WorldWideScience

Sample records for deep ocean mixing

  1. Near-inertial waves and deep ocean mixing

    Science.gov (United States)

    Shrira, V. I.; Townsend, W. A.

    2013-07-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves.

  2. Near-inertial waves and deep ocean mixing

    International Nuclear Information System (INIS)

    Shrira, V I; Townsend, W A

    2013-01-01

    For the existing pattern of global oceanic circulation to exist, there should be sufficiently strong turbulent mixing in the abyssal ocean, the mechanisms of which are not well understood as yet. The review discusses a plausible mechanism of deep ocean mixing caused by near-inertial waves in the abyssal ocean. It is well known how winds in the atmosphere generate near-inertial waves in the upper ocean, which then propagate downwards losing their energy in the process; only a fraction of the energy at the surface reaches the abyssal ocean. An open question is whether and, if yes, how these weakened inertial motions could cause mixing in the deep. We review the progress in the mathematical description of a mechanism that results in an intense breaking of near-inertial waves near the bottom of the ocean and thus enhances the mixing. We give an overview of the present state of understanding of the problem covering both the published and the unpublished results; we also outline the key open questions. For typical ocean stratification, the account of the horizontal component of the Earth's rotation leads to the existence of near-bottom wide waveguides for near-inertial waves. Due to the β-effect these waveguides are narrowing in the poleward direction. Near-inertial waves propagating poleward get trapped in the waveguides; we describe how in the process these waves are focusing more and more in the vertical direction, while simultaneously their group velocity tends to zero and wave-induced vertical shear significantly increases. This causes the development of shear instability, which is interpreted as wave breaking. Remarkably, this mechanism of local intensification of turbulent mixing in the abyssal ocean can be adequately described within the framework of linear theory. The qualitative picture is similar to wind wave breaking on a beach: the abyssal ocean always acts as a surf zone for near-inertial waves. (paper)

  3. Surface water iron supplies in the Southern Ocean sustained by deep winter mixing

    CSIR Research Space (South Africa)

    Tagliabue, A

    2014-04-01

    Full Text Available Low levels of iron limit primary productivity across much of the Southern Ocean. At the basin scale, most dissolved iron is supplied to surfacewaters from subsurface reservoirs, because land inputs are spatially limited. Deep mixing in winter...

  4. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    Science.gov (United States)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  5. Mixed layer depth calculation in deep convection regions in ocean numerical models

    Science.gov (United States)

    Courtois, Peggy; Hu, Xianmin; Pennelly, Clark; Spence, Paul; Myers, Paul G.

    2017-12-01

    Mixed Layer Depths (MLDs) diagnosed by conventional numerical models are generally based on a density difference with the surface (e.g., 0.01 kg.m-3). However, the temperature-salinity compensation and the lack of vertical resolution contribute to over-estimated MLD, especially in regions of deep convection. In the present work, we examined the diagnostic MLD, associated with the deep convection of the Labrador Sea Water (LSW), calculated with a simple density difference criterion. The over-estimated MLD led us to develop a new tool, based on an observational approach, to recalculate MLD from model output. We used an eddy-permitting, 1/12° regional configuration of the Nucleus for European Modelling of the Ocean (NEMO) to test and discuss our newly defined MLD. We compared our new MLD with that from observations, and we showed a major improvement with our new algorithm. To show the new MLD is not dependent on a single model and its horizontal resolution, we extended our analysis to include 1/4° eddy-permitting simulations, and simulations using the Modular Ocean Model (MOM) model.

  6. Parameterization of Mixed Layer and Deep-Ocean Mesoscales Including Nonlinearity

    Science.gov (United States)

    Canuto, V. M.; Cheng, Y.; Dubovikov, M. S.; Howard, A. M.; Leboissetier, A.

    2018-01-01

    In 2011, Chelton et al. carried out a comprehensive census of mesoscales using altimetry data and reached the following conclusions: "essentially all of the observed mesoscale features are nonlinear" and "mesoscales do not move with the mean velocity but with their own drift velocity," which is "the most germane of all the nonlinear metrics."� Accounting for these results in a mesoscale parameterization presents conceptual and practical challenges since linear analysis is no longer usable and one needs a model of nonlinearity. A mesoscale parameterization is presented that has the following features: 1) it is based on the solutions of the nonlinear mesoscale dynamical equations, 2) it describes arbitrary tracers, 3) it includes adiabatic (A) and diabatic (D) regimes, 4) the eddy-induced velocity is the sum of a Gent and McWilliams (GM) term plus a new term representing the difference between drift and mean velocities, 5) the new term lowers the transfer of mean potential energy to mesoscales, 6) the isopycnal slopes are not as flat as in the GM case, 7) deep-ocean stratification is enhanced compared to previous parameterizations where being more weakly stratified allowed a large heat uptake that is not observed, 8) the strength of the Deacon cell is reduced. The numerical results are from a stand-alone ocean code with Coordinated Ocean-Ice Reference Experiment I (CORE-I) normal-year forcing.

  7. The Vertical Profile of Ocean Mixing

    Science.gov (United States)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  8. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-12-22

    roughly 28°S. The second is the Hawaiian Island Chain, extending to Midway Island at 28°N, 177°W and finally the Emperor Seamount chain running due...dimension array centered near Ascension. The climatology ocean (WOA09) showed very little seasonal dependence or change from the geodesic and this is

  9. The deep ocean under climate change

    Science.gov (United States)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  10. Deep ocean model penetrator experiments

    International Nuclear Information System (INIS)

    Freeman, T.J.; Burdett, J.R.F.

    1986-01-01

    Preliminary trials of experimental model penetrators in the deep ocean have been conducted as an international collaborative exercise by participating members (national bodies and the CEC) of the Engineering Studies Task Group of the Nuclear Energy Agency's Seabed Working Group. This report describes and gives the results of these experiments, which were conducted at two deep ocean study areas in the Atlantic: Great Meteor East and the Nares Abyssal Plain. Velocity profiles of penetrators of differing dimensions and weights have been determined as they free-fell through the water column and impacted the sediment. These velocity profiles are used to determine the final embedment depth of the penetrators and the resistance to penetration offered by the sediment. The results are compared with predictions of embedment depth derived from elementary models of a penetrator impacting with a sediment. It is tentatively concluded that once the resistance to penetration offered by a sediment at a particular site has been determined, this quantity can be used to sucessfully predict the embedment that penetrators of differing sizes and weights would achieve at the same site

  11. Climate, carbon cycling, and deep-ocean ecosystems.

    Science.gov (United States)

    Smith, K L; Ruhl, H A; Bett, B J; Billett, D S M; Lampitt, R S; Kaufmann, R S

    2009-11-17

    Climate variation affects surface ocean processes and the production of organic carbon, which ultimately comprises the primary food supply to the deep-sea ecosystems that occupy approximately 60% of the Earth's surface. Warming trends in atmospheric and upper ocean temperatures, attributed to anthropogenic influence, have occurred over the past four decades. Changes in upper ocean temperature influence stratification and can affect the availability of nutrients for phytoplankton production. Global warming has been predicted to intensify stratification and reduce vertical mixing. Research also suggests that such reduced mixing will enhance variability in primary production and carbon export flux to the deep sea. The dependence of deep-sea communities on surface water production has raised important questions about how climate change will affect carbon cycling and deep-ocean ecosystem function. Recently, unprecedented time-series studies conducted over the past two decades in the North Pacific and the North Atlantic at >4,000-m depth have revealed unexpectedly large changes in deep-ocean ecosystems significantly correlated to climate-driven changes in the surface ocean that can impact the global carbon cycle. Climate-driven variation affects oceanic communities from surface waters to the much-overlooked deep sea and will have impacts on the global carbon cycle. Data from these two widely separated areas of the deep ocean provide compelling evidence that changes in climate can readily influence deep-sea processes. However, the limited geographic coverage of these existing time-series studies stresses the importance of developing a more global effort to monitor deep-sea ecosystems under modern conditions of rapidly changing climate.

  12. The deep ocean under climate change.

    Science.gov (United States)

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  13. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  14. Surface wind mixing in the Regional Ocean Modeling System (ROMS)

    Science.gov (United States)

    Robertson, Robin; Hartlipp, Paul

    2017-12-01

    Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.

  15. Science Potential of a Deep Ocean Antineutrino Observatory

    International Nuclear Information System (INIS)

    Dye, S.T.

    2007-01-01

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and θ 13 . At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle

  16. How ocean lateral mixing changes Southern Ocean variability in coupled climate models

    Science.gov (United States)

    Pradal, M. A. S.; Gnanadesikan, A.; Thomas, J. L.

    2016-02-01

    The lateral mixing of tracers represents a major uncertainty in the formulation of coupled climate models. The mixing of tracers along density surfaces in the interior and horizontally within the mixed layer is often parameterized using a mixing coefficient ARedi. The models used in the Coupled Model Intercomparison Project 5 exhibit more than an order of magnitude range in the values of this coefficient used within the Southern Ocean. The impacts of such uncertainty on Southern Ocean variability have remained unclear, even as recent work has shown that this variability differs between different models. In this poster, we change the lateral mixing coefficient within GFDL ESM2Mc, a coarse-resolution Earth System model that nonetheless has a reasonable circulation within the Southern Ocean. As the coefficient varies from 400 to 2400 m2/s the amplitude of the variability varies significantly. The low-mixing case shows strong decadal variability with an annual mean RMS temperature variability exceeding 1C in the Circumpolar Current. The highest-mixing case shows a very similar spatial pattern of variability, but with amplitudes only about 60% as large. The suppression of mixing is larger in the Atlantic Sector of the Southern Ocean relatively to the Pacific sector. We examine the salinity budgets of convective regions, paying particular attention to the extent to which high mixing prevents the buildup of low-saline waters that are capable of shutting off deep convection entirely.

  17. Ship track for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the "Life on the Edge 2003: Exploring Deep Ocean Habitats" expedition sponsored by the National Oceanic and Atmospheric...

  18. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change

    International Nuclear Information System (INIS)

    Watson, Andrew J.; Naveira Garabato, Alberto C.

    2006-01-01

    Decreased ventilation of the Southern Ocean in glacial time is implicated in most explanations of lower glacial atmospheric CO 2 . Today, the deep (>2000 m) ocean south of the Polar Front is rapidly ventilated from below, with the interaction of deep currents with topography driving high mixing rates well up into the water column. We show from a buoyancy budget that mixing rates are high in all the deep waters of the Southern Ocean. Between the surface and 2000 m depth, water is upwelled by a residual meridional overturning that is directly linked to buoyancy fluxes through the ocean surface. Combined with the rapid deep mixing, this upwelling serves to return deep water to the surface on a short time scale. We propose two new mechanisms by which, in glacial time, the deep Southern Ocean may have been more isolated from the surface. Firstly, the deep ocean appears to have been more stratified because of denser bottom water resulting from intense sea ice formation near Antarctica. The greater stratification would have slowed the deep mixing. Secondly, subzero atmospheric temperatures may have meant that the present-day buoyancy flux from the atmosphere to the ocean surface was reduced or reversed. This in turn would have reduced or eliminated the upwelling (contrary to a common assumption, upwelling is not solely a function of the wind stress but is coupled to the air/sea buoyancy flux too). The observed very close link between Antarctic temperatures and atmospheric CO 2 could then be explained as a natural consequence of the connection between the air/sea buoyancy flux and upwelling in the Southern Ocean, if slower ventilation of the Southern Ocean led to lower atmospheric CO 2 . Here we use a box model, similar to those of previous authors, to show that weaker mixing and reduced upwelling in the Southern Ocean can explain the low glacial atmospheric CO 2 in such a formulation

  19. Geotechnical deep ocean research apparatus (DORA)

    International Nuclear Information System (INIS)

    1986-01-01

    As part of the research programme on radioactive waste disposal in seabed geological formations, a Deep Ocean Research Apparatus (DORA) seabed machine has been conceptually designed and prototypes of principal subsystems built and tested by four DORA Project partners. The DORA is designed to operate in 6000 m of water and drive a string of test rods and a piezocone about 50 m into soft soil. Partner responsibility was Fugro for project management and the penetration apparatus; ISMES for data acquisition and control; Laboratorium voor Grondmechanica for the piezocone probe and its sensors; and Marine Structure Consultants for the mission profile and DORA handling requirements. The DORA will have a maximum thrust of 50 kN. The probe will measure cone resistance, sleeve friction, pore pressure and inclination. Stability on the seabed will be assisted by using a combination of polyester and polypropylene-nylon (double) braided rope. A continuous wheel-drive subsystem will drive the test rods. Gelled or lead-acid batteries can power a hydraulic powerpack. Acoustic data transmission will be used. Software for data processing automation has been tested with simulation of all input channels. Successful operation of subsystem prototypes indicates that a DORA can be constructed at any future time for use on fundamental or applied deep ocean science and seafloor engineering investigations by industry, government and universities

  20. Waste disposal in the deep ocean: An overview

    International Nuclear Information System (INIS)

    O'Connor, T.P.; Kester, D.R.; Burt, W.V.; Capuzzo, J.M.; Park, P.K.; Duedall, I.W.

    1985-01-01

    Incineration at sea, industrial and sewage waste disposal in the surface mixing zone, and disposal of low-level nuclear wastes, obsolete munitions, and nerve gas onto the seafloor have been the main uses of the deep sea for waste management. In 1981 the wastes disposed of in the deep sea consisted of 48 X 10/sup 4/ t of liquid industrial wastes and 2 X 10/sup 4/ t of sewage sludge by the United States; 1.5 X 10/sup 4/ t (solids) of sewage sludge by the Federal Republic of German; 5300 t of liquid industrial wastes by Denmark; 99 t of solid industrial wastes by the United Kingdom; and 9400 t of low-level radioactive wastes by several European countries. Also in 1981 at-sea incineration of slightly more than 10/sup 5/ t of organic wastes from Belgium, France, the Federal Republic of Germany, the Netherlands, Norway, Sweden, and the United Kingdom was carried out in the North Sea. Unique oceanographic features of the deep sea include its large dilution capacity; the long residence time of deep-sea water (on the order of 10/sup 2/ y); low biological productivity in the surface water of the open ocean (≅50 g m/sup -2/ of carbon per year); the existence of an oxygen minimum zone at several hundred meters deep in the mid-latitudes; and the abyssal-clay regions showing sedimentary records of tens of millions of years of slow, uninterrupted deposition of fine-grained clay. Any deep-sea waste disposal strategy must take into account oceanic processes and current scientific knowledge in order to attain a safe solution that will last for centuries

  1. Deep-Sea Corals: A New Oceanic Archive

    National Research Council Canada - National Science Library

    Adkins, Jess

    1998-01-01

    Deep-sea corals are an extraordinary new archive of deep ocean behavior. The species Desmophyllum cristagalli is a solitary coral composed of uranium rich, density banded aragonite that I have calibrated for several paleoclimate tracers...

  2. Science Potential of a Deep Ocean Antineutrino Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.T. [Department of Physics and Astronomy, University of Hawaii, 2505 Correa Road, Honolulu, Hawaii, 96822 (United States); College of Natural Sciences, Hawaii Pacific University, 45-045 Kamehameha Highway, Kaneohe, Hawaii 96744 (United States)

    2007-06-15

    This paper presents science potential of a deep ocean antineutrino observatory being developed at Hawaii. The observatory design allows for relocation from one site to another. Positioning the observatory some 60 km distant from a nuclear reactor complex enables precision measurement of neutrino mixing parameters, leading to a determination of neutrino mass hierarchy and {theta}{sub 13}. At a mid-Pacific location the observatory measures the flux and ratio of uranium and thorium decay neutrinos from earth's mantle and performs a sensitive search for a hypothetical natural fission reactor in earth's core. A subsequent deployment at another mid-ocean location would test lateral heterogeneity of uranium and thorium in earth's mantle.

  3. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  4. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  5. Spectral analysis of the efficiency of vertical mixing in the deep ocean due to interaction of tidal currents with a ridge running down a continental slope

    Energy Technology Data Exchange (ETDEWEB)

    Ibragimov, Ranis N.; Tartakovsky, Alexandre M.

    2014-10-29

    Efficiency of mixing, resulting from the reflection of an internal wave field imposed on the oscillatory background flow with a three-dimensional bottom topography, is investigated using a linear approximation. The radiating wave field is associated with the spectrum of the linear model, which consists of those mode numbers n and slope values α, for which the solution represents the internal waves of frequencies ω = nω0 radiating upwrad of the topography, where ω0 is the fundamental frequency at which internal waves are generated at the topography. The effects of the bottom topography and the earth’s rotation on the spectrum is analyzed analytically and numerically in the vicinity of the critical slope, which is a slope with the same angle to the horizontal as the internal wave characteristic. In this notation, θ is latitude, f is the Coriolis parameter and N is the buoyancy frequency, which is assumed to be a constant, which corresponds to the uniform stratification.

  6. Processes governing transient responses of the deep ocean buoyancy budget to a doubling of CO2

    Science.gov (United States)

    Palter, J. B.; Griffies, S. M.; Hunter Samuels, B. L.; Galbraith, E. D.; Gnanadesikan, A.

    2012-12-01

    Recent observational analyses suggest there is a temporal trend and high-frequency variability in deep ocean buoyancy in the last twenty years, a phenomenon reproduced even in low-mixing models. Here we use an earth system model (GFDL's ESM2M) to evaluate physical processes that influence buoyancy (and thus steric sea level) budget of the deep ocean in quasi-steady state and under a doubling of CO2. A new suite of model diagnostics allows us to quantitatively assess every process that influences the buoyancy budget and its temporal evolution, revealing surprising dynamics governing both the equilibrium budget and its transient response to climate change. The results suggest that the temporal evolution of the deep ocean contribution to sea level rise is due to a diversity of processes at high latitudes, whose net effect is then advected in the Eulerian mean flow to mid and low latitudes. In the Southern Ocean, a slowdown in convection and spin up of the residual mean advection are approximately equal players in the deep steric sea level rise. In the North Atlantic, the region of greatest deep steric sea level variability in our simulations, a decrease in mixing of cold, dense waters from the marginal seas and a reduction in open ocean convection causes an accumulation of buoyancy in the deep subpolar gyre, which is then advected equatorward.

  7. Evidence for infragravity wave-tide resonance in deep oceans.

    Science.gov (United States)

    Sugioka, Hiroko; Fukao, Yoshio; Kanazawa, Toshihiko

    2010-10-05

    Ocean tides are the oscillatory motions of seawater forced by the gravitational attraction of the Moon and Sun with periods of a half to a day and wavelengths of the semi-Pacific to Pacific scale. Ocean infragravity (IG) waves are sea-surface gravity waves with periods of several minutes and wavelengths of several dozen kilometres. Here we report the first evidence of the resonance between these two ubiquitous phenomena, mutually very different in period and wavelength, in deep oceans. The evidence comes from long-term, large-scale observations with arrays of broadband ocean-bottom seismometers located at depths of more than 4,000 m in the Pacific Ocean. This observational evidence is substantiated by a theoretical argument that IG waves and the tide can resonantly couple and that such coupling occurs over unexpectedly wide areas of the Pacific Ocean. Through this resonant coupling, some of ocean tidal energy is transferred in deep oceans to IG wave energy.

  8. Do swimming animals mix the ocean?

    Science.gov (United States)

    Dabiri, John

    2013-11-01

    Perhaps. The oceans are teeming with billions of swimming organisms, from bacteria to blue whales. Current research efforts in biological oceanography typically focus on the impact of the marine environment on the organisms within. We ask the opposite question: can organisms in the ocean, especially those that migrate vertically every day and regionally every year, change the physical structure of the water column? The answer has potentially important implications for ecological models at local scale and climate modeling at global scales. This talk will introduce the still-controversial prospect of biogenic ocean mixing, beginning with evidence from measurements in the field. More recent laboratory-scale experiments, in which we create controlled vertical migrations of plankton aggregations using laser signaling, provide initial clues toward a mechanism to achieve efficient mixing at scales larger than the individual organisms. These results are compared and contrasted with theoretical models, and they highlight promising avenues for future research in this area. Funding from the Office of Naval Research and the National Science Foundation is gratefully acknowledged.

  9. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  10. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, Jesus

    2015-03-19

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  11. Deep-ocean Assessment and Reporting of Tsunamis (DART) Stations

    Data.gov (United States)

    Department of Homeland Security — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort to...

  12. Geotechnical aspects of deep ocean radioactive waste disposal

    International Nuclear Information System (INIS)

    Freeman, T.J.

    1990-01-01

    The methods that might be used to bury radioactive waste in the deep ocean, and their likely effect on the sediment barrier, have been the subject of an international research program performed during the last ten years. This paper reviews the geotechnical aspects of deep ocean disposal and discusses how far the research performed has gone towards providing the information needed to assess this form of disposal. Considerable progress has been made during the course of the international program towards understanding the processes involved in the emplacement of heat generating waste (HGW) into the deep ocean bed and the subsequent interactions between the waste and the sediments. These processes do not appear to have a deleterious effect on the barrier properties of the sediments, and it is concluded that it is likely that HGW could be emplaced in the deep ocean in such a way that the seabed would provide an effective containment for the radionuclides

  13. Dilution limits dissolved organic carbon utilization in the deep ocean

    KAUST Repository

    Arrieta, J M; Mayol, Eva; Hansman, Roberta L.; Herndl, Gerhard J.; Dittmar, Thorsten; Duarte, Carlos M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An alternative hypothesis is that deep-water DOC consists of many different, intrinsically labile compounds at concentrations too low to compensate for the metabolic costs associated to their utilization. Here, we present experimental evidence showing that low concentrations rather than recalcitrance preclude consumption of a substantial fraction of DOC, leading to slow microbial growth in the deep ocean. These findings demonstrate an alternative mechanism for the long-term storage of labile DOC in the deep ocean, which has been hitherto largely ignored. © 2015, American Association for the Advancement of Science. All rights reserved.

  14. Dilution limits dissolved organic carbon utilization in the deep ocean

    NARCIS (Netherlands)

    Arrieta, J.M.; Mayol, E.; Hansman, R.L.; Herndl, G.J.; Dittmar, T.; Duarte, C.M.

    2015-01-01

    Oceanic dissolved organic carbon (DOC) is the second largest reservoir of organic carbon in the biosphere. About 72% of the global DOC inventory is stored in deep oceanic layers for years to centuries, supporting the current view that it consists of materials resistant to microbial degradation. An

  15. Mixing parametrizations for ocean climate modelling

    Science.gov (United States)

    Gusev, Anatoly; Moshonkin, Sergey; Diansky, Nikolay; Zalesny, Vladimir

    2016-04-01

    The algorithm is presented of splitting the total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF), which is used to parameterize the viscosity and diffusion coefficients in ocean circulation models. The turbulence model equations are split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage, the following schemes are implemented: the explicit-implicit numerical scheme, analytical solution and the asymptotic behavior of the analytical solutions. The experiments were performed with different mixing parameterizations for the modelling of Arctic and the Atlantic climate decadal variability with the eddy-permitting circulation model INMOM (Institute of Numerical Mathematics Ocean Model) using vertical grid refinement in the zone of fully developed turbulence. The proposed model with the split equations for turbulence characteristics is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. Parameterizations with using the split turbulence model make it possible to obtain more adequate structure of temperature and salinity at decadal timescales, compared to the simpler Pacanowski-Philander (PP) turbulence parameterization. Parameterizations with using analytical solution or numerical scheme at the generation-dissipation step of the turbulence model leads to better representation of ocean climate than the faster parameterization using the asymptotic behavior of the analytical solution. At the same time, the computational efficiency left almost unchanged relative to the simple PP parameterization. Usage of PP parametrization in the circulation model leads to realistic simulation of density and circulation with violation of T,S-relationships. This error is majorly avoided with using the proposed parameterizations containing the split turbulence model

  16. Deep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.

    Science.gov (United States)

    Smith, Kenneth L; Ruhl, Henry A; Kahru, Mati; Huffard, Christine L; Sherman, Alana D

    2013-12-03

    The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking particulate organic carbon (food) supply and its utilization by the benthic community was conducted in the abyssal northeast Pacific (~4,000-m depth). Here we show that previous findings of food deficits are now punctuated by large episodic surpluses of particulate organic carbon reaching the sea floor, which meet utilization. Changing surface ocean conditions are translated to the deep ocean, where decadal peaks in supply, remineralization, and sequestration of organic carbon have broad implications for global carbon budget projections.

  17. The aluminum anode in deep ocean environments

    International Nuclear Information System (INIS)

    Schreiber, C.F.

    1989-01-01

    Results of field and mini-plant studies are presented for A1 + 0.045% Hg + 0.1% Si + 0.45% Zn* and A1 + 0.015% In + 0.1% Si + 3% Zn** anodes in varying depths of natural seawater. Current capacity and potential information are presented. In addition to information on anode current capacity and potential, polarization curves were obtained on both aluminum alloys using potentiostatic techniques at a simulated ocean depth of 1090 ft. (332 m). These data were compared with similarly run experiments at ocean surface pressures. As a basis of comparison, zinc anodes (U.S. Mil-A-18001H) were included as a companion alloy. Information gained on zinc is sufficient to accurately represent the behavior of this alloy. Results conclude that conditions of high pressure (and low temperature) associated with the alloys under test did not alter their galvanic behavior from that noted at the ocean surface

  18. The pole tide in deep oceans

    Science.gov (United States)

    Dickman, S. R.

    1990-01-01

    The fluid-dynamical theory of the pole tide is examined by describing the oceanic response to the Chandler wobble and assessing its implications for mantle anelasticity and low-frequency ocean dynamics. The Laplace tide equations accounting for bottom friction are given, and a spherical harmonic approach is delineated in which the time-independent portion of the tide height is expanded. Pole-tide height and related inertia products are linearly proportional to wobble amplitude, and the final equations are modified to account for mantle elasticity and oceanic loading. Results for pole tide effects are given for various earth models with attention to the role of boundary constraints. A dynamic effect is identified which lengthens the Chandler period by about 1 day more than static lengthening, a contribution that suggests a vigorous low-frequency response. The values derived are shown to agree with previous models that do not incorporate the effects of the pole tide.

  19. Exploring frontiers of the deep biosphere through scientific ocean drilling

    Science.gov (United States)

    Inagaki, F.; D'Hondt, S.; Hinrichs, K. U.

    2015-12-01

    Since the first deep biosphere-dedicated Ocean Drilling Program (ODP) Leg 201 using the US drill ship JOIDES Resolution in 2002, scientific ocean drilling has offered unique opportunities to expand our knowledge of the nature and extent of the deep biosphere. The latest estimate of the global subseafloor microbial biomass is ~1029cells, accounting for 4 Gt of carbon and ~1% of the Earth's total living biomass. The subseafloor microbial communities are evolutionarily diverse and their metabolic rates are extraordinarily slow. Nevertheless, accumulating activity most likely plays a significant role in elemental cycles over geological time. In 2010, during Integrated Ocean Drilling Program (IODP) Expedition 329, the JOIDES Resolutionexplored the deep biosphere in the open-ocean South Pacific Gyre—the largest oligotrophic province on our planet. During Expedition 329, relatively high concentrations of dissolved oxygen and significantly low biomass of microbial populations were observed in the entire sediment column, indicating that (i) there is no limit to life in open-ocean sediment and (ii) a significant amount of oxygen reaches through the sediment to the upper oceanic crust. This "deep aerobic biosphere" inhabits the sediment throughout up to ~37 percent of the world's oceans. The remaining ~63 percent of the oceans is comprised of higher productivity areas that contain the "deep anaerobic biosphere". In 2012, during IODP Expedition 337, the Japanese drill ship Chikyu explored coal-bearing sediments down to 2,466 meters below the seafloor off the Shimokita Peninsula, Japan. Geochemical and microbiological analyses consistently showed the occurrence of methane-producing communities associated with the coal beds. Cell concentrations in deep sediments were notably lower than those expected from the global regression line, implying that the bottom of the deep biosphere is approached in these beds. Taxonomic composition of the deep coal-bearing communities profoundly

  20. Corium quench in deep pool mixing experiments

    International Nuclear Information System (INIS)

    Spencer, B.W.; McUmber, L.; Gregorash, D.; Aeschlimann, R.; Sienicki, J.J.

    1985-01-01

    The results of two recent corium-water thermal interaction (CWTI) tests are described in which a stream of molten corium was poured into a deep pool of water in order to determine the mixing behavior, the corium-to-water heat transfer rates, and the characteristic sizes of the quenched debris. The corium composition was 60% UO 2 , 16% ZrO 2 , and 24% stainless steel by weight; its initial temperature was 3080 K, approx.160 K above the oxide phase liquidus temperature. The corium pour stream was a single-phase 2.2 cm dia liquid column which entered the water pool in film boiling at approx.4 m/s. The water subcooling was 6 and 75C in the two tests. Test results showed that with low subcooling, rapid steam generation caused the pool to boil up into a high void fraction regime. In contrast, with large subcooling no net steam generation occurred, and the pool remained relatively quiescent. Breakup of the jet appeared to occur by surface stripping. In neither test was the breakup complete during transit through the 32 cm deep water pool, and molten corium channeled to the base where it formed a melt layer. The characteristic heat transfer rates measured 3.5 MJ/s and 2.7 MJ/s during the fall stage for small and large subcooling, respectively; during the initial stage of bed quench, the surface heat fluxes measured 2.4 MW/m 2 and 3.7 MW/m 2 , respectively. A small mass of particles was formed in each test, measuring typically 0.1 to 1 mm and 1 to 5 mm dia for the large and small subcooling conditions, respectively. 9 refs., 13 figs., 1 tab

  1. Single photon light detector for deep ocean applications

    International Nuclear Information System (INIS)

    Matsuno, S.; Babson, J.; Learned, J.G.; O'Connor, D.; Grieder, P.K.F.; Wilson, C.

    1989-01-01

    We have developed a single photon sensitive light detector module which can be operated in the ocean to a depth of 5000 m. It was designed primarily to be used as a Cherenkov light detector in conjunction with the DUMAND (Deep Underwater Muon And Neutrino Detector) experiment. After calibration in the laboratory, seven detectors, assembled in a vertical string geometry, have been operated simultaneously in the deep ocean off the coast of the island of Hawaii. Cosmic ray muons have been recorded successfully at dephts ranging from 2000 to 4000 m. The results have demonstrated the capability of the detector; it fulfills the specifications required for the modules to be used in a deep ocean muon and neutrino detector. (orig.)

  2. Geotechnical parameters for three deep ocean study areas

    International Nuclear Information System (INIS)

    Nicholson, D.P.

    1989-01-01

    This chapter summarizes the results of geotechnical measurements made on cores taken at the three deep ocean sites that have been studied in detail as part of the international programme assessing the feasibility of deep ocean disposal of heat-generating radioactive waste. The capabilities of existing sampling methods and the adequacy of the available data for providing the geotechnical parameters needed to evaluate the technical feasibility of deep ocean disposal are discussed. It is concluded that, while it has not been possible to obtain core samples of sufficient quality and depth to provide all the parameters needed for the assessment, no fundamental differences between the sediments at the study areas and those found on land or in shallow water have been identified. (author)

  3. Cosmic ray muons in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Babson, J.; Becker-Szenzy, R.; Cady, R.; Dye, S.; Gorham, P.; Learned, J.; Matsuno, S.; O' Conner, D.; Peterson, V.; Roberts, A.; Stenger, V. (Hawaii Univ., Honolulu (USA)); Barish, B. (California Inst. of Tech., Pasadena (USA)); Bradner, H. (California Univ., San Diego, La Jolla (USA)); Clem, J.; Roos, C.; Webster, M. (Vanderbilt Univ., Nashville, TN (USA)); Gaidos, J.; Wilson, C. (Purdue Univ., Lafayette, IN (USA)); Grieder, P. (Bern Univ. (Switzerland)); Kitamura, T.; Mitsui, K.; Ohashi, Y.; Okada, A. (Tokyo Univ. (Japan). Inst. for Cosmic Ray Research); Kropp, W.; Price, L.; Reines, F.; Sobel, H. (California Univ., Irvine (USA)); March, R. (Wisconsin Univ., Madison (USA)); DUMAND Collaboration

    1990-03-01

    A measurement of cosmic ray muon flux was obtained at ocean depths ranging from 2 km to 4 km at 500 m intervals off the West Coast of the Big Island of Hawaii. A brief description of the experiment and the results will be presented in this paper. (orig.).

  4. Dispersal from deep ocean sources: physical and related scientific processes

    International Nuclear Information System (INIS)

    Robinson, A.R.; Kupferman, S.L.

    1985-02-01

    This report presents the results of the workshop ''Dispersal from Deep Ocean Sources: Physical and Related Scientific Processes,'' together with subsequent developments and syntheses of the material discussed there. The project was undertaken to develop usable predictive descriptions of dispersal from deep oceanic sources. Relatively simple theoretical models embodying modern ocean physics were applied, and observational and experimental data bases were exploited. All known physical processes relevant to the dispersal of passive, conservative tracers were discussed, and contact points for inclusion of nonconservative processes (biological and chemical) were identified. Numerical estimates of the amplitude, space, and time scales of dispersion were made for various mechanisms that control the evolution of the dispersal as the material spreads from a bottom point source to small-, meso-, and world-ocean scales. Recommendations for additional work are given. The volume is presented as a handbook of dispersion processes. It is intended to be updated as new results become available

  5. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  6. Application of deep convolutional neural networks for ocean front recognition

    Science.gov (United States)

    Lima, Estanislau; Sun, Xin; Yang, Yuting; Dong, Junyu

    2017-10-01

    Ocean fronts have been a subject of study for many years, a variety of methods and algorithms have been proposed to address the problem of ocean fronts. However, all these existing ocean front recognition methods are built upon human expertise in defining the front based on subjective thresholds of relevant physical variables. This paper proposes a deep learning approach for ocean front recognition that is able to automatically recognize the front. We first investigated four existing deep architectures, i.e., AlexNet, CaffeNet, GoogLeNet, and VGGNet, for the ocean front recognition task using remote sensing (RS) data. We then propose a deep network with fewer layers compared to existing architecture for the front recognition task. This network has a total of five learnable layers. In addition, we extended the proposed network to recognize and classify the front into strong and weak ones. We evaluated and analyzed the proposed network with two strategies of exploiting the deep model: full-training and fine-tuning. Experiments are conducted on three different RS image datasets, which have different properties. Experimental results show that our model can produce accurate recognition results.

  7. Southern Ocean Circulation: a High Resolution Examination of the Last Deglaciation from Deep-Sea Corals

    Science.gov (United States)

    Robinson, L. F.; Li, T.; Chen, T.; Burke, A.; Pegrum Haram, A.; Stewart, J.; Rae, J. W. B.; van de Flierdt, T.; Struve, T.; Wilson, D. J.

    2017-12-01

    Two decades ago it was first noted that the skeletal remains of deep-sea corals had the potential to provide absolutely dated archives of past ocean conditions. In the intervening twenty years this field has developed to the point where strategic collections and high throughput dating techniques now allow high resolution, well dated records of past deep sea behaviour to be produced. Likewise, efforts to improve understanding of biomineralisation and growth rates are leading to refinements in proxy tools useful for examining circulation, nutrient and carbon cycling, temperature and weathering processes. Deep-sea corals are particularly valuable archives in high latitude regions where radiocarbon-based age models are susceptible to large changes in surface reservoir ages. In this presentation we show new high resolution multiproxy records of the Southern Ocean (Drake Passage) made on U-Th dated corals spanning the last glacial cycle. With more than seventeen hundred reconnaissance ages, and around 200 precise isotope dilution U-Th ages, subtle changes in ocean behaviour can be identified during times of abrupt climate change. The geochemical signature of corals from the deepest sites, closest to modern day Lower Circumpolar Deep Waters, typically show a gradual shift from glacial to Holocene values during deglaciation, likely related to ventilation of the deep ocean. By contrast for the samples collected shallower in the water column (within sites currently bathed by Upper Circumpolar Deep Waters and Antarctic Intermediate and Mode Waters) the evidence points to a more complicated picture. Vertical zonation in the geochemical data suggests that periods of stratification are interspersed with mixing events within the upper 1500m of the water column. At the same time comparison to U-Th dated records from the low latitude Pacific and Atlantic points to an important role for the Southern Ocean in feeding the intermediate waters of both ocean basins throughout the

  8. Deep Drilling Results in the Atlantic Ocean: Ocean Crust

    Science.gov (United States)

    1979-01-01

    the volcano Agua de Pau. //i ( ,.which nas eruted 5 tir-es in tile past 4.600 / ye,.rs, the last in 1563. Xumerous not springs S/ o3220 an’ soradic...complex. In a study layered structure and physical properties to of ophiolite complexes in southern Chile , de Wit ce those of oceanic crust...Spooner et al, 1977) and and Govett, 1973). A large lens, for example that S. Chile (Stern et al, 1976). Zeolite to amphib- at Skouriotissa, had a

  9. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    Science.gov (United States)

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  10. Thermophysical properties of deep ocean sediments

    International Nuclear Information System (INIS)

    Hadley, G.R.; McVey, D.F.; Morin, R.

    1980-01-01

    Here we report measurements of the thermal conductivity and diffusivity of reconsolidated illite and smectite ocean sediments at a pore pressure of 600 bars and temperatures ranging from 25 to 420 0 C. The conductivity and diffusivity were found to be in the range of 0.8 to 1.0 W/m-K and 2.2 to 2.8 x 10 -7 m 2 /s, respectively. These data are consistent with a mixture model which predicts sediment thermal properties as a function of constituent properties and porosity. Comparison of pre- and post-test physical properties indicated a decrease in pore water content and an order of magnitude increase in shear strength and permeability

  11. Background light measurements in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, T.; Kitamura, T.; Matsuno, S.; Mitsui, K.; Ohashi, Y.; Okada, A.; Cady, D.R.; Learned, J.G.; O' Connor, D.; Dye, S.

    Ambient light intensities in the ocean at depths between 1500 m and 4700 m near Hawaii Island were measured around the one photoelectron level with 5'' diameter hemispherical photomultipliers. Measurements of count rates above variable thresholds were carried out in ship-suspended and bottom-tethered configurations. The ship-suspended rates show considerable fluctuation and their mean value decreases with depth approximately as exp (-x(m)/877). The bottomtethered rates are about an order of magnitude lower than the ship-suspended rates and show little fluctuation. The calibration of our instrument indicates an absolute flux at 4700 m depth based on the bottom-tethered measurement of 218/sub -60//sup +20/ photons/cm/sup 2/.s, which is consistent with calculated intensities due to ..beta..-decay electrons from /sup 40/K. The difference in the two cases is attributed to bioluminescence due to environmental stimulation.

  12. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    Science.gov (United States)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  13. Radiological aspects of sea bed dumping in the deep oceans

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1979-01-01

    In order to control coastal discharges or ocean dumping of any kind of material, it is necessary to determine a release rate. This can only come from a knowledge of the composition and chemical form of the source materials, the distribution and bioavailability of these materials in the ocean ecosystem, the degree and rates of bioaccumulation and the actual or potential use of the ocean resources. With this information release rates within acceptable limits for man and the ecosystem can then be determined. Today, probably the only situations which apply this approach are the controlled disposal of radioactive wastes. In this paper a recent radiological assessment of the dumping of packaged radioactive wastes on the seabed is discussed and some environmental aspects of the United States Department of Energy program are described examining the feasibility of the emplacement of contained radioactive wastes within the deep ocean sediments

  14. Age-dependent mixing of deep-sea sediments

    International Nuclear Information System (INIS)

    Smith, C.R.; Maggaard, L.; Pope, R.H.; DeMaster, D.J.

    1993-01-01

    Rates of bioturbation measured in deep-sea sediments commonly are tracer dependent; in particular, shorter lived radiotracers (such as 234 Th) often yield markedly higher diffusive mixing coefficients than their longer-lived counterparts (e.g., 210 Pb). At a single station in the 1,240-m deep Santa Catalina Basin, the authors document a strong negative correlation between bioturbation rate and tracer half-life. Sediment profiles of 234 Th (half-life = 24 days) yield an average mixing coefficient (60 cm 2 y -1 ) two orders of magnitude greater than that for 210 Pb (half-life = 22 y, mean mixing coefficient = 0.4 cm 2 y -1 ). A similar negative relationship between mixing rate and tracer time scale is observed at thirteen other deep-sea sites in which multiple radiotracers have been used to assess diffusive mixing rates. This relationship holds across a variety of radiotracer types and time scales. The authors hypothesize that this negative relationship results from age-dependent mixing, a process in which recently sedimented, food-rich particles are ingested and mixed at higher rates by deposit feeders than are older, food-poor particles. Results from an age-dependent mixing model demonstrate that this process indeed can yield the bioturbation-rate vs. tracer-time-scale correlations observed in deep-sea sediments. Field data on mixing rates of recently sedimented particles, as well as the radiotracer activity of deep-sea deposit feeders, provide strong support for the age-dependent mixing model. The presence of age-dependent mixing in deep-sea sediments may have major implications for diagenetic modeling, requiring a match between the characteristic time scales of mixing tracers and modeled reactants. 102 refs., 6 figs., 5 tabs

  15. The role stratification on Indian ocean mixing under global warming

    Science.gov (United States)

    Praveen, V.; Valsala, V.; Ravindran, A. M.

    2017-12-01

    The impact of changes in Indian ocean stratification on mixing under global warming is examined. Previous studies on global warming and associated weakening of winds reported to increase the stratification of the world ocean leading to a reduction in mixing, increased acidity, reduced oxygen and there by a reduction in productivity. However this processes is not uniform and are also modulated by changes in wind pattern of the future. Our study evaluate the role of stratification and surface fluxes on mixing focusing northern Indian ocean. A dynamical downscaling study using Regional ocean Modelling system (ROMS) forced with stratification and surface fluxes from selected CMIP5 models are presented. Results from an extensive set of historical and Representative Concentration Pathways 8.5 (rcp8.5) scenario simulations are used to quantify the distinctive role of stratification on mixing.

  16. Global ocean conveyor lowers extinction risk in the deep sea

    Science.gov (United States)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Wienberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Mélanie; Morrison, Cheryl L.; López Correa, Matthias; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-06-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth's largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  17. Behavior of candidate canister materials in deep ocean environments

    International Nuclear Information System (INIS)

    Smyrl, W.H.; Stephenson, L.L.; Braithwaite, J.W.

    1977-04-01

    Corrosion tests have been conducted under simulated deep ocean conditions for nine months. The materials tested were base alloys of titanium, zirconium, and nickel. All materials tested showed corrosion rates that were very low even at the highest test temperature. None showed susceptibility to either stress corrosion cracking or differential aeration corrosion. Ambient electrochemical tests confirmed the findings that none should be sensitive to differential oxygen effects. The zirconium alloys may be more susceptible to pitting corrosion than the others, although the pitting conditions are unlikely to be found in service, unless higher temperatures are encountered. All the alloys tested could give long life under deep ocean conditions and are candidates for more detailed corrosion studies

  18. Radium 226 in the deep north-eastern Atlantic Ocean

    International Nuclear Information System (INIS)

    Rhein, M.

    1986-01-01

    With reference to the distribution of radium-226 in the western equatorial and north-eastern deep Atlantic Ocean it was possible to establish structures in the correlations of radium-226 to its chemical homologue Ba and dissolved SiO 2 . An 11-box model of the deep Atlantic Ocean was used to obtain information on the size of the radium-226 and Ba sources. The soil source derives mainly from the dissolution of barite. For the first time, an evaluation of the radium-226 flow resulting from the dissolution of particulate matter is presented. The box model and the radium-226 concentrations measured put down the value as 23-46·10 -21 mol/m 2 s. (DG) [de

  19. Environmental monitoring and deep ocean disposal of packaged radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Preston, A.

    1980-01-01

    Environmental monitoring in the context of the dumping of packaged radioactive waste in the deep ocean is discussed in detail. The principles and objectives laid down by the IAEA and the ICRP are reviewed. Monitoring and its relationships to radiation exposure, research, control measures and public information are described. Finally, the actual practice in the UK of environmental monitoring is detailed for the measurable case of liquid wastes in coastal waters and also for package waste in deep oceans which has to be calculated. It is concluded that better mathematical models are needed to predict the dose to man and that more research into oceanographic and biological transfer processes should be carried out. (UK)

  20. Ship Sensor Observations for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Life on the Edge 2003: Exploring Deep Ocean Habitats" expedition sponsored by...

  1. High-level radioactive waste disposal in the deep ocean

    International Nuclear Information System (INIS)

    Hill, H.W.

    1977-01-01

    A joint programme has begun between the Fisheries Laboratory, Lowestoft and the Institute of Oceanographic Sciences, Wormley to study the dispersion of radioactivity in the deep ocean arising from the possible dumping of high level waste on the sea bed in vitrified-glass form which would permit slow leakage over a long term scale. The programme consists firstly of the development of a simple diffusion/advection model for the dispersion of radioactivity in a closed and finite ocean, which overcomes many of the criticisms of the earlier model proposed by Webb and Morley. Preliminary results from this new model are comparable to those of the Webb-Morley model for radio isotopes with half-lives of 10-300 years but are considerably more restrictive outside this range, particularly for those which are much longer-lived. The second part of the programme, towards which the emphasis is directed, concerns the field programme planned to measure the advection and diffusion parameters in the deeper layers of the ocean to provide realistic input parameters to the model and increase our fundamental understanding of the environment in which the radioactive materials may be released. The first cruises of the programme will take place in late 1976 and involve deep current meter deployments and float dispersion experiments around the present NEA dump site with some sediment sampling, so that adsorption experiments can be started on typical deep sea sediments. The programme will expand the number of long-term deep moored stations over the next five years and include further float experiments, CTD profiling, and other physical oceanography. In the second half of the 5-year programme, attempts will be made to measure diffusion parameters in the deeper layers of the ocean using radioactive tracers

  2. Deep Attack Weapons Mix Study (DAWMS) Case Study

    National Research Council Canada - National Science Library

    Bexfield, James

    2001-01-01

    .... This report describes the process used to conduct the Deep Attack Weapons Mix Study (DAWMS) in 1995-1997. This case study focuses on the weapons being procured by the Services and whether a joint viewpoint would result in a more effective mix...

  3. Hidden cycle of dissolved organic carbon in the deep ocean.

    Science.gov (United States)

    Follett, Christopher L; Repeta, Daniel J; Rothman, Daniel H; Xu, Li; Santinelli, Chiara

    2014-11-25

    Marine dissolved organic carbon (DOC) is a large (660 Pg C) reactive carbon reservoir that mediates the oceanic microbial food web and interacts with climate on both short and long timescales. Carbon isotopic content provides information on the DOC source via δ(13)C and age via Δ(14)C. Bulk isotope measurements suggest a microbially sourced DOC reservoir with two distinct components of differing radiocarbon age. However, such measurements cannot determine internal dynamics and fluxes. Here we analyze serial oxidation experiments to quantify the isotopic diversity of DOC at an oligotrophic site in the central Pacific Ocean. Our results show diversity in both stable and radio isotopes at all depths, confirming DOC cycling hidden within bulk analyses. We confirm the presence of isotopically enriched, modern DOC cocycling with an isotopically depleted older fraction in the upper ocean. However, our results show that up to 30% of the deep DOC reservoir is modern and supported by a 1 Pg/y carbon flux, which is 10 times higher than inferred from bulk isotope measurements. Isotopically depleted material turns over at an apparent time scale of 30,000 y, which is far slower than indicated by bulk isotope measurements. These results are consistent with global DOC measurements and explain both the fluctuations in deep DOC concentration and the anomalous radiocarbon values of DOC in the Southern Ocean. Collectively these results provide an unprecedented view of the ways in which DOC moves through the marine carbon cycle.

  4. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  5. Frequency of Tropical Ocean Deep Convection and Global Warming

    Science.gov (United States)

    Aumann, H. H.; Behrangi, A.; Ruzmaikin, A.

    2017-12-01

    The average of 36 CMIP5 models predicts about 3K of warming and a 4.7% increase in precipitation for the tropical oceans with a doubling of the CO2 by the end of this century. For this scenario we evaluate the increase in the frequency of Deep Convective Clouds (DCC) in the tropical oceans. We select only DCC which reach or penetrate the tropopause in the 15 km AIRS footprint. The evaluation is based on Probability Distribution Functions (PDFs) of the current temperatures of the tropical oceans, those predicted by the mean of the CMIP5 models and the PDF of the DCC process. The PDF of the DCC process is derived from the Atmospheric Infrared Sounder (AIRS) between the years 2003 and 2016. During this time the variability due Enso years provided a 1 K p-p change in the mean tropical SST. The key parameter is the SST associated with the onset of the DCC process. This parameter shifts only 0.5 K for each K of warming of the oceans. As a result the frequency of DCC is expected to increases by the end of this century by about 50% above the current frequency.

  6. Narrowing the uncertainty for deep-ocean injection efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Orr, J.C.; Aumont, O. [Laboratoire des Sciences du Climat et de l' Environnement, CEA-CNRS, Gif-sur-Yvette (France); Yool, A. [Southampton Oceanography Centre, Southampton (United Kingdom); Plattner, G.K.; Joos, F. [Bern Univ., Bern (Switzerland). Physics Inst.; Maier-Reimer, E. [Max Planck Inst. fuer Meteorologie, Hamburg (Germany); Weirig, M.F.; Schlitzer, R. [Alfred Wegener Inst. for Polar and Marine Research, Bremerhaven (Germany); Caldeira, K.; Wickett, M.E. [Lawrence Livermore National Laboratory, CA (United States); Matear, R.J. [Australian Commonwealth Scientific and Research Organization, Hobart (Australia); Mignone, B.K.; Sarmiento, J.L. [Princeton Univ., Princeton, NJ (United States). AOS Program

    2005-07-01

    Ten ocean general circulation models (OCGMs) were compared as part of an international study investigating the ocean's ability to efficiently sequester carbon dioxide (CO{sub 2}). The models were selected for their ability to simulate radiocarbon and CFC-11. All of the model simulations neglected the influence of marine biota, and the simulations used only dissolved inorganic carbon (DIC) as a tracer in order to conserve computing resources. The models were integrated using standard ocean carbon-cycle model intercomparison project (OCMIP) formulations for gas exchange boundary conditions to obtain pre-industrial conditions. All models used the same predefined atmospheric CO{sub 2} records compiled from 1765 to 2000, as well as future scenarios in which atmospheric CO{sub 2} was stabilized at 650 ppm. Injections occurred over a period of 100 years. Results of the study showed that global budgets for CFC-11 and radiocarbon were correlated with global efficiencies for a 3000 m injection simulation. The 3000 m injection efficiency was then correlated with the global mean for deep natural radiocarbon. Results showed that simultaneously accounting for constraints from both CFC-11 and natural radiocarbon narrowed the range for a 3000 m injection efficiency in the year 2500 by a factor of 4. The study showed that models must be able to simulate global inventories for CFC-11 as well as global means for radiocarbon in deep ocean scenarios in order to be credible. It was concluded that models using both constraints will more accurately simulate global injection efficiencies.

  7. Understanding and Improving Ocean Mixing Parameterizations for modeling Climate Change

    Science.gov (United States)

    Howard, A. M.; Fells, J.; Clarke, J.; Cheng, Y.; Canuto, V.; Dubovikov, M. S.

    2017-12-01

    Climate is vital. Earth is only habitable due to the atmosphere&oceans' distribution of energy. Our Greenhouse Gas emissions shift overall the balance between absorbed and emitted radiation causing Global Warming. How much of these emissions are stored in the ocean vs. entering the atmosphere to cause warming and how the extra heat is distributed depends on atmosphere&ocean dynamics, which we must understand to know risks of both progressive Climate Change and Climate Variability which affect us all in many ways including extreme weather, floods, droughts, sea-level rise and ecosystem disruption. Citizens must be informed to make decisions such as "business as usual" vs. mitigating emissions to avert catastrophe. Simulations of Climate Change provide needed knowledge but in turn need reliable parameterizations of key physical processes, including ocean mixing, which greatly impacts transport&storage of heat and dissolved CO2. The turbulence group at NASA-GISS seeks to use physical theory to improve parameterizations of ocean mixing, including smallscale convective, shear driven, double diffusive, internal wave and tidal driven vertical mixing, as well as mixing by submesoscale eddies, and lateral mixing along isopycnals by mesoscale eddies. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. We write our own programs in MATLAB and FORTRAN to visualize and process output of ocean simulations including producing statistics to help judge impacts of different parameterizations on fidelity in reproducing realistic temperatures&salinities, diffusivities and turbulent power. The results can help upgrade the parameterizations. Students are introduced to complex system modeling and gain deeper appreciation of climate science and programming skills, while furthering climate science. We are incorporating climate projects into the Medgar Evers college curriculum. The PI is both a member of the turbulence group at

  8. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.

    2016-12-01

    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  9. Photo-lability of deep ocean dissolved black carbon

    Directory of Open Access Journals (Sweden)

    A. Stubbins

    2012-05-01

    Full Text Available Dissolved black carbon (DBC, defined here as condensed aromatics isolated from seawater via PPL solid phase extraction and quantified as benzenepolycarboxylic acid (BPCA oxidation products, is a significant component of the oceanic dissolved organic carbon (DOC pool. These condensed aromatics are widely distributed in the open ocean and appear to be tens of thousands of years old. As such DBC is regarded as highly refractory. In the current study, the photo-lability of DBC, DOC and coloured dissolved organic matter (CDOM; ultraviolet-visible absorbance were determined over the course of a 28 day irradiation of North Atlantic Deep Water under a solar simulator. During the irradiation DBC fell from 1044 ± 164 nM-C to 55 ± 15 nM-C, a 20-fold decrease in concentration. Dissolved black carbon photo-degradation was more rapid and more extensive than for bulk CDOM and DOC. The concentration of DBC correlated with CDOM absorbance and the quality of DBC indicated by the ratios of different BPCAs correlated with CDOM absorbance spectral slope, suggesting the optical properties of CDOM may provide a proxy for both DBC concentrations and quality in natural waters. Further, the photo-lability of components of the DBC pool increased with their degree of aromatic condensation. These trends indicate that a continuum of compounds of varying photo-lability exists within the marine DOC pool. In this continuum, photo-lability scales with aromatic character, specifically the degree of condensation. Scaling the rapid photo-degradation of DBC to rates of DOC photo-mineralisation for the global ocean leads to an estimated photo-chemical half-life for oceanic DBC of less than 800 years. This is more than an order of magnitude shorter than the apparent age of DBC in the ocean. Consequently, photo-degradation is posited as the primary sink for oceanic DBC and the apparent survival of DBC molecules in the oceans for millennia appears to be facilitated not by their

  10. Interannual variability of the tropical Indian Ocean mixed layer depth

    Digital Repository Service at National Institute of Oceanography (India)

    Keerthi, M.G.; Lengaigne, M.; Vialard, J.; Montegut, C.deB.; Muraleedharan, P.M.

    , shoaling the MLD (Masson et al. 2002, Qu and Meyers 2005, Du et al. 2005). The seasonal cycle in the southern tropical Indian Ocean has been less 3 investigated. Seasonal shoaling and deepening of the mixed layer in the south-western Tropical Indian...

  11. Deep-Ocean Assessment and Reporting of Tsunamis (DART(R))

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — As part of the U.S. National Tsunami Hazard Mitigation Program (NTHMP), the Deep Ocean Assessment and Reporting of Tsunamis (DART(R)) Project is an ongoing effort to...

  12. Bacterial Diversity in Deep-Sea Sediments from Afanasy Nikitin Seamount, Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Meena, R.M.; Deobagkar, D.D.

    Deep-sea sediments can reveal much about the last 200 million years of Earth history, including the history of ocean life and climate. Microbial diversity in Afanasy Nikitin seamount located at Equatorial East Indian Ocean (EEIO) was investigated...

  13. Ship Track for Operation Deep Scope 2005 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of R/V Seward Johnson during the "Operation Deep Scope 2005" expedition sponsored by the National Oceanic and Atmospheric Administration (NOAA) Office of...

  14. Ship Sensor Observations for Operation Deep Scope 2007 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Operation Deep Scope 2007" expedition sponsored by the National Oceanic and...

  15. Ship Track for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the Ronald H. Brown during the "Deep Sea Medicines 2003: Exploring the Gulf of Mexico" expedition sponsored by the National Oceanic and Atmospheric...

  16. Dynamics of a Marine Turbine for Deep Ocean Currents

    Directory of Open Access Journals (Sweden)

    Ling-Yuan Chang

    2016-09-01

    Full Text Available For most of the ocean currents, such as the Kuroshio at east Taiwan, the Gulf Stream at east Florida and the Agulhas Current at southeast Africa, the depth of the seabed is generally deeper than one hundred meters, some waters of which can even reach one thousand meters. In such deep waters, the design of the turbine, as well as the anchoring system shall have special features so that existing ocean engineering technologies can be applied and the engineering cost can be lowered. Thus, as regards design, in addition to the analysis of the interaction between turbine and current, priority shall also be given to the design of the anchoring system of the turbine. To address the concerns, the authors propose an ocean turbine featured as follows: (1 it can be anchored in deep waters with a single cable; (2 it can generate high power in a current of moderate flow speed while producing low drag; (3 it can be self-balanced against current disturbance; (4 it is shrouded to enhance power efficiency; (5 the dynamic variations due to the interaction between the turbine and current are small. All of these features are confirmed with the computational results, leading to a detailed design of the turbine structure. If the easy-to-install high-efficiency shrouded turbines, having the capability to self-balance and requiring minimum maintenance effort, are successfully developed, the power supply pressure in Taiwan can be greatly alleviated. The Kuroshio was chosen as the typical current for the present dynamic analysis because, firstly, the flow characteristics of Kuroshio are similar to those of other large-scale currents mentioned above, and secondly, the data of Kuroshio are highly available to us so that a thorough analysis can be done.

  17. Topographic control of oceanic flows in deep passages and straits

    Science.gov (United States)

    Whitehead, J. A.

    1998-08-01

    Saddle points between neighboring deep ocean basins are the sites of unidirectional flow from one basin to the next, depending on the source of bottom water. Flow in these sites appears to be topographically controlled so the interface between the bottom water and the water above adjusts itself to permit bottom water flow from the basin that contains a source of bottom water into the next. Examples in the Atlantic include flow in the Romanche Fracture Zone, the Vema Channel, the Ceara Abyssal Plain, the Anegada-Jungfern passage, and the Discovery Gap, but there are many more. Theoretical predictions of volume flux using a method that requires only conductivity-temperature-depth data archives and detailed knowledge of bathymetry near the saddle point are compared with volume flux estimates using current meters and/or geostrophic estimates for seven cases. The ratio of prediction to volume flux estimate ranges from 1.0 to 2.7. Some ocean straits that separate adjacent seas are also found to critically control bidirectional flows between basins. Theory of the influence of rotation on such critical flows is reviewed. Predictions of volume flux in eight cases are compared with ocean estimates of volume flux from traditional methods.

  18. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    Science.gov (United States)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  19. Storm-Driven Mixing and Potential Impact on the Arctic Ocean

    National Research Council Canada - National Science Library

    Yang, Jiayan

    2004-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean...

  20. Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DeBoyer Montegut, C.; Vialard, J.; Shenoi, S.S.C.; Shankar, D.; Durand, F.; Ethe, C.; Madec, G.

    A global Ocean General Circulation Model (OGCM) is used to investigate the mixed layer heat budget of the Northern Indian Ocean (NIO). The model is validated against observations and shows a fairly good agreement with mixed layer depth data...

  1. Basic Aspects of Deep Soil Mixing Technology Control

    Science.gov (United States)

    Egorova, Alexandra A.; Rybak, Jarosław; Stefaniuk, Damian; Zajączkowski, Przemysław

    2017-10-01

    Improving a soil is a process of increasing its physical/mechanical properties without changing its natural structure. Improvement of soil subbase is reached by means of the knitted materials, or other methods when strong connection between soil particles is established. The method of DSM (Deep Soil Mixing) columns has been invented in Japan in 1970s. The main reason of designing cement-soil columns is to improve properties of local soils (such as strength and stiffness) by mixing them with various cementing materials. Cement and calcium are the most commonly used binders. However new research undertaken worldwide proves that apart from these materials, also gypsum or fly ashes can also be successfully implemented. As the Deep Soil Mixing is still being under development, anticipating mechanical properties of columns in particular soils and the usage of cementing materials in formed columns is very difficult and often inappropriate to predict. That is why a research is carried out in order to find out what binders and mixing technology should be used. The paper presents several remarks on the testing procedures related to quality and capacity control of Deep Soil Mixing columns. Soil improvement methods, their advantages and limitations are briefly described. The authors analyse the suitability of selected testing methods on subsequent stages of design and execution of special foundations works. Chosen examples from engineering practice form the basis for recommendations for the control procedures. Presented case studies concerning testing the on capacity field samples and laboratory procedures on various categories of soil-cement samples were picked from R&D and consulting works offered by Wroclaw University of Science and Technology. Special emphasis is paid to climate conditions which may affect the availability of performing and controlling of DSM techniques in polar zones, with a special regard to sample curing.

  2. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters

    Directory of Open Access Journals (Sweden)

    Or Hazan

    2018-01-01

    Full Text Available Mesopelagic prokaryotes (archaea and bacteria, which are transported together with nutrient-rich intermediate-water to the surface layer by deep convection in the oceans (e.g., winter mixing, upwelling systems, can interact with surface microbial populations. This interaction can potentially affect production rates and biomass of surface microbial populations, and thus play an important role in the marine carbon cycle and oceanic carbon sequestration. The Eastern Mediterranean Sea (EMS is one of the most oligotrophic and warm systems in the world's oceans, with usually very shallow winter mixing (<200 m and lack of large-size spring algal blooms. In this study, we collected seawater (0–1,500 m in 9 different cruises at the open EMS during both the stratified and the mixed seasons. We show that the EMS is a highly oligotrophic regime, resulting in low autotrophic biomass and primary productivity and relatively high heterotrophic prokaryotic biomass and production. Further, we simulated deep water mixing in on-board microcosms using Levantine surface (LSW, ~0.5 m and intermediate (LIW, ~400 m waters at a 9:1 ratio, respectively and examined the responses of the microbial populations to such a scenario. We hypothesized that the LIW, being nutrient-rich (e.g., N, P and a “hot-spot” for microbial activity (due to the warm conditions that prevail in these depths, may supply the LSW with not only key-limiting nutrients but also with viable and active heterotrophic prokaryotes that can interact with the ambient surface microbial population. Indeed, we show that LIW heterotrophic prokaryotes negatively affected the surface phytoplankton populations, resulting in lower chlorophyll-a levels and primary production rates. This may be due to out-competition of phytoplankton by LIW populations for resources and/or by a phytoplankton cell lysis via viral infection. Our results suggest that phytoplankton in the EMS may not likely form blooms, even after

  3. Feasibility of deep ocean disposal of heat generating waste. V.1

    International Nuclear Information System (INIS)

    Hemming, C.R.

    1988-06-01

    This report summarises the research performed in the UK during the period 1977 to 1987 as part of the international programme investigating the feasibility of ocean disposal of heat generating radioactive waste. This study has involved: (i) the definition of the disposal operations needed to meet the minimum requirements for safely emplacing waste on or under the floor of the deep ocean; (ii) the identification and characterisation of areas of the deep ocean that might be suitable for containing heat generating waste; (iii) a study of the processes by which radionuclides might migrate through the multiple barriers that isolate the waste from man's environment; and (iv) a calculation of the radiological impact of the conceptual deep ocean repository. It is concluded that, from a technical and scientific viewpoint, disposal of heat generating waste in the deep ocean could provide a safe, economic and feasible alternative to deep disposal on land. (author)

  4. The Oceanic Flux Program: A three decade time-series of particle flux in the deep Sargasso Sea

    Science.gov (United States)

    Weber, J. C.; Conte, M. H.

    2010-12-01

    The Oceanic Flux Program (OFP), 75 km SE of Bermuda, is the longest running time-series of its kind. Initiated in 1978, the OFP has produced an unsurpassed, nearly continuous record of temporal variability in deep ocean fluxes, with a >90% temporal coverage at 3200m depth. The OFP, in conjunction with the co-located Bermuda-Atlantic Time Series (BATS) and the Bermuda Testbed Mooring (BTM) time-series, has provided key observations enabling detailed assessment of how seasonal and non-seasonal variability in the deep ocean is linked with the overlying physical and biogeochemical environment. This talk will focus on the short-term flux variability that overlies the seasonal flux pattern in the Sargasso Sea, emphasizing episodic extreme flux events. Extreme flux events are responsible for much of the year-to-year variability in mean annual flux and are most often observed during early winter and late spring when surface stratification is weak or transient. In addition to biological phenomena (e.g. salp blooms), passage of productive meso-scale features such as eddies, which alter surface water mixing characteristics and surface export fluxes, may initiate some extreme flux events. Yet other productive eddies show a minimal influence on the deep flux, underscoring the importance of upper ocean ecosystem structure and midwater processes on the coupling between the surface ocean environment and deep fluxes. Using key organic and inorganic tracers, causative processes that influence deep flux generation and the strength of the coupling with the surface ocean environment can be identified.

  5. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  6. Excess bottom radon 222 distribution in deep ocean passages

    International Nuclear Information System (INIS)

    Sarmiento, J.L.; Broecker, W.S.; Biscaye, P.E.

    1978-01-01

    Radon 222 and STD profiles were obtained as part of the Geosecs program in the Vema Channel in the southwest Atlantic Ocean and in the Samoan, Clarion, and Wake Island passages in the Pacific Ocean. The standing crop of excess radon 222 is higher in the passages than at other nearby locations. The most likely explanation for this is that there is a high flux of radon 222 from the floor of the passages. Since much of the floor is covered with manganese nodules and encrustations, the high flux of radon 222 may be attributable to the high concentrations of radium 226 in the outer few millimeters of such deposits. Laboratory measurements of radon 222 emissivity from maganese encrustations obtained in Vema Channel support this hypothesis. The excess radon 222 in the Vema Channel and Wake Island Passage is found in substantial quantities at heights above bottom greatly exceeding the heights at which excess radon 222 is found in nonpassage areas. The horizontal diffusion of radon emanating from the walls of the passages is unlikely to be the cause of the observed concentrations because the ratio of wall surface area to water volume is very low. The profiles must therefore be a result of exceptionally high apparent vertical mixing in the passages. Further work is needed to determine the nature of this apparent vertical mixing. The excess radon 222 and STD data in all four passages have been fit with an empirical model in which it is assumed that the bouyancy flux is constant with distance above bottom. The fits are very good and yield apparent buoyancy fluxes that are between 1 and 3 orders of magnitude greater than those obtained at nearby stations outside the passages for three of the four passages

  7. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    Science.gov (United States)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and

  8. Evaluation of the radioactive wastes disposal into the deep ocean

    International Nuclear Information System (INIS)

    Aoyama, I.; Yamamoto, M.; Inoue, Y.

    1977-01-01

    A hazard assessment for deep sea disposal of low level radioactive solid wastes which originate from nuclear power reactors in Japan is presented. The model takes account of leaching characteristics of radionuclides from wastes solidified with cement, which has not been considered in other papers. Maximum and average concentrations of radionuclides in an upper mixed layer of the sea are estimated and maximum doses for individual and population doses for Japanese people are calculated. In order to evaluate an uncertainty of parameters in the model, a sensitivity analysis was performed. The discussions include: which parameter in an equation of the model affects most the average concentration of radionuclides in the upper mixed layer and, to what degree the fluctuation of parameters due to the variation of environmental factors affects the concentration. Generally, the most sensitive parameter is the depth of the seas where the solidified wastes would be deposited. The concentration of radionuclides in the surface water is not sensitively affected by the vertical diffusion coefficient. (author)

  9. Spiraling pathways of global deep waters to the surface of the Southern Ocean

    OpenAIRE

    Tamsitt, Veronica; Drake, Henri F.; Morrison, Adele K.; Talley, Lynne D.; Dufour, Carolina O.; Gray, Alison R.; Griffies, Stephen M.; Mazloff, Matthew R.; Sarmiento, Jorge L.; Wang, Jinbo; Weijer, Wilbert

    2017-01-01

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle trac...

  10. Eddy correlation measurements of oxygen uptake in deep ocean sediments

    DEFF Research Database (Denmark)

    Berg, P.; Glud, Ronnie Nøhr; Hume, A.

    2010-01-01

    .62 +/- 0.23 (SE, n = 7), 1.65 +/- 0.33 (n = 2), and 1.43 +/- 0.15 (n = 25) mmol m(-2) d(-1). The very good agreement between the eddy correlation flux and the chamber flux serves as a new, important validation of the eddy correlation technique. It demonstrates that the eddy correlation instrumentation......Abstract: We present and compare small sediment-water fluxes of O-2 determined with the eddy correlation technique, with in situ chambers, and from vertical sediment microprofiles at a 1450 m deep-ocean site in Sagami Bay, Japan. The average O-2 uptake for the three approaches, respectively, was 1...... available today is precise and can resolve accurately even very small benthic O-2 fluxes. The correlated fluctuations in vertical velocity and O-2 concentration that give the eddy flux had average values of 0.074 cm s(-1) and 0.049 mu M. The latter represents only 0.08% of the 59 mu M mean O-2 concentration...

  11. Environmental monitoring and deep ocean disposal of packaged radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Preston, A.

    1980-01-01

    The aims and objectives of environmental monitoring as laid down, for example by the ICRP and the IAEA include the assessment of actual or potential radiation exposure of man and the requirements of scientific investigations. The fulfillment of these aims is discussed in the context of the disposal of packaged radioactive waste in the deep Atlantic Ocean within the terms of the London Dumping Convention and within a regional agreement, the consultation/surveillance mechanism of the Nuclear Energy Agency. The paper discusses UK attitudes to such environmental monitoring, concentrates on the first of these ICRP objectives and shows how this is unlikely to be achieved by direct measurement in view of the small quantities of radioactive material involved relative to the scale of the receiving environment, and the timescale on which return to man can be conceived. Whilst meaningful environmental measurement is very unlikely to facilitate direct estimation of public radiation exposure by monitoring, it is still held that the basic objective of environmental monitoring can be met. A means by which this may be achieved is by oceanographic models. These procedures are discussed, illustrating the application of this philosophy in practice. (H.K.)

  12. On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state

    Science.gov (United States)

    Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey

    2018-05-01

    General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.

  13. Deep soil mixing for reagent delivery and contaminant treatment

    International Nuclear Information System (INIS)

    Korte, N.; Gardner, F.G.; Cline, S.R.; West, O.R.

    1997-01-01

    Deep soil mixing was evaluated for treating clay soils contaminated with TCE and its byproducts at the Department of Energy's Kansas City Plant. The objective of the project was to evaluate the extent of limitations posed by the stiff, silty-clay soil. Three treatment approaches were tested. The first was vapor stripping. In contrast to previous work, however, laboratory treatability studies indicated that mixing saturated, clay soil was not efficient unless powdered lime was added. Thus, powder injection of lime was attempted in conjunction with the mixing/stripping operation. In separate treatment cells, potassium permanganate solution was mixed with the soil as a means of destroying contaminants in situ. Finally, microbial treatment was studied in a third treatment zone. The clay soil caused operational problems such as breakage of the shroud seal and frequent reagent blowouts. Nevertheless, treatment efficiencies of more than 70% were achieved in the saturated zone with chemical oxidation. Although expensive ($1128/yd 3 ), there are few alternatives for soils of this type

  14. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, R. D.

    2010-11-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  15. Fueling export production: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Directory of Open Access Journals (Sweden)

    J. B. Palter

    2010-11-01

    Full Text Available In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC. One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be significantly reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global export production between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, nutrients exported in the SAMW layer are utilized and converted rapidly (in less than 40 years to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  16. Fueling primary productivity: nutrient return pathways from the deep ocean and their dependence on the Meridional Overturning Circulation

    Science.gov (United States)

    Palter, J. B.; Sarmiento, J. L.; Gnanadesikan, A.; Simeon, J.; Slater, D.

    2010-06-01

    In the Southern Ocean, mixing and upwelling in the presence of heat and freshwater surface fluxes transform subpycnocline water to lighter densities as part of the upward branch of the Meridional Overturning Circulation (MOC). One hypothesized impact of this transformation is the restoration of nutrients to the global pycnocline, without which biological productivity at low latitudes would be catastrophically reduced. Here we use a novel set of modeling experiments to explore the causes and consequences of the Southern Ocean nutrient return pathway. Specifically, we quantify the contribution to global productivity of nutrients that rise from the ocean interior in the Southern Ocean, the northern high latitudes, and by mixing across the low latitude pycnocline. In addition, we evaluate how the strength of the Southern Ocean winds and the parameterizations of subgridscale processes change the dominant nutrient return pathways in the ocean. Our results suggest that nutrients upwelled from the deep ocean in the Antarctic Circumpolar Current and subducted in Subantartic Mode Water support between 33 and 75% of global primary productivity between 30° S and 30° N. The high end of this range results from an ocean model in which the MOC is driven primarily by wind-induced Southern Ocean upwelling, a configuration favored due to its fidelity to tracer data, while the low end results from an MOC driven by high diapycnal diffusivity in the pycnocline. In all models, the high preformed nutrients subducted in the SAMW layer are converted rapidly (in less than 40 years) to remineralized nutrients, explaining previous modeling results that showed little influence of the drawdown of SAMW surface nutrients on atmospheric carbon concentrations.

  17. Deep-sea ecosystems of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Koslow, J.A.

    are potential sites for hydrothermal mineralization and contain active vent fields. There are no available estimates for the numbers of seamounts in the Indian Ocean based on echo sounder recordings. Satellite altimetry data indicate that the Indian Ocean has...

  18. Impact of Parameterized Lateral Mixing on the Circulation of the Southern Ocean

    Science.gov (United States)

    Ragen, S.; Gnanadesikan, A.

    2016-02-01

    The Antarctic Circumpolar Current (ACC) is the strongest ocean current in the world, transporting approximately 130 Sv Eastward around Antarctica. This current is often poorly simulated in climate models. It is not clear why this is the case as the Circumpolar Current is affected by both wind and buoyancy. Changes in wind and buoyancy are not independent of each other, however, so determining the effects of both separately has proved difficult. This study was undertaken in order to examine the impact of changing the lateral diffusion coefficient A­redi on ACC transport. A­redi is poorly known and its value ranges across an order of magnitude in the current generation of climate models. To explore these dynamics, a coarse resolution, fully coupled model suite was run with A­redi mixing coefficients of 400 m2/s, 800 m2/s, 1200 m2/s, and 2400 m2/s. Additionally, two models were run with two-dimensional representations of the mixing coefficient based on altimetry. Our initial results indicate that higher values of the lateral mixing coefficient result in the following changes. We see weaker winds over the Southern Ocean as a whole. The high mixing case results in an 8.7% decrease in peak wind stress. We see a 2% weaker transport in the Drake Passage in the highest mixing case compared to the lowest, but an 11% decrease in transport for a zonal average. The change of temperature and salinity with depth with different Redi parameters also shows a significant difference between the Southern Ocean as a whole and the Drake Passage. Our findings seem to suggest that the Drake Passage is not an adequate diagnostic for explaining the differences between different climate models, as processes distant from the passage may play an important role. Observed changes in overturning with an increase in lateral mixing include an increase in northward transport of Antarctic Bottom Water fed by a small diversion of northern deep water inflows. This diversion means that less of the

  19. In-situ detection of microbial life in the deep biosphere in igneous ocean crust

    Directory of Open Access Journals (Sweden)

    Everett Cosio Salas

    2015-11-01

    Full Text Available The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in-situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  20. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    Science.gov (United States)

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  1. Dynamic hole closure behind a deep ocean sediment penetrator

    International Nuclear Information System (INIS)

    Dzwilewski, P.T.; Karnes, C.H.

    1982-01-01

    A freefall or boosted penetrator is one concept being considered to dispose of nuclear waste in the deep ocean seabed. For this technique to be acceptable, the sediment must be an effective barrier to the migration of radioactive nuclides, which means that the hole behind the advancing penetrator must close. One mechanism which can cause the hole to close immediately behind the penetrator is the reduction in water pressure in the wake as water tries to follow the penetrator into the sediment. An approximate solution to this complex problem is presented which analyzes the deformation of the sediment with a nonlinear, large displacement and strain, Lagrangian finite-difference computer code (STEALTH). The water was treated by Bernoulli's Principle for flow in a pipe resulting in a pressure boundary condition applied to the sediment surface along the path after passage of the penetrator. Two one-dimensional and eight two-dimensional calculations were performed with various penetrator velocities (15, 30, and 60 m/s) and sediment shear strengths. In two of the calculations, the dynamic pressure reduction was neglected to see if geostatic stresses alone would close the hole. The results of this study showed that geostatic stresses alone would not close the hole but the dynamic pressure reduction would. The largest uncertainty in the analysis was the pressure conditions in the water behind the penetrator in which frictionless, steady-state flow, in a uniform diameter pipe was assumed. A more sophisticated and realistic pressure condition has been formulated and will be implemented in the computer code in the near future

  2. Impact of space dependent eddy mixing on large ocean circulation

    Science.gov (United States)

    Pradal, M. A. S.; Gnanadesikan, A.; Abernathey, R. P.

    2016-02-01

    Throughout the ocean, mesoscale eddies stir tracers such as heat, oxygen, helium, dissolved CO2, affecting their spatial distribution. Recent work (Gnanadesikan et al., 2013) showed that changes in eddy stirring could result in changes of the volume of hypoxic and anoxic waters, leading to drastic consequences for ocean biogeochemical cycles. The parameterization of mesocale eddies in global climate models (GCMs) is two parts, based on the formulations of Redi (1982) and Gent and McWilliams (1990) which are associated with mixing parameters ARedi and AGM respectively. Numerous studies have looked at the sensitivity of ESMs to changing AGM, either alone or in combination with an ARedi parameter taken to be equivalent to the value of the AGM. By contrast the impact of the Redi parameterization in isolation remains unexplored. In a previous article, Pradal and Gnanadesikan, 2014, described the sensitivity of the climate system to a six fold increase in the Redi parameter. They found that increasing the isopycnal mixing coefficient tended to warm the climate of the planet overall, through an increase of heat absorption linked to a destabilization of the halocline in subpolar regions (particularly the Southern Ocean). This previous work varied a globally constant Redi parameter from 400m2/s to 2400m2/s. New estimates from altimetry (Abernathey and Marshall, 2013) better constrain the spatial patterns and range for the ARedi parameter. Does such spatial variation matter, and if so, where does matter? Following Gnanadesikan et al. (2013) and Pradal and Gnanadesikan, 2014 this study examines this question with a suite of Earth System Models.

  3. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2011-07-01

    Full Text Available The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.

  4. Ship Sensor Observations for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the NOAA ship Ronald H. Brown during the "Deep Sea Medicines 2003: Exploration of the Gulf of Mexico" expedition...

  5. Dive Activities for Expedition to the Deep Slope 2007 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Expedition to the Deep Slope 2007" expedition, June 4 through July 6, 2007. Additional...

  6. Ship Sensor Observations for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the 2002 "Islands in the Stream - Deep Reef Habitat" expedition sponsored by the...

  7. Submersible Data (Dive Trackpoints) for Expedition to the Deep Slope 2007 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the ROV Jason along its track during sixteen dives of the 2007 "Expedition to the Deep Slope" expedition sponsored by the National...

  8. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.; Afonso, Pedro; Fontes, Jorge; Braun, Camrin D.; Santos, Ricardo S.; Skomal, Gregory B.; Berumen, Michael L.

    2014-01-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite

  9. Submersible Data (Dive Trackpoints) for Operation Deep Scope 2005 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link I along its track during thirteen dives of the 2005 "Operation Deep Scope" expedition sponsored by...

  10. Dive Activities for Expedition to the Deep Slope 2006 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Expedition to the Deep Slope 2006" expedition, May 7 through June 2, 2006. Additional...

  11. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, J M; Mayol, E.; Hansman, R. L.; Herndl, G. J.; Dittmar, T.; Duarte, Carlos M.

    2015-01-01

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering

  12. Implementation of deep soil mixing at the Kansas City Plant

    International Nuclear Information System (INIS)

    Gardner, F.G.; Korte, N.; Strong-Gunderson, J.; Siegrist, R.L.; West, O.R.; Cline, S.R.

    1998-01-01

    In July 1996, the US Department of Energy (DOE) Kansas City Plant (KCP), AlliedSignal Federal Manufacturing and Technologies, and Oak Ridge National Laboratory (ORNL), conducted field-scale tests of in situ soil mixing and treatment technologies within the Northeast Area (NEA) of the KCP at the Former Ponds site. This demonstration, testing, and evaluation effort was conducted as part of the implementation of a deep soil mixing (DSM) innovative remedial technology demonstration project designed to test DSM in the low-permeability clay soils at the KCP. The clay soils and groundwater beneath this area are contaminated by volatile organic compounds (VOCs), primarily trichloroethene (TCE) and 1,2-dichloroethene (1,2-DCE). The demonstration project was originally designed to evaluate TCE and 1,2-DCE removal efficiency using soil mixing coupled with vapor stripping. Treatability study results, however, indicated that mixed region vapor stripping (MRVS) coupled with calcium oxide (dry lime powder) injection would improve TCE and 1,2-DCE removal efficiency in saturated soils. The scope of the KCP DSM demonstration evolved to implement DSM with the following in situ treatment methodologies for contaminant source reduction in soil and groundwater: DSM/MRVS coupled with calcium oxide injection; DSM/bioaugmentation; and DSM/chemical oxidation using potassium permanganate. Laboratory treatability studies were started in 1995 following collection of undisturbed soil cores from the KCP. These studies were conducted at ORNL, and the results provided information on optimum reagent concentrations and mixing ratios for the three in situ treatment agents to be implemented in the field demonstration

  13. ISHTE deep-ocean corers and heater-implant system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, L. O.; Harrison, J. G.

    1982-09-01

    Seafloor instrumentation systems are being developed for the In-Situ Heat Transfer Experiment (ISHTE) to determine the thermal conductivity of deep ocean sediments. As part of the experiment, a heat canister will be implanted into the sediment. Also, after about one year on the seafloor, core samplers are to be actuated to gather sediment samples. This report describes the deep ocean piston corers and the heater-implant drive system.

  14. Tracing the Ventilation Pathways of the Deep North Pacific Ocean Using Lagrangian Particles and Eulerian Tracers

    NARCIS (Netherlands)

    Syed, H.A.M.S.; Primeau, F.W.; Deleersnijder, E.L.C.; Heemink, A.W.

    2017-01-01

    Lagrangian forward and backward models are introduced into a coarse-grid ocean global circulation model to trace the ventilation routes of the deep North Pacific Ocean. The random walk aspect in the Lagrangian model is dictated by a rotated isopycnal diffusivity tensor in the circulation model,

  15. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    NARCIS (Netherlands)

    Tamburini, C.; Canals, M.; de Madron, X.D.; Houpert, L.; Lefevre, D.; Martini, V.; D'Ortenzio, F.; Robert, A.; Testor, P.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.L.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, P.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, H.Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.N.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, V.G.; Salesa, F.; Sanchez-Losa, A.; Sapienza, P.; Schock, F.; Schuller, J.P.; Schussler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.G.F.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June

  16. Improving deep convolutional neural networks with mixed maxout units.

    Directory of Open Access Journals (Sweden)

    Hui-Zhen Zhao

    Full Text Available Motivated by insights from the maxout-units-based deep Convolutional Neural Network (CNN that "non-maximal features are unable to deliver" and "feature mapping subspace pooling is insufficient," we present a novel mixed variant of the recently introduced maxout unit called a mixout unit. Specifically, we do so by calculating the exponential probabilities of feature mappings gained by applying different convolutional transformations over the same input and then calculating the expected values according to their exponential probabilities. Moreover, we introduce the Bernoulli distribution to balance the maximum values with the expected values of the feature mappings subspace. Finally, we design a simple model to verify the pooling ability of mixout units and a Mixout-units-based Network-in-Network (NiN model to analyze the feature learning ability of the mixout models. We argue that our proposed units improve the pooling ability and that mixout models can achieve better feature learning and classification performance.

  17. Mixed Pyolaryngocele: A Rare Case of Deep Neck Infection

    Directory of Open Access Journals (Sweden)

    Rachid Mahdoufi

    2017-07-01

    Full Text Available Introduction: Pyolaryngocele is a very rare and serious complication of laryngocele. It can present as deep neck space infection and mislead the diagnosis. Our aim is to bring this unusual entity to the attention of surgeons and describe its clinical features. Case Report: We report a case of a 45-year-old male patient with a five-week history of neck swelling, dysphonia, dyspnea and odynophagia. An urgent CT scan showed a mixed pyolaryngocele. The management consisted of a high dose antibiotic and an excision of the residual laryngocele via an external approach. Conclusion: A pyolaryngocele is an unusual complication of laryngocele, which becomes secondarily infected, causing many symptoms. Removing the laryngocele is still the best treatment option to prevent this complication and recurrence.

  18. Physical oceanographic characteristics influencing the dispersion of dissolved tracers released at the sea floor in selected deep ocean study areas

    International Nuclear Information System (INIS)

    Kupferman, S.L.; Moore, D.E.

    1981-02-01

    Scenarios which follow the development in space and time of the concentration field of a dissolved tracer released at the sea floor are presented for a Pacific and two Atlantic study areas. The scenarios are closely tied to available data by means of simple analytical models and proceed in stages from short time and space scales in the immediate vicinity of a release point to those scales characteristic of ocean basins. The concepts of internal mixing time and residence time in the benthic mixed layer, useful for developing an intuitive feeling for the behavior of a tracer in this feature, are introduced and discussed. We also introduce the concept of domain of occupation, which is useful in drawing distinctions between mixing and stirring in the ocean. From this study it is apparent that reliable estimation of mixing will require careful consideration of the dynamics of the eddy fields in the ocean. Another area in which more information is urgently needed is in the relation of deep isopycnal structure and bottom topography to local near-bottom circulation

  19. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  20. A Stratification Boomerang: Nonlinear Dependence of Deep Southern Ocean Ventilation on PCO2

    Science.gov (United States)

    Galbraith, E. D.; Merlis, T. M.

    2014-12-01

    Strong correlations between atmospheric CO2, Antarctic temperatures, and marine proxy records have hinted that ventilation of the deep Southern Ocean may have played a central role in the variations of CO2 over glacial-interglacial cycles. One proposition is that, in general, the Southern Ocean ventilates the deep more strongly under higher CO2, due to a change in winds and/or the dominance of thermal stratification in a warm ocean, which weakens ocean biological carbon storage. Here, we explore this idea with a suite of multi-millennial simulations using the GFDL CM2Mc global coupled model. The results are, indeed, consistent with increasing ventilation of the Southern Ocean as pCO2 increases above modern. However, they reveal a surprising twist under low pCO2: increased salinity of the Southern Ocean, due in part to weakening atmospheric moisture transport, actually increases ventilation rate of the deep ocean under low pCO2 as well. This implies that a nadir of Southern Ocean ventilation occurs at intermediate pCO2, which the model estimates as being close to that of the present-day. This is at odds with the interpretation that weak ventilation of the deep Southern Ocean was the unifying coupled mechanism for the glacial pCO2 cycles. Rather, it suggests that factors other than the ventilation rate of the deep Southern Ocean, such as iron fertilization, ecosystem changes, water mass distributions, and sea ice cover, were key players in the glacial-interglacial CO2 changes.

  1. Turbulence and finestructure in a deep ocean channel with sill overflow on the mid-Atlantic ridge

    Science.gov (United States)

    Tippenhauer, Sandra; Dengler, Marcus; Fischer, Tim; Kanzow, Torsten

    2015-05-01

    Diapycnal mixing in the deep ocean is known to be much stronger in the vicinity of rough topography of mid-ocean ridges than above abyssal plains. In this study a horizontally profiling microstructure probe attached to an autonomous underwater vehicle (AUV) is used to infer the spatial distribution of the dissipation rate of turbulent kinetic energy (ε) in the central valley of the Mid-Atlantic Ridge. To the authors' knowledge, this is the first successful realization of a horizontal, deep-ocean microstructure survey. More than 22 h of horizontal, near-bottom microstructure data from the Lucky Strike segment (37°N) are presented. The study focuses on a channel with unidirectional sill overflow. Density was found to decrease along the channel following the mean northward flow of 3 to 8 cm/s. The magnitude of the rate of turbulent kinetic energy dissipation was distributed asymmetrically relative to the position of the sill. Elevated dissipation rates were present in a segment 1-4 km downstream (north) of the sill with peak values of 1 ×10-7 W/kg. Large flow speeds and elevated density finestructure were observed within this segment. Lowered hydrographic measurements indicated unstable stratification in the same region. The data indicate that hydraulic control was established at least temporarily. Inside the channel at wavelengths between 1 m and 250 m the slopes of AUV-inferred horizontal temperature gradient spectra were found to be consistent with turbulence in the inertial-convective subrange. Integrated temperature gradient variance in this wavelength interval was consistent with an ε2/3 dependence. The results illustrate that deep-reaching AUVs are a useful tool to study deep ocean turbulence over complex terrain where free-falling and lowered turbulence measurements are inefficient and time-consuming.

  2. Picocyanobacteria and deep-ocean fluorescent dissolved organic matter share similar optical properties

    Science.gov (United States)

    Zhao, Zhao; Gonsior, Michael; Luek, Jenna; Timko, Stephen; Ianiri, Hope; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Fang, Xiaoting; Zeng, Qinglu; Jiao, Nianzhi; Chen, Feng

    2017-05-01

    Marine chromophoric dissolved organic matter (CDOM) and its related fluorescent components (FDOM), which are widely distributed but highly photobleached in the surface ocean, are critical in regulating light attenuation in the ocean. However, the origins of marine FDOM are still under investigation. Here we show that cultured picocyanobacteria, Synechococcus and Prochlorococcus, release FDOM that closely match the typical fluorescent signals found in oceanic environments. Picocyanobacterial FDOM also shows comparable apparent fluorescent quantum yields and undergoes similar photo-degradation behaviour when compared with deep-ocean FDOM, further strengthening the similarity between them. Ultrahigh-resolution mass spectrometry (MS) and nuclear magnetic resonance spectroscopy reveal abundant nitrogen-containing compounds in Synechococcus DOM, which may originate from degradation products of the fluorescent phycobilin pigments. Given the importance of picocyanobacteria in the global carbon cycle, our results indicate that picocyanobacteria are likely to be important sources of marine autochthonous FDOM, which may accumulate in the deep ocean.

  3. Microbially-mediated fluorescent organic matter transformations in the deep ocean

    DEFF Research Database (Denmark)

    Aparicio, Fran L.; Nieto-Cid, Mar; Borrull, Encarna

    2015-01-01

    The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also b....... These findings contribute to the understanding of FDOM variability in deep waters and provide valuable information for studies where fluorescent compounds are used in order to track water masses and/or microbial processes.......The refractory nature of marine dissolved organic matter (DOM) increases while it travels from surface waters to the deep ocean. This resistant fraction is in part composed of fluorescent humic-like material, which is relatively difficult to metabolize by deep water prokaryotes, and it can also...

  4. Stability of embankments over cement deep soil mixing columns

    International Nuclear Information System (INIS)

    Morilla Moar, P.; Melentijevic, S.

    2014-01-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  5. Dumping of solid packaged radioactivity in the deep oceans

    International Nuclear Information System (INIS)

    Forster, Wm. O.; Van As, D.

    1980-01-01

    With the increasing use of nuclear energy, the quantity of radioactive wastes which are generated is also increasing. Their treatment and disposal is causing a concern in further development of nuclear energy. World's oceans are considered as a possible location for these wastes. A convention on the prevention of marine pollution caused by dumping of wastes and other matter into oceans was adopted at the Intergovernmental Conference held at London in November 1972. The convention prohibits dumping of high-level radioactive wastes in the oceans and has entrusted the IAEA the tasks of defining the high level radioactive wastes and providing recommendations for the issue of special permits for dumping of the radioactive materials which do not fall into the category of high-level wastes. A provisional definition and recommendations formulated by the IAEA and adopted by contractin.o. parties in 1976 are outlined. On the basis of an oceanographic model developed by Shepherd (1976) and considered to be the best available, a revised definition and revised recommendations were formulated. Their salient features are mentioned. The key parameters for specific site assessments are mentioned. The Nuclear Energy Agency also formulated guidelines on sea-disposal packages for radioactive wastes in 1974 and revised them in 1978. Finally it is noted that criteria have not been established for dumping of non-radioactive wastes in the ocean, though such criteria are contained in the IAEA recommendations in case of radioactive wastes. (M.G.B.)

  6. Increased particle flux to the deep ocean related to monsoons

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, R.R.; Ittekkot, V.; Manganini, S.J.; Ramaswamy, V.; Haake, B.; Degens, E.T.; Desai, B.N.; Honjo, S.

    . To assess the impact of monsoon-driven processes on the downward particle flux variations in the open ocean we deployed three moored arrays consisting of six time-series sediment traps at selected locations in the western, central and eastern parts...

  7. Atypical anticlockwise internal tidal motions in the deep ocean

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    In the ocean, horizontal motions associated with freely propagating semidiurnal tidal inertia-gravity waves mainly describe an ellipse that is traversed in a clockwise direction in the Northern Hemisphere. In this article, rare observations of anticlockwise polarised semidiurnal motions are

  8. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  9. Abrupt pre-Bølling-Allerød warming and circulation changes in the deep ocean.

    Science.gov (United States)

    Thiagarajan, Nivedita; Subhas, Adam V; Southon, John R; Eiler, John M; Adkins, Jess F

    2014-07-03

    Several large and rapid changes in atmospheric temperature and the partial pressure of carbon dioxide in the atmosphere--probably linked to changes in deep ocean circulation--occurred during the last deglaciation. The abrupt temperature rise in the Northern Hemisphere and the restart of the Atlantic meridional overturning circulation at the start of the Bølling-Allerød interstadial, 14,700 years ago, are among the most dramatic deglacial events, but their underlying physical causes are not known. Here we show that the release of heat from warm waters in the deep North Atlantic Ocean probably triggered the Bølling-Allerød warming and reinvigoration of the Atlantic meridional overturning circulation. Our results are based on coupled radiocarbon and uranium-series dates, along with clumped isotope temperature estimates, from water column profiles of fossil deep-sea corals in a limited area of the western North Atlantic. We find that during Heinrich stadial 1 (the cool period immediately before the Bølling-Allerød interstadial), the deep ocean was about three degrees Celsius warmer than shallower waters above. This reversal of the ocean's usual thermal stratification pre-dates the Bølling-Allerød warming and must have been associated with increased salinity at depth to preserve the static stability of the water column. The depleted radiocarbon content of the warm and salty water mass implies a long-term disconnect from rapid surface exchanges, and, although uncertainties remain, is most consistent with a Southern Ocean source. The Heinrich stadial 1 ocean profile is distinct from the modern water column, that for the Last Glacial Maximum and that for the Younger Dryas, suggesting that the patterns we observe are a unique feature of the deglacial climate system. Our observations indicate that the deep ocean influenced dramatic Northern Hemisphere warming by storing heat at depth that preconditioned the system for a subsequent abrupt overturning event during the

  10. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  11. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  12. Geotechnical properties of deep-ocean sediments: a critical state approach

    International Nuclear Information System (INIS)

    Ho, E.W.L.

    1988-11-01

    The possible disposal of high-level radioactive waste using the sediments of the deep-ocean floor as repositories has initiated research to establish an understanding of the fundamental behaviour of deep-ocean sediments. The work described in this thesis consisted of a series of triaxial stress path tests using microcomputer controlled hydraulic triaxial cells to investigate the strength and stress-strain behaviour for mainly anisotropically (K o ) consolidated 'undisturbed' (tubed) and reconstituted specimens of deep-ocean sediments taken from two study areas in the North Atlantic Ocean. The test results have been analysed within the framework of critical state soil mechanics to investigate sediment characteristics such as the state boundary surface, drained and undrained strength and stress-strain behaviour. While marked anisotropic behaviour is found in a number of respects, the results indicate that analysis in a critical state framework is as valid as for terrestrial sediments. Differences in behaviour between tubed and reconstituted specimens have been observed and the effect of the presence of carbonate has been investigated. An attempt has been made to develop an elasto-plastic constitutive K o model based on critical state concepts. This model has been found to agree reasonably well with experimental data for kaolin and deep-ocean sediments. (author)

  13. Determination of deep water circulation in the East Atlantic Ocean by means of a box-model based evaluation of C-14 measurements and other tracer data

    International Nuclear Information System (INIS)

    Schlitzer, R.

    1984-01-01

    Radiocarbon (C-14) measurements proved to be an efficient means of determining the average, large-area deep water circulation in the Atlantic Ocean. The thesis under review explains and discusses measurements carried out in the equatorial West Atlantic and North Atlantic Ocean. The samples have been taken during mission 56 of the RS 'meteor' in spring 1981. The gas has been obtained by vacuum extraction and the measurements have been performed in proportional counter tubes, the error to be accounted for amounting to 2per mille. These measured data, together with measurements of the potential temperatures, the silicate and CO 2 concentrations, and measured data from the South-East Atlantic Ocean, have been used to calculate on the basis of a box model of the Atlantic Ocean the deep water flow from the West to the East Atlantic Ocean, the deep water circulation between the various East Atlantic basins, and the turbulent diffusion coefficients required to parameterize the deep water mixing processes. (orig./HP) [de

  14. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere-ocean-wave model

    Science.gov (United States)

    Prakash, Kumar Ravi; Nigam, Tanuja; Pant, Vimlesh

    2018-04-01

    A coupled atmosphere-ocean-wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB) during 10-14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere-ocean-wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere-ocean-wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave-current interaction and nonlinear wave-wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  15. Listening to the Deep: Live monitoring of ocean noise and cetacean acoustic signals

    OpenAIRE

    André, Michel; Van der Schaar, Mike Connor Roger Malcolm; Zaugg, Serge Alain; Houégnigan, Ludwig; Sánchez, A.M.; Castell, Joan

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO(Listening to the Deep Ocean Environment) is an international project that is allowing the real-time longterm monitoring of marine ambient noise as well as marine mammal sounds at cabled and...

  16. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts

    Science.gov (United States)

    Stolper, Daniel A.; Keller, C. Brenhin

    2018-01-01

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O2) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  17. A record of deep-ocean dissolved O2 from the oxidation state of iron in submarine basalts.

    Science.gov (United States)

    Stolper, Daniel A; Keller, C Brenhin

    2018-01-18

    The oxygenation of the deep ocean in the geological past has been associated with a rise in the partial pressure of atmospheric molecular oxygen (O 2 ) to near-present levels and the emergence of modern marine biogeochemical cycles. It has also been linked to the origination and diversification of early animals. It is generally thought that the deep ocean was largely anoxic from about 2,500 to 800 million years ago, with estimates of the occurrence of deep-ocean oxygenation and the linked increase in the partial pressure of atmospheric oxygen to levels sufficient for this oxygenation ranging from about 800 to 400 million years ago. Deep-ocean dissolved oxygen concentrations over this interval are typically estimated using geochemical signatures preserved in ancient continental shelf or slope sediments, which only indirectly reflect the geochemical state of the deep ocean. Here we present a record that more directly reflects deep-ocean oxygen concentrations, based on the ratio of Fe 3+ to total Fe in hydrothermally altered basalts formed in ocean basins. Our data allow for quantitative estimates of deep-ocean dissolved oxygen concentrations from 3.5 billion years ago to 14 million years ago and suggest that deep-ocean oxygenation occurred in the Phanerozoic (541 million years ago to the present) and potentially not until the late Palaeozoic (less than 420 million years ago).

  18. DeepEddy : a simple deep architecture for mesoscale oceanic eddy detection in SAR images

    NARCIS (Netherlands)

    Huang, Dongmei; Du, Yanling; He, Qi; Song, Wei; Liotta, Antonio

    2017-01-01

    Automatic detection of mesoscale oceanic eddies is in great demand to monitor their dynamics which play a significant role in ocean current circulation and marine climate change. Traditional methods of eddies detection using remotely sensed data are usually based on physical parameters, geometrics,

  19. Exploring Ocean Animal Trajectory Pattern via Deep Learning

    KAUST Repository

    Wang, Su

    2016-01-01

    We trained a combined deep convolutional neural network to predict seals’ age (3 categories) and gender (2 categories). The entire dataset contains 110 seals with around 489 thousand location records. Most records are continuous and measured in a certain step. We created five convolutional layers for feature representation and established two fully connected structure as age’s and gender’s classifier, respectively. Each classifier consists of three fully connected layers. Treating seals’ latitude and longitude as input, entire deep learning network, which includes 780,000 neurons and 2,097,000 parameters, can reach to 70.72% accuracy rate for predicting seals’ age and simultaneously achieve 79.95% for gender estimation.

  20. Exploring Ocean Animal Trajectory Pattern via Deep Learning

    KAUST Repository

    Wang, Su

    2016-05-23

    We trained a combined deep convolutional neural network to predict seals’ age (3 categories) and gender (2 categories). The entire dataset contains 110 seals with around 489 thousand location records. Most records are continuous and measured in a certain step. We created five convolutional layers for feature representation and established two fully connected structure as age’s and gender’s classifier, respectively. Each classifier consists of three fully connected layers. Treating seals’ latitude and longitude as input, entire deep learning network, which includes 780,000 neurons and 2,097,000 parameters, can reach to 70.72% accuracy rate for predicting seals’ age and simultaneously achieve 79.95% for gender estimation.

  1. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode

    Science.gov (United States)

    Sallée, J. B.; Speer, K. G.; Rintoul, S. R.

    2010-04-01

    Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.

  2. Performance of an autonomously deployable telemetered deep ocean seismic observatory

    Science.gov (United States)

    Berger, Jonathan; Laske, Gabe; Orcutt, John; Babcock, Jeffrey

    2016-04-01

    We describe a transformative technology that can provide near real-time telemetry of sensor data from the ocean bottom without a moored buoy or a cable to shore. The breakthrough technology that makes this system possible is an autonomous surface vehicle called a Wave Glider developed by Liquid Robotics, which harvests wave and solar energy for motive and electrical power. For navigation, the wave glider is equipped with a small computer, a GPS receiver, a rudder, solar panels and batteries, AIS ship detection receiver, weather station, and an Iridium satellite modem. Wave gliders have demonstrated trans-oceanic range and long-term station keeping capabilities. We present results from several deployments of a prototype system that demonstrate the feasibility of this concept. The system comprises ocean bottom package (OBP) and an ocean surface gateway (OSG). Acoustic communications connect the OBP instruments with OSG while communications between the gateway and land are provided by the Iridium satellite constellation. The most recent deployment of the OBP was off the edge of the Patton Escarpment some 300 km west of San Diego in 4000 m of water. The OSG was launched about 30 km west of San Diego harbor and programmed to navigate to the site of the ocean bottom package. Arriving after 161 hours, the OSG then commenced holding station at the site for the next 68 days. Speeds over-the-ground varied with wind, wave, and surface current conditions but averaged 0.5 m/s while winds varied between 0 m/s and 17 m/s and wave heights between 0.2 m and 5.9 m. Over this period the median total data latency was 260 s and the data loss less that 0.2% when the wave glider was within 1.5 km of the central point. We have also tested a full-scale model of a towable ocean bottom package, which demonstrated that a wave glider could tow and navigate an autonomously deployable ocean bottom package. Taken together, these tests have demonstrated that the concept is viable for long

  3. Light penetration structures the deep acoustic scattering layers in the global ocean

    DEFF Research Database (Denmark)

    Aksnes, Dag L.; Rostad, Anders; Kaartvedt, Stein

    2017-01-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna...... distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web....

  4. Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions

    Science.gov (United States)

    Hendry, Katharine R.; Georg, R. Bastian; Rickaby, Rosalind E. M.; Robinson, Laura F.; Halliday, Alex N.

    2010-04-01

    The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO 2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep waters. In particular, the upwelling of silicic acid (Si(OH) 4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep water Si(OH) 4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH) 4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH) 4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH) 4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.

  5. Lead isotopes in deep-sea coral skeletons: Ground-truthing and a first deglacial Southern Ocean record

    Science.gov (United States)

    Wilson, David J.; van de Flierdt, Tina; Adkins, Jess F.

    2017-05-01

    Past changes in seawater lead (Pb) isotopes record the temporal evolution of anthropogenic pollution, continental weathering inputs, and ocean current transport. To advance our ability to reconstruct this signature, we present methodological developments that allow us to make precise and accurate Pb isotope measurements on deep-sea coral aragonite, and apply our approach to generate the first Pb isotope record for the glacial to deglacial mid-depth Southern Ocean. Our refined methodology includes a two-step anion exchange chemistry procedure and measurement using a 207Pb-204Pb double spike on a Thermo Finnigan Triton TIMS instrument. By employing a 1012 Ω resistor (in place of a 1011 Ω resistor) to measure the low-abundance 204Pb ion beam, we improve the internal precision on 206,207,208Pb/204Pb for a 2 ng load of NIST-SRM-981 Pb from typically ∼420 ppm to ∼230 ppm (2 s.e.), and the long term external reproducibility from ∼950 ppm to ∼550 ppm (2 s.d.). Furthermore, for a typical 500 mg coral sample with low Pb concentrations (∼6-10 ppb yielding ∼3-5 ng Pb for analysis), we obtain a comparable internal precision of ∼150-250 ppm for 206,207,208Pb/204Pb, indicating a good sensitivity for tracing natural Pb sources to the oceans. Successful extraction of a seawater signal from deep-sea coral aragonite further relies on careful physical and chemical cleaning steps, which are necessary to remove anthropogenic Pb contaminants and obtain results that are consistent with ferromanganese crusts. Applying our approach to a collection of late glacial and deglacial corals (∼12-40 ka BP) from south of Tasmania at ∼1.4-1.7 km water depth, we generated the first intermediate water Pb isotope record from the Southern Ocean. That record reveals millennial timescale variability, controlled by binary mixing between two Pb sources, but no distinct glacial-interglacial Pb isotope shift. Mixing between natural endmembers is fully consistent with our data and points to

  6. Deep circulation in the Indian and Pacific Oceans and its implication for the dumping of low-level radioactive waste

    International Nuclear Information System (INIS)

    Harries, J.R.

    1980-06-01

    The complexity of ocean transport processes has meant that the limits for the dumping of low-activity radioactive wastes have had to be based on very simplified models of the oceans. This report discusses the models used to determine dumping limits and contrasts them with the known ocean circulation patterns. The deep circulations of the Indian and Pacific Oceans are reviewed to provide a basis for estimating the possible destinations and likely transit times for dissolved material released at the ocean floor

  7. Finite element analysis of thermal convection in deep ocean sediments

    International Nuclear Information System (INIS)

    Gartling, D.K.

    1980-01-01

    Of obvious importance to the study and engineering of a seabed disposal is the determination of the temperature and fluid flow fields existing in the sediment layer and the perturbation of these fields due to the implantation of localized heat sources. The fluid mechanical and heat transfer process occurring in oceanic sediments may be characterized as free (or natural) convection in a porous material. In the case of an undisturbed sediment layer, the driving force for the natural circulation of pore water comes from the geothermal heat flux. Current theories for heat flow from the sea floor suggest the possibility of large scale hydrothermal circulation in the oceanic crust (see e.g., Ribando, et al. 1976) which is in turn coupled with a convection process in the overlying sediment layer (Anderson 1980, Anderson, et al. 1979). The introduction of a local heat source, such as a waste canister, into a saturated sediment layer would by itself initiate a convection process due to buoyancy forces. Since the mathematical description of natural convection in a porous medium is of sufficient complexity to preclude the use of most analytic methods of analysis, approximate numerical procedures are often employed. In the following sections, a particular type of numerical method is described that has proved useful in the solution of a variety of porous flow problems. However, rather than concentrate on the details of the numerical algorithm the main emphasis of the presentation will be on the types of problems and results that are encountered in the areas of oceanic heat flow and seabed waste disposal

  8. A mechanistic model of an upper bound on oceanic carbon export as a function of mixed layer depth and temperature

    Directory of Open Access Journals (Sweden)

    Z. Li

    2017-11-01

    Full Text Available Export production reflects the amount of organic matter transferred from the ocean surface to depth through biological processes. This export is in large part controlled by nutrient and light availability, which are conditioned by mixed layer depth (MLD. In this study, building on Sverdrup's critical depth hypothesis, we derive a mechanistic model of an upper bound on carbon export based on the metabolic balance between photosynthesis and respiration as a function of MLD and temperature. We find that the upper bound is a positively skewed bell-shaped function of MLD. Specifically, the upper bound increases with deepening mixed layers down to a critical depth, beyond which a long tail of decreasing carbon export is associated with increasing heterotrophic activity and decreasing light availability. We also show that in cold regions the upper bound on carbon export decreases with increasing temperature when mixed layers are deep, but increases with temperature when mixed layers are shallow. A meta-analysis shows that our model envelopes field estimates of carbon export from the mixed layer. When compared to satellite export production estimates, our model indicates that export production in some regions of the Southern Ocean, particularly the subantarctic zone, is likely limited by light for a significant portion of the growing season.

  9. A geotechnical investigation of a deep ocean site

    International Nuclear Information System (INIS)

    Freeman, T.J.; Schuttenhelm, R.T.E.

    1990-01-01

    A site investigation in deep water often relies solely on laboratory tests to evaluate the geotechnical properties of the sediments. This imposes two fundamental limitations on the investigation: The maximum depth to which the properties can be profiled and the uncertainty of sample disturbance and de-pressurization effects on the measured data. This paper uses results from investigations performed in a water depth of 5.4 km at an abyssal plain site, Great Meteor East (GME), to illustrate how ambiguities can arise in laboratory measurements of strength, and discusses how a simple in-situ test, the expendable penetrator, can be used to corroborate the laboratory data

  10. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    in 1051 sequences. Phylotypes affiliated with Gammaproteobacteria, Deltaproteobacteria and Acidobacteria were present in all three basins. The distribution of these shared phylotypes seemed to be influenced neither by the Walvis Ridge nor by different deep water masses, suggesting a high dispersal......Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial...... communities in three basins of the eastern South Atlantic Ocean to determine diversity and biogeography of bacterial communities in deep-sea surface sediments. The analysis of 16S ribosomal RNA (rRNA) gene clone libraries in each basin revealed a high diversity, representing 521 phylotypes with 98% identity...

  11. Global abundance of planktonic heterotrophic protists in the deep ocean

    Science.gov (United States)

    Pernice, Massimo C; Forn, Irene; Gomes, Ana; Lara, Elena; Alonso-Sáez, Laura; Arrieta, Jesus M; del Carmen Garcia, Francisca; Hernando-Morales, Victor; MacKenzie, Roy; Mestre, Mireia; Sintes, Eva; Teira, Eva; Valencia, Joaquin; Varela, Marta M; Vaqué, Dolors; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2015-01-01

    The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml−1 in mesopelagic waters down to 11±1 cells ml−1 in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml−1. The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean's microbial food web. PMID:25290506

  12. Response to Comment on "Dilution limits dissolved organic carbon utilization in the deep ocean"

    KAUST Repository

    Arrieta, Jesus

    2015-12-18

    Our recent finding that dilution limits dissolved organic carbon (DOC) utilization in the deep ocean has been criticized based on the common misconception that lability equates to rapid and complete utilization. Even when considering the redefinition of recalcitrant DOC recently proposed by Jiao et al., the dilution hypothesis best explains our experimental observations.

  13. Deep oceans may acidify faster than anticipated due to global warming

    Science.gov (United States)

    Chen, Chen-Tung Arthur; Lui, Hon-Kit; Hsieh, Chia-Han; Yanagi, Tetsuo; Kosugi, Naohiro; Ishii, Masao; Gong, Gwo-Ching

    2017-12-01

    Oceans worldwide are undergoing acidification due to the penetration of anthropogenic CO2 from the atmosphere1-4. The rate of acidification generally diminishes with increasing depth. Yet, slowing down of the thermohaline circulation due to global warming could reduce the pH in the deep oceans, as more organic material would decompose with a longer residence time. To elucidate this process, a time-series study at a climatically sensitive region with sufficient duration and resolution is needed. Here we show that deep waters in the Sea of Japan are undergoing reduced ventilation, reducing the pH of seawater. As a result, the acidification rate near the bottom of the Sea of Japan is 27% higher than the rate at the surface, which is the same as that predicted assuming an air-sea CO2 equilibrium. This reduced ventilation may be due to global warming and, as an oceanic microcosm with its own deep- and bottom-water formations, the Sea of Japan provides an insight into how future warming might alter the deep-ocean acidification.

  14. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    Science.gov (United States)

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  15. Mixing and Progressive Melting of Deep and Shallow Mantle Sources in the NE Atlantic and Arctic

    DEFF Research Database (Denmark)

    Trønnes, Reidar; Debaille, Vincianne; Erambert, M.

    2013-01-01

    ). The SCLM-component was mixed with the local asthenosphere during and shortly after the continental rifting and ocean basin opening. Using combined Sr-Nd-Pb- Os-He-isotope systematics, the Iceland plume can be modelled as a mixture of 70% refractory/primordial lower mantle (LM) and 30% recycled oceanic...

  16. Seasonal mixed layer heat balance of the southwestern tropical Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Foltz, G.R.; Vialard, J.; PraveenKumar, B.; McPhaden, M.J.

    from a long-term moored buoy are used in conjunction with satellite, in situ, and atmospheric reanalysis datasets to analyze the seasonal mixed layer heat balance in the thermocline ridge region of the southwestern tropical Indian Ocean. This region...

  17. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.

    Science.gov (United States)

    Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D

    2015-09-29

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.

  18. Multidecadal-scale adjustment of the ocean mixed layer heat budget in the tropics: examining ocean reanalyses

    Science.gov (United States)

    Cook, Kerry H.; Vizy, Edward K.; Sun, Xiaoming

    2018-03-01

    Distributions of ocean mixed layer temperature trends and trends in the net heat flux from the atmosphere differ, indicating the important role of the transport of heat within the ocean for determining temperature trends. Annual-mean, linear trends in the components of the tropical ocean mixed layer heat budget for 1980-2015 are diagnosed in 4 ocean reanalyses to improve our physical understanding of multidecadal-scale SST trends. The well-known temperature trend in the tropical Pacific, with cooling in the east and warming in the west, is reproduced in each reanalysis with high statistical significance. Cooling in the east is associated with negative trends in the net heat flux from the atmosphere and enhanced equatorial upwelling related to a strengthening of the subtropical cells. Negative trends in the net heat flux also occur in the western tropical Pacific, but advective warming associated with a strengthening and shoaling of the equatorial undercurrent overwhelms these negative trends. The strengthening of the equatorial undercurrent is consistent with enhanced easterly wind stress, which is applied to the ocean reanalyses, and differential sea level trends that enhance the negative zonal height gradient across the Pacific. The Pacific North Equatorial countercurrent is also strengthening in all 4 reanalyses in association with a strengthening of the sea level trough at 10°N in the central and eastern Pacific. All 4 ocean reanalyses produce warming of 0.1-0.3 K/decade in the North Atlantic with statistical significance levels ranging from below 90-99%. The Atlantic is similar to the Pacific in having the equatorial undercurrent strengthening, but indications of shoaling are less consistent in the reanalyses and the North Equatorial Countercurrent in the Atlantic is not strengthening. Large-scale ocean mixed layer warming trends in the Indian Ocean in the reanalyses are interrupted by some regional cooling close to the equator. Net surface heat flux trends

  19. Ocean Mixed Layer Response to Gap Wind Scenarios

    National Research Council Canada - National Science Library

    Konstantinou, Nikolaos

    2006-01-01

    This study focuses on understanding the oceanic response to gap outflow and the air-sea interaction processes during the gap wind event between 26 and 28 February 2004 over the Gulf of Tehuantepec, Mexico. The U.S...

  20. Ocean Circulation and Mixing Relevant to the Global System

    National Research Council Canada - National Science Library

    Gordon, Arnold

    1999-01-01

    .... Arlindo's goal is to resolve the circulation and water mass stratification within the Indonesian Seas in order to formulate a thorough description of the source, spreading patterns, inter-ocean...

  1. Deep ocean fluxes and their link to surface ocean processes and the biological pump

    Digital Repository Service at National Institute of Oceanography (India)

    Rixen, T.; Guptha, M.V.S.; Ittekkot, V.

    's role as a reservoir for atmospheric CO sub(2).The results show a pronounced monsoon-driven seasonality with enhanced organic carbon fluxes into the deep-sea during the SW Monsoon and during the early and late NE Monsoon north of 10 degrees N...

  2. A Deep Learning Algorithm of Neural Network for the Parameterization of Typhoon-Ocean Feedback in Typhoon Forecast Models

    Science.gov (United States)

    Jiang, Guo-Qing; Xu, Jing; Wei, Jun

    2018-04-01

    Two algorithms based on machine learning neural networks are proposed—the shallow learning (S-L) and deep learning (D-L) algorithms—that can potentially be used in atmosphere-only typhoon forecast models to provide flow-dependent typhoon-induced sea surface temperature cooling (SSTC) for improving typhoon predictions. The major challenge of existing SSTC algorithms in forecast models is how to accurately predict SSTC induced by an upcoming typhoon, which requires information not only from historical data but more importantly also from the target typhoon itself. The S-L algorithm composes of a single layer of neurons with mixed atmospheric and oceanic factors. Such a structure is found to be unable to represent correctly the physical typhoon-ocean interaction. It tends to produce an unstable SSTC distribution, for which any perturbations may lead to changes in both SSTC pattern and strength. The D-L algorithm extends the neural network to a 4 × 5 neuron matrix with atmospheric and oceanic factors being separated in different layers of neurons, so that the machine learning can determine the roles of atmospheric and oceanic factors in shaping the SSTC. Therefore, it produces a stable crescent-shaped SSTC distribution, with its large-scale pattern determined mainly by atmospheric factors (e.g., winds) and small-scale features by oceanic factors (e.g., eddies). Sensitivity experiments reveal that the D-L algorithms improve maximum wind intensity errors by 60-70% for four case study simulations, compared to their atmosphere-only model runs.

  3. Effects of stratification and fluctuations on sound propagation in the deep ocean

    International Nuclear Information System (INIS)

    March, R.H.

    1979-01-01

    It is noted that even in a homogeneous ocean, the effects of non-thermal noise and sound absorption limit the maximum effective range of detection of acoustic signals from particle cascades to distances of 2 to 10 kilometers, depending on the surface conditions prevailing and the directional characteristics of the detector. In the present paper, the effects of stratification and fluctuations in the sound velocity profile in the deep ocean over distances of this order are examined. Attention is given to two effects of potential significance, refraction and scintillation. It is found that neither effect has any significant consequences at ranges of less than 10 km

  4. Global Ocean Circulation in Thermohaline Coordinates and Small-scale and Mesoscale mixing: An Inverse Estimate.

    Science.gov (United States)

    Groeskamp, S.; Zika, J. D.; McDougall, T. J.; Sloyan, B.

    2016-02-01

    I will present results of a new inverse technique that infers small-scale turbulent diffusivities and mesoscale eddy diffusivities from an ocean climatology of Salinity (S) and Temperature (T) in combination with surface freshwater and heat fluxes.First, the ocean circulation is represented in (S,T) coordinates, by the diathermohaline streamfunction. Framing the ocean circulation in (S,T) coordinates, isolates the component of the circulation that is directly related to water-mass transformation.Because water-mass transformation is directly related to fluxes of salt and heat, this framework allows for the formulation of an inverse method in which the diathermohaline streamfunction is balanced with known air-sea forcing and unknown mixing. When applying this inverse method to observations, we obtain observationally based estimates for both the streamfunction and the mixing. The results reveal new information about the component of the global ocean circulation due to water-mass transformation and its relation to surface freshwater and heat fluxes and small-scale and mesoscale mixing. The results provide global constraints on spatially varying patterns of diffusivities, in order to obtain a realistic overturning circulation. We find that mesoscale isopycnal mixing is much smaller than expected. These results are important for our understanding of the relation between global ocean circulation and mixing and may lead to improved parameterisations in numerical ocean models.

  5. Mixed layer depth and thermocline climatology of the Arabian Sea and western equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Prasad, T.G.; Bahulayan, N.

    A band of zonally oriented ridge of mixed layer depth and thermocline base extending from African Coast to the Central Indian Ocean is observed between 5 degrees S and 10 degrees S throughout hte year. Mixed layer depth and thermocline base deepen...

  6. The feasibility of heat generating waste disposal into deep ocean sedimentary formations

    International Nuclear Information System (INIS)

    Murray, C.N.

    1986-01-01

    The paper briefly reviews the work undertaken to date by the Commission of European Communities ''Sub-Seabed Program'' in collaboration with national programmes of member countries. Special emphasis has been placed on the studies of the characteristics of deep ocean sediments to act as a barrier to the dispersion of radionuclides and the technical investigations carried out to demonstrate engineering feasibility of the option. (author)

  7. Light penetration structures the deep acoustic scattering layers in the global ocean.

    KAUST Repository

    Aksnes, Dag L.

    2017-05-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  8. Light penetration structures the deep acoustic scattering layers in the global ocean.

    KAUST Repository

    Aksnes, Dag L.; Rø stad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M.; Irigoien, Xabier

    2017-01-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  9. Marine isoprene production and consumption in the mixed layer of the surface ocean - a field study over two oceanic regions

    Science.gov (United States)

    Booge, Dennis; Schlundt, Cathleen; Bracher, Astrid; Endres, Sonja; Zäncker, Birthe; Marandino, Christa A.

    2018-02-01

    Parameterizations of surface ocean isoprene concentrations are numerous, despite the lack of source/sink process understanding. Here we present isoprene and related field measurements in the mixed layer from the Indian Ocean and the eastern Pacific Ocean to investigate the production and consumption rates in two contrasting regions, namely oligotrophic open ocean and the coastal upwelling region. Our data show that the ability of different phytoplankton functional types (PFTs) to produce isoprene seems to be mainly influenced by light, ocean temperature, and salinity. Our field measurements also demonstrate that nutrient availability seems to have a direct influence on the isoprene production. With the help of pigment data, we calculate in-field isoprene production rates for different PFTs under varying biogeochemical and physical conditions. Using these new calculated production rates, we demonstrate that an additional significant and variable loss, besides a known chemical loss and a loss due to air-sea gas exchange, is needed to explain the measured isoprene concentration. We hypothesize that this loss, with a lifetime for isoprene between 10 and 100 days depending on the ocean region, is potentially due to degradation or consumption by bacteria.

  10. Particle fluxes in the deep Eastern Mediterranean basins: the role of ocean vertical velocities

    Directory of Open Access Journals (Sweden)

    L. Patara

    2009-03-01

    Full Text Available This paper analyzes the relationship between deep sedimentary fluxes and ocean current vertical velocities in an offshore area of the Ionian Sea, the deepest basin of the Eastern Mediterranean Sea. Sediment trap data are collected at 500 m and 2800 m depth in two successive moorings covering the period September 1999–May 2001. A tight coupling is observed between the upper and deep traps and the estimated particle sinking rates are more than 200 m day−1. The current vertical velocity field is computed from a 1/16°×1/16° Ocean General Circulation Model simulation and from the wind stress curl. Current vertical velocities are larger and more variable than Ekman vertical velocities, yet the general patterns are alike. Current vertical velocities are generally smaller than 1 m day−1: we therefore exclude a direct effect of downward velocities in determining high sedimentation rates. However we find that upward velocities in the subsurface layers of the water column are positively correlated with deep particle fluxes. We thus hypothesize that upwelling would produce an increase in upper ocean nutrient levels – thus stimulating primary production and grazing – a few weeks before an enhanced vertical flux is found in the sediment traps. High particle sedimentation rates may be attained by means of rapidly sinking fecal pellets produced by gelatinous macro-zooplankton. Other sedimentation mechanisms, such as dust deposition, are also considered in explaining large pulses of deep particle fluxes. The fast sinking rates estimated in this study might be an evidence of the efficiency of the biological pump in sequestering organic carbon from the surface layers of the deep Eastern Mediterranean basins.

  11. Importance of deep mixing for initiating the North Atlantic spring bloom

    DEFF Research Database (Denmark)

    Riisgaard, Karen; Paulsen, Maria Lund; Thingstad, T. Frede

    The phytoplankton spring bloom is one of the most important recurrent events in the sup-polar part of the Atlantic Ocean. The classical idea is that the bloom is controlled by nutrients and light, but recent observations challenge this hypothesis. During repeated visits to stations in the deep...

  12. Use of a free ocean CO₂ enrichment (FOCE) system to evaluate the effects of ocean acidification on the foraging behavior of a deep-sea urchin.

    Science.gov (United States)

    Barry, James P; Lovera, Chris; Buck, Kurt R; Peltzer, Edward T; Taylor, Josi R; Walz, Peter; Whaling, Patrick J; Brewer, Peter G

    2014-08-19

    The influence of ocean acidification in deep-sea ecosystems is poorly understood but is expected to be large because of the presumed low tolerance of deep-sea taxa to environmental change. We used a newly developed deep-sea free ocean CO2 enrichment (dp-FOCE) system to evaluate the potential consequences of future ocean acidification on the feeding behavior of a deep-sea echinoid, the sea urchin, Strongylocentrotus fragilis. The dp-FOCE system simulated future ocean acidification inside an experimental enclosure where observations of feeding behavior were performed. We measured the average movement (speed) of urchins as well as the time required (foraging time) for S. fragilis to approach its preferred food (giant kelp) in the dp-FOCE chamber (-0.46 pH units) and a control chamber (ambient pH). Measurements were performed during each of 4 trials (days -2, 2, 24, 27 after CO2 injection) during the month-long period when groups of urchins were continuously exposed to low pH or control conditions. Although urchin speed did not vary significantly in relation to pH or time exposed, foraging time was significantly longer for urchins in the low-pH treatment. This first deep-sea FOCE experiment demonstrated the utility of the FOCE system approach and suggests that the chemosensory behavior of a deep-sea urchin may be impaired by ocean acidification.

  13. Extreme diving behaviour in devil rays links surface waters and the deep ocean

    KAUST Repository

    Thorrold, Simon R.

    2014-07-01

    Ecological connections between surface waters and the deep ocean remain poorly studied despite the high biomass of fishes and squids residing at depths beyond the euphotic zone. These animals likely support pelagic food webs containing a suite of predators that include commercially important fishes and marine mammals. Here we deploy pop-up satellite archival transmitting tags on 15 Chilean devil rays (Mobula tarapacana) in the central North Atlantic Ocean, which provide movement patterns of individuals for up to 9 months. Devil rays were considered surface dwellers but our data reveal individuals descending at speeds up to 6.0 ms-1 to depths of almost 2,000 m and water temperatures <4 C. The shape of the dive profiles suggests that the rays are foraging at these depths in deep scattering layers. Our results provide evidence of an important link between predators in the surface ocean and forage species occupying pelagic habitats below the euphotic zone in ocean ecosystems. 2014 Macmillan Publishers Limited. All rights reserved.

  14. Entrainment and mixing in a laboratory model of oceanic overflow

    OpenAIRE

    Odier , Philippe; Chen , Jun; Ecke , Robert

    2014-01-01

    International audience; We present experimental measurements of a wall-bounded gravity current, motivated by characterizing natural gravity currents such as oceanic overflows. We use particle image velocimetry and planar laser-induced fluorescence to simultaneously measure the velocity and density fields as they evolve downstream of the initial injection from a turbulent channel flow onto a plane inclined at 10 degrees with respect to horizontal. The turbulence level of the input flow is cont...

  15. Tropical cyclone turbulent mixing as observed by autonomous oceanic profilers with the high repetition rate

    International Nuclear Information System (INIS)

    Baranowski, D B; Malinowski, S P; Flatau, P J

    2011-01-01

    Changes in the ocean mixed layer caused by passage of two consecutive typhoons in the Western Pacific are presented. Ocean profiles were measured by a unique Argo float sampling the upper ocean in high repetition cycle with a period of about one day. It is shown that the typhoon passage coincides with cooling of the mixed layer and variations of its salinity. Independent data from satellite measurements of surface winds were used to set-up an and idealized numerical simulation of mixed layer evolution. Results, compared to Argo profiles, confirm known effect that cooling is a result of increased entrainment from the thermocline due to enhancement of turbulence in the upper ocean by the wind stress. Observed pattern of salinity changes in the mixed layer suggest important role of typhoon precipitation. Fast changes of the mixed layer in course of typhoon passage show that fast profiling (at least once a day) is crucial to study response of the upper ocean to tropical cyclone.

  16. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean.

    Science.gov (United States)

    Anderson, Thomas R; Rice, Tony

    2006-12-01

    While dredging in the Aegean Sea during the mid-19th century, Manxman Edward Forbes noticed that plants and animals became progressively more impoverished the greater the depth they were from the surface of the water. By extrapolation Forbes proposed his now infamous azoic hypothesis, namely that life would be extinguished altogether in the murky depths of the deep ocean. The whole idea seemed so entirely logical given the enormous pressure, cold and eternal darkness of this apparently uninhabitable environment. Yet we now know that the sea floor is teeming with life. Curiously, it took 25 years for the azoic hypothesis to fall from grace. This was despite the presence of ample contrary evidence, including starfishes, worms and other organisms that seemingly originated from the deep seabed. This is a tale of scientists ignoring observations that ran counter to their deep-seated, yet entirely erroneous, beliefs.

  17. Thermodynamic Equations of State for Aqueous Solutions Applied to Deep Icy Satellite and Exoplanet Oceans

    Science.gov (United States)

    Vance, S.; Brown, J. M.; Bollengier, O.; Journaux, B.; Sotin, C.; Choukroun, M.; Barnes, R.

    2014-12-01

    Supporting life in icy world or exoplanet oceans may require global seafloor chemical reactions between water and rock. Such interactions have been regarded as limited in larger icy worlds such as Ganymede and Titan, where ocean depths approach 800 km and GPa pressures (>10katm). If the oceans are composed of pure water, such conditions are consistent with the presence of dense ice phases V and VI that cover the rocky seafloor. Exoplanets with oceans can obtain pressures sufficient to generate ices VII and VIII. We have previously demonstrated temperature gradients in such oceans on the order of 20 K or more, resulting from fluid compressibility in a deep adiabatic ocean based on our experimental work. Accounting for increases in density for highly saline oceans leads to the possibility of oceans perched under and between high pressure ices. Ammonia has the opposite effect, instead decreasing ocean density, as reported by others and confirmed by our laboratory measurements in the ammonia water system. Here we report on the completed equation of state for aqueous ammonia derived from our prior measurements and optimized global b-spline fitting methods We use recent diamond anvil cell measurements for water and ammonia to extend the equation of state to 400°C and beyond 2 GPa, temperatures and pressures applicable to icy worlds and exoplanets. Densities show much less temperature dependence but comparabe high-pressure derivatives to previously published ammonia-water properties derived for application to Titan (Croft et al. 1988). Thermal expansion is in better agreement with the more self-consistent equation of state of Tillner-Roth and Friend (1998). We also describe development of a planetary NaCl equation of state using recent measurements of phase boundaries and sound speeds. We examine implications of realistic ocean-ice thermodynamics for Titan and exoplanet interiors using the methodology recently applied to Ganymede for oceans dominated by MgSO4. High

  18. Ocean bio-geophysical modeling using mixed layer-isopycnal general circulation model coupled with photosynthesis process

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; Saito, H.; Muneyama, K.; Sato, T.; PrasannaKumar, S.; Kumar, A.; Frouin, R.

    -chemical system that supports steady carbon circulation in geological time scale in the world ocean using Mixed Layer-Isopycnal ocean General Circulation model with remotely sensed Coastal Zone Color Scanner (CZCS) chlorophyll pigment concentration....

  19. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Oberhuber, J.M.; Ishizaka, J.; Muneyama, K.; Frouin, R.

    The influence of phytoplankton on the upper ocean dynamics and thermodynamics in the equatorial Pacific is investigated using an isopycnal ocean general circulation model (OPYC) coupled with a mixed layer model and remotely sensed chlorophyll...

  20. Submersible Data (Dive Waypoints) for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during one dive of the 2002 "Islands in the Stream - Deep Reef...

  1. Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean

    Science.gov (United States)

    Perez, Fiz F.; Fontela, Marcos; García-Ibáñez, Maribel I.; Mercier, Herlé; Velo, Anton; Lherminier, Pascale; Zunino, Patricia; de La Paz, Mercedes; Alonso-Pérez, Fernando; Guallart, Elisa F.; Padin, Xose A.

    2018-02-01

    Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO2) and experiencing ocean acidification, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the ‘aragonite saturation horizon’—below which waters are undersaturated with respect to a particular calcium carbonate, aragonite—to move to shallower depths (to shoal), exposing corals to corrosive waters. Here we use a database analysis to show that the present rate of supply of acidified waters to the deep Atlantic could cause the aragonite saturation horizon to shoal by 1,000-1,700 metres in the subpolar North Atlantic within the next three decades. We find that, during 1991-2016, a decrease in the concentration of carbonate ions in the Irminger Sea caused the aragonite saturation horizon to shoal by about 10-15 metres per year, and the volume of aragonite-saturated waters to reduce concomitantly. Our determination of the transport of the excess of carbonate over aragonite saturation (xc[CO32-])—an indicator of the availability of aragonite to organisms—by the Atlantic meridional overturning circulation shows that the present-day transport of carbonate ions towards the deep ocean is about 44 per cent lower than it was in preindustrial times. We infer that a doubling of atmospheric anthropogenic CO2 levels—which could occur within three decades according to a ‘business-as-usual scenario’ for climate change—could reduce the transport of xc[CO32-] by 64-79 per cent of that in preindustrial times, which could severely endanger cold-water coral habitats. The Atlantic meridional overturning circulation would also export this acidified deep water southwards, spreading corrosive waters to the world ocean.

  2. Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre

    Science.gov (United States)

    Donnelly, Matthew; Leach, Harry; Strass, Volker

    2017-07-01

    The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.

  3. Patterns and trends of macrobenthic abundance, biomass and production in the deep Arctic Ocean

    Directory of Open Access Journals (Sweden)

    Renate Degen

    2015-08-01

    Full Text Available Little is known about the distribution and dynamics of macrobenthic communities of the deep Arctic Ocean. The few previous studies report low standing stocks and confirm a gradient with declining biomass from the slopes down to the basins, as commonly reported for deep-sea benthos. In this study, we investigated regional differences of faunal abundance and biomass, and made for the first time ever estimates of deep Arctic community production by using a multi-parameter artificial neural network model. The underlying data set combines data from recent field studies with published and unpublished data from the past 20 years, to analyse the influence of water depth, geographical latitude and sea-ice concentration on Arctic benthic communities. We were able to confirm the previously described negative relationship of macrofauna standing stock with water depth in the Arctic deep sea, while also detecting substantial regional differences. Furthermore, abundance, biomass and production decreased significantly with increasing sea-ice extent (towards higher latitudes down to values <200 ind m−2, <65 mg C m−2 and <73 mg C m−2 y−1, respectively. In contrast, stations under the seasonal ice zone regime showed much higher standing stock and production (up to 2500 mg C m−2 y−1, even at depths down to 3700 m. We conclude that particle flux is the key factor structuring benthic communities in the deep Arctic Ocean as it explains both the low values in the ice-covered Arctic basins and the higher values in the seasonal ice zone.

  4. A unified spectral parameterization for wave breaking: From the deep ocean to the surf zone

    Science.gov (United States)

    Filipot, J.-F.; Ardhuin, F.

    2012-11-01

    A new wave-breaking dissipation parameterization designed for phase-averaged spectral wave models is presented. It combines wave breaking basic physical quantities, namely, the breaking probability and the dissipation rate per unit area. The energy lost by waves is first explicitly calculated in physical space before being distributed over the relevant spectral components. The transition from deep to shallow water is made possible by using a dissipation rate per unit area of breaking waves that varies with the wave height, wavelength and water depth. This parameterization is implemented in the WAVEWATCH III modeling framework, which is applied to a wide range of conditions and scales, from the global ocean to the beach scale. Wave height, peak and mean periods, and spectral data are validated using in situ and remote sensing data. Model errors are comparable to those of other specialized deep or shallow water parameterizations. This work shows that it is possible to have a seamless parameterization from the deep ocean to the surf zone.

  5. Seismic tomography and mixing in the deep earth

    Directory of Open Access Journals (Sweden)

    W. R. Peltier

    1995-01-01

    Full Text Available Recently constructed tomographic models of the lateral heterogeneity of elastic properties in the Earth's mantle are contrasted in terms of their implications concerning the extent to which the endothermic phase transformation at 660 km depth is influencing the radial style of mixing. Previously published whole mantle and split mantle tomographic reconstructions, SH8/WMI3 and SH8/U4L8 respectively, fit the seismic observations equally well but disagree on the extent to which radial mixing may be impeded across this depth horizon. We show that inferences from seismic tomographic images based on the application of diagnostic functions (global and regional variance spectra and the radial correlation function lead to the conclusion that the mantle circulation is whole mantle in style if model SH8/WM13 is employed. The split mantle tomographic inversion SHS/U4L8 leads to the contradictory conclusion that the mantle circulation is significantly impeded across the 660 km depth horizon. This latter interpretation is reinforced when we employ the new higher resolution split mantle model SH12/U7L5 in our calculations. We demonstrate that the depth-dependent radial heat flow delivered by both of the split models implies the existence of a thermal boundary layer at 660 km depth, and therefore significant layering, whereas that delivered by the whole mantle model does not. By insisting that the depth-dependent viscosity profile of the mantle be compatible with the thermal structure if the flow were layered, we argue that the split mantle tomographic inversions lead to a self-consistent description of geodynamic constraints (geoid and postglacial rebound data.

  6. Mission Moho: Rationale for drilling deep through the ocean crust into the upper mantle

    Science.gov (United States)

    Ildefonse, B.; Abe, N.; Kelemen, P. B.; Kumagai, H.; Teagle, D. A. H.; Wilson, D. S.; Moho Proponents, Mission

    2009-04-01

    Sampling a complete section of the ocean crust to the Moho was the original inspiration for scientific ocean drilling, and remains the main goal of the 21st Century Mohole Initiative in the IODP Science Plan. Fundamental questions about the composition, structure, and geophysical characteristics of the ocean lithosphere, and about the magnitude of chemical exchanges between the mantle, crust and oceans remain unresolved due to the absence of in-situ samples and measurements. The geological nature of the Mohorovičić discontinuity itself remains poorly constrained. "Mission Moho" is a proposal that was submitted to IODP in April 2007, with the ambition to drill completely through intact oceanic crust formed at a fast spreading rate, across the Moho and into the uppermost mantle. Although, eventually, no long-term mission was approved by IODP, the scientific objectives related to deep drilling in the ocean crust remain essential to our understanding of the Earth. These objectives are to : - Determine the geological meaning of the Moho in different oceanic settings, determine the in situ composition, structure and physical properties of the uppermost mantle, and understand mantle melt migration, - Determine the bulk composition of the oceanic crust to establish the chemical links between erupted lavas and primary mantle melts, understand the extent and intensity of seawater hydrothermal exchange with the lithosphere, and estimate the chemical fluxes returned to the mantle by subduction, - Test competing hypotheses of the ocean crust accretion at fast spreading mid-ocean ridges, and quantify the linkages and feedbacks between magma intrusion, hydrothermal circulation and tectonic activity, - Calibrate regional seismic measurements against recovered cores and borehole measurements, and understand the origin of marine magnetic anomalies, - Establish the limits of life in the ocean lithosphere. The "MoHole" was planned as the final stage of Mission Moho, which requires

  7. Southern Ocean Mixed-Layer Seasonal and Interannual Variations From Combined Satellite and In Situ Data

    Science.gov (United States)

    Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.

    2017-12-01

    The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.

  8. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  9. Progress toward a Km-scale neutrino detector in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    Stokstad, R.G.

    1997-11-01

    The best particles for observing distant objects are photons and neutrinos. Because of the neutrino`s weak interaction cross section, detectors suitable for astronomy must be very large and well shielded from cosmic rays. Eventually, a detector with the order of a square km of effective area will be needed for systematic observations of distant point sources such as active galactic nuclei. Prototype detectors are currently being developed at several sites in the ocean, at Lake Baikal, and in Antarctica. This talk summarizes the status of the projects that use the deep ocean for the detector medium and shielding: DUMAND, NESTOR and ANTARES. Technical developments will be needed for a future km-scale detector; progress on one of these, a digital electronic system, is also described.

  10. Earth system feedback statistically extracted from the Indian Ocean deep-sea sediments recording Eocene hyperthermals.

    Science.gov (United States)

    Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro

    2017-09-12

    Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.

  11. Progress toward a Km-scale neutrino detector in the deep ocean

    International Nuclear Information System (INIS)

    Stokstad, R.G.

    1997-11-01

    The best particles for observing distant objects are photons and neutrinos. Because of the neutrino's weak interaction cross section, detectors suitable for astronomy must be very large and well shielded from cosmic rays. Eventually, a detector with the order of a square km of effective area will be needed for systematic observations of distant point sources such as active galactic nuclei. Prototype detectors are currently being developed at several sites in the ocean, at Lake Baikal, and in Antarctica. This talk summarizes the status of the projects that use the deep ocean for the detector medium and shielding: DUMAND, NESTOR and ANTARES. Technical developments will be needed for a future km-scale detector; progress on one of these, a digital electronic system, is also described

  12. Carbon dioxide, climate and the deep ocean circulation: Carbon chemistry model

    International Nuclear Information System (INIS)

    Menawat, A.S.

    1992-01-01

    The objective of this study was to investigate the role of oceanic carbon chemistry in modulating the atmospheric levels of CO 2 . It is well known that the oceans are the primary sink of the excess carbon pumped into the atmosphere since the beginning of the industrial period. The suspended particulate and the dissolved organic matters in the deep ocean play important roles as carriers of carbon and other elements critical to the fate of CO 2 . In addition, the suspended particulate matter provides sites for oxidation-reduction reactions and microbial activities. The problem is of an intricate system with complex chemical, physical and biological processes. This report describes a methodology to describe the interconversions of different forms of the organic and inorganic nutrients, that may be incorporated in the ocean circulation models. Our approach includes the driving force behind the transfers in addition to balancing the elements. Such thermodynamic considerations of describing the imbalance in the chemical potentials is a new and unique feature of our approach

  13. Listening to the Deep: live monitoring of ocean noise and cetacean acoustic signals.

    Science.gov (United States)

    André, M; van der Schaar, M; Zaugg, S; Houégnigan, L; Sánchez, A M; Castell, J V

    2011-01-01

    The development and broad use of passive acoustic monitoring techniques have the potential to help assessing the large-scale influence of artificial noise on marine organisms and ecosystems. Deep-sea observatories have the potential to play a key role in understanding these recent acoustic changes. LIDO (Listening to the Deep Ocean Environment) is an international project that is allowing the real-time long-term monitoring of marine ambient noise as well as marine mammal sounds at cabled and standalone observatories. Here, we present the overall development of the project and the use of passive acoustic monitoring (PAM) techniques to provide the scientific community with real-time data at large spatial and temporal scales. Special attention is given to the extraction and identification of high frequency cetacean echolocation signals given the relevance of detecting target species, e.g. beaked whales, in mitigation processes, e.g. during military exercises. Copyright © 2011. Published by Elsevier Ltd.

  14. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model

    Science.gov (United States)

    Megann, Alex

    2018-01-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, having attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimates have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is a recent ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre. It forms the ocean component of the GC2 climate model, and is closely related to the ocean component of the UKESM1 Earth System Model, the UK's contribution to the CMIP6 model intercomparison. GO5.0 uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. An approach to quantifying the numerical diapycnal mixing in this model, based on the isopycnal watermass analysis of Lee et al. (2002), is described, and the estimates thereby obtained of the effective diapycnal diffusivity in GO5.0 are compared with the values of the explicit diffusivity used by the model. It is shown that the effective mixing in this model configuration is up to an order of magnitude higher than the explicit mixing in much of the ocean interior, implying that mixing in the model below the mixed layer is largely dominated by numerical mixing. This is likely to have adverse consequences for the representation of heat uptake in climate models intended for decadal climate projections, and in particular is highly relevant to the interpretation of the CMIP6 class of climate models, many of which use constant-depth ocean models at ¼° resolution

  15. A feasibility study of the disposal of radioactive waste in deep ocean sediments by drilled emplacement

    International Nuclear Information System (INIS)

    Bury, M.R.C.

    1983-08-01

    This report describes the second phase of a study of the feasibility of disposal and isolation of high level radioactive waste in holes drilled deep into the sediments of the ocean. In this phase, work has concentrated on establishing the state of the art of the various operations and developing the design, in particular the drilling operation, the loading of flasks containing waste canisters from supply vessels onto the platform, the handling of radioactive waste on board, and its emplacement into predrilled holes. In addition, an outline design of the offshore platform has been prepared. (author)

  16. Arctic deep-water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean

    Science.gov (United States)

    Hein, James; Konstantinova, Natalia; Mikesell, Mariah; Mizell, Kira; Fitzsimmons, Jessica N.; Lam, Phoebe; Jensen, Laramie T.; Xiang, Yang; Gartman, Amy; Cherkashov, Georgy; Hutchinson, Deborah; Till, Claire P.

    2017-01-01

    Little is known about marine mineral deposits in the Arctic Ocean, an ocean dominated by continental shelf and basins semi-closed to deep-water circulation. Here, we present data for ferromanganese crusts and nodules collected from the Amerasia Arctic Ocean in 2008, 2009, and 2012 (HLY0805, HLY0905, HLY1202). We determined mineral and chemical compositions of the crusts and nodules and the onset of their formation. Water column samples from the GEOTRACES program were analyzed for dissolved and particulate scandium concentrations, an element uniquely enriched in these deposits.The Arctic crusts and nodules are characterized by unique mineral and chemical compositions with atypically high growth rates, detrital contents, Fe/Mn ratios, and low Si/Al ratios, compared to deposits found elsewhere. High detritus reflects erosion of submarine outcrops and North America and Siberia cratons, transport by rivers and glaciers to the sea, and distribution by sea ice, brines, and currents. Uniquely high Fe/Mn ratios are attributed to expansive continental shelves, where diagenetic cycling releases Fe to bottom waters, and density flows transport shelf bottom water to the open Arctic Ocean. Low Mn contents reflect the lack of a mid-water oxygen minimum zone that would act as a reservoir for dissolved Mn. The potential host phases and sources for elements with uniquely high contents are discussed with an emphasis on scandium. Scandium sorption onto Fe oxyhydroxides and Sc-rich detritus account for atypically high scandium contents. The opening of Fram Strait in the Miocene and ventilation of the deep basins initiated Fe-Mn crust growth ∼15 Myr ago.

  17. The Climatological Seasonal Response of the Ocean Mixed Layer in the Equatorial and Tropical Pacific Ocean

    Science.gov (United States)

    1988-03-01

    response of the ocean and the seasonal changes in atmospheric forcing. The pattern of 20 DiSTPIBUTION/ AVAILABILIT Y OF aRS7RACT 21 ABSTRACT SECURITY...Speed with M LD .............................. 50 3.20 Time Rate of Change of Heat in the Water Column at 155 oE Contour Interval is 35W m 2...52 3.21 Dilerence of Net Surface Heating ad Heat .* the Water Column at 155 oE

  18. Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean

    Science.gov (United States)

    Coscia, Ilaria; Castilho, Rita; Massa-Gallucci, Alexia; Sacchi, Carlotta; Cunha, Regina L.; Stefanni, Sergio; Helyar, Sarah J.; Knutsen, Halvor; Mariani, Stefano

    2018-02-01

    Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean.

  19. Ocean Response to Tropical Storms as Observed by a Moored Ocean Observing System in the Deep Gulf of Mexico

    Science.gov (United States)

    Oropeza, F.; Jaramillo, S.; Fan, S.

    2013-05-01

    As part of the support activities for a deepwater development in the Gulf of Mexico, a moored ocean observing system (OOS) was deployed in a water depth of approximately 2500m, 300km south of the Louisiana Coast. From June 2007 to May 2009, the system comprised seven single point Aanderaa Recording Current Meters (RCM), deployed at 450m, 700m, 1,100m, 1,500m, 2,000m, 2,400m and 2,490m below surface, and an RDI 75kHz Longranger Acoustic Doppler Current Profiler (ADCP), deployed between 249 and 373m below surface in upward-looking mode. Since May 2009, the OOS was upgraded to a Wavescan Buoy based moored system including meteorological sensors for: atmospheric pressure, air temperature, wind speed and direction; directional waves sensor; a Doppler Current Sensor (DCS) at 1.5 m depth for surface currents; and two downward-looking ADCP's covering the upper 1,000m of the water column. This OOS has been operating without interruptions from 2007 to the present and has registered data associated with nine tropical storms, including the direct passage of Hurricane Ike, in September of 2008, and loop current events with speeds of up to 4 knots. It has provided one of the most comprehensive set of velocity observations in the Gulf of Mexico, especially, the near surface currents, during pre-storm conditions, response, and ocean relaxation following hurricanes/tropical storms. Based on these observations the upper ocean responses to the energy input from tropical storms are characterized in terms of the associated mixing processes and momentum balances.

  20. Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy

    International Nuclear Information System (INIS)

    Gibson, C.H.

    1991-01-01

    Kolmogorov's three universal similarity hypotheses are extrapolated to describe scalar fields like temperature mixed by turbulence. The analogous first and second hypotheses for scalars include the effects of Prandtl number and rate-of-strain mixing. Application of velocity and scalar similarity hypotheses to the ocean must take into account the damping of active turbulence by density stratification and the Earth's rotation to form fossil turbulence. By the analogous Kolmogorov third hypothesis for scalars, temperature dissipation rates χ averaged over lengths r > L K should be lognormally distributed with intermittency factors σ 2 that increase with increasing turbulence energy length scales L O as σ ln r 2 approx = μ θ ln(L O /r). Tests of kolmogorovian velocity and scalar universal similarity hypotheses for very large ranges of turbulence length and timescales are provided by data from the ocean and the galactic interstellar medium. These ranges are from 1 to 9 decades in the ocean, and over 12 decades in the interstellar medium. The universal constant for turbulent mixing intermittency μ θ is estimated from oceanic data to be 0.44±0.01, which is remarkably close to estimates for Kolmorgorov's turbulence intermittency constant μ of 0.45±0.05 from galactic as well as atmospheric data. Extreme intermittency complicates the oceanic sampling problem, and may lead to quantitative and qualitative undersampling errors in estimates of mean oceanic dissipation rates and fluxes. Intermittency of turbulence and mixing in the interstellar medium may be a factor in the formation of stars. (author)

  1. Estimating the Numerical Diapycnal Mixing in the GO5.0 Ocean Model

    Science.gov (United States)

    Megann, A.; Nurser, G.

    2014-12-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, and have attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimations have been made of the magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is the latest ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre (Megann et al, 2014), and forms part of the GC1 and GC2 climate models. It uses version 3.4 of the NEMO model, on the ORCA025 ¼° global tripolar grid. We describe various approaches to quantifying the numerical diapycnal mixing in this model, and present results from analysis of the GO5.0 model based on the isopycnal watermass analysis of Lee et al (2002) that indicate that numerical mixing does indeed form a significant component of the watermass transformation in the ocean interior.

  2. Reverse transcriptase directs viral evolution in a deep ocean methane seep

    Science.gov (United States)

    Paul, B. G.; Bagby, S. C.

    2013-12-01

    Deep ocean methane seeps are sites of intense microbial activity, with complex communities fueled by aerobic and anaerobic methanotrophy. Methane consumption in these communities has a substantial impact on the global carbon cycle, yet little is known about their evolutionary history or their likely evolutionary trajectories in a warming ocean. As in other marine systems, viral predation and virally mediated horizontal gene transfer are expected to be major drivers of evolutionary change in these communities; however, the host cells' resistance to cultivation has impeded direct study of the viral population. We conducted a metagenomic study of viruses in the anoxic sediments of a deep methane seep in the Santa Monica Basin in the Southern California Bight. We retrieved 1660 partial viral genomes, tentatively assigning 1232 to bacterial hosts and 428 to archaea. One abundant viral genome, likely hosted by Clostridia species present in the sediment, was found to encode a diversity-generating retroelement (DGR), a module for reverse transcriptase-mediated directed mutagenesis of a distal tail fiber protein. While DGRs have previously been described in the viruses of human pathogens, where diversification of viral tail fibers permits infection of a range of host cell types, to our knowledge this is the first description of such an element in a marine virus. By providing a mechanism for massively broadening potential host range, the presence of DGRs in these systems may have a major impact on the prevalence of virally mediated horizontal gene transfer, and even on the phylogenetic distances across which genes are moved.

  3. Summary of Results from Analyses of Deposits of the Deep-Ocean Impact of the Eltanin Asteroid

    Science.gov (United States)

    Kyte, Frank T.; Kuhn, Gerhard; Gersonde, Rainer

    2005-01-01

    impact south and west of the seamounts, as the deposit was buried beyond the reach of our 25 m piston corer. We estimate that ground zero was in the region just north, or northwest, of the seamounts. There is no evidence that the impactor penetrated the ocean floor or formed a crater. The composition of the melted ejecta is inconsistent with mixing between projectile and terrestrial materials other than seawater salts. X-ray radiographs of sediments reveal details not seen in earlier cores. The uppermost impact unit is well-preserved in several cores, found as much as 50 km from the seamounts to the east, north, and west of the seamounts, where at least 25 cm of this unit is preserved. At greater distances burrowing organisms have mixed the sediments so if this unit did exist, it was too thin to survive bioturbation. These finegrained sediments are clearly laminated, and show alternating layers of low- and high-density (meteoritic) sediments, consistent with ripple formation in an energetic flow regime. We have extracted 35 g of meteoritic melt rock and 3 g of meteorite fragments from sieved sediments. Additionally a 9 g, 2.2 cm meteorite was recovered during opening of one core. The fact that 9\\% of the coarse ejecta is unmelted meteorites may be characteristic of deep-ocean impacts. This may have significance for delivery of organic matter to the early Earth by small impacts into primordial oceans, where actual meteorite fragments can survive in significant amounts. However, a large portion of the meteoritic debris is buried rapidly by the sediments disturbed by the impact.

  4. Onset of solid state mantle convection and mixing during magma ocean solidification

    Science.gov (United States)

    Maurice, Maxime; Tosi, Nicola; Samuel, Henri; Plesa, Ana-Catalina; Hüttig, Christian; Breuer, Doris

    2017-04-01

    The fractional crystallization of a magma ocean can cause the formation of a compositional layering that can play a fundamental role for the subsequent long-term dynamics of the interior, for the evolution of geochemical reservoirs, and for surface tectonics. In order to assess to what extent primordial compositional heterogeneities generated by magma ocean solidification can be preserved, we investigate the solidification of a whole-mantle Martian magma ocean, and in particular the conditions that allow solid state convection to start mixing the mantle before solidification is completed. To this end, we performed 2-D numerical simulations in a cylindrical geometry. We treat the liquid magma ocean in a parametrized way while we self-consistently solve the conservation equations of thermochemical convection in the growing solid cumulates accounting for pressure-, temperature- and, where it applies, melt-dependent viscosity as well as parametrized yield stress to account for plastic yielding. By testing the effects of different cooling rates and convective vigor, we show that for a lifetime of the liquid magma ocean of 1 Myr or longer, the onset of solid state convection prior to complete mantle crystallization is likely and that a significant part of the compositional heterogeneities generated by fractionation can be erased by efficient mantle mixing.

  5. A deep hydrothermal fault zone in the lower oceanic crust, Samail ophiolite Oman

    Science.gov (United States)

    Zihlmann, B.; Mueller, S.; Koepke, J.; Teagle, D. A. H.

    2017-12-01

    compositions of the fault rock, clasts and hanging wall indicate interaction with a seawater-derived hydrothermal fluid during oceanic spreading at an ancient mid-ocean ridge. The considerable elemental mass changes in the fault rocks and surrounds compared to the primary layered gabbros suggests extensive hydrothermal fluid flow and exchange deep within the ocean crust.

  6. Apparent changes in the climatic state of the deep North Atlantic Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Roemmich, D; Wunsch, C

    1984-02-01

    Determination of any long-term changes in the large-scale characteristics of the deep ocean circulation would be an important clue in understanding the climatic interactions of the ocean and atmosphere. In the summer of 1981, the RV Atlantis II reoccupied two transatlantic sections at nominal latitudes of 24/sup 0/30'N and 36/sup 0/16'N with a conductivity-temperature-depth instrument (CTD). One purpose of the work was to make a comparison with previous surveys conducted during the International Geophysical Year (IGY), when sections were obtained in October 1957 and April-May 1959. The authors report here that significant warming occurred in an ocean-wide band from 700 m to 3,000 m with a maximum temperature difference of 0.2 ..pi..C. These changes are sufficient to expand the water column by several centimeters. The historical temperature-salinity curve was apparently unchanged. Interannual changes in local water mass characteristics have been proposed previously. Perhaps it would be most surprising if no changes were seen to occur. What remains obscure is the significance of these changes and the extent to which they represent long-term climate trends, or merely the minor and random fluctuations to be expected in any complex fluid system.

  7. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Zeenatul Basher

    2016-02-01

    Full Text Available Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.

  8. The Evolution of Deep Ocean Chemistry and Respired Carbon in the Eastern Equatorial Pacific Over the Last Deglaciation

    Science.gov (United States)

    de la Fuente, Maria; Calvo, Eva; Skinner, Luke; Pelejero, Carles; Evans, David; Müller, Wolfgang; Povea, Patricia; Cacho, Isabel

    2017-12-01

    It has been shown that the deep Eastern Equatorial Pacific (EEP) region was poorly ventilated during the Last Glacial Maximum (LGM) relative to Holocene values. This finding suggests a more efficient biological pump, which indirectly supports the idea of increased carbon storage in the deep ocean contributing to lower atmospheric CO2 during the last glacial. However, proxies related to respired carbon are needed in order to directly test this proposition. Here we present Cibicides wuellerstorfi B/Ca ratios from Ocean Drilling Program Site 1240 measured by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) as a proxy for deep water carbonate saturation state (Δ[CO32-], and therefore [CO32-]), along with δ13C measurements. In addition, the U/Ca ratio in foraminiferal coatings has been analyzed as an indicator of oxygenation changes. Our results show lower [CO32-], δ13C, and [O2] values during the LGM, which would be consistent with higher respired carbon levels in the deep EEP driven, at least in part, by reduced deep water ventilation. However, the difference between LGM and Holocene [CO32-] observed at our site is relatively small, in accordance with other records from across the Pacific, suggesting that a "counteracting" mechanism, such as seafloor carbonate dissolution, also played a role. If so, this mechanism would have increased average ocean alkalinity, allowing even more atmospheric CO2 to be "sequestered" by the ocean. Therefore, the deep Pacific Ocean very likely stored a significant amount of atmospheric CO2 during the LGM, specifically due to a more efficient biological carbon pump and also an increase in average ocean alkalinity.

  9. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.

    Directory of Open Access Journals (Sweden)

    Alex D Rogers

    2012-01-01

    Full Text Available Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp., stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae, bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more

  10. The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean.

    Directory of Open Access Journals (Sweden)

    George A Wolff

    Full Text Available The addition of iron to high-nutrient low-chlorophyll (HNLC oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF has been proposed as a means of mitigating anthropogenic atmospheric CO(2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth to the East (naturally iron fertilized; +Fe and South (HNLC of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.

  11. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  12. Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification

    Science.gov (United States)

    Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B.

    2014-12-01

    A comparison between mixed (MLD) and mixing (XLD) layer depths is presented from the SubTRopical Atlantic Surface Salinity Experiment (STRASSE) cruise in the subtropical Atlantic. This study consists of 400 microstructure profiles during fairly calm and moderate conditions (2 background level. Two different thresholds for the background dissipation level are tested, 10-8 and 10-9 m2 s-3, and these are compared with the MLD as calculated using a density threshold. The larger background threshold agrees with the MLD during restratification but only extends to half the MLD during nighttime convection, while the lesser threshold agrees well during convection but is deeper by a factor of 2 during restratification. Observations suggest the use of a larger density threshold to determine the MLD in a buoyancy driven regime.

  13. Ejecta from Ocean Impacts

    Science.gov (United States)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  14. Comment on "Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis".

    Science.gov (United States)

    Balser, Dana S; Rood, Robert T; Bania, T M

    2007-08-31

    Eggleton et al. (Reports, 8 December 2006, p. 1580) reported on a deep-mixing mechanism in low-mass stars caused by a Rayleigh-Taylor instability that destroys all of the helium isotope 3He produced during the star's lifetime. Observations of 3He in planetary nebulae, however, indicate that some stars produce prodigious amounts of 3He. This is inconsistent with the claim that all low-mass stars should destroy 3He.

  15. The warmer the ocean surface, the shallower the mixed layer. How much of this is true?

    Science.gov (United States)

    Somavilla, R; González-Pola, C; Fernández-Diaz, J

    2017-09-01

    Ocean surface warming is commonly associated with a more stratified, less productive, and less oxygenated ocean. Such an assertion is mainly based on consistent projections of increased near-surface stratification and shallower mixed layers under global warming scenarios. However, while the observed sea surface temperature (SST) is rising at midlatitudes, the concurrent ocean record shows that stratification is not unequivocally increasing nor is MLD shoaling. We find that while SST increases at three study areas at midlatitudes, stratification both increases and decreases, and MLD deepens with enhanced deepening of winter MLDs at rates over 10 m  decade-1. These results rely on the estimation of several MLD and stratification indexes of different complexity on hydrographic profiles from long-term hydrographic time-series, ocean reanalysis, and Argo floats. Combining this information with estimated MLDs from buoyancy fluxes and the enhanced deepening/attenuation of the winter MLD trends due to changes in the Ekman pumping, MLD variability involves a subtle interplay between circulation and atmospheric forcing at midlatitudes. Besides, it is highlighted that the density difference between the surface and 200 m, the most widely used stratification index, should not be expected to reliably inform about changes in the vertical extent of mixing.

  16. The influence of Southern Ocean surface buoyancy forcing on glacial-interglacial changes in the global deep ocean stratification

    OpenAIRE

    Sun, S; Eisenman, I; Stewart, AL

    2016-01-01

    ©2016. American Geophysical Union. All Rights Reserved. Previous studies have suggested that the global ocean density stratification below ∼3000 m is approximately set by its direct connection to the Southern Ocean surface density, which in turn is constrained by the atmosphere. Here the role of Southern Ocean surface forcing in glacial-interglacial stratification changes is investigated using a comprehensive climate model and an idealized conceptual model. Southern Ocean surface forcing is f...

  17. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water

    Directory of Open Access Journals (Sweden)

    Guoo-Shyng Wang Hsu

    2017-10-01

    Full Text Available Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW. DOW was electrolyzed in a glass electrolyzing cell equipped with platinum–plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be.

  18. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.

    Science.gov (United States)

    Hsu, Guoo-Shyng Wang; Lu, Yi-Fa; Hsu, Shun-Yao

    2017-10-01

    Electrolyzed water is a sustainable disinfectant, which can comply with food safety regulations and is environmentally friendly. A two-factor central composite design was adopted for studying the effects of electrolysis time and electric potential on the chlorine generation efficiency of electrolyzed deep ocean water (DOW). DOW was electrolyzed in a glass electrolyzing cell equipped with platinum-plated titanium anode and cathode. The results showed that chlorine concentration reached maximal level in the batch process. Prolonged electrolysis reduced chlorine concentration in the electrolyte and was detrimental to electrolysis efficiency, especially under high electric potential conditions. Therefore, the optimal choice of electrolysis time depends on the electrolyzable chloride in DOW and cell potential adopted for electrolysis. The higher the electric potential, the faster the chlorine level reaches its maximum, but the lower the electric efficiency will be. Copyright © 2016. Published by Elsevier B.V.

  19. The largest deep-ocean silicic volcanic eruption of the past century.

    Science.gov (United States)

    Carey, Rebecca; Soule, S Adam; Manga, Michael; White, James; McPhie, Jocelyn; Wysoczanski, Richard; Jutzeler, Martin; Tani, Kenichiro; Yoerger, Dana; Fornari, Daniel; Caratori-Tontini, Fabio; Houghton, Bruce; Mitchell, Samuel; Ikegami, Fumihiko; Conway, Chris; Murch, Arran; Fauria, Kristen; Jones, Meghan; Cahalan, Ryan; McKenzie, Warren

    2018-01-01

    The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km 2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.

  20. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  1. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  2. Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-06-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  3. Groundwater Mixing Process Identification in Deep Mines Based on Hydrogeochemical Property Analysis

    Directory of Open Access Journals (Sweden)

    Bo Liu

    2016-12-01

    Full Text Available Karst collapse columns, as a potential water passageway for mine water inrush, are always considered a critical problem for the development of deep mining techniques. This study aims to identify the mixing process of groundwater deriving two different limestone karst-fissure aquifer systems. Based on analysis of mining groundwater hydrogeochemical properties, hydraulic connection between the karst-fissure objective aquifer systems was revealed. In this paper, piper diagram was used to calculate the mixing ratios at different sampling points in the aquifer systems, and PHREEQC Interactive model (Version 2.5, USGS, Reston, VA, USA, 2001 was applied to modify the mixing ratios and model the water–rock interactions during the mixing processes. The analysis results show that the highest mixing ratio is 0.905 in the C12 borehole that is located nearest to the #2 karst collapse column, and the mixing ratio decreases with the increase of the distance from the #2 karst collapse column. It demonstrated that groundwater of the two aquifers mixed through the passage of #2 karst collapse column. As a result, the proposed Piper-PHREEQC based method can provide accurate identification of karst collapse columns’ water conductivity, and can be applied to practical applications.

  4. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    Science.gov (United States)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The

  5. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  6. D.E.E.P. Learning: Promoting Informal STEM Learning through Ocean Research Simulation Games

    Science.gov (United States)

    Simms, E.; Rohrlick, D.; Layman, C.; Peach, C. L.; Orcutt, J. A.; Keen, C. S.; Matthews, J.; Nsf Ooi-Ci Education; Public Engagement Team

    2010-12-01

    It is generally recognized that interactive digital games have the potential to promote the development of valuable learning and life skills, including data processing, decision-making, critical thinking, planning, communication and collaboration (Kirriemuir and MacFarlane, 2006). But the research and development of educational games, and the study of the educational value of interactive games in general, have lagged far behind the same efforts for games created for the purpose of entertainment. Our group is attempting to capitalize on the facts that games are now played in 67% of American households (ESA, 2010), and across a broad range of ages, by developing effective and engaging simulation games that promote Science, Technology, Engineering and Mathematics (STEM) literacy in informal science education institutions (ISEIs; e.g., aquariums, museums, science centers). In particular, we are developing games based on the popular Microsoft Xbox360 gaming platform and the free Microsoft XNA game development kit, which engage ISEI visitors in the exploration and understanding of the deep-sea environment. Known as Deep-sea Extreme Environment Pilot (D.E.E.P.), the games place players in the role of piloting a remotely-operated vehicle (ROV) to complete science-based objectives associated with the exploration of ocean observing systems and hydrothermal vent environments. In addition to creating a unique educational product, our efforts are intended to identify 1) the key elements of a successful STEM-based simulation game experience in an informal science education institution, and 2) which aspects of game design (e.g., challenge, curiosity, fantasy, personal recognition) are most effective at maximizing both learning and enjoyment. We will share our progress to date, including formative assessment results from testing the game prototypes at Birch Aquarium at Scripps, and discuss the potential benefits and challenges to interactive gaming as a tool to support STEM

  7. Bathymetry and oceanic flow structure at two deep passages crossing the Lomonosov Ridge

    Science.gov (United States)

    Björk, Göran; Jakobsson, Martin; Assmann, Karen; Andersson, Leif G.; Nilsson, Johan; Stranne, Christian; Mayer, Larry

    2018-01-01

    The Lomonosov Ridge represents a major topographical feature in the Arctic Ocean which has a large effect on the water circulation and the distribution of water properties. This study presents detailed bathymetric survey data along with hydrographic data at two deep passages across the ridge: a southern passage (80-81° N), where the ridge crest meets the Siberian continental slope, and a northern passage around 84.5° N. The southern channel is characterized by smooth and flat bathymetry around 1600-1700 m with a sill depth slightly shallower than 1700 m. A hydrographic section across the channel reveals an eastward flow with Amundsen Basin properties in the southern part and a westward flow of Makarov Basin properties in the northern part. The northern passage includes an approximately 72 km long and 33 km wide trough which forms an intra-basin in the Lomonosov Ridge morphology (the Oden Trough). The eastern side of the Oden Trough is enclosed by a narrow and steep ridge rising 500-600 m above a generally 1600 m deep trough bottom. The deepest passage (the sill) is 1470 m deep and located on this ridge. Hydrographic data show irregular temperature and salinity profiles indicating that water exchange occurs as midwater intrusions bringing water properties from each side of the ridge in well-defined but irregular layers. There is also morphological evidence that some rather energetic flows may occur in the vicinity of the sill. A well expressed deepening near the sill may be the result of seabed erosion by bottom currents.

  8. Titan : A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program

    NARCIS (Netherlands)

    de Baar, H.J.W.; Timmermans, K.R; Laan, P.; De Porto, H.H.; Ober, S.; Blom, J.J.; Bakker, M.C.; Schilling, J; Sarthou, G.; Smit, M. G.; Klunder, M

    2008-01-01

    Towards more rapid ultraclean sampling of deep ocean waters for trace elements, a novel rectangular frame was constructed of titanium, holding two rows of 12 samplers, as well as various sensors. The frame is deployed to deep ocean waters by an 8000 m length Kevlar wire with internal power and

  9. Hydrothermal Fe cycling and deep ocean organic carbon scavenging: Model-based evidence for significant POC supply to seafloor sediments

    Digital Repository Service at National Institute of Oceanography (India)

    German, C.R.; Legendre, L.L.; Sander, S.G.;; Niquil, N.; Luther-III, G.W.; LokaBharathi, P.A.; Han, X.; LeBris, N.

    by more than ~10% over background values, what the model does indicate is that scavenging of carbon in association with Fe-rich hydrothermal plume particles should play a significant role in the delivery of particulate organic carbon to deep ocean...

  10. Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; Parashar, K.; ShyamPrasad, M.

    We examined 378 micrometeorites collected from deep-sea sediments of the Indian Ocean of which 175, 180, and 23 are I-type, S-type, and G-type, respectively. Of the 175 I-type spherules, 13 contained platinum group element nuggets (PGNs...

  11. MBARI Mapping AUV: A High-Resolution Deep Ocean Seafloor Mapping Capability

    Science.gov (United States)

    Caress, D. W.; Kirkwood, W. J.; Thomas, H.; McEwen, R.; Henthorn, R.; McGill, P.; Thompson, D.; Sibenac, M.; Jensen, S.; Shane, F.; Hamilton, A.

    2005-05-01

    The Monterey Bay Aquarium Research Institute (MBARI) is developing an autonomous seafloor mapping capability for deep ocean science applications. The MBARI Mapping AUV is a 0.53 m (21 in) diameter, 5.1 m (16.7 ft) long, Dorado-class vehicle designed to carry four mapping sonars. The primary sensor is a 200 kHz multibeam sonar producing swath bathymetry and sidescan. In addition, the vehicle carries 100 kHz and 410 kHz chirp sidescan sonars, and a 2-16 kHz sweep chirp subbottom profiler. Navigation and attitude data are obtained from an inertial navigation system (INS) incorporating a ring laser gyro and a 300 kHz Doppler velocity log (DVL). The vehicle also includes acoustic modem, ultra-short baseline navigation, and long-baseline navigation systems. The Mapping AUV is powered by 6 kWhr of Li-polymer batteries, providing expected mission duration of 12 hours at a typical speed of 1.5 m/s. All components of the vehicle are rated to 6000 m depth, allowing MBARI to conduct high-resolution mapping of the deep-ocean seafloor. The sonar package is also be mountable on ROV Ventana, allowing surveys at altitudes less than 20 m at topographically challenging sites. The vehicle was assembled and extensively tested during 2004; this year we are commencing operations for MBARI science projects while continuing the process of testing and integrating the complete suite of sensors and systems. MBARI is beginning to use this capability to observe the changing morphology of dynamic systems such as submarine canyons and active slumps, to map deep-water benthic habitats at resolutions comparable to ROV and submersible observations, to provide basemaps for ROV dives, and to provide high resolution bathymetry and subbottom profiles as part of a variety of projects requiring knowledge of the seafloor. We will present initial results from surveys in and around Monterey Canyon, including high resolution repeat surveys of four sites along the canyon axis.

  12. Mechanisms of Mixed-Layer Salinity Seasonal Variability in the Indian Ocean

    Science.gov (United States)

    Köhler, Julia; Serra, Nuno; Bryan, Frank O.; Johnson, Benjamin K.; Stammer, Detlef

    2018-01-01

    Based on a joint analysis of an ensemble mean of satellite sea surface salinity retrievals and the output of a high-resolution numerical ocean circulation simulation, physical processes are identified that control seasonal variations of mixed-layer salinity (MLS) in the Indian Ocean, a basin where salinity changes dominate changes in density. In the northern and near-equatorial Indian Ocean, annual salinity changes are mainly driven by respective changes of the horizontal advection. South of the equatorial region, between 45°E and 90°E, where evaporation minus precipitation has a strong seasonal cycle, surface freshwater fluxes control the seasonal MLS changes. The influence of entrainment on the salinity variance is enhanced in mid-ocean upwelling regions but remains small. The model and observational results reveal that vertical diffusion plays a major role in precipitation and river runoff dominated regions balancing the surface freshwater flux. Vertical diffusion is important as well in regions where the advection of low salinity leads to strong gradients across the mixed-layer base. There, vertical diffusion explains a large percentage of annual MLS variance. The simulation further reveals that (1) high-frequency small-scale eddy processes primarily determine the salinity tendency in coastal regions (in particular in the Bay of Bengal) and (2) shear horizontal advection, brought about by changes in the vertical structure of the mixed layer, acts against mean horizontal advection in the equatorial salinity frontal regions. Observing those latter features with the existing observational components remains a future challenge.

  13. Liquid carbon dioxide/pulverized limestone globulsion delivery system for deep ocean storage

    Energy Technology Data Exchange (ETDEWEB)

    Swett, P.; Golomb, D.; Barry, E.; Ryan, D.; Lawton, C. [Massachusetts Univ., Lowell, MA (United States)

    2005-07-01

    Ocean storage of carbon dioxide (CO{sub 2}) raises serious environmental, technical and economic problems because a massive point injection of pure liquid CO{sub 2} at depth would create a plume of carbonic acid with a pH lower than 7. Acidified seawater is considered to be harmful to aquatic organisms. Laboratory studies have shown that injecting a globulsion consisting of CO{sub 2}, water (H{sub 2}O) and calcium carbonate (CaCO{sub 3}) instead of pure liquid CO{sub 2} results in an alkaline reaction rather than an acidic reaction. Because calcium carbonate and bicarbonate are natural ingredients of seawater, there is no expected harm due to the additive limestone. This paper presented a practical delivery system for the underwater creation of globulsion. When liquid or supercritical CO{sub 2} is mixed with a slurry of finely pulverized limestone (CaCO{sub 3}) in pure or seawater, a macro-emulsion is formed consisting of CO{sub 2} droplets coated with CaCO{sub 3} particles dispersed in water. In this study, liquid CO{sub 2} was piped to approximately 500 m depth, which is below the flash point of liquid CO{sub 2} into vapor. A slurry of pulverized limestone in seawater was also separately piped to this depth. A static mixer was mounted at the end of the pipes. Liquid CO{sub 2}, along with a slurry of pulverized limestone and ambient seawater were pumped into the mixer by a turbine. The globulsion exited from the other end of the mixer and sank like a dense plume to greater depths while entraining ambient seawater. The CaCO{sub 3}-coated globules precipitated from the neutrally buoyant plume toward the ocean bottom following equilibration. As such, the ocean was not be acidified with this method of CO{sub 2} discharging. It was concluded that even inland seas, such as the Mediterranean and Black Seas, could be considered for sequestration of a CO{sub 2}/H{sub 2}O/CaCO{sub 3} globulsion. Although adding pulverized limestone to liquid CO{sub 2} and the mixing

  14. New Experimental Constraints on Crystallization Differentiation in a Deep Magma Ocean

    Science.gov (United States)

    Walter, M. J.; Ito, E.; Nakamura, E.; Tronnes, R.; Frost, D.

    2001-12-01

    Most of Earth's mass probably accreted as a consequence of numerous impacts between large bodies and proto-Earth, and a giant impact with a Mars-sized object is the most plausible explanation for a Moon forming event. 1 Physical models show that large impacts would have caused high-degrees of melting and a global magma ocean. 2 Crystallization differentiation in a deep magma ocean could impart stratification in the solidified mantle, forming large geochemical domains. To accurately model crystallization in a deep magma ocean the liquidus phase-relations of peridotite, as well as mineral/melt element partitioning, must be known at lower mantle conditions. Here, we report the results of liquidus experiments on fertile model peridotite compositions at 23 - 33 GPa. Experiments were performed in 6/8-type multi-anvil apparatus using carbide and sintered-diamond second-stage anvils with 4 and 2 mm truncations, respectively. Samples were encapsulated by either graphite or Re. High-temperatures were generated using LaCrO3 or Re furnaces, and temperatures were held from 2 to 50 minutes at 2300 - 2500 C. Run products were analyzed for major and trace elements using EPMA and SIMS. At 23 GPa the liquidus phase is majorite, followed closely down temperature by ferropericlase (Fp) and Mg-perovskite (Mg-Pv). At 24 GPa the liquidus phase has changed to Fp, followed closely by majorite and Mg-Pv. Ca-perovskite (Ca-Pv) is present only at much lower temperatures close to the solidus. At approximately 31 GPa Mg-Pv is the liquidus phase followed down-temperature by Fp then Ca-Pv. At ~ 33 GPa Ca-Pv crystallizes closer to the liquidus, within about 50 C, at a similar temperature to Fp. Thus, important phases crystallizing in a deep magma ocean are Mg-Pv, Ca-Pv and Fp. Crystallization models based on major element partitioning show that only very modest amounts of crystal separation of a Mg-Pv + Fp assemblage can be tolerated before Ca/Al, Al/Ti and Ca/Ti ratios become unrealistic for

  15. Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil

    Directory of Open Access Journals (Sweden)

    M. Araujo

    2011-01-01

    Full Text Available High-resolution hydrographic observations of temperature and salinity are used to analyze the formation and distribution of isothermal depth (ZT, mixed depth (ZM and barrier layer thickness (BLT in a section of the southwestern Atlantic (0°30´ N–14°00´ S; 31°24´–41°48´ W, adjacent to the northeastern Brazilian coast. Analyzed data consists of 279 CTD casts acquired during two cruises under the Brazilian REVIZEE Program. One occurred in late austral winter (August–October 1995 and another in austral summer (January–April 1997. Oceanic observations are compared to numerical modeling results obtained from the French Mercator-Coriolis Program. Results indicate that the intrusion of subtropical Salinity Maximum Waters (SMW is the major process contributing to the seasonal barrier layer formation. These waters are brought by the South Equatorial Current (SEC, from the subtropical region, into the western tropical Atlantic boundary. During late austral winter southeastern trade winds are more intense and ITCZ precipitations induce lower surface salinity values near the equator. During this period a 5–90 m thick BLT (median = 15 m is observed and BLT > 30 m is restricted to latitudes higher than 8° S, where the intrusion of salty waters between 8°–12.3° S creates shallow mixed layers over deep (ZT ≥ 90 m isothermal layers. During austral summer, shallow isothermal and mixed layers prevail, when northeasterly winds are predominant and evaporation overcomes precipitation, causing saltier waters at the surface/subsurface layers. During that period observed BLT varies from 5 to 70 m and presents thicker median value of 35 m, when comparing to the winter. Furthermore, BLT ≥ 30 m is observed not only in the southernmost part of the study area, as verified during late winter, but in the latitude range 2°–14° S, where near-surface salty waters are transported westward by the

  16. Experimental studies on behaviour of long-lived radionuclides in relation to deep-ocean disposal of nuclear waste

    International Nuclear Information System (INIS)

    Aston, S.R.; Fowler, S.W.

    1984-01-01

    Laboratory experiments have been carried out to investigate the interactions of long-lived radionuclides with sediments from present or potential deep-ocean radioactive waste disposal sites. The studies have been concerned with both geochemical aspects and sediment/animal radioecology. Examples drawn from the comparative behaviour of technetium and three transuranium nuclides (neptunium, plutonium and americium) are presented in relation to their uptake from sea water by deep-ocean sediments, ease of desorption and transfer from contaminated sediments to benthic invertebrates. The results provide information for the prediction of the behaviour of long-lived radionuclides in the deep-sea water/sediment boundary after their release from wastes. (author)

  17. Characterization of Convective Plumes Associated With Oceanic Deep Convection in the Northwestern Mediterranean From High-Resolution In Situ Data Collected by Gliders

    Science.gov (United States)

    Margirier, Félix; Bosse, Anthony; Testor, Pierre; L'Hévéder, Blandine; Mortier, Laurent; Smeed, David

    2017-12-01

    Numerous gliders have been deployed in the Gulf of Lions (northwestern Mediterranean Sea) and in particular during episodes of open-ocean deep convection in the winter 2012-2013. The data collected represents an unprecedented density of in situ observations providing a first in situ statistical and 3-D characterization of the important mixing agents of the deep convection phenomenon, the so-called plumes. A methodology based on a glider-static flight model was applied to infer the oceanic vertical velocity signal from the glider navigation data. We demonstrate that during the active phase of mixing, the gliders underwent significant oceanic vertical velocities up to 18 cm s-1. Focusing on the data collected by two gliders during the 2012-2013 winter, 120 small-scale convective downward plumes were detected with a mean radius of 350 m and separated by about 2 km. We estimate that the plumes cover 27% of the convection area. Gliders detected downward velocities with a magnitude larger than that of the upward ones (-6 versus +2 cm s-1 on average). Along-track recordings of temperature and salinity as well as biogeochemical properties (dissolved oxygen, fluorescence, and turbidity) allow a statistical characterization of the water masses' properties in the plumes' core with respect to the "background": the average downward signal is of colder (-1.8 × 10-3 °C), slightly saltier (+4.9 × 10-4 psu) and thus denser waters (+7.5 × 10-4 kg m-3). The plunging waters are also on average more fluorescent (+2.3 × 10-2 μg L-1). The plumes are associated with a vertical diffusion coefficient of 7.0 m2 s-1 and their vertical velocity variance scales with the ratio of the buoyancy loss over the Coriolis parameter to the power 0.86.

  18. Assessing ocean vertical mixing schemes for the study of climate change

    Science.gov (United States)

    Howard, A. M.; Lindo, F.; Fells, J.; Tulsee, V.; Cheng, Y.; Canuto, V.

    2014-12-01

    Climate change is a burning issue of our time. It is critical to know the consequences of choosing "business as usual" vs. mitigating our emissions for impacts e.g. ecosystem disruption, sea-level rise, floods and droughts. To make predictions we must model realistically each component of the climate system. The ocean must be modeled carefully as it plays a critical role, including transporting heat and storing heat and dissolved carbon dioxide. Modeling the ocean realistically in turn requires physically based parameterizations of key processes in it that cannot be explicitly represented in a global climate model. One such process is vertical mixing. The turbulence group at NASA-GISS has developed a comprehensive new vertical mixing scheme (GISSVM) based on turbulence theory, including surface convection and wind shear, interior waves and double-diffusion, and bottom tides. The GISSVM is tested in stand-alone ocean simulations before being used in coupled climate models. It is also being upgraded to more faithfully represent the physical processes. To help assess mixing schemes, students use data from NASA-GISS to create visualizations and calculate statistics including mean bias and rms differences and correlations of fields. These are created and programmed with MATLAB. Results with the commonly used KPP mixing scheme and the present GISSVM and candidate improved variants of GISSVM will be compared between stand-alone ocean models and coupled models and observations. This project introduces students to modeling of a complex system, an important theme in contemporary science and helps them gain a better appreciation of climate science and a new perspective on it. They also gain familiarity with MATLAB, a widely used tool, and develop skills in writing and understanding programs. Moreover they contribute to the advancement of science by providing information that will help guide the improvement of the GISSVM and hence of ocean and climate models and ultimately our

  19. Role of ocean isopycnal mixing in setting the uptake of anthropogenic carbon

    Science.gov (United States)

    Gnanadesikan, A.; Pradal, M. A. S.; Abernathey, R. P.

    2014-12-01

    The magnitude of the isopycnal stirring coefficient ARedi is poorly constrained from data and varies greatly across Earth System Models. This paper documents the impact of such uncertainty on the oceanic carbon cycle. We compare six spatial representations of ARedi. Four constant values (400, 800, 1200 and 2400 m2/s) are used to explore the difference between using the low values found in many models and the higher values seen in observational estimates. Models are also run with two spatially dependent values of ARedi based on altimetry, one which captures the fully two-dimensional structure of the mixing coefficient, the other of which looks at the zonally averaged structure alone. Under global warming significant changes are seen in the biological pump in convective regions, but these changes are largely locally compensated by changes in preformed DIC. Instead, differences in anthropogenic uptake of carbon are largely centered in the tropics, and can be well described in terms of a relatively simple diffusive approximation. Using ideal age as a tracer can give insight into the expected behavior of the models. The rate of oceanic mixing represents a quantitatively significant uncertainty in future projections of the global carbon cycle, amounting to about 20% of the oceanic uptake.

  20. Redox speciation of particulate iron and manganese during river/ocean mixing

    International Nuclear Information System (INIS)

    Zaw, M.; Szymczak, R.; Payne, T.

    2000-01-01

    Full text: A synchrotron radiation experiment was performed at the Australian National Beamline Facility (Photon Factory, Tsukuba, Japan) to investigate changes in the physico-chemical nature of particles during estuarine mixing. X-ray absorption near edge structure spectra (XANES) analysis was used to determine solid-state redox speciation of iron and manganese throughout the river/ocean salinity transects. Particles (>0.4μm) collected using clean techniques were stored under nitrogen during TROPICS Project expeditions to the Fly and Sepik Rivers, PNG. Results indicated that initially, particulate manganese was mostly present as Mn(IV) and Mn(III) compounds with some surface-adsorbed Mn(II). Similarly, iron was present as particulate Fe(III) and Fe(II/III) compounds with some adsorbed Fe(II). During river-ocean mixing, the proportions of both Mn(II) and Fe(III) significantly increased. These observations maybe due to increasing photochemical activity in the river plume, surface-sorption of reduced species related to the estuarine residence time of particles, or enhanced scavenging of ocean-sourced elements. Copyright (2000) American Chemical Society

  1. A three-dimensional ocean mesoscale simulation using data from the SEMAPHORE experiment: Mixed layer heat budget

    Science.gov (United States)

    Caniaux, Guy; Planton, Serge

    1998-10-01

    A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.

  2. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    International Nuclear Information System (INIS)

    Mignone, B.K.

    2004-01-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO 2 ). Here, we use an ocean general circulation model (OGCM) to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO 2 into selected regions of the abyssal ocean. We find that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO 2 through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO 2 outgasses in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, we make a first attempt at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques we have developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, we estimate the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnocline. Combining these model results with available tracer data permits us to narrow the range of model behavior, which in turn places important constraints on sequestration efficiency. (author)

  3. Modeling the influence from ocean transport, mixing and grazing on phytoplankton diversity

    DEFF Research Database (Denmark)

    Adjou, Mohamed; Bendtsen, Jørgen; Richardson, Katherine

    2012-01-01

    Phytoplankton diversity, whether defined on the basis of functional groups or on the basis of numbers of individual species, is known to be heterogeneous throughout the global ocean. The factors regulating this diversity are generally poorly understood, although access to limiting nutrients...... in generating and maintaining diversity, we apply the model to quantify the potential role of zooplankton grazing and ocean transport for the coexistence of competing species and phytoplankton diversity. We analyze the sensitivity of phytoplankton biomass distributions to different types of grazing functional...... responses and show that preferential grazing on abundant species, for example as formulated by the Holling type III grazing function, is a key factor for maintaining species’ coexistence. Mixing and large-scale advection are shown to potentially have a significant impact on the distribution of phytoplankton...

  4. A long history of equatorial deep-water upwelling in the Pacific Ocean

    Science.gov (United States)

    Zhang, Yi Ge; Pagani, Mark; Henderiks, Jorijntje; Ren, Haojia

    2017-06-01

    Cold, nutrient- and CO2-rich waters upwelling in the eastern equatorial Pacific (EEP) give rise to the Pacific cold tongue. Quasi-periodic subsidence of the thermocline and attenuation in wind strength expressed by El Niño conditions decrease upwelling rates, increase surface-water temperatures in the EEP, and lead to changes in regional climates both near and far from the equatorial Pacific. EEP surface waters have elevated CO2 concentrations during neutral (upwelling) or La Niña (strong upwelling) conditions. In contrast, approximate air-sea CO2 equilibrium characterizes El Niño events. One hypothesis proposes that changes in physical oceanography led to the establishment of a deep tropical thermocline and expanded mixed-layer prior to 3 million years ago. These effects are argued to have substantially reduced deep-water upwelling rates in the EEP and promoted a "permanent El Niño-like" climate state. For this study, we test this supposition by reconstructing EEP "excess CO2" and upwelling history for the past 6.5 million years using the alkenone-pCO2 methodology. Contrary to previous assertions, our results indicate that average temporal conditions in the EEP over the past ∼6.5 million years were characterized by substantial CO2 disequilibrium and high nutrient delivery to surface waters - characteristics that imply strong upwelling of deep waters. Upwelling appears most vigorous between ∼6.5 to 4.5 million years ago coinciding with high accumulation rates of biogenic material during the late Miocene - early Pliocene "biogenic bloom".

  5. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    Energy Technology Data Exchange (ETDEWEB)

    B.K. Mignone; J.L. Sarmiento; R.D. Slater; A. Gnanadesikan [Princeton University, Princeton, NJ (United States). Department of Geosciences

    2003-07-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO{sub 2}). Here an ocean general circulation model (OGCM) is used to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO{sub 2} into selected regions of the abyssal ocean. It was found that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO{sub 2} through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO{sub 2} outgases in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, a first attempt is made at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnoclineis is estimated. Combining these model results with available tracer data allows a narrowing of the range of allowable mixing in the model, which in turn places important constraints on sequestration efficiency. 35 refs., 1 fig.

  6. Okamejei ornata n. sp., a new deep-water skate (Elasmobranchii, Rajidae) from the northwestern Indian Ocean off Socotra Islands

    Science.gov (United States)

    Weigmann, Simon; Stehmann, Matthias F. W.; Thiel, Ralf

    2015-05-01

    A new species of the Indo-Pacific skate genus Okamejei is described based on 10 specimens caught around the Socotra Islands (northwestern Indian Ocean). The type series of Okamejei ornata n. sp. was sampled during cruise 17 of RV 'Vityaz' along the deep western Indian Ocean in 1988/89. The new species represents the fifth species of Okamejei in the western Indian Ocean and differs from its congeners in having a unique dorsal pattern of variable dark brown spots encircled with beige pigment and arranged into rosettes. The dorsal ground color is ocher, but the anterior snout is dusky. Compared to congeners in the western Indian Ocean, the new species has a shorter preorbital snout length, a greater orbit diameter, fewer pectoral radials, an intermediate distance between first gill slits, and an intermediate number of upper jaw tooth rows.

  7. High Temperature Logging and Monitoring Instruments to Explore and Drill Deep into Hot Oceanic Crust.

    Science.gov (United States)

    Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.

    2014-12-01

    Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination

  8. Systems analysis approach to the disposal of high-level waste in deep ocean sediments

    International Nuclear Information System (INIS)

    Marsily, G. de; Hill, M.D.; Murray, C.N.; Talbert, D.M.; Van Dorp, F.; Webb, G.A.M.

    1980-01-01

    Among the different options being studied for disposal of high-level solidified waste, increasing attention is being paid to that of emplacement of glasses incorporating the radioactivity in deep oceanic sediments. This option has the advantage that the areas of the oceans under investigation appear to be relatively unproductive biologically, are relatively free from cataclysmic events, and are areas in which the natural processes are slow. Thus the environment is stable and predictable so that a number of barriers to the release and dispersion of radioactivity can be defined. Task Groups set up in the framework of the International Seabed Working Group have been studying many aspects of this option since 1976. In order that the various parts of the problem can be assessed within an integrated framework, the methods of systems analysis have been applied. In this paper the Systems Analysis Task Group members report the development of an overall system model. This will be used in an iterative process in which a preliminary analysis, together with a sensitivity analysis, identifies the parameters and data of most importance. The work of the other task groups will then be focussed on these parameters and data requirements so that improved results can be fed back into an improved overall systems model. The major requirements for the development of a preliminary overall systems model are that the problem should be separated into identified elements and that the interfaces between the elements should be clearly defined. The model evolved is deterministic and defines the problem elements needed to estimate doses to man

  9. Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean.

    Science.gov (United States)

    Fitzsimmons, Jessica N; Boyle, Edward A; Jenkins, William J

    2014-11-25

    Until recently, hydrothermal vents were not considered to be an important source to the marine dissolved Fe (dFe) inventory because hydrothermal Fe was believed to precipitate quantitatively near the vent site. Based on recent abyssal dFe enrichments near hydrothermal vents, however, the leaky vent hypothesis [Toner BM, et al. (2012) Oceanography 25(1):209-212] argues that some hydrothermal Fe persists in the dissolved phase and contributes a significant flux of dFe to the global ocean. We show here the first, to our knowledge, dFe (Pacific Ocean, where dFe of 1.0-1.5 nmol/kg near 2,000 m depth (0.4-0.9 nmol/kg above typical deep-sea dFe concentrations) was determined to be hydrothermally derived based on its correlation with primordial (3)He and dissolved Mn (dFe:(3)He of 0.9-2.7 × 10(6)). Given the known sites of hydrothermal venting in these regions, this dFe must have been transported thousands of kilometers away from its vent site to reach our sampling stations. Additionally, changes in the size partitioning of the hydrothermal dFe between soluble (Pacific Rise only leaks 0.02-1% of total Fe vented into the abyssal Pacific, this dFe persists thousands of kilometers away from the vent source with sufficient magnitude that hydrothermal vents can have far-field effects on global dFe distributions and inventories (≥3% of global aerosol dFe input).

  10. Boldness in a deep sea hermit crab to simulated tactile predator attacks is unaffected by ocean acidification

    Science.gov (United States)

    Kim, Tae Won; Barry, James P.

    2016-09-01

    Despite rapidly growing interest in the effects of ocean acidification on marine animals, the ability of deep-sea animals to acclimate or adapt to reduced pH conditions has received little attention. Deep-sea species are generally thought to be less tolerant of environmental variation than shallow-living species because they inhabit relatively stable conditions for nearly all environmental parameters. To explore whether deep-sea hermit crabs ( Pagurus tanneri) can acclimate to ocean acidification over several weeks, we compared behavioral "boldness," measured as time taken to re-emerge from shells after a simulated predatory attack by a toy octopus, under ambient (pH ˜7.6) and expected future (pH ˜7.1) conditions. The boldness measure for crab behavioral responses did not differ between different pH treatments, suggesting that future deep-sea acidification would not influence anti-predatory behavior. However, we did not examine the effects of olfactory cues released by predators that may affect hermit crab behavior and could be influenced by changes in the ocean carbonate system driven by increasing CO2 levels.

  11. Past and future ice age initiation: the role of an intrinsic deep-ocean millennial oscillation

    Science.gov (United States)

    Johnson, R. G.

    2014-05-01

    This paper offers three interdependent contributions to studies of climate variation: (1) the recognition and analysis of an intrinsic millennial oceanic oscillation that affects both Northern and Southern high latitude climates, (2) The recognition of an oceanographic switch to ice-free seas west of Greenland that explains the initiation of the Last Ice Age, and (3) an analysis of the effect of increasing salinity in the seas east of Greenland that suggests the possibility of the initiation of an ice age threshold climate in the near future. In the first contribution the millennial oscillation in the flow of the North Atlantic Drift reported by Bond et al. (1997) is proposed to be part of a 1500 yr intrinsic deep ocean oscillation. This oscillation involves the exchange of North Atlantic intermediate-level deep water (NADW) formed in the seas east of Greenland with Antarctic Bottom Water formed in a shallow-water zone at the edge of the Antarctic continent. The concept of NADW formation is already well known, with details of the sinking water flowing out of the Greenland Sea observed by Smethie et al. (2000) using chlorofluorocarbon tracers. The concept of Antarctic Bottom Water formation is also already well established. However, its modulation by the changing fraction of NADW in the Southern Ocean, which I infer from the analysis of Weyl (1968), has not been previously discussed. The modulated lower-salinity Antarctic Bottom Water that reaches the northern North Atlantic then provides negative feedback for the cyclic variation of NADW formation as proposed here. This causes the 1500 yr bipolar oscillation. The feedback suggests the possible sinusoidal character of the proposed oscillation model. The model is consistent with the cooling of the Little Ice Age (Lamb, 1972, 1995), and it also correctly predicts NASA's observation of today's record maximum area of winter sea ice on the Southern Ocean and the present observed record low rate of Antarctic Bottom Water

  12. Vertical structure, biomass and topographic association of deep-pelagic fishes in relation to a mid-ocean ridge system

    Science.gov (United States)

    Sutton, T. T.; Porteiro, F. M.; Heino, M.; Byrkjedal, I.; Langhelle, G.; Anderson, C. I. H.; Horne, J.; Søiland, H.; Falkenhaug, T.; Godø, O. R.; Bergstad, O. A.

    2008-01-01

    The assemblage structure and vertical distribution of deep-pelagic fishes relative to a mid-ocean ridge system are described from an acoustic and discrete-depth trawling survey conducted as part of the international Census of Marine Life field project MAR-ECO . The 36-station, zig-zag survey along the northern Mid-Atlantic Ridge (MAR; Iceland to the Azores) covered the full depth range (0 to >3000 m), from the surface to near the bottom, using a combination of gear types to gain a more comprehensive understanding of the pelagic fauna. Abundance per volume of deep-pelagic fishes was highest in the epipelagic zone and within the benthic boundary layer (BBL; 0-200 m above the seafloor). Minimum fish abundance occurred at depths below 2300 m but above the BBL. Biomass per volume of deep-pelagic fishes over the MAR reached a maximum within the BBL, revealing a previously unknown topographic association of a bathypelagic fish assemblage with a mid-ocean ridge system. With the exception of the BBL, biomass per volume reached a water column maximum in the bathypelagic zone between 1500 and 2300 m. This stands in stark contrast to the general "open-ocean" paradigm that biomass decreases exponentially from the surface downwards. As much of the summit of the MAR extends into this depth layer, a likely explanation for this mid-water maximum is ridge association. Multivariate statistical analyses suggest that the dominant component of deep-pelagic fish biomass over the northern MAR was a wide-ranging bathypelagic assemblage that was remarkably consistent along the length of the ridge from Iceland to the Azores. Integrating these results with those of previous studies in oceanic ecosystems, there appears to be adequate evidence to conclude that special hydrodynamic and biotic features of mid-ocean ridge systems cause changes in the ecological structure of deep-pelagic fish assemblages relative to those at the same depths over abyssal plains. Lacking terrigenous input of

  13. Assessing and Upgrading Ocean Mixing for the Study of Climate Change

    Science.gov (United States)

    Howard, A. M.; Fells, J.; Lindo, F.; Tulsee, V.; Canuto, V.; Cheng, Y.; Dubovikov, M. S.; Leboissetier, A.

    2016-12-01

    Climate is critical. Climate variability affects us all; Climate Change is a burning issue. Droughts, floods, other extreme events, and Global Warming's effects on these and problems such as sea-level rise and ecosystem disruption threaten lives. Citizens must be informed to make decisions concerning climate such as "business as usual" vs. mitigating emissions to keep warming within bounds. Medgar Evers undergraduates aid NASA research while learning climate science and developing computer&math skills. To make useful predictions we must realistically model each component of the climate system, including the ocean, whose critical role includes transporting&storing heat and dissolved CO2. We need physically based parameterizations of key ocean processes that can't be put explicitly in a global climate model, e.g. vertical&lateral mixing. The NASA-GISS turbulence group uses theory to model mixing including: 1) a comprehensive scheme for small scale vertical mixing, including convection&shear, internal waves & double-diffusion, and bottom tides 2) a new parameterization for the lateral&vertical mixing by mesoscale eddies. For better understanding we write our own programs. To assess the modelling MATLAB programs visualize and calculate statistics, including means, standard deviations and correlations, on NASA-GISS OGCM output with different mixing schemes and help us study drift from observations. We also try to upgrade the schemes, e.g. the bottom tidal mixing parameterizations' roughness, calculated from high resolution topographic data using Gaussian weighting functions with cut-offs. We study the effects of their parameters to improve them. A FORTRAN program extracts topography data subsets of manageable size for a MATLAB program, tested on idealized cases, to visualize&calculate roughness on. Students are introduced to modeling a complex system, gain a deeper appreciation of climate science, programming skills and familiarity with MATLAB, while furthering climate

  14. Dissolution of methane bubbles with hydrate armoring in deep ocean conditions

    Science.gov (United States)

    Kovalchuk, Margarita; Socolofsky, Scott

    2017-11-01

    The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.

  15. Deep-Ocean Crusts as Telescopes: Using Live Radioisotopes to Probe Supernova Nucleosynthesis

    CERN Document Server

    Fields, B D; Ellis, Jonathan Richard; Fields, Brian D.; Hochmuth, Kathrin A.; Ellis, John

    2005-01-01

    Live 60Fe has recently been detected in a deep-ocean ferromanganese crust, isolated in layers dating from about 3 Myr ago. Since 60Fe has a mean life of 2.2 Myr, a near-Earth supernova is the only likely source for such a signal, and we explore here the consequences of a supernova origin. We combine the 60Fe data with several supernova nucleosynthesis models to calculate the supernova distance as a function of progenitor mass, finding an allowed range of 15-120 pc. We also predict the signals expected for several other radioisotopes, which are independent of the supernova distance. Species likely to be present near or above background levels are 10Be, 26Al, 53Mn, 182Hf and 244Pu. Of these, 182Hf and 244Pu are nearly background-free, presenting the best opportunities to provide strong confirmation of the supernova origin of the 60Fe signal, and to demonstrate that at least some supernovae are the source for the r-process. The accuracies of our predictions are hampered by large uncertainties in the predicted 60...

  16. The advantages of deep ocean water for the development of functional fermentation food.

    Science.gov (United States)

    Lee, Chun-Lin

    2015-03-01

    Deep ocean water (DOW) is obtained from 600 m below the sea surface. In recent years, DOW has been applied in the development of fermentation biotechnologies and functional foods. DOW is rich in trace minerals, comprises multiple physiological and health functions, and is able to promote microbe growth; therefore, the application of DOW directly benefits the development of the fermentation industry and functional foods. This study integrated the current health functions and applications of DOW with the latest results from studies related to fermentation biotechnology. Subsequently, the influence of applying DOW in fermented functional food development and the effects in health function improvements were summarized. According to the previous studies, the main reasons for the increased effect of fermented functional foods through the application of DOW are increased generation of functional metabolite contents in the microbes, intrinsic health functions of DOW, and the microbial use of mechanisms of converting the absorbed inorganic ions into highly bioavailable organic ions for the human body. These combined advantages not only enhance the health functions of fermentation products but also provide fermentation products with the intrinsic health functions of DOW.

  17. Study of elementary absorption in the marine sediments of the North Atlantic ocean deeps

    International Nuclear Information System (INIS)

    Rancon, D.; Guegueniat, P.

    1984-01-01

    We have studied the retention of actinide elements (Np, Pu, Am) and of Cs in the sediments of the ocean deeps around Cap-Vert. Plutonium: retention increases with temperatures of 4 to 30 0 C, then stays constant from 30 to 80 0 C. Desorption is slow. Americium: absorption is very strong at any temperature. Measurements of a wide variety of sediments show that retention is not affected by facies (including carbonated sediments). Neptunium: retention is more or less constant between 4 and 15 0 C, and distinctly higher at 30-50 0 C. It is reversible. Caesium: absorption decreases slightly from 4 to 30 0 C, but increases rapidly at 50 to 80 0 C. At the lowest temperatures it is reversible, but it appears to be irreversible at 50 0 . Cs absorption is subject to ponderal concentration. With equal amounts of activity, retention of Cs-135 is weaker than that of Cs-137: likewise the addition of the stable isotope causes in the amounts of Kd in Cs-137. Finally, this paper presents preliminary results showing the natural metallic element content of the sediments

  18. Array design considerations for exploitation of stable weakly dispersive modal pulses in the deep ocean

    Science.gov (United States)

    Udovydchenkov, Ilya A.

    2017-07-01

    Modal pulses are broadband contributions to an acoustic wave field with fixed mode number. Stable weakly dispersive modal pulses (SWDMPs) are special modal pulses that are characterized by weak dispersion and weak scattering-induced broadening and are thus suitable for communications applications. This paper investigates, using numerical simulations, receiver array requirements for recovering information carried by SWDMPs under various signal-to-noise ratio conditions without performing channel equalization. Two groups of weakly dispersive modal pulses are common in typical mid-latitude deep ocean environments: the lowest order modes (typically modes 1-3 at 75 Hz), and intermediate order modes whose waveguide invariant is near-zero (often around mode 20 at 75 Hz). Information loss is quantified by the bit error rate (BER) of a recovered binary phase-coded signal. With fixed receiver depths, low BERs (less than 1%) are achieved at ranges up to 400 km with three hydrophones for mode 1 with 90% probability and with 34 hydrophones for mode 20 with 80% probability. With optimal receiver depths, depending on propagation range, only a few, sometimes only two, hydrophones are often sufficient for low BERs, even with intermediate mode numbers. Full modal resolution is unnecessary to achieve low BERs. Thus, a flexible receiver array of autonomous vehicles can outperform a cabled array.

  19. On Deep-Ocean $^{60}Fe$ as a Fossil of a Near-Earth Supernova

    CERN Document Server

    Fields, B D; Fields, Brian D.; Ellis, John

    1999-01-01

    Live $^{60}$Fe has recently been reported in a deep-ocean ferromanganese crust. Analysis of the isotopic ratios in the sample suggests that the measured $^{60}$Fe abundance exceeds the levels generated by terrestrial and cosmogenic sources, and it has been proposed that the excess of $^{60}$Fe is a signature of a supernova that exploded near the earth several Myr ago. In this paper, we consider the possible background sources, and confirm that the measured $^{60}$Fe is significantly higher than all known backgrounds, in contrast with the reported abundance of live $^{53}$Mn. We discuss scenarios in which the data are consistent with a supernova event at a distance $D \\sim 30$ pc and an epoch $t_{\\rm SN} \\sim 5$ Myr ago. We propose tests that could confirm or refute the interpretation of the $^{60}$Fe discovery, including searches for $^{10}$Be, $^{129}$I and $^{146}$Sm. Such a nearby supernova event might have had some impact on the earth's biosphere, principally by enhancing the cosmic-ray flux. This might h...

  20. Application of systems analysis to the disposal of high level waste in deep ocean sediments

    International Nuclear Information System (INIS)

    De Marsily, G.; Dorp, F. van

    1982-01-01

    Emplacement in deep ocean sediments is one of the disposal options being considered for solidified high level radioactive waste. Task groups set up within the framework of the NEA Seabed Working Group have been studying many aspects of this option since 1976. The methods of systems analysis have been applied to enable the various parts of the problem to be assessed within an integrated framework. This paper describes the progress made by the Systems Analysis Task Group towards the development of an overall system model. The Task Group began by separating the problem into elements and defining the interfaces between these elements. A simple overall system model was then developed and used in both a preliminary assessment and a sensitivity analysis to identify the most important parameters. These preliminary analyses used a very simple model of the overall system and therefore the results cannot be used to draw any conclusions as to the acceptability of the sub-seabed disposal option. However they served to show the utility of the systems analysis method. The work of the other task groups will focus on the important parameters so that improved results can be fed back into an improved system model. Subsequent iterations will eventually provide an input to an acceptability decision. (Auth.)

  1. Submersible Data (Dive Waypoints) for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during two of the seventeen dives of the 2003 "Life on the Edge -...

  2. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    OpenAIRE

    Yool, A.; Popova, E. E.; Coward, A. C.; Bernie, D.; Anderson, T. R.

    2013-01-01

    Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2) emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and – via ocean acidification – chemical changes as direct and indirect results of these emissions. Given strong biophysi...

  3. Particle mixing processes of Chernobyl fallout in deep Norwegian Sea sediments: Evidence for seasonal effects

    Science.gov (United States)

    Balzer, W.

    1996-09-01

    A 1430 m deep station in the Norwegian Sea (Voering Plateau) was occupied five times between May 1986 and February 1987 to investigate the seasonal variation in sediment mixing rates. Cherbnbyl-derived radiocesium, identified by its high proportion of short-lived 134Cs, was used as a tracer for mixing. Most of the nuclide input arrived at the sediment within a narrow time span in June/early July during the beginning of the seasonal biogenic sedimentation pulse. Measured 137Cs profiles in the sediment over time were compared with modelled distributions calculated with a finite difference scheme. The input function of radiocesium to the sea floor was evaluated from the increase of the total inventory with time. Time-invariant mixing coefficients did not provide reasonable fits to either summer or winter distributions. The best fit was obtained with a rate of mixing proportional to the radiocesium input flux, with an average enhancement factor of 6.6 during the two summer months. It appears that the benthic macrofauna are more active during the food supply season and rapidly ingest/bury freshly sedimented materials.

  4. Physical profile data collected in the Equatorial Pacific during cruises to service the TAO/TRITON array, a network of deep ocean moored buoys, February 23 - December 16, 2005 (NODC Accession 0002644)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — During 2005, CTD data were collected in the equatorial Pacific Ocean during cruises to service the TAO/TRITON array, a network of deep ocean moored buoys to support...

  5. Vertical mixing and coherent anticyclones in the ocean: the role of stratification

    Directory of Open Access Journals (Sweden)

    I. Koszalka

    2010-01-01

    Full Text Available The role played by wind-forced anticyclones in the vertical transport and mixing at the ocean mesoscale is investigated with a primitive-equation numerical model in an idealized configuration. The focus of this work is to determine how the stratification impacts such transport.

    The flows, forced only at the surface by an idealized wind forcing, are predominantly horizontal and, on average, quasigeostrophic. Inside vortex cores and intense filaments, however, the dynamics is strongly ageostrophic.

    Mesoscale anticyclones appear as "islands" of increased penetration of wind energy into the ocean interior and they represent the maxima of available potential energy. The amount of available potential energy is directly correlated with the degree of stratification.

    The wind energy injected at the surface is transferred at depth through the generation and subsequent straining effect of Vortex Rossby Waves (VRWs, and through near-inertial internal oscillations trapped inside anticyclonic vortices. Both these mechanisms are affected by stratification. Stronger transfer but larger confinement close to the surface is found when the stratification is stronger. For weaker stratification, vertical mixing close to the surface is less intense but below about 150 m attains substantially higher values due to an increased contribution of both VRWs, whose time scale is on the order of few days, and of near-inertial motions, with a time scale of few hours.

  6. Variable but persistent coexistence of Prochlorococcus ecotypes along temperature gradients in the ocean's surface mixed layer.

    Science.gov (United States)

    Chandler, Jeremy W; Lin, Yajuan; Gainer, P Jackson; Post, Anton F; Johnson, Zackary I; Zinser, Erik R

    2016-04-01

    The vast majority of the phytoplankton communities in surface mixed layer of the oligotrophic ocean are numerically dominated by one of two ecotypes of Prochlorococcus, eMIT9312 or eMED4. In this study, we surveyed large latitudinal transects in the Atlantic and Pacific Ocean to determine if these ecotypes discretely partition the surface mixed layer niche, or if populations exist as a continuum along key environmental gradients, particularly temperature. Transitions of dominance occurred at approximately 19-21°C, with the eMED4 ecotype dominating the colder, and eMIT9312 ecotype dominating the warmer regions. Within these zones of regional dominance, however, the minority ecotype was not competed to extinction. Rather, a robust log-linear relationship between ecotype ratio and temperature characterized this stabilized coexistence: for every 2.5°C increase in temperature, the eMIT9312:eMED4 ratio increased by an order of magnitude. This relationship was observed in both quantitative polymerase chain reaction and in pyrosequencing assays. Water column stratification also contributed to the ecotype ratio along the basin-scale transects, but to a lesser extent. Finally, instances where the ratio of the eMED4 and eMIT9312 abundances did not correlate well with temperature were identified. Such occurrences are likely due to changes in water temperatures outpacing changes in community structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Impact of an intense water column mixing (0-1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea.

    Science.gov (United States)

    Severin, Tatiana; Sauret, Caroline; Boutrif, Mehdi; Duhaut, Thomas; Kessouri, Fayçal; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Durrieu de Madron, Xavier; Garel, Marc; Tamburini, Christian; Conan, Pascal; Ghiglione, Jean-François

    2016-12-01

    Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. A new genus and species of deep-sea glass sponge (Porifera, Hexactinellida, Aulocalycidae) from the Indian Ocean

    OpenAIRE

    Sautya, Sabyasachi; Tabachnick, Konstantin R.; Ingole, Baban

    2011-01-01

    Abstract New hexactinellid sponges were collected from 2589 m depth on the Carlsberg Ridge in the Indian Ocean during deep-sea dredging. All fragments belong to a new genus and species, Indiella gen. n. ridgenensis sp. n., a representative of the family Aulocalycidae described here. The peculiar features of this sponge, not described earlier for other Aulocalycidae, are: longitudinal strands present in several layers and epirhyses channelization.

  9. Bacterial Production and Enzymatic Activities in Deep-Sea Sediments of the Pacific Ocean: Biogeochemical Implications of Different Temperature Constraints

    Science.gov (United States)

    Danovaro, R.; Corinaldesi, C.; dell'Anno, A.

    2002-12-01

    The deep-sea bed, acting as the ultimate sink for organic material derived from the upper oceans primary production, is now assumed to play a key role in biogeochemical cycling of organic matter on global scale. Early diagenesis of organic matter in marine sediments is dependent upon biological processes (largely mediated by bacterial activity) and by molecular diffusion. Organic matter reaching the sea floor by sedimentation is subjected to complex biogeochemical transformations that make organic matter largely unsuitable for direct utilization by benthic heterotrophs. Extracellular enzymatic activities in the sediment is generally recognized as the key step in the degradation and utilization of organic polymers by bacteria and a key role in biopolymeric carbon mobilization is played by aminopeptidase, alkaline phosphatase and glucosidase activities. In the present study we investigated bacterial density, bacterial C production and exo-enzymatic activities (aminopeptidase, glucosidase and phosphatase activity) in deep-sea sediments of the Pacific Ocean in relation with the biochemical composition of sediment organic matter (proteins, carbohydrates and lipids), in order to gather information on organic matter cycling and diagenesis. Benthic viral abundance was also measured to investigate the potential role of viruses on microbial loop functioning. Sediment samples were collected at eight stations (depth ranging from 2070-3100 m) along two transects located at the opposite side (north and south) of ocean seismic ridge Juan Fernandez (along latitudes 33° 20' - 33° 40'), constituted by the submerged vulcanoes, which connects the Chilean coasts to Rapa Nui Island. Since the northern and southern sides of this ridge apparently displayed small but significant differences in deep-sea temperature (related to the general ocean circulation), this sampling strategy allowed also investigating the role of different temperature constraints on bacterial activity and

  10. A new genus and species of deep-sea glass sponge (Porifera, Hexactinellida, Aulocalycidae from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    Sabyasachi Sautya

    2011-10-01

    Full Text Available New hexactinellid sponges were collected from 2589 m depth on the Carlsberg Ridge in the Indian Ocean during deep-sea dredging. All fragments belong to a new genus and species, Indiella gen. n. ridgenensis sp. n., a representative of the family Aulocalycidae described here. The peculiar features of this sponge, not described earlier for other Aulocalycidae, are: longitudinal strands present in several layers and epirhyses channelization.

  11. A new genus and species of deep-sea glass sponge (Porifera, Hexactinellida, Aulocalycidae) from the Indian Ocean.

    Science.gov (United States)

    Sautya, Sabyasachi; Tabachnick, Konstantin R; Ingole, Baban

    2011-01-01

    New hexactinellid sponges were collected from 2589 m depth on the Carlsberg Ridge in the Indian Ocean during deep-sea dredging. All fragments belong to a new genus and species, Indiellagen. n.ridgenensissp. n., a representative of the family Aulocalycidae described here. The peculiar features of this sponge, not described earlier for other Aulocalycidae, are: longitudinal strands present in several layers and epirhyses channelization.

  12. Sensitivity of sequestration efficiency to mixing processes in the global ocean

    Energy Technology Data Exchange (ETDEWEB)

    Mignone, B.K. [Princeton Univ., NJ (United States). Dept. of Geosciences; Sarmiento, J.L.; Slater, R.D. [Princeton Univ., NJ (United States). Program in Atmospheric and Oceanic Sciences; Gnanadesikan, A. [Princeton Univ., NJ (United States). Program in Atmospheric and Oceanic Sciences; Geophysical Fluid Dynamics Lab., NOAA, Princeton, NJ (United States)

    2004-08-01

    A number of large-scale sequestration strategies have been considered to help mitigate rising levels of atmospheric carbon dioxide (CO{sub 2}). Here, we use an ocean general circulation model (OGCM) to evaluate the efficiency of one such strategy currently receiving much attention, the direct injection of liquid CO{sub 2} into selected regions of the abyssal ocean. We find that currents typically transport the injected plumes quite far before they are able to return to the surface and release CO{sub 2} through air-sea gas exchange. When injected at sufficient depth (well within or below the main thermocline), most of the injected CO{sub 2} outgasses in high latitudes (mainly in the Southern Ocean) where vertical exchange is most favored. Virtually all OGCMs that have performed similar simulations confirm these global patterns, but regional differences are significant, leading efficiency estimates to vary widely among models even when identical protocols are followed. In this paper, we make a first attempt at reconciling some of these differences by performing a sensitivity analysis in one OGCM, the Princeton Modular Ocean Model. Using techniques we have developed to maintain both the modeled density structure and the absolute magnitude of the overturning circulation while varying important mixing parameters, we estimate the sensitivity of sequestration efficiency to the magnitude of vertical exchange within the low-latitude pycnocline. Combining these model results with available tracer data permits us to narrow the range of model behavior, which in turn places important constraints on sequestration efficiency. (author)

  13. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea

    Directory of Open Access Journals (Sweden)

    X.-D. Shang

    2017-06-01

    Full Text Available The spatial distribution of the dissipation rate (ε and diapycnal diffusivity (κ in the upper ocean of the South China Sea (SCS is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3  ×  10−9 W kg−1 and 2.7  ×  10−5 m2 s−1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ε > 10−7 W kg−1 and diapycnal diffusivities (κ > 10−4 m2 s−1, induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon–Gregg model used for the continental shelf but different from the Gregg–Henyey scaling used for the open ocean.

  14. Spatial distribution of turbulent mixing in the upper ocean of the South China Sea

    Science.gov (United States)

    Shang, Xiao-Dong; Liang, Chang-Rong; Chen, Gui-Ying

    2017-06-01

    The spatial distribution of the dissipation rate (ɛ) and diapycnal diffusivity (κ) in the upper ocean of the South China Sea (SCS) is presented from a measurement program conducted from 26 April to 23 May 2010. In the vertical distribution, the dissipation rates below the surface mixed layer were predominantly high in the thermocline where shear and stratification were strong. In the regional distribution, high dissipation rates and diapycnal diffusivities were observed in the region to the west of the Luzon Strait, with an average dissipation rate and diapycnal diffusivity of 8.3 × 10-9 W kg-1 and 2.7 × 10-5 m2 s-1, respectively, almost 1 order of magnitude higher than those in the central and southern SCS. In the region to the west of the Luzon Strait, the water column was characterized by strong shear and weak stratification. Elevated dissipation rates (ɛ > 10-7 W kg-1) and diapycnal diffusivities (κ > 10-4 m2 s-1), induced by shear instability, occurred in the water column. In the central and southern SCS, the water column was characterized by strong stratification and weak shear and the turbulent mixing was weak. Internal waves and internal tides generated near the Luzon Strait are expected to make a dominant contribution to the strong turbulent mixing and shear in the region to the west of the Luzon Strait. The observed dissipation rates were found to scale positively with the shear and stratification, which were consistent with the MacKinnon-Gregg model used for the continental shelf but different from the Gregg-Henyey scaling used for the open ocean.

  15. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    International Nuclear Information System (INIS)

    Peterson, Sarah H.; Peterson, Michael G.; Debier, Cathy; Covaci, Adrian; Dirtu, Alin C.; Malarvannan, Govindan; Crocker, Daniel E.; Schwarz, Lisa K.; Costa, Daniel P.

    2015-01-01

    As top predators in the northeast Pacific Ocean, northern elephant seals (Mirounga angustirostris) are vulnerable to bioaccumulation of persistent organic pollutants (POPs). Our study examined a suite of POPs in blubber (inner and outer) and blood (serum) of free-ranging northern elephant seals. For adult females (N = 24), we satellite tracked and sampled the same seals before and after their approximately seven month long foraging trip. For males, we sampled different adults and sub-adults before (N = 14) and after (N = 15) the same foraging trip. For females, we calculated blubber burdens for all compounds. The highest POP concentrations in males and females were found for ∑ DDTs and ∑ PCBs. In blubber and serum, males had significantly greater concentrations than females for almost all compounds. For males and females, ∑ DDT and ∑ PBDEs were highly correlated in blubber and serum. While ∑ PCBs were highly correlated with ∑ DDTs and ∑ PBDEs in blubber and serum for males, ∑ PCBs showed weaker correlations with both compounds in females. As females gained mass while foraging, concentrations of nearly all POPs in inner and outer blubber significantly decreased; however, the absolute burden in blubber significantly increased, indicating ingestion of contaminants while foraging. Additionally, we identified three clusters of seal foraging behavior, based on geography, diving behavior, and stable carbon and nitrogen isotopes, which corresponded with differences in ∑ DDTs, ∑ PBDEs, MeO-BDE 47, as well as the ratio of ∑ DDTs to ∑ PCBs, indicating the potential for behavior to heighten or mitigate contaminant exposure. The greatest concentrations of ∑ DDTs and ∑ PBDEs were observed in the cluster that foraged closer to the coast and had blood samples more enriched in 13 C. Bioaccumulation of POPs by elephant seals supports mesopelagic food webs as a sink for POPs and highlights elephant seals as a potential sentinel of contamination in deep

  16. Deep-ocean foraging northern elephant seals bioaccumulate persistent organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Sarah H., E-mail: sarahpeterson23@gmail.com [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Peterson, Michael G. [Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA 94720 (United States); Debier, Cathy [Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve (Belgium); Covaci, Adrian [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Dirtu, Alin C. [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Department of Chemistry, “Al. I. Cuza” University of Iasi, 700506 Iasi (Romania); Malarvannan, Govindan [Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk (Belgium); Crocker, Daniel E. [Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928 (United States); Schwarz, Lisa K. [Institute of Marine Sciences, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States); Costa, Daniel P. [Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 100 Shaffer Road, Santa Cruz, CA 95060 (United States)

    2015-11-15

    deep ocean food webs. - Highlights: • All elephant seals had detectable concentrations of DDTs, PCBs, CHLs, and PBDEs. • We quantified changes in the blubber burdens of POPs, within individual seals. • Despite mass dilution while foraging, blubber burdens showed POP ingestion. • Bioaccumulation of some POP compounds in seals varied across the North Pacific. • Ratio of ΣDDTs:ΣPCBs corroborated latitudinal variation seen in other species.

  17. Impact of sinking carbon flux on accumulation of deep-ocean carbon in the Northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.S.S.; DileepKumar, M.; Saino, T.

    calculations using 14 C activity arises from the separation of natural 90 Biogeochemistry (2007) 82:89–100 123 and bomb-produced 14 C. Rubin and Key (2002) proposed the potential alkalinity method to achieve the separation. However, they found anomalous scatter... in the relationship between 14 C and potential alkalinity caused by data from the northern Indian Ocean (north of equator) and attributed that to the possible transportation of bomb radiocarbon, as carbonate particles from the surface ocean to the sediment...

  18. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  19. Deep carbon export from a Southern Ocean iron-fertilized diatom bloom

    Digital Repository Service at National Institute of Oceanography (India)

    Smetacek, V.; Klaas, C.; Strass, V.H.; Assmy, P.; Montresor, M.; Cisewski, B.; Savoye, N.; Webb, A.; d’Ovidio, F.; Arrieta, J.M.; Bathmann, U.; Bellerby, R.; Berg, G.M.; Croot, P.; Gonzalez, S.; Henjes, J.; Herndl, G.J.; Hoffmann, L.J.; Leach, H.; Losch, M.; Mills, M.M.; Neill, C.; Peeken, I.; Rottgers, R.; Sachs, O.; Sauter, E.; Schmidt, M.M.; Schwarz, J.; Terbruggen, A.; Wolf-Gladrow, D.

    Fertilization of the ocean by adding iron compounds has induced diatom-dominated phytoplankton blooms accompanied by considerable carbon dioxide drawdown in the ocean surface layer. However, because the fate of bloom biomass could not be adequately...

  20. Metagenomic profiles of antibiotic resistance genes (ARGs) between human impacted estuary and deep ocean sediments.

    Science.gov (United States)

    Chen, Baowei; Yang, Ying; Liang, Ximei; Yu, Ke; Zhang, Tong; Li, Xiangdong

    2013-11-19

    Knowledge of the origins and dissemination of antibiotic resistance genes (ARGs) is essential for understanding modern resistomes in the environment. The mechanisms of the dissemination of ARGs can be revealed through comparative studies on the metagenomic profiling of ARGs between relatively pristine and human-impacted environments. The deep ocean bed of the South China Sea (SCS) is considered to be largely devoid of anthropogenic impacts, while the Pearl River Estuary (PRE) in south China has been highly impacted by intensive human activities. Commonly used antibiotics (sulfamethazine, norfloxacin, ofloxacin, tetracycline, and erythromycin) have been detected through chemical analysis in the PRE sediments, but not in the SCS sediments. In the relatively pristine SCS sediments, the most prevalent and abundant ARGs are those related to resistance to macrolides and polypeptides, with efflux pumps as the predominant mechanism. In the contaminated PRE sediments, the typical ARG profiles suggest a prevailing resistance to antibiotics commonly used in human health and animal farming (including sulfonamides, fluoroquinolones, and aminoglycosides), and higher diversity in both genotype and resistance mechanism than those in the SCS. In particular, antibiotic inactivation significantly contributed to the resistance to aminoglycosides, β-lactams, and macrolides observed in the PRE sediments. There was a significant correlation in the levels of abundance of ARGs and those of mobile genetic elements (including integrons and plasmids), which serve as carriers in the dissemination of ARGs in the aquatic environment. The metagenomic results from the current study support the view that ARGs naturally originate in pristine environments, while human activities accelerate the dissemination of ARGs so that microbes would be able to tolerate selective environmental stress in response to anthropogenic impacts.

  1. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Directory of Open Access Journals (Sweden)

    Christopher R German

    Full Text Available The ChEss project of the Census of Marine Life (2002-2010 helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB, the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i continued exploration of the deep-ocean ridge-crest; (ii increased focus on anthropogenic impacts; (iii concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but

  2. Deep-water chemosynthetic ecosystem research during the census of marine life decade and beyond: a proposed deep-ocean road map.

    Science.gov (United States)

    German, Christopher R; Ramirez-Llodra, Eva; Baker, Maria C; Tyler, Paul A

    2011-01-01

    The ChEss project of the Census of Marine Life (2002-2010) helped foster internationally-coordinated studies worldwide focusing on exploration for, and characterization of new deep-sea chemosynthetic ecosystem sites. This work has advanced our understanding of the nature and factors controlling the biogeography and biodiversity of these ecosystems in four geographic locations: the Atlantic Equatorial Belt (AEB), the New Zealand region, the Arctic and Antarctic and the SE Pacific off Chile. In the AEB, major discoveries include hydrothermal seeps on the Costa Rica margin, deepest vents found on the Mid-Cayman Rise and the hottest vents found on the Southern Mid-Atlantic Ridge. It was also shown that the major fracture zones on the MAR do not create barriers for the dispersal but may act as trans-Atlantic conduits for larvae. In New Zealand, investigations of a newly found large cold-seep area suggest that this region may be a new biogeographic province. In the Arctic, the newly discovered sites on the Mohns Ridge (71 °N) showed extensive mats of sulfur-oxidisng bacteria, but only one gastropod potentially bears chemosynthetic symbionts, while cold seeps on the Haakon Mossby Mud Volcano (72 °N) are dominated by siboglinid worms. In the Antarctic region, the first hydrothermal vents south of the Polar Front were located and biological results indicate that they may represent a new biogeographic province. The recent exploration of the South Pacific region has provided evidence for a sediment hosted hydrothermal source near a methane-rich cold-seep area. Based on our 8 years of investigations of deep-water chemosynthetic ecosystems worldwide, we suggest highest priorities for future research: (i) continued exploration of the deep-ocean ridge-crest; (ii) increased focus on anthropogenic impacts; (iii) concerted effort to coordinate a major investigation of the deep South Pacific Ocean - the largest contiguous habitat for life within Earth's biosphere, but also the

  3. Sinking rates and ballast composition of particles in the Atlantic Ocean: implications for the organic carbon fluxes to the deep ocean

    Science.gov (United States)

    Fischer, G.; Karakaş, G.

    2009-01-01

    The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling

  4. Shelf sea tidal currents and mixing fronts determined from ocean glider observations

    Science.gov (United States)

    Sheehan, Peter M. F.; Berx, Barbara; Gallego, Alejandro; Hall, Rob A.; Heywood, Karen J.; Hughes, Sarah L.; Queste, Bastien Y.

    2018-03-01

    Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October-2 December 2013) glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day-1. During the first part of the deployment (from mid-October until mid-November), results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December), a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source regions. The glider observations

  5. Shelf sea tidal currents and mixing fronts determined from ocean glider observations

    Directory of Open Access Journals (Sweden)

    P. M. F. Sheehan

    2018-03-01

    Full Text Available Tides and tidal mixing fronts are of fundamental importance to understanding shelf sea dynamics and ecosystems. Ocean gliders enable the observation of fronts and tide-dominated flows at high resolution. We use dive-average currents from a 2-month (12 October–2 December 2013 glider deployment along a zonal hydrographic section in the north-western North Sea to accurately determine M2 and S2 tidal velocities. The results of the glider-based method agree well with tidal velocities measured by current meters and with velocities extracted from the TPXO tide model. The method enhances the utility of gliders as an ocean-observing platform, particularly in regions where tide models are known to be limited. We then use the glider-derived tidal velocities to investigate tidal controls on the location of a front repeatedly observed by the glider. The front moves offshore at a rate of 0.51 km day−1. During the first part of the deployment (from mid-October until mid-November, results of a one-dimensional model suggest that the balance between surface heat fluxes and tidal stirring is the primary control on frontal location: as heat is lost to the atmosphere, full-depth mixing is able to occur in progressively deeper water. In the latter half of the deployment (mid-November to early December, a front controlled solely by heat fluxes and tidal stirring is not predicted to exist, yet a front persists in the observations. We analyse hydrographic observations collected by the glider to attribute the persistence of the front to the boundary between different water masses, in particular to the presence of cold, saline, Atlantic-origin water in the deeper portion of the section. We combine these results to propose that the front is a hybrid front: one controlled in summer by the local balance between heat fluxes and mixing and which in winter exists as the boundary between water masses advected to the north-western North Sea from diverse source

  6. Site Management and Monitoring Plan (SMMP) for the Mouth of Columbia River- Deep and Shallow Water Ocean Dredged Material Disposal Sites, OR/WA

    Science.gov (United States)

    This SMMP is intended to provide management and monitoring strategies for disposal in the Mouth of Columbia River- Deep and Shallow Ocean Dredged Material Disposal Sites on the border of Oregon and Washington.

  7. Six new deep-water sternaspid species (Annelida, Sternaspidae from the Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Sergio Salazar-Vallejo

    2013-11-01

    Full Text Available Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species bya bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp.n. was found off Peru in 1296–6489 m water depths and in the Southwestern Pacific in 795–3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592–1366 m, off California in 1585 m, Gulf of California in 1200–1274 m, and Western

  8. Six new deep-water sternaspid species (Annelida, Sternaspidae) from the Pacific Ocean.

    Science.gov (United States)

    Salazar-Vallejo, Sergio I; Buzhinskaja, Galina

    2013-01-01

    Most sternaspid species have been described from shallow water, and Caulleryaspis Sendall & Salazar-Vallejo, 2013 includes one deep water species: C. gudmundssoni Sendall & Salazar-Vallejo, 2013 from Iceland. In Sternaspis Otto, 1821, the most speciose genus, most species were described from shallow water and only three thrive in deep water: S. maior Chamberlin, 1919 from the Gulf of California, S. princeps Selenka, 1885 from New Zealand, and S. riestchi Caullery, 1944 from Indonesia. The study of some deep sea sternaspids from the Pacific Ocean in the collections of six research institutions resulted in the discovery of six undescribed species, and for three of them there were abundant materials showing ventro-caudal shield development. Caulleryaspis fauchaldi sp. n. is described based on specimens from Oregon and California; it differs from the known species because it has a shield with rounded anterior margins and its peg chaetae form thin, small spines. Caulleryaspis nuda sp. n. was collected off Oregon; it is unique because its shield lacks a layer of sediment particles firmly attached, but has instead a thin layer of small particles loosely attached. Four other species are newly described in Sternaspis: S. annenkovae sp. n. was collected east off the northern Kurile Islands in about 4,000 m depth; it differs from other species by having a bicolored body, with the introvert darker than the abdomen, and its ventro-caudal shield plates are divergent resulting in a divided fan. The second species, S. maureri sp. n. was found off Peru in 1296-6489 m water depths and in the Southwestern Pacific in 795-3830 m; it resembles S. williamsae sp. n. but differs because its shield has better-developed ribs, the fan has a shallow or indistinct median notch and has lateral notches well-developed. The third species, S. uschakovi sp. n., was found in the Okhotsk Sea in 592-1366 m, off California in 1585 m, Gulf of California in 1200-1274 m, and Western Mexico in 2548 m; it

  9. Tomographic and Geodynamic Constraints on Convection-Induced Mixing in Earth's Deep Mantle

    Science.gov (United States)

    Hafter, D. P.; Forte, A. M.; Bremner, P. M.; Glisovic, P.

    2017-12-01

    Seismological studies reveal two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle (e.g., Su et al. 1994; Wang & Wen 2007; He & Wen 2012), which may represent accumulations of subducted slabs at the CMB (Tan & Gurnis 2005; Christensen & Hoffman 1994) or primordial material generated in the early differentiation of Earth (e.g. Li et al. 2014). The longevity or stability of these large-scale heterogeneities in the deep mantle depends on the vigor and spatial distribution of the convective circulation, which is in turn dependent on the distribution of mantle buoyancy and viscosity (e.g. Glisovic & Forte 2015). Here we explore the state of convective mixing in the mantle using the ASPECT convection code (Kronbichler et al. 2012). A series of experiments are conducted to consider the geochemical and dynamical contributions of LLSVPs to deep-mantle upwellings and corresponding plume-sourced volcanism. The principal feature of these experiments is the use of particle tracers to track geochemical changes in the LLSVPs and mantle plumes in addition to identifying those parts of the mantle that may remain unmixed. We employ 3-D mantle density anomalies derived from joint inversions of seismic, geodynamic and mineral physics constraints and geodynamically-constrained viscosity distributions (Glisovic et al. 2015) to ensure that the predicted flow fields yield a good match to key geophysical constraints (e.g. heat flow, global gravity anomalies and plate velocities).

  10. GRACE gravity model: assssment in terms of deep ocean currents from hydrography and from the ECCO ocean model

    Science.gov (United States)

    Zlotnicki, V.; Stammer, D.; Fukumori, I.

    2003-01-01

    Here we assess the new generation of gravity models, derived from GRACE data. The differences between a global geoid model (one from GRACE data and one the well-known EGM-96), minus a Mean Sea Surface derived from over a decade of altimetric data are compared to hydrographic data from the Levitus compilation and to the ECCO numerical ocean model, which assimilates altimetry and other data.

  11. Climate change and ocean acidification impacts on lower trophic levels and the export of organic carbon to the deep ocean

    Directory of Open Access Journals (Sweden)

    A. Yool

    2013-09-01

    Full Text Available Most future projections forecast significant and ongoing climate change during the 21st century, but with the severity of impacts dependent on efforts to restrain or reorganise human activity to limit carbon dioxide (CO2 emissions. A major sink for atmospheric CO2, and a key source of biological resources, the World Ocean is widely anticipated to undergo profound physical and – via ocean acidification – chemical changes as direct and indirect results of these emissions. Given strong biophysical coupling, the marine biota is also expected to experience strong changes in response to this anthropogenic forcing. Here we examine the large-scale response of ocean biogeochemistry to climate and acidification impacts during the 21st century for Representative Concentration Pathways (RCPs 2.6 and 8.5 using an intermediate complexity global ecosystem model, MEDUSA-2.0. The primary impact of future change lies in stratification-led declines in the availability of key nutrients in surface waters, which in turn leads to a global decrease (1990s vs. 2090s in ocean productivity (−6.3%. This impact has knock-on consequences for the abundance of the low trophic level biogeochemical actors modelled by MEDUSA-2.0 (−5.8%, and these would be expected to similarly impact higher trophic level elements such as fisheries. Related impacts are found in the flux of organic material to seafloor communities (−40.7% at 1000 m, and in the volume of ocean suboxic zones (+12.5%. A sensitivity analysis removing an acidification feedback on calcification finds that change in this process significantly impacts benthic communities, suggesting that a~better understanding of the OA-sensitivity of calcifying organisms, and their role in ballasting sinking organic carbon, may significantly improve forecasting of these ecosystems. For all processes, there is geographical variability in change – for instance, productivity declines −21% in the Atlantic and increases +59% in

  12. Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans

    Science.gov (United States)

    Bostock, H. C.; Mikaloff Fletcher, S. E.; Williams, M. J. M.

    2013-10-01

    Using ocean carbon data from global datasets, we have developed several multiple linear regression (MLR) algorithms to estimate alkalinity and dissolved inorganic carbon (DIC) in the intermediate and deep waters of the Southern Hemisphere (south of 25° S) from only hydrographic data (temperature, salinity and dissolved oxygen). A Monte Carlo experiment was used to identify a potential density (σθ) of 27.5 as an optimal break point between the two regimes with different MLR algorithms. The algorithms provide a good estimate of DIC (R2=0.98) and alkalinity (R2=0.91), and excellent agreement for aragonite and calcite saturation states (R2=0.99). Combining the algorithms with the CSIRO Atlas of Regional Seas (CARS), we have mapped the calcite saturation horizon (CSH) and aragonite saturation horizon (ASH) for the Southern Ocean at a spatial resolution of 0.5°. These maps are more detailed and more consistent with the oceanography than the previously gridded GLODAP data. The high-resolution ASH map reveals a dramatic circumpolar shoaling at the polar front. North of 40° S the CSH is deepest in the Atlantic (~ 4000 m) and shallower in the Pacific Ocean (~ 2750 m), while the CSH sits between 3200 and 3400 m in the Indian Ocean. The uptake of anthropogenic carbon by the ocean will alter the relationships between DIC and hydrographic data in the intermediate and deep waters over time. Thus continued sampling will be required, and the MLR algorithms will need to be adjusted in the future to account for these changes.

  13. Estimating carbonate parameters from hydrographic data for the intermediate and deep waters of the Southern Hemisphere oceans

    Directory of Open Access Journals (Sweden)

    H. C. Bostock

    2013-10-01

    Full Text Available Using ocean carbon data from global datasets, we have developed several multiple linear regression (MLR algorithms to estimate alkalinity and dissolved inorganic carbon (DIC in the intermediate and deep waters of the Southern Hemisphere (south of 25° S from only hydrographic data (temperature, salinity and dissolved oxygen. A Monte Carlo experiment was used to identify a potential density (σθ of 27.5 as an optimal break point between the two regimes with different MLR algorithms. The algorithms provide a good estimate of DIC (R2=0.98 and alkalinity (R2=0.91, and excellent agreement for aragonite and calcite saturation states (R2=0.99. Combining the algorithms with the CSIRO Atlas of Regional Seas (CARS, we have mapped the calcite saturation horizon (CSH and aragonite saturation horizon (ASH for the Southern Ocean at a spatial resolution of 0.5°. These maps are more detailed and more consistent with the oceanography than the previously gridded GLODAP data. The high-resolution ASH map reveals a dramatic circumpolar shoaling at the polar front. North of 40° S the CSH is deepest in the Atlantic (~ 4000 m and shallower in the Pacific Ocean (~ 2750 m, while the CSH sits between 3200 and 3400 m in the Indian Ocean. The uptake of anthropogenic carbon by the ocean will alter the relationships between DIC and hydrographic data in the intermediate and deep waters over time. Thus continued sampling will be required, and the MLR algorithms will need to be adjusted in the future to account for these changes.

  14. Use of deep soil mixing as an alternate verticle barrier to slurry walls

    International Nuclear Information System (INIS)

    Miller, A.D.

    1997-01-01

    Slurry walls have become an accepted subsurface remediation technique to contain contaminated zones. However, situations develop where conventional slurry wall excavation techniques are not suitable. The use of conventional containment wall construction methods may involve removal and disposal of contaminated soils, stability concerns and the risk of open excavations. For these reasons, other installation techniques have received further consideration. Deep Soil Mixing (DSM) has emerged as a viable alternative to conventional slurry wall techniques. In situations dictating limited soil removal for contamination or stability concerns, or where space is a limitation, DSM can be used for installation of the barrier. Proper installation of a DSM wall requires sufficient monitoring and sampling to evaluate the continuity, mixing effectiveness, permeability and key into the confining layer. This paper describes a case study where DSM was used to cross major highways to avoid open excavation, and along slopes to reduce stability concerns. The DSM barrier was tied to an existing conventional slurry wall that had been installed in more stable areas without highway traffic

  15. Being There & Getting Back Again: Half a Century of Deep Ocean Research & Discovery with the Human Occupied Vehicle "Alvin"

    Science.gov (United States)

    German, C. R.; Fornari, D. J.; Fryer, P.; Girguis, P. R.; Humphris, S. E.; Kelley, D. S.; Tivey, M.; Van Dover, C. L.; Von Damm, K.

    2012-12-01

    In 2013, Alvin returns to service after significant observational and operational upgrades supported by the NSF, NAVSEA & NOAA. Here we review highlights of the first half-century of deep submergence science conducted by Alvin, describe some of the most significant improvements for the new submarine and discuss the importance of these new capabilities for 21st century ocean science and education. Alvin has a long history of scientific exploration, discovery and intervention at the deep seafloor: in pursuit of hypothesis-driven research and in response to human impacts. One of Alvin's earliest achievements, at the height of the Cold War, was to help locate & recover an H-bomb in the Mediterranean, while the last dives completed, just ahead of the current refit, were to investigate the impacts of the Deep Water Horizon oil spill. Alvin has excelled in supporting a range of Earth & Life Science programs including, in the late 1970s, first direct observations and sampling of deep-sea hydrothermal vents and the unusual fauna supported by microbial chemosynthesis. The 1980s saw expansion of Alvin's dive areas to newly discovered hot-springs in the Atlantic & NE Pacific, Alvin's first dives to the wreck of RMS Titanic and its longest excursions away from WHOI yet, via Loihi Seamount (Hawaii) to the Mariana Trench. The 1990s saw Alvin's first event-response dives to sites where volcanic eruptions had just occurred at the East Pacific Rise & Juan de Fuca Ridge while the 2000s saw Alvin discover novel off-axis venting at Lost City. Observations from these dives fundamentally changed our views of volcanic and microbial processes within young ocean crust and even the origins of life! In parallel, new deep submergence capabilities, including manipulative experiments & sensor development, relied heavily on testing using Alvin. Recently, new work has focused on ocean margins where fluid flow from the seafloor results in the release of hydrocarbons and other chemical species that

  16. The concept of Ideal Strategy & its realization using White Ocean Mixed Strategy

    OpenAIRE

    Sreeramana Aithal

    2016-01-01

    Strategic planning and decision making have an important role in organizational development and sustainability. Various types of strategies are used in strategic management such as Red ocean strategy, Blue ocean strategy, Green ocean strategy, Purple ocean strategy and Black ocean strategy. These strategies are used in organizations by top level executive managers for long-term organizational sustainability and to face or deviate from the competition. Based on organizational analy...

  17. The concept of Ideal Strategy and its realization using White Ocean Mixed Strategy

    OpenAIRE

    Aithal, Sreeramana

    2016-01-01

    Strategic planning and decision making have an important role in organizational development and sustainability. Various types of strategies are used in strategic management such as Red ocean strategy, Blue ocean strategy, Green ocean strategy, Purple ocean strategy and Black ocean strategy. These strategies are used in organizations by top level executive managers for long term organizational sustainability and to face or deviate from the competition. Based on the organizational analysis, it...

  18. Amino acid stable isotope applications to deep-sea corals: A molecular geochemistry approach to reconstructing past ocean conditions

    Science.gov (United States)

    McMahon, K.; McCarthy, M. D.; Guilderson, T. P.; Sherwood, O.; Williams, B.; Larsen, T.; Glynn, D. S.

    2017-12-01

    Future climate change is predicted to alter ocean productivity, food web dynamics, biogeochemical cycling, and the efficacy of the biological pump. Proteinaceous deep-sea corals act as "living sediment traps," providing long-term, high-resolution records of exported surface ocean production and a window into past changes in ocean condition as a historical context for potential future changes. Here, we present recent work developing the application of compound-specific stable isotope analysis of individual amino acids to proteinaceous deep-sea corals to reconstruct past changes in phytoplankton community composition and biogeochemical cycling. We present new calibrations for molecular isotope comparisons between metabolically active coral polyp tissue and bioarchival proteinaceous skeleton. We then applied these techniques to deep-sea corals from the North Pacific Subtropical Gyre (NPSG) to reconstruct centennial to millennial time scale changes in phytoplankton community composition and biogeochemical cycling as a function of regional climate change. This work suggests that the NPSG has undergone multiple major phytoplankton regime shifts over the last millennium between prokaryotic and eukaryotic phytoplankton communities and associated sources of nitrogen fueling production. The most recent regime, which started around the end of the Little Ice Age and the onset of the Industrial era, is unprecedented in the last 1000 years and resulted in a 30-50% increase in diazotrophic cyanobacteria contribution to export production and an associated 17-27% increase in N2-fixation in the NPSG over last century. By offering the first direct phylogenetic context for long-term shifts in isotopic records of exported particulate organic matter, our data represent a major step forward in understanding the evolution of marine plankton community dynamics, food web architecture, biogeochemical cycling, and the climate feedback loops through the biological pump.

  19. Heat-flow and lateral seismic-velocity heterogeneities near Deep Sea Drilling Project-Ocean Drilling Program Site 504

    Science.gov (United States)

    Lowell, Robert P.; Stephen, Ralph A.

    1991-11-01

    Both conductive heat-flow and seismic-velocity data contain information relating to the permeability of the oceanic crust. Deep Sea Drilling Project-Ocean Drilling Program Site 504 is the only place where both detailed heat-flow and seismic-velocity field studies have been conducted at the same scale. In this paper we examine the correlation between heat flow and lateral heterogeneities in seismic velocity near Site 504. Observed heterogeneities in seismic velocity, which are thought to be related to variations in crack density in the upper 500 m of the basaltic crust, show little correlation with the heat-flow pattern. This lack of correlation highlights some of the current difficulties in using seismic-velocity data to infer details of spatial variations in permeability that are significant in controlling hydrothermal circulation.

  20. Influence of ocean acidification and deep water upwelling on oligotrophic plankton communities in the subtropical North Atlantic

    DEFF Research Database (Denmark)

    Taucher, Jan; Bach, Lennart T.; Boxhammer, Tim

    2017-01-01

    Oceanic uptake of anthropogenic carbon dioxide (CO2) causes pronounced shifts in marine carbonate chemistry and a decrease in seawater pH. Increasing evidence indicates that these changes-summarized by the term ocean acidification (OA)-can significantly affect marine food webs and biogeochemical...... cycles. However, current scientific knowledge is largely based on laboratory experiments with single species and artificial boundary conditions, whereas studies of natural plankton communities are still relatively rare. Moreover, the few existing community-level studies were mostly conducted in rather...... and successfully simulated a deep water upwelling event that induced a pronounced plankton bloom. Our study revealed significant effects of OA on the entire food web, leading to a restructuring of plankton communities that emerged during the oligotrophic phase, and was further amplified during the bloom...

  1. Bythaelurus vivaldii, a new deep-water catshark (Carcharhiniformes, Scyliorhinidae) from the northwestern Indian Ocean off Somalia.

    Science.gov (United States)

    Weigmann, Simon; Kaschner, Carina Julia

    2017-05-08

    A new very small deep-water catshark, Bythaelurus vivaldii, is described based on two female specimens caught off Somalia in the northwestern Indian Ocean during the German 'Valdivia' expedition in 1899. It is morphologically closest to the recently described B. bachi, which is the only other Bythaelurus species in the western Indian Ocean that shares a stout body of large specimens and the presence of oral papillae. It further resembles B. vivaldii in the broad mouth and broad posterior head, but differs in the presence of composite oral papillae and a higher diversity in dermal denticle morphology. Additionally, the new species differs from all congeners in the western Indian Ocean in a larger pre-second dorsal fin length, a longer head, a larger interdorsal space, a larger intergill length, a longer pectoral-fin posterior margin, a shorter caudal fin, an intermediate caudal fin preventral margin, and a larger internarial width. Furthermore, the second dorsal fin of the new species is smaller than in its congeners in the western Indian Ocean except for B. lutarius, which is easily distinguished by the slender body and virtual absence of oral papillae, as well as the aforementioned further characters. An updated key to all valid species of Bythaelurus is provided.

  2. Deep ice and salty oceans of icy worlds, how high pressures influence their thermodynamics and provide constrains on extraterrestrial habitability

    Science.gov (United States)

    Journaux, B.; Brown, J. M.; Bollengier, O.; Abramson, E.

    2017-12-01

    As in Earth arctic and Antarctic regions, suspected extraterrestrial deep oceans in icy worlds (i.e. icy moons and water-rich exoplanets) chemistry and thermodynamic state will strongly depend on their equilibrium with H2O ice and present solutes. Na-Mg-Cl-SO4 salt species are currently the main suspected ionic solutes to be present in deep oceans based on remote sensing, magnetic field measurements, cryovolcanism ice grains chemical analysis and chondritic material aqueous alteration chemical models. Unlike on our planet, deep extraterrestrial ocean might also be interacting at depth with high pressure ices (e.g. III, V, VI, VI, X) which have different behavior compared to ice Ih. Unfortunately, the pressures and temperatures inside these hydrospheres differ significantly from the one found in Earth aqueous environments, so most of our current thermodynamic databases do not cover the range of conditions relevant for modeling realistically large icy worlds interiors. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability, buoyancy and chemistry of all the phases present at these extreme conditions. High pressure in-situ measurements using diamond anvil cell apparatus were operated both at the University of washington and at the European Synchrotron Radiation Facility on aqueous systems phase diagrams with Na-Mg-Cl-SO4 species, salt incorporation in high pressure ices and density inversions between the solid and the fluids. These results suggest a more complex picture of the interior structure, dynamic and chemical evolution of large icy worlds hydrospheres when solutes are taken into account, compared to current models mainly using pure water. Based on our in-situ experimental measurements, we propose the existence of new liquid environments at greater depths and the possibility of solid state transport of solute through the high pressure ices

  3. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    Science.gov (United States)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  4. The discovery of deep-water seagrass meadows in a pristine Indian Ocean wilderness revealed by tracking green turtles.

    Science.gov (United States)

    Esteban, N; Unsworth, R K F; Gourlay, J B Q; Hays, G C

    2018-03-21

    Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world's largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean MaxN.site -1  = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean MaxN.site -1  = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km 2 and many other large deep submerged banks exist across the world's oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Deep ocean CTD data 2011-2013 from the Aloha Cabled Observatory (NODC Accession 0123115)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ALOHA Cabled Observatory (ACO) is a system of hardware and software that extends electric power and the Internet offshore, supporting sustained real-time...

  6. Basalt microlapilli in deep sea sediments of Indian Ocean in the vicinity of Vityaz fracture zone

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Iyer, S.D.

    Two cores recovered from the flanks of Mid-India oceanic ridge in the vicinity of Vityaz fracture zone consist of discrete pyroclastic layers at various depths. These layers are composed of coarse-grained, angular basaltic microlapilli in which...

  7. Effects of Model Resolution and Ocean Mixing on Forced Ice-Ocean Physical and Biogeochemical Simulations Using Global and Regional System Models

    Science.gov (United States)

    Jin, Meibing; Deal, Clara; Maslowski, Wieslaw; Matrai, Patricia; Roberts, Andrew; Osinski, Robert; Lee, Younjoo J.; Frants, Marina; Elliott, Scott; Jeffery, Nicole; Hunke, Elizabeth; Wang, Shanlin

    2018-01-01

    The current coarse-resolution global Community Earth System Model (CESM) can reproduce major and large-scale patterns but is still missing some key biogeochemical features in the Arctic Ocean, e.g., low surface nutrients in the Canada Basin. We incorporated the CESM Version 1 ocean biogeochemical code into the Regional Arctic System Model (RASM) and coupled it with a sea-ice algal module to investigate model limitations. Four ice-ocean hindcast cases are compared with various observations: two in a global 1° (40˜60 km in the Arctic) grid: G1deg and G1deg-OLD with/without new sea-ice processes incorporated; two on RASM's 1/12° (˜9 km) grid R9km and R9km-NB with/without a subgrid scale brine rejection parameterization which improves ocean vertical mixing under sea ice. Higher-resolution and new sea-ice processes contributed to lower model errors in sea-ice extent, ice thickness, and ice algae. In the Bering Sea shelf, only higher resolution contributed to lower model errors in salinity, nitrate (NO3), and chlorophyll-a (Chl-a). In the Arctic Basin, model errors in mixed layer depth (MLD) were reduced 36% by brine rejection parameterization, 20% by new sea-ice processes, and 6% by higher resolution. The NO3 concentration biases were caused by both MLD bias and coarse resolution, because of excessive horizontal mixing of high NO3 from the Chukchi Sea into the Canada Basin in coarse resolution models. R9km showed improvements over G1deg on NO3, but not on Chl-a, likely due to light limitation under snow and ice cover in the Arctic Basin.

  8. ANTARES: An underwater neutrino observatory for the exploration of both the deep Ocean and the deep Universe

    International Nuclear Information System (INIS)

    Escoffier, Stephanie

    2012-01-01

    Neutrino astronomy is a new and unique method to explore the Universe. It is full of promises, such as improving our knowledge on cosmic accelerators or distinguishing unambiguously between hadronic and electronic acceleration mechanisms of very high energy cosmic rays. In this document the issues of neutrino astronomy are introduced and an overview of current and former neutrino telescopes is given, with a description of the performance results expected from the ANTARES underwater detector. My research path is marked by contributions to the detector calibration and by studies of the trigger system with the development of a new data selection algorithm. The potential for discovery of the ANTARES telescope is then illustrated with two analyses, one dedicated to the research of high-energy neutrinos from gamma ray bursters and the other dedicated to the search for magnetic monopoles. Within this dissertation, I also discuss the opportunity offered by a submarine detector to understand the deep-sea environment. Indeed, ANTARES is a multidisciplinary, permanent marine observatory bringing its brick to the edifice of the global understanding of physical phenomena and biological oceanography in the context of global changes. I illustrate these remarks with studies on marine bioluminescence observed by ANTARES and its connection to the dense water formation originating from the Gulf of Lion. (author)

  9. HRP II - The Development of a New Vehicle for Studying Deep Ocean Mixing

    Science.gov (United States)

    2006-02-01

    places them at the center of the sensed volume. The Druck pressure sensor is mounted directly on the lower endcap. The sample rate is 25 Hz, and a...precision 24 bit) pressure Druck (model PDCR 1820-9082) Temperature Thermometrics (model, SP60DA202MAI) with stainless pressure housing Conductivity...1 0.9X41.51 Y-50.15Z40.63*33 $C47.5P-3.6R-1 0.5X41.39Y-49.91 Z40.74* 3D $C47.5P-3.4R-1 0.1 X41.25Y-49.69Z41.09*3A $C47.3P-3.2R-9.6X41.26Y-49.43Z41.37

  10. Seawater capacitance – a promising proxy for mapping and characterizing drifting hydrocarbon plumes in the deep ocean

    Directory of Open Access Journals (Sweden)

    J. A. Fleming

    2012-12-01

    Full Text Available Hydrocarbons released into the deep ocean are an inevitable consequence of natural seep, seafloor drilling, and leaking wellhead-to-collection-point pipelines. The Macondo 252 (Deepwater Horizon well blowout of 2010 was even larger than the Ixtoc event in the Gulf of Campeche in 1979. History suggests it will not be the last accidental release, as deepwater drilling expands to meet an ever-growing demand. For those who must respond to this kind of disaster, the first line of action should be to know what is going on. This includes knowing where an oil plume is at any given time, where and how fast it is moving, and how it is evolving or degrading. We have experimented in the laboratory with induced polarization as a method to track hydrocarbons in the seawater column and find that finely dispersed oil in seawater gives rise to a large distributed capacitance. From previous sea trials, we infer this could potentially be used to both map and characterize oil plumes, down to a ratio of less than 0.001 oil-to-seawater, drifting and evolving in the deep ocean. A side benefit demonstrated in some earlier sea trials is that this same approach in modified form can also map certain heavy placer minerals, as well as communication cables, pipelines, and wrecks buried beneath the seafloor.

  11. Does seismic activity control carbon exchanges between transform-faults in old ocean crust and the deep sea? A hypothesis examined by the EU COST network FLOWS

    Science.gov (United States)

    Lever, M. A.

    2014-12-01

    The European Cooperation in Science and Technology (COST)-Action FLOWS (http://www.cost.eu/domains_actions/essem/Actions/ES1301) was initiated on the 25th of October 2013. It is a consortium formed by members of currently 14 COST countries and external partners striving to better understand the interplay between earthquakes and fluid flow at transform-faults in old oceanic crust. The recent occurrence of large earthquakes and discovery of deep fluid seepage calls for a revision of the postulated hydrogeological inactivity and low seismic activity of old oceanic transform-type plate boundaries, and indicates that earthquakes and fluid flow are intrinsically associated. This Action merges the expertise of a large number of research groups and supports the development of multidisciplinary knowledge on how seep fluid (bio)chemistry relates to seismicity. It aims to identify (bio)geochemical proxies for the detection of precursory seismic signals and to develop innovative physico-chemical sensors for deep-ocean seismogenic faults. National efforts are coordinated through Working Groups (WGs) focused on 1) geophysical and (bio)geochemical data acquisition; 2) modelling of structure and seismicity of faults; 3) engineering of deep-ocean physico-chemical seismic sensors; and 4) integration and dissemination. This poster will illustrate the overarching goals of the FLOWS Group, with special focus to research goals concerning the role of seismic activity in controlling the release of carbon from the old ocean crust into the deep ocean.

  12. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Directory of Open Access Journals (Sweden)

    Qiulong Yang

    2018-01-01

    Full Text Available Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP and Volunteer Observation System (VOS were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line

  13. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Science.gov (United States)

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near

  14. Eulerian and Lagrangian Parameterization of the Oceanic Mixed Layer using Large Eddy Simulation and MPAS-Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Van Roekel, Luke [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    We have conducted a suite of Large Eddy Simulation (LES) to form the basis of a multi-model comparison (left). The results have led to proposed model improvements. We have verified that Eulerian-Lagrangian effective diffusivity estimates of mesoscale mixing are consistent with traditional particle statistics metrics (right). LES and Lagrangian particles will be utilized to better represent the movement of water into and out of the mixed layer.

  15. Temperature, salinity, and optical characteristics data from NOAA Office of Ocean Exploration Operation Deep Scope cruise in the Gulf of Mexico, August 7-17, 2004 (NODC Accession 0001965)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession includes physical, chemical, optical and ocean color measurements, video and still photography data collected during the Operation Deep Scope cruise,...

  16. Benthic Oxygen Uptake in the Arctic Ocean Margins - A Case Study at the Deep-Sea Observatory HAUSGARTEN (Fram Strait.

    Directory of Open Access Journals (Sweden)

    Cecile Cathalot

    Full Text Available The past decades have seen remarkable changes in the Arctic, a hotspot for climate change. Nevertheless, impacts of such changes on the biogeochemical cycles and Arctic marine ecosystems are still largely unknown. During cruises to the deep-sea observatory HAUSGARTEN in July 2007 and 2008, we investigated the biogeochemical recycling of organic matter in Arctic margin sediments by performing shipboard measurements of oxygen profiles, bacterial activities and biogenic sediment compounds (pigment, protein, organic carbon, and phospholipid contents. Additional in situ oxygen profiles were performed at two sites. This study aims at characterizing benthic mineralization activity along local bathymetric and latitudinal transects. The spatial coverage of this study is unique since it focuses on the transition from shelf to Deep Ocean, and from close to the ice edge to more open waters. Biogeochemical recycling across the continental margin showed a classical bathymetric pattern with overall low fluxes except for the deepest station located in the Molloy Hole (5500 m, a seafloor depression acting as an organic matter depot center. A gradient in benthic mineralization rates arises along the latitudinal transect with clearly higher values at the southern stations (average diffusive oxygen uptake of 0.49 ± 0.18 mmol O2 m-2 d-1 compared to the northern sites (0.22 ± 0.09 mmol O2 m-2 d-1. The benthic mineralization activity at the HAUSGARTEN observatory thus increases southward and appears to reflect the amount of organic matter reaching the seafloor rather than its lability. Although organic matter content and potential bacterial activity clearly follow this gradient, sediment pigments and phospholipids exhibit no increase with latitude whereas satellite images of surface ocean chlorophyll a indicate local seasonal patterns of primary production. Our results suggest that predicted increases in primary production in the Arctic Ocean could induce a larger

  17. Estimation of oceanic subsurface mixing under a severe cyclonic storm using a coupled atmosphere–ocean–wave model

    Directory of Open Access Journals (Sweden)

    K. R. Prakash

    2018-04-01

    Full Text Available A coupled atmosphere–ocean–wave model was used to examine mixing in the upper-oceanic layers under the influence of a very severe cyclonic storm Phailin over the Bay of Bengal (BoB during 10–14 October 2013. The coupled model was found to improve the sea surface temperature over the uncoupled model. Model simulations highlight the prominent role of cyclone-induced near-inertial oscillations in subsurface mixing up to the thermocline depth. The inertial mixing introduced by the cyclone played a central role in the deepening of the thermocline and mixed layer depth by 40 and 15 m, respectively. For the first time over the BoB, a detailed analysis of inertial oscillation kinetic energy generation, propagation, and dissipation was carried out using an atmosphere–ocean–wave coupled model during a cyclone. A quantitative estimate of kinetic energy in the oceanic water column, its propagation, and its dissipation mechanisms were explained using the coupled atmosphere–ocean–wave model. The large shear generated by the inertial oscillations was found to overcome the stratification and initiate mixing at the base of the mixed layer. Greater mixing was found at the depths where the eddy kinetic diffusivity was large. The baroclinic current, holding a larger fraction of kinetic energy than the barotropic current, weakened rapidly after the passage of the cyclone. The shear induced by inertial oscillations was found to decrease rapidly with increasing depth below the thermocline. The dampening of the mixing process below the thermocline was explained through the enhanced dissipation rate of turbulent kinetic energy upon approaching the thermocline layer. The wave–current interaction and nonlinear wave–wave interaction were found to affect the process of downward mixing and cause the dissipation of inertial oscillations.

  18. An acoustically controlled tetherless underwater vehicle for installation and maintenance of neutrino detectors in the deep ocean

    International Nuclear Information System (INIS)

    Ballou, Philip J.

    1997-01-01

    The task of installing and servicing high energy neutrino detectors in the deep ocean from a surface support vessel is problematic using conventional tethered systems. An array of multiple detector strings rising 500 m from the ocean floor, and forming a grid with 50 m spacing between the strings, presents a substantial entanglement hazard for equipment cables deployed from the surface. Such tasks may be accomplished with fewer risks using a tetherless underwater remotely operated vehicle that has a local acoustic telemetry link to send control commands and sensor data between the vehicle and a stationary hydrophone suspended above or just outside the perimeter of the work site. The Phase I effort involves the development of an underwater acoustic telemetry link for vehicle control and sensor feedback, the evaluation of video compression methods for real-time acoustic transmission of video through the water, and the defining of local control routines on board the vehicle to allow it to perform certain basic maneuvering tasks autonomously, or to initiate a self-rescue if the acoustic control link should be lost. In Phase II, a prototype tetherless vehicle system will be designed and constructed to demonstrate the ability to install cable interconnections within a detector array at 4 km depth. The same control technology could be used with a larger more powerful vehicle to maneuver the detector strings into desired positions as they are being lowered to the ocean floor

  19. Use of hydrate for sequestering CO{sub 2} in the deep ocean

    Energy Technology Data Exchange (ETDEWEB)

    North, W.J.; Morgan, J.J. [California Inst. of Technology, Pasadena, CA (United States); Spencer, D.F. [Electric Power Research Inst., Palo Alto, CA (United States)] [and others

    1993-12-31

    Tremendous amounts of CO{sub 2} are accumulating annually in the atmosphere (ca 3 gigatons of carbon per year at present). Prevention or significant amelioration of this atmospheric buildup will obviously require a grand scale corrective activity. A potential solution to the problem might involve sequestering CO{sub 2} in an alternate reservoir. The ocean immediately comes to mind as a reservoir of appropriate magnitude to accommodate the huge quantities of CO{sub 2} involved. Presumably there would be a trade-off: we would achieve a semi-clean atmosphere for an as- yet-to-be-determined impact in the ocean. Minimizing any oceanic impacts would enhance attractiveness of the trade-off.

  20. The Southern Ocean deep sea: first insights into biodiversity and biogeography

    DEFF Research Database (Denmark)

    Brandt, A.; Brix, S.; Brökeland, W.

    2007-01-01

    Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa1. The deeper parts of the Southern Ocean exhibit some unique environmen......Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa1. The deeper parts of the Southern Ocean exhibit some unique...

  1. Attribution of horizontal and vertical contributions to spurious mixing in an Arbitrary Lagrangian-Eulerian ocean model

    Science.gov (United States)

    Gibson, Angus H.; Hogg, Andrew McC.; Kiss, Andrew E.; Shakespeare, Callum J.; Adcroft, Alistair

    2017-11-01

    We examine the separate contributions to spurious mixing from horizontal and vertical processes in an ALE ocean model, MOM6, using reference potential energy (RPE). The RPE is a global diagnostic which changes only due to mixing between density classes. We extend this diagnostic to a sub-timestep timescale in order to individually separate contributions to spurious mixing through horizontal (tracer advection) and vertical (regridding/remapping) processes within the model. We both evaluate the overall spurious mixing in MOM6 against previously published output from other models (MOM5, MITGCM and MPAS-O), and investigate impacts on the components of spurious mixing in MOM6 across a suite of test cases: a lock exchange, internal wave propagation, and a baroclinically-unstable eddying channel. The split RPE diagnostic demonstrates that the spurious mixing in a lock exchange test case is dominated by horizontal tracer advection, due to the spatial variability in the velocity field. In contrast, the vertical component of spurious mixing dominates in an internal waves test case. MOM6 performs well in this test case owing to its quasi-Lagrangian implementation of ALE. Finally, the effects of model resolution are examined in a baroclinic eddies test case. In particular, the vertical component of spurious mixing dominates as horizontal resolution increases, an important consideration as global models evolve towards higher horizontal resolutions.

  2. First insights into the biodiversity and biogeography of the Southern Ocean deep sea

    NARCIS (Netherlands)

    Brandt, A.; Gooday, A.J.; Brandao, S.N.; Mesel, de I.G.

    2007-01-01

    Shallow marine benthic communities around Antarctica show high levels of endemism, gigantism, slow growth, longevity and late maturity, as well as adaptive radiations that have generated considerable biodiversity in some taxa. The deeper parts of the Southern Ocean exhibit some unique environmental

  3. A linkage between Asian dust, dissolved iron and marine export production in the deep ocean

    Science.gov (United States)

    Han, Yongxiang; Zhao, Tianliang; Song, Lianchun; Fang, Xiaomin; Yin, Yan; Deng, Zuqin; Wang, Suping; Fan, Shuxian

    2011-08-01

    Iron-addition experiments have revealed that iron supply exerts controls on biogeochemical cycles in the ocean and ultimately influences the Earth's climate system. The iron hypothesis in its broad outlines has been proved to be correct. However, the hypothesis needs to be verified with an observable biological response to specific dust deposition events. Plankton growth following the Asian dust storm over Ocean Station PAPA (50°N, 145°W) in the North Pacific Ocean in April 2001 was the first supportive evidence of natural aeolian iron inputs to ocean; The data were obtained through the SeaWiFS satellite and robot carbon explorers by Bishop et al. Using the NARCM modeling results in this study, the calculated total dust deposition flux was 35 mg m -2 per day in PAPA region from the dust storm of 11-13 April, 2001 into 0.0615 mg m -2 d -1 (about 1100 nM) soluble iron in the surface layer at Station PAPA. It was enough for about 1100 nM to enhance the efficiency of the marine biological pump and trigger the rapid increase of POC and chlorophyll. The iron fertilization hypothesis therefore is plausible. However, even if this specific dust event can support the iron fertilization hypothesis, long-term observation data are lacking in marine export production and continental dust. In this paper, we also conducted a simple correlation analysis between the diatoms and foraminifera at about 3000 m and 4000 m at two subarctic Pacific stations and the dust aerosol production from China's mainland. The correlation coefficient between marine export production and dust storm frequency in the core area of the dust storms was significantly high, suggesting that aerosols generated by Asian dust storm are the source of iron for organic matter fixation in the North Pacific Ocean. These results suggest that there could be an interlocking chain for the change of atmospheric dust aerosol-soluble iron-marine export production.

  4. Mechanical behavior of embankments overlying on loose subgrade stabilized by deep mixed columns

    Directory of Open Access Journals (Sweden)

    Morteza Esmaeili

    2016-10-01

    Full Text Available Deep mixed column (DMC is known as one of the effective methods for stabilizing the natural earth beneath road or railway embankments to control stability and settlements under traffic loads. The load distribution mechanism of embankment overlying on loose subgrades stabilized with DMCs considerably depends on the columns' mechanical and geometrical specifications. The present study uses the laboratory investigation to understand the behavior of embankments lying on loose sandy subgrade in three different conditions: (1 subgrade without reinforcement, (2 subgrade reinforced with DMCs in a triangular pattern and horizontal plan, and (3 subgrade reinforced with DMCs in a square pattern and horizontal plan. For this purpose, by adopting the scale factor of 1:10, a reference embankment with 20 cm height, 250 cm length, and 93% maximum dry density achieved in standard Proctor compaction test was constructed over a 70 cm thick loose sandy bed with the relative density of 50% in a loading chamber, and its load-displacement behavior was evaluated until the failure occurred. In the next two tests, DMCs (with 10 cm diameter, 40 cm length, and 25 cm center-to-center spacing were placed in groups in two different patterns (square and triangular in the same sandy bed beneath the embankment and, consequently, the embankments were constructed over the reinforced subgrades and gradually loaded until the failure happened. In all the three tests, the load-displacement behaviors of the embankment and the selected DMCs were instrumented for monitoring purpose. The obtained results implied 64% increase in failure load and 40% decrease in embankment crest settlement when using the square pattern of DMCs compared with those of the reference embankment, while these values were 63% and 12%, respectively, for DMCs in triangular pattern. This confirmed generally better performance of DMCs with a triangular pattern.

  5. The Atlantic Multidecadal Variability in surface and deep ocean temperature and salinity fields from unperturbed climate simulations

    Science.gov (United States)

    Zanchettin, D.; Jungclaus, J. H.

    2013-12-01

    Large multidecadal fluctuations in basin-average sea-surface temperature (SST) are a known feature of observed, reconstructed and simulated variability in the North Atlantic Ocean. This phenomenon is often referred to as Multidecadal Atlantic Variability or AMV. Historical AMV fluctuations are associated with analog basin-scale changes in sea-surface salinity, so that warming corresponds to salinification and cooling to freshening [Polyakov et al., 2005]. The surface imprint of the AMV further corresponds to same-sign fluctuations in the shallow ocean and with opposite-sign fluctuations in the deep ocean for both temperature and salinity [Polyakov et al., 2005]. This out-of-phase behavior reflects the thermohaline overturning circulation shaping North Atlantic's low-frequency variability. Several processes contribute to the AMV, involving both ocean-atmosphere coupled processes and deep ocean circulation [e.g., Grossmann and Klotzbach, 2009]. In particular, recirculation in the North Atlantic subpolar gyre region of salinity anomalies from Arctic freshwater export may trigger multidecadal variability in the Atlantic meridional overturning circulation, and therefore may be part of the AMV [Jungclaus et al., 2005; Dima and Lohmann, 2007]. With this contribution, we aim to improve the physical interpretation of the AMV by investigating spatial and temporal patterns of temperature and salinity fields in the shallow and deep ocean. We focus on two unperturbed millennial-scale simulations performed with the Max Planck Institute Earth system model in its paleo (MPI-ESM-P) and low-resolution (MPI-ESM-LR) configurations, which provide reference control climates for assessments of pre-industrial and historical climate simulations. The two model configurations only differ for the presence, in MPI-ESM-LR, of an active module for dynamical vegetation. We use spatial-average indices and empirical orthogonal functions/principal components to track the horizontal and vertical

  6. Winter−spring transition in the subarctic Atlantic: microbial response to deep mixing and pre-bloom production

    DEFF Research Database (Denmark)

    Paulsen, Maria Lund; Riisgaard, Karen; Thingstad, T. Frede

    2015-01-01

    In temperate, subpolar and polar marine systems, the classical perception is that diatoms initiate the spring bloom and thereby mark the beginning of the productive season. Contrary to this view, we document an active microbial food web dominated by pico- and nanoplankton prior to the diatom bloom......, a period with excess nutrients and deep convection of the water column. During repeated visits to stations in the deep Iceland and Norwegian basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the succession and dynamics of photo - synthetic and heterotrophic microorganisms....... We observed that the early phytoplankton production was followed by a decrease in the carbon:nitrogen ratio of the dissolved organic matter in the deep mixed stations, an increase in heterotrophic prokaryote (bacteria) abundance and activity (indicated by the high nucleic acid:low nucleic acid...

  7. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the "Deep Blue" Aerosol Project

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.

    2018-01-01

    The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.

  8. 1.5 My benthic foraminiferal B/Ca record of carbonate chemistry in the deep Atlantic: Implications for ocean alkalinity and atmospheric CO2

    Science.gov (United States)

    Rosenthal, Y.; Sosdian, S. M.; Toggweiler, J. R.

    2017-12-01

    Most hypotheses to explain glacial-interglacial changes in atmospheric CO2 invoke shifts in ocean alkalinity explain roughly half the reduction in glacial CO2 via CaCO3 compensatory mechanism. It follows that changes in CaCO3 burial occur in response to an increase in deep ocean respired carbon content. To date our understanding of this process comes from benthic carbon isotope and %CaCO3 records. However, to understand the nature of the ocean's buffering capacity and its role in modulating pCO2, orbitally resolved reconstructions of the deep ocean carbonate system parameters are necessary. Here we present a 1.5 Myr orbitally resolved deep ocean calcite saturation record (ΔCO32-) derived from benthic foraminiferal B/Ca ratios in the North Atlantic. Glacial B/Ca values decline across the mid-Pleistocene transition (MPT) suggesting increased sequestration of carbon in the deep Atlantic. The magnitude, timing, and structure of deep Atlantic Ocean ΔCO32- and %CaCO3 cycles contrast with the small amplitude, anti-phased swings in IndoPacific ΔCO32- and %CaCO3 during the mid-to-late Pleistocene. Increasing corrosivity of the deep Atlantic causes the locus of CaCO3 burial to shift into the equatorial Pacific where the flux of CaCO3 to the seafloor is high enough to establish and maintain a new "hot spot". We propose that the CO32- in the deep IndoPacific rises in response to the same mechanism that keeps the CO32- in the deep Atlantic low and the atmospheric CO2 low. The increase in interglacial atmospheric pCO2 levels following the Mid-Brunhes event ( 400ka) are associated with increased G/IG ΔCO3 amplitude, expressed by a decrease in the glacial ΔCO32- values. We propose the low persistent ΔCO32- levels at Marine Isotope Stage (MIS) 12 set the stage for the high pCO2 levels at MIS 11 via an increase in whole ocean alkalinity followed by enhanced CaCO3 preservation. Based on this, we suggest that the development of classic (`anticorrelated') CaCO3 patterns was

  9. Oxygen in the deep-sea: The challenge of maintaining uptake rates in a changing ocean

    Science.gov (United States)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2011-12-01

    Although focused on recently, ocean acidification is not the only effect of anthropogenic CO2 emissions on the ocean. Ocean warming will reduce dissolved oxygen concentrations and at the hypoxic limit for a given species this can pose challenges to marine life. The limit is traditionally reported simply as the static mass concentration property [O2]; here we treat it as a dynamic gas exchange problem for the animal analogous to gas exchange at the sea surface. The diffusive limit and its relationship to water velocity is critical for the earliest stages of marine life (eggs, embryos), but the effect is present for all animals at all stages of life. We calculate the external limiting O2 conditions for several representative metabolic rates and their relationship to flow of the bulk fluid under different environmental conditions. Ocean O2 concentrations decline by ≈ 14 μmol kg-1 for a 2 °C rise in temperature. At standard 1000 m depth conditions in the Pacific, flow over the surface would have to increase by ≈ 60% from 2.0 to 3.2 cm s-1 to compensate for this change. The functions derived allow new calculations of depth profiles of limiting O2 concentrations, as well as maximal diffusively sustainable metabolic oxygen consumption rates at various places around the world. Our treatment shows that there is a large variability in the global ocean in terms of facilitating aerobic life. This variability is greater than the variability of the oxygen concentration alone. It becomes clear that temperature and pressure dependencies of diffusion and partial pressure create a region typically around 1000 m depth where a maximal [O2] is needed to sustain a given metabolic rate. This zone of greatest physical constriction on the diffusive transport in the boundary layer is broadly consistent with the oxygen minimum zone, i.e., the zone of least oxygen concentration supply, resulting in a pronounced minimum of maximal diffusively sustainable metabolic oxygen consumption

  10. Erratum: Mixing of shallow and deep groundwater as indicated by the chemistry and age of karstic springs

    Science.gov (United States)

    Toth, David J.; Katz, Brian G.

    2006-09-01

    Large karstic springs in east-central Florida, USA were studied using multi-tracer and geochemical modeling techniques to better understand groundwater flow paths and mixing of shallow and deep groundwater. Spring water types included Ca-HCO3 (six), Na-Cl (four), and mixed (one). The evolution of water chemistry for Ca-HCO3 spring waters was modeled by reactions of rainwater with soil organic matter, calcite, and dolomite under oxic conditions. The Na-Cl and mixed-type springs were modeled by reactions of either rainwater or Upper Floridan aquifer water with soil organic matter, calcite, and dolomite under oxic conditions and mixed with varying proportions of saline Lower Floridan aquifer water, which represented 4-53% of the total spring discharge. Multiple-tracer data—chlorofluorocarbon CFC-113, tritium (3H), helium-3 (3Hetrit), sulfur hexafluoride (SF6)—for four Ca-HCO3 spring waters were consistent with binary mixing curves representing water recharged during 1980 or 1990 mixing with an older (recharged before 1940) tracer-free component. Young-water mixing fractions ranged from 0.3 to 0.7. Tracer concentration data for two Na-Cl spring waters appear to be consistent with binary mixtures of 1990 water with older water recharged in 1965 or 1975. Nitrate-N concentrations are inversely related to apparent ages of spring waters, which indicated that elevated nitrate-N concentrations were likely contributed from recent recharge.

  11. Turbulent Mixing and Vertical Heat Transfer in the Surface Mixed Layer of the Arctic Ocean: Implication of a Cross-Pycnocline High-Temperature Anomaly

    Science.gov (United States)

    Kawaguchi, Yusuke; Takeda, Hiroki

    2017-04-01

    This study focuses on the mixing processes in the vicinity of surface mixed layer (SML) of the Arctic Ocean. Turbulence activity and vertical heat transfer are quantitatively characterized in the Northwind Abyssal Plain, based on the RV Mirai Arctic cruise, during the transition from late summer to early winter 2014. During the cruise, noticeable storm events were observed, which came over the ship's location and contributed to the deepening of the SML. According to the ship-based microstructure observation, within the SML, the strong wind events produced enhanced dissipation rates of turbulent kinetic energy in the order of magnitude of ɛ = 10-6-10-4W kg-1. On thermal variance dissipation rate, χ increases toward the base of SML, reaching O(10-7) K2 s-1, resulting in vertical heat flux of O(10) W m-2. During the occasional energetic mixing events, the near-surface warm water was transferred downward and penetrated through the SML base, creating a cross-pycnocline high-temperature anomaly (CPHTA) at approximately 20-30 m depth. Near CPHTA, the vertical heat flux was anomalously magnified to O(10-100) W m-2. Following the fixed-point observation, in the regions of marginal and thick ice zones, the SML heat content was monitored using an autonomous drifting buoy, UpTempO. During most of the ice-covered period, the ocean-to-ice turbulent heat flux was dominant, rather than the diapycnal heat transfer across the SML bottom interface.

  12. Dumping of low-level radioactive waste in the deep ocean

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1980-01-01

    Two international agreements relate to the dumping of packaged radioactive waste into the oceans - the Convention on the Prevention of Marine Pollution by Dumping Wastes and Other Matter of 1972 (London Convention) and the Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste of 1977 under the Organization for Economic Co-operation and Development (OECD). The International Atomic Energy Agency was given the responsibility to define high-level radioactive wastes which are unsuitable for dumping in the oceans and to make recommendations for the dumping of other radioactive wastes. A revised Definition and Recommendations was submitted and accepted by the London Convention. This paper reviews the technical basis for the Definition and describes how it has been applied to the radiological assessment of the only operational dumping site in the North East Atlantic

  13. Field Performance of ISFET based Deep Ocean pH Sensors

    Science.gov (United States)

    Branham, C. W.; Murphy, D. J.

    2017-12-01

    Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.

  14. Nanocalorimetric characterization of microbial activity in deep subsurface oceanic crustal fluids

    Directory of Open Access Journals (Sweden)

    Alberto eRobador

    2016-04-01

    Full Text Available Although fluids within the upper oceanic basaltic crust harbor a substantial fraction of the total prokaryotic cells on Earth, the energy needs of this microbial population are unknown. In this study, a nanocalorimeter (sensitivity down to 4.3 x 10-3 mJ h-1 ml-1 was used to measure the enthalpy of microbially catalyzed reactions as a function of temperature in samples from two distinct crustal fluid aquifers. Microorganisms in unamended, warm (63 °C and geochemically altered anoxic fluids taken from 292 meters sub-basement (msb near the Juan de Fuca Ridge produced 267.3 mJ of heat over the course of 97 hours during a step-wise isothermal scan from 35.5 to 85.0 °C. Most of this heat signal likely stems from the germination of thermophilic endospores (6.66 x 104 cells ml-1FLUID and their subsequent metabolic activity at temperatures greater than 50 °C. The average cellular energy consumption (1.79 x 10-7 kJ h-1 cell-1 reveals the high metabolic potential of a dormant community transported by fluids circulating through the ocean crust. By contrast, samples taken from 293 msb from cooler (3.8 °C, relatively unaltered oxic fluids, produced 12.8 mJ of heat over the course of 14 hours as temperature ramped from 34.8 to 43.0 °C. Corresponding cell-specific energy turnover rates (0.18 pW cell-1 were converted to oxygen uptake rates of 24.5 nmol O2 ml-1FLUID d-1, validating previous model predictions of microbial activity in this environment. Given that the investigated fluids are characteristic of expansive areas of the upper oceanic crust, the measured metabolic heat rates can be used to constrain boundaries of habitability and microbial activity in the oceanic crust.

  15. Deep Water Ocean Acoustics (DWOA): The Philippine Sea, OBSANP, and THAAW Experiments

    Science.gov (United States)

    2015-09-30

    variability of the ambient noise field, and (v) understanding the relationship between the acoustic field in the water column and the seismic field in the...acoustic field in the water column and the seismic field in the seafloor for both ambient noise and signals transmitted by a J15-3 source and (2) the...frequent periods of low ambient noise.  Ice cover is still present throughout much of the year, insulating the ocean from wind and solar forcing and

  16. Clay mineralogical and Sr, Nd isotopic investigations in two deep-sea sediment cores from Northeast Indian Ocean

    International Nuclear Information System (INIS)

    Anil Babu, G.; Masood Ahmad, S.; Padmakumari, V.M.; Dayal, A.M.

    2004-01-01

    Sr and Nd isotopic studies in terrigenous component of the ocean sediments provide useful information about weathering patterns near source rock and climatic conditions existed on the continents. Variations in 87 Sr/ 86 Sr and 143 Nd/ 144 Nd isotopic ratios in clastic sediments depend on the source from the continents, volcanic input and circulation changes. The composition of clay minerals mainly depends on climate, geology and topography of the surrounding region. Chlorite and Illite are formed under physical weathering in arid cold climate and kaolinite and smectite are the characteristic products of chemical weathering in humid wet climatic conditions. Therefore, the variations in clay mineral composition in deep-sea sediments can be interpreted in terms of changes in the climatic conditions prevailed in the continental source areas

  17. Predicted peak temperature-rises around a high-level radioactive waste canister emplaced in the deep ocean bed

    International Nuclear Information System (INIS)

    Kipp, K.L.

    1978-06-01

    A simple mathematical model of heat conduction was used to evaluate the peak temperature-rise along the wall of a canister of high-level radioactive waste buried in deep ocean sediment. Three different amounts of vitrified waste, corresponding to standard Harvest, large Harvest, and AVM canisters, and three different waste loadings were studied. Peak temperature-rise was computed for the nine cases as a function of canister geometry and storage time between reprocessing and burial. Lower waste loadings or longer storage times than initially envisaged are necessary to prevent the peak temperature-rise from exceeding 200 0 C. The use of longer, thinner cylinders only modestly reduces the storage time for a given peak temperature. Effects of stacking of waste canisters and of close-packing were also studied. (author)

  18. Flow- topography Interactions in the Vicinity of a Deep Ocean Island and a Ridge

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Flow- topography Interactions in the Vicinity of a Deep...flow around abrupt topography in operational Navy models. RELATED PROJECTS NRL FY17 6.2 New Start proposal (pending proposal), titled...Predictability of Flow Interacting with Abrupt Topography (FIAT)”; lead PI: Ana Rice, NRL-SSC. The objective of FIAT is to use observations to develop Navy

  19. Methane oxidation and methane fluxes in the ocean surface layer and deep anoxic waters

    Science.gov (United States)

    Ward, B. B.; Kilpatrick, K. A.; Novelli, P. C.; Scranton, M. I.

    1987-01-01

    Measured biological oxidation rates of methane in near-surface waters of the Cariaco Basin are compared with the diffusional fluxes computed from concentration gradients of methane in the surface layer. Methane fluxes and oxidation rates were investigated in surface waters, at the oxic/anoxic interface, and in deep anoxic waters. It is shown that the surface-waters oxidation of methane is a mechanism which modulates the flux of methane from marine waters to the atmosphere.

  20. Highly similar prokaryotic communities of sunken wood at shallow and deep-sea sites across the oceans.

    Science.gov (United States)

    Palacios, Carmen; Zbinden, Magali; Pailleret, Marie; Gaill, Françoise; Lebaron, Philippe

    2009-11-01

    With an increased appreciation of the frequency of their occurrence, large organic falls such as sunken wood and whale carcasses have become important to consider in the ecology of the oceans. Organic-rich deep-sea falls may play a major role in the dispersal and evolution of chemoautotrophic communities at the ocean floor, and chemosynthetic symbiotic, free-living, and attached microorganisms may drive the primary production at these communities. However, little is known about the microbiota thriving in and around organic falls. Our aim was to investigate and compare free-living and attached communities of bacteria and archaea from artificially immersed and naturally sunken wood logs with varying characteristics at several sites in the deep sea and in shallow water to address basic questions on the microbial ecology of sunken wood. Multivariate indirect ordination analyses of capillary electrophoresis single-stranded conformation polymorphisms (CE-SSCP) fingerprinting profiles demonstrated high similarity of bacterial and archaeal assemblages present in timbers and logs situated at geographically distant sites and at different depths of immersion. This similarity implies that wood falls harbor a specialized microbiota as observed in other ecosystems when the same environmental conditions reoccur. Scanning and transmission electron microscopy observations combined with multivariate direct gradient analysis of Bacteria CE-SSCP profiles demonstrate that type of wood (hard vs. softwood), and time of immersion are important in structuring sunken wood bacterial communities. Archaeal populations were present only in samples with substantial signs of decay, which were also more similar in their bacterial assemblages, providing indirect evidence of temporal succession in the microbial communities that develop in and around wood falls.

  1. Bythaelurus tenuicephalus n. sp., a new deep-water catshark (Carcharhiniformes, Scyliorhinidae) from the western Indian Ocean.

    Science.gov (United States)

    Kaschner, Carina Julia; Weigmann, Simon; Thiel, Ralf

    2015-09-07

    A new dwarf deep-water catshark, Bythaelurus tenuicephalus, is described based on one adult and one juvenile male specimen from off Tanzania and Mozambique in the western Indian Ocean. The new species differs from its congeners by its slender head and snout, which is only slightly bell-shaped in dorsoventral view without distinct lateral indention. All other Bythaelurus species have distinctly bell-shaped snouts with a strong lateral indention anterior to outer nostrils. Compared to its congeners in the western Indian Ocean, B. tenuicephalus n. sp. also has broader claspers in adult males (base width 2.1% TL vs. 1.5-1.8% TL). It further differs from B. clevai by attaining a smaller maximum size and having a color pattern of fewer and smaller blotches, larger oral papillae, a shorter snout, and broader claspers without knob-like apex and with a smaller envelope and a subtriangular (vs. subrectangular) exorhipidion. Compared to B. hispidus, the new species has a longer snout, a longer dorsal-caudal space, broader clasper without knob-like apex, and fewer vertebral centra. In contrast to B. lutarius, B. tenuicephalus attains a smaller maximum size and has a blotched (vs. largely plain) coloration, numerous (vs. lacking) oral papillae, shorter anterior nasal flaps, a longer caudal fin, a shorter pelvic anal space, and shorter and broader claspers.

  2. The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dong L.

    2016-10-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain ˜ 10 % of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for better understanding and

  3. The Open-Ocean Sensible Heat Flux and Its Significance for Arctic Boundary Layer Mixing During Early Fall

    Science.gov (United States)

    Ganeshan, Manisha; Wu, Dongliang

    2016-01-01

    The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL) clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multiyear Japanese cruise-ship observations from RV Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF) during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean-atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime), yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure) followed by the highly stable (stratus) regime. Overall, it can explain 10 of the open ocean BL height variability, whereas cloud-driven (moisture and radiative) mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the RV Mirai for better understanding and

  4. A new species of brooding Psolidae (Echinodermata: Holothuroidea) from deep-sea off Argentina, Southwestern Atlantic Ocean

    Science.gov (United States)

    Martinez, Mariano I.; Penchaszadeh, Pablo E.

    2017-12-01

    This paper describes a new species of Psolus (Holothuroidea, Echinodermata), P. lawrencei sp. nov., (19 specimens) found in the deep sea (308-1398 m) in the Southwestern Atlantic Ocean (SWAO) (around 38°S-54°W) with brooders (up to 3.15 mm) in the tentacles of females and a penis-like genital papilla on males. The presence of dorsal scales, the concave shape of the ossicles with a bridge, the distribution of podia on the dorsal side and the absence of large and conspicuous oral and anal valves are unique for this species. Furthermore, this is the first species of this genus found outside Antarctica that broods between its tentacles. The paper also reviews the reproductive, brooding development and morphological characteristics of P. lawrencei sp. nov. and compares them with those of several members of the family Psolidae. Finally, a possible connectivity between the deep-sea populations in the SWAO and in Antarctica is considered based on the appearance of a similar reproductive pattern in populations found in both areas, which suggests a past or present connection between these regions.

  5. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements

    Science.gov (United States)

    Kato, Yasuhiro; Fujinaga, Koichiro; Nakamura, Kentaro; Takaya, Yutaro; Kitamura, Kenichi; Ohta, Junichiro; Toda, Ryuichi; Nakashima, Takuya; Iwamori, Hikaru

    2011-08-01

    World demand for rare-earth elements and the metal yttrium--which are crucial for novel electronic equipment and green-energy technologies--is increasing rapidly. Several types of seafloor sediment harbour high concentrations of these elements. However, seafloor sediments have not been regarded as a rare-earth element and yttrium resource, because data on the spatial distribution of these deposits are insufficient. Here, we report measurements of the elemental composition of over 2,000 seafloor sediments, sampled at depth intervals of around one metre, at 78 sites that cover a large part of the Pacific Ocean. We show that deep-sea mud contains high concentrations of rare-earth elements and yttrium at numerous sites throughout the eastern South and central North Pacific. We estimate that an area of just one square kilometre, surrounding one of the sampling sites, could provide one-fifth of the current annual world consumption of these elements. Uptake of rare-earth elements and yttrium by mineral phases such as hydrothermal iron-oxyhydroxides and phillipsite seems to be responsible for their high concentration. We show that rare-earth elements and yttrium are readily recovered from the mud by simple acid leaching, and suggest that deep-sea mud constitutes a highly promising huge resource for these elements.

  6. Development of an assessment methodology for the disposal of high-level radioactive waste into deep ocean sediments

    International Nuclear Information System (INIS)

    Murray, C.N.; Stanners, D.A.

    1982-01-01

    This paper presents the results of a theoretical study concerning the option of disposal of vitrified high activity waste (HAW) into deep ocean sediments. The development of a preliminary methodology is presented which concerns the assessment of the possible effects of a release of radioactivity on the ecosystem and eventually on man. As the long-term hazard is considered basically to be due to transuranic elements (and daughter products) the period studied for the assessment is from 10 3 to 10 6 years. A simple ecosystem model is developed so that the transfer of activity between different compartments of the systems, e.g. the sediment column, sediment-water interface, deep sea water column, can be estimated. A critical pathway analysis is made for an imaginary critical group in order to complete the assessment. A sensitivity analysis is undertaken using the computed minimum-maximum credible values for the different parameters used in the calculations in order to obtain a minimum-maximum dose range for a critical group. (Auth.)

  7. Migration of strontium-90 from a strontium-90 fluoride deep ocean source

    International Nuclear Information System (INIS)

    Yabusaki, S.

    1981-06-01

    A hypothetical rupture of a heat source capsule on the ocean floor is analyzed for strontium-90 migration and attenuation. The evolution of the three-dimensional contaminant plume is simulated by a modified version of the Okubo-Pritchard radially symmetrical, diffusion velocity dispersion model. Results from this study indicate that released solutes are confined vertically to a layer near the level of introduction. Along the plume centerline, however, water quality is affected for considerably distances downstream from the source, with the maximum effect occurring after one year

  8. Evolution of Summer Ocean Mixed Layer Heat Content and Ocean/Ice Fluxes in the Arctic Ocean During the Last Decade

    Science.gov (United States)

    Stanton, T. P.; Shaw, W. J.

    2014-12-01

    Since 2002, a series of 28 Autonomous Ocean Flux Buoys have been deployed in the Beaufort Sea and from the North Pole Environmental Observatory. These long-term ice-deployed instrument systems primarily measure vertical turbulent fluxes of heat, salt and momentum at a depth of 2 - 6 m below the ocean/ice interface, while concurrently measuring current profile every 2m down to approximately 40-50m depth, within the seasonal pycnocline. Additional sensors have been added to measure local ice melt rates acoustically, and finescale thermal structure from the eddy correlation flux sensor up into the ice to resolve summer near-surface heating. The AOFB buoys have typically been co-located with Ice Tethered Profilers, that measure the upper ocean T/S structure and ice mass balance instruments. Comparisons of near-surface heat fluxes, heat content and vertical structure over the last decade will be made for buoys in the Beaufort Sea and Transpolar Drift between the North Pole and Spitzbergen. The effects of enhanced basal melting from ice/albedo feedbacks can be clearly seen in the low ice concentration summer conditions found more recently in the Beaufort Sea, while there are less pronounced effects of enhanced summer surface heating in the higher ice concentrations still found in the transpolar drift.

  9. New eastern Pacific Ocean record of the rare deep-water fish, Psychrolutes phrictus (Scorpaeniformes: Psychrolutidae)

    OpenAIRE

    Aguirre-Villaseñor, Hugo; Cruz-Acevedo, Edgar; Salas-Singh, Carolina

    2016-01-01

    Abstract: Psychrolutes phrictus is a benthic deep sea fish known from the eastern North Pacific. On 30 March 2008, a specimen of the blob sculpin P. phrictus (297 mm LT) was caught off the Guerrero coast, Mexico (17°45′24″N, 101°59′04″W). The blob sculpin was taken at a depth of 1,100 m within a temperature range of 3.88-4.25 °C, where hypoxic (0.57-0.39 mg/l) conditions prevailed; the specimen was captured over a muddy bottom using a benthic sledge. Representatives of this species had never ...

  10. Processes of interannual mixed layer temperature variability in the thermocline ridge of the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    PraveenKumar, B.; Vialard, J.; Lengaigne, M.; Murty, V.S.N.; Foltz, G.R.; McPhaden, M.J.; Pous, S.; Montegut , C.deB.

    , Brest Center, Pointe du Diable, B.P. 70 Plouzane 29280, France Corresponding author address: B Praveen Kumar Modelling and Ocean observations Group (MOG) Indian National Centre for Ocean Information Services (INCOIS), Hyderabad. India... SST after the end of El Niño, and to prolong its regional climate impacts (the so-called Indian Ocean “capacitor” effect). Murtugudde et al. (2000) and Du et al. (2009) did not focus on the TRIO region, but showed that a combination of vertical...

  11. Pito Deep reveals spatial/temporal variability of accretionary processes in the lower oceanic crust at fast-spread MOR

    Science.gov (United States)

    John, B. E.; Cheadle, M. J.; Gee, J. S.; Coogan, L. A.; Gillis, K. M.

    2017-12-01

    During January and February 2017, the 42-day RV Atlantis PMaG cruise mapped and sampled in-situ fast spread lower crust for 35 km along a flow line at Pito Deep Rift (northeastern Easter microplate). There, ridge-perpendicular escarpments bound Pito Deep and expose up to 3 km sections of crust parallel to the paleo-spreading direction, providing a unique opportunity to test models for the architecture of fast spread lower ocean crust (the plutonic section). Shipboard operations included a >57,000 km2 multi-beam survey; ten Sentry dives over 70 km2 (nominal m-scale resolution) to facilitate acquisition of detailed magnetic and bathymetric data, and optimize Jason II dive siting for rock sampling and geologic mapping; nine Jason II dives in 4 areas, recovering >400 samples of gabbroic lower crust, of which 80% are approximately oriented. Combined Sentry mapping and Jason II sampling and imaging of one area, provides the most detailed documentation of in situ gabbroic crust (>3 km2 of seafloor, over 1000+m vertical section) ever completed. Significantly, the area exposes distinct lateral variation in rock type: in the west 100m of Fe-Ti oxide rich gabbroic rocks overly gabbro and olivine gabbro; however, to the east, exposures of primitive, layered troctolitic rocks extend to within 100m below the dike-gabbro transition. Equivalent troctolitic rocks are found 13 km to the southeast parallel to a flow line, implying shallow primitive rocks are a characteristic feature of EPR lower crust at this location. The high-level position of troctolitic rocks is best explained by construction in a shallow, near steady-state melt lens at a ridge segment center, with some form of gabbro glacier flow active during formation of at least the uppermost lower ocean crust (Perk et al., 2007). Lateral variation in rock type (adjacent oxide gabbro, gabbro, olivine-rich gabbro and troctolite) over short distances taken with complexity in magmatic fabric orientation (mineral and grain size

  12. Constraints on sea level during the Pliocene: Records from the deep Pacific Ocean

    Science.gov (United States)

    Woodard, S. C.; Rosenthal, Y.; Miller, K. G.; Wright, J. D.; Chiu, B. K.

    2013-12-01

    To reconstruct sea level during the transition from peak late Pliocene warmth (~3.15 Ma) to the onset of N. Hemisphere glaciation (~2.75 Ma), we generated high resolution stable isotope (δ18O, δ13C) and trace metal (Mg/Ca) records using benthic foraminifera, Uvigerina sp., from northwest Pacific ODP Site 1208 (3350 m water depth). During the peak late Pliocene warmth Mg/Ca-derived temperature records indicate deep Pacific interglacial temperatures were not significantly warmer (+0.6 ×0.8°C) than modern and glacial temperatures were near freezing similar to the LGM. In contrast, the deep N. Atlantic (Site 607) was apparently ~3°C warmer than the modern during both Pliocene glacial and interglacial periods (Sosdian and Rosenthal, 2009), based on the Mg/Ca of P. wuellerstorfi, which may be influenced by carbonate ion effect (Elderfield et al., 2009 and refs therein). δ18O records indicate a significant long-term increase in benthic δ18O in both the N. Atlantic and N. Pacific, although the rate of increase (Δδ18O) in the N. Atlantic is approximately 3x that of the N. Pacific (Site 1208), based on least squares regressions of all glacial-interglacial data. The discrepancy in the Δδ18O between the two basins is explained by Mg/Ca-derived temperature records. Results from Site 1208 show that the deep Pacific experienced no long-term cooling over the period 3.15-2.7 Ma when the deep N. Atlantic cooled by ~2.5°C on average. The relatively stable Pacific deep-water record provides the more reliable reconstructions of sea-level changes. From 3.15-2.7 Ma, Pacific δ18O data records an average increase of ~0.19× 0.08 per mil implying a sea level drop of 19 m × 8 m. After correcting the N. Atlantic record for temperature, we find the long term δ18O change from 3.15-2.7 Ma is ~0.23×0.1 per mil which equates to a peak of 23 m × 10 m. Our estimates are further corroborated by foraminiferal calcite δ18O recorded during Pliocene peak interglacials KM3 and G17. The

  13. How broad and deep is the region of chemical alteration of oceanic plates at trenches?

    Science.gov (United States)

    Ranero, C. R.; Grevemeyer, I.; Barckhausen, U.

    2017-12-01

    Different lines of evidence indicate that oceanic plates are affected by pervasive bending-related deformation approaching ocean trenches. Results from active-seismic work support that deformation provides paths for exchange between hydrosphere and lithosphere, possibly causing chemical alteration of the incoming lithosphere. Much work focused on the potential transformation of peridotite to serpentine in the uppermost mantle of incoming plates, but there is no consensus on the region where it may occur or the intensity of alteration, let alone on limiting factors for the process. Teleseismic (large-great) earthquakes with normal-fault mechanism in the outer rise region have been often called to speculate on the depth of penetration of plate hydration. However, large-great outer-rise earthquakes may be related to stress changes due to slab pull after decoupling along the inter-plate boundary, and not necessarily controlled by bending stresses only. If so, the majority of the time the depth of water percolation may be related to local bending stresses expressed by micro-earthquakes rather than large events. Seismic images and multibeam bathymetry from lithosphere of similar thermal thickness from different trenches display a remarkable variability of the intensity of bending-related deformation along the subduction zones where plate age does not change significantly indicating that the intensity of deformation (not the depth) and perhaps hydration is very variable in space and not controlled by plate age. Seismic images showing hundreds of kilometers perpendicular to the trench into the incoming plate show that the bending-related deformation reaches mantle under the outer rise, well before the lithosphere plunges into the trench and develops the marked bend-faulting fabric observable in bathymetric maps. Thus, alteration occurs in a hundreds-of-km wide area, with deformation intensity related to local characteristics, and deformation depth to plate age.

  14. Deep and surface circulation in the Northwest Indian Ocean from Argo, surface drifter, and in situ profiling current observations

    Science.gov (United States)

    Stryker, S. A.; Dimarco, S. F.; Stoessel, M. M.; Wang, Z.

    2010-12-01

    The northwest Indian Ocean is a region of complex circulation and atmospheric influence. The Persian (Arabian) Gulf and Red Sea contribute toward the complexity of the region. This study encompasses the surface and deep circulation in the region ranging from 0°N-35°N and 40°E-80°E from January 2002-December 2009. Emphasis is in the Persian Gulf, Oman Sea and Arabian Sea (roughly from 21°N-26°N and 56°E-63°E) using a variety of in situ and observation data sets. While there is a lot known about the Persian Gulf and Arabian Sea, little is known about the Oman Sea. Circulation in the northwest Indian Ocean is largely influenced by seasonal monsoon winds. From the winter monsoon to the summer monsoon, current direction reverses. Marginal sea inflow and outflow are also seasonally variable, which greatly impacts the physical water mass properties in the region. In situ and observation data sets include data from Argo floats (US GODAE), surface drifters (AOML) and an observation system consisting of 4 independent moorings and a cabled ocean observatory in the Oman Sea. The observing system in the Oman Sea was installed by Lighthouse R & D Enterprises, Inc. beginning in 2005, and measures current, temperature, conductivity, pressure, dissolved oxygen and turbidity, using the Aanderaa Recording Doppler Current Profiler (RDCP) 600 and the Aanderaa Recording Current Meter (RCM) 11. The cabled ocean observatory measures dissolved oxygen, temperature and salinity between 65 m and 1000 m and reports in real-time. Argo floats in the region have a parking depth range from 500 m to 2000 m. At 1000 m depth, 98% of the velocity magnitudes range from less than 1 cm/s to 20 cm/s. The Somali Current and Northeast/Southwest Monsoon Currents are present, reversing from summer to winter. At 2000 m depth, the Somali and Monsoon Currents are still present but have smaller velocities with 98% ranging from less than 1 cm/s to 13 cm/s. At both 1000 m and 2000 m, larger velocities occur

  15. Costa Rica Rift Revisited: Constraints on Shallow and Deep Hydrothermal Circulation in Oceanic Crust

    Science.gov (United States)

    Davis, E. E.; Becker, K.; He, J.

    2002-12-01

    New heat-flow observations made along two seismic reflection profiles on 6 Ma crust of the Costa Rica Rift flank show an inverse correlation between heat flow and sediment thickness similar to that observed on other sedimented ridges and young ridge flanks. Extrapolation of the seafloor heat-flow values to the top of the igneous crust - justified by comparing seafloor and borehole determinations where observations are colocated - show the surface of the igneous crust to be of uniform temperature despite large local sediment thickness variations. This is consistent with observations made at DSDP/ODP Holes 504B and 896A where basement temperatures are observed to be nearly identical, also despite contrasting sediment thicknesses. Efficient lateral heat exchange via vigorous crustal hydrothermal circulation is required to create the degree of uniformity inferred and observed. Permeability measurements at the two drill sites show that this vigorous circulation may be restricted to as little as the uppermost tens of m of the crust. Permeability determined deeper in Hole 504B is too low to permit thermally significant flow, although temperature logs suggest that thermally significant flow extends throughout the 2 km section penetrated at Site 504, presumably via pathways not intersected by the borehole. The laterally uniform temperatures in the uppermost igneous crust here and elsewhere are remarkable given the small apparent depth-extent of the circulation that so efficiently distributes heat. While certainly not as vigorous, the circulation at depth suggested by the temperature logs at Site 504 is also noteworthy; unfortunately the observation cannot be generalized because of the lack of other deep crustal holes that could permit direct observations, and the lack of a method for inferring deep hydrothermal structure.

  16. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean

    Directory of Open Access Journals (Sweden)

    G. Young

    2016-11-01

    Full Text Available In situ airborne observations of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean are presented from the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA campaign. A case study from 23 March 2013 provides a unique view of the cloud microphysical changes over this transition under cold-air outbreak conditions. Cloud base lifted and cloud depth increased over the transition from sea ice to ocean. Mean droplet number concentrations, Ndrop, also increased from 110 ± 36 cm−3 over the sea ice to 145 ± 54 cm−3 over the marginal ice zone (MIZ. Downstream over the ocean, Ndrop decreased to 63 ± 30 cm−3. This reduction was attributed to enhanced collision-coalescence of droplets within the deep ocean cloud layer. The liquid water content increased almost four fold over the transition and this, in conjunction with the deeper cloud layer, allowed rimed snowflakes to develop and precipitate out of cloud base downstream over the ocean. The ice properties of the cloud remained approximately constant over the transition. Observed ice crystal number concentrations averaged approximately 0.5–1.5 L−1, suggesting only primary ice nucleation was active; however, there was evidence of crystal fragmentation at cloud base over the ocean. Little variation in aerosol particle number concentrations was observed between the different surface conditions; however, some variability with altitude was observed, with notably greater concentrations measured at higher altitudes ( >  800 m over the sea ice. Near-surface boundary layer temperatures increased by 13 °C from sea ice to ocean, with corresponding increases in surface heat fluxes and turbulent kinetic energy. These significant thermodynamic changes were concluded to be the primary driver of the microphysical evolution of the cloud. This study represents the first investigation, using in situ

  17. Stirring Up the Biological Pump: Vertical Mixing and Carbon Export in the Southern Ocean

    Science.gov (United States)

    Stukel, Michael R.; Ducklow, Hugh W.

    2017-09-01

    The biological carbon pump (BCP) transports organic carbon from the surface to the ocean's interior via sinking particles, vertically migrating organisms, and passive transport of organic matter by advection and diffusion. While many studies have quantified sinking particles, the magnitude of passive transport remains poorly constrained. In the Southern Ocean weak thermal stratification, strong vertical gradients in particulate organic matter, and weak vertical nitrate gradients suggest that passive transport from the euphotic zone may be particularly important. We compile data from seasonal time series at a coastal site near Palmer Station, annual regional cruises in the Western Antarctic Peninsula (WAP), cruises throughout the broader Southern Ocean, and SOCCOM (Southern Ocean Carbon and Climate Observations and Modeling) autonomous profiling floats to estimate spatial and temporal patterns in vertical gradients of nitrate, particulate nitrogen (PN), and dissolved organic carbon. Under a steady state approximation, the ratio of ∂PN/∂z to ∂NO3-/∂z suggests that passive transport of PN may be responsible for removing 46% (37%-58%) of the nitrate introduced into the surface ocean of the WAP (with dissolved organic matter contributing an additional 3-6%) and for 23% (19%-28%) of the BCP in the broader Southern Ocean. A simple model parameterized with in situ nitrate, PN, and primary production data suggested that passive transport was responsible for 54% of the magnitude of the BCP in the WAP. Our results highlight the potential importance of passive transport (by advection and diffusion) of organic matter in the Southern Ocean but should only be considered indicative of high passive transport (rather than conclusive evidence) due to our steady state assumptions.

  18. The open-ocean sensible heat flux and its significance for Arctic boundary layer mixing during early fall

    Directory of Open Access Journals (Sweden)

    M. Ganeshan

    2016-10-01

    Full Text Available The increasing ice-free area during late summer has transformed the Arctic to a climate system with more dynamic boundary layer (BL clouds and seasonal sea ice growth. The open-ocean sensible heat flux, a crucial mechanism of excessive ocean heat loss to the atmosphere during the fall freeze season, is speculated to play an important role in the recently observed cloud cover increase and BL instability. However, lack of observations and understanding of the resilience of the proposed mechanisms, especially in relation to meteorological and interannual variability, has left a poorly constrained BL parameterization scheme in Arctic climate models. In this study, we use multi-year Japanese cruise-ship observations from R/V Mirai over the open Arctic Ocean to characterize the surface sensible heat flux (SSHF during early fall and investigate its contribution to BL turbulence. It is found that mixing by SSHF is favored during episodes of high surface wind speed and is also influenced by the prevailing cloud regime. The deepest BLs and maximum ocean–atmosphere temperature difference are observed during cold air advection (associated with the stratocumulus regime, yet, contrary to previous speculation, the efficiency of sensible heat exchange is low. On the other hand, the SSHF contributes significantly to BL mixing during the uplift (low pressure followed by the highly stable (stratus regime. Overall, it can explain  ∼  10 % of the open-ocean BL height variability, whereas cloud-driven (moisture and radiative mechanisms appear to be the other dominant source of convective turbulence. Nevertheless, there is strong interannual variability in the relationship between the SSHF and the BL height which can be intensified by the changing occurrence of Arctic climate patterns, such as positive surface wind speed anomalies and more frequent conditions of uplift. This study highlights the need for comprehensive BL observations like the R/V Mirai for

  19. Dive Activities from Cruise Information Management System (CIMS) for Life on the Edge 2003: Exploring Deep Ocean Habitats - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded into the Cruise Information Management System (CIMS) by the NOAA Office of Ocean Exploration's data manager during...

  20. Deep Sea Shell Taphonomy: Interactive benthic experiments in hydrate environments of Barkley Canyon, Ocean Networks Canada.

    Science.gov (United States)

    Best, Mairi; Purser, Autun

    2015-04-01

    In order to quantify and track the rates and processes of modification of biogenic carbonate in gas hydrate environments, and their possible environmental/ecological correlates, ongoing observations of experimentally deployed specimens are being made using a remotely controlled crawler with camera and sensors. The crawler is connected to NEPTUNE Canada, an 800km, 5-node, regional cabled ocean network across the northern Juan de Fuca Plate, northeastern Pacific, part of Ocean Networks Canada. One of 15 study areas is an environment of exposed hydrate mounds along the wall of Barkley Canyon, at ˜865m water depth. This is the home of a benthic crawler developed by Jacobs University of Germany, who is affectionately known as Wally. Wally is equipped with a range of sensors including cameras, methane sensor, current meter, fluorometer, turbidity meter, CTD, and a sediment microprofiler with probes for oxygen, methane, sulphide, pH, temperature, and conductivity. In conjunction with this sensor suite, a series of experiments have been designed to assess the cycling of biogenic carbon and carbonate in this complex environment. The biota range from microbes, to molluscs, to large fish, and therefore the carbon inputs include both a range of organic carbon compounds as well as the complex materials that are "biogenic carbonate". Controlled experimental specimens were deployed of biogenic carbonate (Mytilus edulis fresh shells) and cellulose (pieces of untreated pine lumber) that had been previously well characterized (photographed, weighed, and numbered, matching valves and lumber kept as controls). Deployment at the sediment/water interface was in such a way to maximize natural burial exhumation cycles but to minimize specimen interaction. 10 replicate specimens of each material were deployed in two treatments: 1) adjacent to a natural life and death assemblage of chemosynthetic bivalves and exposed hydrate on a hydrate mound and 2) on the muddy seafloor at a distance

  1. Prefabricated Vertical Drain (PVD) and Deep Cement Mixing (DCM)/Stiffened DCM (SDCM) techniques for soft ground improvement

    Science.gov (United States)

    Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.

    2018-04-01

    Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements

  2. Comportamento à compressão de solo estabilizado com cimento utilizado em colunas de DEEP Soil Mixing

    OpenAIRE

    Geraldo Vanzolini Moretti

    2012-01-01

    Resumo: Apresenta-se neste trabalho o estudo comportamento à compressão não confinada de um solo argiloso aluvionar estabilizado segundo a metodologia Deep Soil Mixing (DSM). Esta técnica consiste no tratamento de solos moles através da mistura deste com agentes químicos estabilizantes, podendo-se utilizar cal e/ou cimento. Para a condução deste trabalho foram executadas colunas de DSM sob um aterro rodoviário localizado no nordeste do Brasil, com aproximadamente 300m de extensão. O sítio de ...

  3. On the Temporal Variability of Low-Mode Internal Tides in the Deep Ocean

    Science.gov (United States)

    Ray, Richard D.; Zaron, E. D.

    2010-01-01

    In situ measurements of internal tides are typically characterized by high temporal variability, with strong dependence on stratification, mesoscale eddies, and background currents commonly observed. Thus, it is surprising to find phase-locked internal tides detectable by satellite altimetry. An important question is how much tidal variability is missed by altimetry. We address this question in several ways. We subset the altimetry by season and find only very small changes -- an important exception being internal tides in the South China Sea where we observe strong seasonal dependence. A wavenumber-domain analysis confirms that throughout most of the global ocean there is little temporal variability in altimetric internal-tide signals, at least in the first baroclinic mode, which is the mode that dominates surface elevation. The analysis shows higher order modes to be significantly more variable. The results of this study have important practical implications for the anticipated SWOT wide-swath altimeter mission, for which removal of internal tide signals is critical for observing non-tidal submesoscale phenomena.

  4. Mixing and its effects on biogeochemistry in the persistently stratified, deep, tropical Lake Matano, Indonesia

    DEFF Research Database (Denmark)

    Katsev, Sergei; Crowe, Sean; Mucci, Alfonso

    2010-01-01

    In the > 590-m deep, tropical Lake Matano (Indonesia), stratification is characterized by weak thermal gradients (... steady-state conditions, vertical eddy diffusion coefficients (K-z) cannot be estimated by conventional methods that rely on time derivatives of temperature distributions. We use and compare several alternative methods: one-dimensional k-epsilon modeling, three-dimensional hydrodynamic modeling...... composition in the deep waters is close to those of the ground and tributary waters. The vertical distribution of K-z is used in a biogeochemical reaction-transport model. We show that, outside of a narrow thermocline region, the vertical distributions of dissolved oxygen, iron, methane, and phosphorus...

  5. Natural radioactivity of the atmosphere over the Indian land mass, inside deep mines, and over adjoining oceans

    International Nuclear Information System (INIS)

    Mishra, U.C.; Rangarajan, C.; Eapen, C.D.

    1980-01-01

    Measurements of the activities of short-lived radon and thoron daughters, long-lived RaD ( 210 Pb), and cosmic-ray produced 7 Be in the surface atmosphere of different regions of India and the neighboring seas are presented. The seasonal and geographical variations of the activities and the meteorological significance of these variations are also discussed. Over land, the natural activities due to radon and thoron daughters undergo an annual and diurnal cycle, which is an index of the variation in the vertical mixing of the surface atmosphere. Over the oceans the diurnal variations are not so pronounced as over the land. Detailed measurements at stationary positions over the Arabian Sea showed significant changes in radon which were in phase at all the positions. The levels of radon daughters in the Kolar Gold Field mines, the second deepest in the world, have been measured. Maximum values are about 10 pCi/liter, and the daughter products are in a state of high disequilibrium. RaD( 210 Pb) over the land undergoes a seasonal cycle similar to radon with winter maximums and summer minimums, indicating that it is mainly supported from ambient radon. Beryllium-7 undergoes a seasonal cycle similar to stratospheric fallout with reduced amplitude. This can be interpreted as being due to the presence of a seasonally dependent stratospheric 7 Be mixing with a constant level of 7 Be produced within the troposphere itself

  6. Archaeal Viruses Contribute to the Novel Viral Assemblage Inhabiting Oceanic, Basalt-Hosted Deep Subsurface Crustal Fluids

    Science.gov (United States)

    Nigro, O. D.; Rappe, M. S.; Jungbluth, S.; Lin, H. T.; Steward, G.

    2015-12-01

    Fluids contained in the basalt-hosted deep subsurface of the world's oceans represent one of the most inaccessible and understudied biospheres on earth. Recent improvements in sampling infrastructure have allowed us to collect large volumes of crustal fluids (~104 L) from Circulation Obviation Retrofit Kits (CORKs) placed in boreholes located on the eastern flank of the Juan de Fuca Ridge (JdFR). We detected viruses within these fluids by TEM and epifluorescence microscopy in samples collected from 2010 to 2014. Viral abundance, determined by epifluorescence counts, indicated that concentrations of viruses in subsurface basement fluids (~105 ml-1) are lower than the overlying seawater, but are higher in abundance than microbial cells in the same samples. Analysis of TEM images revealed distinct viral morphologies (rod and spindle-shaped) that resemble the morphologies of viral families infecting archaea. There are very few, if any, direct observations of these viral morphologies in marine samples, although they have been observed in enrichment cultures and their signature genes detected in metagenomic studies from hydrothermal vents and marine sediments. Analysis of metagenomes from the JdFR crustal fluids revealed sequences with homology to archaeal viruses from the rudiviridae, bicaudaviridae and fuselloviridae. Prokaryotic communities in fluids percolating through the basaltic basement rock of the JdFR flank are distinct from those inhabiting the overlying sediments and seawater. Similarly, our data support the idea that the viral assemblage in these fluids is distinct from viral assemblages in other marine and terrestrial aquatic environments. Our data also suggest that viruses contribute to the mortality of deep subsurface prokaryotes through cell lysis, and viruses may alter the genetic potential of their hosts through the processes of lysogenic conversion and horizontal gene transfer.

  7. SU-E-T-319: Dosimetric Evaluation of IMRT with Mix-Energy Beam for Deep Seated Targets

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, S; Manigandan, D; Gandhi, A; Sharma, D; Subramani, V; Chander, S; Julkha, P [Fortis Hospital, Mohali, Punjab (India); Rath, G

    2015-06-15

    Purpose: IMRT is preferred in the range of 6–10MV X-rays. Partially adding high energy (>10MV) treatment fields, may provide advantage of both higher and lower energies. To study IMRT dose distribution obtained from treatment plans with single (6MV) and mixed-energy (6MV and 15MV) for deep seated targets (separation more than 30cm). Methods: Five patients of carcinoma of cervix were studied using eclipse planning system. Two different dynamic IMRT plans were generated for Varian CL2300C/D linear accelerator; one is by using 6MV X-ray with seven equally spaced coplanar beams. In second plan, 2 lateral oblique fields (gantry angle 102°, 255°) beam energy was modified to 15MV by keeping all other parameters and dose volume constraints constant. Dose prescription for the planning target volume (PTV) was (5040cGy/28f). For plan comparison, dose volume histogram (DVH) was used and PTV coverage index (CI=Target volume covered by prescription dose/Target volume), heterogeneity index (D5/D95), mean dose to organ at risk (OAR) and normal tissue integral dose (NTID, liter-Gray) was also noted. Total monitor unit (MU) required to deliver a plan was also noted. Results: Mixed-energy plan showed a better conformity and CI values were 0.942±0.032 and 0.960±0.040 for single-energy and mixed-energy plan, respectively. In addition, HI value of mixed energy beam is comparable to that of single energy and the values were within 1.084±0.034 and 1.082±0.032 for single energy and mixed-energy plan, respectively. Variation in mean dose to bladder, rectum and bowel were within 1.05%, 0.87% and 0.90%. NTID was lesser for mixed-energy beam due to use of two high-energy fields. NTID were 1573.40±214.60 and 1510.20±249.80 litre-Gray for single energy and mixed-energy plan. MU needed to deliver a plan was similar in both plans and MUs were 238±45 and 237±47. Conclusion: Partial use of 15MV treatment fields in IMRT plan for deep seated targets showed dosimetric advantage over 6MV

  8. Deep amplicon sequencing reveals mixed phytoplasma infection within single grapevine plants

    DEFF Research Database (Denmark)

    Nicolaisen, Mogens; Contaldo, Nicoletta; Makarova, Olga

    2011-01-01

    The diversity of phytoplasmas within single plants has not yet been fully investigated. In this project, deep amplicon sequencing was used to generate 50,926 phytoplasma sequences from 11 phytoplasma-infected grapevine samples from a PCR amplicon in the 5' end of the 16S region. After clustering ...

  9. Highly efficient deep ultraviolet generation by sum-frequency mixing ...

    Indian Academy of Sciences (India)

    Generation of deep ultraviolet radiation at 210 nm by Type-I third harmonic generation is achieved in a pair of BBO crystals with conversion efficiency as high as 36%. The fundamental source is the dye laser radiation pumped by the second harmonic of a Q-switched Nd : YAG laser. A walk-off compensated configuration ...

  10. Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models.

    Science.gov (United States)

    Khaligh-Razavi, Seyed-Mahdi; Henriksson, Linda; Kay, Kendrick; Kriegeskorte, Nikolaus

    2017-02-01

    Studies of the primate visual system have begun to test a wide range of complex computational object-vision models. Realistic models have many parameters, which in practice cannot be fitted using the limited amounts of brain-activity data typically available. Task performance optimization (e.g. using backpropagation to train neural networks) provides major constraints for fitting parameters and discovering nonlinear representational features appropriate for the task (e.g. object classification). Model representations can be compared to brain representations in terms of the representational dissimilarities they predict for an image set. This method, called representational similarity analysis (RSA), enables us to test the representational feature space as is (fixed RSA) or to fit a linear transformation that mixes the nonlinear model features so as to best explain a cortical area's representational space (mixed RSA). Like voxel/population-receptive-field modelling, mixed RSA uses a training set (different stimuli) to fit one weight per model feature and response channel (voxels here), so as to best predict the response profile across images for each response channel. We analysed response patterns elicited by natural images, which were measured with functional magnetic resonance imaging (fMRI). We found that early visual areas were best accounted for by shallow models, such as a Gabor wavelet pyramid (GWP). The GWP model performed similarly with and without mixing, suggesting that the original features already approximated the representational space, obviating the need for mixing. However, a higher ventral-stream visual representation (lateral occipital region) was best explained by the higher layers of a deep convolutional network and mixing of its feature set was essential for this model to explain the representation. We suspect that mixing was essential because the convolutional network had been trained to discriminate a set of 1000 categories, whose frequencies

  11. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  12. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  13. Analytical investigation of high temperature 1 kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation

    International Nuclear Information System (INIS)

    Azizi, Mohammad Ali; Brouwer, Jacob; Dunn-Rankin, Derek

    2016-01-01

    Highlights: • A dynamic Solid Oxide Fuel Cell (SOFC) model was developed. • Hydrate bed methane dissociation model was integrated with the SOFC model. • SOFC operated steadily for 120 days at high pressure deep ocean environment. • Burning some of the dissociated gas for SMR heat leads to more net methane produced. • Higher SOFC fuel utilization produces higher integrated system efficiency. - Abstract: Methane hydrates are potential valuable energy resources. However, finding an efficient method for methane gas recovery from hydrate sediments is still a challenge. New challenges arise from increasing environmental protection. This is due in part to the technical difficulties involved in the efficient dissociation of methane hydrates at high pressures. In this study, a new approach is proposed to produce valuable products of: 1. Net methane gas recovery from the methane hydrate sediment, and 2. Deep ocean power generation. We have taken the first steps toward utilization of a fuel cell system in methane gas recovery from deep ocean hydrate sediments. An integrated high pressure and high temperature solid oxide fuel cell (SOFC) and steam methane reformer (SMR) system is analyzed for this application and the recoverable amount of methane from deep ocean sediments is measured. System analysis is accomplished for two major cases regarding system performance: 1. Energy for SMR is provided by the burning part of the methane gas dissociated from the hydrate sediment. 2. Energy for SMR is provided through heat exchange with fuel cell effluent gases. We found that the total production of methane gas is higher in the first case compared to the second case. The net power generated by the fuel cell system is estimated for all cases. The primary goal of this study is to evaluate the feasibility of integrated electrochemical devices to accomplish energy efficient dissociation of methane hydrate gases in deep ocean sediments. Concepts for use of electrochemical devices

  14. Projected changes to South Atlantic boundary currents and confluence region in the CMIP5 models: the role of wind and deep ocean changes

    Science.gov (United States)

    Pontes, G. M.; Gupta, A. Sen; Taschetto, A. S.

    2016-09-01

    The South Atlantic (SA) circulation plays an important role in the oceanic teleconnections from the Indian, Pacific and Southern oceans to the North Atlantic, with inter-hemispheric exchanges of heat and salt. Here, we show that the large-scale features of the SA circulation are projected to change significantly under ‘business as usual’ greenhouse gas increases. Based on 19 models from the Coupled Model Intercomparison Project phase 5 there is a projected weakening in the upper ocean interior transport (stress curl over this region. The reduction in ocean interior circulation is largely compensated by a decrease in the net deep southward ocean transport (>1000 m), mainly related to a decrease in the North Atlantic deep water transport. Between 30° and 40°S, there is a consistent projected intensification in the Brazil current strength of about 40% (30%-58% interquartile range) primarily compensated by an intensification of the upper interior circulation across the Indo-Atlantic basin. The Brazil-Malvinas confluence is projected to shift southwards, driven by a weakening of the Malvinas current. Such a change could have important implications for the distribution of marine species in the southwestern SA in the future.

  15. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    Science.gov (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  16. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean.

    Directory of Open Access Journals (Sweden)

    Thomas J Webb

    Full Text Available BACKGROUND: Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean--the largest biome on Earth--is chronically under-represented in global databases of marine biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. CONCLUSIONS/SIGNIFICANCE: The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.

  17. The Structure of Sea Water and Gelatinous Water in the Deep Ocean

    Science.gov (United States)

    Peltzer, E. T.; Walz, P. M.; Wojciechowicz, M.; Brewer, P. G.

    2016-12-01

    Gelatinous life forms are common in the deep sea and are able to maintain a careful combination of body integrity and easy fluidity of motion over a wide range of T and P. They accomplish this in part by modifying the molecular structure of water. Both the transparent body of the organism (the mesoglea) and the structure of the immediate surrounding sea water were investigated by in situ laser Raman spectroscopy at depths from 300m to 2,800m. The structure of water is reasonably well known; the basic unit is a hydrogen bonded pentamer with defined stretching and bending modes. The spectrum of the bending band is separable into two components while the stretching band spectrum is composed of five components representing both intra- and inter-molecular vibrations. The effect of temperature on the various vibrational modes is complex. While the effect of pressure on the bending modes is small, but the effect of temperature and pressure on the stretching modes is significant and can be modeled as a van `t Hoff function. Our in situ experiments were conducted using MBARI's ROV Ventana and ROV Doc Ricketts. We collected cnidarians and ctenophores into a 6 L glass detritus sampler fitted with a metal grid plate. Once the animal was captured, we introduced argon gas through the lid of the sampler displacing the contained sea water and leaving a motionless sea water free specimen for spectroscopy. The laser beam was focused through the glass wall of the container and the focal point adjusted to be inside the gelatinous body. Our results very clearly show that:i) The gelatinous mass effectively excludes salts with zero sulfate ion being detected.ii) The water bending modes are absent from the gelatinous spectra.iii) The water stretching modes are highly modified from the typical 5 band liquid pentamer structure with only 3 vibrational modes observable. These results stand in marked contrast to the familiar household gelatin which is typically derived from bovine sources

  18. Splitting turbulence algorithm for mixing parameterization embedded in the ocean climate model. Examples of data assimilation and Prandtl number variations.

    Science.gov (United States)

    Moshonkin, Sergey; Gusev, Anatoly; Zalesny, Vladimir; Diansky, Nikolay

    2017-04-01

    Series of experiments were performed with a three-dimensional, free surface, sigma coordinate eddy-permitting ocean circulation model for Atlantic (from 30°S) - Arctic and Bering sea domain (0.25 degrees resolution, Institute of Numerical Mathematics Ocean Model or INMOM) using vertical grid refinement in the zone of fully developed turbulence (40 sigma-levels). The model variables are horizontal velocity components, potential temperature, and salinity as well as free surface height. For parameterization of viscosity and diffusivity, the original splitting turbulence algorithm (STA) is used when total evolutionary equations for the turbulence kinetic energy (TKE) and turbulence dissipation frequency (TDF) split into the stages of transport-diffusion and generation-dissipation. For the generation-dissipation stage the analytical solution was obtained for TKE and TDF as functions of the buoyancy and velocity shift frequencies (BF and VSF). The proposed model with STA is similar to the contemporary differential turbulence models, concerning the physical formulations. At the same time, its algorithm has high enough computational efficiency. For mixing simulation in the zone of turbulence decay, the two kind numerical experiments were carried out, as with assimilation of annual mean climatic buoyancy frequency, as with variation of Prandtl number function dependence upon the BF, VSF, TKE and TDF. The CORE-II data for 1948-2009 were used for experiments. Quality of temperature T and salinity S structure simulation is estimated by the comparison of model monthly profiles T and S averaged for 1980-2009, with T and S monthly data from the World Ocean Atlas 2013. Form of coefficients in equations for TKE and TDF on the generation-dissipation stage makes it possible to assimilate annual mean climatic buoyancy frequency in a varying degree that cardinally improves adequacy of model results to climatic data in all analyzed model domain. The numerical experiments with modified

  19. Structure of the oceanic mixed layer in western Bay of Bengal during MONEX

    Digital Repository Service at National Institute of Oceanography (India)

    Anto, A.F.; Somayajulu, Y.K.

    layer conditions of the overlying atmosphere. Structure of OML, as delineated with respect to the diurnal variation of temperature with depth, revealed three sub-layers: wave mixed, diurnal thermocline and transition layer. The first two sub...

  20. A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean

    Science.gov (United States)

    Wu, Yue-Hong; Liao, Li; Wang, Chun-Sheng; Ma, Wei-Lin; Meng, Fan-Xu; Wu, Min; Xu, Xue-Wei

    2013-09-01

    Deep-sea polymetallic nodules, rich in metals such as Fe, Mn, and Ni, are potential resources for future exploitation. Early culturing and microscopy studies suggest that polymetallic nodules are at least partially biogenic. To understand the microbial communities in this environment, we compared microbial community composition and diversity inside nodules and in the surrounding sediments. Three sampling sites in the Pacific Ocean containing polymetallic nodules were used for culture-independent investigations of microbial diversity. A total of 1013 near full-length bacterial 16S rRNA gene sequences and 640 archaeal 16S rRNA gene sequences with ~650 bp from nodules and the surrounding sediments were analyzed. Bacteria showed higher diversity than archaea. Interestingly, sediments contained more diverse bacterial communities than nodules, while the opposite was detected for archaea. Bacterial communities tend to be mostly unique to sediments or nodules, with only 13.3% of sequences shared. The most abundant bacterial groups detected only in nodules were Pseudoalteromonas and Alteromonas, which were predicted to play a role in building matrix outside cells to induce or control mineralization. However, archaeal communities were mostly shared between sediments and nodules, including the most abundant OTU containing 290 sequences from marine group I Thaumarchaeota. PcoA analysis indicated that microhabitat (i.e., nodule or sediment) seemed to be a major factor influencing microbial community composition, rather than sampling locations or distances between locations.

  1. Circulation, retention, and mixing of waters within the Weddell-Scotia Confluence, Southern Ocean: The role of stratified Taylor columns

    Science.gov (United States)

    Meredith, Michael P.; Meijers, Andrew S.; Naveira Garabato, Alberto C.; Brown, Peter J.; Venables, Hugh J.; Abrahamsen, E. Povl; Jullion, Loïc.; Messias, Marie-José

    2015-01-01

    The waters of the Weddell-Scotia Confluence (WSC) lie above the rugged topography of the South Scotia Ridge in the Southern Ocean. Meridional exchanges across the WSC transfer water and tracers between the Antarctic Circumpolar Current (ACC) to the north and the subpolar Weddell Gyre to the south. Here, we examine the role of topographic interactions in mediating these exchanges, and in modifying the waters transferred. A case study is presented using data from a free-drifting, intermediate-depth float, which circulated anticyclonically over Discovery Bank on the South Scotia Ridge for close to 4 years. Dimensional analysis indicates that the local conditions are conducive to the formation of Taylor columns. Contemporaneous ship-derived transient tracer data enable estimation of the rate of isopycnal mixing associated with this column, with values of O(1000 m2/s) obtained. Although necessarily coarse, this is of the same order as the rate of isopycnal mixing induced by transient mesoscale eddies within the ACC. A picture emerges of the Taylor column acting as a slow, steady blender, retaining the waters in the vicinity of the WSC for lengthy periods during which they can be subject to significant modification. A full regional float data set, bathymetric data, and a Southern Ocean state estimate are used to identify other potential sites for Taylor column formation. We find that they are likely to be sufficiently widespread to exert a significant influence on water mass modification and meridional fluxes across the southern edge of the ACC in this sector of the Southern Ocean.

  2. Deep subduction of hot young oceanic slab required by the Syros eclogites

    Science.gov (United States)

    Flemetakis, Stamatis; Moulas, Evangelos; Kostopoulos, Dimitrios; Chatzitheodoridis, Elias

    2014-05-01

    The Cycladic islands of Syros and Siphnos, Aegean Sea, Greece, represent subducted IAT and BABB remnants of the Neotethyan Pindos Ocean. Garnet porphyroblasts (Ø=1mm) in a glaucophane-zoisite eclogite from Kini locality on Syros are compositionally zoned and display a unique prograde heating path from a high-pressure greenschist-facies core with high XSps and low Mg# via a blueschist-facies mantle with moderate XSps and Mg# to an eclogite-facies rim with low XSps and high Mg#. The outermost 35 μm of the garnet rims show flat XSps with rapidly increasing outwards Mg#. Na-Act-Chl-Ph rimmed by Gln mark the greenschist-blueschist facies transition, whereas Pg rimmed by Omp and the incoming of Rt at the expense of Ttn signify the blueschist-eclogite facies transition. Raman barometry of quartz inclusions in the eclogitic garnet rims coupled with elastic modelling of the garnet host [1], and Zr-in-Rt and Grt-Cpx-Ph thermobarometry revealed near-UHP P-T conditions of the order of 2.6 GPa/660°C (maximum residual pressure was 0.8-0.9GPa). By contrast, the greenschist-blueschist transition lies at ~0.75 GPa/355°C. This pressure is in excellent agreement with the position of the albite = jadeite + quartz boundary calculated at 350°C using the observed omphacite composition corrected for jadeite activity (Koons & Thompson, 1985) [2]. As a result, Cpx inclusions in garnet core signify the early entrance of garnet in the subduction zone history of the slab. Furthermore, the early growth of garnet (in lower pressures) observed in eclogites from Syros lies in great agreement with published slab-geotherms that indicate hot subduction and show a precocious garnet growth (Baxter and Caddick, 2013) [3]. The complete absence of lawsonite and the great abundance of zoisite crystals, based on the stability fields of both minerals (Poli et al., 2009) [4], further constrain the P-T trajectory of the slab. Our new P-T estimates match published T distributions on the slab surface

  3. Interactive effects of vertical mixing, solar radiation and microbial activity on oceanic dimethylated sulfur cycling

    OpenAIRE

    Galí Tàpias, Martí

    2012-01-01

    The production and subsequent emission of volatile compounds is one of the numerous ways by which microbial plankton participate in the cycling of elements and influence the Earth's climate. Dimethylsulfide (DMS), produced by enzymatic decomposition of the algal intracellular compound dimethylsulfoniopropionate (DMSP), is the more abundant organic volatile in the upper ocean. Its global emission amounts ca. 28 Tg S per year, and represents the main biogenic source of sulfur to the troposphere...

  4. ON THE NEED FOR DEEP-MIXING IN ASYMPTOTIC GIANT BRANCH STARS OF LOW MASS

    International Nuclear Information System (INIS)

    Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Abia, C.; Straniero, O.; Gallino, R.; Cognata, M. La

    2010-01-01

    The photospheres of low-mass red giants show CNO isotopic abundances that are not satisfactorily accounted for by canonical stellar models. The same is true for the measurements of these isotopes and of the 26 Al/ 27 Al ratio in presolar grains of circumstellar origin. Non-convective mixing, occurring during both red giant branch (RGB) and asymptotic giant branch (AGB) stages, is the explanation commonly invoked to account for the above evidence. Recently, the need for such mixing phenomena on the AGB was questioned, and chemical anomalies usually attributed to them were suggested to be formed in earlier phases. We have therefore re-calculated extra-mixing effects in low-mass stars for both the RGB and AGB stages, in order to verify the above claims. Our results contradict them; we actually confirm that slow transport below the convective envelope occurs also on the AGB. This is required primarily by the oxygen isotopic mix and the 26 Al content of presolar oxide grains. Other pieces of evidence exist, in particular from the isotopic ratios of carbon stars of type N, or C(N), in the Galaxy and in the LMC, as well as of SiC grains of AGB origin. We further show that, when extra-mixing occurs in the RGB phases of Population I stars above about 1.2 M sun , this consumes 3 He in the envelope, probably preventing the occurrence of thermohaline diffusion on the AGB. Therefore, we argue that other extra-mixing mechanisms should be active in those final evolutionary phases.

  5. Molar enthalpy of mixing and refractive indices of choline chloride-based deep eutectic solvents with water

    International Nuclear Information System (INIS)

    Ma, Chunyan; Guo, Yanhua; Li, Dongxue; Zong, Jianpeng; Ji, Xiaoyan; Liu, Chang

    2017-01-01

    Highlights: • Molar enthalpy of mixing and refractive indices for binary mixtures of different deep eutectic solvents with water. • The Redlich–Kister equation and the NRTL model was used to fit the experimental data. • The NRTL model with fitted parameters were used to predict the vapour pressure and compared with experimental data. - Abstract: The molar enthalpies of mixing were measured for binary systems of choline chloride-based deep eutectic solvents (glycerol, ethylene glycol and malonic acid) with water at 298.15 K and 308.15 K, and atmospheric pressure with an isothermal calorimeter. Refractive indices were also measured at 303.15 K and atmospheric pressure. The binary mixtures of {chcl/glycerol (1:2) + water, chcl/ethylene glycol (1:2) + water} showed exothermic behaviour over the entire range of composition, while the binary mixture of {chcl/malonic acid (1:1) + water} showed endothermic behaviour at first and then changed to be exothermic with the increasing content of chcl/malonic acid (1:1). Experimental refractive indices were fitted with the Redlich–Kister equation, and experimental molar enthalpies of mixing were correlated with the Redlich–Kister equation and the non-random two-liquid (NRTL) model. The NRTL model with the fitted parameters was used to predict the vapour pressures of these three mixtures. For mixtures of {chcl/glycerol (1:2) + water} and {chcl/ethylene glycol (1:2) + water}, the predicted vapour pressures agreed well with the experimental results from the literature. While for mixture of {chcl/malonic acid (1:1) + water}, the predicted vapour pressures showed deviation at the high concentration of chcl/malonic acid (1:1), and this was probably because of the complex molecular interaction between chcl/malonic acid (1:1) and water.

  6. Impact of Lateral Mixing in the Ocean on El Nino in Fully Coupled Climate Models

    Science.gov (United States)

    Gnanadesikan, A.; Russell, A.; Pradal, M. A. S.; Abernathey, R. P.

    2016-02-01

    Given the large number of processes that can affect El Nino, it is difficult to understand why different climate models simulate El Nino differently. This paper focusses on the role of lateral mixing by mesoscale eddies. There is significant disagreement about the value of the mixing coefficient ARedi which parameterizes the lateral mixing of tracers. Coupled climate models usually prescribe small values of this coefficient, ranging between a few hundred and a few thousand m2/s. Observations, however, suggest values that are much larger. We present a sensitivity study with a suite of Earth System Models that examines the impact of varying ARedi on the amplitude of El Nino. We examine the effect of varying a spatially constant ARedi over a range of values similar to that seen in the IPCC AR5 models, as well as looking at two spatially varying distributions based on altimetric velocity estimates. While the expectation that higher values of ARedi should damp anomalies is borne out in the model, it is more than compensated by a weaker damping due to vertical mixing and a stronger response of atmospheric winds to SST anomalies. Under higher mixing, a weaker zonal SST gradient causes the center of convection over the Warm pool to shift eastward and to become more sensitive to changes in cold tongue SSTs . Changes in the SST gradient also explain interdecadal ENSO variability within individual model runs.

  7. Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages

    Science.gov (United States)

    Galbraith, Eric; de Lavergne, Casimir

    2018-03-01

    Over the past few million years, the Earth descended from the relatively warm and stable climate of the Pliocene into the increasingly dramatic ice age cycles of the Pleistocene. The influences of orbital forcing and atmospheric CO2 on land-based ice sheets have long been considered as the key drivers of the ice ages, but less attention has been paid to their direct influences on the circulation of the deep ocean. Here we provide a broad view on the influences of CO2, orbital forcing and ice sheet size according to a comprehensive Earth system model, by integrating the model to equilibrium under 40 different combinations of the three external forcings. We find that the volume contribution of Antarctic (AABW) vs. North Atlantic (NADW) waters to the deep ocean varies widely among the simulations, and can be predicted from the difference between the surface densities at AABW and NADW deep water formation sites. Minima of both the AABW-NADW density difference and the AABW volume occur near interglacial CO2 (270-400 ppm). At low CO2, abundant formation and northward export of sea ice in the Southern Ocean contributes to very salty and dense Antarctic waters that dominate the global deep ocean. Furthermore, when the Earth is cold, low obliquity (i.e. a reduced tilt of Earth's rotational axis) enhances the Antarctic water volume by expanding sea ice further. At high CO2, AABW dominance is favoured due to relatively warm subpolar North Atlantic waters, with more dependence on precession. Meanwhile, a large Laurentide ice sheet steers atmospheric circulation as to strengthen the Atlantic Meridional Overturning Circulation, but cools the Southern Ocean remotely, enhancing Antarctic sea ice export and leading to very salty and expanded AABW. Together, these results suggest that a `sweet spot' of low CO2, low obliquity and relatively small ice sheets would have poised the AMOC for interruption, promoting Dansgaard-Oeschger-type abrupt change. The deep ocean temperature and

  8. Resolving both entrainment-mixing and number of activated CCN in deep convective clouds

    Directory of Open Access Journals (Sweden)

    E. Freud

    2011-12-01

    Full Text Available The number concentration of activated CCN (Na is the most fundamental microphysical property of a convective cloud. It determines the rate of droplet growth with cloud depth and conversion into precipitation-sized particles and affects the radiative properties of the clouds. However, measuring Na is not always possible, even in the cores of the convective clouds, because entrainment of sub-saturated ambient air deeper into the cloud lowers the concentrations by dilution and may cause partial or total droplet evaporation, depending on whether the mixing is homogeneous or extreme inhomogeneous, respectively.

    Here we describe a methodology to derive Na based on the rate of cloud droplet effective radius (Re growth with cloud depth and with respect to the cloud mixing with the entrained ambient air. We use the slope of the tight linear relationship between the adiabatic liquid water mixing ratio and Re3 (or Rv3 to derive an upper limit for Na assuming extreme inhomogeneous mixing. Then we tune Na down to find the theoretical relative humidity that the entrained ambient air would have for each horizontal cloud penetration, in case of homogeneous mixing. This allows us to evaluate both the entrainment and mixing process in the vertical dimension in addition to getting a better estimation for Na.

    We found that the derived Na from the entire profile data is highly correlated with the independent CCN measurements from below cloud base. Moreover, it was found that mixing of sub-saturated ambient air into the cloud at scales of ~100 m and above is inclined towards the extreme inhomogeneous limit, i.e. that the time scale of droplet evaporation is significantly smaller than that for turbulent mixing. This means that ambient air that entrains

  9. Radiogenic Isotopes As Paleoceanographic Tracers in Deep-Sea Corals: Advances in TIMS Measurements of Pb Isotopes and Application to Southern Ocean Corals

    Science.gov (United States)

    Wilson, D. J.; van de Flierdt, T.; Bridgestock, L. J.; Paul, M.; Rehkamper, M.; Robinson, L. F.; Adkins, J. F.

    2014-12-01

    Deep-sea corals have emerged as a valuable archive of deep ocean paleoceanographic change, with uranium-series dating providing absolute ages and the potential for centennial resolution. In combination with measurements of radiocarbon, neodymium isotopes and clumped isotopes, this archive has recently been exploited to reconstruct changes in ventilation, water mass sourcing and temperature in relation to millennial climate change. Lead (Pb) isotopes in both corals and seawater have also been used to track anthropogenic inputs through space and time and to trace transport pathways within the oceans. Better understanding of the oceanic Pb cycle is emerging from the GEOTRACES programme. However, while Pb isotopes have been widely used in environmental studies, their full potential as a (pre-anthropogenic) paleoceanographic tracer remains to be exploited. In deep-sea corals, challenges exist from low Pb concentrations in aragonite in comparison to secondary coatings, the potential for contamination, and the efficient elemental separation required for measurement by thermal ionisation mass spectrometry (TIMS). Here we discuss progress in measuring Pb isotopes in coral aragonite using a 207Pb-204Pb double spike on a ThermoFinnigan Triton TIMS. For a 2 ng NIST-981 Pb standard, the long term reproducibility (using 1011 Ω resistors) is ~1000 ppm (2 s.d.) on 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios. We now show that using a new 1012 Ω resistor to measure the small 204Pb beam improves the internal precision on these ratios from ~500 ppm (2 s.e.) to ~250 ppm (2 s.e.) and we envisage a potential improvement in the long term reproducibility as a consequence. We further assess the internal precision and external reproducibility of our method using a BCR-2 rock standard and an in-house coral standard. Preliminary evidence on the application of this method to natural samples is derived from cleaning experiments and replication tests on deep-sea corals from the Southern

  10. Higher Anti-Liver Fibrosis Effect of Cordyceps militaris-Fermented Product Cultured with Deep Ocean Water via Inhibiting Proinflammatory Factors and Fibrosis-Related Factors Expressions

    OpenAIRE

    Hung, Yu-Ping; Lee, Chun-Lin

    2017-01-01

    Deep ocean water (DOW) has been shown to enhance the functional components of fungi, resulting in increased health benefits. Therefore, using DOW for culturing fungi can enhance the cordycepin and adenosine of Cordyceps militaris (CM) and its protective effects on the liver. In this study, the antiliver fibrosis effects and mechanisms of ultrapure water-cultured CM (UCM), DOW-cultured CM (DCM), synthetic water-cultured CM, DOW, cordycepin, and adenosine were compared in the liver fibrosis mic...

  11. A feasibility study of the disposal of radioactive waste in deep ocean sediments by drilled emplacement: 1. A review of alternatives

    International Nuclear Information System (INIS)

    1983-01-01

    This report describes the first stage of an engineering study of the disposal of high level radioactive waste in holes formed deep in the ocean floor. In this phase, the emphasis has been on establishing reference criteria, assessing the problems and evaluating potential solutions. The report concludes that there are no aspects that appear technically infeasible, but questions of safety and reliability of certain aspects require further investigation. (author)

  12. A case of mixed type laryngocele presented with deep neck infection and review of the literature

    Directory of Open Access Journals (Sweden)

    Salih Bakır

    2012-09-01

    Full Text Available Laryngocele is an abnormal dilatation of the laryngeal ventricular saccule that may extend into the subcutaneous tissues of the neck through the thyrohyoid membrane or confined to the endolarynx. The etiology is still unclear. Many laryngoceles are asymptomatic. An asymptomatic laryngocele appears and produces symptoms only as it enlarges or when it becomes infected. In this report, we present a 40-year-old female patient, which had an asymptomatic neck swelling for 20 years, referred for deep neck infection, dysphonia and dyspnea. J Clin Exp Invest 2012; 3 (3: 415-419Key words: Larynx, laryngocele, laryngopyocele, neck mass

  13. Backward-in-time methods to simulate large-scale transport and mixing in the ocean

    Science.gov (United States)

    Prants, S. V.

    2015-06-01

    In oceanography and meteorology, it is important to know not only where water or air masses are headed for, but also where they came from as well. For example, it is important to find unknown sources of oil spills in the ocean and of dangerous substance plumes in the atmosphere. It is impossible with the help of conventional ocean and atmospheric numerical circulation models to extrapolate backward from the observed plumes to find the source because those models cannot be reversed in time. We review here recently elaborated backward-in-time numerical methods to identify and study mesoscale eddies in the ocean and to compute where those waters came from to a given area. The area under study is populated with a large number of artificial tracers that are advected backward in time in a given velocity field that is supposed to be known analytically or numerically, or from satellite and radar measurements. After integrating advection equations, one gets positions of each tracer on a fixed day in the past and can identify from known destinations a particle positions at earlier times. The results provided show that the method is efficient, for example, in estimating probabilities to find increased concentrations of radionuclides and other pollutants in oceanic mesoscale eddies. The backward-in-time methods are illustrated in this paper with a few examples. Backward-in-time Lagrangian maps are applied to identify eddies in satellite-derived and numerically generated velocity fields and to document the pathways by which they exchange water with their surroundings. Backward-in-time trapping maps are used to identify mesoscale eddies in the altimetric velocity field with a risk to be contaminated by Fukushima-derived radionuclides. The results of simulations are compared with in situ mesurement of caesium concentration in sea water samples collected in a recent research vessel cruise in the area to the east of Japan. Backward-in-time latitudinal maps and the corresponding

  14. Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean)

    Science.gov (United States)

    Gambi, C.; Vanreusel, A.; Danovaro, R.

    2003-01-01

    Nematode assemblages were investigated (in terms of size spectra, sex ratio, Shannon diversity, trophic structure and diversity, rarefaction statistics, maturity index, taxonomic diversity and taxonomic distinctness) at bathyal and hadal depths (from 1050 to 7800 m) in the deepest trench of the South Pacific Ocean: the Trench of Atacama. This area, characterised by very high concentrations of nutritionally-rich organic matter also at 7800-m depth, displayed characteristics typical of eutrophic systems and revealed high nematode densities (>6000 ind. 10 cm -2). Nematode assemblages from the Atacama Trench displayed a different composition than at bathyal depths. At bathyal depths 95 genera and 119 species were found (Comesomatidae, Cyatholaimidae, Microlaimidae, Desmodoridae and Xyalidae being dominant), whereas in the Atacama Trench only 29 genera and 37 species were encountered (dominated by Monhysteridae, Chromadoridae, Microlaimidae, Oxystominidae and Xyalidae). The genus Monhystera (24.4%) strongly dominated at hadal depths and Neochromadora, and Trileptium were observed only in the Atacama Trench, but not at bathyal depths. A reduction of the mean nematode size (by ca. 67%) was observed between bathyal and hadal depths. Since food availability was not a limiting factor in the Atacama Trench sediments, other causes are likely to be responsible for the reduction of nematode species richness and body size. The presence of a restricted number of families and genera in the Atacama Trench might indicate that hadal sediments limited nematode colonisation. Most of the genera reaching very high densities in Trench sediments (e.g., Monhystera) are opportunistic and were responsible for the significant decrease of the maturity index. The dominance of opportunists, which are known to be characterised by small sizes, might have contributed to the reduced nematode size at hadal depths. Shannon diversity and species richness decreased in hadal water depth and this pattern

  15. Reconnaissance dating: a new radiocarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals

    Science.gov (United States)

    Burke, Andrea; Robinson, Laura F.; McNichol, Ann P.; Jenkins, William J.; Scanlon, Kathryn M.; Gerlach, Dana S.

    2010-01-01

    We have developed a rapid 'reconnaissance' method of preparing graphite for 14C/12C analysis. Carbonate (~15 mg) is combusted using an elemental analyzer and the resulting CO2 is converted to graphite using a sealed tube zinc reduction method. Over 85% (n=45 replicates on twenty-one individual corals) of reconnaissance ages measured on corals ranging in age from 500 to 33,000 radiocarbon years (Ryr) are within two standard deviations of ages generated using standard hydrolysis methods on the same corals, and all reconnaissance ages are within 300 Ryr of the standard hydrolysis ages. Replicate measurements on three individual aragonitic corals yielded ages of 1076±35 Ryr (standard deviation; n=5), 10,739±47 Ryr (n=8), and 40,146±3500 Ryr (n=9). No systematic biases were found using different cleaning methods or variable sample sizes. Analysis of 13C/12C was made concurrently with the 14C/12C measurement to correct for natural fractionation and for fractionation during sample processing and analysis. This technique provides a new, rapid method for making accurate, percent-level 14C/12C analyses that may be used to establish the rates and chronology of earth system processes where survey-type modes of age estimation are desirable. For example, applications may include creation of sediment core-top maps, preliminary age models for sediment cores, and growth rate studies of marine organisms such as corals or mollusks. We applied the reconnaissance method to more than 100 solitary deep-sea corals collected in the Drake Passage in the Southern Ocean to investigate their temporal and spatial distribution. The corals used in this study are part of a larger sample set, and the subset that was dated was chosen based on species as opposed to preservation state, so as to exclude obvious temporal biases. Similar to studies in other regions, the distribution of deep-sea corals is not constant through time across the Drake Passage. Most of the corals from the Burdwood Bank

  16. Dive Activities from Cruise Information Management System (CIMS) for Operation Deep Scope 2005 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded into the Cruise Information Management System (CIMS) by the NOAA Office of Ocean Exploration's data manager during...

  17. Dive Data from Expedition Information System (EIS) for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  18. Non-Dive Activities for Islands in the Stream 2002 - Deep Reef Habitat - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Expeditions Information System (EIS) contains information recorded by the NOAA Office of Ocean Exploration's data manager during the 2002 "Islands in the Stream...

  19. DEEP MIXING IN EVOLVED STARS. II. INTERPRETING Li ABUNDANCES IN RED GIANT BRANCH AND ASYMPTOTIC GIANT BRANCH STARS

    International Nuclear Information System (INIS)

    Palmerini, S.; Busso, M.; Maiorca, E.; Cristallo, S.; Abia, C.; Uttenthaler, S.; Gialanella, L.

    2011-01-01

    We reanalyze the problem of Li abundances in red giants of nearly solar metallicity. After outlining the problems affecting our knowledge of the Li content in low-mass stars (M ≤ 3 M sun ), we discuss deep-mixing models for the red giant branch stages suitable to account for the observed trends and for the correlated variations of the carbon isotope ratio; we find that Li destruction in these phases is limited to masses below about 2.3 M sun . Subsequently, we concentrate on the final stages of evolution for both O-rich and C-rich asymptotic giant branch (AGB) stars. Here, the constraints on extra-mixing phenomena previously derived from heavier nuclei (from C to Al), coupled to recent updates in stellar structure models (including both the input physics and the set of reaction rates used), are suitable to account for the observations of Li abundances below A(Li) ≡ log ε(Li) ≅ 1.5 (and sometimes more). Also, their relations with other nucleosynthesis signatures of AGB phases (like the abundance of F, and the C/O and 12 C/ 13 C ratios) can be explained. This requires generally moderate efficiencies (M-dot -6 M sun yr -1 ) for non-convective mass transport. At such rates, slow extra mixing does not remarkably modify Li abundances in early AGB phases; on the other hand, faster mixing encounters a physical limit in destroying Li, set by the mixing velocity. Beyond this limit, Li starts to be produced; therefore, its destruction on the AGB is modest. Li is then significantly produced by the third dredge up. We also show that effective circulation episodes, while not destroying Li, would easily bring the 12 C/ 13 C ratios to equilibrium, contrary to the evidence in most AGB stars, and would burn F beyond the limits shown by C(N) giants. Hence, we do not confirm the common idea that efficient extra mixing drastically reduces the Li content of C stars with respect to K-M giants. This misleading appearance is induced by biases in the data, namely: (1) the difficulty

  20. The oceanic chemistry of the U- and Th-series nuclides

    International Nuclear Information System (INIS)

    Cochran, J.K.

    1982-01-01

    The subject is discussed under the headings: input and removal of U- and Th-series nuclides in the oceans; uranium (input to the oceans; in the coastal ocean; in the open ocean; in sediment pore water; removal from the oceans; sources and sinks of 234 U in the oceans); thorium (scavenging in the deep sea; 230 Th and 231 Pa balance; removal from the coastal and surface ocean); Ra-226 and Ra-228; radon (in surface waters; near bottom 222 Rn as a tracer for vertical mixing); lead-210; polonium-210. (U.K.)

  1. Deep Mixing of 3He: Reconciling Big Bang and Stellar Nucleosynthesis

    International Nuclear Information System (INIS)

    Eggleton, P P; Dearborn, D P; Lattanzio, J

    2006-01-01

    Low-mass stars, ∼ 1-2 solar masses, near the Main Sequence are efficient at producing 3 He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3 He with the predictions of both stellar and Big Bang nucleosynthesis. In this paper we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus we are able to remove the threat that 3 He production in low-mass stars poses to the Big Bang nucleosynthesis of 3 He

  2. Deep mixing of 3He: reconciling Big Bang and stellar nucleosynthesis.

    Science.gov (United States)

    Eggleton, Peter P; Dearborn, David S P; Lattanzio, John C

    2006-12-08

    Low-mass stars, approximately 1 to 2 solar masses, near the Main Sequence are efficient at producing the helium isotope 3He, which they mix into the convective envelope on the giant branch and should distribute into the Galaxy by way of envelope loss. This process is so efficient that it is difficult to reconcile the low observed cosmic abundance of 3He with the predictions of both stellar and Big Bang nucleosynthesis. Here we find, by modeling a red giant with a fully three-dimensional hydrodynamic code and a full nucleosynthetic network, that mixing arises in the supposedly stable and radiative zone between the hydrogen-burning shell and the base of the convective envelope. This mixing is due to Rayleigh-Taylor instability within a zone just above the hydrogen-burning shell, where a nuclear reaction lowers the mean molecular weight slightly. Thus, we are able to remove the threat that 3He production in low-mass stars poses to the Big Bang nucleosynthesis of 3He.

  3. Quantitative and phylogenetic study of the Deep Sea Archaeal Group in sediments of the arctic mid-ocean spreading ridge

    Directory of Open Access Journals (Sweden)

    Steffen Leth eJørgensen

    2013-10-01

    Full Text Available In marine sediments archaea often constitute a considerable part of the microbial community, of which the Deep Sea Archaeal Group (DSAG is one of the most predominant. Despite their high abundance no members from this archaeal group have so far been characterized and thus their metabolism is unknown. Here we show that the relative abundance of DSAG marker genes can be correlated with geochemical parameters, allowing prediction of both the potential electron donors and acceptors of these organisms. We estimated the abundance of 16S rRNA genes from Archaea, Bacteria and DSAG in 52 sediment horizons from two cores collected at the slow-spreading Arctic Mid-Ocean Ridge, using qPCR. The results indicate that members of the DSAG make up the entire archaeal population in certain horizons and constitute up to ~ 50% of the total microbial community. The quantitative data were correlated to 30 different geophysical and geochemical parameters obtained from the same sediment horizons. We observed a significant correlation between the relative abundance of DSAG 16S rRNA genes and the content of organic carbon (p < 0.0001. Further, significant co-variation with iron oxide, and dissolved iron and manganese (all p < 0.0000, indicated a direct or indirect link to iron and manganese cycling. Neither of these parameters correlated with the relative abundance of archaeal or bacterial 16S rRNA genes, nor did any other major electron donor or acceptor measured. Phylogenetic analysis of DSAG 16S rRNA gene sequences reveals three monophyletic lineages with no apparent habitat-specific distribution. In this study we support the hypothesis that members of the DSAG are tightly linked to the content of organic carbon and directly or indirectly involved in the cycling of iron and/or manganese compounds. Further, we provide a molecular tool to assess their abundance in environmental samples and enrichment cultures.

  4. Digital Video taken during Johnson-Sea-Link submersible dive 4922 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 18, 2005 (NCEI Accession 0036658)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These video data were recorded during the Florida Coast Deep Corals mission of 2005. Data gathered during this expedition provide a strong foundation of information...

  5. Digital Video taken during Johnson-Sea-Link submersible dive 4916 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 11, 2005 (NCEI Accession 0036986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These video data were recorded during the Florida Coast Deep Corals mission of 2005. Data gathered during this expedition provide a strong foundation of information...

  6. Digital Video taken during Johnson-Sea-Link submersible dive 4918 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 16, 2005 (NCEI Accession 0036895)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  7. Digital Video taken during Johnson-Sea-Link submersible dive 4919 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 17, 2005 (NCEI Accession 0036826)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  8. Digital Video taken during Johnson-Sea-Link submersible dive 4920 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 17, 2005 (NCEI Accession 0036825)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  9. Digital Video taken during Johnson-Sea-Link submersible dive 4914 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 10, 2005 (NCEI Accession 0037043)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  10. Digital Video taken during Johnson-Sea-Link submersible dive 4921 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 18, 2005 (NCEI Accession 0036824)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  11. Digital Video taken during Johnson-Sea-Link submersible dive 4911 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 09, 2005 (NCEI Accession 0036985)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  12. Digital Video taken during Johnson-Sea-Link submersible dive 4909 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 08, 2005 (NCEI Accession 0036667)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  13. Digital Video taken during Johnson-Sea-Link submersible dive 4913 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 10, 2005 (NCEI Accession 0037065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  14. Digital Video taken during Johnson-Sea-Link submersible dive 4917 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 16, 2005 (NCEI Accession 0036972)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  15. Digital Video taken during Johnson-Sea-Link submersible dive 4912 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 09, 2005 (NCEI Accession 0037102)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  16. Digital Video taken during Johnson-Sea-Link submersible dive 4910 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 08, 2005 (NCEI Accession 0036668)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  17. Digital Video taken during Johnson-Sea-Link submersible dive 4915 of the NOAA Office of Ocean Exploration's Florida Coast Deep Corals 2005 cruise, November 11, 2005 (NCEI Accession 0037022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This video data was recorded during the Florida Coast Deep Corals mission of 2005. The data gathered during this expedition provided a strong foundation of...

  18. Some Remarks on Practical Aspects of Laboratory Testing of Deep Soil Mixing Composites Achieved in Organic Soils

    Science.gov (United States)

    Kanty, Piotr; Rybak, Jarosław; Stefaniuk, Damian

    2017-10-01

    This paper presents the results of laboratory testing of organic soil-cement samples are presented in the paper. The research program continues previously reported the authors’ experiences with cement-fly ash-soil sample testing. Over 100 of compression and a dozen of tension tests have been carried out altogether. Several samples were waiting for failure test for over one year after they were formed. Several factors, like: the large amount of the tested samples, a long observation time, carrying out the tests in complex cycles of loading and the possibility of registering the loads and deformation in the axial and lateral direction - have made it possible to take into consideration numerous interdependencies, three of which have been presented in this work: the increments of compression strength, the stiffness of soil-cement in relation to strength and the tensile strength. Compressive strength, elastic modulus and tensile resistance of cubic samples were examined. Samples were mixed and stored in the laboratory conditions. Further numerical analysis in the Finite Element Method numerical code Z_Soil, were performed on the basis of laboratory test results. Computations prove that cement-based stabilization of organic soil brings serious risks (in terms of material capacity and stiffness) and Deep Soil Mixing technology should not be recommended for achieving it. The numerical analysis presented in the study below includes only one type of organic and sandy soil and several possible geometric combinations. Despite that, it clearly points to the fact that designing the DSM columns in the organic soil may be linked with a considerable risk and the settlement may reach too high values. During in situ mixing, the organic material surrounded by sand layers surely mixes with one another in certain areas. However, it has not been examined and it is difficult to assume such mixing already at the designing stage. In case of designing the DSM columns which goes through a

  19. Bay Ridge Gardens - Mixed Humid Affordable Multifamily Housing Deep Energy Retrofit

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moore, Mike [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Thompson, Margo [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2013-08-01

    Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost effectiveness of efficiency upgrade measures for a tenant-in-place deep energy retrofit (DER) at the Bay Ridge multifamily development in Annapolis, Maryland. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a "base scope" retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a "DER scope" which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

  20. Numerical investigations of the fluid flows at deep oceanic and arctic permafrost-associated gas hydrate deposits

    Science.gov (United States)

    Frederick, Jennifer Mary

    older than the host sediment. Old pore fluid age may reflect complex flow patterns, such a fluid focusing, which can cause significant lateral migration as well as regions where downward flow reverses direction and returns toward the seafloor. Longer pathlines can produce pore fluid ages much older than that expected with a one-dimensional compaction model. For steady-state models with geometry representative of Blake Ridge (USA), a well-studied hydrate province, pore fluid ages beneath regions of topography and within fractured zones can be up to 70 Ma old. Results suggest that the measurements of 129-I/127-I reflect a mixture of new and old pore fluid. However, old pore fluid need not originate at great depths. Methane within pore fluids can travel laterally several kilometers, implying an extensive source region around the deposit. Iodine age measurements support the existence of fluid focusing beneath regions of seafloor topography at Blake Ridge, and suggest that the methane source at Blake Ridge is likely shallow. The response of methane hydrate reservoirs to warming is poorly understood. The great depths may protect deep oceanic hydrates from climate change for the time being because transfer of heat by conduction is slow, but warming will eventually be felt albeit in the far future. On the other hand, unique permafrost-associated methane hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Arctic hydrates are thought to be a relict of cold glacial periods, aggrading when sea levels are much lower and shelf sediments are exposed to freezing air temperatures. During interglacial periods, rising sea levels flood the shelf, bringing dramatic warming to the permafrost- and hydrate-bearing sediments. Permafrost-associated methane hydrate deposits have been responding to warming since the last glacial maximum ~18 kaBP as a consequence of these natural glacial cycles. This `experiment,' set into motion by nature itself

  1. Changes in ocean circulation and carbon storage are decoupled from air-sea CO2 fluxes

    Science.gov (United States)

    Marinov, I.; Gnanadesikan, A.

    2011-02-01

    The spatial distribution of the air-sea flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven air-sea fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.

  2. Impact of open-ocean convection on particle fluxes and sediment dynamics in the deep margin of the Gulf of Lions

    Directory of Open Access Journals (Sweden)

    M. Stabholz

    2013-02-01

    Full Text Available The deep outer margin of the Gulf of Lions and the adjacent basin, in the western Mediterranean Sea, are regularly impacted by open-ocean convection, a major hydrodynamic event responsible for the ventilation of the deep water in the western Mediterranean Basin. However, the impact of open-ocean convection on the flux and transport of particulate matter remains poorly understood. The variability of water mass properties (i.e., temperature and salinity, currents, and particle fluxes were monitored between September 2007 and April 2009 at five instrumented mooring lines deployed between 2050 and 2350-m depth in the deepest continental margin and adjacent basin. Four of the lines followed a NW–SE transect, while the fifth one was located on a sediment wave field to the west. The results of the main, central line SC2350 ("LION" located at 42°02.5′ N, 4°41′ E, at 2350-m depth, show that open-ocean convection reached mid-water depth (≈ 1000-m depth during winter 2007–2008, and reached the seabed (≈ 2350-m depth during winter 2008–2009. Horizontal currents were unusually strong with speeds up to 39 cm s−1 during winter 2008–2009. The measurements at all 5 different locations indicate that mid-depth and near-bottom currents and particle fluxes gave relatively consistent values of similar magnitude across the study area except during winter 2008–2009, when near-bottom fluxes abruptly increased by one to two orders of magnitude. Particulate organic carbon contents, which generally vary between 3 and 5%, were abnormally low (≤ 1% during winter 2008–2009 and approached those observed in surface sediments (≈ 0.6%. Turbidity profiles made in the region demonstrated the existence of a bottom nepheloid layer, several hundred meters thick, and related to the resuspension of bottom sediments. These observations support the view that open-ocean deep convection events in the Gulf of Lions can cause significant remobilization

  3. Isopycnal mixing by mesoscale eddies significantly impacts oceanic anthropogenic carbon uptake

    Science.gov (United States)

    Gnanadesikan, Anand; Pradal, Marie-Aude; Abernathey, Ryan

    2015-06-01

    Anthropogenic carbon dioxide uptake varies across Earth System Models for reasons that have remained obscure. When varied within a single model, the lateral eddy mixing coefficient ARedi produces a range of uptake similar to the modeled range. The highest uptake, resulting from a simulation with a constant ARedi of 2400 m2/s, simulates 15% more historical carbon uptake than a model with ARedi = 400 m2/s. A sudden doubling in carbon dioxide produces a 21% range in carbon uptake across the models. Two spatially dependent representations of ARedi produce uptake that lies in the middle of the range of constant values despite predicting very large values in the subtropical gyres. One-dimensional diffusive models of the type used for integrated assessments can be fit to the simulations, with ARedi accounting for a substantial fraction of the effective vertical diffusion. Such models, however, mask significant regional changes in stratification and biological carbon storage.

  4. Applying machine learning to global surface ocean and seabed data to reveal the controls on the distribution of deep-sea sediments

    Science.gov (United States)

    Dutkiewicz, Adriana; Müller, Dietmar; O'Callaghan, Simon

    2017-04-01

    World's ocean basins contain a rich and nearly continuous record of environmental fluctuations preserved as different types of deep-sea sediments. The sediments represent the largest carbon sink on Earth and its largest geological deposit. Knowing the controls on the distribution of these sediments is essential for understanding the history of ocean-climate dynamics, including changes in sea-level and ocean circulation, as well as biological perturbations. Indeed, the bulk of deep-sea sediments comprises the remains of planktonic organisms that originate in the photic zone of the global ocean implying a strong connection between the seafloor and the sea surface. Machine-learning techniques are perfectly suited to unravelling these controls as they are able to handle large sets of spatial data and they often outperform traditional spatial analysis approaches. Using a support vector machine algorithm we recently created the first digital map of seafloor lithologies (Dutkiewicz et al., 2015) based on 14,400 surface samples. This map reveals significant deviations in distribution of deep-sea lithologies from hitherto hand-drawn maps based on far fewer data points. It also allows us to explore quantitatively, for the first time, the relationship between oceanographic parameters at the sea surface and lithologies on the seafloor. We subsequently coupled this global point sample dataset of 14,400 seafloor lithologies to bathymetry and oceanographic grids (sea-surface temperature, salinity, dissolved oxygen and dissolved inorganic nutrients) and applied a probabilistic Gaussian process classifier in an exhaustive combinatorial fashion (Dutkiewicz et al., 2016). We focused on five major lithologies (calcareous sediment, diatom ooze, radiolarian ooze, clay and lithogenous sediment) and used a computationally intensive five-fold cross-validation, withholding 20% of the data at each iteration, to assess the predictive performance of the machine learning method. We find that

  5. Evolution of a Western Arctic Ice Ocean Boundary Layer and Mixed Layer Across a Developing Thermodynamically Forced Marginal Ice Zone

    Science.gov (United States)

    2016-09-01

    heat and momentum transfer with the ice-ocean interface. These two observations demonstrate the intricate interplay between momentum, heat , and...summer evolution events: 1. Modulated shortwave radiative input to the ocean 2. Shoaled the ocean boundary layer increasing ocean heat storage 3... transfer in a stratified oceanic boundary layer. J. Geophys. Res., 92(C7), 6977–7986, doi:10.1029/JC092iC07p06977. McPhee, M. G., 1992: Turbulent heat

  6. The development of a collapsing method for the mixed group and point cross sections and its application on multi-dimensional deep penetration calculations

    International Nuclear Information System (INIS)

    Bor-Jing Chang; Yen-Wan H. Liu

    1992-01-01

    The HYBRID, or mixed group and point, method was developed to solve the neutron transport equation deterministically using detailed treatment at cross section minima for deep penetration calculations. Its application so far is limited to one-dimensional calculations due to the enormous computing time involved in multi-dimensional calculations. In this article, a collapsing method is developed for the mixed group and point cross section sets to provide a more direct and practical way of using the HYBRID method in the multi-dimensional calculations. A testing problem is run. The method is then applied to the calculation of a deep penetration benchmark experiment. It is observed that half of the window effect is smeared in the collapsing treatment, but it still provide a better cross section set than the VITAMIN-C cross sections for the deep penetrating calculations

  7. Rajella paucispinosa n. sp., a new deep-water skate (Elasmobranchii, Rajidae) from the western Indian Ocean off South Mozambique, and a revised generic diagnosis.

    Science.gov (United States)

    Weigmann, Simon; Stehmann, Matthias F W; Thiel, Ralf

    2014-08-08

    A new species of the widely in temperate and tropical latitudes distributed skate genus Rajella is described based on an almost adult male specimen from the western Indian Ocean off South Mozambique. The holotype of R. paucispinosa n. sp. was caught during cruise 17 of RV 'Vityaz' along the deep western Indian Ocean in 1988/89. It is the northernmost record of a Rajella specimen in the western Indian Ocean. The new species is the 18th valid species of the genus and the fifth species in the western Indian Ocean. It differs from its congeners in the small maximal total length of about 50 cm and only few thorns on the dorsal surface. The new species has only two thorns on each orbit, one nuchal thorn, one right scapular thorn (left one not detectable, abraded), and one median row of tail thorns. Other species of Rajella typically have half rings of thorns on orbital rims, a triangle of thorns on nape-shoulder region, and at least three rows of tail thorns. Another conspicuous feature of the new species is the almost completely white dorsal and ventral coloration. 

  8. Radiological assessment of the disposal of high level radioactive waste on or within the sediments of the deep ocean bed: v. 1

    International Nuclear Information System (INIS)

    Kane, P.

    1987-11-01

    The contract report comprises a main report accompanied by three volumes detailing the probabilistic risk assessments carried out for each proposed mode of HLW emplacement. Following a section describing the methodology employed, the models developed for and used in the assessment are described. Aspects of design, testing and calibration are covered. The data employed are described in relation to components of the disposal system, giving sources and reasons for the distribution used. Uncertainties in model predictions are examined in relation to their origin. Detailed results are presented which illustrate the transport behaviour of radionuclides in deep ocean environments. Conclusions are drawn and recommendations made for further research. (author)

  9. Mixed

    Directory of Open Access Journals (Sweden)

    Pau Baya

    2011-05-01

    Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.

  10. Stability of embankments over cement deep soil mixing columns; Estabilidad de terraplenes sobre columnas de suelo-cemento

    Energy Technology Data Exchange (ETDEWEB)

    Morilla Moar, P.; Melentijevic, S.

    2014-07-01

    The deep soil mixing (DSM) is one of the ground improvement methods used for the construction of embankments over soft soils. DSM column-supported embankments are constructed over soft soils to accelerate its construction, improve embankment stability, increase bearing capacity and control of total and differential settlements. There are two traditional design methods, the Japanese (rigid columns) and the scandinavian (soft and semi-rigid columns). Based on Laboratory analysis and numerical analysis these traditional approaches have been questioned by several authors due to its overestimation of the embankment stability considering that the most common failures types are not assumed. This paper presents a brief review of traditional design methods for embankments on DSM columns constructed in soft soils, studies carried out determine the most likely failure types of DSM columns, methods to decrease the overestimation when using limit equilibrium methods and numerical analysis methods that permit detect appropriate failure modes in DSM columns. Finally a case study was assessed using both limited equilibrium and finite element methods which confirmed the overestimation in the factors of safety on embankment stability over DSM columns. (Author)

  11. Suspended sediment concentration and optical property observations of mixed-turbidity, coastal waters through multispectral ocean color inversion

    Science.gov (United States)

    Multispectral satellite ocean color data from high-turbidity areas of the coastal ocean contain information about the surface concentrations and optical properties of suspended sediments and colored dissolved organic matter (CDOM). Empirical and semi-analytical inversion algorit...

  12. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda

    Science.gov (United States)

    Conte, Maureen H.; Ralph, Nate; Ross, Edith H.

    Since 1978, the Oceanic Flux Program (OFP) time-series sediment traps have measured particle fluxes in the deep Sargasso Sea near Bermuda. There is currently a 20+yr flux record at 3200-m depth, a 12+yr flux at 1500-m depth, and a 9+yr record at 500-m depth. Strong seasonality is observed in mass flux at all depths, with a flux maximum in February-March and a smaller maximum in December-January. There is also significant interannual variability in the flux, especially with respect to the presence/absence of the December-January flux maximum and in the duration of the high flux period in the spring. The flux records at the three depths are surprisingly coherent, with no statistically significant temporal lag between 500 and 3200-m fluxes at our biweekly sample resolution. Bulk compositional data indicate an extremely rapid decrease in the flux of organic constituents with depth between 500 and 1500-m, and a smaller decrease with depth between 1500 and 3200-m depth. In contrast, carbonate flux is uniform or increases slightly between 500 and 1500-m, possibly reflecting deep secondary calcification by foraminifera. The lithogenic flux increases by over 50% between 500 and 3200-m depth, indicating strong deep water scavenging/repackaging of suspended lithogenic material. Concurrent with the rapid changes in flux composition, there is a marked reduction in the heterogeneity of the sinking particle pool with depth, especially within the mesopelagic zone. By 3200-m depth, the bulk composition of the sinking particle pool is strikingly uniform, both seasonally and over variations in mass flux of more than an order of magnitude. These OFP results provide strong indirect evidence for the intensity of reprocessing of the particle pool by resident zooplankton within mesopelagic and bathypelagic waters. The rapid loss of organic components, the marked reduction in the heterogeneity of the bulk composition of the flux, and the increase in terrigenous fluxes with depth are most

  13. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  14. JAMSTEC E-library of Deep-sea Images (J-EDI) Realizes a Virtual Journey to the Earth's Unexplored Deep Ocean

    Science.gov (United States)

    Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y.

    2016-12-01

    The Japan Agency for Marine-Earth Science and Technology (JAMSTEC) archives a large amount of deep-sea research videos and photos obtained by JAMSTEC's research submersibles and vehicles with cameras. The web site "JAMSTEC E-library of Deep-sea Images : J-EDI" (http://www.godac.jamstec.go.jp/jedi/e/) has made videos and photos available to the public via the Internet since 2011. Users can search for target videos and photos by keywords, easy-to-understand icons, and dive information at J-EDI because operating staffs classify videos and photos as to contents, e.g. living organism and geological environment, and add comments to them.Dive survey data including videos and photos are not only valiant academically but also helpful for education and outreach activities. With the aim of the improvement of visibility for broader communities, we added new functions of 3-dimensional display synchronized various dive survey data with videos in this year.New Functions Users can search for dive survey data by 3D maps with plotted dive points using the WebGL virtual map engine "Cesium". By selecting a dive point, users can watch deep-sea videos and photos and associated environmental data, e.g. water temperature, salinity, rock and biological sample photos, obtained by the dive survey. Users can browse a dive track visualized in 3D virtual spaces using the WebGL JavaScript library. By synchronizing this virtual dive track with videos, users can watch deep-sea videos recorded at a point on a dive track. Users can play an animation which a submersible-shaped polygon automatically traces a 3D virtual dive track and displays of dive survey data are synchronized with tracing a dive track. Users can directly refer to additional information of other JAMSTEC data sites such as marine biodiversity database, marine biological sample database, rock sample database, and cruise and dive information database, on each page which a 3D virtual dive track is displayed. A 3D visualization of a dive

  15. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments, on the Pacific Ocean Margin

    DEFF Research Database (Denmark)

    Inagaki, F.; Nunoura, T.; Nakagawa, S.

    2006-01-01

    The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes and their ......The deep subseafloor biosphere is among the least-understood habitats on Earth, even though the huge microbial biomass therein plays an important role for potential long-term controls on global biogeochemical cycles. We report here the vertical and geographical distribution of microbes...... of the uncultivated Deep-Sea Archaeal Group were consistently the dominant phylotype in sediments associated with methane hydrate. Sediment cores lacking methane hydrates displayed few or no Deep-Sea Archaeal Group phylotypes. Bacterial communities in the methane hydrate-bearing sediments were dominated by members...

  16. S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust?

    Science.gov (United States)

    He, Xiaobo; Zheng, Yixian

    2018-02-01

    The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu-Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is observed in the recordings of four deep earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu-Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a deep scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from 930 to 1500 km. Those scatterers appear to be characterised by an 7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our observations give a clue to the potential fate of subducted oceanic crust.

  17. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    Science.gov (United States)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the

  18. Listening to the Deep-Ocean Environment (LIDO): an ESONET Initiative for the Real-Time Monitoring of Geohazards and Marine Ambient Noise

    Science.gov (United States)

    André, Michel; Favali, Paolo; Piatteli, Paolo; Miranda, Jorge; Waldmann, Christoph; Esonet Lido Demonstration Mission Team

    2010-05-01

    Understanding the link between natural and anthropogenic processes is essential for predicting the magnitude and impact of future changes of the natural balance of the oceans. Deep-sea observatories have the potential to play a key role in the assessment and monitoring of these changes. ESONET is a European Network of Excellence of deep-sea observatories that includes 55 partners belonging to 14 countries. ESONET NoE is providing data on key parameters from the subsurface down to the seafloor at representative locations that transmit them to shore. The strategies of deployment, data sampling, technological development, standardisation and data management are being integrated with projects dealing with the spatial and near surface time series. LIDO (Listening to the Deep Ocean environment) is one of these projects and proposes to establish a first nucleus of a regional network of multidisciplinary seafloor observatories contributing to the coordination of high quality research in the ESONET NoE by allowing the real-time long-term monitoring of Geohazards and Marine Ambient Noise in the Mediterranean Sea and the adjacent Atlantic waters. Specific activities address the long-term monitoring of earthquakes and tsunamis and the characterisation of ambient noise, marine mammal sounds and anthropogenic sources. The objective of this demonstration mission will be achieved through the extension of the present capabilities of the observatories working in the ESONET key-sites of Eastern Sicily (NEMO-SN1) and of the Gulf of Cadiz (GEOSTAR configured for NEAREST pilot experiment) by installing new sensor equipments related to Bioacoustics and Geohazards, as well as by implementing international standard methods in data acquisition and management.

  19. First insights into genus level diversity and biogeography of deep sea benthopelagic calanoid copepods in the South Atlantic and Southern Ocean

    Science.gov (United States)

    Renz, Jasmin; Markhaseva, Elena L.

    2015-11-01

    Calanoid copepods constitute the most numerous organisms not only in the pelagic realm, but also in the benthic boundary layer, which gives them an important role in the turnover of organic matter in the benthopelagic habitat. During seven expeditions to the South Atlantic and Southern Ocean, the diversity and biogeography of deep-sea benthopelagic calanoid copepods were studied. The communities of calanoids living in the vicinity of the seabed were characterized by high diversity comparable to many pelagic habitats, but low abundance of individuals. Members of the taxon Clausocalanoidea dominated the communities, and within this taxon most individuals belonged to detritivore calanoids characterized by sensory setae on the second maxillae or aetideid copepods. 73% of all genera classified as obligate or predominantly benthopelagic copepods detected during these expeditions were new to science and a vast number of genera and species have been described since then. Comparing the communities of calanoid genera between different regions, the assemblages in the Southern Ocean differed significantly from the Southeast and Southwest Atlantic. A latitudinal diversity gradient could be observed, with highest numbers of genera in the Southwest Atlantic and low numbers at stations in the Southern Ocean. Reviewing the literature, endemism for benthopelagic calanoids appeared to be low on a latitudinal range caused by connectivity in benthopelagic habitats through spreading water masses. However, considering the habitats structuring the water column vertically, a high number of genera are endemic in the benthopelagial and specialized to living within the vicinity of the seabed.

  20. A new eyeless species of Neanthes (Annelida: Nereididae) associated with a whale-fall community from the deep Southwest Atlantic Ocean

    Science.gov (United States)

    Shimabukuro, Maurício; Santos, Cinthya S. G.; Alfaro-Lucas, Joan M.; Fujiwara, Yoshihiro; Sumida, Paulo Y. G.

    2017-12-01

    A new whale-fall community was discovered in the abyssal SW Atlantic Ocean (4204 m depth) during the Iatá-piúna expedition. Several specimens of a new nereidid were found living in sediments around and immediately below whalebones. This new species, Neanthes shinkai, is described here. The most interesting feature of the new species is the absence of eyes on the prostomium. Although three other deep-sea Neanthes species are also eyeless, the arrangement of paragnaths on the pharynx, the shape of parapodia and the type of neuropodial falcigers chaetae can distinguish N. shinkai n. sp. from these other species. In addition, interspecific comparisons using COI fragment shown a high genetic divergence (23.6-24.9% K2P) from other Neanthes species. Some nereidids have been already known to live in association with deep-sea organic falls and other reducing environments, however this is the first record and description of a Neanthes species in a deep-sea whale-fall community. Observed behavioral and carbon and nitrogen isotopes suggest that N. shinkai n. sp. is an omnivore relying mainly on whale carcass with slightly contribution of chemosynthetic bacterial mats, suggesting that it is an inhabitant of whale-falls from SW Atlantic.

  1. Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean

    Directory of Open Access Journals (Sweden)

    C. Dumousseaud

    2010-05-01

    Full Text Available Future climate change as a result of increasing atmospheric CO2 concentrations is expected to strongly affect the oceans, with shallower winter mixing and consequent reduction in primary production and oceanic carbon drawdown in low and mid-latitudinal oceanic regions. Here we test this hypothesis by examining the effects of cold and warm winters on the carbonate system in the surface waters of the Northeast Atlantic Ocean for the period between 2005 and 2007. Monthly observations were made between the English Channel and the Bay of Biscay using a ship of opportunity program. During the colder winter of 2005/2006, the maximum depth of the mixed layer reached up to 650 m in the Bay of Biscay, whilst during the warmer (by 2.6 ± 0.5 °C winter of 2006/2007 the mixed layer depth reached only 300 m. The inter-annual differences in late winter concentrations of nitrate (2.8 ± 1.1 μmol l−1 and dissolved inorganic carbon (22 ± 6 μmol kg−1, with higher concentrations at the end of the colder winter (2005/2006, led to differences in the dissolved oxygen anomaly and the chlorophyll α-fluorescence data for the subsequent growing season. In contrast to model predictions, the calculated air-sea CO2 fluxes (ranging from +3.7 to −4.8 mmol m−2 d−1 showed an increased oceanic CO2 uptake in the Bay of Biscay following the warmer winter of 2006/2007 associated with wind speed and sea surface temperature differences.

  2. Effects of turbulence on mixed-phase deep convective clouds under different basic-state winds and aerosol concentrations

    Science.gov (United States)

    Lee, Hyunho; Baik, Jong-Jin; Han, Ji-Young

    2014-12-01

    The effects of turbulence-induced collision enhancement (TICE) on mixed-phase deep convective clouds are numerically investigated using a 2-D cloud model with bin microphysics for uniform and sheared basic-state wind profiles and different aerosol concentrations. Graupel particles account for the most of the cloud mass in all simulation cases. In the uniform basic-state wind cases, graupel particles with moderate sizes account for some of the total graupel mass in the cases with TICE, whereas graupel particles with large sizes account for almost all the total graupel mass in the cases without TICE. This is because the growth of ice crystals into small graupel particles is enhanced due to TICE. The changes in the size distributions of graupel particles due to TICE result in a decrease in the mass-averaged mean terminal velocity of graupel particles. Therefore, the downward flux of graupel mass, and thus the melting of graupel particles, is reduced due to TICE, leading to a decrease in the amount of surface precipitation. Moreover, under the low aerosol concentration, TICE increases the sublimation of ice particles, consequently playing a partial role in reducing the amount of surface precipitation. The effects of TICE are less pronounced in the sheared basic-state wind cases than in the uniform basic-state wind cases because the number of ice crystals is much smaller in the sheared basic-state wind cases than in the uniform basic-state wind cases. Thus, the size distributions of graupel particles in the cases with and without TICE show little difference.

  3. DEEP BIOSPHERE. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor.

    Science.gov (United States)

    Inagaki, F; Hinrichs, K-U; Kubo, Y; Bowles, M W; Heuer, V B; Hong, W-L; Hoshino, T; Ijiri, A; Imachi, H; Ito, M; Kaneko, M; Lever, M A; Lin, Y-S; Methé, B A; Morita, S; Morono, Y; Tanikawa, W; Bihan, M; Bowden, S A; Elvert, M; Glombitza, C; Gross, D; Harrington, G J; Hori, T; Li, K; Limmer, D; Liu, C-H; Murayama, M; Ohkouchi, N; Ono, S; Park, Y-S; Phillips, S C; Prieto-Mollar, X; Purkey, M; Riedinger, N; Sanada, Y; Sauvage, J; Snyder, G; Susilawati, R; Takano, Y; Tasumi, E; Terada, T; Tomaru, H; Trembath-Reichert, E; Wang, D T; Yamada, Y

    2015-07-24

    Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10(4) cells cm(-3). Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed. Copyright © 2015, American Association for the Advancement of Science.

  4. Late Quaternary Deep Stratification-Climate Coupling in the Southern Ocean : Implications for Changes in Abyssal Carbon Storage

    NARCIS (Netherlands)

    Wu, Li; Wang, Rujian; Xiao, Wenshen; Krijgsman, Wout|info:eu-repo/dai/nl/148529763; Li, Qianyu; Ge, Shulan; Ma, Tong

    The Southern Ocean plays an important role in modulating Pleistocene atmospheric CO2 concentrations, but the underlying mechanisms are not yet fully understood. Here, we report the laser grain-size distribution and Mn geochemical data of a 523 kyr-long sediment record (core ANT30/P1-02 off Prydz

  5. 85 million years of pelagic ecosystem evolution: Pacific Ocean deep-sea ichthyolith records reveal fish community dynamics and a long-term decline in sharks

    Science.gov (United States)

    Sibert, E. C.; Norris, R. D.; Cuevas, J. M.; Graves, L. G.

    2015-12-01

    The structure and productivity of open ocean consumers has undergone major changes over the past 85 million years. Here, we present the first long-term detailed records of pelagic fish and sharks utilizing the record of ichthyoliths (teeth and dermal scales) from the deep Pacific Ocean. While the North and South Pacific Oceans show similar patterns throughout the 85 million year history, the North Pacific ichthyolith accumulation is significantly higher than the South Pacific, suggesting that the basin has been a more productive region for tens of millions of years. Fish and sharks were not abundant in the Pacific gyres until ~75 million years ago (Ma) suggesting that neither group was quantitatively important in oligotrophic pelagic food webs prior to the latest Cretaceous. Relative to ray-finned fish, sharks were common in the ancient ocean. Most ichthyolith assemblages have >50% shark dermal scales (denticles), but denticle abundance has been declining in both absolute and relative abundance since the Cretaceous-Paleogene (K/Pg) mass extinction. The accumulation rate of ichthyoliths of both sharks and ray-finned fish was highest in the Early Eocene, during the peak of the Cenozoic 'greenhouse' climate where production of shark dermal denticles and fish teeth increased almost five times over Paleocene production rates. Ichthyolith fluxes fell with cooler climates in the later Eocene and Oligocene, but fish production is almost always higher than in the Cretaceous and Paleocene reflecting the expanded ecological roles and importance of pelagic fish in marine ecosystems. Shark denticle production fell to less than half that of the Cretaceous by 20 Ma when it dropped abruptly to near-zero levels. Currently denticles make up sharks appear to be falling as major pelagic consumers over the Late Cretaceous and Cenozoic, and particularly over the past 20 Ma, perhaps reflecting demographic changes in shark and fish communities, or the rise of resource competition from

  6. Variability of oceanic deep convective system vertical structures observed by CloudSat in Indo-Pacific regions associated with the Madden-Julian oscillation

    Science.gov (United States)

    Yuan, Jian

    2016-09-01

    Vertical structures of deep convective systems during the Madden-Julian oscillation (MJO) are investigated using CloudSat radar measurements in Indo-Pacific oceanic areas. In active phases of the MJO, relatively more large systems and connected mesoscale convective systems (CMCSs) occur. The occurrence frequency of CMCSs peaks in the onset phase, a phase earlier than separated mesoscale convective systems (SMCSs). Compared with SMCSs, CMCSs of all sizes have weaker reflectivity above 8 km in their deep precipitating portions and thick anvil clouds closely linked to them, suggesting more "stratiform" physics associated with them. SMCSs and CMCSs together produce relatively the least anvil clouds in the onset phase, while their deep precipitating portions show stronger/weaker reflectivity above 8 km before/after the onset phase. Thus, after the onset phase of the MJO, mesoscale convective systems shift toward a more "convective" organization because SMCSs maximize after the onset, while their internal structures appear more stratiform because internally they have weaker reflectivity above 8 km. CMCSs coincide with a more humid middle troposphere spatially, even at the same locations a few days before they occur. Middle-tropospheric moistening peaks in the onset phase. Moistening of the free troposphere around deep convective systems shows relatively stronger moistening/drying below 700 hPa before/after the onset phase than domain-mean averages. Low-topped clouds occur most frequently around CMCSs and in active phases, consistent with the presence of a moister free troposphere. Coexistence of these phenomena suggests that the role of middle troposphere moisture in the formation of CMCSs should be better understood.

  7. Marine geochemistry ocean circulation, carbon cycle and climate change

    CERN Document Server

    Roy-Barman, Matthieu

    2016-01-01

    Marine geochemistry uses chemical elements and their isotopes to study how the ocean works. It brings quantitative answers to questions such as: What is the deep ocean mixing rate? How much atmospheric CO2 is pumped by the ocean? How fast are pollutants removed from the ocean? How do ecosystems react to the anthropogenic pressure? The book provides a simple introduction to the concepts (environmental chemistry, isotopes), the methods (field approach, remote sensing, modeling) and the applications (ocean circulation, carbon cycle, climate change) of marine geochemistry with a particular emphasis on isotopic tracers. Marine geochemistry is not an isolated discipline: numerous openings on physical oceanography, marine biology, climatology, geology, pollutions and ecology are proposed and provide a global vision of the ocean. It includes new topics based on ongoing research programs such as GEOTRACES, Global Carbon Project, Tara Ocean. It provides a complete outline for a course in marine geochemistry. To favor a...

  8. Observations of CO{sub 2} clathrate hydrate formation and dissolution under deep-ocean disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Warzinski, R.P.; Cugini, A.V. [Department of Energy, Pittsburgh, PA (United States); Holder, G.D. [Univ. of Pittsburgh, Pittsburgh, PA (United States)

    1995-11-01

    Disposal of anthropogenic emissions of CO{sub 2} may be required to mitigate rises in atmospheric levels of this greenhouse gas if other measures are ineffective and the worst global warming scenarios begin to occur. Long-term storage of large quantities of CO{sub 2} has been proposed, but the feasibility of large land and ocean disposal options remains to be established. Determining the fate of liquid CO{sub 2} injected into the ocean at depths greater than 500 m is complicated by uncertainties associated with the physical behavior of CO{sub 2} under these conditions, in particular the possible formation of the ice-like CO{sub 2} clathrate hydrate. Resolving this issue is key to establishing the technical feasibility of this option. Experimental and theoretical work in this area is reported.

  9. Ocean uptake of carbon dioxide

    International Nuclear Information System (INIS)

    Peng, Tsung-Hung; Takahashi, Taro

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0 2 include carbon chemistry, distribution of alkalinity, pCO 2 and total concentration of dissolved C0 2 , sea-air pCO 2 difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0 2 uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0 2 from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0 2 fertilization is a potential candidate for such missing carbon sinks

  10. Microbial biomass and organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sheelu, G.; LokaBharathi, P.A.; Nair, S.; Mohandass, C.

    PMNprogramoftheDepartmentofOceanDevelopment,GovernmentofIndia.TheauthorsarethankfultothescientistsandcrewAASidorentzoforcooperationandassistanceduringthelongcruisesinthesamplingarea.The authorsalsowishtothankMs.GowriRivonkarfortechnicalassistanceinthelaboratory.NIOContributionNo.3509.ThispaperispartoftheseriespublishedinthespecialissueofMarineGeoresourcesandGeotechnology,Volume18,Number3,2000. AddresscorrespondencetoChandralataRaghukumar,NationalInstituteof...%)wastwotimesmorethanthatofthe MicrobialBiomassandOrganicNutrientsinCIOB 9 Figure4.(a)± (e)ConcentrationofLOM,TOC,andlivingbiomass-Cin® vecoresatdiŒerentdepths. bacterialisolates(34%).Ontheotherhand,numberofbacterialisolatesproducingproteasewere2.5timesmorethanthefungalisolates...

  11. Deep Ocean Mineral Supplementation Enhances the Cerebral Hemodynamic Response during Exercise and Decreases Inflammation Postexercise in Men at Two Age Levels

    Directory of Open Access Journals (Sweden)

    Ching-Yin Wei

    2017-12-01

    Full Text Available Background: Previous studies have consistently shown that oral supplementation of deep ocean minerals (DOM improves vascular function in animals and enhances muscle power output in exercising humans.Purpose: To examine the effects of DOM supplementation on the cerebral hemodynamic response during physical exertion in young and middle-aged men.Design: Double-blind placebo-controlled crossover studies were conducted in young (N = 12, aged 21.2 ± 0.4 years and middle-aged men (N = 9, aged 46.8 ± 1.4 years. The counter-balanced trials of DOM and Placebo were separated by a 2-week washout period. DOM and Placebo were orally supplemented in drinks before, during, and after cycling exercise. DOM comprises desalinated minerals and trace elements from seawater collected ~618 m below the earth's surface.Methods: Cerebral hemodynamic response (tissue hemoglobin was measured during cycling at 75% VO2max using near infrared spectroscopy (NIRS.Results: Cycling time to exhaustion at 75% VO2max and the associated plasma lactate response were similar between the Placebo and DOM trials for both age groups. In contrast, DOM significantly elevated cerebral hemoglobin levels in young men and, to a greater extent, in middle-aged men compared with Placebo. An increased neutrophil to lymphocyte ratio (NLR was observed in middle-aged men, 2 h after exhaustive cycling, but was attenuated by DOM.Conclusion: Our data suggest that minerals and trace elements from deep oceans possess great promise in developing supplements to increase the cerebral hemodynamic response against a physical challenge and during post-exercise recovery for middle-aged men.

  12. Environmental Effects on Volcanic Eruptions:From Deep Ocean to Deep Space. Chapter 3. Volcanism and Ice Interactions on Earth and Mars. Chapter 3

    Science.gov (United States)

    Chapman, Mary G.; Allen, Carlton C.; Gudmundsson, Magnus T.; Gulick, Virginia C.; Jakobsson, Sveinn P.; Lucchitta, Baerbel K.; Skilling, Ian P.; Waitt, Richard B.

    2000-01-01

    CONCLUSION Volcano/ice interactions produce meltwater. Meltwater can enter the groundwater cycle and under the influence of hydrothermal systems, it can be later discharged to form channels and valleys or cycled upward to melt permafrost. Water or ice-saturated ground can erupt into phreatic craters when covered by lava. Violent mixing of meltwater and volcanic material and rapid release can generate lahars or jokulhlaups, that have the ability to freight coarse material, great distances downslope from the vent. Eruption into meltwater generate unique appearing edifices, that are definitive indicators of volcano/ice interaction. These features are hyaloclastic ridges or mounds and if capped by lava, tuyas. On Earth, volcano/ice interactions are limited to alpine regions and ice-capped polar and temperate regions. On Mars, where precipitation may be an ancient phenomenon, these interactions may be limited to areas of ground ice accumulation or the northern lowlands where water may have ponded fairly late in martian history. The recognition of features caused by volcano/ice interactions could provide strong constraints for the history of volatiles on Mars.

  13. Experimental observation of strong mixing due to internal wave focusing over sloping terrain

    NARCIS (Netherlands)

    Swart, A.; Manders, A.; Harlander, U.; Maas, L.R.M.

    2010-01-01

    This paper reports on experimental observation of internal waves that are focused due to a sloping topography. A remarkable mixing of the density field was observed. This result is of importance for the deep ocean, where internal waves are believed to play a role in mixing. The experiments were

  14. Radiocarbon in particulate matter from the eastern sub-arctic Pacific Ocean: evidence of source of terrestrial carbon to the deep sea

    International Nuclear Information System (INIS)

    Druffel, E.R.M.; Honjo, S.; Griffin, S.; Wong, C.S.

    1986-01-01

    Carbon isotope ratios were measured in organic and inorganic carbon of settling particulate matter collected with a sediment trap at Ocean Station P in the Gulf of Alaska from March to October, 1983. Dissolved inorganic carbon (DIC) in surface sea water collected during two different seasons in 1984 were analyzed using large gas proportional counters and revealed a minimum seasonal Δ 14 C variation of 14 per thousand. Results show that the Δ 14 C of calcium carbonate sedimenting to the deep sea is the same as that measured in surface water DIC. In contrast, particulate organic carbon (POC) had significantly higher Δ 14 C values (by 25-70 per thousand) than that in surface water DIC. Also, the Δ 13 C of the POC was markedly lower than previously reported values from other trap stations and marine particulate matter in general. Results from this study suggest that a significant amount of the POC settling to the deep sea at this pelagic station is of terrestrial origin, not strictly of marine origin as had previously been believed

  15. Deep-ocean disposal of high-activity nuclear wastes: a conservative assessment of the seafood critical pathway

    International Nuclear Information System (INIS)

    Baxter, M.S.; Economides, B.

    1984-01-01

    This paper applies conventional 'worst-case' assumptions to modelling the effects of possible future disposal of high-activity wastes in the oceans. It otherwise uses previously published and generally accepted data to assess the possible intakes of the waste nuclides via consumption of seaweeds, molluscs, crustaceans, plankton and fish. Model-predicted intakes for critical groups generally exceed ICRP-recommended limits, with 244 Cm, 241 Am and 137 Cs being the most potentially hazardous nuclides. The various seafood consumption pathways are found to rank, in decreasing order of potential hazard, as seaweeds > molluscs > plankton > fish > crustaceans. (Auth.)

  16. Improving capacity of stock assessment for sea turtles: using ocean circulation modeling to inform genetic mixed stock analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Genetic approaches have been useful for assigning stock ID to sea turtles caught as bycatch in fisheries, or determining stock composition at foraging grounds. In...

  17. A new genus and species of deep-sea glass sponge (Porifera, Hexactinellida, Aulocalycidae) from the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Sautya, S.; Tabachnick, K.R.; Ingole, B.S.

    –XXVI. Schulze FE (1886) Über den Bau und das System der Hexactinelliden. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin (Physikalisch-Mathematisch Classe) 1886: 1–97. Schmidt O (1880) Die Spongien des Meerbusen von Mexico (Und des... of Mexico, by the USCSS ‘Blake’. Gustav Fischer, Jena, 33–90, pls V-X. A new genus and species of deep-sea glass sponge... 21 Mehl D (1992) Die Entwicklung der Hexactinellida seit dem Mesozoikum. Paläobiologie, Phylogenie und Evolutionsökologie. Berliner...

  18. An instrument to measure differential pore pressures in deep ocean sediments: Pop-Up-Pore-Pressure-Instrument (PUPPI)

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; McPhail, S.D.; Packwood, A.R.; Hart, B.

    1985-01-01

    A Pop-Up-Pore-Pressure-Instrument (PUPPI) has been developed to measure differential pore pressures in sediments. The differential pressure is the pressure above or below normal hydrostatic pressure at the depth of the measurement. It is designed to operate in water depths up to 6000 metres for periods of weeks or months, if required, and measures differential pore pressures at depths of up to 3 metres into the sediments with a resolution of 0.05 kPa. It is a free-fall device with a lance which penetrates the sediments. This lance and the ballast weight is disposed when the PUPPI is acoustically released from the sea floor. When combined with permeability and porosity values of deep-sea sediments the pore pressure measurements made using the PUPPI suggest advection velocities as low as 8.8 mm/yr. The mechanical, electrical and acoustic systems are described together with data obtained from both shallow and deep water trials. (author)

  19. Role of the ocean mixed layer processes in the response of the North Pacific winter SST and MLD to global warming in CGCMs

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea, Republic of); Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea, Republic of)

    2012-03-15

    It is investigated how the changes of winter sea surface temperature (SST) and mixed layer depth (MLD) under climate change projections are predicted differently in the North Pacific depending on the coupled general circulation models (CGCMs), and how they are related to the dynamical property of the simulated ocean mixed layer. For this purpose the dataset from eleven CGCMs reported to IPCC's AR4 are used, while detailed analysis is given to the MRI and MIROC models. Analysis of the CGCM data reveals that the increase of SST and the decrease of MLD in response to global warming tend to be smaller for the CGCM in which the ratio of ocean heat transport (OHT) to surface heat flux (SHF), R (=OHT/SHF), is larger in the heat budget of the mixed layer. The negative correlation is found between the changes of OHT and SHF under global warming, which may weaken the response to global warming in the CGCM with larger R. It is also found that the models with low horizontal resolution tend to give broader western boundary currents, larger R, and the smaller changes of SST and MLD under global warming. (orig.)

  20. The Southern Ocean Observing System

    OpenAIRE

    Rintoul, Stephen R.; Meredith, Michael P.; Schofield, Oscar; Newman, Louise

    2012-01-01

    The Southern Ocean includes the only latitude band where the ocean circles the earth unobstructed by continental boundaries. This accident of geography has profound consequences for global ocean circulation, biogeochemical cycles, and climate. The Southern Ocean connects the ocean basins and links the shallow and deep limbs of the overturning circulation (Rintoul et al., 2001). The ocean's capacity to moderate the pace of climate change is therefore influenced strongly by the Southern Ocean's...

  1. Modelling micro- and macrophysical contributors to the dissipation of an Arctic mixed-phase cloud during the Arctic Summer Cloud Ocean Study (ASCOS

    Directory of Open Access Journals (Sweden)

    K. Loewe

    2017-06-01

    Full Text Available The Arctic climate is changing; temperature changes in the Arctic are greater than at midlatitudes, and changing atmospheric conditions influence Arctic mixed-phase clouds, which are important for the Arctic surface energy budget. These low-level clouds are frequently observed across the Arctic. They impact the turbulent and radiative heating of the open water, snow, and sea-ice-covered surfaces and influence the boundary layer structure. Therefore the processes that affect mixed-phase cloud life cycles are extremely important, yet relatively poorly understood. In this study, we present sensitivity studies using semi-idealized large eddy simulations (LESs to identify processes contributing to the dissipation of Arctic mixed-phase clouds. We found that one potential main contributor to the dissipation of an observed Arctic mixed-phase cloud, during the Arctic Summer Cloud Ocean Study (ASCOS field campaign, was a low cloud droplet number concentration (CDNC of about 2 cm−3. Introducing a high ice crystal concentration of 10 L−1 also resulted in cloud dissipation, but such high ice crystal concentrations were deemed unlikely for the present case. Sensitivity studies simulating the advection of dry air above the boundary layer inversion, as well as a modest increase in ice crystal concentration of 1 L−1, did not lead to cloud dissipation. As a requirement for small droplet numbers, pristine aerosol conditions in the Arctic environment are therefore considered an important factor determining the lifetime of Arctic mixed-phase clouds.

  2. SyPRID sampler: A large-volume, high-resolution, autonomous, deep-ocean precision plankton sampling system

    Science.gov (United States)

    Billings, Andrew; Kaiser, Carl; Young, Craig M.; Hiebert, Laurel S.; Cole, Eli; Wagner, Jamie K. S.; Van Dover, Cindy Lee

    2017-03-01

    The current standard for large-volume (thousands of cubic meters) zooplankton sampling in the deep sea is the MOCNESS, a system of multiple opening-closing nets, typically lowered to within 50 m of the seabed and towed obliquely to the surface to obtain low-spatial-resolution samples that integrate across 10 s of meters of water depth. The SyPRID (Sentry Precision Robotic Impeller Driven) sampler is an innovative, deep-rated (6000 m) plankton sampler that partners with the Sentry Autonomous Underwater Vehicle (AUV) to obtain paired, large-volume plankton samples at specified depths and survey lines to within 1.5 m of the seabed and with simultaneous collection of sensor data. SyPRID uses a perforated Ultra-High-Molecular-Weight (UHMW) plastic tube to support a fine mesh net within an outer carbon composite tube (tube-within-a-tube design), with an axial flow pump located aft of the capture filter. The pump facilitates flow through the system and reduces or possibly eliminates the bow wave at the mouth opening. The cod end, a hollow truncated cone, is also made of UHMW plastic and includes a collection volume designed to provide an area where zooplankton can collect, out of the high flow region. SyPRID attaches as a saddle-pack to the Sentry vehicle. Sentry itself is configured with a flight control system that enables autonomous survey paths to low altitudes. In its verification deployment at the Blake Ridge Seep (2160 m) on the US Atlantic Margin, SyPRID was operated for 6 h at an altitude of 5 m. It recovered plankton samples, including delicate living larvae, from the near-bottom stratum that is seldom sampled by a typical MOCNESS tow. The prototype SyPRID and its next generations will enable studies of plankton or other particulate distributions associated with localized physico-chemical strata in the water column or above patchy habitats on the seafloor.

  3. Contrasting Responses to Nutrient Enrichment of Prokaryotic Communities Collected from Deep Sea Sites in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Gerard T. A. Fleming

    2013-09-01

    Full Text Available Deep water samples (ca. 4,200 m were taken from two hydrologically-similar sites around the Crozet islands with highly contrasting surface water productivities. Site M5 was characteristic of high productivity waters (high chlorophyll whilst site M6 was subject to a low productivity regime (low chlorophyll in the overlying waters. Samples were incubated for three weeks at 4 °C at in-situ and surface pressures, with and without added nutrients. Prokaryotic abundance increased by at least two-fold for all nutrient-supplemented incubations of water from M5 with little difference in abundance between incubations carried out at atmospheric and in-situ pressures. Abundance only increased for incubations of M6 waters (1.6-fold when they were carried out at in-situ pressures and with added nutrients. Changes in community structure as a result of incubation and enrichment (as measured by DGGE banding profiles and phylogenetic analysis showed that diversity increased for incubations of M5 waters but decreased for those with M6 waters. Moritella spp. came to dominate incubations carried out under in-situ pressure whilst the Archaeal community was dominated by Crenarchaea in all incubations. Comparisons between atmospheric and in situ pressure incubations demonstrated that community composition was significantly altered and community structure changes in unsuspplemented incubations at in situ pressure was indicative of the loss of functional taxa as a result of depressurisation during sampling. The use of enrichment incubations under in-situ conditions has contributed to understanding the different roles played by microorganisms in deep sea ecosystems in regions of low and high productivity.

  4. Hard substrate in the deep ocean: How sediment features influence epibenthic megafauna on the eastern Canadian margin

    Science.gov (United States)

    Lacharité, Myriam; Metaxas, Anna

    2017-08-01

    Benthic habitats on deep continental margins (> 1000 m) are now considered heterogeneous - in particular because of the occasional presence of hard substrate in a matrix of sand and mud - influencing the distribution of megafauna which can thrive on both sedimented and rocky substrates. At these depths, optical imagery captured with high-definition cameras to describe megafauna can also describe effectively the fine-scale sediment properties in the immediate vicinity of the fauna. In this study, we determined the relationship between local heterogeneity (10-100 sm) in fine-scale sediment properties and the abundance, composition, and diversity of megafauna along a large depth gradient (1000-3000 m) in a previously-unexplored habitat: the Northeast Fan, which lies downslope of submarine canyons off the Gulf of Maine (northwest Atlantic). Substrate heterogeneity was quantified using a novel approach based on principles of computer vision. This approach proved powerful in detecting gradients in sediment, and sporadic complex features (i.e. large boulders) in an otherwise homogeneous environment because it characterizes sediment properties on a continuous scale. Sediment heterogeneity influenced megafaunal diversity (morphospecies richness and Shannon-Wiener Index) and community composition, with areas of higher substrate complexity generally supported higher diversity. However, patterns in abundance were not influenced by sediment properties, and may be best explained by gradients in food supply. Our study provides a new approach to quantify fine-scale sediment properties and assess their role in shaping megafaunal communities in the deep sea, which should be included into habitat studies given their potential ecological importance.

  5. Interannual control of plankton communities by deep winter mixing and prey/predator interactions in the NW Mediterranean: Results from a 30-year 3D modeling study

    Science.gov (United States)

    Auger, P. A.; Ulses, C.; Estournel, C.; Stemmann, L.; Somot, S.; Diaz, F.

    2014-05-01

    A realistic modeling approach is designed to address the role of winter mixing on the interannual variability of plankton dynamics in the north-western (NW) Mediterranean basin. For the first time, a high-resolution coupled hydrodynamic-biogeochemical model (Eco3m-S) covering a 30-year period (1976-2005) is validated on available in situ and satellite data for the NW Mediterranean. In this region, cold, dry winds in winter often lead to deep convection and strong upwelling of nutrients into the euphotic layer. High nutrient contents at the end of winter then support the development of a strong spring bloom of phytoplankton. Model results indicate that annual primary production is not affected by winter mixing due to seasonal balance (minimum in winter and maximum in spring). However, the total annual water column-integrated phytoplankton biomass appears to be favored by winter mixing because zooplankton grazing activity is low in winter and early spring. This reduced grazing is explained here by the rarefaction of prey due to both light limitation and the effect of mixing-induced dilution on prey/predator interactions. A negative impact of winter mixing on winter zooplankton biomass is generally simulated except for mesozooplankton. This difference is assumed to stem from the lower parameterized mortality, top trophic position and detritivorous diet of mesozooplankton in the model. Moreover, model suggests that the variability of annual mesozooplankton biomass is principally modulated by the effects of winter mixing on winter biomass. Thus, interannual variability of winter nutrient contents in the euphotic layer, resulting from winter mixing, would control spring primary production and thus annual mesozooplankton biomass. Our results show a bottom-up control of mesozooplankton communities, as observed at a coastal location of the Ligurian Sea.

  6. Food-web and ecosystem structure of the open-ocean and deep-sea environments of the Azores, NE Atlantic

    Directory of Open Access Journals (Sweden)

    Telmo Morato

    2016-12-01

    Full Text Available The Marine Strategy Framework Directive intends to adopt ecosystem-based management for resources, biodiversity and habitats that puts emphasis on maintaining the health of the ecosystem alongside appropriate human use of the marine environment, for the benefit of current and future generations. Within the overall framework of ecosystem-based management, ecosystem models are tools to evaluate and gain insights in ecosystem properties. The low data availability and complexity of modelling deep-water ecosystems has limited the application of ecosystem models to few deep-water ecosystems. Here, we aim to develop an ecosystem model for the deep-sea and open ocean in the Azores exclusive economic zone with the overarching objective of characterising the food-web and ecosystem structure of the ecosystem. An ecosystem model with 45 functional groups, including a detritus group, two primary producer groups, eight invertebrate groups, 29 fish groups, three marine mammal groups, a turtle and a seabird group was built. Overall data quality measured by the pedigree index was estimated to be higher than the mean value of all published models. Therefore, the model was built with source data of an overall reasonable quality, especially considering the normally low data availability for deep-sea ecosystems. The total biomass (excluding detritus of the modelled ecosystem for the whole area was calculated as 24.7 t km-². The mean trophic level for the total marine catch of the Azores was estimated to be 3.95, similar to the trophic level of the bathypelagic and medium-size pelagic fish. Trophic levels for the different functional groups were estimated to be similar to those obtained with stable isotopes and stomach contents analyses, with some exceptions on both ends of the trophic spectra. Omnivory indices were in general low, indicating prey speciation for the majority of the groups. Cephalopods, pelagic sharks and toothed whales were identified as groups with

  7. Geothermal influences on the abyssal ocean

    Science.gov (United States)

    Emile-Geay, J.; Madec, G.

    2017-12-01

    Long considered a negligible contribution to ocean dynamics, geothermal heat flow (GHF) is now increasingly recognized as an important contributor to the large scale ocean's deep structure and circulation. This presentation will review the history of theories regarding geothermal influences on the abyssal ocean. Though the contribution to the thermal structure was recognized early on, its potential in driving a circulation [Worthington, 1968] was largely ignored on the grounds that it could not materially affect potential vorticity. Huang [JPO, 1999] proposed that GHF may provide 30-50% of the energy available for deep mixing, a calculation that later proved too optimistic [Wunsch & Ferrari ARFM 2004]. Model simulations suggested that a uniform GHF of 50 mW/m2 could drive an abyssal of a few Sverdrups (1 Sv = 106 m3.s-1) [Adcroft et al, GRL 2001], but it was not until Emile-Geay & Madec [OS, 2009] (EM09) that GHF began to be taken seriously [Mashayek et al, GRL 2013; Voldoire et al. Clim. Dyn. 2013; Dufresnes et al., Clim. Dyn. 2013]. Using analytical and numerical approaches, the study made 3 main points: GHF brings as much energy to the deep ocean as intense diapycnal mixing (1 cm2/s). GHF consumes the densest water masses, inducing a deep circulation of 5 Sv even without mixing. This circulation varies in inverse proportion to abyssal stratification. The spatial structure of GHF, highest at mid-ocean ridges and lowest in abyssal plains, matters far less than the fact that it bathes vast fractions of the ocean floor in a relatively low, constant flux. EM09 concluded that GHF "is an important actor of abyssal dynamics, and should no longer be neglected in oceanographic studies". Recent work has confirmed that geothermal heat flow is of comparable importance to ocean circulation as bottom-intensified mixing induced by internal wave breaking [De Lavergne et al, JPO 2016a,b]. Thus, including GHF in ocean general circulation models improves abyssal structure and

  8. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    Science.gov (United States)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  9. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: The True's beaked whale Mesoplodon mirus

    International Nuclear Information System (INIS)

    Lusher, Amy L.; Hernandez-Milian, Gema; O'Brien, Joanne; Berrow, Simon; O'Connor, Ian; Officer, Rick

    2015-01-01

    When mammals strand, they present a unique opportunity to obtain insights into their ecology. In May 2013, three True's beaked whales (two adult females and a female calf) stranded on the north and west coasts of Ireland and the contents of their stomachs and intestines were analysed for anthropogenic debris. A method for identifying microplastics ingested by larger marine organisms was developed. Microplastics were identified throughout the digestive tract of the single whale that was examined for the presence of microplastics. The two adult females had macroplastic items in their stomachs. Food remains recovered from the adult whales consisted of mesopelagic fish (Benthosema glaciale, Nansenia spp., Chauliodius sloani) and cephalopods, although trophic transfer has been discussed, it was not possible to ascertain whether prey were the source of microplastics. This is the first study to directly identify microplastics <5 mm in a cetacean species. - Highlights: • True's beaked whales stranded in Ireland were examined for anthropogenic debris. • One adult female had microplastics throughout her digestive tract. • Both adult females ingested macroplastic items. • Dietary analysis suggests the whales fed on mesopelagic fish. - Dietary study finds microplastic and macroplastic ingestion by rare, oceanic, predatory cetaceans stranded in Ireland

  10. Dissolved Fe in the Deep and Upper Arctic Ocean With a Focus on Fe Limitation in the Nansen Basin

    Directory of Open Access Journals (Sweden)

    Micha J. A. Rijkenberg

    2018-03-01

    Full Text Available Global warming resulting from the release of anthropogenic carbon dioxide is rapidly changing the Arctic Ocean. Over the last decade sea ice declined in extent and thickness. As a result, improved light availability has increased Arctic net primary production, including in under-ice phytoplankton blooms. During the GEOTRACES cruise PS94 in the summer of 2015 we measured dissolved iron (DFe, nitrate and phosphate throughout the central part of the Eurasian Arctic. In the deeper waters concentrations of DFe were higher, which we relate to resuspension on the continental slope in the Nansen Basin and hydrothermal activity at the Gakkel Ridge. The main source of DFe in the surface was the Trans Polar Drift (TPD, resulting in concentrations up to 4.42 nM. Nevertheless, using nutrient ratios we show that a large under-ice bloom in the Nansen basin was limited by Fe. Fe limitation potentially prevented up to 54% of the available nitrate and nitrite from being used for primary production. In the Barents Sea, Fe is expected to be the first nutrient to be depleted as well. Changes in the Arctic biogeochemical cycle of Fe due to retreating ice may therefore have large consequences for primary production, the Arctic ecosystem and the subsequent drawdown of carbon dioxide.

  11. Injection grout for deep repositories. Subproject 1: LowpH cementitious grout for larger fractures, leach testing of grout mixes and evaluation of the long-term safety

    International Nuclear Information System (INIS)

    Vuorinen, U.; Lehikoinen, J.; Imoto, Harutake; Yamamoto, Takeshi; Cruz Alonso, M.

    2005-10-01

    Constructing an underground disposal facility for spent nuclear fuel deep in bedrock requires lowpH cement-based injection grout, because assured data of the extent of a possible high-pH plume in saturated bedrock conditions is lacking. In this work low-pH grout mixes of new design were subjected to leach testing. Before chosen to leach testing the grout mixes had to fulfil certain technical requirements. Leach testing was performed in order to establish that the pH requirement (≤11) set for the leachates was met. For comparison reasons also one conventionally used cement based grout material was included in the tests. Two kinds of lowpH grout cement mixes were tested; mixes with added blast furnace slag (4 mixes) or added silica (6 mixes). All the mixes were not completely tested according to the test plan, because for some mixes during leach testing factors detrimental to the long-term safety of a repository were observed, e.g. too high pH or leached sulphide, which is harmful for copper. Leach testing of the grout mixes was performed in a glove-box (N 2 atmosphere) in order to avoid the interference of atmospheric CO 2 on the alkaline leachates. Two simulated groundwater solutions, saline OL-SO and fresh ALL-MR, were used as leachates. Two leach tests were applied; equilibrium and diffusion tests. In the equilibrium test at each measuring point only a part of the leachate was exchanged, whereas in the diffusion test the entire leachate was exchanged. The pH value of each leachate sample was measured, but total alkalinity was determined only for some leachates. Na, K, Ca, Mg, Al, Fe, Si, SO 4 2- , S TOT , and Cl were analysed in the leach solutions collected in the diffusion test of four grout mixes chosen. Also the corresponding solid specimens were analysed (SEM, XRD, EPMA, MIP, TG) in Japan. A few grout pore fluid pH values were measured in Spain, as well. The simplified thermodynamic model calculations were successful in qualitatively reproducing the

  12. An investigation of the physiology and potential role of components of the deep ocean bacterial community (of the NE Atlantic) by enrichments carried out under minimal environmental change

    Science.gov (United States)

    Egan, Simon T.; McCarthy, David M.; Patching, John W.; Fleming, Gerard T. A.

    2012-03-01

    Samples of deep-ocean water (3170 m) taken from the Rockall Trough (North-East Atlantic) were incubated for one-month at atmospheric and in-situ pressure (31 MPa), at 4 °C and in the absence and presence of added nutrients. Prokaryotic abundance (direct cell counts) increased by at least 28-fold in enrichments without added nutrients. However, the magnitude of increase in abundance was less for incubations carried out at in-situ pressure (131-181-fold) than those incubations at surface pressure (163-1714-fold increase in abundance). Changes in the prokaryotic community profile as a result of one-month incubation were measured by means of Denaturing Gel Electrophoresis (DGGE) of extracted 16S rDNA. The profiles of post-incubation samples incubated at in-situ pressure were separated from all other profiles as were those of unpressurised samples with added nutrients. The behaviour (fitness) of individual community members (Operational Taxonomic Units: OTUs) was determined on the basis of change in relative DGGE band intensities between pre- and post-incubation samples. Of twenty-one OTUs examined, six were fitter when incubated in the presence of added nutrients and at in-situ pressure and one of these was advantaged when grown in the absence of added nutrients and at in-situ pressure. These represented autochthonous and active members of the deep-ocean prokaryotic community. In contrast, seven OTUs were disadvantaged when grown under in-situ pressure and were indicative surface-derived allochtonous microorganisms. A further two OTUs came to dominance in incubations with added nutrients (pressurised and unpressurised) and similar to the previous category were probably surface-derived microorganisms. A single OTU showed characteristics of piezophilic and oliogrophic behaviour and four OTUs were disadvantaged under all incubation conditions examined. The twenty-one DGGE bands were sequenced and the bacterial communities were dominated by Gamma proteobactria and to a

  13. Distribution of PAHs and the PAH-degrading bacteria in the deep-sea sediments of the high-latitude Arctic Ocean

    Science.gov (United States)

    Dong, C.; Bai, X.; Sheng, H.; Jiao, L.; Zhou, H.; Shao, Z.

    2015-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are common organic pollutants that can be transferred long distances and tend to accumulate in marine sediments. However, less is known regarding the distribution of PAHs and their natural bioattenuation in the open sea, especially the Arctic Ocean. In this report, sediment samples were collected at four sites from the Chukchi Plateau to the Makarov Basin in the summer of 2010. PAH compositions and total concentrations were examined with GC-MS. The concentrations of 16 EPA-priority PAHs varied from 2.0 to 41.6 ng g-1 dry weight and decreased with sediment depth and movement from the southern to the northern sites. Among the targeted PAHs, phenanthrene was relatively abundant in all sediments. The 16S rRNA gene of the total environmental DNA was analyzed with Illumina high-throughput sequencing (IHTS) to determine the diversity of bacteria involved in PAH degradation in situ. The potential degraders including Cycloclasticus, Pseudomonas, Halomonas, Pseudoalteromonas, Marinomonas, Bacillus, Dietzia, Colwellia, Acinetobacter, Alcanivorax, Salinisphaera and Shewanella, with Dietzia as the most abundant, occurred in all sediment samples. Meanwhile, enrichment with PAHs was initiated onboard and transferred to the laboratory for further enrichment and to obtain the degrading consortia. Most of the abovementioned bacteria in addition to Hahella, Oleispira, Oceanobacter and Hyphomonas occurred alternately as predominant members in the enrichment cultures from different sediments based on IHTS and PCR-DGGE analysis. To reconfirm their role in PAH degradation, 40 different bacteria were isolated and characterized, among which Cycloclasticus Pseudomonas showed the best degradation capability under low temperatures. Taken together, PAHs and PAH-degrading bacteria were widespread in the deep-sea sediments of the Arctic Ocean. We propose that bacteria of Cycloclasticus, Pseudomonas, Pseudoalteromonas, Halomonas, Marinomonas and Dietzia may

  14. One new genus and three new species of deep-sea nematodes (Nematoda: Microlaimidae) from the Southwest Pacific Ocean and Ross Sea.

    Science.gov (United States)

    Leduc, Daniel

    2016-02-11

    New deep-sea nematodes of the family Microlaimidae are described from the Southwest Pacific Ocean and Ross Sea. Microlaimus korari n. sp. is characterised by annulated cuticle with longitudinal bars, round amphideal aperture slightly smaller than the cryptospiral amphideal fovea, spacious and heavily cuticularised buccal cavity with large dorsal tooth and right subventral tooth situated anteriorly relative to left subventral tooth, slender spicules 4.4 cloacal body diameters long, and gubernaculum 1.2 cloacal body diameters long with laterally curved distal end and swollen proximal end. Bolbolaimus tongaensis n. sp. is characterised by annulated cuticle with longitudinal bars, oval amphideal aperture and cryptocircular amphideal fovea situated between cephalic setae and only partially surrounded by cuticle annulations, and short spicules cuticularised along dorsal edge and at proximal end and with swollen portion near proximal end. Maragnopsia n. gen. is characterised by a minute, non-cuticularised mouth cavity without teeth, an elongated posterior pharyngeal bulb more than twice as long as it is wide, a single outstretched testis, and a conico-cylindrical tail 13-16 anal body diameters long. A list of all 83 valid Microlaimus species is provided. The present study provides the first microlaimid species records from deep-sea habitats (> 200 m depth) in the Southwest Pacific and Ross Sea. The presence of M. korari n. sp. on both the continental slope of New Zealand and Ross Sea abyssal plain suggests that this species has a wide geographical and depth distribution. However, molecular analyses will be required to confirm the identity of these two geographically disparate populations.

  15. Brine/Rock Interaction in Deep Oceanic Layered Gabbros: Petrological Evidence from Cl-Rich Amphibole, High-Temperature Hydrothermal Veins, and Experiments

    Science.gov (United States)

    Currin Sala, A. M.; Koepke, J.; Almeev, R. R.; Teagle, D. A. H.; Zihlmann, B.; Wolff, P. E.

    2017-12-01

    Evidence of high temperature brine/rock interaction is found in hydrothermal veins and dykelets that cross-cut layered olivine gabbros in the deep palaeocrust of the Sumail Ophiolite, Sultanate of Oman. Here we present petrological and geochemical data from these samples, and an experimental attempt to simulate brine/gabbro interaction using externally heated cold seal pressure vessels. The studied natural veins and dykelets contain pargasite, hornblende, actinolite, and Cl-rich pargasite with up to 5 wt% Cl, showing a range of formation conditions from magmatic to metamorphic (hydrothermal) and thus a complex history of brine/rock interaction. In addition, the isotopic study of the radiogenic 87/86Sr and stable 18O in different amphibole types provide an estimate for the extent of seawater influence as alteration agent in the veins of the studied samples. Experiments performed at 750 °C and 200 MPa with different starting materials (chlorine-free amphibole, olivine gabbro powder) and 20 wt% NaCl aqueous brine, illustrate the process by which gabbro-hosted amphibole-rich veins evolve at subsolidus temperatures in the presence of a seawater-derived fluid. Our results demonstrate a decrease in olivine, plagioclase and magnetite content in favour of hastingsite, pargasite and magnesiohornblende, a decrease of IVAl and Ti in the starting amphibole, and an increase in Cl in amphibole, up to 0.2 Cl wt%. Our experiments show the change of magmatic pargasite towards more magnesium and silica-rich end members with results comparable to mildly chlorine-rich pargasites and hornblendes found in the natural samples studied. However, the experimental setup also presents limitations in the attainment of very high-chlorine amphibole (up to 5 wt%). Our analytical and experimental results provide further evidence for the existence of a hydrothermal cooling system in the deep oceanic crust.

  16. The Morphometry of the Deep-Water Sinuous Mendocino Channel and the Immediate Environs, Northeastern Pacific Ocean

    Directory of Open Access Journals (Sweden)

    James V. Gardner

    2017-11-01

    Full Text Available Mendocino Channel, a deep-water sinuous channel located along the base of Gorda Escarpment, was for the first time completely mapped with a multibeam echosounder. This study uses newly acquired multibeam bathymetry and backscatter, together with supporting multichannel seismic and sediment core data to quantitatively describe the morphometry of the entire Mendocino Channel and to explore the age and possible causes that may have contributed to the formation and maintenance of the channel. The first 42 km of the channel is a linear reach followed for the next 83.8 km by a sinuous reach. The sinuous reach has a sinuosity index of 1.66 before it changes back to a linear reach for the next 22.2 km. A second sinuous reach is 40.2 km long and the two reaches are separated by a crevasse splay and a large landslide that deflected the channel northwest towards Gorda Basin. Both sinuous reaches have oxbow bends, cut-off meanders, interior and exterior terraces and extensive levee systems. The lower sinuous reach becomes more linear for the next 22.2 km before the channel relief falls below the resolution of the data. Levees suddenly decrease in height above the channel floor mid-way along the lower linear reach close to where the channel makes a 90° turn to the southwest. The entire channel floor is smooth at the resolution of the data and only two large mounds and one large sediment pile were found on the channel floor. The bathymetry and acoustic backscatter, together with previously collected seismic data and box and piston cores provide details to suggest Mendocino Channel may be no older than early Quaternary. A combination of significant and numerous earthquakes and wave-loading resuspension by storms are the most likely processes that generated turbidity currents that have formed and modified Mendocino Channel.

  17. Physicochemical Requirements Inferred for Chemical Self-Organization Hardly Support an Emergence of Life in the Deep Oceans of Icy Moons.

    Science.gov (United States)

    Pascal, Robert

    2016-05-01

    An approach to the origin of life, focused on the property of entities capable of reproducing themselves far from equilibrium, has been developed recently. Independently, the possibility of the emergence of life in the hydrothermal systems possibly present in the deep oceans below the frozen crust of some of the moons of Jupiter and Saturn has been raised. The present report is aimed at investigating the mutual compatibility of these alternative views. In this approach, the habitability concept deduced from the limits of life on Earth is considered to be inappropriate with regard to emerging life due to the requirement for an energy source of sufficient potential (equivalent to the potential of visible light). For these icy moons, no driving force would have been present to assist the process of emergence, which would then have had to rely exclusively on highly improbable events, thereby making the presence of life unlikely on these Solar System bodies, that is, unless additional processes are introduced for feeding chemical systems undergoing a transition toward life and the early living organisms. Icy moon-Bioenergetics-Chemical evolution-Habitability-Origin of life. Astrobiology 16, 328-334.

  18. Physicochemical Requirements Inferred for Chemical Self-Organization Hardly Support an Emergence of Life in the Deep Oceans of Icy Moons

    Science.gov (United States)

    Pascal, Robert

    2016-05-01

    An approach to the origin of life, focused on the property of entities capable of reproducing themselves far from equilibrium, has been developed recently. Independently, the possibility of the emergence of life in the hydrothermal systems possibly present in the deep oceans below the frozen crust of some of the moons of Jupiter and Saturn has been raised. The present report is aimed at investigating the mutual compatibility of these alternative views. In this approach, the habitability concept deduced from the limits of life on Earth is considered to be inappropriate with regard to emerging life due to the requirement for an energy source of sufficient potential (equivalent to the potential of visible light). For these icy moons, no driving force would have been present to assist the process of emergence, which would then have had to rely exclusively on highly improbable events, thereby making the presence of life unlikely on these Solar System bodies, that is, unless additional processes are introduced for feeding chemical systems undergoing a transition toward life and the early living organisms.

  19. Clean and safe supply of fish and shellfish to clear the HACCP regulation by use of clean and cold deep ocean water in Rausu, Hokkaido, Japan

    Science.gov (United States)

    Mac Takahashi, Masayuki; Yamashita, Kazunori

    2005-07-01

    For the supply of fish and shellfish to consumers in fresh condition, clean handling after catch from the sea is essential. According to HACCP (Hazard Analysis and Critical Control Points), it is important to meet such requirement by keeping fish and shellfish under a certain low temperature and clean conditions after catching. The deep ocean water (DOW) characterized by low temperature and cleanliness has been chosen for fish and shellfish handlings, particularly for salmon, cod, and sea urchin in Town ‘Rausu’ in Hokkaido, Japan. DOW below 2.9’C of an amount of nearly 5 000m3 is planned to be pumped up every day from a depth of about 350 m, and temporarily stored in a large simulated tank on land. DOW is then supplied to fish boats through hydrants distributed throughout the harbor and used for keeping salmon in clean and cold conditions. Ice made from DOW is also used for lowering temperature if necessary. DOW and ice made from DOW are also used during the transportation of fish and shellfish. The entire system is scheduled to be completed by the summer of 2005.

  20. Metals of Deep Ocean Water Increase the Anti-Adipogenesis Effect of Monascus-Fermented Product via Modulating the Monascin and Ankaflavin Production.

    Science.gov (United States)

    Lung, Tzu-Ying; Liao, Li-Ya; Wang, Jyh-Jye; Wei, Bai-Luh; Huang, Ping-Yi; Lee, Chun-Lin

    2016-05-27

    Deep ocean water (DOW) obtained from a depth of more than 200 m includes abundant nutrients and minerals. DOW was proven to positively increase monascin (MS) and ankaflavin (AK) production and the anti-adipogenesis effect of Monascus-fermented red mold dioscorea (RMD). However, the influences that the major metals in DOW have on Monascus secondary metabolite biosynthesis and anti-adipogenesis remain unknown. Therefore, the major metals in DOW were used as the culture water to produce RMD. The secondary metabolites production and anti-adipogenesis effect of RMD cultured with various individual metal waters were investigated. In the results, the addition of water with Mg, Ca, Zn, and Fe increased MS and AK production and inhibited mycotoxin citrinin (CT). However, the positive influence may be contributed to the regulation of pigment biosynthesis. Furthermore, in the results of cell testing, higher lipogenesis inhibition was seen in the treatments of various ethanol extracts of RMD cultured with water containing Mg, K, Zn, and Fe than in those of RMD cultured with ultra-pure water. In conclusion, various individual metals resulted in different effects on MS and AK productions as well as the anti-adipogenesis effect of RMD, but the specific metals contained in DOW may cause synergistic or comprehensive effects that increase the significantly positive influence.

  1. Evidence of denser MgSiO3 glass above 133 gigapascal (GPa) and implications for remnants of ultradense silicate melt from a deep magma ocean.

    Science.gov (United States)

    Murakami, Motohiko; Bass, Jay D

    2011-10-18

    Ultralow velocity zones are the largest seismic anomalies in the mantle, with 10-30% seismic velocity reduction observed in thin layers less than 20-40 km thick, just above the Earth's core-mantle boundary (CMB). The presence of silicate melts, possibly a remnant of a deep magma ocean in the early Earth, have been proposed to explain ultralow velocity zones. It is, however, still an open question as to whether such silicate melts are gravitationally stable at the pressure conditions above the CMB. Fe enrichment is usually invoked to explain why melts would remain at the CMB, but this has not been substantiated experimentally. Here we report in situ high-pressure acoustic velocity measurements that suggest a new transformation to a denser structure of MgSiO(3) glass at pressures close to those of the CMB. The result suggests that MgSiO(3) melt is likely to become denser than crystalline MgSiO(3) above the CMB. The presence of negatively buoyant and gravitationally stable silicate melts at the bottom of the mantle, would provide a mechanism for observed ultralow seismic velocities above the CMB without enrichment of Fe in the melt. An ultradense melt phase and its geochemical inventory would be isolated from overlying convective flow over geologic time.

  2. Higher Anti-Liver Fibrosis Effect of Cordyceps militaris-Fermented Product Cultured with Deep Ocean Water via Inhibiting Proinflammatory Factors and Fibrosis-Related Factors Expressions

    Directory of Open Access Journals (Sweden)

    Yu-Ping Hung

    2017-06-01

    Full Text Available Deep ocean water (DOW has been shown to enhance the functional components of fungi, resulting in increased health benefits. Therefore, using DOW for culturing fungi can enhance the cordycepin and adenosine of Cordyceps militaris (CM and its protective effects on the liver. In this study, the antiliver fibrosis effects and mechanisms of ultrapure water-cultured CM (UCM, DOW-cultured CM (DCM, synthetic water-cultured CM, DOW, cordycepin, and adenosine were compared in the liver fibrosis mice induced by intraperitoneal injections of thioacetamide (TAA. The results indicated that DCM exhibited superior performance in reducing liver collagen accumulation, mitigating liver injuries, inhibiting proinflammatory factors and fibrosis-related factor (TGF-β1, Smad2/3, α-SMA, COL1A1 expression compared with UCM. DOW, cordycepin, and adenosine also performed antiliver fibrosis effect. Therefore, because DCM is rich in DOW and functional components, it can achieve anti-liver fibrosis effects through multiple pathways. These ameliorative effects are considerably superior to those of UCM.

  3. Higher Anti-Liver Fibrosis Effect of Cordyceps militaris-Fermented Product Cultured with Deep Ocean Water via Inhibiting Proinflammatory Factors and Fibrosis-Related Factors Expressions.

    Science.gov (United States)

    Hung, Yu-Ping; Lee, Chun-Lin