contrary other sediments, especially coral sands provided a 210 Pb/ 226 Ra disequilibrium (0.33 to 0.69). The occurring phenomena seem to be related to 222 Rn scavenging and geothermal endoupwelling which induces 226 Ra enhancement; this leads to the same 210 Pb/ 226 Ra disequilibrium as in deep ocean waters as described, for instance by Thomson and Turekian (1976) in an upwelling zone on Peru coasts [fr

  2. La géochimie organique des sédiments marins profonds. Mission Orgon 4, 1978 (golfe d'Aden, mer d'Oman. Généralités et résultats obtenus à la mer Organic Geochemistry of Deep Marine Sediments. Organ 4 Mission, 1978 (Gulf of Aden, Sea of Oman. General and Results Obtained At Sea

    Directory of Open Access Journals (Sweden)

    Pelet R.

    2006-11-01

    populations microbiennes a été tenté, par mises en culture sous pression correspondant à la pression de fond, pour essayer de déceler une éventuelle présence de formes barophiles. Four separate articles deal with: 1 general comments on the ORGON 4 mission, 2 the geographic setting and the general geology as well as a description of the tore samples taken, 3 the biochemistry of the waters, and 4 microbiology. Several environments were encountered and investigated, ranging from a lagoon (Ghubbet el Kharab to a deep fault trough (Alula-Fartak trough. Two radials, one in the Arabian Sea and the other in the Gulf of Oman, were used to follow the evolution of their characteristics from coastal zones down to the abyssal plain. The location of core-sampling sites was studied so as to avoid zones with extensive detrital influx (Indus cone. The results given indicate that this goal has certainly been attained and, in particular, that the organic matter in the sediments is massively of autochthonous marine origin (planktonic. An analysis of the waters came up with the same result that had previously been found, i. e. the existence in medium depths (800 to 1800 m of a very pronounced minimum-oxygen-content zone (= 1 ml /I corresponding to sedimentation environments with a clearcut reducing nature and a relatively high organic matter content. More generally, the organic carbon contents of the sediment samples taken during ORGON 4 are the highest of all those measured in the ORGON missions, for both mean and maximum values. This is certainly linked to the exceptional primary productivity of the underlying waters. Microbiological analyses did not find the spectacular phenomena found in ORGON 3, i. e. layers with exceptionally abundant microflora interbedded with sterile layers in the depth of the cores. Nonetheless, there were tendencies to acquire such a nature in some levels. Mention should be made of an attempt to make a more exhaustive investigation of microbial populations by

  3. Deep Vein Thrombosis

    African Journals Online (AJOL)

    OWNER

    Deep Vein Thrombosis: Risk Factors and Prevention in Surgical Patients. Deep Vein ... preventable morbidity and mortality in hospitalized surgical patients. ... the elderly.3,4 It is very rare before the age ... depends on the risk level; therefore an .... but also in the post-operative period. ... is continuing uncertainty regarding.

  4. Molecular isotopic evidence for anaerobic oxidation of methane in deep-sea hydrothermal vent environment in Okinawa Trough

    Science.gov (United States)

    Uchida, M.; Takai, K.; Inagaki, F.

    2003-04-01

    Large amount of methane in anoxic marine sediments as well as cold seeps and hydrothermal vents is recycled through for an anoxic oxidation of methane processes. Now that combined results of field and laboratory studies revealed that microbiological activity associated with syntrophic consortium of archaea performing reversed methanogenesis and sulfate-reducing bacteria is significant roles in methane recycling, anaerobic oxidation of methane (AOM). In this study, we examined the diversity of archaeal and bacterial assemblages of AOM using compound-specific stable carbon isotopic and phylogenetic analyses. "Iheya North" in Okinawa Trough is sediment-rich, back arc type hydrothermal system (27^o47'N, 126^o53'E). Sediment samples were collected from three sites where are "bubbling sites", yellow-colored microbial mats are formed with continuous bubbling from the seafloor bottom, vent mussel's colonies site together with slowly venting and simmering, and control site off 100 m distance from thermal vent. This subsea floor structure has important effect in the microbial ecosystem and interaction between their activity and geochemical processes in the subseafloor habitats. Culture-independent, molecular biological analysis clearly indicated the presence of thermophilic methanogens in deeper area having higher temperatures and potential activity of AMOs consortium in the shallower area. AMO is composed with sulfate-reducing bacterial components (Desulfosarcina spp.) and anoxic methane oxidizing archaea (ANME-2). These results were consistent with the results of compound-specific carbon analysis of archaeal biomarkers. They showed extremely depleted 13C contents (-80 ppm ˜ -100 ppm), which also appeared to be capable of directly oxidizing methane.

  5. Deep Echo State Network (DeepESN): A Brief Survey

    OpenAIRE

    Gallicchio, Claudio; Micheli, Alessio

    2017-01-01

    The study of deep recurrent neural networks (RNNs) and, in particular, of deep Reservoir Computing (RC) is gaining an increasing research attention in the neural networks community. The recently introduced deep Echo State Network (deepESN) model opened the way to an extremely efficient approach for designing deep neural networks for temporal data. At the same time, the study of deepESNs allowed to shed light on the intrinsic properties of state dynamics developed by hierarchical compositions ...

  6. Bacterial biogeography influenced by shelf-basin exchange in the Arctic surface sediment at the Chukchi Borderland.

    Science.gov (United States)

    Han, Dukki; Nam, Seung-Il; Ha, Ho Kyung; Kim, Hyoungjun; Sadowsky, Michael J; Lee, Yoo Kyung; Hur, Hor-Gil

    2016-02-01

    It has been known that continental shelves around the Arctic Ocean play a major role in the ventilation of the deep basins as a consequence of shelf-basin exchange. In the present study, we found that bacterial assemblage of the surface sediment was different from that of seawater while seawater harboured local bacterial assemblages in response to the Arctic hydrography. This finding suggests that the Arctic seafloor sediments may have distinctive bacterial biogeography. Moreover, the distribution of bacterial assemblages and physicochemical properties in surface sediments changed gradually from the Arctic continental shelf to deep-sea basin. Based on the results, bacterial biogeography in the Arctic seafloor sediments may be influenced by winnowing and re-deposition of surface sediments through the sediment gravity flow. The present study offers a deeper understanding of shelf convection and its role for the construction of bacterial assemblages in the Arctic Ocean. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. 137Cs dating of laminated sediments in Swedish archipelago areas of the Baltic Sea

    International Nuclear Information System (INIS)

    Meili, M.; Jonsson, P.; Carman, R.

    1998-01-01

    In deep off-shore areas of the Baltic Sea, sediment accumulation rates are typically on the order of one or a few millimeters per year, and even less in consolidated sediments, based on laming counts and radiometric dating. In lacustrine and marine basins, the highest sedimentation rates are usually found in the deepest part, since sediments and associated contaminants are known to be gradually 'focused' from shallow to deep areas by resuspension. Accordingly, net sedimentation in coastal areas is usually low or absent due to strong erosion forces. On the other hand, coastal sediments are likely to be important in controlling the fate and turnover of contaminants that are released into coastal waters. Since little is known about the turnover of coastal sediments, in particular for heterogeneous semi-enclosed areas such as the Baltic archipelagos, a study of sediment accumulation rates has been initaited, with a focus on areas where erosion is likely to be minimal. The study is part of a project focusing on the relationship between eutrophication and contaminant cycling (EUCON). 88 sediment cores were collected during summer 1996 from accumulation bottoms of 18 more or less protected bays in archipalgo areas along the swedish coast of the Baltic Sea

  8. Sediment Resuspension Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — The full report on sediment resuspension in drinking water storage tanks and a link to an animation of results. This dataset is associated with the following...

  9. Offshore Surficial Sediment

    Data.gov (United States)

    California Natural Resource Agency — This data layer (PAC_EXT.txt and PAC_PRS.txt) represents two of five point coverages of known sediment samples, inspections, and probes from the usSEABED data...

  10. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: An example from the Clarion–Clipperton Fracture Zone

    NARCIS (Netherlands)

    Mewes, K.; Mogollón, J.M.; Picard, A.; Rühlemann, C.; Eisenhauer, A.; Kuhn, T.; Ziebis, W.; Kasten, S.

    2016-01-01

    The Clarion–Clipperton Fracture Zone (CCFZ) in the Pacific Ocean is characterized by organic carbon-starved sediments and meter-scale oxygen penetration into the sediment. Furthermore, numerous seamounts occur throughout its deep-sea plain, which may serve as conduits for low-temperature

  11. In-situ detection of microbial life in the deep biosphere in igneous ocean crust

    Directory of Open Access Journals (Sweden)

    Everett Cosio Salas

    2015-11-01

    Full Text Available The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in-situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  12. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    Science.gov (United States)

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  13. Underwater Sediment Sampling Research

    Science.gov (United States)

    2017-01-01

    impacted sediments was found to be directly related to the concentration of crude oil detected in the sediment pore waters . Applying this mathematical...Kurt.A.Hansen@uscg.mil. 16. Abstract (MAXIMUM 200 WORDS ) The USCG R&D Center sought to develop a bench top system to determine the amount of total...scattered. The approach here is to sample the interstitial water between the grains of sand and attempt to determine the amount of oil in and on

  14. Deep learning in bioinformatics.

    Science.gov (United States)

    Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh

    2017-09-01

    In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Stratigraphic modeling of organic matter distribution and preservation in deep marine environment. Case of a margin with pelagic sedimentation: the coastal upwelling system of Benguela (Namibia, Western South Africa); Modelisation stratigraphique de la distribution et de la preservation de la matiere organique en milieu marin profond. Cas d'une marge a sedimentation pelagique: systeme d'upwelling cotier du Benguela (Namibie, Afrique du Sud Ouest)

    Energy Technology Data Exchange (ETDEWEB)

    Tranier, J.

    2006-06-15

    In order to develop stratigraphic modelling of organic matter distribution and preservation in marine environment, the methodology established, uses three modelling softwares. We make use of a 3D stratigraphic model, DIONISOS, which allows to build margin thanks to sediment input and transport and thanks to basin deformation. Biogenic sediments are introduced in DIONISOS after their production modelling by two coupled models, ROMS and NPZD. ROMS is a physical model which allows to simulate upwelling dynamics thanks to wind strength exerted on ocean surface and to margin morphology. NPZD models relationships (photosynthesis, grazing, excretion, mortality, re-mineralization, etc.) between four boxes: nutrients, phytoplankton, zooplankton and detritus. Nutrients availability (model inputs) and flux intensity between boxes are controlled by upwelling dynamics, i-e ROMS. Thanks to these three softwares, organic matter can be modelled from its production to its fossilization considering the influence of various factors as upwelling intensity, nutrients availability, chemical compounds of water mass and oxygenation of water column, species competition (diatoms and coccolithophoridae), margin morphology and eustatism. After testing sensibility of the various parameters of the three models, we study their capacity for reproduce biogenic sedimentation and simulate climatic cycle effect on organic matter distribution on a passive continental margin: the Namibian margin (Southwest Africa). They are validated comparing results with core data from this margin. (author)

  16. Biota sediment concentration ratio (CRs-b) for fishes of Rana Pratap Sagar Lake, Rawatbhata

    International Nuclear Information System (INIS)

    Goyal, S.K.; Srivastava, A.P.; Jain, A.K.; Meenal, Balram; Tiwari, S.N.; Ravi, P.M.; Tripathi, R.M.

    2018-01-01

    Radionuclides dissolved in water can be adsorbed by bottom/shore sediment transferring it to the deep sediment layers. These adsorbed radionuclides can be remobilized and be available again for uptake by freshwater biota. The biota sediment concentration ratio (CR s-b ) is the ratio of the concentration of a radionuclide in an organism (C b ) on a fresh weight basis to the radionuclide concentration measured in the sediment (C sediment ). Using the data of 137 Cs activity in fish and shore sediment, CR s-b was calculated for fish samples of Rana Pratap Sagar (RPS) Lake, Rawatbhata. This value can be applied in predictive models to calculate radionuclide concentration in fish samples

  17. Organic matter degradation in Chilean sediments - following nature's own degradation experiment

    DEFF Research Database (Denmark)

    Langerhuus, Alice Thoft; Niggemann, Jutta; Lomstein, Bente Aagaard

    ORGANIC MATTER DEGRADATION IN CHILEAN SEDIMENTS – FOLLOWING NATURE’S OWN DEGRADATION EXPERIMENT Degradation of sedimentary organic matter was studied at two stations from the shelf of the Chilean upwelling region. Sediment cores were taken at 1200 m and 800 m water depth and were 4.5 m and 7.5 m...... in length, respectively. The objective of this study was to assess the degradability of the organic matter from the sediment surface to the deep sediments. This was done by analysing amino acids (both L- and D-isomers) and amino sugars in the sediment cores, covering a timescale of 15.000 years. Diagenetic...... indicators (percentage of carbon and nitrogen present as amino acid carbon and nitrogen, the ratio between a protein precursor and its non-protein degradation product and the percentage of D-amino acids) revealed ongoing degradation in these sediments, indicating that microorganisms were still active in 15...

  18. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    DEFF Research Database (Denmark)

    Stevens, Thomas; Paull, C.K.; Ussler, W., III

    2014-01-01

    luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry...... dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL......While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated...

  19. Deep Water Survey Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The deep water biodiversity surveys explore and describe the biodiversity of the bathy- and bentho-pelagic nekton using Midwater and bottom trawls centered in the...

  20. Deep Space Habitat Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Deep Space Habitat was closed out at the end of Fiscal Year 2013 (September 30, 2013). Results and select content have been incorporated into the new Exploration...

  1. Deep Learning in Neuroradiology.

    Science.gov (United States)

    Zaharchuk, G; Gong, E; Wintermark, M; Rubin, D; Langlotz, C P

    2018-02-01

    Deep learning is a form of machine learning using a convolutional neural network architecture that shows tremendous promise for imaging applications. It is increasingly being adapted from its original demonstration in computer vision applications to medical imaging. Because of the high volume and wealth of multimodal imaging information acquired in typical studies, neuroradiology is poised to be an early adopter of deep learning. Compelling deep learning research applications have been demonstrated, and their use is likely to grow rapidly. This review article describes the reasons, outlines the basic methods used to train and test deep learning models, and presents a brief overview of current and potential clinical applications with an emphasis on how they are likely to change future neuroradiology practice. Facility with these methods among neuroimaging researchers and clinicians will be important to channel and harness the vast potential of this new method. © 2018 by American Journal of Neuroradiology.

  2. Deep inelastic lepton scattering

    International Nuclear Information System (INIS)

    Nachtmann, O.

    1977-01-01

    Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de

  3. Migration of uranium daughter radionuclides in natural sediments

    International Nuclear Information System (INIS)

    Colley, S.; Thomson, J.

    1991-01-01

    An irregular concentration/depth profile of uranium in deep-sea turbidities, previously elucidated, has been exploited to obtain in-situ effective diffusion coefficients for the long-lived members of the 238 U natural series. The findings are relevant to the assessment of deep-sea sediments as potential repositories for high-level radioactive waste, because waste actinides decay through the same chains of daughter radionuclides as natural actinides. This work was part of the CEC Mirage project-Second phase, Natural analogues research area

  4. Neuromorphic Deep Learning Machines

    OpenAIRE

    Neftci, E; Augustine, C; Paul, S; Detorakis, G

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Back Propagation (BP) rule, often relies on the immediate availability of network-wide...

  5. Pathogenesis of deep endometriosis.

    Science.gov (United States)

    Gordts, Stephan; Koninckx, Philippe; Brosens, Ivo

    2017-12-01

    The pathophysiology of (deep) endometriosis is still unclear. As originally suggested by Cullen, change the definition "deeper than 5 mm" to "adenomyosis externa." With the discovery of the old European literature on uterine bleeding in 5%-10% of the neonates and histologic evidence that the bleeding represents decidual shedding, it is postulated/hypothesized that endometrial stem/progenitor cells, implanted in the pelvic cavity after birth, may be at the origin of adolescent and even the occasionally premenarcheal pelvic endometriosis. Endometriosis in the adolescent is characterized by angiogenic and hemorrhagic peritoneal and ovarian lesions. The development of deep endometriosis at a later age suggests that deep infiltrating endometriosis is a delayed stage of endometriosis. Another hypothesis is that the endometriotic cell has undergone genetic or epigenetic changes and those specific changes determine the development into deep endometriosis. This is compatible with the hereditary aspects, and with the clonality of deep and cystic ovarian endometriosis. It explains the predisposition and an eventual causal effect by dioxin or radiation. Specific genetic/epigenetic changes could explain the various expressions and thus typical, cystic, and deep endometriosis become three different diseases. Subtle lesions are not a disease until epi(genetic) changes occur. A classification should reflect that deep endometriosis is a specific disease. In conclusion the pathophysiology of deep endometriosis remains debated and the mechanisms of disease progression, as well as the role of genetics and epigenetics in the process, still needs to be unraveled. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Challenging oil bioremediation at deep-sea hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Alberto Scoma

    2016-08-01

    Full Text Available The Deepwater Horizon (DWH accident has brought oil contamination of deep-sea environments to worldwide attention. The risk for new deep-sea spills is not expected to decrease in the future, as political pressure mounts to access deep-water fossil reserves, and poorly tested technologies are used to access oil. This also applies to the response to oil-contamination events, with bioremediation the only (biotechnology presently available to combat deep-sea spills. Many questions about the fate of petroleum-hydrocarbons at deep-sea remain unanswered, as much as the main constraints limiting bioremediation under increased hydrostatic pressures and low temperatures. The microbial pathways fueling oil take up are unclear, and the mild upregulation observed for beta-oxidation-related genes in both water and sediments contrasts with the high amount of alkanes present in the spilled-oil. The fate of solid alkanes (tar and that of hydrocarbons degradation rates was largely overlooked, as the reason why the most predominant hydrocarbonoclastic genera were not enriched at deep-sea, despite being present at hydrocarbon seeps at the Gulf of Mexico. This mini-review aims at highlighting the missing information in the field, proposing a holistic approach where in situ and ex situ studies are integrated to reveal the principal mechanisms accounting for deep-sea oil bioremediation.

  7. Sediments in Arctic sea ice: Implications for entrainment, transport and release

    Science.gov (United States)

    Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn

    1994-01-01

    maximum in sea ice sediment samples repeatedly occurred between 81??N and 83??N along the Arctic 91 transect, indicating a rather stable and narrow smectite rich ice drift stream of the Transpolar Drift. The smectite concentrations are comparable to those found in both Laptev Sea shelf sediments and anchor ice sediments, pointing to this sea as a potential source area for sea ice sediments. In the central Arctic Ocean sea ice clay mineralogy is significantly different from deep-sea clay mineral distribution patterns. The contribution of sea ice sediments to the deep sea is apparently diluted by sedimentary material provided by other transport mechanisms. ?? 1994.

  8. Sediment impacts on marine sponges.

    Science.gov (United States)

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Bennett, Holly; Marlow, Joseph; Shaffer, Megan

    2015-05-15

    Changes in sediment input to marine systems can influence benthic environments in many ways. Sponges are important components of benthic ecosystems world-wide and as sessile suspension feeders are likely to be impacted by changes in sediment levels. Despite this, little is known about how sponges respond to changes in settled and suspended sediment. Here we review the known impacts of sedimentation on sponges and their adaptive capabilities, whilst highlighting gaps in our understanding of sediment impacts on sponges. Although the literature clearly shows that sponges are influenced by sediment in a variety of ways, most studies confer that sponges are able to tolerate, and in some cases thrive, in sedimented environments. Critical gaps exist in our understanding of the physiological responses of sponges to sediment, adaptive mechanisms, tolerance limits, and the particularly the effect of sediment on early life history stages. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sedimentation problems and solutions

    International Nuclear Information System (INIS)

    Williams, D.T.

    1991-01-01

    Roseires Dam and reservoir are located in Sudan, Africa on the Blue Nile River. The hydropower from the reservoir provides approximately 80% of the power used in Sudan, thus having a tremendous economic impact on the country. The reservoir was first impounded in 1966 and has been filled annually since then. The Blue Nile has historically been known to carry heavy sediment loads which is associated with erosion from overgrazing in Ethiopia, the Blue Nile's headwaters. During the flood season, the dam's turbine intakes become blocked with debris and sediment. After a severe blockage in 1981, which prevented hydropower generation for several days, consultants from USAID were asked to make recommendations on reducing the sediment and debris impacts on reservoir operations. This led to debris clearing and dredging equipment acquisitions in 1982. In 1988, blockage occurred again during the flood season. This writer was asked by the World Bank to travel to Sudan, investigate the sediment and debris problems, examine the USAID recommendations, comment on potential sediment and debris problems associated with a proposed plan to raise the dam, make additional recommendations, and return to Sudan several times to determine the effectiveness of there recommendations. This paper discussed the results of the aforementioned activities and describes the new recommendations made by this writer

  10. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  11. Why & When Deep Learning Works: Looking Inside Deep Learnings

    OpenAIRE

    Ronen, Ronny

    2017-01-01

    The Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) has been heavily supporting Machine Learning and Deep Learning research from its foundation in 2012. We have asked six leading ICRI-CI Deep Learning researchers to address the challenge of "Why & When Deep Learning works", with the goal of looking inside Deep Learning, providing insights on how deep networks function, and uncovering key observations on their expressiveness, limitations, and potential. The outp...

  12. Mangrove Sedimentation and Response to Relative Sea-Level Rise.

    Science.gov (United States)

    Woodroffe, C D; Rogers, K; McKee, K L; Lovelock, C E; Mendelssohn, I A; Saintilan, N

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions, related primarily to elevation and hydroperiod, influence mangrove distributions; this review considers how these distributions change over time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks, and tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas measurements made using surface elevation tables and marker horizons provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in a continuing decline in their extent throughout the tropics.

  13. Mangrove sedimentation and response to relative sea-level rise

    Science.gov (United States)

    Woodroffe, CD; Rogers, K.; Mckee, Karen L.; Lovelock, CE; Mendelssohn, IA; Saintilan, N.

    2016-01-01

    Mangroves occur on upper intertidal shorelines in the tropics and subtropics. Complex hydrodynamic and salinity conditions influence mangrove distributions, primarily related to elevation and hydroperiod; this review considers how these adjust through time. Accumulation rates of allochthonous and autochthonous sediment, both inorganic and organic, vary between and within different settings. Abundant terrigenous sediment can form dynamic mudbanks; tides redistribute sediment, contrasting with mangrove peat in sediment-starved carbonate settings. Sediments underlying mangroves sequester carbon, but also contain paleoenvironmental records of adjustments to past sea-level changes. Radiometric dating indicates long-term sedimentation, whereas Surface Elevation Table-Marker Horizon measurements (SET-MH) provide shorter perspectives, indicating shallow subsurface processes of root growth and substrate autocompaction. Many tropical deltas also experience deep subsidence, which augments relative sea-level rise. The persistence of mangroves implies an ability to cope with moderately high rates of relative sea-level rise. However, many human pressures threaten mangroves, resulting in continuing decline in their extent throughout the tropics.

  14. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  15. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  16. World wide intercomparison of trace element measurements in marine sediments SD-M-2/TM

    International Nuclear Information System (INIS)

    Mee, L.D.; Oregioni, B.

    1991-09-01

    The accurate and precise determination of trace elements in marine sediments is an important aspect of geochemical studies of the marine environment and for assessing the levels and pathways of marine pollutants. Past intercomparison studies conducted by the Marine Environment Laboratory of IAEA (formerly the International Laboratory of Marine Radioactivity) have focussed upon near-shore marine sediments where trace metal contamination is frequently observed. The present exercise was designed to study a typical oxidised deep-sea sediment characterized by a preponderance of fine particle clays. Analysis of such material is a routine matter for most geochemists but represents a ''baseline sample'' for marine pollution chemists. The present exercise represented a unique opportunity for chemists worldwide to intercompare their analytical methodologies for deep-sea sediments. By statistically examining the data from this study, the material can be certified for future use as a reference material - apparently the only one of its kind available throughout the world. 6 refs, figs and tabs

  17. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    Science.gov (United States)

    Fredrickson, J K; Balkwill, D L; Romine, M F; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  18. Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK

    Science.gov (United States)

    Love, Katherine B; Hallet, Bernard; Pratt, Thomas L.; O'Neel, Shad

    2016-01-01

    To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.

  19. Tracing the sources of stream sediments by Pb isotopes and trace elements

    International Nuclear Information System (INIS)

    Kyung-Seok Ko; Jae Gon Kim; Kyoochul Ha; Kil Yong Lee

    2012-01-01

    The objective of this research is to trace the sources of stream sediments in a small watershed influenced by anthropogenic and lithogenic origins identified by the spatial distributions and temporal variations of stream sediments using geochemical interpretation of the stable and radiogenic isotopes, major components, and heavy metals data and principal component analysis. To know the effects of both present and past mining, the stream sediments were sampled at the stream tributaries and sediment coring work. The spatial distributions of heavy metals clearly showed the effects of Cu and Pb-Zn mineralization zones at the site. Anthropogenic Pb was elevated at the downstream area by the stream sediments due to an active quarry. The results of principal components analysis also represent the effects of the stream sediments origins, including anthropogenic wastes and the active quarry and lithogenic sediment. Anomalous Cu, indicating the effect of past Guryong mining, was identified at the deep core sediments of 1.80-5.05 m depth. The influence of active quarry was shown in the recently deposited sediments of 210 Pb and stable Pb and Sr isotopes. This study suggests that the chemical studies using radiogenic and stable isotopes and heavy metals and multivariate statistical method are useful tools to discriminate the sources of stream sediments with different origins. (author)

  20. Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

    Science.gov (United States)

    Prouty, Nancy G.; Swarzenski, Pamela; Mienis, Furu; Duineveld, Gerald; Demopoulos, Amanda W.J.; Ross, Steve W.; Brooke, Sandra

    2016-01-01

    Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geochemical tracers (e.g., stable and radio-isotopes, lipid biomarkers, and compound specific isotopes) was measured from monthly sediment trap samples deployed near a high-density deep-coral site in the Viosca Knoll area of the north-central Gulf of Mexico prior to (Oct-2008 to Sept-2009) and after the spill (Oct-10 to Sept-11). Marine (e.g., autochthonous) sources of organic matter dominated the sediment traps in both years, however after the spill, there was a pronounced reduction in marinesourced OM, including a reduction in marine-sourced sterols and n-alkanes and a concomitant decrease in sediment trap organic carbon and pigment flux. Results from this study indicate a reduction in primary production and carbon export to the deep-sea in 2010-2011, at least 6-18 months after the spill started. Whereas satellite observations indicate an initial increase in phytoplankton biomass, results from this sediment trap study define a reduction in primary production and carbon export to the deep-sea community. In addition, a dilution from a low-14C carbon source (e.g., petrocarbon) was detected in the sediment trap samples after the spill, in conjunction with a change in the petrogenic composition. The data presented here fills a critical gap in our knowledge of biogeochemical processes and sub-acute impacts to the deep-sea that ensued after the 2010 DWH spill.

  1. Marine controlled source electromagnetics on the Hikurangi Margin, NZ : coincidence between cold seep sites and electrical resistivity anomalies indicating sub-seafloor gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Schwalenberg, K. [Federal Inst. for Geosciences and Natural Resources, Hannover (Germany); Pecher, I. [Heriot Watt Univ., Edinburgh (United Kingdom). Inst. of Petroleum Engineering; Netzeband, G.; Jegen, M. [IFM-GEOMAR, Kiel (Germany); Port, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology

    2008-07-01

    This study examined the use of marine-controlled source electromagnetic (CSEM) measurements for monitoring the control, release and transformation of methane from gas seep sites and deposits on the Hikurangi Margin near New Zealand. The CSEM experiments were conducted to determine the electrical signature of the gas seeps as a means of identifying the presence of gas hydrate deposits. Data for 4 profiles were obtained and inverted to sub-sea floor resistivities and 1-D layered earth models. An analysis of the data showed a relationship between anomalous resistivities and the location of gas seep sites. Results suggested that concentrated gas hydrates were the cause of the anomalous resistivities. Data obtained from the southeast corner of the North Islands suggested the presence of gas hydrates in the first 100 m of bottom simulating reflector (BSM) data. Seeps were also identified in seismic data that showed faults and high amplitude reflections. A seep site with no resistivity anomalies but with active venting, high heat flow, and seismic fault planes was also identified. The lack of resistive anomalies was attributed to lower concentrations of gas hydrates; strong temporal and spatial variations; and temperature-driven fluid expulsion that hampered gas hydrate formation beneath the vent. The final profile examined in the study demonstrated a single anomaly over a deep, uprising reflective zone cause by both free gas and gas hydrates. 25 refs., 1 tab., 11 figs.

  2. Role of time series sediment traps in understanding the Indian summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Guptha, M.V.S.

    particles or sediment or larger accumulations called marine snow – which are comprised of organic matter, dead organisms, tiny shells, dust particles, minerals etc. These sediment traps are capable of collecting settling particles hourly to yearly time... were demonstrated by Honjo (1982) and Deuser et al. (1983). Analysis of the samples helps in understanding how fast various particulate matter, nutrients etc move from the ocean surface to the deep ocean. Because, these materials are largely used...

  3. Soft-sediment mullions

    Science.gov (United States)

    Ortner, Hugo

    2015-04-01

    In this contribution I describe the appearance, formation and significance of soft-sediment mullions. I use several examples from synorogenic turbidites of the Alps and the Pyrenees to show their appearance in the field. Soft-sediment mullions are elongate, slightly irregular bulges at the base of coarse-grained clastic beds (sand to conglomerate), separated by narrow, elongate flames of fine-grained material (mud) protruding into the coarse-grained bed. Various processes may lead to the formation of such structures: (1) longitudinal furrows parallel to the sediment transport direction may form by spiral motion in flow rolls during sediment transport (Dzulinski, 1966; Dzulinski & Simpson, 1966). (2) Loading combined with downslope movement can produce elongate structures parallelling the dowslope direction (Anketell et al., 1970). (3) Soft-sediment mullions are oriented perpendicular or oblique to the downslope direction, and show evidence of bedding-parallel shortening. Thus, they resemble cuspate-lobate folds or mullions, which are well-known in ductile structural geology (e.g. Urai et al., 2001). Soft-sediment mullions have been observed in two cases: Either bedding-parallel shortening can be achieved by slump processes, or by active tectonic shortening. Slumping is characterized by an alternation of stretching and shortening (e.g. Ortner, 2007; Alsop & Marco 2014), and therefore mullions do overprint or are overprinted by normal faults. In active depositional systems that are subject to tectonic shortening growth strata will form, but sediments already deposited will be shortened during lithification. In some cases, the formation of soft-sediment mullions predates folding, but the most widespread expression of syn-lithification shortening seems to be soft-sediment mullions, that form in the inner arcs of fold hinges. In the examples documented so far, the size of soft-sediment mullions is dependent on the grain-size of the coarse-grained layer, in which the

  4. Quaternary sediments in Rybalsryi quarry of Dnipropetrovsk

    Directory of Open Access Journals (Sweden)

    Manyuk V.V.

    2014-12-01

    Full Text Available The results of a study of the typical section of Quaternary sediments in the Rybalske quarry and first time been reported to shift to the South boundary of the spread of the Dneprovian ice cover. Long-term observation of the geological structure subaerial and subaqueous deposits in Quaternary escarpment quarry clearly demonstrates the exceptional value, integrity, and at the same time, a certain exclusivity individual elements Quaternary section. Middle-upper Pleistocene section of substantially exceeds disclosed in Sazhovka draw, where the stratotype Kodatskiy fossil soil and elevated section of Quaternary sediments. If old Kodak can see only fragments section, an opened side by deep ravines and conditions of use cleared, the Rybalske quarry ledge submitted in one complete section alternation fossil soil horizons and loess - loess from the Dnieper to the modern black soil, and another ledge next to, well the rest of the section is exposed (from Tilihulske to Shyrokynske klimatolite. Established that among the many famous sections subaerial deposits located in the Middle Dnieper in the north-eastern part of the Dnieper-Donets basin, in the Black Sea and the Crimea and studied by the author in different years, and described loess and soil horizons (from the Black Sea to the Dnieper differ markedly lack of connectivity, flowability and friability. It is logical to assume that lithofacies conditions of the thicker subaerial deposits in the wellhead part Samara, where the Rybalske quarry markedly different from existing in these areas. Despite the obvious influence of the Dnieper glacier, direct signs which surround Dnipropetrovs’k north must be other reasons not yet explored. It is worth noting another important feature of the section of Quaternary sediments in fishing career. The above section is characteristic of the north-eastern part of the quarry, while the north, at higher marks of the watershed in the lower parts of thicker Quaternary

  5. Quantifying trail erosion and stream sedimentation with sediment tracers

    Science.gov (United States)

    Mark S. Riedel

    2006-01-01

    Abstract--The impacts of forest disturbance and roads on stream sedimentation have been rigorously investigated and documented. While historical research on turbidity and suspended sediments has been thorough, studies of stream bed sedimentation have typically relied on semi-quantitative measures such as embeddedness or marginal pool depth. To directly quantify the...

  6. Sediment Ksub(d)s and concentration factors for radionuclides in the marine environment

    International Nuclear Information System (INIS)

    1985-01-01

    Both the biological and geochemical processes, which are dependent on the chemical form of the element in question, and the radioactive decay of the nuclide are important parameters in the models used for the calculation of dumping limits for radioactive wastes disposed of in the deep sea. The geochemical processes were not adequately represented in earlier models and only rough approximations of parameters were used in the calculations. This report provides an approach for the calculation of deep-sea sediment distribution coefficients and coastal sediment concentration factors for radionuclides in marine biological materials based, whenever possible, on field data

  7. Auxiliary Deep Generative Models

    DEFF Research Database (Denmark)

    Maaløe, Lars; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2016-01-01

    Deep generative models parameterized by neural networks have recently achieved state-of-the-art performance in unsupervised and semi-supervised learning. We extend deep generative models with auxiliary variables which improves the variational approximation. The auxiliary variables leave...... the generative model unchanged but make the variational distribution more expressive. Inspired by the structure of the auxiliary variable we also propose a model with two stochastic layers and skip connections. Our findings suggest that more expressive and properly specified deep generative models converge...... faster with better results. We show state-of-the-art performance within semi-supervised learning on MNIST (0.96%), SVHN (16.61%) and NORB (9.40%) datasets....

  8. Deep Learning from Crowds

    DEFF Research Database (Denmark)

    Rodrigues, Filipe; Pereira, Francisco Camara

    Over the last few years, deep learning has revolutionized the field of machine learning by dramatically improving the stateof-the-art in various domains. However, as the size of supervised artificial neural networks grows, typically so does the need for larger labeled datasets. Recently...... networks from crowds. We begin by describing an EM algorithm for jointly learning the parameters of the network and the reliabilities of the annotators. Then, a novel general-purpose crowd layer is proposed, which allows us to train deep neural networks end-to-end, directly from the noisy labels......, crowdsourcing has established itself as an efficient and cost-effective solution for labeling large sets of data in a scalable manner, but it often requires aggregating labels from multiple noisy contributors with different levels of expertise. In this paper, we address the problem of learning deep neural...

  9. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration

    Directory of Open Access Journals (Sweden)

    Laura A. Zinke

    2018-06-01

    Full Text Available Cool hydrothermal systems (CHSs are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I, Alphaproteobacteria (Rhodospirillales, Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.

  10. Sediment Buffering and Transport in the Holocene Indus River System

    Science.gov (United States)

    Clift, P. D.; Giosan, L.; Henstock, T.; Tabrez, A. R.; Vanlaningham, S.; Alizai, A. H.; Limmer, D. R.; Danish, M.

    2009-12-01

    Submarine fans are the largest sediment bodies on Earth and potentially hold records of erosion that could be used to assess the response of continents to changing climate in terms of both physical erosion and chemical weathering. However, buffering between the mountain sources and the abyssal plain may make detailed correlation of climate and erosion records difficult. We investigated the nature of sediment transport in the Indus drainage in SW Asia. Through trenching in the flood plain, drilling in the delta and new seismic and coring data from the shelf and canyon we can now constrain sediment transport from source to sink since the Last Glacial Maximum (LGM). The Indus was affected by intensification of the summer monsoon during the Early Holocene and subsequent weakening since ca. 8 ka. Sediment delivery to the delta was very rapid at 12-8 ka, but slowed along with the weakening monsoon. At the LGM erosion in the Karakoram dominated the supply of sandy material, while the proportion of Lesser Himalayan flux increased with strengthening summer rainfall after 12 ka. Total load also increased at that time. Since 5 ka incision of rivers into the upper parts of the flood plain has reworked Lower Holocene sediments, although the total flux slowed. Coring in the Indus canyon shows that sediment has not reached the lower canyon since ca. 7 ka, but that sedimentation has recently been very rapid in the head of the canyon. We conclude that variations in sealevel and terrestrial climate have introduced a lag of at least 7 k.y. into the deep sea fan record and that monsoon strength is a primary control on whether sediment is stored or released in the flood plain.

  11. Mercury contaminated sediment sites—An evaluation of remedial options

    Energy Technology Data Exchange (ETDEWEB)

    Randall, Paul M., E-mail: randall.paul@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268 (United States); Chattopadhyay, Sandip, E-mail: Sandip.Chattopadhyay@tetratech.com [Tetra Tech, Inc., 250 West Court Street, Suite 200W, Cincinnati, OH 45202 (United States)

    2013-08-15

    Mercury (Hg) is a naturally-occurring element that is ubiquitous in the aquatic environment. Though efforts have been made in recent years to decrease Hg emissions, historically-emitted Hg can be retained in the sediments of aquatic bodies where they may be slowly converted to methylmercury (MeHg). Consequently, Hg in historically-contaminated sediments can result in high levels of significant exposure for aquatic species, wildlife and human populations consuming fish. Even if source control of contaminated wastewater is achievable, it may take a very long time, perhaps decades, for Hg-contaminated aquatic systems to reach relatively safe Hg levels in both water and surface sediment naturally. It may take even longer if Hg is present at higher concentration levels in deep sediment. Hg contaminated sediment results from previous releases or ongoing contributions from sources that are difficult to identify. Due to human activities or physical, chemical, or biological processes (e.g. hydrodynamic flows, bioturbation, molecular diffusion, and chemical transformation), the buried Hg can be remobilized into the overlying water. Hg speciation in the water column and sediments critically affect the reactivity (i.e. conversion of inorganic Hg(II) to MeHg), transport, and its exposure to living organisms. Also, geochemical conditions affect the activity of methylating bacteria and its availability for methylation. This review paper discusses remedial considerations (e.g. key chemical factors in fate and transport of Hg, source characterization and control, environmental management procedures, remediation options, modeling tools) and includes practical case studies for cleaning up Hg-contaminated sediment sites. -- Highlights: ► Managing mercury-contaminated sediment sites are challenging to remediate. ► Remediation technologies are making a difference in managing these sites. ► Partitioning plays a dominant role in the distribution of mercury species. ► Mathematical

  12. SULFIDE MINERALS IN SEDIMENTS