WorldWideScience

Sample records for deep level formation

  1. Deep levels induced by low energy B+ implantation into Ge-preamorphised silicon in correlation with end of range formation

    International Nuclear Information System (INIS)

    Benzohra, Mohamed; Olivie, Francois; Idrissi-Benzohra, Malika; Ketata, Kaouther; Ketata, Mohamed

    2002-01-01

    It is well established that low energy B + ion implantation into Ge- (or Si) implantation pre-amorphised silicon allows ultra-shallow p + n junctions formation. However, this process is known to generate defects such as dislocation loops, vacancies and interstitials which can act as vehicles to different mechanisms inducing electrically active levels into the silicon bulk. The junctions studied have been obtained using 3 keV/10 15 cm -2 B + implantation into Ge-implantation pre-amorphised substrates and into a reference crystalline substrate. Accurate measurements using deep level transient spectroscopy (DLTS) and isothermal transient capacitance ΔC(t,T) were performed to characterise these levels. Such knowledge is crucial to improve the device characteristics. In order to sweep the silicon band gap, various experimental conditions were considered. The analysis of DLTS spectra have first showed three deep levels associated to secondary induced defects. Their concentration profiles were derived from isothermal transient capacitance at depths up to 3.5 μm into the silicon bulk and allowed us to detect a new deep level. The evolution of such defect distribution in correlation with the technological steps is discussed. The end of range (EOR) defect influence on electrical activity of secondary induced defects in ultra-shallow p + n diodes is clearly demonstrated

  2. Disposal of high level and long lived radioactive waste in deep geological formation

    International Nuclear Information System (INIS)

    Niezborala, J.M.; Hoorelbeke, J.M.

    2000-01-01

    The status of ANDRA's research program on high level and long lived waste corresponds to the start of construction of the Meuse/Haute-Marne Underground Research Laboratory in an argillite layer, as well as to the selection in 1999 of preliminary disposal concepts corresponding to this layer. The paper describes the preliminary concepts dealing with transuranic waste, high level vitrified waste and potentially disposed spent fuel. Provision is made for a high level of flexibility, in particular with regard to options of reversibility of the disposal process, and to potential evolutions of the waste inventory. These concepts were selected for research purpose to assess by the year 2006 the feasibility of a potential repository, with.respect in particular to safety rules. The paper mentions the research targets of the program aiming at answering major scientific and technological questions raised by the concepts. The program includes the fitting and validation of the modelling, on the basis in particular of the experimental work to be carried out in the Underground Research Laboratory, making it possible to dimension the disposal concepts and to assess their safety. (authors)

  3. E-beam irradiation effect on CdSe/ZnSe QD formation by MBE: deep level transient spectroscopy and cathodoluminescence studies

    International Nuclear Information System (INIS)

    Kozlovsky, V I; Litvinov, V G; Sadofyev, Yu G

    2004-01-01

    CdSe/ZnSe structures containing 1 or 15 thin (3-5 monolayers) CdSe layers were studied by cathodoluminescence (CL) and deep level transient spectroscopy (DLTS). The DLTS spectra consisted of peaks from deep levels (DLs) and an additional intense peak due to electron emission from the ground quantized level in the CdSe layers. Activation energy of this additional peak correlated with an energy of the CdSe-layer emission line in the CL spectra. Electron-beam irradiation of the structure during the growth process was found to influence the DLTS and CL spectra of the CdSe layers, shifting the CdSe-layer emission line to the long-wave side. The obtained results are explained using the assumption that e-beam irradiation stimulates the formation of quantum dots of various sizes in the CdSe layers

  4. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  5. Repository tunnel construction in deep clay formations

    International Nuclear Information System (INIS)

    Clarke, B.G.; Mair, R.J.; Taylor, R.N.

    1992-01-01

    One of the objects of the Hades project at Mol, Belgium has been to evaluate the feasibility of construction of a deep repository in the Boom clay formation at depth of approximately 225 metres. The main objective of the present project was to analyse and interpret the detailed geotechnical measurements made around the Hades trial shaft and tunnel excavations and evaluate the safety of radioactive waste disposal in a repository facility in deep clay formations. Plasticity calculations and finite element analyses were used which gave results consistent with the in-situ measurements. It was shown that effective stress analysis could successfully predict the observed field behaviour. Correct modelling of the small-strain stiffness of the Boom clay was essential if reasonable predictions of the pore pressure response due to construction are to be made. The calculations undertaken indicated that, even in the long term, the pressures on the test drift tunnel lining are likely to be significantly lower than the overburden pressure. Larger long-term tunnel lining pressures are predicted for impermeable linings. A series of laboratory stress path tests was undertaken to determine the strength and stiffness characteristics of the Boom clay. The tests were conducted at appropriate effective stress levels on high-quality samples retrieved during construction of the test drift. The apparatus developed for the testing is described and the results discussed. The development of a self boring retracting pressure-meter is described. This novel in-situ testing device was specifically designed to determine from direct measurements the convergence/confinement curve relevant to tunnelling in clay formations. 44 refs., 60 figs., 3 tabs

  6. Deep learning for SAR image formation

    Science.gov (United States)

    Mason, Eric; Yonel, Bariscan; Yazici, Birsen

    2017-04-01

    The recent success of deep learning has lead to growing interest in applying these methods to signal processing problems. This paper explores the applications of deep learning to synthetic aperture radar (SAR) image formation. We review deep learning from a perspective relevant to SAR image formation. Our objective is to address SAR image formation in the presence of uncertainties in the SAR forward model. We present a recurrent auto-encoder network architecture based on the iterative shrinkage thresholding algorithm (ISTA) that incorporates SAR modeling. We then present an off-line training method using stochastic gradient descent and discuss the challenges and key steps of learning. Lastly, we show experimentally that our method can be used to form focused images in the presence of phase uncertainties. We demonstrate that the resulting algorithm has faster convergence and decreased reconstruction error than that of ISTA.

  7. Conditions for the formation of deep convective activities over Nigeria

    African Journals Online (AJOL)

    Some mean flow parameters and dynamic processes necessary for the formation of widespread deep convective activities over Nigeria have been investigated and their interactive roles identified. These parameters include the low-level and the 700mb winds known as African Easterly jet (AEJ), spatial distribution of the ...

  8. Deep Ocean Contribution to Sea Level Rise

    Science.gov (United States)

    Chang, L.; Sun, W.; Tang, H.; Wang, Q.

    2017-12-01

    The ocean temperature and salinity change in the upper 2000m can be detected by Argo floats, so we can know the steric height change of the ocean. But the ocean layers above 2000m represent only 50% of the total ocean volume. Although the temperature and salinity change are small compared to the upper ocean, the deep ocean contribution to sea level might be significant because of its large volume. There has been some research on the deep ocean rely on the very sparse situ observation and are limited to decadal and longer-term rates of change. The available observational data in the deep ocean are too spares to determine the temporal variability, and the long-term changes may have a bias. We will use the Argo date and combine the situ data and topographic data to estimate the temperature and salinity of the sea water below 2000m, so we can obtain a monthly data. We will analyze the seasonal and annual change of the steric height change due to the deep ocean between 2005 and 2016. And we will evaluate the result combination the present-day satellite and in situ observing systems. The deep ocean contribution can be inferred indirectly as the difference between the altimetry minus GRACE and Argo-based steric sea level.

  9. Radionuclide transport calculations from high-level long-lived radioactive waste disposal in deep clayey geologic formation toward adjacent aquifers

    International Nuclear Information System (INIS)

    Genty, A.; Le Potier, C.

    2007-01-01

    In the context of high-level nuclear waste repository safety calculations, the modeling of radionuclide migration is of first importance. Three dimensional radionuclide transport calculations in geological repository need to describe objects of the meter scale embedded in geologic layer formations of kilometer extension. A complete and refined spatial description would end up with at least meshes of hundreds of millions to billions elements. The resolution of this kind of problem is today not reachable with classical computers due to resources limitations. Although parallelized computation appears as potential tool to handle multi-scale calculations, to our knowledge no attempt have been yet performed. One emerging solution for repository safety calculations on very large cells meshes consists in using a domain decomposition approach linked to massive parallelized computer calculation. In this approach, the repository domain is divided in small elementary domains and transport calculation are performed independently on different processor for each elementary domain. Before to develop this possible solution, we performed some preliminary test in order to access the order of magnitude of cells needed to perform converged calculation on one elementary disposal domain and to check if Finite Volume (FV) based on Multi Point Flux Approximation (MPFA) spatial scheme or more classical Mixed Hybrid Finite Element (MHFE) spatial scheme were adapted for those calculations in highly heterogeneous porous media. Our preliminary results point out that MHFE and VF schemes applied on non-parallelepiped hexahedral cells for flow and transport calculations in highly heterogeneous media gave satisfactory results. Nevertheless further investigations and additional calculations are needed in order to exhibit the mesh discretization level needed to perform converged calculations. (authors)

  10. Methodology for the development of scenarios for the evaluation of the behaviour of a deep geological repository for high-level radioactive waste in a granite formation

    International Nuclear Information System (INIS)

    Cortes Martin, A.; Alonso, J.; Gonzalez, E.

    1996-01-01

    In time, deep geological repositories for radioactive waste undergo significant environmental changes caused either by natural processes or by human actions. In view of a long-term safety analysis, it is fundamental to identify all the possible evolutions of the system. This process is denominated scenario development. This paper deals with the methodology used to generate scenarios within the framework of the AGP (Deep Geological Repository) project for assessing behaviour in granite medium. It begins with a brief description of the methodology used to identify the relevant factors for the safety analysis on the system. It then presents the details of the actual scenario-generating methodology which consists of dividing the entire system into barrier states or subsystems a graphic procedure by means of which the factors are represented in relation to their predictable impact or extent of their effect on the subsystems. This methodology is a good tool for displaying and grouping the most significant scenarios for the subsequent analysis of consequences. (Author)

  11. Deep Inelastic Scattering at the Amplitude Level

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    The deep inelastic lepton scattering and deeply virtual Compton scattering cross sections can be interpreted in terms of the fundamental wavefunctions defined by the light-front Fock expansion, thus allowing tests of QCD at the amplitude level. The AdS/CFT correspondence between gauge theory and string theory provides remarkable new insights into QCD, including a model for hadronic wavefunctions which display conformal scaling at short distances and color confinement at large distances

  12. Deep levels in silicon–oxygen superlattices

    International Nuclear Information System (INIS)

    Simoen, E; Jayachandran, S; Delabie, A; Caymax, M; Heyns, M

    2016-01-01

    This work reports on the deep levels observed in Pt/Al 2 O 3 /p-type Si metal-oxide-semiconductor capacitors containing a silicon–oxygen superlattice (SL) by deep-level transient spectroscopy. It is shown that the presence of the SL gives rise to a broad band of hole traps occurring around the silicon mid gap, which is absent in reference samples with a silicon epitaxial layer. In addition, the density of states of the deep layers roughly scales with the number of SL periods for the as-deposited samples. Annealing in a forming gas atmosphere reduces the maximum concentration significantly, while the peak energy position shifts from close-to mid-gap towards the valence band edge. Based on the flat-band voltage shift of the Capacitance–Voltage characteristics it is inferred that positive charge is introduced by the oxygen atomic layers in the SL, indicating the donor nature of the underlying hole traps. In some cases, a minor peak associated with P b dangling bond centers at the Si/SiO 2 interface has been observed as well. (paper)

  13. Study and microscopic characterization of the cadmium telluride deep levels

    International Nuclear Information System (INIS)

    Biglari, B.

    1989-05-01

    The spectroscopic methods PICTS, QTS and CTS were developed and perfected to investigate deep level analysis of high resistivity CdTe crystals which were either undoped, or doped with chlorine and copper. Crystals which were grown in space were also investigated. The main characterization of defect levels was determined and different correlations were established between the material's resistivity, chemical residues, dopant concentration and the nuclear radiation detector parameters. Using PICTS and CTS techniques, the generation of defects, under strong gamma-ray irradiation and particle bombardment was also studied. The influence of hydrogen on the main electrical characteristics of CdTe, in particular its ability to passivate the electrical activity of many deep defect and impurity states have been demonstrated. The compensation effects of Cl, Cu and H + are interpreted using the qualitative models based on different possibilities of pairing or triplet formation between the ions of these dopants and those of defects [fr

  14. Pair formation by a deep potential well

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    1987-01-01

    We obtain solutions of the Dirac and Klein-Gordon equations for a symmetric one-dimensional potential well with a flat bottom, and arbitrary depth, width, and field strength at the walls. Quasistationary solutions are found describing pair creation by the well, and the inverse process. It is shown that when the probability of pair creation by the well is small, it can be expressed in terms of the probability of pair creation at one of the walls and the oscillation frequency of the particle in the well. Among the states of the lower continuum, there are positron resonance scattering states for supercritical well depths. The energies of these states are close to the real part of the quasistationary energy level (the Zel'dovich effect). The qualitative dependence of the transmission coefficient of the positron through the well on its energy and the well width supports the idea that the solution of the so-called one-particle Dirac equation describes a many-particle system with charge 0 or 1

  15. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  16. Geometrical constraint on the localization of deep water formation

    Science.gov (United States)

    Ferreira, D.; Marshall, J.

    2008-12-01

    That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and

  17. Project study for the final disposal of high-level radioactive wastes in deep-lying geological formations and for intermediate storage. Projektstudie fuer die Endlagerung von hochaktiven Abfaellen in tiefliegenden geologischen Formationen sowie fuer die Zwischenlagerung

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The present report has been written to show the feasibility of construction and the operational suitability of different intermediate and final storage concepts for high-level radioactive wastes. It summarizes the information from a project study given under contract by Nagra. The report should orient a broader public about the possible construction of such intermediate and final repositories. The work presented here refers to radioactive wastes which need an extremely long isolation time. Important information from a separate study concerning different aspects of the drilling of deep boreholes, has been integrated into the present report.

  18. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  19. North Atlantic deep water formation and AMOC in CMIP5 models

    Directory of Open Access Journals (Sweden)

    C. Heuzé

    2017-07-01

    Full Text Available Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5 models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  20. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Directory of Open Access Journals (Sweden)

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  1. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  2. Timing of deep vein thrombosis formation after aneurysmal subarachnoid hemorrhage

    Science.gov (United States)

    Liang, Conrad W.; Su, Kimmy; Liu, Jesse J.; Dogan, Aclan; Hinson, Holly E.

    2015-01-01

    OBJECT Deep vein thrombosis (DVT) is a common complication of aneurysmal subarachnoid hemorrhage (aSAH). The time period of greatest risk for developing DVT after aSAH is not currently known. aSAH induces a prothrombotic state, which may contribute to DVT formation. Using repeated ultrasound screening, the hypothesis that patients would be at greatest risk for developing DVT in the subacute post-rupture period was tested. METHODS One hundred ninety-eight patients with aSAH admitted to the Oregon Health & Science University Neurosciences Intensive Care Unit between April 2008 and March 2012 were included in a retrospective analysis. Ultrasound screening was performed every 5.2 ± 3.3 days between admission and discharge. The chi-square test was used to compare DVT incidence during different time periods of interest. Patient baseline characteristics as well as stroke severity and hospital complications were evaluated in univariate and multivariate analyses. RESULTS Forty-two (21%) of 198 patients were diagnosed with DVT, and 3 (2%) of 198 patients were symptomatic. Twenty-nine (69%) of the 42 cases of DVT were first detected between Days 3 and 14, compared with 3 cases (7%) detected between Days 0 and 3 and 10 cases (24%) detected after Day 14 (p < 0.05). The postrupture 5-day window of highest risk for DVT development was between Days 5 and 9 (40%, p < 0.05). In the multivariate analysis, length of hospital stay and use of mechanical prophylaxis alone were significantly associated with DVT formation. CONCLUSIONS DVT formation most commonly occurs in the first 2 weeks following aSAH, with detection in this cohort peaking between Days 5 and 9. Chemoprophylaxis is associated with a significantly lower incidence of DVT. PMID:26162047

  3. Behavior of colloids in radionuclide migration in deep geologic formation

    International Nuclear Information System (INIS)

    Kanno, Takuji

    1994-01-01

    In case high level waste is isolated in deep strata, it is important to elucidate the behavior of movement that radionuclides take in the strata. Recently, it has been recognized that the participation of colloids is very important, and it has been studied actively. In this study, as to the mechanism of the adsorption of colloids to geological media or buffers, analysis was carried out for a number of systems, and it was clarified in what case they are caught or they move without being caught. Also it is considered what research is necessary hereafter. First, the kinds of colloids are shown. As the properties of colloids that control the movement of colloids in groundwater in deep strata, the surface potential, shape, size and so on of colloids are conceivable. These properties are briefly discussed. As the interaction of colloids and geological media, the interaction by electrostatic attraction, the fast and slow movement of colloids through rock crevices, and the filtration of colloids in buffers and porous media are described. The experimental results on the movement of colloids are reported. (K.I.)

  4. Levels of Elitological Formation of Personality

    Directory of Open Access Journals (Sweden)

    N B Karabushchenko

    2011-12-01

    Full Text Available The article describes the main stages of the elitological formation of a personality: the basic level of elitological knowledge, elitological literacy, elitological competence, elitological culture, elite-oriented outlook.

  5. Investigation of deep levels in GaInNAs

    International Nuclear Information System (INIS)

    Abulfotuh, F.; Balcioglu, A.; Friedman, D.; Geisz, J.; Kurtz, S.

    1999-01-01

    This paper presents and discusses the first Deep-Level transient spectroscopy (DLTS) data obtained from measurements carried out on both Schottky barriers and homojunction devices of GaInNAs. The effect of N and In doping on the electrical properties of the GaNInAs devices, which results in structural defects and interface states, has been investigated. Moreover, the location and densities of deep levels related to the presence of N, In, and N+In are identified and correlated with the device performance. The data confirmed that the presence of N alone creates a high density of shallow hole traps related to the N atom and structural defects in the device. Doping by In, if present alone, also creates low-density deep traps (related to the In atom and structural defects) and extremely deep interface states. On the other hand, the co-presence of In and N eliminates both the interface states and levels related to structural defects. However, the device still has a high density of the shallow and deep traps that are responsible for the photocurrent loss in the GaNInAs device, together with the possible short diffusion length. copyright 1999 American Institute of Physics

  6. Investigation of Deep Levels in GaInNas

    International Nuclear Information System (INIS)

    Balcioglu, A.; Friedman, D.; Abulfotuh, F.; Geisz, J.; Kurtz, S.

    1998-01-01

    This paper presents and discusses the first Deep-Level transient spectroscopy (DLTS) data obtained from measurements carried out on both Schottky barriers and homojunction devices of GaInNAs. The effect of N and In doping on the electrical properties of the GaNInAs devices, which results in structural defects and interface states, has been investigated. Moreover, the location and densities of deep levels related to the presence of N, In, and N+In are identified and correlated with the device performance. The data confirmed that the presence of N alone creates a high density of shallow hole traps related to the N atom and structural defects in the device. Doping by In, if present alone, also creates low-density deep traps (related to the In atom and structural defects) and extremely deep interface states. On the other hand, the co-presence of In and N eliminates both the interface states and levels related to structural defects. However, the device still has a high density of the shallow and deep traps that are responsible for the photocurrent loss in the GaNInAs device, together with the possible short diffusion length

  7. Primary Evaporites for the Messinian Salinity Crisis: the shallow gypsum vs. deep dolomite formation paradox solved

    Science.gov (United States)

    De Lange, Gert J.; Krijgsman, Wout

    2014-05-01

    mineralization, thus reducing the deep-water sulphate content. In addition, considerable amounts of dissolved carbonate are formed. This means that low-sulphate conditions as for MSC deepwater, i.e. unfavorable conditions for gypsum formation, always coincide with anoxic, i.e. oxygen-free conditions. Thus one would expect a bath-tub rim of gypsum at all shallow depths, but gypsum appears mainly at silled marginal basins. However, a thick package of heavy gypsum on top of more liquid mud in a marginal/slope setting is highly unstable, thus any physical disturbance such as tectonic activity or sea-level change, would easily lead to downslope transport of such marginal gypsum deposits. The absence of gypsum and the presence of erosional unconformities at the sill-less Mediterranean passive margins concord to such removal mechanism. In addition, large-scale re-sedimentation of gypsum has also been found for deep Messinian settings in the Northern Apennines and Sicily. Only at those marginal settings that were silled, the marginal gypsum deposits have been preserved. Including the dynamic biogeochemical processes in the thusfar static interpretations of evaporite formation mechanisms can thus account for the paradoxal, isochronous formation of shallow gypsum and deep-dolomite during the early MSC (1). (1) De Lange G.J. and Krijgsman W. (2010) Mar. Geol. 275, 273-277.

  8. Studies of deep levels in He+-irradiated silicon

    International Nuclear Information System (INIS)

    Schmidt, D.C.; Barbot, J.F.; Blanchard, C.

    1997-01-01

    Deep levels created in n-epitaxial silicon by alpha particle irradiation in the dose range from 10 9 to 10 13 particles/cm 2 have been investigated by the deep level transient spectroscopy technique and capacitance-voltage profiling. Under low fluence irradiation at least four main electron traps have been observed. With further increase in irradiation fluence, two new levels located at E c -0.56 eV and E c -0.64 eV appear on the high-temperature side of the DLTS signal. The slope change observed in the amplitude variations of the singly negative charge state of the divacancy versus the dose takes place when these two new levels appear. This suggests that both are multivacancy-related defects. After annealing at 350 C for 15 min, all electron traps have disappeared. Moreover, no shallow levels are created during the annealing. (orig.)

  9. Deep Circumflex Iliac Artery-Related Hemoperitoneum Formation After Surgical Drain Placement: Successful Transcatheter Embolization

    International Nuclear Information System (INIS)

    Park, Sang Woo; Chang, Seong-Hwan; Yun, Ik Jin; Lee, Hae Won

    2010-01-01

    A 53-year-old woman with liver cirrhosis and hepatocellular carcinoma underwent living donor liver transplantation. After transplantation, her hemoglobin and hematocrit levels decreased to 6.3 g/dl and 18.5%, respectively, during the course of 3 days. A contrast-enhanced abdominal computed axial tomography (CAT) scan showed a hemoperitoneum in the right perihepatic space with no evidence of abdominal wall hematoma or pseudoaneurysm formation. An angiogram of the deep circumflex iliac artery (DCIA) showed extravasation of contrast media along the surgical drain, which had been inserted during the transplantation procedure. Transcatheter embolization of the branches of the DCIA was successfully performed using N-butyl cyanoacrylate.

  10. The Deep-Level-Reasoning-Question Effect: The Role of Dialogue and Deep-Level-Reasoning Questions during Vicarious Learning

    Science.gov (United States)

    Craig, Scotty D.; Sullins, Jeremiah; Witherspoon, Amy; Gholson, Barry

    2006-01-01

    We investigated the impact of dialogue and deep-level-reasoning questions on vicarious learning in 2 studies with undergraduates. In Experiment 1, participants learned material by interacting with AutoTutor or by viewing 1 of 4 vicarious learning conditions: a noninteractive recorded version of the AutoTutor dialogues, a dialogue with a…

  11. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  12. In situ experiments for disposal of radioactive wastes in deep geological formations

    International Nuclear Information System (INIS)

    1987-12-01

    This report reviews the current status of in-situ experiments undertaken to assess various concepts for disposal of spent fuel and reprocessed high-level waste in deep geological formations. Specifically it describes in-situ experiments in three geological formations - clay, granite and domed salt. The emphasis in this report is on the in-situ experiments which deal with the various issues related to the near-field effects in a repository and the geological environment immediately surrounding the repository. These near-field effects are due to the disturbance caused by both the construction of the repository and the waste itself. The descriptions are drawn primarily from four underground research facilities: the Underground Experimental Facility, Belgium (clay), the Stripa Project, Sweden and the Underground Research Laboratory, Canada (granite) and the Asse Mine, Federal Republic of Germany (salt). 54 refs, figs and tab

  13. Admittance spectroscopy or deep level transient spectroscopy: A contrasting juxtaposition

    Science.gov (United States)

    Bollmann, Joachim; Venter, Andre

    2018-04-01

    A comprehensive understanding of defects in semiconductors remains of primary importance. In this paper the effectiveness of two of the most commonly used semiconductor defect spectroscopy techniques, viz. deep level transient spectroscopy (DLTS) and admittance spectroscopy (AS) are reviewed. The analysis of defects present in commercially available SiC diodes shows that admittance spectroscopy allows the identification of deep traps with reduced measurement effort compared to deep Level Transient Spectroscopy (DLTS). Besides the N-donor, well-studied intrinsic defects were detected in these diodes. Determination of their activation energy and defect density, using the two techniques, confirm that the sensitivity of AS is comparable to that of DLTS while, due to its well defined peak shape, the spectroscopic resolution is superior. Additionally, admittance spectroscopy can analyze faster emission processes which make the study of shallow defects more practical and even that of shallow dopant levels, possible. A comparative summary for the relevant spectroscopic features of the two capacitance methods are presented.

  14. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913.

    Science.gov (United States)

    Zeng, Zhenshun; Cai, Xingsheng; Wang, Pengxia; Guo, Yunxue; Liu, Xiaoxiao; Li, Baiyuan; Wang, Xiaoxue

    2017-01-01

    Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid-liquid interface and pellicles at the liquid-air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  15. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Zhenshun Zeng

    2017-09-01

    Full Text Available Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913, an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid–liquid interface and pellicles at the liquid–air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA. The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  16. Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing

    Science.gov (United States)

    Haekkinen, Sirpa

    1995-01-01

    A fully prognostic Arctic ice-ocean model is used to study the interannual variability of deepwater formation in the Greenland Sea Gyre based on the simulations for the Arctic ice-ocean system for the period 1955 and 1960 - 1985. The model uses monthly climatology for thermodynamic forcing components (such as air temperature and cloudiness), together with constant annual net precipitation and river runoff. The daily wind forcing is derived from analyzed sea level air pressures from the National Center for Atmospheric Research (NCAR). In summary, the model shows that the occurence of deep convection in the Greenland Sea Gyre is controlled by the extensive Fram Strait ice export and/or local wind conditions in the Greenland Sea. In the latter case the weakening of the local wind curl allows the Polar Front to move eastward. The movement of the Polar Front causes adverse ice conditions, often together with much larger than normal ice export from the Arctic, such as in 1968, which can block convection in the gyre. The density difference between upper and lower layers is investigated as an indication of water mass formation through convection, occurring as strong diffusion in the model. The model-simulated density difference between the average top 100 m and deep levels reveals that the period 1960 - 1985 had only a few distinct years with weak stratification, and, especially, the model predicts no deep convection since the nid-1970s. The common factor for the years of the weakest decrease of the model-predicted heat content of the upper 2000 m which can, to a high degree, be explained by local heat loss.

  17. Feasibility studies for a radioactive waste repository in a deep clay formation

    International Nuclear Information System (INIS)

    Chapman, N.; Tassoni, E.

    1985-01-01

    This report assesses the feasibility of deep geological disposal of long-lived, heat-emitting radioactive wastes produced from the Italian nuclear power programme. Disposal is envisaged in argillaceous formations of medium plasticity at depths between 200 and 3000 metres. Thermal and geotechnical data, together with information on cost and feasibility of construction techniques are used to devise two conceptual designs (repository or deep borehole disposal) for a facility to contain all the high-level wastes arising from a 10 GWe power programme. Alternative designs and their merits are discussed and assessed. The two reference designs are used to construct a simple model of long-term performance and safety of the proposed disposal system. Recommendations are made for further work required to develop these concepts into an operational facility. It should be borne in mind that since no definite area or site has yet been identified for a disposal facility, all considerations are purely generic. Consequently data on rock properties and geological environment represent average values or best estimates for those likely to be encountered in the regions currently being considered as suitable for deep diposal purposes, and several broad assumptions have had to be made. However, the designs presented could be adapted without difficulty on a site-specific basis when the results of further research become available

  18. Deep subcritical levels measurements dependents upon kinetic distortion factors

    International Nuclear Information System (INIS)

    Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang

    2013-01-01

    The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)

  19. An assessment on CO2 geosequestration in deep saline formations in the Taihsi Basin, central Taiwan

    Science.gov (United States)

    Cai, Mo-Si; Lin, Andrew T.; Fan, Jhen-Huei

    2015-04-01

    Geological storage of carbon dioxide (CO2) is to inject and store a large amount of anthropogenic CO2 in deep and sealed porous rocks in order to mitigate the aggravated threat of global climate changes. Borehole and reflection seismic data are used to understand the spatial distribution of suitable CO2 reservoirs and cap rocks in the Taihsi Basin, central Taiwan, where the level of seismicity is low. The Taihsi Basin was a rift basin during the Paleocene to Eocene, followed by a phase of post-rift subsidence during late Oligocene to late Miocene. The loading of the Taiwan mountain belt since late Miocene has turned the Taihsi Basin into a peripheral foreland basin, with strata gently dipping toward the mountain belts in the east. The coastal plain in central Taiwan (Changhua and Yunlin Counties) and its adjacent offshore areas are close to major CO2 emission sources and no active geological structures are found in these areas, making the study area a favorable CO2 storage site. Spatial distribution of formation thickness and depth for CO2 reservoirs and cap rocks indicates three CO2 storage systems existed in the study area. They are: (1) late Miocene to Pliocene Nanchuang Formation and Kueichulin Formation (reservoirs)-Chinshui Shale (seals) system (hereafter abbreviated as NK-C system), (2) early to middle Miocene Shihti Formation and Peiliao Formation (reservoirs)-Talu Shale (seals) system (SP-T system), (3) early Miocene Mushan Formation (reservoirs)-Piling Shale (seals) system (M-P system). The NK-C system contains multiple layers of porous sandstones from Nanchuang and Kueichulin formations, with total thickness around 210-280 m. In the vicinity of the northern bank of the Jhuoshuei River, reservoir top reaches a depth around 1850 m, with 60 m thick seal formation, the Chinshui Shale. However, the Chinshui Shale becomes sand-prone in the Changhua coastal and nearshore areas due to facies changes. The SP-T system consists of two porous sandstone layers from

  20. Heterotopic bone formation (myositis ossificans) and lower-extremity swelling mimicking deep-venous disease

    International Nuclear Information System (INIS)

    Orzel, J.A.; Rudd, T.G.; Nelp, W.B.

    1984-01-01

    A quadriplegic patient with a swollen leg was suspected of having deep-venous thrombosis, and was studied with radionuclide venography (RNV) and contrast venography. Focal narrowing of the femoral vein, seen on RNV, was due to extrinsic compression. Although soft-tissue radiographs were normal, Tc-99m diphosphonate imaging established the diagnosis of early heterotopic bone formation (myositis ossificans), which was responsible for the venous compression. Clinically this inflammatory process can mimic deep-venous thrombosis, and should be considered in evaluating patients at risk for both heterotopic bone formation and deep-venous thrombosis

  1. Phosphate rock formation and marine phosphorus geochemistry: the deep time perspective.

    Science.gov (United States)

    Filippelli, Gabriel M

    2011-08-01

    The role that phosphorite formation, the ultimate source rock for fertilizer phosphate reserves, plays in the marine phosphorus (P) cycle has long been debated. A shift has occurred from early models that evoked strikingly different oceanic P cycling during times of widespread phosphorite deposition to current thinking that phosphorite deposits may be lucky survivors of a series of inter-related tectonic, geochemical, sedimentological, and oceanic conditions. This paradigm shift has been facilitated by an awareness of the widespread nature of phosphogenesis-the formation of authigenic P-bearing minerals in marine sediments that contributes to phosphorite formation. This process occurs not just in continental margin sediments, but in deep sea oozes as well, and helps to clarify the driving forces behind phosphorite formation and links to marine P geochemistry. Two processes come into play to make phosphorite deposits: chemical dynamism and physical dynamism. Chemical dynamism involves the diagenetic release and subsequent concentration of P-bearing minerals particularly in horizons, controlled by a number of sedimentological and biogeochemical factors. Physical dynamism involves the reworking and sedimentary capping of P-rich sediments, which can either concentrate the relatively heavy and insoluble disseminated P-bearing minerals or provide an episodic change in sedimentology to concentrate chemically mobilized P. Both processes can result from along-margin current dynamics and/or sea level variations. Interestingly, net P accumulation rates are highest (i.e., the P removal pump is most efficient) when phosphorites are not forming. Both physical and chemical pathways involve processes not dominant in deep sea environments and in fact not often coincide in space and time even on continental margins, contributing to the rarity of high-quality phosphorite deposits and the limitation of phosphate rock reserves. This limitation is becoming critical, as the human demand

  2. Scanning ion deep level transient spectroscopy: I. Theory

    International Nuclear Information System (INIS)

    Laird, J S; Jagadish, C; Jamieson, D N; Legge, G J F

    2006-01-01

    Theoretical aspects of a new technique for the MeV ion microbeam are described in detail for the first time. The basis of the technique, termed scanning ion deep level transient spectroscopy (SIDLTS), is the imaging of defect distributions within semiconductor devices. The principles of SIDLTS are similar to those behind other deep level transient spectroscopy (DLTS) techniques with the main difference stemming from the injection of carriers into traps using the localized energy-loss of a focused MeV ion beam. Energy-loss of an MeV ion generates an electron-hole pair plasma, providing the equivalent of a DLTS trap filling pulse with a duration which depends on space-charge screening of the applied electric field and ambipolar erosion of the plasma for short ranging ions. Some nanoseconds later, the detrapping current transient is monitored as a charge transient. Scanning the beam in conjunction with transient analysis allows the imaging of defect levels. As with DLTS, the temperature dependence of the transient can be used to extract trap activation levels. In this, the first of a two-part paper, we introduce the various stages of corner capture and derive a simple expression for the observed charge transient. The second paper will illustrate the technique on a MeV ion implanted Au-Si Schottky junction

  3. Study of microorganisms present in deep geologic formations

    International Nuclear Information System (INIS)

    Camus, H.; Lion, R.; Bianchi, A.; Garcin, J.

    1987-01-01

    This work has been executed in the scope of the studies on high activity radioactive wastes storage in deep geological environments. The authors make reference to an as complete as possible literature on the existence of microorganisms in those environments or under similar conditions. Then they describe the equipment and methods they have implemented to perform their study of the populations present in three deep-reaching drill-holes in Auriat (France), Mol (Belgique) and Troon (Great Britain). The results of the study exhibit the presence of a certain biological activity, well adapted to that particular life environment. Strains appear to be very varied from the taxonomic point of view and seemingly show an important potential of mineral alteration when provided with an adequate source of energy. Complementary studies, using advanced techniques such as those employed during the work forming the basis of this paper, seem necessary for a more accurate evaluation of long-term risks of perturbation of a deep storage site [fr

  4. Multi-level deep supervised networks for retinal vessel segmentation.

    Science.gov (United States)

    Mo, Juan; Zhang, Lei

    2017-12-01

    Changes in the appearance of retinal blood vessels are an important indicator for various ophthalmologic and cardiovascular diseases, including diabetes, hypertension, arteriosclerosis, and choroidal neovascularization. Vessel segmentation from retinal images is very challenging because of low blood vessel contrast, intricate vessel topology, and the presence of pathologies such as microaneurysms and hemorrhages. To overcome these challenges, we propose a neural network-based method for vessel segmentation. A deep supervised fully convolutional network is developed by leveraging multi-level hierarchical features of the deep networks. To improve the discriminative capability of features in lower layers of the deep network and guide the gradient back propagation to overcome gradient vanishing, deep supervision with auxiliary classifiers is incorporated in some intermediate layers of the network. Moreover, the transferred knowledge learned from other domains is used to alleviate the issue of insufficient medical training data. The proposed approach does not rely on hand-crafted features and needs no problem-specific preprocessing or postprocessing, which reduces the impact of subjective factors. We evaluate the proposed method on three publicly available databases, the DRIVE, STARE, and CHASE_DB1 databases. Extensive experiments demonstrate that our approach achieves better or comparable performance to state-of-the-art methods with a much faster processing speed, making it suitable for real-world clinical applications. The results of cross-training experiments demonstrate its robustness with respect to the training set. The proposed approach segments retinal vessels accurately with a much faster processing speed and can be easily applied to other biomedical segmentation tasks.

  5. High-level radioactive waste disposal in the deep ocean

    International Nuclear Information System (INIS)

    Hill, H.W.

    1977-01-01

    A joint programme has begun between the Fisheries Laboratory, Lowestoft and the Institute of Oceanographic Sciences, Wormley to study the dispersion of radioactivity in the deep ocean arising from the possible dumping of high level waste on the sea bed in vitrified-glass form which would permit slow leakage over a long term scale. The programme consists firstly of the development of a simple diffusion/advection model for the dispersion of radioactivity in a closed and finite ocean, which overcomes many of the criticisms of the earlier model proposed by Webb and Morley. Preliminary results from this new model are comparable to those of the Webb-Morley model for radio isotopes with half-lives of 10-300 years but are considerably more restrictive outside this range, particularly for those which are much longer-lived. The second part of the programme, towards which the emphasis is directed, concerns the field programme planned to measure the advection and diffusion parameters in the deeper layers of the ocean to provide realistic input parameters to the model and increase our fundamental understanding of the environment in which the radioactive materials may be released. The first cruises of the programme will take place in late 1976 and involve deep current meter deployments and float dispersion experiments around the present NEA dump site with some sediment sampling, so that adsorption experiments can be started on typical deep sea sediments. The programme will expand the number of long-term deep moored stations over the next five years and include further float experiments, CTD profiling, and other physical oceanography. In the second half of the 5-year programme, attempts will be made to measure diffusion parameters in the deeper layers of the ocean using radioactive tracers

  6. Deep impurity levels in n-type copper oxides

    International Nuclear Information System (INIS)

    Ovchinnikov, S.G.

    1994-01-01

    The density of Nd 2-x Ce x CuO 4 monoparticle states was calculated by the method of precise diagonalization of multielectron hamiltonian of 6-zone model for CuO cluster. Emergence of a deep impurity state of a symmetry in the middle of dielectric slit, which is a mixture of d z 2-states of copper and a 1 -molecular orbital of oxygen, is shown. Fluctuation of parameters of p-d jump and energies of charge transfer provide additional fine impurity levels near the bottom of conductivity zone and ceiling of valency zone. 30 refs., 4 figs

  7. Survey of naturally occurring hazardous materials in deep geologic formations: a perspective on the relative hazard of deep burial of nuclear wastes

    International Nuclear Information System (INIS)

    Tonnessen, K.A.; Cohen, J.J.

    1977-01-01

    Hazards associated with deep burial of solidified nuclear waste are considered with reference to toxic elements in naturally occurring ore deposits. This problem is put into perspective by relating the hazard of a radioactive waste repository to that of naturally occurring geologic formations. The basis for comparison derives from a consideration of safe drinking water levels. Calculations for relative toxicity of FBR waste and light water reactor (LWR) waste in an underground repository are compared with the relative toxicity indices obtained for average concentration ore deposits. Results indicate that, over time, nuclear waste toxicity decreases to levels below those of naturally occurring hazardous materials

  8. The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors

    Science.gov (United States)

    Scofield, Anne E.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.; Rudstam, Lars G.

    2017-01-01

    Epilimnetic production has declined in Lake Ontario, but increased production in metalimnetic deep chlorophyll layers (DCLs) may compensate for these losses. We investigated the spatial and temporal extent of DCLs, the mechanisms driving DCL formation, and the use of physical variables for predicting the depth and concentration of the deep chlorophyll maximum (DCM) during April–September 2013. A DCL with DCM concentrations 2 to 3 times greater than those in the epilimnion was present when the euphotic depth extended below the epilimnion, which occurred primarily from late June through mid-August. In situ growth was important for DCL formation in June and July, but settling and photoadaptation likely also contributed to the later-season DCL. Supporting evidence includes: phytoplankton biovolume was 2.4 × greater in the DCL than in the epilimnion during July, the DCL phytoplankton community of July was different from that of May and the July epilimnion (p = 0.004), and there were concurrences of DCM with maxima in fine particle concentration and dissolved oxygen saturation. Higher nutrient levels in the metalimnion may also be a necessary condition for DCL formation because July metalimnetic concentrations were 1.5 × (nitrate) and 3.5 × (silica) greater than in the epilimnion. Thermal structure variables including epilimnion depth, thermocline depth, and thermocline steepness were useful for predicting DCM depth; the inclusion of euphotic depth only marginally improved these predictions. However, euphotic depth was critical for predicting DCM concentrations. The DCL is a productive and predictable feature of the Lake Ontario ecosystem during the stratified period.

  9. Human-level control through deep reinforcement learning

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-01

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  10. Human-level control through deep reinforcement learning.

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A; Veness, Joel; Bellemare, Marc G; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-26

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  11. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

  12. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su

    2016-01-01

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested

  13. Clay 2001 dossier: progress report on feasibility studies and research into deep geological disposal of high-level, long-lived waste; Dossier 2001 argile: sur l'avancement des etudes et recherches relatives a la faisabilite d'un stockage de dechets a haute activite et a vie longue en formation geologique profonde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    A French Act of Parliament passed on 30 December 1991 set out the main areas of research required to prepare solutions for the long-term management of high-level, long-lived radioactive waste. The three avenues of research listed in the Act included a feasibility study of the deep geological disposal of these waste, with responsibility for steering the study given to ANDRA, France National Agency for Radioactive Waste Management. Following government decisions taken in 1998, the study focused on two types of geological medium, clay and granite. The clay formations study is essentially based on results from an underground laboratory sited at the border between the Meuse and Haute-Marne departments, where the Callovo-Oxfordian argillite beds are being investigated. No site has yet been chosen for an underground laboratory for the granite study, so for the time being this will draw on generic work and on research carried out in laboratories outside France. ANDRA has decided to present an initial report on the results of its research programme, publishing a dossier on the work on clay formations in 2001 with a second dossier covering the work on granite due for release in 2002. This dossier is thus a review of the work carried out by ANDRA on the feasibility study into a radioactive waste repository in a clay formation. It represents one step in a process of studies and research work leading up to the submission of a report due in 2005 containing ANDRA conclusions on the feasibility of a repository in the clay formation. (author)

  14. Clay 2001 dossier: progress report on feasibility studies and research into deep geological disposal of high-level, long-lived waste; Dossier 2001 argile: sur l'avancement des etudes et recherches relatives a la faisabilite d'un stockage de dechets a haute activite et a vie longue en formation geologique profonde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    A French Act of Parliament passed on 30 December 1991 set out the main areas of research required to prepare solutions for the long-term management of high-level, long-lived radioactive waste. The three avenues of research listed in the Act included a feasibility study of the deep geological disposal of these waste, with responsibility for steering the study given to ANDRA, France National Agency for Radioactive Waste Management. Following government decisions taken in 1998, the study focused on two types of geological medium, clay and granite. The clay formations study is essentially based on results from an underground laboratory sited at the border between the Meuse and Haute-Marne departments, where the Callovo-Oxfordian argillite beds are being investigated. No site has yet been chosen for an underground laboratory for the granite study, so for the time being this will draw on generic work and on research carried out in laboratories outside France. ANDRA has decided to present an initial report on the results of its research programme, publishing a dossier on the work on clay formations in 2001 with a second dossier covering the work on granite due for release in 2002. This dossier is thus a review of the work carried out by ANDRA on the feasibility study into a radioactive waste repository in a clay formation. It represents one step in a process of studies and research work leading up to the submission of a report due in 2005 containing ANDRA conclusions on the feasibility of a repository in the clay formation. (author)

  15. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  16. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  17. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  18. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  19. Modeling the dispersal of Levantine Intermediate Water and its role in Mediterranean deep water formation

    Science.gov (United States)

    Wu, Peili; Haines, Keith

    1996-03-01

    This paper demonstrates the importance of Levantine Intermediate Water (LIW) in the deep water formation process in the Mediterranean using the modular ocean general circulation model at 0.25° resolution, 19 vertical levels, over the entire Mediterranean with an open Gibraltar strait. LIW formation is strongly prescribed in the Rhodes Gyre region by Haney [1971] relaxation, while in other regions, surface salinity relaxation is much reduced by applying the `mixed' thermohaline surface boundary conditions. Isopycnal diagnostics are used to trace water mass movements, and volume fluxes are monitored at straits. Low viscosity and diffusion are used to permit baroclinic eddies to play a role in water mass dispersal. The overall water budget is measured by an average flux at Gibraltar of 0.8 Sv, of which 0.7 Sv is exchanged with the eastern basin at Sicily. LIW (density around 28.95) spreads rapidly after formation throughout the entire Levantine due to baroclinic eddies. Toward the west, LIW accumulates in the northern and central Ionian, with some entering the Adriatic through Otranto and some mixing southward in eddies and exiting to the western Mediterranean through Sicily. LIW is converted to deep water in the south Adriatic at an average rate of 0.4 Sv. Water exchange through the Otranto strait appears to be buoyancy driven, with a strong bias to the end of winter (March-April), while at Sicily the exchange has a strong symmetric seasonal cycle, with maximum transport of 1.1 Sv in December indicating the effects of wind driving. LIW pathways in the west are complex and variable. In the Tyrrhenian, intermediate water becomes uniform on isopycnal surfaces due to eddy stirring. West of Sardinia, two LIW boundary currents are formed in the Balearic basin; one flows northward up the west coast of Sardinia and Corsica, and one westward along the northern African coast. The northward current is consistent with observations, while the westward current is intermittent for

  20. Study of delayed behaviour of clays in deep geologic formations

    International Nuclear Information System (INIS)

    Rousset, G.; Bazargan, B.; Ouvry, J.F.; Bouilleau, M.

    1993-01-01

    This study is a cost-sharing contract with the European Atomic Energy Community within the framework of Research and Development Program on Management, Storage and Radioactive Waste Disposal. The aim of the work presented in this report is to study the time-dependent behaviour of deep clays in Laboratory or in situ, by means of tests of similar geometry, in order to get easy comparisons and to study scale effect. The cylindrical geometry has been chosen as it resembles in situ works (tunnels, galleries) more closely. The first part of the study concerns a new test on hollow-cylinder. The experimental system, set up specially for this study, has allowed to conduct experiments in which 3 loading parameters may be controlled independently. Different types of experiments can therefore be conducted to study various aspects of mechanical behavior of rocks. A comprehensive experimental program was conducted in the particular case of Boom clay. In the second part of the report devoted to in situ creep or relaxation dilatometer tests, by using new techniques or loading paths, it was shown that time-dependent convergence of boreholes can reach significant values, and is dependent on the direction of the borehole. The anisotropy of the initial state of stress was also put in evidence. The proposed constitutive model (part III) appears to be very suitable to explain the behavior of the Boom clay, in view of the experimental results. In particular, the scale effect is low for Boom clay. 15 refs., 58 figs., 10 tabs

  1. Scenarios used for the evaluations of the safety of a site for adioactive waste disposal in deep geologic formations

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1989-11-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them coppresponding to a type, of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an undergound laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events [fr

  2. Development of regulatory procedures for the disposal of solid radioactive waste in deep, continental formations

    International Nuclear Information System (INIS)

    1980-01-01

    For the disposal of radioactive waste, and in particular, of the high-level and alpha-bearing waste from the nuclear fuel cycle, the most favoured solution in most countries is disposal in deep, continental geological formations. Commitment to this disposal method involves a number of issues related to the various stages of the disposal programme which must be addressed through some reasoned decision-making process. Most countries are opting for regulating such a programme through licensing actions by a body whose purpose is to review, certify and ensure the safety of all the stages of the disposal programme. This regulatory body may either be one single national authority or a system of authorities designated by the government. The key to such regulation is the set of procedures, determined in advance, for the actions of the implementing organization, the review by the regulatory body and the involvement of other parties. This document concerns itself with the procedures which could logically be followed in reaching a set of rational decisions by the regulatory body. Care in the preparation and application of such procedures is an important element in the acceptability of the concept, the site and the other aspects of the disposal programme. The intention of this document is to give guidance as to what issues should be addressed in the licensing review, what decision points are important, and what guidance should be given to the applicant by the regulatory body in the course of the licensing actions. The procedures are keyed to be designed according to the logical steps involved in the development and operation of the repository. However, the document does not pretend to give guidance regarding the optimal interactions between the implementing organization and the regulatory body. This document is oriented to the disposal of solid radioactive waste in deep, continental geological formations using mining techniques

  3. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    Science.gov (United States)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  4. [The effect of encoding on false memory: examination on levels of processing and list presentation format].

    Science.gov (United States)

    Hamajima, Hideki

    2004-04-01

    Using the Deese/Roediger-McDermott paradigm, the effects of lists presentation format (blocked/random) and levels of processing of critical nonpresented lures were examined. A levels-of-processing effect in a blocked presentation order was not observed for lures. Rates of false recognition and remember judgments for lures in a shallow level of processing were significantly lower than those in a deep level of processing when items from various themes were inter-mixed instead of blocked. Results showed an interaction between levels of processing and list presentation format. It is thus concluded that encoding of each word and whole list should be both considered in understanding false memory.

  5. Characterization of majority and minority carrier deep levels in p-type GaN:Mg grown by molecular beam epitaxy using deep level optical spectroscopy

    International Nuclear Information System (INIS)

    Armstrong, A.; Caudill, J.; Ringel, S. A.; Corrion, A.; Poblenz, C.; Mishra, U. K.; Speck, J. S.

    2008-01-01

    Deep level defects in p-type GaN:Mg grown by molecular beam epitaxy were characterized using steady-state photocapacitance and deep level optical spectroscopy (DLOS). Low frequency capacitance measurements were used to alleviate dispersion effects stemming from the deep Mg acceptor. Use of DLOS enabled a quantitative survey of both deep acceptor and deep donor levels, the latter being particularly important due to the limited understanding of minority carrier states for p-type GaN. Simultaneous electron and hole photoemissions resulted in a convoluted deep level spectrum that was decoupled by emphasizing either majority or minority carrier optical emission through control of the thermal filling time conditions. In this manner, DLOS was able to resolve and quantify the properties of deep levels residing near both the conduction and valence bandedges in the same sample. Bandgap states through hole photoemission were observed at E v +3.05 eV, E v +3.22 eV and E v +3.26 eV. Additionally, DLOS revealed levels at E c -3.24 eV and E c -2.97 eV through electron emission to the conduction band with the former attributed to the Mg acceptor itself. The detected deep donor concentration is less than 2% of activated [Mg] and demonstrates the excellent quality of the film

  6. Formation of metal and dielectric liners using a solution process for deep trench capacitors.

    Science.gov (United States)

    Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor.

  7. Tracer element studies on deep water formation and circulation in the European Artic Sea

    International Nuclear Information System (INIS)

    Boenisch, G.

    1991-01-01

    Tracer element investigations (tritium, helium 3, carbon 14, argon 39, krypton 85 and fluorohydrocarbons) were carried out in the European Arctic Sea. The findings are discussed with a view to their validity in the case of deep water formation and circulation. The data cover the period of 1972 through 1989. (BBR) [de

  8. Geotechnical aspects of tunnel construction in deep clay formations for radioactive waste disposal

    International Nuclear Information System (INIS)

    De Moor, E.K.

    1987-01-01

    The significant factors affecting the construction of tunnels in deep clay formations for radioactive waste disposal were outlined. Two aspects of tunneling were discussed; the feasibility of tunnel construction and changes in pore water pressure that might occur with time. Some results of model tunnel tests and analyses were presented. (U.K.)

  9. Modeling SST gradient changes, the hydrological cycle response, and deep water formation in the North Pacific

    Science.gov (United States)

    Burls, N.; Ford, H. L.; Fedorov, A. V.; Jahn, A.; Jacobs, P.

    2017-12-01

    The absence of deep-water formation and a deep meridional overturning cell in the modern North Pacific has been attributed to the relatively fresh surface conditions in the subarctic. These conditions are, in turn, best explained by the local excess of precipitation over evaporation in the northern Pacific due to net moisture transport from the Atlantic to the Pacific and/or moisture transport associated with the Asian monsoon. Some studies link the lack of deep-water formation in the Pacific directly to its occurrence in the Atlantic via the Atlantic-Pacific seesaw effect and idealized experiments indicate that the smaller width of the Atlantic predisposes it to higher salinity and deep-water formation. We have conducted a series of coupled model experiments across which global mean temperatures and large-scale meridional SST gradients are varied. We perturb either atmospheric CO2 concentrations or the meridional gradient in cloud radiative forcing and run each experiment out to 3000 years so that the deep ocean has equilibrated. As the strength of the meridional temperature gradient decreases across our experiments, a Pacific Meridional Overturning Circulation develops. The strength of this Pacific Meridional Overturning Circulation generally increases as the gradient weakens. In one of these experiments where the meridional SST gradient most closely resembles Pliocene reconstructions, a PMOC exists of comparable in strength to the modern AMOC. We will describe how the hydrological cycle response to reduced meridional SST gradients acts to increase the strength of the PMOC across our sensitivity experiments. Additionally, we will discuss our effort to include carbon isotopes in our Pliocene-like simulation for data-model comparisons. Calcium carbonate accumulation data from Subarctic North Pacific Site 882 and new and previously published carbon isotope records from the Pacific appear to support our modelling results suggesting that weaker meridonal SST gradients

  10. Effect of swift heavy ion irradiation on deep levels in Au /n-Si (100) Schottky diode studied by deep level transient spectroscopy

    Science.gov (United States)

    Kumar, Sandeep; Katharria, Y. S.; Kumar, Sugam; Kanjilal, D.

    2007-12-01

    In situ deep level transient spectroscopy has been applied to investigate the influence of 100MeV Si7+ ion irradiation on the deep levels present in Au/n-Si (100) Schottky structure in a wide fluence range from 5×109to1×1012ions cm-2. The swift heavy ion irradiation introduces a deep level at Ec-0.32eV. It is found that initially, trap level concentration of the energy level at Ec-0.40eV increases with irradiation up to a fluence value of 1×1010cm-2 while the deep level concentration decreases as irradiation fluence increases beyond the fluence value of 5×1010cm-2. These results are discussed, taking into account the role of energy transfer mechanism of high energy ions in material.

  11. Convolutional Neural Networks for Text Categorization: Shallow Word-level vs. Deep Character-level

    OpenAIRE

    Johnson, Rie; Zhang, Tong

    2016-01-01

    This paper reports the performances of shallow word-level convolutional neural networks (CNN), our earlier work (2015), on the eight datasets with relatively large training data that were used for testing the very deep character-level CNN in Conneau et al. (2016). Our findings are as follows. The shallow word-level CNNs achieve better error rates than the error rates reported in Conneau et al., though the results should be interpreted with some consideration due to the unique pre-processing o...

  12. Safety assessment methodology for waste repositories in deep geological formations

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Lewi, J.; Pradel, J.; Queniart, D.; Raimbault, P.; Assouline, M.

    1986-06-01

    The long term safety of a nuclear waste repository relies on the evaluation of the doses which could be transferred to man in the future. This implies a detailed knowledge of the medium where the waste will be confined, the identification of the basic phenomena which govern the migration of the radionuclides and the investigation of all possible scenarios that may affect the integrity of the barriers between the waste and the biosphere. Inside the Institute of protection and nuclear safety of the French Atomic Energy Commission (CEA/IPSN), the Department of the Safety Analysis (DAS) is currently developing a methodology for assessing the safety of future geological waste repositories, and is in charge of the modelling development, while the Department of Technical Protection (DPT) is in charge of the geological experimental studies. Both aspects of this program are presented. The methodology for risk assessment stresses the needs for coordination between data acquisition and model development which should result in the obtention of an efficient tool for safety evaluation. Progress needs to be made in source and geosphere modelling. Much more sophisticated models could be used than the ones which is described; however sensitivity analysis will determine the level of sophistication which is necessary to implement. Participation to international validation programs are also very important for gaining confidence in the approaches which have been chosen

  13. Messinian Salinity Crisis' Primary Evaporites: the shallow gypsum vs. deep dolomite formation paradox solved

    Science.gov (United States)

    De Lange, G. J.; Krijgsman, W.

    2015-12-01

    The Messinian Salinity Crisis (MSC) is a dramatic event that took place ~ 5.9 Ma ago, resulting in deposition of 1-3 km thick evaporites at the Mediterranean seafloor. A considerable, long-lasting controversy existed on the modes of their formation, including the observed shallow gypsum versus deep dolostone deposits for the early phase of MSC. The onset of MSC is marked by deposition of gypsum/sapropel-like alternations, thought to relate to arid/humid climate conditions at a precessional rhythm. Gypsum precipitation only occurred at marginal- and dolomite formation at deeper settings. A range of potential explanations was given, most of which cannot satisfactorily explain all observations. Biogeochemical processes during MSC are commonly neglected but may explain that different deposits formed in shallow vs deep environments without exceptional physical boundary conditions for each. A unifying mechanism is presented in which gypsum formation occurs at all shallow water depths but its preservation is limited to shallow sedimentary settings. In contrast, ongoing deep-basin anoxic organic matter (OM) degradation processes result in dolomite formation. Gypsum precipitation in evaporating seawater takes place at 3-7 times concentrated seawater; seawater is always oversaturated relative to dolomite but its formation is inhibited by the presence of dissolved sulphate. Thus conditions for formation of gypsum exclude those for formation of dolomite and vice versa. Another process linking the saturation states of gypsum and dolomite is that of OM degradation by sulphate reduction. In stagnant deep water, ongoing OM-degradation may result in reducing the sulphate and enhancing the dissolved carbonate content. Such low-sulphate / high carbonate conditions in MSC deepwater are. unfavorable for gypsum preservation and favorable for dolomite formation, and always coincide with anoxic, i.e. oxygen-free conditions. Including dynamic biogeochemical processes in the thusfar static

  14. Seasonal Deep Aquifer Thermal Energy Storage in the Gassum Sandstone Formation

    DEFF Research Database (Denmark)

    Holmslykke, H.D.H.; Kjøller, C.; Fabricius, Ida Lykke

    Seasonal storage of excess heat in hot deep aquifers is considered to optimise the usage of commonly available energy sources. The potential chemical reactions caused by heating the Gassum Sandstone Formation to up to 150°C is investigated by core flooding experiments combined with petrographic...... analysis and geochemical modelling. Synthetic formation water is injected into two sets of Gassum Formation samples at 25°C, 50°C (reservoir temperature), 100°C and 150°C with a velocity of 0.05 PV/hr and 0.1 PV/hr, respectively. A significant increase in the aqueous concentration of silicium and iron...

  15. Contrasting trends in North Atlantic deep-water formation in the Labrador Sea and Nordic Seas during the Holocene

    NARCIS (Netherlands)

    Renssen, H.; Goosse, H.; Fichefet, T.

    2005-01-01

    The Holocene North Atlantic deep-water formation is studied in a 9,000-year long simulation with a coupled climate model of intermediate complexity, forced by changes in orbital forcing and atmospheric trace gas concentrations. During the experiment, deep-water formation in the Nordic Seas is

  16. Low energy electron irradiation induced deep level defects in 6H-SiC: The implication for the microstructure of the deep levels E1/E2

    International Nuclear Information System (INIS)

    Chen, X.D.; Fung, S.; Beling, C.D.; Lui, M.K.; Ling, C.C.; Yang, C.L.; Ge, W.K.; Wang, J.N.; Gong, M.

    2004-01-01

    N-type 6H-SiC samples irradiated with electrons having energies of E e =0.2, 0.3, 0.5, and 1.7 were studied by deep level transient technique. No deep level was detected at below 0.2 MeV irradiation energy while for E e ≥0.3 MeV, deep levels ED1, E 1 /E 2 , and E i appeared. By considering the minimum energy required to displace the C atom or the Si atom in the SiC lattice, it is concluded that generation of the deep levels E 1 /E 2 , as well as ED1 and E i , involves the displacement of the C atom in the SiC lattice

  17. Surface-Level Diversity and Decision-Making in Groups: When Does Deep-Level Similarity Help?

    OpenAIRE

    2006-01-01

    Abstract We examined how surface-level diversity (based on race) and deep-level similarities influenced three-person decision-making groups on a hidden-profile task. Surface-level homogeneous groups perceived their information to be less unique and spent less time on the task than surface-level diverse groups. When the groups were given the opportunity to learn about their deep-level similarities prior to t...

  18. Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling

    Science.gov (United States)

    Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting

    2018-02-01

    Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep

  19. Decadal trends in deep ocean salinity and regional effects on steric sea level

    Science.gov (United States)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  20. Table-driven configuration and formatting of telemetry data in the Deep Space Network

    Science.gov (United States)

    Manning, Evan

    1994-01-01

    With a restructured software architecture for telemetry system control and data processing, the NASA/Deep Space Network (DSN) has substantially improved its ability to accommodate a wide variety of spacecraft in an era of 'better, faster, cheaper'. In the new architecture, the permanent software implements all capabilities needed by any system user, and text tables specify how these capabilities are to be used for each spacecraft. Most changes can now be made rapidly, outside of the traditional software development cycle. The system can be updated to support a new spacecraft through table changes rather than software changes, reducing the implementation, test, and delivery cycle for such a change from three months to three weeks. The mechanical separation of the text table files from the program software, with tables only loaded into memory when that mission is being supported, dramatically reduces the level of regression testing required. The format of each table is a different compromise between ease of human interpretation, efficiency of computer interpretation, and flexibility.

  1. General conceptual design study for a high-level radioactive waste repository in a granite formation

    International Nuclear Information System (INIS)

    1982-01-01

    The object of the general conceptual design study for a high level radioactive wastes repository in a deep lying granite formation is to ensure that technology available in 1980 is suitable for building, operating and finally closing such a repository. It is feasible to build and operate a 1000 m deep repository, located in a granite batholith, receiving 30000 AVM canisters (after 30 years surface cooling), the disposal rate being 1000 canisters per year. Cost of the operation amounts to 1,3% of the corresponding amount of electricity. The building, operating and final closing phases will take 81 years

  2. Possibilities for the storage of radioactive waste in deep clay formations

    International Nuclear Information System (INIS)

    Le Pochat, G.; Lienhardt, M.J.; Peaudecerf, P.; Platel, J.P.; Simon, J.M.; Berest, P.; Charpentier, J.P.; Andre-Jehan, R.

    1984-02-01

    The possible storage sites in deep clay formations have been studied in parts of large French sedimentary basins which prima facie seem to have suitable characteristics. The most suitable areas were chosen on the basis of earlier oil prospecting data consisting of information on seismic movements, diagraphic well-logging data and old samples that happened to have been preserved. At the same time, the lithology of the clay formations can be determined from mineralogical studies on samples taken from boreholes or from outcrops. Before carrying out in situ experiments concerned with the geotechnical characterization of the deep clays, measurements were made in the laboratory on samples obtained in two ways: from tertiary clay outcrops and from cores taken at 950 m in the clay layers during oil well logging. The results of studies carried out on tertiary clays in Les Landes illustrate this procedure

  3. Contribution to hydrogeological investigations related to the disposal of radioactive wastes in a deep argillaceous formation

    International Nuclear Information System (INIS)

    Patijn, J.

    1987-01-01

    The study deals with the development of a methodology in order to evaluate the capability of an aquifer system to be used for the disposal of radioactive wastes in deep argillaceous formations. The first part is concerned with hydrogeological investigations of a sedimentary basin. The second part is concerned with flow simulation using NEWMAN model. The limited influence of some possible geological events on radionuclide transfer is emphasized [fr

  4. Using Deep Learning Techniques to Forecast Environmental Consumption Level

    Directory of Open Access Journals (Sweden)

    Donghyun Lee

    2017-10-01

    Full Text Available Artificial intelligence is a promising futuristic concept in the field of science and technology, and is widely used in new industries. The deep-learning technology leads to performance enhancement and generalization of artificial intelligence technology. The global leader in the field of information technology has declared its intention to utilize the deep-learning technology to solve environmental problems such as climate change, but few environmental applications have so far been developed. This study uses deep-learning technologies in the environmental field to predict the status of pro-environmental consumption. We predicted the pro-environmental consumption index based on Google search query data, using a recurrent neural network (RNN model. To verify the accuracy of the index, we compared the prediction accuracy of the RNN model with that of the ordinary least square and artificial neural network models. The RNN model predicts the pro-environmental consumption index better than any other model. We expect the RNN model to perform still better in a big data environment because the deep-learning technologies would be increasingly sophisticated as the volume of data grows. Moreover, the framework of this study could be useful in environmental forecasting to prevent damage caused by climate change.

  5. The calculation of deep levels in semiconductors by using a recursion method for super-cells

    International Nuclear Information System (INIS)

    Wong Yongliang.

    1987-01-01

    The paper presents the theory of deep levels in semiconductors, the super-cell approach to the theory of deep level impurities, the calculation of band structure by using the tight-binding method and the recursion method used to study the defects in the presence of lattice relaxation and extended defect complexes. 47 refs

  6. Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers.

    Science.gov (United States)

    Gao, Xuejiao; Guan, Bin; Mesli, Abdelmadjid; Chen, Kaixiang; Dan, Yaping

    2018-01-09

    It is known that self-assembled molecular monolayer doping technique has the advantages of forming ultra-shallow junctions and introducing minimal defects in semiconductors. In this paper, we report however the formation of carbon-related defects in the molecular monolayer-doped silicon as detected by deep-level transient spectroscopy and low-temperature Hall measurements. The molecular monolayer doping process is performed by modifying silicon substrate with phosphorus-containing molecules and annealing at high temperature. The subsequent rapid thermal annealing drives phosphorus dopants along with carbon contaminants into the silicon substrate, resulting in a dramatic decrease of sheet resistance for the intrinsic silicon substrate. Low-temperature Hall measurements and secondary ion mass spectrometry indicate that phosphorus is the only electrically active dopant after the molecular monolayer doping. However, during this process, at least 20% of the phosphorus dopants are electrically deactivated. The deep-level transient spectroscopy shows that carbon-related defects are responsible for such deactivation.

  7. Growth temperature dependence of Si doping efficiency and compensating deep level defect incorporation in Al0.7Ga0.3N

    International Nuclear Information System (INIS)

    Armstrong, Andrew M.; Moseley, Michael W.; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan J.

    2015-01-01

    The growth temperature dependence of Si doping efficiency and deep level defect formation was investigated for n-type Al 0.7 Ga 0.3 N. It was observed that dopant compensation was greatly reduced with reduced growth temperature. Deep level optical spectroscopy and lighted capacitance-voltage were used to understand the role of acceptor-like deep level defects on doping efficiency. Deep level defects were observed at 2.34 eV, 3.56 eV, and 4.74 eV below the conduction band minimum. The latter two deep levels were identified as the major compensators because the reduction in their concentrations at reduced growth temperature correlated closely with the concomitant increase in free electron concentration. Possible mechanisms for the strong growth temperature dependence of deep level formation are considered, including thermodynamically driven compensating defect formation that can arise for a semiconductor with very large band gap energy, such as Al 0.7 Ga 0.3 N

  8. OPG's deep geologic repository for low and intermediate level waste - recent progress

    International Nuclear Information System (INIS)

    King, F.K.

    2006-01-01

    This paper provides a status report on Canada's first project to build a permanent repository for the long-term management of radioactive waste. Ontario Power Generation has initiated a project to construct a deep geologic repository for low- and intermediate-level waste at the Bruce Nuclear Site, at a depth in the range of 600 to 800 m in an Ordovician-age argillaceous limestone formation. The project is currently undergoing an Environmental Assessment and consulting companies in the areas of environmental assessment, geoscientific site characterization, engineering and safety assessment have been hired and technical studies are underway. Seismic surveys and borehole drilling will be initiated in the fall of 2006. The next major milestone for the project is the submission of the Environmental Assessment report, currently scheduled for December 2008. (author)

  9. Application of positron annihilation lifetime technique to the study of deep level transients in semiconductors

    Science.gov (United States)

    Deng, A. H.; Shan, Y. Y.; Fung, S.; Beling, C. D.

    2002-03-01

    Unlike its conventional applications in lattice defect characterization, positron annihilation lifetime technique was applied to study temperature-dependent deep level transients in semiconductors. Defect levels in the band gap can be determined as they are determined by conventional deep level transient spectroscopy (DLTS) studies. The promising advantage of this application of positron annihilation over the conventional DLTS is that it could further extract extra microstructure information of deep-level defects, such as whether a deep level defect is vacancy related or not. A demonstration of EL2 defect level transient study in GaAs was shown and the EL2 level of 0.82±0.02 eV was obtained by a standard Arrhenius analysis, similar to that in conventional DLTS studies.

  10. Deep Levels of Processing Elicit a Distinctiveness Heuristic: Evidence from the Criterial Recollection Task

    Science.gov (United States)

    Gallo, David A.; Meadow, Nathaniel G.; Johnson, Elizabeth L.; Foster, Katherine T.

    2008-01-01

    Thinking about the meaning of studied words (deep processing) enhances memory on typical recognition tests, relative to focusing on perceptual features (shallow processing). One explanation for this levels-of-processing effect is that deep processing leads to the encoding of more distinctive representations (i.e., more unique semantic or…

  11. Deep-level transient spectroscopy on an amorphous InGaZnO4 Schottky diode

    NARCIS (Netherlands)

    Chasin, A.; Simoen, E.; Bhoolokam, A.; Nag, M.; Genoe, J.; Gielen, G.; Heremans, P.

    2014-01-01

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier

  12. Joint OSNR monitoring and modulation format identification in digital coherent receivers using deep neural networks.

    Science.gov (United States)

    Khan, Faisal Nadeem; Zhong, Kangping; Zhou, Xian; Al-Arashi, Waled Hussein; Yu, Changyuan; Lu, Chao; Lau, Alan Pak Tao

    2017-07-24

    We experimentally demonstrate the use of deep neural networks (DNNs) in combination with signals' amplitude histograms (AHs) for simultaneous optical signal-to-noise ratio (OSNR) monitoring and modulation format identification (MFI) in digital coherent receivers. The proposed technique automatically extracts OSNR and modulation format dependent features of AHs, obtained after constant modulus algorithm (CMA) equalization, and exploits them for the joint estimation of these parameters. Experimental results for 112 Gbps polarization-multiplexed (PM) quadrature phase-shift keying (QPSK), 112 Gbps PM 16 quadrature amplitude modulation (16-QAM), and 240 Gbps PM 64-QAM signals demonstrate OSNR monitoring with mean estimation errors of 1.2 dB, 0.4 dB, and 1 dB, respectively. Similarly, the results for MFI show 100% identification accuracy for all three modulation formats. The proposed technique applies deep machine learning algorithms inside standard digital coherent receiver and does not require any additional hardware. Therefore, it is attractive for cost-effective multi-parameter estimation in next-generation elastic optical networks (EONs).

  13. Shelf-to-basin iron shuttling enhances vivianite formation in deep Baltic Sea sediments

    Science.gov (United States)

    Reed, Daniel C.; Gustafsson, Bo G.; Slomp, Caroline P.

    2016-01-01

    Coastal hypoxia is a growing and persistent problem largely attributable to enhanced terrestrial nutrient (i.e., nitrogen and phosphorus) loading. Recent studies suggest phosphorus removal through burial of iron (II) phosphates, putatively vivianite, plays an important role in nutrient cycling in the Baltic Sea - the world's largest anthropogenic dead zone - yet the dynamics of iron (II) phosphate formation are poorly constrained. To address this, a reactive-transport model was used to reconstruct the diagenetic and depositional history of sediments in the Fårö basin, a deep anoxic and sulphidic region of the Baltic Sea where iron (II) phosphates have been observed. Simulations demonstrate that transport of iron from shelf sediments to deep basins enhances vivianite formation while sulphide concentrations are low, but that pyrite forms preferentially over vivianite when sulphate reduction intensifies due to elevated organic loading. Episodic reoxygenation events, associated with major inflows of oxic waters, encourage the retention of iron oxyhydroxides and iron-bound phosphorus in sediments, increasing vivianite precipitation as a result. Results suggest that artificial reoxygenation of the Baltic Sea bottom waters could sequester up to 3% of the annual external phosphorus loads as iron (II) phosphates, but this is negligible when compared to potential internal phosphorus loads due to dissolution of iron oxyhydroxides when low oxygen conditions prevail. Thus, enhancing vivianite formation through artificial reoxygenation of deep waters is not a viable engineering solution to eutrophication in the Baltic Sea. Finally, simulations suggest that regions with limited sulphate reduction and hypoxic intervals, such as eutrophic estuaries, could act as important phosphorus sinks by sequestering vivianite. This could potentially alleviate eutrophication in shelf and slope environments.

  14. Dwarf Galaxies with Gentle Star Formation and the Counts of Galaxies in the Hubble Deep Field

    OpenAIRE

    Campos, Ana

    1997-01-01

    In this paper the counts and colors of the faint galaxies observed in the Hubble Deep Field are fitted by means of simple luminosity evolution models that incorporate a numerous population of fading dwarfs. The observed color distribution of the very faint galaxies now allows us to put constraints on the star formation history in dwarfs. It is shown that the star-forming activity in these small systems has to proceed in a gentle way, i.e., through episodes where each one lasts much longer tha...

  15. Setup for in situ deep level transient spectroscopy of semiconductors during swift heavy ion irradiation.

    Science.gov (United States)

    Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D

    2008-05-01

    A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.

  16. Effects of frying oils' fatty acids profile on the formation of polar lipids components and their retention in French fries over deep-frying process.

    Science.gov (United States)

    Li, Xiaodan; Li, Jinwei; Wang, Yong; Cao, Peirang; Liu, Yuanfa

    2017-12-15

    The effects of frying oils' fatty acids profile on the formation of polar components and their retention in French fries and corresponding deep-fried oils were investigated in the present study, using oils with different fatty acids composition. Our analysis showed that the total polar compounds (TPCs) content in French fries was only slightly lower than that in deep-fried oils, indicating that there was no significant difference considering the amounts of TPCs in French fries and deep-fried oils. Our further analysis showed that different polar components in TPCs distributed differently in deep-fried oils and oils extracted from French fries. Specifically, the level of oligomeric and dimeric triacylglycerols was higher in French fries while oxidized triacylglycerols and diacylglycerols content was higher in deep-fried oils. The different retention of TPCs components in French fries may be explained by their interactions with carbohydrates, which are shown to enhance with the increase of hydrophobic property. Chemometric analysis showed that no correlation between the polar compounds level and saturated fatty acids profile was observed. Meanwhile, the polar compounds content was highly correlated with the formation of trans-C18:1, and a highly positive association between polar compounds and C18:2 content was also observed in palm oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. A poor sealing Scenario for Deep disposal of high level waste

    International Nuclear Information System (INIS)

    Weetjens, E.

    2005-01-01

    Especially for geological disposal options in clay, the safety of the repository relies chiefly on the performance of the host formation as the main barrier. Understandably, scenarios in which this clay barrier is somehow bypassed earn great concern in PA (Performance Assessment) studies. The Poor Sealing Scenario is one of those scenarios that have been recently studied by the PA section of the Waste and Disposal department in the framework of the Belgian programme on deep disposal of high-level radwaste in Boom Clay. This scenario hypothesises that at least one disposal gallery and an access shaft have been poorly sealed off, providing a preferential pathway for RNs (radionuclides). The scenario further assumes a severe climate change, which would invert the presently downward hydraulic gradient, such that the potential impact would be maximal. The main objective is assessing the contribution from two transport processes to the overall radionuclide migration from a spent fuel repository towards the Neogene aquifer. The processes considered are advective transport through the poorly sealed repository and diffusive transport through the host formation. In addition, we would like to identify the most influential parameters with respect to repository design and performance

  18. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers

    International Nuclear Information System (INIS)

    Schlosser, Peter; Bayer, Reinhold

    1991-01-01

    The application of natural and anthropogenic trace substances in oceanographic studies of the Weddell Sea is reviewed. The potential of some steady-state and transient tracers (tritium, CFC-11 and CFC-12, 18 O, and helium isotopes) for studies of deep water formation and circulation is discussed on the basis of data sets collected mainly on cruises of R/V 'Polastern' to the Weddell Sea during the 1980s. CFC/ tritium ratio dating of young water masses is applied to estimate mean age and transit times of water involved in Weddell Sea Bottom Water formation. The history of the CFC-11/tritium ratio through time is derived for Weddell Sea shelf waters. (author). 36 refs.; 18 figs

  19. Channel Formation in Physical Experiments: Examples from Deep and Shallow Water Clastic Sedimentary Systems

    Science.gov (United States)

    Hoyal, D. C.; Sheets, B. A.

    2005-12-01

    The degree to which experimental sedimentary systems form channels has an important bearing on their applicability as analogs of large-scale natural systems, where channels and their associated landforms are ubiquitous. The internal geometry and properties (e.g., grain size, vertical succession and stacking) of many depositional landforms can be directly linked to the processes of channel initiation and evolution. Unfortunately, strong self-channelization, a prerequisite for certain natural phenomena (e.g. mouth lobe development, meandering, etc.), has been difficult to reproduce at laboratory scales. In shallow-water experiments (sub-aerial), although weak channelization develops relatively easily, as is commonly observed in gutters after a rain storm, strong channelization with well-developed banks has proved difficult to model. In deep water experiments the challenge is even greater. Despite considerable research effort experimental conditions for deep water channel initiation have only recently been identified. Experiments on the requisite conditions for channelization in shallow and deep water have been ongoing at the ExxonMobil Upstream Research Company (EMURC) for several years. By primarily manipulating the cohesiveness of the sediment supply we have developed models of distributive systems with well-defined channels in shallow water, reminiscent of fine grained river-dominated deltas like the Mississippi. In deep water we have developed models that demonstrate strong channelization and associated lobe behavior in a distributive setting, by scaling up an approach developed by another group using salt-water flows and low-density plastic sediment. The experiments highlight a number of important controls on experimental channel formation, including: (1) bed strength or cohesiveness; (2) bedform development; and (3) Reynolds number. Among these controls bed forms disrupt the channel forming instability, reducing the energy available for channelization. The

  20. PC operated acoustic transient spectroscopy of deep levels in MIS structures

    International Nuclear Information System (INIS)

    Bury, P.; Jamnicky, I.

    1996-01-01

    A new version of acoustic deep-level transient spectroscopy is presented to study the traps at the insulator-semiconductor interface. The acoustic deep-level transient spectroscopy uses an acoustoelectric response signal produced by the MIS structure interface when a longitudinal acoustic wave propagates through a structure. The acoustoelectric response signal is extremely sensitive to external conditions of the structure and reflects any changes in the charge distribution, connected also with charged traps. In comparison with previous version of acoustic deep-level transient spectroscopy that closely coincides with the principle of the original deep-level transient spectroscopy technique, the present technique is based on the computer-evaluated isothermal transients and represents an improved, more efficient and time saving technique. Many tests on the software used for calculation as well as on experimental setup have been performed. The improved acoustic deep-level transient spectroscopy method has been applied for the Si(p) MIS structures. The deep-level parameters as activation energy and capture cross-section have been determined. (authors)

  1. Drop impact into a deep pool: Vortex shedding and jet formation

    KAUST Repository

    Agbaglah, Gilou; Thoraval, Marie-Jean; Thoroddsen, Sigurdur T; Zhang, Li V.; Fezzaa, Kamel; Deegan, Robert D.

    2015-01-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine the transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition. © 2014 Cambridge University Press.

  2. Drop impact into a deep pool: Vortex shedding and jet formation

    KAUST Repository

    Agbaglah, Gilou

    2015-01-02

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of scenarios is more complicated than expected because multiple jets can be generated from a single impact event and there are transitions in the multiplicity of jets as the experimental parameters are varied. Here, we use experiments and numerical simulations of a single drop impacting on a deep pool to examine the transition from impacts that produce a single jet to those that produce two jets. Using high-speed X-ray imaging methods we show that vortex separation within the drop leads to the formation of a second jet long after the formation of the ejecta sheet. Using numerical simulations we develop a phase diagram for this transition and show that the capillary number is the most appropriate order parameter for the transition. © 2014 Cambridge University Press.

  3. A deep level set method for image segmentation

    OpenAIRE

    Tang, Min; Valipour, Sepehr; Zhang, Zichen Vincent; Cobzas, Dana; MartinJagersand

    2017-01-01

    This paper proposes a novel image segmentation approachthat integrates fully convolutional networks (FCNs) with a level setmodel. Compared with a FCN, the integrated method can incorporatesmoothing and prior information to achieve an accurate segmentation.Furthermore, different than using the level set model as a post-processingtool, we integrate it into the training phase to fine-tune the FCN. Thisallows the use of unlabeled data during training in a semi-supervisedsetting. Using two types o...

  4. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad

    2015-11-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since the dawn of nuclear era. Albeit the relatively large number of research works that have been conducted to investigate temperature distribution surrounding waste canisters, they all abide to consider the host formations as homogeneous and isotropic. While this could be the case in some subsurface settings, in most cases, this is not true. In other words, subsurface formations are, in most cases, inherently anisotropic and heterogeneous. In this research, we show that even a slight difference in anisotropy of thermal conductivity of host rock with direction could have interesting effects on temperature fields. We investigate the effect of anisotropy angle (the angle the principal direction of anisotropy is making with the coordinate system) on the temperature field as well as on the maximum temperature attained in different barrier systems. This includes 0°, 30°, 45°, 60°, and 90°in addition to the isotropic case as a reference. We also consider the effect of anisotropy ratio (the ratio between the principal direction anisotropies) on the temperature fields and maximum temperature history. This includes ratios ranging between 1.5 and 4. Interesting patterns of temperature fields and profiles are obtained. It is found that the temperature contours are aligned more towards the principal direction of anisotropy. Furthermore the peak temperature in the buffer zone is found to be larger the smaller the anisotropy angle and vice versa. © 2015 Elsevier Ltd. All rights reserved.

  5. Qualitative acceptance criteria for radioactive wastes to be disposed of in deep geological formations

    International Nuclear Information System (INIS)

    1990-05-01

    The present Safety Guide has to be seen as a companion document to the IAEA Safety Series No. 99. It is concerned with the waste form which is an important component of the overall disposal system. Because of the broad range of waste types and conditioned forms and variations in the sites, designs and constructional approaches being considered for deep geological repositories, this report necessarily approaches the waste acceptance criteria in a general way, recognizing that the assignment of quantitative limits to these criteria has to be the responsibility of national authorities. The main objective of this Safety Guide is to set out qualitative waste acceptance criteria as a basis for specifying quantitative limits for the waste forms and packages which are intended to be disposed of in deep geological repositories. It should serve as guidance for assigning such parameter values which would fully comply with the safety assessment and performance of a waste disposal system as a whole. This document is intended to serve both national authorities and regulatory bodies involved in the development of deep underground disposal systems. The qualitative waste acceptance criteria dealt with in the present Safety Guide are primarily concerned with the disposal of high level, intermediate level and long-lived alpha bearing wastes in deep geological repositories. Although some criteria are also applicable in other waste disposal concepts, it has to be borne in mind that the set of criteria presented here shall ensure the isolation capability of a waste disposal system for periods of time much longer than for other waste streams with shorter lifetimes. 51 refs, 1 tab

  6. Deep formation waters of Western Europe, Russia and North America characterised by sodium, calcium, magnesium and chloride concentrations

    Science.gov (United States)

    Bozau, Elke; Hemme, Christina; Sattler, Carl-Diedrich; van Berk, Wolfgang

    2015-04-01

    Deep formation water can be classified according to depth, temperature, and salinity (e.g., Graf et al. 1966, Kharaka & Hanor 2007). Most of the deep formation waters contain dissolved solids in excess of sea water. The hydrogeochemical development of formation water has been discussed for a long time. It is widely accepted that deep aquifers are influenced by the meteoric cycle and geochemical processes within the crust (e.g., Hebig et al. 2012). Similar hydrogeochemical signatures are found in deep formation waters of all continents and can be explained by general geochemical processes within the deep reservoirs (e.g., Land 1995). Therefore, data of deep formation waters from Western Europe, Russia, and North America are collected and classified by the major water components. The data are used to identify important hydrogeochemical processes (e.g., halite dissolution and albitisation) leading to different compositions of formation water. Two significant water types are identified: Na-Cl water and Na-Ca-Cl water. Based on the collected hydrogeochemical data, development trends are stated for the formation waters, and albitisation is favoured as the main process for calcium enrichment. Furthermore, differences of formation water according to stratigraphical units are shown for deep reservoirs of the North German Basin and the North Sea. References: Graf, D.L., 1982. Chemical osmosis, reverse chemical osmosis, and the origin of subsurface brines. Geochimica Cosmochimica Acta 46, 1431-1448. Hebig, K.H., Ito, N., Scheytt, T., Marui, A., 2012. Review: Deep groundwater research with focus on Germany. Hydrogeology Journal 20, 227-243. Kharaka, Y.K., Hanor, J.S., 2007. Deep fluids in continents: I. Sedimentary Basins. Treatise on Geochemistry 5, 1-48. Land, L.S., 1995. The role of saline formation water in the crustal cycling. Aquatic Geochemistry 1, 137-145. Acknowledgements: The presented data are results of the collaborative research program "gebo" (Geothermal energy

  7. Deep-level transient spectroscopy of TiO2/CuInS2 heterojunctions

    NARCIS (Netherlands)

    Nanu, M.; Boulch, F.; Schoonman, J.; Goossens, A.

    2005-01-01

    Deep-level transient spectroscopy (DLTS) has been used to measure the concentration and energy position of deep electronic states in CuInS2. Flat TiO2?CuInS2 heterojunctions as well as TiO2-CuInS2 nanocomposites have been investigated. Subband-gap electronic states in CuInS2 films are mostly due to

  8. STAR FORMATION IN THE CHANDRA DEEP FIELD SOUTH: OBSERVATIONS CONFRONT SIMULATIONS

    International Nuclear Information System (INIS)

    Damen, Maaike; Franx, Marijn; Foerster Schreiber, Natascha M.; Labbe, Ivo; Toft, Sune; Van Dokkum, Pieter G.; Wuyts, Stijn

    2009-01-01

    We investigate the star formation history of the universe using FIREWORKS, a multiwavelength survey of the Chandra Deep Field South. We study the evolution of the specific star formation rate (sSFR) with redshift in different mass bins from z = 0 to z ∼ 3. We find that the sSFR increases with redshift for all masses. The logarithmic increase of the sSFR with redshift is nearly independent of mass, but this cannot yet be verified at the lowest-mass bins at z>0.8, due to incompleteness. We convert the sSFRs to a dimensionless growth rate to facilitate a comparison with a semianalytic galaxy formation model that was implemented on the Millennium Simulation. The model predicts that the growth rates and sSFRs increase similarly with redshift for all masses, consistent with the observations. However, we find that for all masses, the inferred observed growth rates increase more rapidly with redshift than the model predictions. We discuss several possible causes for this discrepancy, ranging from field-to-field variance, conversions to SFR, and shape of the initial mass function. We find that none of these can solve the discrepancy completely. We conclude that the models need to be adapted to produce the steep increase in growth rate between redshift z = 0 and z = 1.

  9. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    Han, Weon Shik; McPherson, Brian J.

    2009-01-01

    properties and processes by performing numerical simulations. Results suggest that deep saline CO 2 injection immediately below oil formations reduces buoyancy-driven CO 2 migration and, at the same time, minimizes the amount of mobile CO 2 compared to conventional deep saline CO 2 injection (i.e., CO 2 injection into brine formations not below oil-bearing strata). Finally, to investigate practical aspects and field applications of this injection paradigm, we characterized oil-bearing formations and their thickness (capacity) as a component of the Southwest Regional Partnership on Carbon Sequestration (SWP) field deployments. The field-testing program includes specific sites in Utah, New Mexico, Wyoming, and western Texas of the United States.

  10. Seven hundred years of peat formation recorded throughout a deep floating mire profile from Central Italy

    Science.gov (United States)

    Lobianco, Daniela; D'Orazio, Valeria; Miano, Teodoro; Zaccone, Claudio

    2016-04-01

    Floating mires are defined by the occurrence of emergent vegetation rooted in highly organic buoyant mats that rise and fall with changes in water level. Islands floating and moving on a lake naturally were already described by Pliny the Elder in his Naturalis historia almost two millennia ago. Actually, he devoted a whole chapter of Naturalis historia to "Of Islands Ever Floating and Swimming", reporting how certain isles were always waving and never stood still. The status of "flotant" has been defined transitory; in fact, these small isles often disappear, in most of the cases because of a transition from floating island to firm land during decades is likely to happen. That is why most of the floating islands described by Pliny the Elder (e.g., Lacus Fundanus, Lacus Cutiliensis, Lacus Mutinensis, Lacus Statoniensis, Lacus Tarquiniensis, Lydia Calaminae, Lacus Vadimonis) do not exist anymore. In the present study, peat formation and organic matter evolution were investigated in order to understand how these peculiar environments form, and how stable actually they are. In fact, it is hoped that peat-forming floating mires could provide an exceptional tool for environmental studies, since much of their evolution, as well as the changes of the surrounding areas, is recorded in their peat deposits. A complete, 4-m deep peat core was collected in July 2012 from the floating island of Posta Fibreno, a relic mire in the Central Italy. This floating island has a diameter of ca. 30 m, a submerged thickness of about 3 m, and the vegetation is organized in concentric belts, from the Carex paniculata palisade to the Sphagnum centre. Here, some of the southernmost Italian populations of Sphagnum palustre occur. The 14C age dating of organic sediments isolated from the sample at 385 cm of depth revealed that the island formed ca. 700 yrs ago (620±30 yr BP). The top 100 cm, consisting almost exclusively of Sphagnum mosses, show a very low bulk density (avg., 0.03±0.01 g cm-3

  11. Effect of sulphur-doping on the formation of deep centers in n-type InP under irradiation

    International Nuclear Information System (INIS)

    Kol'chenko, T.I.; Lomako, V.M.; Moroz, S.E.

    1988-01-01

    Effect of sulfur-doping on the efficiency of electron trap formation in InP under irradiation was studied using deep level capacity nonstationary spectroscopy method (DLCNS). Structures with Schottky barrier based on epitaxial InP films with ∼10μm thickness (n 0 =8x10 14 -6x10 17 cm -3 ) were irradiated with 60 Co γ-quanta at 40 deg C; the particle flux intensity made up ∼10 12 cm -2 xs -1 . Experimental results presented allow one to conclude that InP doping with sulfur up to n 0 =6x10 17 cm -3 in contrast to the case of silicon doping does not produce a notable effect on the electron trap formation efficiency under irradiation. The observed reduction of configuration-bistable M-center introduction rate in samples with n 0 >10 16 cm -3 is explained by the change of filling of E c -0.12 eV level belonging to unknown X defect

  12. The Effects of Test Anxiety on Learning at Superficial and Deep Levels of Processing.

    Science.gov (United States)

    Weinstein, Claire E.; And Others

    1982-01-01

    Using a deep-level processing strategy, low test-anxious college students performed significantly better than high test-anxious students in learning a paired-associate word list. Using a superficial-level processing strategy resulted in no significant difference in performance. A cognitive-attentional theory and test anxiety mechanisms are…

  13. Level of processing modulates the neural correlates of emotional memory formation

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176

  14. Level of processing modulates the neural correlates of emotional memory formation.

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  15. The Geomechanics of CO2 Storage in Deep Sedimentary Formations

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-12

    This study provides a review of the geomechanics and modeling of geomechanics associated with geologic carbon storage (GCS), focusing on storage in deep sedimentary formations, in particular saline aquifers. The paper first introduces the concept of storage in deep sedimentary formations, the geomechanical processes and issues related with such an operation, and the relevant geomechanical modeling tools. This is followed by a more detailed review of geomechanical aspects, including reservoir stress-strain and microseismicity, well integrity, caprock sealing performance, and the potential for fault reactivation and notable (felt) seismic events. Geomechanical observations at current GCS field deployments, mainly at the In Salah CO2 storage project in Algeria, are also integrated into the review. The In Salah project, with its injection into a relatively thin, low-permeability sandstone is an excellent analogue to the saline aquifers that might be used for large scale GCS in parts of Northwest Europe, the U.S. Midwest, and China. Some of the lessons learned at In Salah related to geomechanics are discussed, including how monitoring of geomechanical responses is used for detecting subsurface geomechanical changes and tracking fluid movements, and how such monitoring and geomechanical analyses have led to preventative changes in the injection parameters. Recently, the importance of geomechanics has become more widely recognized among GCS stakeholders, especially with respect to the potential for triggering notable (felt) seismic events and how such events could impact the long-term integrity of a CO2 repository (as well as how it could impact the public perception of GCS). As described in the paper, to date, no notable seismic event has been reported from any of the current CO2 storage projects, although some unfelt microseismic activities have been detected by geophones. However, potential future commercial GCS operations from large

  16. Deep Impact: How a Job-Embedded Formative Assessment Professional Development Model Affected Teacher Practice

    Directory of Open Access Journals (Sweden)

    Thomas A. Stewart

    2014-02-01

    Full Text Available This study supports the work of Black and Wiliam (1998, who demonstrated that when teachers effectively utilize formative assessment strategies, student learning increases significantly. However, the researchers also found a “poverty of practice” among teachers, in that few fully understood how to implement classroom formative assessment. This qualitative case study examined a series of voluntary workshops offered at one middle school designed to address this poverty of practice. Data were gathered via semi-structured interviews. These research questions framed the study: (1 What role did a professional learning community structure play in shaping workshop participants’ perceived effectiveness of a voluntary formative assessment initiative? (2 How did this initiative affect workshop participants’ perceptions of their knowledge of formative assessment and differentiation strategies? (3 How did it affect workshop participants’ perceptions of their abilities to teach others about formative assessment and differentiated instruction? (4 How did it affect school-wide use of classroom-level strategies? Results indicated that teacher workshop participants experienced a growth in their capacity to use and teach others various formative assessment strategies, and even non-participating teachers reported greater use of formative assessment in their own instruction. Workshop participants and non-participating teachers perceived little growth in the area of differentiation of instruction, which contradicted some administrator perceptions.

  17. Impact of proton irradiation on deep level states in n-GaN

    International Nuclear Information System (INIS)

    Zhang, Z.; Arehart, A. R.; Cinkilic, E.; Ringel, S. A.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Speck, J. S.

    2013-01-01

    Deep levels in 1.8 MeV proton irradiated n-type GaN were systematically characterized using deep level transient spectroscopies and deep level optical spectroscopies. The impacts of proton irradiation on the introduction and evolution of those deep states were revealed as a function of proton fluences up to 1.1 × 10 13 cm −2 . The proton irradiation introduced two traps with activation energies of E C - 0.13 eV and 0.16 eV, and a monotonic increase in the concentration for most of the pre-existing traps, though the increase rates were different for each trap, suggesting different physical sources and/or configurations for these states. Through lighted capacitance voltage measurements, the deep levels at E C - 1.25 eV, 2.50 eV, and 3.25 eV were identified as being the source of systematic carrier removal in proton-damaged n-GaN as a function of proton fluence

  18. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  19. Distinguishing bulk traps and interface states in deep-level transient spectroscopy

    International Nuclear Information System (INIS)

    Coelho, A V P; Adam, M C; Boudinov, H

    2011-01-01

    A new method for the distinction of discrete bulk deep levels and interface states related peaks in deep-level transient spectroscopy spectra is proposed. The measurement of two spectra using different reverse voltages while keeping pulse voltage fixed causes different peak maximum shifts in each case: for a reverse voltage modulus increase, a bulk deep-level related peak maximum will remain unchanged or shift towards lower temperatures while only interface states related peak maximum will be able to shift towards higher temperatures. This method has the advantage of being non-destructive and also works in the case of bulk traps with strong emission rate dependence on the electric field. Silicon MOS capacitors and proton implanted GaAs Schottky diodes were employed to experimentally test the method.

  20. Subtask 2.17 - CO2 Storage Efficiency in Deep Saline Formations

    Energy Technology Data Exchange (ETDEWEB)

    Gorecki, Charles D. [Univ. of North Dakota, Grand Forks, ND (United States); Liu, Guoxiang [Univ. of North Dakota, Grand Forks, ND (United States); Braunberger, Jason R. [Univ. of North Dakota, Grand Forks, ND (United States); Klenner, Robert C. L. [Univ. of North Dakota, Grand Forks, ND (United States); Ayash, Scott C. [Univ. of North Dakota, Grand Forks, ND (United States); Dotzenrod, Neil W. [Univ. of North Dakota, Grand Forks, ND (United States); Steadman, Edward N. [Univ. of North Dakota, Grand Forks, ND (United States); Harju, John A. [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-02-01

    As the field of carbon capture and storage (CCS) continues to advance, and large-scale implementation of geologic carbon dioxide (CO2) storage progresses, it will be important to understand the potential of geologic formations to store meaningful amounts of CO2. Geologic CO2 storage in deep saline formations (DSFs) has been suggested as one of the best potential methods for reducing anthropogenic CO2 emission to the atmosphere, and as such, updated storage resource estimation methods will continue to be an important component for the widespread deployment of CCS around the world. While there have been several methodologies suggested in the literature, most of these methods are based on a volumetric calculation of the pore volume of the DSF multiplied by a storage efficiency term and do not consider the effect of site-specific dynamic factors such as injection rate, injection pattern, timing of injection, pressure interference between injection locations, and overall formation pressure buildup. These volumetric methods may be excellent for comparing the potential between particular formations or basins, but they have not been validated through real-world experience or full-formation injection simulations. Several studies have also suggested that the dynamic components of geologic storage may play the most important role in storing CO2 in DSFs but until now have not directly compared CO2 storage resource estimates made with volumetric methodologies to estimates made using dynamic CO2 storage methodologies. In this study, two DSFs, in geographically separate areas with geologically diverse properties, were evaluated with both volumetric and dynamic CO2 storage resource estimation methodologies to compare the results and determine the applicability of both approaches. In the end, it was determined that the dynamic CO2 storage resource potential is timedependent and it

  1. Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches.

    Science.gov (United States)

    Brandt, Moritz; Schönfelder, Tanja; Schwenk, Melanie; Becker, Christian; Jäckel, Sven; Reinhardt, Christoph; Stark, Konstantin; Massberg, Steffen; Münzel, Thomas; von Brühl, Marie-Luise; Wenzel, Philip

    2014-01-01

    Interaction between vascular wall abnormalities, inflammatory leukocytes, platelets, coagulation factors and hemorheology in the pathogenesis of deep vein thrombosis (DVT) is incompletely understood, requiring well defined animal models of human disease. We subjected male C57BL/6 mice to ligation of the inferior vena cava (IVC) as a flow reduction model to induce DVT. Thrombus size and weight were analyzed macroscopically and sonographically by B-mode, pulse wave (pw) Doppler and power Doppler imaging (PDI) using high frequency ultrasound. Thrombus size varied substantially between individual procedures and mice, irrespective of the flow reduction achieved by the ligature. Interestingly, PDI accurately predicted thrombus size in a very robust fashion (r2 = 0.9734, p thrombus weight (r2 = 0.5597, p thrombus formation. Occlusion of side branches prior to ligation of IVC did not increase thrombus size, probably due to patent side branches inaccessible to surgery. Venous side branches influence thrombus size in experimental DVT and might therefore prevent thrombus formation. This renders vessel anatomy and hemorheology important determinants in mouse models of DVT, which should be controlled for.

  2. Positron deep level transient spectroscopy — a new application of positron annihilation to semiconductor physics

    Science.gov (United States)

    Beling, C. D.; Fung, S.; Au, H. L.; Ling, C. C.; Reddy, C. V.; Deng, A. H.; Panda, B. K.

    1997-05-01

    Recent positron mobility and lifetime measurements made on ac-biased metal on semi-insulating GaAs junctions, which have identified the native EL2 defect through a determination of the characteristic ionization energy of the donor level, are reviewed. It is shown that these measurements point towards a new spectroscopy, tentatively named positron-DLTS (deep level transient spectroscopy), that is the direct complement to conventional DLTS in that it monitors transients in the electric field of the depletion region rather than the inversely related depletion width, as deep levels undergo ionization. In this new spectroscopy, which may be applied to doped material by use of a suitable positron beam, electric field transients are monitored through the Doppler shift of the annihilation radiation resulting from the drift velocity of the positron in the depletion region. Two useful extensions of the new spectroscopy beyond conventional capacitance-DLTS are suggested. The first is that in some instances information on the microstructure of the defect causing the deep level may be inferred from the sensitivity of the positron to vacancy defects of negative and neutral charge states. The second is that the positron annihilation technique is intrinsically much faster than conventional DLTS with the capability of observing transients some 10 6 times faster, thus allowing deep levels (and even shallow levels) to be investigated without problems associated with carrier freeze-out.

  3. Multi-Level Formation of Complex Software Systems

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-05-01

    Full Text Available We present a multi-level formation model for complex software systems. The previous works extract the software systems to software networks for further studies, but usually investigate the software networks at the class level. In contrast to these works, our treatment of software systems as multi-level networks is more realistic. In particular, the software networks are organized by three levels of granularity, which represents the modularity and hierarchy in the formation process of real-world software systems. More importantly, simulations based on this model have generated more realistic structural properties of software networks, such as power-law, clustering and modularization. On the basis of this model, how the structure of software systems effects software design principles is then explored, and it could be helpful for understanding software evolution and software engineering practices.

  4. Biosphere transport and radiation dose calculations resulting from radioactive waste stored in deep salt formation (PACOMA-project)

    International Nuclear Information System (INIS)

    Jong, E.J. de; Koester, H.W.; Vries, W.J. de; Lembrechts, J.F.

    1990-03-01

    Parts are presented of the results of a safety-assessment study of disposal of medium and low level radioactive waste in salt formations in the Netherlands. The study concerns several disposal concepts for 2 kinds of salt formation, a deep dome and a shallow dome. 7 cases were studied with the same Dutch inventory and 1 with a reference inventory R, in order to compare results with those of other PACOMA participants. The total activity of the reference inventory R is 30 percent lower than the Dutch inventory, but some long living nuclides such as I-129, Np-237 and U-238 have a considerably higher activity. This reference inventor R has been combined with the disposal concept of mined cavities in a shallow salt dome. In each case. the released fraction of stored radio-nuclides moves gradually with water through the geosphere to the bio-sphere where it enters a river. River water is used for sprinkler irrigation and for drinking by man and livestock. The dispersal of the radionuclides into the biosphere is calculated with the BIOS program of the NRPB. Subroutines linked to the program add doses via different pathways to obtain a maximum individual dose, a collective dose and an integrated collective dose. This study presents results of these calculations. (author). 11 refs.; 39 figs.; 111 tabs

  5. Deep geologic repository for low and intermediate radioactive level waste in Canada

    International Nuclear Information System (INIS)

    Liu Jianqin; Li Honghui; Sun Qinghong; Yang Zhongtian

    2012-01-01

    Ontario Power Generation (OPG) is undergoing a project for the long-term management of low and intermediate level waste (LILW)-a deep geologic repository (DGR) project for low and intermediate level waste. The waste source term disposed, geologic setting, repository layout and operation, and safety assessment are discussed. It is expected to provide reference for disposal of low and intermediate level waste that contain the higher concentration of long-lived radionuclides in China. (authors)

  6. Correlation of a generation-recombination center with a deep level trap in GaN

    International Nuclear Information System (INIS)

    Nguyen, X. S.; Lin, K.; Zhang, Z.; Arehart, A. R.; Ringel, S. A.; McSkimming, B.; Speck, J. S.; Fitzgerald, E. A.; Chua, S. J.

    2015-01-01

    We report on the identification of a deep level trap centre which contributes to generation-recombination noise. A n-GaN epilayer, grown by MOCVD on sapphire, was measured by deep level transient spectroscopy (DLTS) and noise spectroscopy. DLTS found 3 well documented deep levels at E c  − 0.26 eV, E c  − 0.59 eV, and E c  − 0.71 eV. The noise spectroscopy identified a generation recombination centre at E c  − 0.65 ± 0.1 eV with a recombination lifetime of 65 μs at 300 K. This level is considered to be the same as the one at E c  − 0.59 eV measured from DLTS, as they have similar trap densities and capture cross section. This result shows that some deep levels contribute to noise generation in GaN materials

  7. Radiolytic gas formation in high-level liquid waste solutions

    International Nuclear Information System (INIS)

    Brodda, B.-G.; Dix, Siegfried; Merz, E.R.

    1989-01-01

    High-level fission product waste solutions originating from the first-cycle raffinate stream of spent fast breeder reactor fuel reprocessing have been investigated gas chromatographically for their radiolytic and chemical gas production. The solutions showed considerable formation of hydrogen, carbon dioxide and dinitrogen oxide, whereas atmospheric oxygen was consumed completely within a short time. In particular, carbon dioxide resulted from the radiolytic degradation of entrained organic solvent. After nearly complete degradation of the organic solvent, the influence of hydrazine and nitrogen dioxide on hydrogen formation was investigated. Hydrazinium hydroxide led to the formation of dinitrogen oxide and nitrogen. After 60 d, the concentration of dinitrogen oxide had reduced to zero, whereas the amount of nitrogen formed had reached a maximum. This may be explained by simultaneous chemical and radiolytic reactions leading to the formation of dinitrogen oxide and nitrogen and photolytic fission of dinitrogen oxide. Addition of sodium nitrite resulted in the rapid formation of dinitrogen oxide. The rate of hydrogen production was not changed significantly after the addition of hydrazine or nitrite. The results indicate that under normal operating conditions no dangerous hydrogen radiolysis yields should develop in the course of reprocessing and high-level liquid waste tank storage. Organic entrainment may lead to enhanced radiolytic decomposition and thus to considerable hydrogen production rates and pressure build-up in closed systems. (author)

  8. Study of the possibilities of radioactive waste storage in crystalline formations. Investigation by deep drilling of the Auriat granite

    International Nuclear Information System (INIS)

    1982-01-01

    Various and complex scientific problems are raised in many areas by the disposal of radioactive waste in geological formations. Research works are therefore numerous, and are carried out in four basic areas: - improvement of the knowledge of geological media; - characterization of their behaviour vis a vis radioactive waste; - design of deep repositories; - long-term safety assessment of the selected disposal strategies. Aim of the present research is to develop a methodology for investigating granite formations at great depth, in order to characterize their internal structure, and to acquire data about the various physical properties of granite. This research therefore covers the first basic aspect. These goals were obtained by continuous core-drilling of two vertical boreholes at 10m pitch. The main borehole was drilled down to 1003.15m deep, the second one was stopped at 504.40m deep

  9. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis

    NARCIS (Netherlands)

    van der Horst, M.A.; Stalcup, T.P.; Kaledhonkar, S.; Kumauchi, M.; Hara, M.; Xie, A.; Hellingwerf, K.J.; Hoff, W.D.

    2009-01-01

    Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with

  10. The Network Concept of Creativity and Deep Thinking: Applications to Social Opinion Formation and Talent Support

    Science.gov (United States)

    Csermely, Peter

    2017-01-01

    Our century has unprecedented new challenges, which need creative solutions and deep thinking. Contemplative, deep thinking became an "endangered species" in our rushing world of Tweets, elevator pitches, and fast decisions. Here, we describe how important aspects of both creativity and deep thinking can be understood as network…

  11. Formation of neutrophil extracellular traps under low oxygen level

    Directory of Open Access Journals (Sweden)

    Katja Branitzki-Heinemann

    2016-11-01

    Full Text Available Since their discovery, neutrophil extracellular traps (NETs have been characterized as a fundamental host innate immune defense mechanism. Conversely, excessive NET release may have a variety of detrimental consequences for the host. A fine balance between NET formation and elimination is necessary to sustain a protective effect during an infectious challenge. Our own recently published data revealed that stabilization of hypoxia inducible factor 1α (HIF-1α by the iron chelating HIF-1α-agonist desferoxamine or AKB-4924 enhanced the release of phagocyte extracellular traps. Since HIF-1α is a global regulator of the cellular response to low oxygen, we hypothesized that NET formation may be similarly increased under low oxygen conditions. Hypoxia occurs in tissues during infection or inflammation, mostly due to overconsumption of oxygen by pathogens and recruited immune cells. Therefore, experiments were performed to characterize the formation of NETs under hypoxic oxygen conditions compared to normoxia. Human blood-derived neutrophils were isolated and incubated under normoxic (21% oxygen level and compared to hypoxic (1% conditions. Dissolved oxygen levels were monitored in the primary cell culture using a Fibox4-PSt3 measurement system. The formation of NETs was quantified by fluorescence microscopy in response to the known NET-inducer phorbol 12-myristate 13-acetate (PMA or S. aureus wildtype and a nuclease-deficient mutant. In contrast to our hypothesis, spontaneous NET formation of neutrophils incubated under hypoxia was distinctly reduced compared to control neutrophils incubated under normoxia. Furthermore, neutrophils incubated under hypoxia showed significantly reduced formation of NETs in response to PMA. Gene expression analysis revealed that mRNA level of hif-1α as well as hif-1α target genes was not altered. However, in good correlation to the decreased NET formation under hypoxia, the cholesterol content of the neutrophils was

  12. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Duc, Tran Thien [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi (Viet Nam); Pozina, Galia; Son, Nguyen Tien; Kordina, Olof; Janzén, Erik; Hemmingsson, Carl [Department of Physics, Chemistry and Biology (IFM), Linköping University, S-581 83 Linköping (Sweden); Ohshima, Takeshi [Japan Atomic Energy Agency (JAEA), Takasaki, Gunma 370-1292 (Japan)

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of two electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.

  13. Deep frying: the role of water from food being fried and acrylamide formation

    Directory of Open Access Journals (Sweden)

    Gertz Christian

    2003-07-01

    Full Text Available The formation of acrylamide during food frying is generally influenced by food type, thermal treatment and equipment. The acrylamide concentration is increased when frying oils containing a higher level of polar materials or silicone or larger amounts of diglycerides. This effect may be caused by moisture escaping from food that has an enhancing effect on the heat transfer. It was noticed that if the moisture in the frying operation was bound by special adsorbents, the acrylamide content could be reduced by more than 50%. The effects of several additives like citric acid on the formation of acrylamide during frying of chips were also investigated. The mechanism of acrylamide formation in fried foods is discussed to explain these findings.

  14. A study of ion implanted gallium arsenide using deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Emerson, N.G.

    1981-03-01

    This thesis is concerned with the study of deep energy levels in ion implanted gallium arsenide (GaAs) using deep level transient spectroscopy (D.L.T.S.). The D.L.T.S. technique is used to characterise deep levels in terms of their activation energies and capture cross-sections and to determine their concentration profiles. The main objective is to characterise the effects on deep levels, of ion implantation and the related annealing processes. In the majority of cases assessment is carried out using Schottky barrier diodes. Low doses of selenium ions 1 to 3 x 10 12 cm -2 are implanted into vapour phase epitaxial (V.P.E.) GaAs and the effects of post-implantation thermal and pulsed laser annealing are compared. The process of oxygen implantation with doses in the range 1 x 10 12 to 5 x 10 13 cm -2 followed by thermal annealing at about 750 deg C, introduces a deep level at 0.79 eV from the conduction band. Oxygen implantation, at doses of 5 x 10 13 cm -2 , into V.P.E. GaAs produces a significant increase in the concentration of the A-centre (0.83 eV). High doses of zinc (10 15 cm -2 ) are implanted into n-type V.P.E. GaAs to form shallow p-type layers. The D.L.T.S. system described in the text is used to measure levels in the range 0.16 to 1.1 eV (for GaAs) with a sensitivity of the order 1:10 3 . (U.K.)

  15. Deep geologic storage of high level radioactive wastes: conceptual generic designs

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the studies on deep geologic storage of radioactive wastes and specially for the high-level radioactive wastes. The study is focussed to the geotechnical assessment and generic-conceptual designs. Methodology analysis, geotechnical feasibility, costs and operation are studied

  16. Iron and intrinsic deep level states in Ga2O3

    Science.gov (United States)

    Ingebrigtsen, M. E.; Varley, J. B.; Kuznetsov, A. Yu.; Svensson, B. G.; Alfieri, G.; Mihaila, A.; Badstübner, U.; Vines, L.

    2018-01-01

    Using a combination of deep level transient spectroscopy, secondary ion mass spectrometry, proton irradiation, and hybrid functional calculations, we identify two similar deep levels that are associated with Fe impurities and intrinsic defects in bulk crystals and molecular beam epitaxy and hydride vapor phase epitaxi-grown epilayers of β-Ga2O3. First, our results indicate that FeGa, and not an intrinsic defect, acts as the deep acceptor responsible for the often dominating E2 level at ˜0.78 eV below the conduction band minimum. Second, by provoking additional intrinsic defect generation via proton irradiation, we identified the emergence of a new level, labeled as E2*, having the ionization energy very close to that of E2, but exhibiting an order of magnitude larger capture cross section. Importantly, the properties of E2* are found to be consistent with its intrinsic origin. As such, contradictory opinions of a long standing literature debate on either extrinsic or intrinsic origin of the deep acceptor in question converge accounting for possible contributions from E2 and E2* in different experimental conditions.

  17. A Closer Look at Deep Learning Neural Networks with Low-level Spectral Periodicity Features

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Kereliuk, Corey; Pikrakis, Aggelos

    2014-01-01

    Systems built using deep learning neural networks trained on low-level spectral periodicity features (DeSPerF) reproduced the most “ground truth” of the systems submitted to the MIREX 2013 task, “Audio Latin Genre Classification.” To answer why this was the case, we take a closer look...

  18. Plan of deep underground construction for investigations on high-level radioactive waste storage

    International Nuclear Information System (INIS)

    Mayanovskij, M.S.

    1996-01-01

    The program of studies of the Japanese PNC corporation on construction of deep underground storage for high-level radioactive wastes is presented. The program is intended for 20 years. The total construction costs equal about 20 billion yen. The total cost of the project is equal to 60 billion yen. The underground part is planned to reach 1000 m depth

  19. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J S; Bardos, R A; Saint, A; Moloney, G M; Legge, G F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1994-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  20. Deep-level transient spectroscopy of low-energy ion-irradiated silicon

    DEFF Research Database (Denmark)

    Kolkovsky, Vladimir; Privitera, V.; Nylandsted Larsen, Arne

    2009-01-01

     During electron-gun deposition of metal layers on semiconductors, the semiconductor is bombarded with low-energy metal ions creating defects in the outermost surface layer. For many years, it has been a puzzle why deep-level transient spectroscopy spectra of the as-deposited, electron-gun evapor...

  1. Scanning deep level transient spectroscopy using an MeV ion microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.S.; Bardos, R.A.; Saint, A.; Moloney, G.M.; Legge, G.F.J. [Melbourne Univ., Parkville, VIC (Australia)

    1993-12-31

    Traditionally the scanning ion microprobe has given little or no information regarding the electronic structure of materials in particular semiconductors. A new imaging technique called Scanning Ion Deep Level Transient Spectroscopy (SIDLTS) is presented which is able to spatially map alterations in the band gap structure of materials by lattice defects or impurities. 3 refs., 2 figs.

  2. Luminescence and deep-level transient spectroscopy of grown dislocation-rich Si layers

    Directory of Open Access Journals (Sweden)

    I. I. Kurkina

    2012-09-01

    Full Text Available The charge deep-level transient spectroscopy (Q-DLTS is applied to the study of the dislocation-rich Si layers grown on a surface composed of dense arrays of Ge islands prepared on the oxidized Si surface. This provides revealing three deep-level bands located at EV + 0.31 eV, EC – 0.35 eV and EC – 0.43 eV using the stripe-shaped p-i-n diodes fabricated on the basis of these layers. The most interesting observation is the local state recharging process which proceeds with low activation energy (∼50 meV or without activation. The recharging may occur by carrier tunneling within deep-level bands owing to the high dislocation density ∼ 1011 - 1012 cm-2. This result is in favor of the suggestion on the presence of carrier transport between the deep states, which was previously derived from the excitation dependence of photoluminescence (PL intensity. Electroluminescence (EL spectra measured from the stripe edge of the same diodes contain two peaks centered near 1.32 and 1.55 μm. Comparison with PL spectra indicates that the EL peaks are generated from arsenic-contaminated and pure areas of the layers, respectively.

  3. Damage related deep electron levels in ion implanted GaAs

    International Nuclear Information System (INIS)

    Allsopp, D.W.E.; Peaker, A.R.

    1986-01-01

    A study has been made of the deep electron levels in semi-insulating GaAs implanted with either 78 Se + or 29 Si + ions and rendered n-type by subsequent annealing without encapsulation in partial pressures of arsenic or arsine. Three implantation related deep states were detected with concentration profiles approximating to the type of Gaussian distributions expected for point defects related to ion implantation damage. Further heat treatment of the samples at 500 0 C in a gas ambient of U 2 /H 2 substantially reduced concentration of these deep levels. Two of these states were thought to be related to displacements of the substrate atoms. The third, at Esubc -0.67 eV, was found in only 78 Se + ion implanted GaAs substrates and was thought to be a defect involving both Se and As atoms, rather than intrinsic lattice disorder. It is proposed that the annealing rate of these implantation related deep levels depends crucially on the in-diffusion of arsenic vacancies during heat treatments. (author)

  4. Star formation history of the Galactic bulge from deep HST imaging of low reddening windows

    Science.gov (United States)

    Bernard, Edouard J.; Schultheis, Mathias; Di Matteo, Paola; Hill, Vanessa; Haywood, Misha; Calamida, Annalisa

    2018-04-01

    Despite the huge amount of photometric and spectroscopic efforts targetting the Galactic bulge over the past few years, its age distribution remains controversial owing to both the complexity of determining the age of individual stars and the difficult observing conditions. Taking advantage of the recent release of very deep, proper-motion-cleaned colour-magnitude diagrams (CMDs) of four low reddening windows obtained with the Hubble Space Telescope (HST), we used the CMD-fitting technique to calculate the star formation history (SFH) of the bulge at -2° > b > -4° along the minor axis. We find that over 80 percent of the stars formed before 8 Gyr ago, but that a significant fraction of the super-solar metallicity stars are younger than this age. Considering only the stars that are within reach of the current generation of spectrographs (i.e. V≲ 21), we find that 10 percent of the bulge stars are younger than 5 Gyr, while this fraction rises to 20-25 percent in the metal-rich peak. The age-metallicity relation is well parametrized by a linear fit implying an enrichment rate of dZ/dt ˜ 0.005 Gyr-1. Our metallicity distribution function accurately reproduces that observed by several spectroscopic surveys of Baade's window, with the bulk of stars having metal-content in the range [Fe/H]˜-0.7 to ˜0.6, along with a sparse tail to much lower metallicities.

  5. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation

    International Nuclear Information System (INIS)

    2008-01-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  6. Point defects in gallium arsenide characterized by positron annihilation spectroscopy and deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Mih, R.; Gronsky, R.; Sterne, P.A.

    1995-01-01

    Positron annihilation lifetime spectroscopy (PALS) is a unique technique for detection of vacancy related defects in both as-grown and irradiated materials. The authors present a systematic study of vacancy defects in stoichiometrically controlled p-type Gallium Arsenide grown by the Hot-Wall Czochralski method. Microstructural information based on PALS, was correlated to crystallographic data and electrical measurements. Vacancies were detected and compared to electrical levels detected by deep level transient spectroscopy and stoichiometry based on crystallographic data

  7. High levels of natural radionuclides in a deep-sea infaunal xenophyophore

    Energy Technology Data Exchange (ETDEWEB)

    Swinbanks, D D; Shirayama, Y

    1986-03-27

    The paper concerns the high levels of natural radionuclides in a deep-sea infaunal xenophyophore from the Izu-Ogasawara Trench. Measured /sup 210/Po activities and barium contents of various parts of Occultammina profunda and the surrounding sediment are given, together with their estimated /sup 210/Pb and /sup 226/Ra activities. The data suggest that xenophyphores are probably subject to unusually high levels of natural radiation.

  8. Core Flooding Experiments and Reactive Transport Modeling of Seasonal Heat Storage in the Hot Deep Gassum Sandstone Formation

    DEFF Research Database (Denmark)

    Holmslykke, Hanne D.; Kjøller, Claus; Fabricius, Ida Lykke

    2017-01-01

    Seasonal storage of excess heat in hot deep aquifers is considered to optimize the usage of commonly available energy sources. The chemical effects of heating the Gassum Sandstone Formation to up to 150 degrees C is investigated by combining laboratory core flooding experiments with petrographic...... analysis and geochemical modeling. Synthetic formation water is injected into two sets of Gassum Formation samples at 25, 50 (reservoir temperature), 100, and 150 degrees C with a velocity of 0.05 and 0.1 PV/h, respectively. Results show a significant increase in the aqueous concentration of silicium...

  9. Radiological impact of a spent fuel disposal in a deep geological granite formation - results of the european spa project

    International Nuclear Information System (INIS)

    Baudoin, P.; Gay, D.; Certes, C.; Serres, C.

    2000-01-01

    The SPA project (Spent fuel disposal Performance Assessment) is the latest of four integrated performance assessment exercises on nuclear waste disposal in geological formations, carried out in the framework of the European Community 'Nuclear Fission' Research Programmes. The SPA project, which was undertaken by ENRESA, GRS, IPSN, NRG, SCK.CEN and VTT between May 1996 and April 1999, was devoted to the study of disposal of spent fuel in various host rock formations (clay, crystalline rocks and salt formation). This project is a direct continuation of the efforts made by the European Community since 1982 to build a common understanding of the methods applicable to deep disposal performance assessment. (authors)

  10. CORRELATION OF GALLSTONE FORMATION WITH SERUM IRON LEVELS

    Directory of Open Access Journals (Sweden)

    Rohini Bipin Bhadre

    2016-07-01

    Full Text Available INTRODUCTION Gallstones are one of the most common problem associated with the gallbladder, affecting millions of people throughout the world. Bile is excreted from liver and gallbladder into Duodenum for digestion. After digestion, if the gallbladder is not emptied out completely, the Bile Juice that remains in the gallbladder can become too concentrated with cholesterol leading to gallstone formation. Cholesterol and calcium bilirubinate are the two main substances involved in gallstone formation. Gallstones derived from bile consists of mixture of cholesterol, bilirubin with or without calcium. Based on their chemical composition, gallstones found in the gallbladder are classified as cholesterol, pigmented or mixed stones. Iron deficiency has been shown to alter the activity of several hepatic enzymes, leading to increased gallbladder bile cholesterol saturation and promotion of cholesterol crystal formation. AIMS & OBJECTIVE Attempt to establish a correlation with gallstones and decreased serum iron levels. MATERIAL & METHODS This study was a prospective cohort study which included 100 consecutive patients with imaging studies suggestive of Cholelithiasis. The Gallstone surgically removed was crushed with mortar and pestle and then analysed for cholesterol, calcium, phosphate and bilirubin (pigment. Serum samples were analysed for Cholesterol, iron and iron binding capacity. RESULTS 86% patients had increased cholesterol levels (p=0.04 and 93% had decreased serum Iron levels (p=0.96. The most common type of gallstone was found to be Cholesterol type of gallstone followed by Mixed and Pigment gallstones. CONCLUSION Serum cholesterol levels were found to be raised in majority of the patients and serum iron was found to be low in these majority of the patients indicating iron deficiency may play a role in gallstone formation.

  11. Potential for hydrogen-oxidizing chemolithoautotrophic and diazotrophic populations to initiate biofilm formation in oligotrophic, deep terrestrial subsurface waters.

    Science.gov (United States)

    Wu, Xiaofen; Pedersen, Karsten; Edlund, Johanna; Eriksson, Lena; Åström, Mats; Andersson, Anders F; Bertilsson, Stefan; Dopson, Mark

    2017-03-23

    Deep terrestrial biosphere waters are separated from the light-driven surface by the time required to percolate to the subsurface. Despite biofilms being the dominant form of microbial life in many natural environments, they have received little attention in the oligotrophic and anaerobic waters found in deep bedrock fractures. This study is the first to use community DNA sequencing to describe biofilm formation under in situ conditions in the deep terrestrial biosphere. In this study, flow cells were attached to boreholes containing either "modern marine" or "old saline" waters of different origin and degree of isolation from the light-driven surface of the earth. Using 16S rRNA gene sequencing, we showed that planktonic and attached populations were dissimilar while gene frequencies in the metagenomes suggested that hydrogen-fed, carbon dioxide- and nitrogen-fixing populations were responsible for biofilm formation across the two aquifers. Metagenome analyses further suggested that only a subset of the populations were able to attach and produce an extracellular polysaccharide matrix. Initial biofilm formation is thus likely to be mediated by a few bacterial populations which were similar to Epsilonproteobacteria, Deltaproteobacteria, Betaproteobacteria, Verrucomicrobia, and unclassified bacteria. Populations potentially capable of attaching to a surface and to produce extracellular polysaccharide matrix for attachment were identified in the terrestrial deep biosphere. Our results suggest that the biofilm populations were taxonomically distinct from the planktonic community and were enriched in populations with a chemolithoautotrophic and diazotrophic metabolism coupling hydrogen oxidation to energy conservation under oligotrophic conditions.

  12. Deep-level optical spectroscopy investigation of N-doped TiO2 films

    International Nuclear Information System (INIS)

    Nakano, Yoshitaka; Morikawa, Takeshi; Ohwaki, Takeshi; Taga, Yasunori

    2005-01-01

    N-doped TiO 2 films were deposited on n + -GaN/Al 2 O 3 substrates by reactive magnetron sputtering and subsequently crystallized by annealing at 550 deg. C in flowing N 2 gas. The N-doping concentration was ∼8.8%, as determined from x-ray photoelectron spectroscopy measurements. Deep-level optical spectroscopy measurements revealed two characteristic deep levels located at ∼1.18 and ∼2.48 eV below the conduction band. The 1.18 eV level is probably attributable to the O vacancy state and can be active as an efficient generation-recombination center. Additionally, the 2.48 eV band is newly introduced by the N doping and contributes to band-gap narrowing by mixing with the O 2p valence band

  13. Lack of mutagens in deep-fat-fried foods obtained at the retail level.

    Science.gov (United States)

    Taylor, S L; Berg, C M; Shoptaugh, N H; Scott, V N

    1982-04-01

    The basic methylene chloride extract from 20 of 30 samples of foods fried in deep fat failed to elicit any mutagenic response that could be detected in the Salmonella typhimurium/mammalian microsome assay. The basic extracts of the remaining ten samples (all three chicken samples studied, two of the four potato-chip samples, one of four corn-chip samples, the sample of onion rings, two of six doughnuts, and one of three samples of french-fried potato) showed evidence of weak mutagenic activity. In these samples, amounts of the basic extract equivalent to 28.5-57 g of the original food sample were required to produce revertants at levels of 2.6-4.8 times the background level. Only two of the acidic methylene chloride extracts from the 30 samples exhibited mutagenic activity greater than 2.5 times the background reversion level, and in both cases (one corn-chip and one shrimp sample) the mutagenic response was quite weak. The basic extract of hamburgers fried in deep fat in a home-style fryer possessed higher levels of mutagenic activity (13 times the background reversion level). However, the mutagenic activity of deep-fried hamburgers is some four times lower than that of pan-fried hamburgers.

  14. Reference design and operations for deep borehole disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-01-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  15. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  16. Effect of deep dislocation levels in silicon on the properties of p-n junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, A.G.; Dudko, V.G.; Nabokov, G.M.; Sechenov, D.A.

    1988-07-01

    We present the results of studies on the influence of deep levels, due to dislocations in electronic-grade silicon, on the lifetime of minority carriers and on the current-voltage and capacitance-voltage characteristics of p-n junctions. The parameters of the deep levels were determined by means of dynamic spectroscopy. The carrier lifetime in the high-resistance region of the p-n junction correlates well with the dislocation density and varies from 10/sup /minus/7/ sec to 3 /centered dot/10/sup /minus/6/ sec when the dislocation density N/sub d/ varies from 10/sup 7/ cm/sup /minus/2/ to 5 /centered dot/10/sup 3/ cm/sup /minus/2/. The voltage across the p-n junction at a high level of injection varies 1.6 to 6.2 v as a function of N/sub d/. The ionization energy of deep levels associated with dislocation in silicon is 0.44 and 0.57 eV, measured from the bottom of the conduction band.

  17. Impact of deep levels on the electrical conductivity and luminescence of gallium nitride codoped with carbon and silicon

    International Nuclear Information System (INIS)

    Armstrong, A.; Arehart, A.R.; Green, D.; Mishra, U.K.; Speck, J.S.; Ringel, S.A.

    2005-01-01

    The impact of C incorporation on the deep level spectrum of n-type and semi-insulating GaN:C:Si films grown by rf plasma-assisted molecular-beam epitaxy (MBE) was investigated by the combination of deep level transient spectroscopy, steady-state photocapacitance, and transient deep level optical spectroscopy. The deep level spectra of the GaN:C:Si samples exhibited several band-gap states. A monotonic relation between systematic doping with C and quantitative trap concentration revealed C-related deep levels. A deep acceptor at E c -2.05 eV and a deep donor at E c -0.11 eV are newly reported states, and the latter is the first directly observed deep level attributed to the C Ga defect. A configuration-coordinate model involving localized lattice distortion revealed strong evidence that C-related deep levels at E c -3.0 eV and E ν +0.9 eV are likely identical and associated with the yellow luminescence in C-doped GaN films. Of the deep levels whose trap concentration increase with C doping, the band-gap states at E c -3.0 and 3.28 eV had the largest concentration, implying that free-carrier compensation by these deep levels is responsible for the semi-insulating behavior of GaN:C:Si films grown by MBE. The differing manner by which C incorporation in GaN may impact electrical conductivity in films grown by MBE and metal-organic chemical-vapor deposition is discussed

  18. Hydrogen effects on deep level defects in proton implanted Cu(In,Ga)Se{sub 2} based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Seol, M.S.; Kwak, D.W.; Oh, J.S. [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of); Jeong, J.H. [Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2012-08-01

    Hydrogen effects on deep level defects and a defect generation in proton implanted Cu(In,Ga)Se{sub 2} (CIGS) based thin films for solar cell were investigated. CIGS films with a thickness of 3 {mu}m were grown on a soda-lime glass substrate by a co-evaporation method, and then were implanted with protons. To study deep level defects in the proton implanted CIGS films, deep level transient spectroscopy measurements on the CIGS-based solar cells were carried out, these measurements found 6 traps (including 3 hole traps and 3 electron traps). In the proton implanted CIGS films, the deep level defects, which are attributed to the recombination centers of the CIGS solar cell, were significantly reduced in intensity, while a deep level defect was generated around 0.28 eV above the valence band maximum. Therefore, we suggest that most deep level defects in CIGS films can be controlled by hydrogen effects. - Highlights: Black-Right-Pointing-Pointer Proton implanted Cu(In,Ga)Se{sub 2} thin film and solar cell are prepared. Black-Right-Pointing-Pointer Deep level defects of Cu(In,Ga)Se{sub 2} thin film and solar cell are investigated. Black-Right-Pointing-Pointer Hydrogenation using proton implantation and H{sub 2} annealing reduces deep level defects. Black-Right-Pointing-Pointer Hydrogenation could enhance electrical properties and efficiency of solar cells.

  19. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    NARCIS (Netherlands)

    Tamburini, C.; Canals, M.; de Madron, X.D.; Houpert, L.; Lefevre, D.; Martini, V.; D'Ortenzio, F.; Robert, A.; Testor, P.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.L.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, P.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, H.Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.N.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, V.G.; Salesa, F.; Sanchez-Losa, A.; Sapienza, P.; Schock, F.; Schuller, J.P.; Schussler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.G.F.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June

  20. A harmonic pulse testing method for leakage detection in deep subsurface storage formations

    Science.gov (United States)

    Sun, Alexander Y.; Lu, Jiemin; Hovorka, Susan

    2015-06-01

    Detection of leakage in deep geologic storage formations (e.g., carbon sequestration sites) is a challenging problem. This study investigates an easy-to-implement frequency domain leakage detection technology based on harmonic pulse testing (HPT). Unlike conventional constant-rate pressure interference tests, HPT stimulates a reservoir using periodic injection rates. The fundamental principle underlying HPT-based leakage detection is that leakage modifies a storage system's frequency response function, thus providing clues of system malfunction. During operations, routine HPTs can be conducted at multiple pulsing frequencies to obtain experimental frequency response functions, using which the possible time-lapse changes are examined. In this work, a set of analytical frequency response solutions is derived for predicting system responses with and without leaks for single-phase flow systems. Sensitivity studies show that HPT can effectively reveal the presence of leaks. A search procedure is then prescribed for locating the actual leaks using amplitude and phase information obtained from HPT, and the resulting optimization problem is solved using the genetic algorithm. For multiphase flows, the applicability of HPT-based leakage detection procedure is exemplified numerically using a carbon sequestration problem. Results show that the detection procedure is applicable if the average reservoir conditions in the testing zone stay relatively constant during the tests, which is a working assumption under many other interpretation methods for pressure interference tests. HPT is a cost-effective tool that only requires periodic modification of the nominal injection rate. Thus it can be incorporated into existing monitoring plans with little additional investment.

  1. The formation of potentially harmful compounds in churros, a Spanish fried-dough pastry, as influenced by deep frying conditions.

    Science.gov (United States)

    Morales, F J; Arribas-Lorenzo, G

    2008-07-15

    Colour, moisture, hydroxymethylfurfural (HMF) and acrylamide (AA) were investigated in traditional Spanish churros. Samples were deep-fried in sunflower oil at lab-scale temperatures of 180, 190 and 200°C and for frying times of 2, 3, 5 and 7min. Fresh made churros were also obtained from local producers. HMF ranged from 1.2±0.02 to 221.4±2.02mg/kg for lab-scale experiments and an average of 74.3±47.5mg/kg was recorded in commercial samples. AA ranged from below the limit of quantitation to 90±0.6μg/kg for lab-scale experiments and an average of 46±24.5μg/kg was measured in commercial samples. Temperatures between 185 and 200°C are commonly used to obtain churros with an acceptable palatability and a crispy surface. However, HMF and AA levels increased nearly two-fold from 190 to 200°C at the same frying times, indicating that a more precise control of frying temperatures is required to minimize their formation. Copyright © 2007 Elsevier Ltd. All rights reserved.

  2. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    International Nuclear Information System (INIS)

    Alsabagh, A.M.; Migahed, M.A.; Awad, Hayam S.

    2006-01-01

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV (∼96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules

  3. Reactivity of polyester aliphatic amine surfactants as corrosion inhibitors for carbon steel in formation water (deep well water)

    Energy Technology Data Exchange (ETDEWEB)

    Alsabagh, A.M. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt); Migahed, M.A. [Department of Petroleum Applications, Egyptian Petroleum Research Institute (EPRI), Ahmed El-Zomor Street 1, Nasr City, Cairo 11727 (Egypt)]. E-mail: mohamedatiyya707@hotmail.com; Awad, Hayam S. [Chemistry Department, Faculty of Girls for Science, Art and Education, Ain Shams University, Asmaa Fahmi Street, Helliopolis, Cairo (Egypt)

    2006-04-15

    Effect of different concentrations, 40-200 ppm, of various polyester aliphatic amine surfactants on inhibition of the corrosion of carbon steel in the formation water (deep well water) was investigated. These surfactants exhibit different levels of inhibition particularly at high concentration (200 ppm). Inhibition efficiencies in the range 86-96% were determined by weight loss method. Comparable results were obtained from electrochemical measurements using Tafel extrapolation and polarisation resistance methods. It was shown that all the investigated surfactants act primarily as anodic inhibitors; however, they also affect the rate and mechanism of the cathodic reaction. These compounds function via adsorption on reactive sites on the corroding surface reducing the corrosion rate of the metal. It was revealed that the adsorption of these surfactants obey Langmuir adsorption isotherm. The inhibition effectiveness increases with the length of the aliphatic hydrocarbon chain, being a maximum in the presence of surfactant IV ({approx}96% efficiency). The corrosion inhibition feature of this compound is attributed to the presence of a long hydrocarbon chain that ensures large surface coverage as well as the presence of multiple active centers for adsorption. Scanning electron microscopy, SEM, has been applied to identify the surface morphology of carbon steel alloy in the absence and presence of the inhibitor molecules.

  4. A methodology for the geological and numerical modelling of CO2 storage in deep saline formations

    Science.gov (United States)

    Guandalini, R.; Moia, F.; Ciampa, G.; Cangiano, C.

    2009-04-01

    Several technological options have been proposed to stabilize and reduce the atmospheric concentrations of CO2 among which the most promising are the CCS technologies. The remedy proposed for large stationary CO2 sources as thermoelectric power plants is to separate the flue gas, capturing CO2 and to store it into deep subsurface geological formations. In order to support the identification of potential CO2 storage reservoirs in Italy, the project "Identification of Italian CO2 geological storage sites", financed by the Ministry of Economic Development with the Research Fund for the Italian Electrical System under the Contract Agreement established with the Ministry Decree of march 23, 2006, has been completed in 2008. The project involves all the aspects related to the selection of potential storage sites, each carried out in a proper task. The first task has been devoted to the data collection of more than 6800 wells, and their organization into a geological data base supported by GIS, of which 1911 contain information about the nature and the thickness of geological formations, the presence of fresh, saline or brackish water, brine, gas and oil, the underground temperature, the seismic velocity and electric resistance of geological materials from different logs, the permeability, porosity and geochemical characteristics. The goal of the second task was the set up of a numerical modelling integrated tool, that is the in order to allow the analysis of a potential site in terms of the storage capacity, both from solubility and mineral trapping points of view, in terms of risk assessment and long-term storage of CO2. This tool includes a fluid dynamic module, a chemical module and a module linking a geomechanical simulator. Acquirement of geological data, definition of simulation parameter, run control and final result analysis can be performed by a properly developed graphic user interface, fully integrated and calculation platform independent. The project is then

  5. Radiation induced deep level defects in bipolar junction transistors under various bias conditions

    International Nuclear Information System (INIS)

    Liu, Chaoming; Yang, Jianqun; Li, Xingji; Ma, Guoliang; Xiao, Liyi; Bollmann, Joachim

    2015-01-01

    Bipolar junction transistor (BJT) is sensitive to ionization and displacement radiation effects in space. In this paper, 35 MeV Si ions were used as irradiation source to research the radiation damage on NPN and PNP bipolar transistors. The changing of electrical parameters of transistors was in situ measured with increasing irradiation fluence of 35 MeV Si ions. Using deep level transient spectroscopy (DLTS), defects in the bipolar junction transistors under various bias conditions are measured after irradiation. Based on the in situ electrical measurement and DLTS spectra, it is clearly that the bias conditions can affect the concentration of deep level defects, and the radiation damage induced by heavy ions.

  6. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    Science.gov (United States)

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Electrical and optical deep level spectroscopy on Os doped p-InP

    International Nuclear Information System (INIS)

    Parveen, S.; Zafar, N.; Khan, A.; Qureshi, U.S.; Iqbal, M.Z.

    1997-01-01

    Transition metal (TM) impurities are introduced for obtaining semi insulating (III-V) compound semiconductors used as base material for electronic and optoelectronic devices. TM doping introduces near mid gap levels which are used to compensate shallow level donors and acceptors in (III-V) compound semiconductors. The study of electrical properties of heavier transition metals in InP has been turned to an active field of research owing to their potential to produce thermally stable semi insulating substrate materials. Osmium has been tried for this purpose in our work. InP: Os samples have been grown by low pressure metalorganic chemical vapour deposition (LP-MOCVD). Optical and electrical Deep Level Transient Spectroscopy Techniques have been used to characterise osmium related deep level defects in the p-type samples. Three majority carrier (Hole) emitting levels OsA, OsB, OsC and one minority carrier (electron) emitting level Osl are observed in the DLTS and ODLTS measurements on p-type InP:Os. ON optical injection, only Osl appears and all other majority carrier emitting levels disappear dramatically. Special emphasis is given to the detailed comparison by ODLTS and EDLTS, which yields important information on the relative capture cross-sections of Osmium induced levels in p-InP. (author)

  8. Comparison of the nonradiative deep levels in silicon solar cells made of monocrystalline, polycrystalline and amorphous silicon using deep level transient spectroscopy (DLTS)

    International Nuclear Information System (INIS)

    Hammadeh, H.; Darwich, R.

    2005-03-01

    The aim of this work is to study the defects in solar cells fabricated from crystalline, polycrystalline and amorphous silicon. Using Deep Level Transient Spectroscopy technique, (DLTS), we have determined their activation energies, concentrations and their effect on the solar cell efficiency. Our results show a DLTS peak in crystalline silicon which we could attribute to tow peaks originating from iron contamination. In the polycrystalline based solar cells we observed a series of non conventional DLTS peaks while in amorphous silicon we observed a peak using low measurement frequencies (between 8 kHz and 20 kHz). We studied these defects and determined their activation energies as well as the capture cross section for one of them. We suggest a possible configuration of these defects. We cannot able to study the effect of these defects on the solar cell efficiency because we have not the experimental set-up which measure the solar cell efficiency. (Authors)

  9. Effects of heat from high-level waste on performance of deep geological repository components

    International Nuclear Information System (INIS)

    1984-11-01

    This report discusses the effects of heat on the deep geological repository systems and its different components. The report is focussed specifically on effects due to thermal energy release solely from high-level waste or spent fuel. It reviews the experimental data and theoretical models of the effects of heat both on the behaviour of engineered and natural barriers. A summary of the current status of research and repository development including underground test facilities is presented

  10. The relationship between level of processing and hippocampal-cortical functional connectivity during episodic memory formation in humans.

    Science.gov (United States)

    Schott, Björn H; Wüstenberg, Torsten; Wimber, Maria; Fenker, Daniela B; Zierhut, Kathrin C; Seidenbecher, Constanze I; Heinze, Hans-Jochen; Walter, Henrik; Düzel, Emrah; Richardson-Klavehn, Alan

    2013-02-01

    New episodic memory traces represent a record of the ongoing neocortical processing engaged during memory formation (encoding). Thus, during encoding, deep (semantic) processing typically establishes more distinctive and retrievable memory traces than does shallow (perceptual) processing, as assessed by later episodic memory tests. By contrast, the hippocampus appears to play a processing-independent role in encoding, because hippocampal lesions impair encoding regardless of level of processing. Here, we clarified the neural relationship between processing and encoding by examining hippocampal-cortical connectivity during deep and shallow encoding. Participants studied words during functional magnetic resonance imaging and freely recalled these words after distraction. Deep study processing led to better recall than shallow study processing. For both levels of processing, successful encoding elicited activations of bilateral hippocampus and left prefrontal cortex, and increased functional connectivity between left hippocampus and bilateral medial prefrontal, cingulate and extrastriate cortices. Successful encoding during deep processing was additionally associated with increased functional connectivity between left hippocampus and bilateral ventrolateral prefrontal cortex and right temporoparietal junction. In the shallow encoding condition, on the other hand, pronounced functional connectivity increases were observed between the right hippocampus and the frontoparietal attention network activated during shallow study processing. Our results further specify how the hippocampus coordinates recording of ongoing neocortical activity into long-term memory, and begin to provide a neural explanation for the typical advantage of deep over shallow study processing for later episodic memory. Copyright © 2011 Wiley Periodicals, Inc.

  11. Identification of deep levels in GaN associated with dislocations

    International Nuclear Information System (INIS)

    Soh, C B; Chua, S J; Lim, H F; Chi, D Z; Liu, W; Tripathy, S

    2004-01-01

    To establish a correlation between dislocations and deep levels in GaN, a deep-level transient spectroscopy study has been carried out on GaN samples grown by metalorganic chemical vapour deposition. In addition to typical undoped and Si-doped GaN samples, high-quality crack-free undoped GaN film grown intentionally on heavily doped cracked Si-doped GaN and cracked AlGaN templates are also chosen for this study. The purpose of growth of such continuous GaN layers on top of the cracked templates is to reduce the screw dislocation density by an order of magnitude. Deep levels in these layers have been characterized and compared with emphasis on their thermal stabilities and capture kinetics. Three electron traps at E c -E T ∼0.10-0.11, 0.24-0.27 and 0.59-0.63 eV are detected common to all the samples while additional levels at E c -E T ∼0.18 and 0.37-0.40 eV are also observed in the Si-doped GaN. The trap levels exhibit considerably different stabilities under rapid thermal annealing. Based on the observations, the trap levels at E c -E T ∼0.18 and 0.24-0.27 eV can be associated with screw dislocations, whereas the level at E c -E T ∼0.59-0.63 eV can be associated with edge dislocations. This is also in agreement with the transmission electron microscopy measurements conducted on the GaN samples

  12. Containers and overpacks for high-level radioactive waste in deep geological disposal. Conditions: French Corrosion Programme

    International Nuclear Information System (INIS)

    Crusset, D.; Plas, F.; Santarini, G.

    2003-01-01

    Within the framework of the act of French law dated 31 December, 1991, ANDRA (National Radioactive Waste Management Agency) is responsible for conducting the feasibility study on disposal of reversible and irreversible high-level or long-life radioactive waste in deep geological formations. Consequently, ANDRA is carrying out research on corrosion of the metallic materials envisaged for the possible construction of overpacks for vitrified waste packages or containers for spent nuclear fuel. Low-alloy or unalloyed steels and the passive alloys (Fe-Ni-Cr-Mo) constitute the two families of materials studied and ANDRA has set up a research programme in partnership with other research organisations. The 'broad outlines' of the programme, which includes experimental and modelling operations, are presented. (authors)

  13. Studies on deep electronic levels in silicon and aluminium gallium arsenide alloys

    International Nuclear Information System (INIS)

    Pettersson, H.

    1993-01-01

    This thesis reports on investigations of the electrical and optical properties of deep impurity centers, related to the transition metals (TMs) Ti, Mo, W, V and Ni, in silicon. Emission rates, capture cross sections and photoionization cross sections for these impurities were determined by means of various Junction Space Charge Techniques (JSCTs), such as Deep Level Transient Spectroscopy (DLTS), dark capacitance transient and photo capacitance transient techniques. Changes in Gibbs free energy as a function of temperature were calculated for all levels. From this temperature dependence, the changes in enthalpy and entropy involved in the electron and hole transitions were deduced. The influence of high electric fields on the electronic levels in chalcogen-doped silicon were investigated using the dark capacitance transient technique. The enhancement of the electron emission from the deep centers indicated a more complex field enhancement model than the expected Poole-Frenkel effect for coulombic potentials. The possibility to determine charge states of defects using the Poole-Frenkel effect, as often suggested, is therefore questioned. The observation of a persistent decrease of the dark conductivity due to illumination in simplified AlGaAs/GaAs high Electron Mobility Transistors (HEMTs) over the temperature range 170K< T<300K is reported. A model for this peculiar behavior, based on the recombination of electrons in the two-dimensional electron gas (2DEG) located at the AlGaAs/GaAs interface with holes generated by a two-step excitation process via the deep EL2 center in the GaAs epilayer, is put forward

  14. Heat flow, deep formation temperature and thermal structure of the Tarim Basin, northwest China

    Science.gov (United States)

    Liu, Shaowen; Lei, Xiao; Feng, Changge; Li, Xianglan

    2016-04-01

    Geothermal regime of a sedimentary basin not only provides constraint on understanding the basin formation and evolution, but also offers fundamental parameters for hydrocarbon resources assessment. As one of three Precambrian blocks in China, the Tarim craton is also a current hydrocarbon exploration target where the largest sedimentary basin (Tarim Basin) develops with great potential. Although considerable advancement of geothermal regime of this basin has been made during the past decades, nearly all the temperature data in previous studies are from the exploration borehole formation testing temperatures. Recently, we have conducted the steady-state temperature logging in the Tarim basin, and measured abundant rock thermal properties, enabling us to re-visit the thermal regime of this area with more confidence. Our results show that the present-day geothermal gradients for the Tarim Basin vary from 23 K/km to 27 K/km, with a mean of 22 K/km; the values of heat flow range from 40 mW/m2 to 49 mW/m2, with a mean of 43 mW/m2. These new data confirmed that the Tarim Basin has relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world. In addition, the new temperatures from the steady-state logs are larger than the bottom hole temperatures (BHT) as 22 degree Celsius, indicating the thermal non-equilibrium for the BHTs used in previous studies. Spatial distribution of the estimated formation temperatures-at-depth of 1~5km within the basin is similar and mainly controlled by crystalline basement pattern. Generally, the temperatures at the depth of 1km range from 29 to 41 degree Celsius, with a mean of 35 degree Celsius; while the temperatures at 3km vary from 63 to 100 degree Celsius, and the mean is 82 degree Celsius; at 5km below the surface, the temperatures fall into a range between 90 and 160 degree Celsius, with a mean of 129 degree Celsius. We further proposed the long-term low geothermal background and large burial

  15. Multi-level gene/MiRNA feature selection using deep belief nets and active learning.

    Science.gov (United States)

    Ibrahim, Rania; Yousri, Noha A; Ismail, Mohamed A; El-Makky, Nagwa M

    2014-01-01

    Selecting the most discriminative genes/miRNAs has been raised as an important task in bioinformatics to enhance disease classifiers and to mitigate the dimensionality curse problem. Original feature selection methods choose genes/miRNAs based on their individual features regardless of how they perform together. Considering group features instead of individual ones provides a better view for selecting the most informative genes/miRNAs. Recently, deep learning has proven its ability in representing the data in multiple levels of abstraction, allowing for better discrimination between different classes. However, the idea of using deep learning for feature selection is not widely used in the bioinformatics field yet. In this paper, a novel multi-level feature selection approach named MLFS is proposed for selecting genes/miRNAs based on expression profiles. The approach is based on both deep and active learning. Moreover, an extension to use the technique for miRNAs is presented by considering the biological relation between miRNAs and genes. Experimental results show that the approach was able to outperform classical feature selection methods in hepatocellular carcinoma (HCC) by 9%, lung cancer by 6% and breast cancer by around 10% in F1-measure. Results also show the enhancement in F1-measure of our approach over recently related work in [1] and [2].

  16. Large lattice relaxation deep levels in neutron-irradiated GaN

    International Nuclear Information System (INIS)

    Li, S.; Zhang, J.D.; Beling, C.D.; Wang, K.; Wang, R.X.; Gong, M.; Sarkar, C.K.

    2005-01-01

    Deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) measurements have been carried out in neutron-irradiated n-type hydride-vapor-phase-epitaxy-grown GaN. A defect center characterized by a DLTS line, labeled as N1, is observed at E C -E T =0.17 eV. Another line, labeled as N2, at E C -E T =0.23 eV, seems to be induced at the same rate as N1 under irradiation and may be identified with E1. Other defects native to wurtzite GaN such as the C and E2 lines appear to enhance under neutron irradiation. The DLOS results show that the defects N1 and N2 have large Frank-Condon shifts of 0.64 and 0.67 eV, respectively, and hence large lattice relaxations. The as-grown and neutron-irradiated samples all exhibit the persistent photoconductivity effect commonly seen in GaN that may be attributed to DX centers. The concentration of the DX centers increases significantly with neutron dosage and is helpful in sustaining sample conductivity at low temperatures, thus making possible DLTS measurements on N1 an N2 in the radiation-induced deep-donor defect compensated material which otherwise are prevented by carrier freeze-out

  17. The study of the deep levels of In/CdTe Schottky diode

    International Nuclear Information System (INIS)

    Kim, Hey-kyeong; Jeen, Gwangsoo; Nam, S.H.

    2000-01-01

    p-type CdTe is an important component of II-VI compound based solar cells as well as a promising substance for X- and gamma-ray detector. Despite that a lot of researches has been performed on CdTe, the manufacture of large homogeneous ingots with high resistivity (ρ) and a high value of lifetime-mobility product (μτ) still difficult. Both ρ and μτ, which determine detection properties, are strongly dependent on the impurity and defect levels of crystals. As in general, deep defect levels act as recombination centers and influence strongly the efficiency of the detector material, so information about deep levels is an essential need. To estimate deep levels of semiconductor materials, the TSC (thermally stimulated current), TSCD (thermally stimulated capacitor discharges) and admittance spectroscopic method are used. In order to study the deep levels of CdTe, the samples were taken from a CdTe-crystal grown by the vertical Bridgman method. From this boule single crystalline samples of about 0.5 mm thickness were prepared. All samples were initially p-type which was determined by the hot-probe method. In-CdTe Schottky diodes were prepared by the process of evaporation of In in the vacuum of 10 -6 Torr on surface of CdTe. The area of the deposited contact was equal to 1.626 mm 2 . As ohmic contacts, dots of Au soldered for 30 min. in temperature 160 deg C. Measurements were carried out within a 100-250 K temperature and 1-10 kHz frequency range. Related Arrhenius plots, i.e. the experimentally determined emission rates corresponding to the signal maximum divided by the square of temperature as a function of reciprocal temperature are plotted. The experimental data were best fitted by the least-square method. The fitting yielded the defect level energies E T . In this study, by using admittance spectroscopy measurements, we presented the information about the energy and concentration of the defect levels inside the gap, in order to improve the quality of

  18. Theory of deep level trap effects on generation-recombination noise in HgCdTe photoconductors

    International Nuclear Information System (INIS)

    Iverson, A.E.; Smith, D.L.

    1985-01-01

    We present a theory of the effect of deep level centers on the generation-recombination (g-r) noise and responsivity of an intrinsic photoconductor. The deep level centers can influence the g-r noise and responsivity in three main ways: (i) they can shorten the bulk carrier lifetime by Shockley--Read--Hall recombination; (ii) for some values of the capture cross sections, deep level densities, and temperature, the deep levels can trap a significant fraction of the photogenerated minority carriers. This trapping reduces the effective minority carrier mobility and diffusivity and thus reduces the effect of carrier sweep out on both g-r noise and responsivity; (iii) the deep level centers add a new thermal noise source, which results from fluctuations between bound and free carriers. The strength of this new noise source decreases with decreasing temperature at a slower rate than band-to-band thermal g-r noise. Calculations have been performed for a X = 0.21, n-type Hg/sub 1-x/Cd/sub x/Te photoconductor using the parameters of a commonly occurring deep level center in this material. We find that for typical operating conditions photoconductive detector performance begins to degrade as the deep level density begins to exceed 10 16 cm -3

  19. Spectroscopy of deep doping levels in Cd0.99Mn0.01Te:Ga

    International Nuclear Information System (INIS)

    Szatkowski, J.; Placzek-Popko, E.; Sieranski, K.; Bieg, B.

    1997-01-01

    The investigation results of deep energy levels in Cd 0.99 Mn 0.01 Te (n-type) doped with gallium have been presented. Deep level transient spectroscopy (DLTS) measurements have been carried out in temperature range 80-420 K. The results show five types of electron traps. The activation energy of trapping levels and electron trapping cross-sections have been determined for observed traps. 2 refs, 3 figs, 1 tab

  20. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.; Izabel, C.

    1990-01-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  1. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    Energy Technology Data Exchange (ETDEWEB)

    Escalier des Orres, P; Devillers, C; Cernes, A; Izabel, C [Agence Nationale pour la Gestion des Dechets Radioactifs - ANDRA (France)

    1990-07-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  2. Investigation of electrically-active deep levels in single-crystalline diamond by particle-induced charge transient spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kada, W., E-mail: kada.wataru@gunma-u.ac.jp [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kambayashi, Y.; Ando, Y. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Onoda, S. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Umezawa, H.; Mokuno, Y. [National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Shikata, S. [Kwansei Gakuin Univ., 2-1, Gakuen, Mita, Hyogo 669-1337 (Japan); Makino, T.; Koka, M. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Hanaizumi, O. [Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515 (Japan); Kamiya, T.; Ohshima, T. [Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan)

    2016-04-01

    To investigate electrically-active deep levels in high-resistivity single-crystalline diamond, particle-induced charge transient spectroscopy (QTS) techniques were performed using 5.5 MeV alpha particles and 9 MeV carbon focused microprobes. For unintentionally-doped (UID) chemical vapor deposition (CVD) diamond, deep levels with activation energies of 0.35 eV and 0.43 eV were detected which correspond to the activation energy of boron acceptors in diamond. The results suggested that alpha particle and heavy ion induced QTS techniques are the promising candidate for in-situ investigation of deep levels in high-resistivity semiconductors.

  3. Scanning ion deep level transient spectroscopy: II. Ion irradiated Au-Si Schottky junctions

    International Nuclear Information System (INIS)

    Laird, J S; Jagadish, C; Jamieson, D N; Legge, G J F

    2006-01-01

    Here we introduce a new technique called scanning ion deep level transient spectroscopy (SIDLTS) for the spatial analysis of electrically active defects in devices. In the first part of this paper, a simple theory behind SIDLTS was introduced and factors determining its sensitivity and resolution were discussed. In this paper, we demonstrate the technique on MeV boron implantation induced defects in an Au-Si Schottky junction. SIDLTS measurements are compared with capacitance DLTS measurements over the temperature range, 100-300 K. SIDLTS analyses indicate the presence of two levels, one of which was positively identified as the E c - 0.23 eV divacancy level. The high sensitivity of SIDLTS is verified and the advantages and limitations of the technique are discussed in light of non-exponential components in the charge transient response. Reasons for several undetected levels are also discussed

  4. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Chey, Chan Oeurn; Pozina, Galia; Willander, Magnus; Nur, Omer [Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden); Liu, Xianjie; Khranovskyy, Volodymyr [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-583 81 Linköping (Sweden)

    2015-08-15

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  5. Constant-resistance deep-level transient spectroscopy in Si and Ge JFET's

    International Nuclear Information System (INIS)

    Kolev, P.V.; Deen, J.

    1999-01-01

    The recently introduced constant-resistance deep-level transient spectroscopy (CR-DLTS) was successfully applied to study virgin and radiation-damaged junction field-effect transistors (JFET's). The authors have studied three groups of devices: commercially available-discrete silicon JFET's; virgin and exposed to high-level neutron radiation silicon JFET's, custom-made by using a monolithic technology; and commercially available discrete germanium p-channel JFET's. CR-DLTS is similar to both the conductance DLTs and to the constant-capacitance variation (CC-DLTS). Unlike the conductance and current DLTS, it is independent of the transistor size and does not require simultaneous measurement of the transconductance or the free-carrier mobility for calculation of the trap concentration. Compared to the CC-DLTS, it measures only the traps inside the gate-controlled part of the space charge region. Comparisons have also been made with the CC-DLTS and standard capacitance DLTS. In addition, possibilities for defect profiling in the channel have been demonstrated. CR-DLTS was found to be a simple, very sensitive, and device area-independent technique which is well suited for measurement of a wide range of deep level concentrations in transistors

  6. Radon 222 levels in deep well waters of Toluca municipality (county)

    International Nuclear Information System (INIS)

    Olguin Gutierrez, Maria Teresa.

    1990-01-01

    The levels of Radon 222 were determined in 46 deep (50-180m) wells in the city and county of Toluca, as well as the annual radiation dose that the stomach admits when ingesting such water. The method used for the quantification of Radon 222 was liquid scintillation counting. The result revealed that levels of Radon 222 in the studied area in the range of 0 to 320 pCi l -1 . In the case of the equivalent annual dose that the stomach (empty) admits due to ingestion of water from the wells, values are in an interval between 0 to 95 mrem a -1 . This values are well below the level established by the International Commission of Radiological Protection (ICRP). The wells that had the higher concentration of Radon 222 were found in the regions of Lodo Prieto, Seminario; San Antonio Buenavista and La Trinidad Huichochitlan. (Author)

  7. Retrievability from waste repositories in deep geological formation and how it can be guaranteed

    International Nuclear Information System (INIS)

    Viala, M.

    2000-01-01

    The paper considers retrievability in the context of a facility type termed deep interim storage, convertible to permanent disposal. Such a facility isolates the waste in a reliable manner while keeping several options open. Options are obtained at cost and cannot be indefinitely left open. Various aspects for pursuing this concept are discussed. (author)

  8. Drop impact into a deep pool: vortex shedding and jet formation

    NARCIS (Netherlands)

    Agbaglah, G.; Thoraval, Marie-Jean; Thoroddsen, S.T.; Zhang, L.V.; Fezzaa, K.; Deegan, R.D.

    2015-01-01

    One of the simplest splashing scenarios results from the impact of a single drop on a deep pool. The traditional understanding of this process is that the impact generates an axisymmetric sheet-like jet that later breaks up into secondary droplets. Recently it was shown that even this simplest of

  9. Bubble formation after a 20-m dive: deep-stop vs. shallow-stop decompression profiles

    NARCIS (Netherlands)

    Schellart, Nico A. M.; Corstius, Jan-Jaap Brandt; Germonpré, Peter; Sterk, Wouter

    2008-01-01

    OBJECTIVES: It is claimed that performing a "deep stop," a stop at about half of maximal diving depth (MDD), can reduce the amount of detectable precordial bubbles after the dive and may thus diminish the risk of decompression sickness. In order to ascertain whether this reduction is caused by the

  10. Irradiation induced defects containing oxygen atoms in germanium crystal as studied by deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Fukuoka, Noboru; Kambe, Yoshiyuki; Saito, Haruo; Matsuda, Koji.

    1984-05-01

    Deep level transient spectroscopy was applied to the electron trapping levels which are associated with the irradiation induced lattice defects in germanium crystals. The germanium crystals used in the study were doped with oxygen, antimony or arsenic and the defects were formed by electron irradiation of 1.5MeV or 10MeV. The nature of so called ''thermal defect'' formed by heat treatment at about 670K was also studied. The trapping levels at Esub(c)-0.13eV, Esub(c)-0.25eV and Esub(c)-0.29eV were found to be associated with defects containing oxygen atoms. From the experimental results the Esub(c)-0.25eV level was attributed to the germanium A-center (interstitial oxygen atom-vacancy pair). Another defect associated with the 715cm -1 infrared absorption band was found to have a trapping level at the same position at Esub(c)-0.25eV. The Esub(c)-0.23eV and Esub(c)-0.1eV levels were revealed to be associated with thermal donors formed by heat treatment at about 670K. Additional two peaks (levels) were observed in the DLTS spectrum. The annealing behavior of the levels suggests that the thermal donors originate from not a single type but several types of defects. (author)

  11. Deep level centers in electron-irradiated silicon crystals doped with copper at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yarykin, Nikolai [Institute of Microelectronics Technology, RAS, Chernogolovka (Russian Federation); Weber, Joerg [Technische Universitaet Dresden (Germany)

    2017-07-15

    The effect of bombardment with energetic particles on the deep-level spectrum of copper-contaminated silicon wafers is studied by space charge spectroscopy methods. The p-type FZ-Si wafers were doped with copper in the temperature range of 645-750 C and then irradiated with the 10{sup 15} cm{sup -2} fluence of 5 MeV electrons at room temperature. Only the mobile Cu{sub i} species and the Cu{sub PL} centers are detected in significant concentrations in the non-irradiated Cu-doped wafers. The properties of the irradiated samples are found to qualitatively depend on the copper in-diffusion temperature T{sub diff}. For T{sub diff} > 700 C, the irradiation partially reduces the Cu{sub i} concentration and introduces additional Cu{sub PL} centers while no standard radiation defects are detected. If T{sub diff} was below ∝700 C, the irradiation totally removes the mobile Cu{sub i} species. Instead, the standard radiation defects and their complexes with copper appear in the deep-level spectrum. A model for the defects reaction scheme during the irradiation is derived and discussed. DLTS spectrum of the Cu-contaminated and then irradiated silicon qualitatively depends on the copper in-diffusion temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features.

    Science.gov (United States)

    Abbas, Qaisar; Fondon, Irene; Sarmiento, Auxiliadora; Jiménez, Soledad; Alemany, Pedro

    2017-11-01

    Diabetic retinopathy (DR) is leading cause of blindness among diabetic patients. Recognition of severity level is required by ophthalmologists to early detect and diagnose the DR. However, it is a challenging task for both medical experts and computer-aided diagnosis systems due to requiring extensive domain expert knowledge. In this article, a novel automatic recognition system for the five severity level of diabetic retinopathy (SLDR) is developed without performing any pre- and post-processing steps on retinal fundus images through learning of deep visual features (DVFs). These DVF features are extracted from each image by using color dense in scale-invariant and gradient location-orientation histogram techniques. To learn these DVF features, a semi-supervised multilayer deep-learning algorithm is utilized along with a new compressed layer and fine-tuning steps. This SLDR system was evaluated and compared with state-of-the-art techniques using the measures of sensitivity (SE), specificity (SP) and area under the receiving operating curves (AUC). On 750 fundus images (150 per category), the SE of 92.18%, SP of 94.50% and AUC of 0.924 values were obtained on average. These results demonstrate that the SLDR system is appropriate for early detection of DR and provide an effective treatment for prediction type of diabetes.

  13. A deep water turbidity origin for the Altuda Formation (Capitanian, Permian), Northwest Glass Mountains, Texas

    Science.gov (United States)

    Haneef, Mohammad; Rohr, D.M.; Wardlaw, B.R.

    2000-01-01

    The Altuda Formation (Capitanian) in the northwestern Glass Mountains is comprised of thin, even bedded limestones, dolostones, mixed clastic-carbonates, and silt/sandstones interbedded with basin-ward dipping wedge-shaped clinoforms of the Captian Limestone. The formation is characterized by graded bedding, planar laminations, flame structures, contorted/convolute bedding, horizontal branching burrows, and shelf-derived normal marine fauna. A detailed study of the Altuda Formation north of Old Blue Mountain, Glass Mountains, reveals that the formation in this area was deposited by turbidity currents in slope to basinal settings.

  14. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  15. The feasibility of heat generating waste disposal into deep ocean sedimentary formations

    International Nuclear Information System (INIS)

    Murray, C.N.

    1986-01-01

    The paper briefly reviews the work undertaken to date by the Commission of European Communities ''Sub-Seabed Program'' in collaboration with national programmes of member countries. Special emphasis has been placed on the studies of the characteristics of deep ocean sediments to act as a barrier to the dispersion of radionuclides and the technical investigations carried out to demonstrate engineering feasibility of the option. (author)

  16. New High Pressure Phase of CaCO3: Implication for the Deep Diamond Formation

    Science.gov (United States)

    Mao, Z.; Li, X.; Zhang, Z.; Lin, J. F.; Ni, H.; Prakapenka, V.

    2017-12-01

    Surface carbon can be transported to the Earth's deep interior through sinking subduction slabs. Carbonates, including CaCO3, MgCO3 and MgCa(CO3)2, are important carbon carriers for the deep carbon cycle. Experimental studies on the phase stability of carbonates with coexisting mantle minerals at relevant pressure and temperature conditions are thus important for understanding the deep carbon cycle. In particular, recent petrological studies have revealed the evidence for the transportation of CaCO3 to the depth at least of the top lower mantle by analyzing the diamond inclusions. Yet the phase stability of CaCO3 at relevant pressure and temperature conditions of the top lower mantle is still unclear. Previous single-crystal study has shown that CaCO3 transforms from the CaCO3-III structure to CaCO3-VI at 15 GPa and 300 K. The CaCO3-VI is stable at least up to 40 GPa at 300 K. At high temperatures, CaCO3 in the aragonite structure will directly transform into the post-aragonite structure at 40 GPa. However, a recent theoretical study predicted a new phase of CaCO3 with a space group of P21/c between 32 and 48 GPa which is different from previous experimental results. In this study, we have investigated the phase stability of CaCO3 at high pressure-temperature conditions using synchrotron X-ray diffraction in laser-heated diamond anvil cells. We report the discovery of a new phase of CaCO3 at relevant pressure-temperature conditions of the top lower mantle which is consistent with previous theoretical predictions. This new phase is an important carrier for the transportation of carbon to the Earth's lower mantle and crucial for growing deep diamonds in the region.

  17. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive (234U/238U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin

    International Nuclear Information System (INIS)

    Deschamps, P.

    2003-11-01

    This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the 234 U/ 238 U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation in the current settings. Conversely, ( 234 U/ 238 U) disequilibria are systematically observed within zones, located in the surrounding carbonate formations, that are characterized by pressure dissolution structures (stylolites or dissolution seams). These disequilibria provide evidence for a discrete uranium relocation during the last two million years in the vicinity of stylolitic structures. This is a surprising result since it is generally supposed that these deep, low permeability, compact formations behave as closed system at the time scale of the U-series. (author)

  18. Fast fission phenomenon, deep inelastic reactions and compound nucleus formation described within a dynamical macroscopic model

    International Nuclear Information System (INIS)

    Gregoire, C.; Ngo, C.; Remaud, B.

    1982-01-01

    We present a dynamical model to describe dissipative heavy ion reactions. It treats explicitly the relative motion of the two ions, the mass asymmetry of the system and the projection of the isospin of each ion. The deformations, which are induced during the collision, are simulated with a time-dependent interaction potential. This is done by a time-dependent transition between a sudden interaction potential in the entrance channel and an adiabatic potential in the exit channel. The model allows us to compute the compound-nucleus cross section and multidifferential cross-sections for deep inelastic reactions. In addition, for some systems, and under certain conditions which are discussed in detail, a new dissipative heavy ion collision appears: fast-fission phenomenon which has intermediate properties between deep inelastic and compound nucleus reactions. The calculated properties concerning fast fission are compared with experimental results and reproduce some of those which could not be understood as belonging to deep inelastic or compound-nucleus reactions. (orig.)

  19. Constraints on sea level during the Pliocene: Records from the deep Pacific Ocean

    Science.gov (United States)

    Woodard, S. C.; Rosenthal, Y.; Miller, K. G.; Wright, J. D.; Chiu, B. K.

    2013-12-01

    To reconstruct sea level during the transition from peak late Pliocene warmth (~3.15 Ma) to the onset of N. Hemisphere glaciation (~2.75 Ma), we generated high resolution stable isotope (δ18O, δ13C) and trace metal (Mg/Ca) records using benthic foraminifera, Uvigerina sp., from northwest Pacific ODP Site 1208 (3350 m water depth). During the peak late Pliocene warmth Mg/Ca-derived temperature records indicate deep Pacific interglacial temperatures were not significantly warmer (+0.6 ×0.8°C) than modern and glacial temperatures were near freezing similar to the LGM. In contrast, the deep N. Atlantic (Site 607) was apparently ~3°C warmer than the modern during both Pliocene glacial and interglacial periods (Sosdian and Rosenthal, 2009), based on the Mg/Ca of P. wuellerstorfi, which may be influenced by carbonate ion effect (Elderfield et al., 2009 and refs therein). δ18O records indicate a significant long-term increase in benthic δ18O in both the N. Atlantic and N. Pacific, although the rate of increase (Δδ18O) in the N. Atlantic is approximately 3x that of the N. Pacific (Site 1208), based on least squares regressions of all glacial-interglacial data. The discrepancy in the Δδ18O between the two basins is explained by Mg/Ca-derived temperature records. Results from Site 1208 show that the deep Pacific experienced no long-term cooling over the period 3.15-2.7 Ma when the deep N. Atlantic cooled by ~2.5°C on average. The relatively stable Pacific deep-water record provides the more reliable reconstructions of sea-level changes. From 3.15-2.7 Ma, Pacific δ18O data records an average increase of ~0.19× 0.08 per mil implying a sea level drop of 19 m × 8 m. After correcting the N. Atlantic record for temperature, we find the long term δ18O change from 3.15-2.7 Ma is ~0.23×0.1 per mil which equates to a peak of 23 m × 10 m. Our estimates are further corroborated by foraminiferal calcite δ18O recorded during Pliocene peak interglacials KM3 and G17. The

  20. Heterofibrins: inhibitors of lipid droplet formation from a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp.

    Science.gov (United States)

    Salim, Angela A; Rae, James; Fontaine, Frank; Conte, Melissa M; Khalil, Zeinab; Martin, Sally; Parton, Robert G; Capon, Robert J

    2010-07-21

    A bioassay-guided search for inhibitors of lipid droplet formation in a deep-water southern Australian marine sponge, Spongia (Heterofibria) sp., yielded six new compounds, fatty acids heterofibrins A1 (1) and B1 (4), along with related monolactyl and dilactyl esters, heterofibrins A2 (2), B2 (5), A3 (3) and B3 (6). Heterofibrin structures were assigned on the basis of detailed spectroscopic analysis, with comparison to chiral synthetic model compounds. All heterofibrins possess a diyne-ene moiety, while the monolactyl and dilactyl moiety featured in selected heterofibrins is unprecedented in the natural products literature. SAR by co-metabolite studies on the heterofibrins confirmed them to be non-cytotoxic, with the carboxylic acids 1 and 4 inhibiting lipid droplet formation in A431 fibroblast cell lines. Such inhibitors have potential application in the management of obesity, diabetes and atherosclerosis

  1. Hydraulic fracturing to enhance geothermal energy recovery in deep and tight formations. Modell approach in petrothermy research project OPTIRISS

    Energy Technology Data Exchange (ETDEWEB)

    Rafiee, M.M.; Schmitz, S.; Barsch, M. [DBI - Gastechnologisches Institut gGmbH, Freiberg (Germany)

    2013-08-01

    In Germany numerous projects were successfully conducted in developments of geothermal energy which applied so far mostly for the hydrothermal deposit type. In Thuringia and Saxony there are currently project developments of geothermal resource taking into account for deep, tight formations in petrothermy and Enhanced geothermal system, (EGS). One of the potential tasks in generating these petrothermal producers and in the design of the underground power plant appears to be hydraulic fracturing with multi frac method. This is to create the heat exchanger surfaces in the rock and ensure maximum volumetric flow through it. Therefore it is very important for a sustainable heat production. However the promise of its adequate conductivity in the deep formation is one of the dominant contests in geothermal energy industry. In a multi frac method, two wells (normally horizontal wellbores at different depths) are drilled in direction of minimum horizontal stress of the formation rock. By multiple frac operation in separate sections, flow paths are generated between the wells through which it is possible to extract the heat from the rock. The numerical simulation of hydraulic fracture propagation processes in the rock is mainly from the research in the area of oil and gas industry. These techniques are mainly used for very low permeable formations in petroleum engineering (e.g. Shale gas). The development is at the beginning for EGS (e.g. granites). In this work single and multi fracking propagation processes in a synthetic example of deep hard formation are investigated. The numerical simulation is carried out to design and characterize frac processes and frac dimensions. Sensitivities to various rock parameters and different process designs are examined and optimum criteria are concluded. This shows that the minimum stress profile has the most effective role and should be modelled properly. The analysis indicates the optimum fracture length and height for adequate thermal

  2. Localized deep levels in AlxGa1−xN epitaxial films with various Al compositions

    International Nuclear Information System (INIS)

    Shi Li-Yang; Shen Bo; Wang Ping; Yan Jian-Chang; Wang Jun-Xi

    2014-01-01

    By using high-temperature deep-level transient spectroscopy (HT-DLTS) and other electrical measurement techniques, localized deep levels in n-type Al x Ga 1−x N epitaxial films with various Al compositions (x = 0, 0.14, 0.24, 0.33, and 0.43) have been investigated. It is found that there are three distinct deep levels in Al x Ga 1−x N films, whose level position with respect to the conduction band increases as Al composition increases. The dominant defect level with the activation energy deeper than 1.0 eV below the conduction band closely follows the Fermi level stabilization energy, indicating that its origin may be related to the defect complex, including the anti-site defects and divacancies in Al x Ga 1−x N films. (condensed matter: structural, mechanical, and thermal properties)

  3. Should the U.S. proceed to consider licensing deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Curtiss, J.R.

    1993-01-01

    The United States, as well as other countries facing the question of how to handle high-level nuclear waste, has decided that the most appropriate means of disposal is in a deep geologic repository. In recent years, the Radioactive Waste Management Committee of the Nuclear Energy Agency has developed several position papers on the technical achievability of deep geologic disposal, thus demonstrating the serious consideration of deep geologic disposal in the international community. The Committee has not, as yet, formally endorsed disposal in a deep geologic repository as the preferred method of handling high-level nuclear waste. The United States, on the other hand, has studied the various methods of disposing of high-level nuclear waste, and has determined that deep geologic disposal is the method that should be developed. The purpose of this paper is to present a review of the United States' decision on selecting deep geologic disposal as the preferred method of addressing the high-level waste problem. It presents a short history of the steps taken by the U.S. in determining what method to use, discusses the NRC's waste Confidence Decision, and provides information on other issues in the U.S. program such as reconsideration of the final disposal standard and the growing inventory of spent fuel in storage

  4. Site selection factors for repositories of solid high-level and alpha-bearing wastes in geological formations

    International Nuclear Information System (INIS)

    1977-01-01

    The purpose of this report is to provide guidelines for the selection and evaluation of suitable areas and sites for the disposal of solid high-level and alpha-bearing wastes into geological formations. This report is also intended to provide summary information on many types of geological formations underlying the land masses that might be considered as well as guidance on the geological and hydrological factors that should be investigated to demonstrate the suitability of the formations. In addition, other factors that should be considered in selecting a site for a radioactive waste repository are discussed briefly. The information, as presented, was developed to the extent of current technology for application to the evaluation of deep (greater than about 300 metres below ground level) geological formations in the selection of suitable areas for the disposal of solid or solidified high-level and alpha-bearing wastes. The extreme complexity of many geological environments and of the rock features that govern the presence and circulation of groundwater does not make it feasible to derive strict criteria for the selection of a site for a radioactive waste repository in a geological formation. Each potential repository location must be evaluated according to its own unique geological and hydrological setting. Therefore, only general guidance is offered, and this is done through discussion of the many factors that need to be considered in order to obtain the necessary assurances that the radionuclides will be confined in the geological repository over the required period of time

  5. Site selection factors for repositories of solid high-level and alpha-bearing wastes in geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The purpose of this report is to provide guidelines for the selection and evaluation of suitable areas and sites for the disposal of solid high-level and alpha-bearing wastes into geological formations. This report is also intended to provide summary information on many types of geological formations underlying the land masses that might be considered as well as guidance on the geological and hydrological factors that should be investigated to demonstrate the suitability of the formations. In addition, other factors that should be considered in selecting a site for a radioactive waste repository are discussed briefly. The information, as presented, was developed to the extent of current technology for application to the evaluation of deep (greater than about 300 meters below ground level) geological formations in the selection of suitable areas for the disposal of solid or solidified high-level and alpha-bearing wastes. The extreme complexity of many geological environments and of the rock features that govern the presence and circulation of groundwater does not make it feasible to derive strict criteria for the selection of a site for a radioactive waste repository in a geological formation. Each potential repository location must be evaluated according to its own unique geological and hydrological setting. Therefore, only general guidance is offered, and this is done through discussion of the many factors that need to be considered in order to obtain the necessary assurances that the radionuclides will be confined in the geological repository over the required period of time.

  6. Hydrogeologic modelling in support of a proposed Deep Geologic Repository in Canada for low and intermediate level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Sykes, J.F.; Normani, S.D.; Yin, Y. [Waterloo Univ., ON (Canada). Dept. of Civil and Environmental Engineering; Sykes, E.A.; Jensen, M.R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    Ontario Power Generation (OPG) has proposed the construction of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste at the Bruce site on the shore of Lake Huron near Tiverton, Ontario. The DGR is to be excavated at a depth of about 680 m within argillaceous limestones of Ordovician age. A saturated regional-scale and site-scale numerical modelling study has been completed in order to evaluate the safety of storing radioactive waste at the site and to better understand the geochemistry and hydrogeology of the formations surrounding the proposed DGR. This paper reported on the regional-scale base-case modelling and analysis of the measured pressure profile in deep boreholes at the DGR site. The numerical modelling study provided a framework to investigate the groundwater flow system as it relates to, and potentially affects, the safety and long-term performance of the DGR. A saturated groundwater flow model was also developed using FRAC3DVS-OPG. The objective of regional-scale groundwater modelling of the Paleozoic sedimentary sequence underlying southwestern Ontario was to provide a basis for the assembly and integration of site-specific geoscientific data and to explain the influence of parameter and scenario uncertainty on predicted long-term geosphere barrier performance. The base-case analysis showed that solute transport in the Ordovician and lower Silurian is diffusion dominant. For the base-case parameters, the estimated mean life expectancy for the proposed DGR is more than 8 million years. The possible presence of a gas phase in the rock between the Cambrian and the Niagaran was not considered in the analyses of this paper. 9 refs., 2 tabs., 10 figs.

  7. TECHNICAL AND ECONOMIC EVALUATION OF OPTIMAL VOLTAGE LEVEL FOR THE POWER SUPPLY OF DEEP MINE OPERATING HORIZONS

    OpenAIRE

    Shkrabets, F. P.; Ostapchuk, O. V.; Kozhevnikov, A. V.; Akulov, A. V.

    2015-01-01

    The most perspective option for possible deep mine power supply is the one with the deep input of 35 kV voltage by installing of underground 35kV/6 kV substation. This option is caused by the expected level of electrical loads, provided by mine development, the power consumers’ deep layout (considering the distance from the source to the shaft on the surface and from the shaft to the underground substation chamber) and primary and the most responsible power consumers (blind shaft lifting devi...

  8. Possibility of disposing of conditioned nuclear waste in deep-lying clay formations

    International Nuclear Information System (INIS)

    Bonne, A.; Heremans, R.; Vandenberghe, N.

    1980-01-01

    Among the host rock types suitable for final disposal of nuclear waste, argillaceous formations display distinct advantages and disadvantages. In the present paper some of them will be examined. In order to render conceivable the possibilities for disposing of radwastes into a plastic clay formation, some main items of the Belgian R and D-programme in that matter will be discussed (site and rock investigation, conceptual design and feasibility, and risk analysis). (Auth.)

  9. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    Science.gov (United States)

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  10. In-situ formation compaction monitoring in deep reservoirs by use of fiber optics

    Directory of Open Access Journals (Sweden)

    H. Ikeda

    2015-11-01

    Full Text Available We have devised a new in situ monitoring method for the amount of stratified compaction in borehole drilled several hundred meters underground. This newly developed epoch-making monitoring system differs from conventional monitoring methods for land subsidence in that it is designed to continuously monitor the amounts of displacement in several intervals separately, using optical fibers fitted in the sensor assembly. This report presents results from a deep observation well. This is a continued report from the previous one on EISOLS 2010.

  11. Underground storage. Study of radwaste storage in deep geological formations: environmental protection

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.

    1993-01-01

    The purpose of the Agence nationale pour la gestion des dechets radioactifs (Andra) is to monitor the management methods and storage of radioactive waste produced in France. The agency has this undertaken a vast study program for the evaluation of the management conditions of long-life radwaste, which cannot be stored indefinitely in shallow-ground repositories. Underground laboratories are investigating the feasibility of a possible solution which is to store radwaste in a deep geological layer. However, there will be no decision on this type of storage before the year 2006. 7 figs

  12. Influence of growth temperature and temperature ramps on deep level defect incorporation in m-plane GaN

    International Nuclear Information System (INIS)

    Armstrong, A. M.; Kelchner, K.; Nakamura, S.; DenBaars, S. P.; Speck, J. S.

    2013-01-01

    The dependence of deep level defect incorporation in m-plane GaN films grown by metal-organic chemical vapor deposition on bulk m-plane GaN substrates as a function of growth temperature (T g ) and T g ramping method was investigated using deep level optical spectroscopy. Understanding the influence of T g on GaN deep level incorporation is important for InGaN/GaN multi-quantum well (MQW) light emitting diodes (LEDs) and laser diodes (LDs) because GaN quantum barrier (QB) layers are grown much colder than thin film GaN to accommodate InGaN QW growth. Deep level spectra of low T g (800 °C) GaN films grown under QB conditions were compared to deep level spectra of high T g (1150 °C) GaN. Reducing T g , increased the defect density significantly (>50×) through introduction of emergent deep level defects at 2.09 eV and 2.9 eV below the conduction band minimum. However, optimizing growth conditions during the temperature ramp when transitioning from high to low T g substantially reduced the density of these emergent deep levels by approximately 40%. The results suggest that it is important to consider the potential for non-radiative recombination in QBs of LED or LD active regions, and tailoring the transition from high T g GaN growth to active layer growth can mitigate such non-radiative channels

  13. Extended deep level defects in Ge-condensed SiGe-on-Insulator structures fabricated using proton and helium implantations

    International Nuclear Information System (INIS)

    Kwak, D.W.; Lee, D.W.; Oh, J.S.; Lee, Y.H.; Cho, H.Y.

    2012-01-01

    SiGe-on-Insulator (SGOI) structures were created using the Ge condensation method, where an oxidation process is performed on the SiGe/Si structure. This method involves rapid thermal chemical vapor deposition and H + /He + ion-implantations. Deep level defects in these structures were investigated using deep level transient spectroscopy (DLTS) by varying the pulse injection time. According to the DLTS measurements, a deep level defect induced during the Ge condensation process was found at 0.28 eV above the valence band with a capture cross section of 2.67 × 10 −17 cm 2 , two extended deep levels were also found at 0.54 eV and 0.42 eV above the valence band with capture cross sections of 3.17 × 10 −14 cm 2 and 0.96 × 10 −15 cm 2 , respectively. In the SGOI samples with ion-implantation, the densities of the newly generated defects as well as the existing defects were decreased effectively. Furthermore, the Coulomb barrier heights of the extended deep level defects were drastically reduced. Thus, we suggest that the Ge condensation method with H + ion implantation could reduce deep level defects generated from the condensation and control the electrical properties of the condensed SiGe layers. - Highlights: ► We have fabricated low-defective SiGe-on-Insulator (SGOI) with implantation method. ► H + and He + -ions are used for ion-implantation method. ► We have investigated the deep level defects of SGOI layers. ► Ge condensation method using H + ion implantation could reduce extended defects. ► They could enhance electrical properties.

  14. Core Flooding Experiments and Reactive Transport Modeling of Seasonal Heat Storage in the Hot Deep Gassum Sandstone Formation

    DEFF Research Database (Denmark)

    Holmslykke, Hanne D.; Kjøller, Claus; Fabricius, Ida Lykke

    2017-01-01

    Seasonal storage of excess heat in hot deep aquifers is considered to optimize the usage of commonly available energy sources. The chemical effects of heating the Gassum Sandstone Formation to up to 150 degrees C is investigated by combining laboratory core flooding experiments with petrographic ...... minor effects on the properties of the reservoir and that storage of excess heat in the Gassum Formation in the Stenlille area may be possible provided operational precautions are taken....... analysis and geochemical modeling. Synthetic formation water is injected into two sets of Gassum Formation samples at 25, 50 (reservoir temperature), 100, and 150 degrees C with a velocity of 0.05 and 0.1 PV/h, respectively. Results show a significant increase in the aqueous concentration of silicium...... and iron with increasing temperature due to dissolution of silica and siderite. Increasing the reservoir temperature from 50 to 100 degrees C enhanced the naturally occurring weathering of Na-rich feldspar to kaolinite. Dissolution of quartz increased sharply above 100 degrees C and was the dominating...

  15. Deep reversible storage. Safety options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This large document aims at presenting safety options which have been adopted for the current design status (notably for the installation architecture), elements of description of envisaged technical solutions and exploitation principles which are required for the control of risks (either internal or external) and uncertainties on a long term which could lead to radiological consequences for the project of storage of nuclear wastes in a deep geological formation. After a presentation of the context and of input data, this report discusses the principle of a modular construction and then discusses the safety approach. One part deals with risk analysis for surface installations and aims at showing how internal risks (handling, fire) and external risks (earthquake, plane crash) are taken into account in terms of design choices, processes and control measures. Another part deals with risk analysis for underground installations during the reversible exploitation phase (the considered risks are about the same as in the previous part). The next part addresses risk analysis after closing, and tries to describe how the location, storage construction elements and its architecture ensure a passive safety. Uncertainty management is presented in relationship with envisaged technical solutions and scientific knowledge advances. Additional elements (detailed study, researches and experimentations) for the establishment of the future creation authorization request are identified all along the report

  16. Deep level transient spectroscopy and minority carrier lifetime study on Ga-doped continuous Czochralski silicon

    Science.gov (United States)

    Yoon, Yohan; Yan, Yixin; Ostrom, Nels P.; Kim, Jinwoo; Rozgonyi, George

    2012-11-01

    Continuous-Czochralski (c-Cz) crystal growth has been suggested as a viable technique for the fabrication of photovoltaic Si wafers due to its low resistivity variation of any dopant, independent of segregation, compared to conventional Cz. In order to eliminate light induced degradation due to boron-oxygen traps in conventional p-type silicon wafers, gallium doped wafers have been grown by c-Cz method and investigated using four point probe, deep level transient spectroscopy (DLTS), and microwave-photoconductance decay. Iron-gallium related electrically active defects were identified using DLTS as the main lifetime killers responsible for reduced non-uniform lifetimes in radial and axial positions of the c-Cz silicon ingot. A direct correlation between minority carrier lifetime and the concentration of electrically active Fe-Ga pairs was established.

  17. Mathematical modelling of heat production in deep geological repository of high-level nuclear waste

    International Nuclear Information System (INIS)

    Kovanda, O.

    2017-01-01

    Waste produced by nuclear industry requires special handling. Currently, there is a research taking place, focused at possibilities of nuclear waste storage in deep geological repositories, hosted in stable geological environment. The high-level nuclear waste produces significant amount of heat for a long time, which can affect either environment outside of or within the repository in a negative way. Therefore to reduce risks, it is desirable to know the principles of such heat production, which can be achieved using mathematical modeling. This thesis comes up with a general model of heat production-time dependency, dependable on initial composition of the waste. To be able to model real situations, output of this thesis needs to be utilized in an IT solution. (authors)

  18. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    International Nuclear Information System (INIS)

    Auret, F.D.; Janse van Rensburg, P.J.; Meyer, W.E.; Coelho, S.M.M.; Kolkovsky, Vl.; Botha, J.R.; Nyamhere, C.; Venter, A.

    2012-01-01

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (E c —0.046 eV, E c —0.186 eV, E c —0.314 eV. E c —0.528 eV and E c —0.605 eV) were detected. The metastable defect E c —0.046 eV having a trap signature similar to E1 is observed for the first time. E c —0.314 eV and E c —0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  19. Anomalous behaviors of E1/E2 deep level defects in 6H silicon carbide

    International Nuclear Information System (INIS)

    Chen, X.D.; Ling, C.C.; Gong, M.; Fung, S.; Beling, C.D.; Brauer, G.; Anwand, W.; Skorupa, W.

    2005-01-01

    Deep level defects E 1 /E 2 were observed in He-implanted, 0.3 and 1.7 MeV electron-irradiated n-type 6H-SiC. Similar to others' results, the behaviors of E 1 and E 2 (like the peak intensity ratio, the annealing behaviors or the introduction rates) often varied from sample to sample. This anomalous result is not expected of E 1 /E 2 being usually considered arising from the same defect located at the cubic and hexagonal sites respectively. The present study shows that this anomaly is due to another DLTS peak overlapping with the E 1 /E 2 . The activation energy and the capture cross section of this defect are E C -0.31 eV and σ∼8x10 -14 cm 2 , respectively

  20. Feasibility of disposal of high-level radioactive waste into the seabed. volume 7: Review of laboratory investigations of radionuclide migration through deep-sea sediments

    International Nuclear Information System (INIS)

    Brush, L.H.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This volume contains a review of the laboratory investigations of radionuclide migration through deep-sea sediments. In addition, it discusses the data selected for the radiological assessment, on the basis of both field and laboratory studies

  1. Feasibility of disposal of high-level radioactive waste into the seabed. Volume 6: Deep-sea biology, biological processes and radiobiology

    International Nuclear Information System (INIS)

    Pentreath, R.J.; Hargrave, B.T.; Roe, H.S.J.; Sibuet, M.

    1988-01-01

    One of the options suggested for disposal of high-level radioactive waste resulting from the generation of nuclear power is burial beneath the deep ocean floor in geologically stable sediment formations which have no economic value. The 8-volume series provides an assessment of the technical feasibility and radiological safety of this disposal concept based on the results obtained by ten years of co-operation and information exchange among the Member countries participating in the NEA Seabed Working Group. This report summarizes the biological description of selected sites, the means by which radionuclides could result in human exposure via seafood pathways, and the doses likely to be received by, and effects on, the deep-sea fauna

  2. Demonstration of a performance assessment methodology for high-level radioactive waste disposal in basalt formations

    International Nuclear Information System (INIS)

    Bonano, E.J.; Davis, P.A.; Shipers, L.R.; Brinster, K.F.; Beyler, W.E.; Updegraff, C.D.; Shepherd, E.R.; Tilton, L.M.; Wahi, K.K.

    1989-06-01

    This document describes a performance assessment methodology developed for a high-level radioactive waste repository mined in deep basalt formations. This methodology is an extension of an earlier one applicable to bedded salt. The differences between the two methodologies arise primarily in the modeling of round-water flow and radionuclide transport. Bedded salt was assumed to be a porous medium, whereas basalt formations contain fractured zones. Therefore, mathematical models and associated computer codes were developed to simulate the aforementioned phenomena in fractured media. The use of the methodology is demonstrated at a hypothetical basalt site by analyzing seven scenarios: (1) thermohydrological effects caused by heat released from the repository, (2) mechanohydrological effects caused by an advancing and receding glacier, (3) normal ground-water flow, (4) pumping of ground water from a confined aquifer, (5) rerouting of a river near the repository, (6) drilling of a borehole through the repository, and (7) formation of a new fault intersecting the repository. The normal ground-water flow was considered the base-case scenario. This scenario was used to perform uncertainty and sensitivity analyses and to demonstrate the existing capabilities for assessing compliance with the ground-water travel time criterion and the containment requirements. Most of the other scenarios were considered perturbations of the base case, and a few were studied in terms of changes with respect to initial conditions. The potential impact of these scenarios on the long-term performance of the disposal system was ascertained through comparison with the base-case scenario or the undisturbed initial conditions. 66 refs., 106 figs., 27 tabs

  3. Identities of the deep level defects E1/E2 in 6H silicon carbide

    International Nuclear Information System (INIS)

    Ling, C.C.; Chen, X.D.; Beling, C.D.; Fung, S.; Lam, T.W.; Lam, C.H.; Gong, M.; Weng, H.M.; Hang, D.S.

    2004-01-01

    E 1 /E 2 (E C -0.36/0.44 eV) are deep level donors generally found in ion-implanted, electron and neutron irradiated n-type 6H-SiC materials. Their configurations are controversial and have been related to a negatively charged carbon vacancy, a divacancy or a V Si -complex. With positron lifetime technique, we have identified V Si and V C V Si in the Lely grown n-type 6H-SiC sample, with V Si annealed out at 650 C. Concentration of V C V Si persists at 1400 C annealing and significantly decreased after the 1600 C annealing. Considering the deep level transient spectroscopic (DLTS) results on the neutron irradiated n-type SiC epi sample that E 1 /E 2 completely disappeared after the 1400 C annealing, E 1 /E 2 is not the V C V Si defect. With positron annihilation techniques, A. A. Rempel et al (2002) have shown the energy dependence of vacancy generated by electron irradiation. With low irradiation energy of 0.3MeV, only V C was generated and at higher energy (0.5MeV), Si vacancy was detected. With focus to find the minimum energy for generating E 1 /E 2 , we have performed DLTS studies on n-type epi 6H-SiC materials irradiated by electrons with varying energies. Our results suggest that E 1 /E 2 have microstructure related to a carbon vacancy or a carbon interstitial. (orig.)

  4. Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of the Hubble Ultra Deep Field

    International Nuclear Information System (INIS)

    Yan Haojing; Windhorst, Rogier A.; Cohen, Seth H.; Hathi, Nimish P.; Ryan, Russell E.; O'Connell, Robert W.; McCarthy, Patrick J.

    2010-01-01

    We present a large sample of candidate galaxies at z ∼ 7-10, selected in the Hubble Ultra Deep Field using the new observations of the Wide Field Camera 3 that was recently installed on the Hubble Space Telescope. Our sample is composed of 20 z 850 -dropouts (four new discoveries), 15 Y 105 -dropouts (nine new discoveries) and 20 J 125 -dropouts (all new discoveries). The surface densities of the z 850 -dropouts are close to what was predicted by earlier studies, however, those of the Y 105 - and J 125 -dropouts are quite unexpected. While no Y 105 - or J 125 -dropouts have been found at AB ≤ 28.0 mag, their surface densities seem to increase sharply at fainter levels. While some of these candidates seem to be close to foreground galaxies and thus could possibly be gravitationally lensed, the overall surface densities after excluding such cases are still much higher than what would be expected if the luminosity function does not evolve from z ∼ 7 to 10. Motivated by such steep increases, we tentatively propose a set of Schechter function parameters to describe the luminosity functions at z ∼ 8 and 10. As compared to their counterpart at z ∼ 7, here L * decreases by a factor of ∼ 6.5 and φ * increases by a factor of 17-90. Although such parameters are not yet demanded by the existing observations, they are allowed and seem to agree with the data better than other alternatives. If these luminosity functions are still valid beyond our current detection limit, this would imply a sudden emergence of a large number of low-luminosity galaxies when looking back in time to z ∼ 10, which, while seemingly exotic, would naturally fit in the picture of the cosmic hydrogen reionization. These early galaxies could easily account for the ionizing photon budget required by the reionization, and they would imply that the global star formation rate density might start from a very high value at z ∼ 10, rapidly reach the minimum at z ∼ 7, and start to rise again

  5. Insights into North Atlantic deep water formation during the peak interglacial interval of Marine Isotope Stage 9 (MIS 9)

    Science.gov (United States)

    Mokeddem, Zohra; McManus, Jerry F.

    2017-11-01

    Foraminifera abundance and stable isotope records from ODP Site 984 (61.25°N, 24.04°W, 1648 m) in the North Atlantic are used to reconstruct surface circulation variations and the relative strength of the North Atlantic Deep Water (NADW) formation over the period spanning the peak warmth of Marine Interglacial Stage (MIS) 9e ( 324-336 ka). This interval includes the preceding deglaciation, Termination 4 (T4), and the subsequent glacial inception of MIS 9d. The records indicate a greatly reduced contribution of NADW during T4, as observed in more recent deglaciations. In contrast with the most recent deglaciation, the lack of a significant NADW signal extended from T4 well into the peak interglacial MIS 9e and persisted nearly until the transition to the subsequent glacial stage MIS 9d. Although NADW formation resumed during MIS 9e, only depths greater than 2000 m appear to have been ventilated. The poorly ventilated intermediate depth of Site 984 (<2000 m) may have resulted on one hand from a general reduction of deep water ventilation by NADW during the study interval or, on the other hand, from different pathways of the spread of newly formed NADW that bypassed the study location. The intermediate depths may have also been invaded by southern-sourced waters as the formation of intermediate depth NADW weakened. The absence of any significant NADW signal at the water depth of Site 984 during the climatic optimum contrasts sharply with subsequent interglacial peaks (MIS 5e and the Holocene). Despite the perturbed intermediate depth circulation, oceanic heat transport northeastward was not interrupted and may have contributed to the relatively mild interglacial conditions of MIS 9e.

  6. R and D program concerning radioactive waste disposal in deep geologic formation (Study of an argilaceous formation in Belgium)

    International Nuclear Information System (INIS)

    1982-01-01

    In 1974 it was decided to start up research with a view to safe disposal of conditioned waste in geological formations in Belgium. A first R and D programme was set up for study of the Boom clay in the Mol region. Multiple research projects have been undertaken; both experimental research in the field and in the laboratory and theoretical studies. Different exploratory drillings for geohydrological and geotechnical research were performed at the potential site. Teledetection and seismic prospection campaigns have provided data on the dimensions of the argillaceous layer and on the absence of major faults. Clay samples collected during drilling campaigns have been submitted to a number of analyses in laboratory as well as analyses of possible interactions between the clay and the conditioned waste to be stored. Some of these laboratory analyses, in particular, those concerning heat transfer and corrosion have been completed by more representative experiments in a clay pit. Various mathematical models have been developed and adapted with a view to better understanding of physical and physico-chemical phenomena like heat transfer, migration and retardation of radionuclides. A feasibility study was performed. Concerning safety analyses, a probabilistic study was undertaken on the behaviour of the geological barrier. The fault tree analysis technique was applied and the study was carried out in close collaboration with the Joint Rsearch Centre in Ispra. The underground experimental room at about 220 m depth was not yet relised but the technico-economical dossier has made such progress that the excavation can start in the very beginning of the next five-year programme

  7. Star Formation at z ~ 6: The Hubble Ultra Deep Parallel Fields

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Thompson, R. I.; Blakeslee, J. P.; Dickinson, M. E.; Broadhurst, T. J.; Eisenstein, D. J.; Fan, X.; Franx, M.; Meurer, G.; van Dokkum, P.

    2004-05-01

    We report on the i-dropouts detected in two exceptionally deep Advanced Camera for Surveys fields (B435, V606, i775, and z850 with 10σ limits of 28.8, 29.0, 28.5, and 27.8, respectively) taken in parallel with the Ultra Deep Field Near-Infrared Camera and Multi-Object Spectrometer observations. Using an i-z>1.4 cut, we find 30 i-dropouts over 21 arcmin2 down to z850,AB=28.1, or 1.4 i-dropouts arcmin-2, with significant field-to-field variation (as expected from cosmic variance). This extends i-dropout searches some ~0.9 mag further down the luminosity function than was possible in the Great Observatories Origins Deep Survey (GOODS) fields, yielding a ~7 times increase in surface density. An estimate of the size evolution for UV-bright objects is obtained by comparing the composite radial flux profile of the bright i-dropouts (z850,ABdropouts. The best fit is found with a (1+z)-1.57+0.50-0.53 scaling in size (for fixed luminosity), extending lower redshift (1dropouts from both GOODS fields, we make incompleteness estimates and construct a z~6 luminosity function (LF) in the rest-frame continuum UV (~1350 Å) over a 3.5 mag baseline, finding a shape consistent with that found at lower redshift. To evaluate the evolution in the LF from z~3.8, we make comparisons against different scalings of a lower redshift B-dropout sample. Although a strong degeneracy is found between luminosity and density evolution, our best-fit model scales as (1+z)-2.8 in number and (1+z)0.1 in luminosity, suggesting a rest-frame continuum UV luminosity density at z~6 that is just 0.38+0.09-0.07 times that at z~3.8. Our inclusion of the size evolution makes the present estimate lower than previous z~6 estimates. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations are associated with program 9803.

  8. Model of deep centers formation and reactions in electron irradiated InP

    International Nuclear Information System (INIS)

    Sibille, A.; Suski, J.; Gilleron, M.

    1986-01-01

    We present a model of the production of deep centers and their reactions following electron irradiations in InP. We propose that the dominant hole traps in p-InP and electron traps in p + n InP junctions are complexes between shallow acceptors and a common intrinsic entity, the phosphorus interstitial or vacancy. The reactions observed below and above room temperature are then due to a local mobility of this entity, which can be obtained as well by thermal as by electronic stimulation of the reactions. This model implies the long-range migration (at least down to 16 K) of this entity, and explains the strongly different behavior of n-InP compared to p-InP samples

  9. FORMATION OF HYGROTHERMAL CONDITIONS IN A DEEP-LITTER BARN IN A WINTER SEASON

    Directory of Open Access Journals (Sweden)

    Paweł Sokołowski

    2016-09-01

    Full Text Available In free stall, the maintenance of animals in the deep litter, the measurements of temperature and relative humidity of indoor air, temperature and relative humidity of the outside air were conducted. Observation also covered the thermal conditions of litter and its thickness. The study covered the winter period from 1st of December to 28th of February. The study showed that during the winter there is a slight risk of unfavorable thermal conditions for dairy cattle in the barn. The analysis of the obtained results showed a significant effect of the number of animals present in the barn on thermal conditions and humidity. The increase in stocking density in the barn affects the increase of the internal temperature and relative humidity.

  10. Dynamics of the deep-level emission in ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Dongchao; Rueckmann, Ilja; Voss, Tobias [Institut fuer Festkoerperphysik, Universitaet Bremen (Germany)

    2010-07-01

    Due to its wide direct band gap and large exciton binding energy (60 meV), ZnO nanowires possess an efficient near band-edge emission (NBE) in UV range. Additional energy levels in the band gap of ZnO, commonly introduced by point defects such as oxygen or zinc vacancies and Cu impurities, can largely weaken the UV emission by providing extra recombination routes for the electrons in conduction band. In ZnO nanowires this deep-level emission band (DLE) is expected to be largely activated by tunneling processes of holes trapped in the surface depletion layer after optical excitation. We studied the dependence of the DLE and NBE intensities of ZnO nanowires on the excitation power at different temperatures. For the experiments, the fundamental (1064 nm) and frequency-tripled (355 nm) pulses of an Nd:YAG microchip laser were used. The additional infrared laser radiation was used to directly populate the defect levels with electrons from the valence band. Our results show that the additional infrared photons lead to a reduction of the DLE while the NBE is enhanced. We discuss the implications of our results for the models of DLE in ZnO nanowires.

  11. Modelling a deep water oil/gas spill under conditions of gas hydrate formation and decomposition

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P.D.

    2000-01-01

    A model for the behavior of oil and gas spills at deepwater locations was presented. Such spills are subjected to pressures and temperatures that can convert gases to gas hydrates which are lighter than water. Knowing the state of gases as they rise with the plume is important in predicting the fate of an oil or gas plume released in deepwater. The objective of this paper was to develop a comprehensive jet/plume model which includes computational modules that simulate the gas hydrate formation/decomposition of gas bubbles. This newly developed model is based on the kinetics of hydrate formation and decomposition coupled with mass and heat transfer phenomena. The numerical model was successfully tested using results of experimental data from the Gulf of Mexico. Hydrate formation and decomposition are integrated with an earlier model by Yapa and Zheng for underwater oil or gas jets and plumes. The effects of hydrate on the behavior of an oil or gas plume was simulated to demonstrate the models capabilities. The model results indicate that in addition to thermodynamics, the kinetics of hydrate formation/decomposition should be considered when studying the behavior of oil and gas spills. It was shown that plume behavior changes significantly depending on whether or not the local conditions force the gases to form hydrates. 25 refs., 4 tabs., 12 figs

  12. The hydrogeologic environment for a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 59285

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Jensen, Mark R.

    2012-01-01

    A Deep Geologic Repository (DGR) for low and intermediate level radioactive waste has been proposed by Ontario Power Generation for the Bruce nuclear site in Ontario, Canada. As proposed the DGR would be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes the hydrogeology of the DGR site developed through both site characterization studies and regional-scale numerical modelling analysis. The analysis provides a framework for the assembly and integration of the site-specific geo-scientific data and examines the factors that influence the predicted long-term performance of the geosphere barrier. Flow system evolution was accomplished using both the density-dependent FRAC3DVS-OPG flow and transport model and the two-phase gas and water flow computational model TOUGH2-MP. In the geologic framework of the Province of Ontario, the DGR is located on the eastern flank of the Michigan Basin. Borehole logs covering Southern Ontario combined with site-specific data from 6 deep boreholes have been used to define the structural contours and hydrogeologic properties at the regional-scale of the modelled 31 sedimentary strata that may be partially present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an approximately 18500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian includes units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/L. The Ordovician sediments are significantly under-pressured. The horizontal hydraulic conductivity for the Cobourg limestone is estimated to be 2x10 -14 m/s based on straddle-packer hydraulic tests. The low advective velocities in the Cobourg and other Ordovician units result in solute transport that is diffusion dominant with Peclet numbers less than 0:003 for a characteristic length of unity. Long

  13. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    International Nuclear Information System (INIS)

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as 36 Cl and 93 Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon

  14. Deep repository for long-lived low- and intermediate-level waste. Preliminary safety assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    A preliminary safety assessment has been performed of a deep repository for long-lived low- and intermediate-level waste, SFL 3-5. The purpose of the study is to investigate the capacity of the facility to act as a barrier to the release of radionuclides and toxic pollutants, and to shed light on the importance of the location of the repository site. A safety assessment (SR 97) of a deep repository for spent fuel has been carried out at the same time. In SR 97, three hypothetical repository sites have been selected for study. These sites exhibit fairly different conditions in terms of hydrogeology, hydrochemistry and ecosystems. To make use of information and data from the SR 97 study, we have assumed that SFL 3-5 is co-sited with the deep repository for spent fuel. A conceivable alternative is to site SFL 3-5 as a completely separate repository. The focus of the SFL 3-5 study is a quantitative analysis of the environmental impact for a reference scenario, while other scenarios are discussed and analyzed in more general terms. Migration in the repository's near- and far-field has been taken into account in the reference scenario. Environmental impact on the three sites has also been calculated. The calculations are based on an updated forecast of the waste to be disposed of in SFL 3-5. The forecast includes radionuclide content, toxic metals and other substances that have a bearing on a safety assessment. The safety assessment shows how important the site is for safety. Two factors stand out as being particularly important: the water flow at the depth in the rock where the repository is built, and the ecosystem in the areas on the ground surface where releases may take place in the future. Another conclusion is that radionuclides that are highly mobile and long-lived, such as {sup 36}Cl and {sup 93}Mo , are important to take into consideration. Their being long-lived means that barriers and the ecosystems must be regarded with a very long time horizon.

  15. The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle

    Science.gov (United States)

    Beyer, Christopher; Frost, Daniel J.

    2017-03-01

    respectively. Macroscopic diamond formation in rocks with pyroxenite compositions are likely facilitated in the deep mantle by higher average oxidation states and low mineral H2 O solubility compared to the surrounding mantle, which aid the mobility of C-O-H volatile species. The apparent lack of inclusions with a peridotite affinity may result from generally low oxygen fugacities in such lithologies, which reduces carbon mobility, and the lack of a suitable oxidising agent to allow diamonds to form from CH4. This glimpse of deep carbon cycle processes implies that heterogeneities in the carbon content, redox state and chemical composition of the mantle may be strongly coupled.

  16. The effects of deep level traps on the electrical properties of semi-insulating CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Zha, Gangqiang; Yang, Jian; Xu, Lingyan; Feng, Tao; Wang, Ning; Jie, Wanqi [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China)

    2014-01-28

    Deep level traps have considerable effects on the electrical properties and radiation detection performance of high resistivity CdZnTe. A deep-trap model for high resistivity CdZnTe was proposed in this paper. The high resistivity mechanism and the electrical properties were analyzed based on this model. High resistivity CdZnTe with high trap ionization energy E{sub t} can withstand high bias voltages. The leakage current is dependent on both the deep traps and the shallow impurities. The performance of a CdZnTe radiation detector will deteriorate at low temperatures, and the way in which sub-bandgap light excitation could improve the low temperature performance can be explained using the deep trap model.

  17. The role of surface and deep-level defects on the emission of tin oxide quantum dots

    International Nuclear Information System (INIS)

    Kumar, Vinod; Kumar, Vijay; Som, S; Ntwaeaborwa, O M; Swart, H C; Neethling, J H; Lee, Mike

    2014-01-01

    This paper reports on the role of surface and deep-level defects on the blue emission of tin oxide quantum dots (SnO 2 QDs) synthesized by the solution-combustion method at different combustion temperatures. X-ray diffraction studies showed the formation of a single rutile SnO 2 phase with a tetragonal lattice structure. High resolution transmission electron microscopy studies revealed an increase in the average dot size from 2.2 to 3.6 nm with an increase of the combustion temperature from 350 to 550 °C. A decrease in the band gap value from 3.37 to 2.76 eV was observed with the increase in dot size due to the quantum confinement effect. The photoluminescence emission was measured for excitation at 325 nm and it showed a broad blue emission band for all the combustion temperatures studied. This was due to the creation of various oxygen and tin vacancies/defects as confirmed by x-ray photoelectron spectroscopy data. The origin of the blue emission in the SnO 2 QDs is discussed with the help of an energy band diagram. (paper)

  18. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Xu, T.; Li, Y.

    2010-12-15

    The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} mineral trapping, the presence of Fe-bearing siliciclastic and/or carbonate is more favorable to the H{sub 2}S mineral trapping.

  19. Pixel-Level Deep Segmentation: Artificial Intelligence Quantifies Muscle on Computed Tomography for Body Morphometric Analysis.

    Science.gov (United States)

    Lee, Hyunkwang; Troschel, Fabian M; Tajmir, Shahein; Fuchs, Georg; Mario, Julia; Fintelmann, Florian J; Do, Synho

    2017-08-01

    Pretreatment risk stratification is key for personalized medicine. While many physicians rely on an "eyeball test" to assess whether patients will tolerate major surgery or chemotherapy, "eyeballing" is inherently subjective and difficult to quantify. The concept of morphometric age derived from cross-sectional imaging has been found to correlate well with outcomes such as length of stay, morbidity, and mortality. However, the determination of the morphometric age is time intensive and requires highly trained experts. In this study, we propose a fully automated deep learning system for the segmentation of skeletal muscle cross-sectional area (CSA) on an axial computed tomography image taken at the third lumbar vertebra. We utilized a fully automated deep segmentation model derived from an extended implementation of a fully convolutional network with weight initialization of an ImageNet pre-trained model, followed by post processing to eliminate intramuscular fat for a more accurate analysis. This experiment was conducted by varying window level (WL), window width (WW), and bit resolutions in order to better understand the effects of the parameters on the model performance. Our best model, fine-tuned on 250 training images and ground truth labels, achieves 0.93 ± 0.02 Dice similarity coefficient (DSC) and 3.68 ± 2.29% difference between predicted and ground truth muscle CSA on 150 held-out test cases. Ultimately, the fully automated segmentation system can be embedded into the clinical environment to accelerate the quantification of muscle and expanded to volume analysis of 3D datasets.

  20. Formation and filtration characteristics of solids generated in a high level liquid waste treatment process. Solids formation behavior from simulated high level liquid waste

    International Nuclear Information System (INIS)

    Kondo, Y.; Kubota, M.

    1997-01-01

    The solids formation behavior in a simulated high level liquid waste (HLLW) was experimentally examined, when the simulated HLLW was treated in the ordinary way of actual HLLW treatment process. Solids formation conditions and mechanism were closely discussed. The solids formation during a concentration step can be explained by considering the formation of zirconium phosphate, phosphomolybdic acid and precipitation of strontium and barium nitrates and their solubilities. For the solids formation during the denitration step, at least four courses were observed; formation of an undissolved material by a chemical reaction with each other of solute elements (zirconium, molybdenum, tellurium) precipitation by reduction (platinum group metals) formation of hydroxide or carbonate compounds (chromium, neodymium, iron, nickel, strontium, barium) and a physical adsorption to stable solid such as zirconium molybdate (nickel, strontium, barium). (author)

  1. Links Between the Deep Western Boundary Current, Labrador Sea Water Formation and Export, and the Meridional Overturning Circulation

    Science.gov (United States)

    Myers, Paul G.; Kulan, Nilgun

    2010-05-01

    Based on an isopyncal analysis of historical data, 3-year overlapping triad fields of objectively analysed temperature and salinity are produced for the Labrador Sea, covering 1949-1999. These fields are then used to spectrally nudge an eddy-permitting ocean general circulation model of the sub-polar gyre, otherwise forced by inter annually varying surface forcing based upon the Coordinated Ocean Reference Experiment (CORE). High frequency output from the reanalysis is used to examine Labrador Sea Water formation and its export. A number of different apprpoaches are used to estimate Labrador Sea Water formation, including an instanteous kinematic approach to calculate the annual rate of water mass subduction at a given density range. Historical transports are computed along sections at 53 and 56N for several different water masses for comparison with recent observations, showing a decline in the stength of the deep western boundary current with time. The variability of the strength of the meridional overturning circulation (MOC) from the reanalysis is also examined in both depth and density space. Linkages between MOC variability and water mass formation variability is considered.

  2. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  3. Application of Multiphysics Coupling FEM on Open Wellbore Shrinkage and Casing Remaining Strength in an Incomplete Borehole in Deep Salt Formation

    OpenAIRE

    Tong, Hua; Guo, Daqiang; Zhu, Xiaohua

    2015-01-01

    Drilling and completing wells in deep salt stratum are technically challenging and costing, as when serving in an incomplete borehole in deep salt formation, well casing runs a high risk of collapse. To quantitatively calculate casing remaining strength under this harsh condition, a three-dimensional mechanical model is developed; then a computational model coupled with interbed salt rock-defective cement-casing and HPHT (high pressure and high temperature) is established and analyzed using m...

  4. Oxygen Saturation Surrounding Deep Water Formation Events in the Labrador Sea From Argo-O2 Data

    Science.gov (United States)

    Wolf, Mitchell K.; Hamme, Roberta C.; Gilbert, Denis; Yashayaev, Igor; Thierry, Virginie

    2018-04-01

    Deep water formation supplies oxygen-rich water to the deep sea, spreading throughout the ocean by means of the global thermohaline circulation. Models suggest that dissolved gases in newly formed deep water do not come to equilibrium with the atmosphere. However, direct measurements during wintertime convection are scarce, and the controls over the extent of these disequilibria are poorly quantified. Here we show that, when convection reached deeper than 800 m, oxygen in the Labrador Sea was consistently undersaturated at -6.1% to -7.6% at the end of convection. Deeper convection resulted in greater undersaturation, while convection ending later in the year resulted in values closer to equilibrium, from which we produce a predictive relationship. We use dissolved oxygen data from six profiling Argo floats in the Labrador Sea between 2003 and 2016, allowing direct observations of wintertime convection. Three of the six optode oxygen sensors displayed substantial average in situ drift of -3.03 μmol O2 kg-1 yr-1 (-0.94% O2 yr-1), which we corrected to stable deepwater oxygen values from repeat ship surveys. Observations of low oxygen intrusions during restratification and a simple mixing calculation demonstrate that lateral processes act to lower the oxygen inventory of the central Labrador Sea. This suggests that the Labrador Sea is a net sink for atmospheric oxygen, but uncertainties in parameterizing gas exchange limit our ability to quantify the net uptake. Our results constrain the oxygen concentration of newly formed Labrador Sea Water and allow more precise estimates of oxygen utilization and nutrient regeneration in this water mass.

  5. Seasonal Deep Aquifer Thermal Energy Storage in the Gassum Sandstone Formation

    DEFF Research Database (Denmark)

    Holmslykke, H.D.H.; Kjøller, C.; Fabricius, Ida Lykke

    2017-01-01

    analysis and geochemical modelling. Synthetic formation water is injected into two sets of Gassum Formation samples at 25°C, 50°C (reservoir temperature), 100°C and 150°C with a velocity of 0.05 PV/hr and 0.1 PV/hr, respectively. A significant increase in the aqueous concentration of silicium and iron...... with increasing temperature is observed due to dissolution of silica and siderite. Increasing the reservoir temperature from 50°C to 100°C enhanced the naturally occurring weathering of Na-rich feldspar to kaolinite. Dissolution of quartz increased sharply above 100°C and was the dominating process at 150°C...... in the Stenlille area may be possible provided operational precautions are taken....

  6. Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae).

    Science.gov (United States)

    Ma, Peng-Fei; Zhang, Yu-Xiao; Zeng, Chun-Xia; Guo, Zhen-Hua; Li, De-Zhu

    2014-11-01

    The temperate woody bamboos constitute a distinct tribe Arundinarieae (Poaceae: Bambusoideae) with high species diversity. Estimating phylogenetic relationships among the 11 major lineages of Arundinarieae has been particularly difficult, owing to a possible rapid radiation and the extremely low rate of sequence divergence. Here, we explore the use of chloroplast genome sequencing for phylogenetic inference. We sampled 25 species (22 temperate bamboos and 3 outgroups) for the complete genome representing eight major lineages of Arundinarieae in an attempt to resolve backbone relationships. Phylogenetic analyses of coding versus noncoding sequences, and of different regions of the genome (large single copy and small single copy, and inverted repeat regions) yielded no well-supported contradicting topologies but potential incongruence was found between the coding and noncoding sequences. The use of various data partitioning schemes in analysis of the complete sequences resulted in nearly identical topologies and node support values, although the partitioning schemes were decisively different from each other as to the fit to the data. Our full genomic data set substantially increased resolution along the backbone and provided strong support for most relationships despite the very short internodes and long branches in the tree. The inferred relationships were also robust to potential confounding factors (e.g., long-branch attraction) and received support from independent indels in the genome. We then added taxa from the three Arundinarieae lineages that were not included in the full-genome data set; each of these were sampled for more than 50% genome sequences. The resulting trees not only corroborated the reconstructed deep-level relationships but also largely resolved the phylogenetic placements of these three additional lineages. Furthermore, adding 129 additional taxa sampled for only eight chloroplast loci to the combined data set yielded almost identical

  7. The predisposing effect of TGF-β1 and serpine-1 on the formation of traumatic deep vein thrombosis: an experimental study in rats

    International Nuclear Information System (INIS)

    Hu Jihong; Wu Xuemei; Li Xingguo; Li Hongkun; Zheng Hongyu; Zhao Xueling; Wang Bing

    2011-01-01

    Objective: To investigate the changes of TGF-β1 and serpine-1 expression in femoral vein endothelial tissue in the experimental rat models with traumatic deep vein thrombosis (DVT) and to study the effect of expression level on the formation of traumatic deep vein thrombosis. Methods: A total of 60 SD rats were randomly divided into control group (n=10) and experimental group (n=50). Rat model of DVT used in experimental group was established by clamping the femoral vein together with the fixation of the lower extremity with plaster splint. The femoral arteries were dissected at 2.5 and 25 hours after trauma to observe the occurrence of thrombus and its severity. Based on the degree of thrombus formation, the rats in the experimental group was divided into group B (pre-thrombogenesis, 2.5 hours after trauma), group C (thrombogenesis, 25 hours after trauma) and group D (non-thrombogenesis, 25 hours after trauma). Then total RNA was extracted from the local femoral venous tissue. The different expressed genes were screened by adopting a special chip, Rat Genome 2302.0 These gene expressions were further identified by real-time PCR. In addition, these genes were further analyzed by using Pathway technique and other biological information analysis. Results: The results of both gene chip hybridization analysis and real-time PCR showed that the mRNA expressions of both TGF-β1 and serpine-1 in rat femoral vein endothelial tissue were significantly up-regulated at 2.5 hours after trauma, in addition, the expressions of group B were significantly higher than those of group A and group D (P 0.05). Pathway analysis showed that TGF-β1 was the epistatic regulatory gene of serpine-1, as it could induce the over-expression of serpine-1, inhibit fibrinolysis and promote thrombosis. Conclusion: The results obtained from the present study indicate that the up-regulated TGF-β1 and serpine-1 in local femoral venous endothelial tissue may play a crucial role in the formation of

  8. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    International Nuclear Information System (INIS)

    Tohidi, Bahman; Chapoy, Antonin; Smellie, John; Puigdomenech, Ignasi

    2010-12-01

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely ∼0.00073 mole fraction methane and ∼10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (∼20 deg C and ∼100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of satisfactory

  9. The potential for methane hydrate formation in deep repositories of spent nuclear fuel in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tohidi, Bahman; Chapoy, Antonin (Hydrafact Ltd, Inst. of Petroleum Engineering, Heriot-Watt Univ., Edinburgh (United Kingdom)); Smellie, John (Conterra AB, Uppsala (Sweden)); Puigdomenech, Ignasi (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2010-12-15

    The main aim of this work was to establish whether the pertaining pressure and temperature conditions and dissolved gas concentration in groundwater is conducive to gas hydrate formation using a modelling approach. The hydrate stability pressure-temperature zone of dissolved methane in the presence of salt has been obtained through calculations which show that a decrease in the system pressure and/or an increase in salt concentration favours hydrate formation, as both factors reduce equilibrium gas solubility in the aqueous phase. This behaviour is unlike that of the system including a gas phase, where the water phase is always saturated with methane, and hence the methane solubility in water is not a limiting factor. The main conclusion is that hydrate formation is not possible at the reported methane concentrations and water salinities for the Forsmark and Laxemar sites in Sweden and Olkiluoto in Finland. At the highest salinities and methane concentrations encountered, namely approx0.00073 mole fraction methane and approx10 mass % NaCl at a depth of 1,000 m in Olkiluoto, Finland, hydrates could form if the system temperatures and pressures are below 2.5 deg C and 60 bar, respectively, i.e. values that are much lower than those prevailing at that depth (approx20 deg C and approx100 bar, respectively). Furthermore, the calculated results provide the necessary data to estimate the effect of increase in dissolved methane concentration on potential hydrate formation, as well as two phase flow. The available depth dependency of methane concentration at the sites studied in Sweden and Finland was used in another study to estimate the diffusive flow of methane in the rock volumes. These diffusion rates, which are highest at Olkiluoto, indicate that even if the conditions were to become favourable to methane hydrate formation, then it would take several millions of years before a thin layer of hydrates could be formed, a condition which is outside the required period of

  10. High resolution deep level transient spectroscopy and process-induced defects in silicon

    International Nuclear Information System (INIS)

    Evans-Freeman, J.H.; Emiroglu, D.; Vernon-Parry, K.D.

    2004-01-01

    High resolution, or Laplace, deep level transient spectroscopy (LDLTS) enables the identification of very closely spaced energetic levels in a semiconductor bandgap. DLTS may resolve peaks with a separation of tens of electron volts, but LDLTS can resolve defect energy separations as low as a few MeV. In this paper, we present results from LDLTS applied to ion implantation-induced defects in silicon, with particular emphasis on characterisation of end-of-range interstitial type defects. Silicon was implanted with a variety of ions from mass 28 to 166. A combination of LDLTS and direct capture cross-section measurements was employed to show that electrically active small extended defects were present in the as-implanted samples. Larger dislocations were then generated in Si by oxygenation to act as a control sample. These stacking faults had typical lengths of microns, and their electrical activity was subsequently characterised by LDLTS. This was to establish the sensitivity of LDLTS to defects whose carrier capture is characterised by a non-exponential filling process and an evolving band structure as carrier capture proceeds. The LDLTS spectra show several components in capacitance transients originating from both the end-of-range defects, and the stacking faults, and also clearly show that the carrier emission rates reduce as these extended defects fill with carriers. The end-of-range defects and the stacking faults are shown to have the same electrical behaviour

  11. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    Science.gov (United States)

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  12. Deep levels in p-type InGaAsN lattice matched to GaAs

    International Nuclear Information System (INIS)

    Kwon, D.; Kaplar, R.J.; Ringel, S.A.; Allerman, A.A.; Kurtz, S.R.; Jones, E.D.

    1999-01-01

    Deep-level transient spectroscopy measurements were utilized to investigate deep-level defects in metal - organic chemical vapor deposition-grown, unintentionally doped p-type InGaAsN films lattice matched to GaAs. The as-grown material displayed a high concentration of deep levels distributed within the band gap, with a dominant hole trap at E v +0.10eV. Postgrowth annealing simplified the deep-level spectra, enabling the identification of three distinct hole traps at 0.10, 0.23, and 0.48 eV above the valence-band edge, with concentrations of 3.5x10 14 , 3.8x10 14 , and 8.2x10 14 cm -3 , respectively. A direct comparison between the as-grown and annealed spectra revealed the presence of an additional midgap hole trap, with a concentration of 4x10 14 cm -3 in the as-grown material. The concentration of this trap is sharply reduced by annealing, which correlates with improved material quality and minority-carrier properties after annealing. Of the four hole traps detected, only the 0.48 eV level is not influenced by annealing, suggesting this level may be important for processed InGaAsN devices in the future. copyright 1999 American Institute of Physics

  13. Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin, NE China

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Jingkui; Zhang, Shuichang; Hu, Guoyi; He, Kun [State Key Laboratory for Enhanced Oil Recovery, Beijing (China); Petroleum Geology Research and Laboratory Center, Research Institute of Petroleum Exploration and Development, PetroChina (China); Key Laboratory for Petroleum Geochemistry, China National Petroleum Corp. (China)

    2010-12-01

    The natural gases developed in deep volcanic rock reservoirs of the Songliao Basin, NE China are characterized by enriched {delta}{sup 13}C value for methane and frequently reversal carbon isotopic distribution pattern. Although many researchers consider such gas type as an abiogenic origin, we believe the natural gases have a biogenic origin mainly except little inorganic gases and the reversal carbon isotopic distribution pattern of gases is caused by mixing of different origin gases. Methane carbon isotopic values for majority samples fall in the range from - 24 permille to - 32 permille, which is heavier than typical coal-type gases in other Chinese basins. There are several reasons caused heavy carbon isotope of methane: (1) Carbon isotopic values of source kerogen are 3-5 permille heavier than these from other basins; (2) Source rocks are at extremely high maturity stage with vitrinite reflectance mostly above 3.0%; (3) Portion of gas is derived from basement mudrock or slate with higher maturity. The observation on the organic from deep formation reveals that there is a relatively high content for liptinite, which reaches approximately 8 to 10%. The macerals component of source rock shows that the source rocks have some ability to generate oil. Small portion of oil was generated from high hydrogen content macerals in coals and shales as proof by oil found in microcrack and in micropore of coal and oil-bearing fluid inclusions grown in volcanic reservoir. The occurrence of pyrobitumen in volcanic reservoir indicates preexisted oil had been cracked into wet gas, and this kind of gas had also been found in gas pools. Heavy isotopic methane is derived from coal at extremely high maturity stage. There may be little inorganic alkane gases in deep layers for their geochemistry and special geological setting of Songliao Basin. Artificial mixing experiments of different origins gases confirm that inorganic gas such as gas from well FS1 mixed with other end members

  14. Experience acquired with the realisation of a geotechnical measurement campaign in a deep clay formation

    International Nuclear Information System (INIS)

    Manfroy, P.; Neerdael, B.; Buyens, M.

    1985-01-01

    Belgium has selected clay as a possible disposal medium for conditioned radioactive waste. CEN/SCK has launched an important research and development programme to evaluate the disposal potential of the Boom clay formation present under the nuclear site Mol-Dessel. An underground facility has been built at 220 m. depth in order to proceed to geomechanical, corrosion, migration and heat transfer experiments. During its construction numerous geotechnical measuring instruments were emplaced on the lining and in the clay medium. Successful realization of such measurement campaigns was hampered by the very difficult underground working conditions. This paper describes what can be learned from the experience gained so far. 5 refs.; 5 figs

  15. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.

    Science.gov (United States)

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-05-01

    Significant improvements in the prediction of protein residue-residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure prediction, as demonstrated in the recent CASP experiments. Continuing the development of new methods to reliably predict contact maps is essential to further improve ab initio structure prediction. In this paper we discuss DNCON2, an improved protein contact map predictor based on two-level deep convolutional neural networks. It consists of six convolutional neural networks-the first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, and the last one uses these five predictions as additional features to predict final contact maps. On the free-modeling datasets in CASP10, 11 and 12 experiments, DNCON2 achieves mean precisions of 35, 50 and 53.4%, respectively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11 dataset and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art optimization and activation functions, and a novel deep learning architecture that allows each filter in a convolutional layer to access all the input features of a protein of arbitrary length. The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/dncon2/ where training and testing datasets as well as the predictions for CASP10, 11 and 12 free-modeling datasets can also be downloaded. Its source code is available at https://github.com/multicom-toolbox/DNCON2/. chengji@missouri.edu. Supplementary data are available at Bioinformatics online.

  16. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    Directory of Open Access Journals (Sweden)

    Hatim Alnoor

    2015-08-01

    Full Text Available Hexagonal c-axis oriented zinc oxide (ZnO nanorods (NRs with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL spectra were collected for all samples. Cathodoluminescence (CL spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE to the deep-level emission (DLE peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h, which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  17. Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl

    Energy Technology Data Exchange (ETDEWEB)

    Pousset, J.; Farella, I.; Cola, A., E-mail: adriano.cola@le.imm.cnr.it [Institute for Microelectronics and Microsystems—Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Gambino, S. [Dipartimento di Matematica e Fisica “Ennio De Giorgi,” Università del Salento, Lecce I-73100 (Italy); CNR NANOTEC—Istituto di Nanotecnologia, Polo di Nanotecnologia c/o Campus Ecotekne, via Monteroni, 73100 Lecce (Italy)

    2016-03-14

    We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron and hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.

  18. Subgap time of flight: A spectroscopic study of deep levels in semi-insulating CdTe:Cl

    International Nuclear Information System (INIS)

    Pousset, J.; Farella, I.; Cola, A.; Gambino, S.

    2016-01-01

    We report on a study of deep levels in semi-insulating CdTe:Cl by means of a time-of-flight spectral approach. By varying the wavelength of a pulsed optical source within the CdTe energy gap, transitions to/from localized levels generate free carriers which are analysed through the induced photocurrent transients. Both acceptor-like centers, related to the A-center, and a midgap level, 0.725 eV from the valence band, have been detected. The midgap level is close to the Fermi level and is possibly a recombination center responsible for the compensation mechanism. When the irradiance is varied, either linear or quadratic dependence of the electron and hole collected charge are observed, depending on the dominant optical transitions. The analysis discloses the potentiality of such a novel approach exploitable in the field of photorefractive materials as well as for deep levels spectroscopy.

  19. MECHANISMS OF MANTLE‐CRUST INTERACTION AT DEEP LEVELS OF COLLISION OROGENS (CASE OF THE OLKHON REGION, WEST PRIBAIKALIE

    Directory of Open Access Journals (Sweden)

    A. G. Vladimirov

    2017-01-01

    zones, which is fol‐ lowed by metamorphic magma mingling under viscous deformation conditions. The mafic magmas intruding to the level of the granulite facies facilitated the deep anatexis and formation of synmetamorphic hypersthene plagiogranites (U‐Pb isotope dating: 500–490 Ma and high‐K stress granites. In the Chernorud granulite zone, intense ductile‐plastic and brittle‐plastic deformations accompanied the processes of metamorphism, intrusion and formation of gabbro‐ pyroxenites and the anatexis of the crustal substance. As a result, the intrusive bodies were fragmented, and specific tectonic structures termed ‘metamorphic magma‐mingling’ were formed. All the tectonic and magmatic structures were subsequently ‘sealed up’ by K‐Na synkinematic granites at the regressive stage under conditions of the amphibo‐ lite‐facies metamorphism (U‐Pb and Ar‐Ar isotope dating: 470–460 Ma.

  20. Positron deep-level transient spectroscopy in semi-insulating-GaAs using the positron velocity transient method

    International Nuclear Information System (INIS)

    Tsia, M.; Fung, S.; Beling, C.D.

    2001-01-01

    Recently a new semiconductor defect spectroscopy, namely positron deep level transient spectroscopy (PDLTS) has been proposed that combines the energy selectivity of deep level transient spectroscopy with the structural sensitivity of positron annihilation spectroscopy. This paper focuses on one variant of PDLTS, namely positron velocity PDLTS, which has no sensitivity towards vacancy defects but nevertheless is useful in studying deep levels in semi-insulators. In the present study the electric field within the depletion region of semi-insulating GaAs is monitored through the measurement of the small Doppler shift in the annihilation radiation that comes from this region as a result of positron drift. The drift is the result of an increasing electric field produced by space charge building up from ionizing deep level defects. Doppler shift transients are measured between 50-300 K. The EL2 level emission transients are clearly seen at temperatures around 300 K that yield E C -0.78±0.08eV for the energy of EL2. The EL2 electron capture rate is found to have an activation energy of 0.61±0.08eV which most probably arises from freeze out of conduction electrons. We find the surprising result that emission and capture transients can be seen at temperatures below 200 K. Possible reasons for these transients are discussed. (orig.)

  1. Proposed format and content of environmental reports for deep geologic terminal repositories for radioactive material

    International Nuclear Information System (INIS)

    Carrell, D.J.; Jones, G.L.

    1978-01-01

    As the Nuclear Regulatory Commission has not yet issued a format guide for the preparation of an environmental impact statement for radioactive waste repositories, Rockwell Hanford operations has developed an annotated outline which will serve as the basis for the environmental evaluation activities until replaced by an appropriate NRC regulatory guide. According to the outline, the applicant should summarize the major environmental effects that are expected to occur during the construction, operation, and terminal isolation phases of the radioactive material repository. Compare these environmental effects with the possible effect of continued use of interim storage facilities. Unless unforeseen environmental effects become apparent, the summary should be a positive statement indicating that the short-term environmental effects are outweighed by the long-term benefits of the repository

  2. Electrical characterization of deep levels in n-type GaAs after hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Nyamhere, C.; Botha, J.R.; Venter, A.

    2011-01-01

    Deep level transient spectroscopy (DLTS) and Laplace-DLTS (L-DLTS) have been used to investigate defects in an n-type GaAs before and after exposure to a dc hydrogen plasma (hydrogenation). DLTS revealed the presence of three prominent electron traps in the material in the temperature range 20-300 K. However, L-DLTS with its higher resolution enabled the splitting of two narrowly spaced emission rates. Consequently four electron traps at, E C -0.33 eV, E C -0.36 eV, E C -0.38 eV and E C -0.56 eV were observed in the control sample. Following hydrogenation, all these traps were passivated with a new complex (presumably the M3), emerging at E C -0.58 eV. Isochronal annealing of the passivated material between 50 and 300 o C, revealed the emergence of a secondary defect, not previously observed, at E C -0.37 eV. Finally, the effect of hydrogen passivation is completely reversed upon annealing at 300 o C, as all the defects originally observed in the reference sample were recovered.

  3. Electrical characterization of deep levels in n-type GaAs after hydrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nyamhere, C., E-mail: s210239522@live.nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Botha, J.R.; Venter, A. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2011-05-15

    Deep level transient spectroscopy (DLTS) and Laplace-DLTS (L-DLTS) have been used to investigate defects in an n-type GaAs before and after exposure to a dc hydrogen plasma (hydrogenation). DLTS revealed the presence of three prominent electron traps in the material in the temperature range 20-300 K. However, L-DLTS with its higher resolution enabled the splitting of two narrowly spaced emission rates. Consequently four electron traps at, E{sub C}-0.33 eV, E{sub C}-0.36 eV, E{sub C}-0.38 eV and E{sub C}-0.56 eV were observed in the control sample. Following hydrogenation, all these traps were passivated with a new complex (presumably the M3), emerging at E{sub C}-0.58 eV. Isochronal annealing of the passivated material between 50 and 300 {sup o}C, revealed the emergence of a secondary defect, not previously observed, at E{sub C}-0.37 eV. Finally, the effect of hydrogen passivation is completely reversed upon annealing at 300 {sup o}C, as all the defects originally observed in the reference sample were recovered.

  4. Inductively coupled plasma induced deep levels in epitaxial n-GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Auret, F.D.; Janse van Rensburg, P.J.; Meyer, W.E.; Coelho, S.M.M. [Department of Physics, University of the Pretoria, Lynnwood Road, Pretoria 0002 (South Africa); Kolkovsky, Vl. [Technische Universitaet, Dresden, 01062 Dresden (Germany); Botha, J.R.; Nyamhere, C. [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa); Venter, A., E-mail: andre.venter@nmmu.ac.za [Department of Physics, Nelson Mandela Metropolitan University, PO Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    The electronic properties of defects introduced by low energy inductively coupled Ar plasma etching of n-type (Si doped) GaAs were investigated by deep level transient spectroscopy (DLTS) and Laplace DLTS. Several prominent electron traps (E{sub c}-0.046 eV, E{sub c}-0.186 eV, E{sub c}-0.314 eV. E{sub c}-0.528 eV and E{sub c}-0.605 eV) were detected. The metastable defect E{sub c}-0.046 eV having a trap signature similar to E1 is observed for the first time. E{sub c}-0.314 eV and E{sub c}-0.605 eV are metastable and appear to be similar to the M3 and M4 defects present in dc H-plasma exposed GaAs.

  5. Environmental assessment for OPG's deep geologic repository for low and intermediate level waste

    International Nuclear Information System (INIS)

    Barker, D.; Rawlings, M.; Beal, A.

    2011-01-01

    The environmental assessment process for the Deep Geologic Repository (DGR) Project was initiated very early in the planning stages. Feasibility studies were initiated in 2003, after Ontario Power Generation (OPG) and the Municipality of Kincardine signed a Memorandum of Understanding agreeing to assess options for long-term management of low and intermediate level waste (L and ILW) options at the Bruce nuclear site. The location of the DGR, in the Municipality of Kincardine, is based on a willing and informed host community. The preferred approach, the DGR at the Bruce nuclear site, was advanced based on results of feasibility studies which looked at a number of options for long-term management of L&ILW and support from the local community and their elected representatives. The federal environmental assessment of the project was initiated following the signing of a Host Community Agreement and completion of a telephone poll, the results of which indicated that the majority of Municipality of Kincardine residents support the project. The environmental assessment began in 2006 as a comprehensive study and was ultimately referred to a joint review panel process in 2009. The environmental assessment considers the potential near-term effects of the construction and operations of the proposed project. Because of the nature of the project, the assessment of effects also considers long-term effects extending out to the million year time-frame, including effects of climate change, glaciations and seismic activity. (author)

  6. The study of fracture mineralization and relationship with high level radioactive waste of deep geological repository

    International Nuclear Information System (INIS)

    Reyes, Cristina N.

    2003-01-01

    Extensive investigations of the Ordovician, Dinantian and Permo-Triassic rocks of the Sellafield area of northwest England were undertaken by United Kingdom Nirex Ltd. as a possible national site for geological disposal of intermediate and low-level radioactive waste. Very detailed studies of fracture mineralisation at Sellafield were thus put in hand by Nirex Ltd. and the results summarised by the British Geological Survey. Deep (up to 2 km) boreholes were put down with excellent core recovery. It is generally agreed that the most significant pathway for the escape of all but a very few radionuclides is by solution in and advection of groundwater. In this context, rock fracture systems are particularly important because they offer a potentially rapid pathway to the surface and the biosphere. One striking aspect of this work is that the fracture mineralisation seemingly records major and rapid fluctuations in redox conditions -sometimes during apparently continuous precipitation of cements (ferroan and non-ferroan calcites, dolomite). Carbonate cements record variations in Fe 2+ availability. Fe(III) precipitates also as oxide (hematite) and Fe(II) as sulphide (pyrite). This study focuses on these elements and valence states and also on Mn; another element susceptible to redox controls but known to respond differently from Fe. Shallow sub-surface stores or repositories would be more likely to have oxidising or fluctuating redox conditions. The mineralisation sequences documented at Sellafield are potentially promising in this context. Ferroan carbonate cements are sensitive indicators of later movement of oxidising ground waters. (author)

  7. Application of systems analysis to the disposal of high level waste in deep ocean sediments

    International Nuclear Information System (INIS)

    De Marsily, G.; Dorp, F. van

    1982-01-01

    Emplacement in deep ocean sediments is one of the disposal options being considered for solidified high level radioactive waste. Task groups set up within the framework of the NEA Seabed Working Group have been studying many aspects of this option since 1976. The methods of systems analysis have been applied to enable the various parts of the problem to be assessed within an integrated framework. This paper describes the progress made by the Systems Analysis Task Group towards the development of an overall system model. The Task Group began by separating the problem into elements and defining the interfaces between these elements. A simple overall system model was then developed and used in both a preliminary assessment and a sensitivity analysis to identify the most important parameters. These preliminary analyses used a very simple model of the overall system and therefore the results cannot be used to draw any conclusions as to the acceptability of the sub-seabed disposal option. However they served to show the utility of the systems analysis method. The work of the other task groups will focus on the important parameters so that improved results can be fed back into an improved system model. Subsequent iterations will eventually provide an input to an acceptability decision. (Auth.)

  8. Depth of Formation of Ferropericlase Included in Super-Deep Diamonds

    Science.gov (United States)

    Anzolini, C.; Nestola, F.; Gianese, A.; Nimis, P.; Harris, J. W.

    2017-12-01

    Super-deep diamonds are believed to have formed at depths of at least 300 km depth (Harte, 2010). A common mineral inclusion in these diamonds is ferropericlase, (Mg,Fe)O (see Kaminsky, 2012 and references therein). Ferropericlase (fPer) is the second most abundant mineral in the lower mantle, comprising approximately 16-20 wt% (660 to 2900 km depth), and inclusions of fPer in diamond are often considered to indicate a lower-mantle origin (Harte et al., 1999). Samples from São Luiz/Juina, Brazil, are noteworthy for containing nanometer-sized magnesioferrite (Harte et al., 1999; Wirth et al., 2014; Kaminsky et al., 2015; Palot et al., 2016). Based upon a phase diagram valid for 1 atm, such exsolutions would place the origin of this assemblage in the uppermost part of the lower mantle. However, a newly reported phase diagram for magnesioferrite demonstrates that the latter is not stable at such pressures and, thus, it cannot exsolve directly from fPer at lower-mantle conditions (Uenver-Thiele et al., 2017). Here we report the investigation of two fPer inclusions, extracted from a single São Luiz diamond, by single-crystal X-ray diffraction and field emission scanning electron microscopy. Both techniques showed micrometer-sized exsolutions of magnesioferrite within the two fPers. We also completed elastic geobarometry (see Angel et al., 2015), which determined an estimate for the depth of entrapment of the two ferropericlase - diamond pairs. In the temperature range between 1273 and 1773 K, pressures varied between 9.88 and 12.34 GPa (325-410 km depth) for one inclusion and between 10.69 and 13.16 GPa (350-440 km depth) for the other one. These results strengthen the hypothesis that solitary fPer inclusions might not be reliable markers for a lower-mantle provenance. This work was supported by Fondazione CaRiPaRo and ERC-2012-StG 307322 to FN. Angel, R.J., et al. (2015) Russ Geol Geophys, 56, 211-220; Harte, B. (2010) Mineral Mag, 74, 189-215; Harte, B., et al

  9. Laminae type and possible mechanisms for the formation of laminated sediments in the Shaban Deep, northern Red Sea

    Directory of Open Access Journals (Sweden)

    I. A. Seeberg-Elverfeldt

    2005-01-01

    Full Text Available Laminated sediments in the Shaban Deep, a brine-filled basin in the northern Red Sea, were analyzed with backscattered electron imagery. Here we present possible mechanisms involved in the formation of laminae of various types and homogenous intervals arising from the detailed investigation of multicore GeoB 7805-1 (26°13.9' N and 35°22.6' E; water depth 1447 m and gravity core GeoB 5836-2 (26°12.61' N, 35°21.56' E; water depth 1475 m. Sediment makeup includes six types: a a laminated structure with alternating light (mainly coccoliths and dark (diatom frustules layers, where the diatom component is indicative of the intra-annual variability between stratification and mixing events; b a pocket-like structure attributed to the sinking of particles within fecal pellets and aggregates; c a matrix of tightly packed diatoms that relates to extended stratification/mixing periods of the water column; d homogenous intervals that result from turbidity deposition; e silt accumulations which origin may lie in agglutinated foraminifers; and f pyrite layers with pyrite formation initiated at the seawater-brine interface.

  10. Total circulating microparticle levels are increased in patients with deep infiltrating endometriosis.

    Science.gov (United States)

    Munrós, J; Martínez-Zamora, M A; Tàssies, D; Coloma, J L; Torrente, M A; Reverter, J C; Carmona, F; Balasch, J

    2017-02-01

    Are the levels of total circulating cell-derived microparticles (cMPs) and circulating tissue factor-containing microparticles (cMP-TF) increased in patients with endometriosis? The levels of total cMP, but not cMP-TF, were higher in patients with endometriosis, and these were attributed to higher levels in patients with deep infiltrating endometriosis (DIE). Previous studies have reported elevated levels of total cMP in inflammatory conditions as well as higher levels of other inflammatory biomarkers in endometriosis. Increased expression of tissue factor (a transmembrane receptor for Factor VII/VIIa) in eutopic and ectopic endometrium from patients with endometriosis has been described. There is no previous data regarding total cMP and cMP-TF levels in patients with endometriosis. A prospective case-control study including two groups of patients was carried out. The E group included 65 patients with surgically confirmed endometriosis (37 with DIE lesions) and the C group comprises 33 women without surgical findings of any form of endometriosis. Patients and controls were recruited during the same 10-month period. Controls were the next patient without endometriosis undergoing surgery, after including two patients with endometriosis. Venous blood samples for total cMP and cMP-TF determinations were obtained at the time of surgery, before anesthesia at a tertiary care center. To assess total cMP, an ELISA functional assay was used and cMP-TF activity in plasma was measured using an ELISA kit. Total cMP levels in plasma were higher in the E group compared with the C group (P < 0.0001). The subanalysis of endometriosis patients with DIE or with ovarian endometriomas without DIE showed that total cMP levels were higher in the DIE group (P = 0.001). There were no statistically significant differences in cMP-TF levels among the groups analyzed. This is a preliminary study in which the sample size was arbitrarily decided, albeit in keeping with previous studies analyzing

  11. Requirements for a top level hierarchy for a next generation nuclear data format

    International Nuclear Information System (INIS)

    Brown, D.A.; Koning, A.; Roubtsov, Y.D.; Mills, R.; Mattoon, C.M.; Beck, B.; Vogt, R.

    2014-01-01

    This document attempts to compile the requirements for the top-levels of a hierarchical arrangement of nuclear data such as is found in the ENDF format. This set of requirements will be used to guide the development of a new set of formats to replace the legacy ENDF format. (authors)

  12. Strategic program for deep geological disposal of high level radioactive waste in China

    International Nuclear Information System (INIS)

    Wang Ju

    2004-01-01

    A strategic program for deep geological disposal of high level radioactive waste in China is proposed in this paper. A '3-step technical strategy': site selection and site characterization-site specific underground research laboratory-final repository, is proposed for the development of China's high level radioactive waste repository. The activities related with site selection and site characterization for the repository can be combined with those for the underground research laboratory. The goal of the strategy is to build China's repository around 2040, while the activities can be divided into 4 phases: 1) site selection and site characterization; 2) site confirmation and construction of underground research laboratory, 3) in-situ experiment and disposal demonstration, and 4) construction of repository. The targets and tasks for each phase are proposed. The logistic relationship among the activities is discussed. It is pointed out that the site selection and site characterization provide the basis for the program, the fundamental study and underground research laboratory study are the key support, the performance assessment plays a guiding role, while the construction of a qualified repository is the final goal. The site selection can be divided into 3 stages: comparison among pre-selected areas, comparison among pre-selected sites and confirmation of the final site. According to this strategy, the final site for China's underground research laboratory and repository will be confirmed in 2015, where the construction of an underground laboratory will be started. In 2025 the underground laboratory will have been constructed, while in around 2040, the construction of a final repository is to be completed

  13. Redox Equilibria Involving Chromium Minerals in Aqueous Fluids in the Deep Earth - Implications for Diamond Formation

    Science.gov (United States)

    Huang, J.; Huang, F.; Hao, J.; Sverjensky, D. A.

    2017-12-01

    Diamonds are often associated with inclusions of garnet that are characteristically Cr-rich and Ca-poor, suggesting metasomatic reactions involving fluids [1]. To investigate these reactions, we developed a thermodynamic characterization of Cr-bearing minerals and integrated it with our database for the thermodynamic properties of aqueous Cr-species [2]. We retrieved thermodynamic properties of picrochromite (MgCr2O4), and knorringite (Mg3Cr2Si3O12) consistent with minerals in the Berman (1988) using calorimetric data and experimental phase equilibria involving the reactions: MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 [2] and MgCr2O4 + 4MgSiO3 = Mg3Cr2Si3O12 + Mg2SiO4 [3], respectively.At high temperatures and pressures, neutral pH and FMQ, the predicted solubilities of eskolaite and knorringite equilibrium with Cr2+ in a pure water system are very low. However, we found that complexes of Cr2+ and Cl- could increase the solubilities of chromium minerals significantly. At 500°C and 0.2 - 1.0 GPa, we retrieved the CrCl(OH)0 neutral complex from experiments on the solubility of Cr2O3 in HCl solutions [4]. At 1,000°C and 4.0 GPa, we retrieved the properties of a CrCl3- complex from experiments on the solubility of Cr2O3 in KCl solutions [5]. The predicted solubility of a garnet containing 23 mole% of knorringite in equilibrium with CrCl3- in a peridotitic diamond-forming fluid is 22 millimolal (1,144 ppm). This result suggests that a redox reaction relating to diamond formation might involveMg3Al2Si3O12 + 0.5CO2(aq) + 2 CrCl3- + 2H+ = Mg3Cr2Si3O12 + 0.5C-Diamond + 2Al3+ + 6Cl-. In this way, high temperature and pressure fluids containing Cr(II)-complexes might promote the mobility of chromium and be involved in metasomatic reactions and diamond formation.[1]Boyd et al. (1993)[2] Hao et al. (submitted to Geochem. Persp. Letters)[3] Berman (1988)[4] Klemme et al. (2000)[5] Klemme et al. (2004)[6] Watenphul et al. (2014)[7] Klein-BenDavid et al. (2011)

  14. Charge deep-level transient spectroscopy study of high-energy-electron-beam-irradiated hydrogenated amorphous silicon

    NARCIS (Netherlands)

    Klaver, A.; Nádaždy, V.; Zeman, M.; Swaaiij, R.A.C.M.M.

    2006-01-01

    We present a study of changes in the defect density of states in hydrogenated amorphous silicon (a-Si:H) due to high-energy electron irradiation using charged deep-level transient spectroscopy. It was found that defect states near the conduction band were removed, while in other band gap regions the

  15. Benefiting from deep-level diversity : How congruence between knowledge and decision rules improves team decision making and team perceptions

    NARCIS (Netherlands)

    Rink, Floor; Ellemers, Naomi

    In two experiments we show how teams can benefit from the presence of multiple sources of deep-level task-related diversity. We manipulated differences (vs. similarities) in task information and personal decision rules in dyads (Study 1) and three-person teams (Study 2). The results indicate that

  16. I–V, C–V and deep level transient spectroscopy study of 24 MeV ...

    Indian Academy of Sciences (India)

    This paper describes the effect of 24 MeV proton irradiation on the electrical characteristics of a pnp bipolar junction transistor 2N 2905A. –, – and DLTS measurements are carried out to characterize the transistor before and after irradiation. The properties of deep level defects observed in the bulk of the transistor are ...

  17. Coseismic and aseismic deformations associated with mining-induced seismic events located in deep level mines in South Africa

    CSIR Research Space (South Africa)

    Milev, A

    2013-10-01

    Full Text Available Two underground sites in a deep level gold mine in South Africa were instrumented by the Council for Scientific and Industrial Research (CSIR) with tilt meters and seismic monitors. One of the sites was also instrumented by Japanese-German...

  18. Transforming Passive Receptivity of Knowledge into Deep Learning Experiences at the Undergraduate Level: An Example from Music Theory

    Science.gov (United States)

    Ferenc, Anna

    2015-01-01

    This article discusses transformation of passive knowledge receptivity into experiences of deep learning in a lecture-based music theory course at the second-year undergraduate level through implementation of collaborative projects that evoke natural critical learning environments. It presents an example of such a project, addresses key features…

  19. Mechanical behavior of an instrumented shotcrete drifts definitive lining in a 500 m deep clay formation

    International Nuclear Information System (INIS)

    Zghondi, Jad; Armand, Gilles; Noiret, Aurelien

    2012-01-01

    Document available in extended abstract form only. At the Meuse/Haute Marne Underground Research Laboratory (URL), Andra has developed a technical and scientific program to test excavation methods in a 500 m deep Callovo Oxfordian clay-stone to demonstrate feasibility of nuclear waste disposal Different types of drift excavations and reinforcements methods has been and will be tested at the URL,in order to evaluate the impact on the surrounding rock behavior, especially the EDZ, and to optimize the design of the reinforcement. At the beginning soft support has been used to let drifts converge, and from time to time the stiffness of support has been increase up to emplace gasketed pre-cast concrete segmental rings just after an open face tunneling excavation end of 2013. In this previous experiment, the target was to apply and on a short time a stiff reinforcement that can have a similar behavior as a pre-cast concrete ring. This paper will present the experimental layout, the measurement tools as well as the first results. The instrumented drift section 'BPE' is 15 m long and 6,3 m diameter; it was excavated by a BRH machine. The excavation sequence was realized with a one meter excavation pass. After each pass, a 10 cm layer of wet mixed fiber reinforced shotcrete was applied on the vault, and 45 cm on the counter vault. The vault 45 cm thickness was reached after three other layers added respectively while proceeding with the three following pass of excavation. Different kinds of measurements were carried out before, during and after excavation, in a way to evaluate the loading of the shotcrete reinforcement as well as the hydro-mechanical behavior of the host rock. Before the excavation of the drift, three standard diameter boreholes have been drilled around the planned drift. They have been equipped with pressure and deformation measurements in a way to monitor the hydro-mechanical impact of the excavation on the surrounding rock. While excavating, the

  20. 3D Voronoi grid dedicated software for modeling gas migration in deep layered sedimentary formations with TOUGH2-TMGAS

    Science.gov (United States)

    Bonduà, Stefano; Battistelli, Alfredo; Berry, Paolo; Bortolotti, Villiam; Consonni, Alberto; Cormio, Carlo; Geloni, Claudio; Vasini, Ester Maria

    2017-11-01

    As is known, a full three-dimensional (3D) unstructured grid permits a great degree of flexibility when performing accurate numerical reservoir simulations. However, when the Integral Finite Difference Method (IFDM) is used for spatial discretization, constraints (arising from the required orthogonality between the segment connecting the blocks nodes and the interface area between blocks) pose difficulties in the creation of grids with irregular shaped blocks. The full 3D Voronoi approach guarantees the respect of IFDM constraints and allows generation of grids conforming to geological formations and structural objects and at the same time higher grid resolution in volumes of interest. In this work, we present dedicated pre- and post-processing gridding software tools for the TOUGH family of numerical reservoir simulators, developed by the Geothermal Research Group of the DICAM Department, University of Bologna. VORO2MESH is a new software coded in C++, based on the voro++ library, allowing computation of the 3D Voronoi tessellation for a given domain and the creation of a ready to use TOUGH2 MESH file. If a set of geological surfaces is available, the software can directly generate the set of Voronoi seed points used for tessellation. In order to reduce the number of connections and so to decrease computation time, VORO2MESH can produce a mixed grid with regular blocks (orthogonal prisms) and irregular blocks (polyhedron Voronoi blocks) at the point of contact between different geological formations. In order to visualize 3D Voronoi grids together with the results of numerical simulations, the functionality of the TOUGH2Viewer post-processor has been extended. We describe an application of VORO2MESH and TOUGH2Viewer to validate the two tools. The case study deals with the simulation of the migration of gases in deep layered sedimentary formations at basin scale using TOUGH2-TMGAS. A comparison between the simulation performances of unstructured and structured

  1. Social stakes of the reversibility in the deep storage of high level radioactive wastes

    International Nuclear Information System (INIS)

    Heriard-Dubreuil, G.; Schieber, C.; Schneider, T.

    1998-06-01

    This document proposes a study of the conditions which surrounded the reversibility introduction in high activity wastes deep storage at an international scale, as well as a reflexion on the social stakes associated there. In France, the law of december 30, 1991 concerning the research on the radioactive wastes prescribes '' the study of possibilities retrieval or non retrieval storage in deep geological deposits''. The analysis of the reversibility associated social stakes emphasizes the necessity to prevent irreversible consequences, to take care to the choices reversibility, to preserve the future generations autonomy. Thus to elaborate a more satisfactory solution between deep disposal and surface storage, a deep storage, capable of gradually evolution, concept is defined. (A.L.B.)

  2. Method for restoring contaminants to base levels in previously leached formations

    International Nuclear Information System (INIS)

    Strom, E.T.; Espencheid, W.F.

    1983-01-01

    The present invention relates to a method for restoring to environmentally acceptable levels the soluble contaminants in a subterranean formation that has been subjected to oxidative leaching. The contaminants are defined as those ionic species that when subjected to calcium ions form precipitates which are insoluble in the formation fluids. In accordance with the present invention, soluble calcium values are introduced into the formation. The level of contaminants is monitored and when such reaches the desired level, the introduction of soluble calcium values is stopped. The introduction of calcium values may be achieved in several ways one of which is to inject into the formation an aqueous solution containing therein solubilized calcium values. Another method of introducing calcium values into a formation, is to inject into the formation an aqueous solution containing carbon dioxide to solubilize calcium values, such as calcium carbonates, found in the formation

  3. Melodie: a code for risk assessment of waste repositories in deep geological formations

    International Nuclear Information System (INIS)

    Lewi, J.; Mejon-Goula, M.J.; Cernes, A.

    1988-10-01

    In order to perform the safety evaluation of nuclear waste repositories, a global model, called MELODIE, is currently developed at the CEA/IPSN, in collaboration with order CEA teams and non-CEA like ENSMP (Ecole Nationale Superieure des Mines de Paris). The version now in operation allows to assess the radiological consequences due to a repository located in a granitic formation on a period of several hundred thousands of years. The calculations are based on models which represent the physical and chemical phenomena in connection with: the release of the radionuclides from the waste matrixes and through the engineered barriers; their transfer through the geosphere; their behaviour in the biosphere. Three separate models have been developed for each of these subjects; they are integrated in the code through a modular flexible dataprocessing structure which calls these computational modules with their optimal time step and extracts the data from the data files where they are stored. In addition, a sensitivity and uncertainty analysis algorithm has been implemented into the code. It allows to evaluate the influence of the parameter values on the result and to assess the global uncertainty on it. After a quite general description of MELODIE, the calculations performed with it in the PAGIS (CCE) exercise: global dose calculations and ranking of the most important parameters through the sensitivity analysis, are presented. The studies performed only with the geosphere module of MELODIE (METIS), especially the participation to the HYDROCOIN (OECD/NEA) exercise, are also noticed. In addition, the main future development axes of MELODIE are outlined

  4. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation; Guide de surete relatif au stockage definitif des dechets radioactifs en formation geologique profonde

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  5. Increased levels of dioxin-like substances in adipose tissue in patients with deep infiltrating endometriosis.

    Science.gov (United States)

    Martínez-Zamora, M A; Mattioli, L; Parera, J; Abad, E; Coloma, J L; van Babel, B; Galceran, M T; Balasch, J; Carmona, F

    2015-05-01

    Are the levels of biologically active and the most toxic dioxin-like substances in adipose tissue of patients with deep infiltrating endometriosis (DIE) higher than in a control group without endometriosis? DIE patients have higher levels of dioxins and polychlorinated biphenyls (PCBs) in adipose tissue compared with controls without endometriosis. Some studies have investigated the levels of dioxin-like substances, in serum samples, in patients with endometriosis, with inconsistent results. Case-control study including two groups of patients. The study group (DIE group) consisted of 30 patients undergoing laparoscopic surgery because of DIE. In all patients, an extensive preoperative work-up was performed including clinical exploration, magnetic resonance imaging (MRI) and transvaginal sonography. All patients with DIE underwent a confirmatory histological study for DIE after surgery. The non-endometriosis control group (control group), included the next consecutive patient undergoing laparoscopic surgery in our center due to adnexal benign gynecological disease (ovarian or tubal procedures other than endometriosis) after each DIE patient, and who did not present any type of endometriosis. During the surgical procedure 1-2 g of adipose tissue from the omentum were obtained. Dioxin-like substances were analyzed in adipose tissue in DIE patients and controls without endometriosis. The total toxic equivalence and concentrations of both dioxins and PCBs were significantly higher in patients with DIE in comparison with the control group (P dioxins (2,3,7,8-tetrachlorodibenzo-p-dioxin [2,3,7,8-TCDD] and 1,2,3,7,8-pentachlorodibenzo-p-dioxin [1,2,3,7,8-PeCDD]) (P dioxins and PCBs widely vary in different countries. Furthermore, the strict eligibility criteria used may preclude generalization of the results to other populations and the surgery-based sampling frame may induce a selection bias. Finally, adipose tissue was obtained only from the omentum, and not from other

  6. Systems analysis approach to the disposal of high-level waste in deep ocean sediments

    International Nuclear Information System (INIS)

    Marsily, G. de; Hill, M.D.; Murray, C.N.; Talbert, D.M.; Van Dorp, F.; Webb, G.A.M.

    1980-01-01

    Among the different options being studied for disposal of high-level solidified waste, increasing attention is being paid to that of emplacement of glasses incorporating the radioactivity in deep oceanic sediments. This option has the advantage that the areas of the oceans under investigation appear to be relatively unproductive biologically, are relatively free from cataclysmic events, and are areas in which the natural processes are slow. Thus the environment is stable and predictable so that a number of barriers to the release and dispersion of radioactivity can be defined. Task Groups set up in the framework of the International Seabed Working Group have been studying many aspects of this option since 1976. In order that the various parts of the problem can be assessed within an integrated framework, the methods of systems analysis have been applied. In this paper the Systems Analysis Task Group members report the development of an overall system model. This will be used in an iterative process in which a preliminary analysis, together with a sensitivity analysis, identifies the parameters and data of most importance. The work of the other task groups will then be focussed on these parameters and data requirements so that improved results can be fed back into an improved overall systems model. The major requirements for the development of a preliminary overall systems model are that the problem should be separated into identified elements and that the interfaces between the elements should be clearly defined. The model evolved is deterministic and defines the problem elements needed to estimate doses to man

  7. Trade Study of System Level Ranked Radiation Protection Concepts for Deep Space Exploration

    Science.gov (United States)

    Cerro, Jeffrey A

    2013-01-01

    A strategic focus area for NASA is to pursue the development of technologies which support exploration in space beyond the current inhabited region of low earth orbit. An unresolved issue for crewed deep space exploration involves limiting crew radiation exposure to below acceptable levels, considering both solar particle events and galactic cosmic ray contributions to dosage. Galactic cosmic ray mitigation is not addressed in this paper, but by addressing credible, easily implemented, and mass efficient solutions for the possibility of solar particle events, additional margin is provided that can be used for cosmic ray dose accumulation. As a result, NASA s Advanced Engineering Systems project office initiated this Radiation Storm Shelter design activity. This paper reports on the first year results of an expected 3 year Storm Shelter study effort which will mature concepts and operational scenarios that protect exploration astronauts from solar particle radiation events. Large trade space definition, candidate concept ranking, and a planned demonstration comprised the majority of FY12 activities. A system key performance parameter is minimization of the required increase in mass needed to provide a safe environment. Total system mass along with operational assessments and other defined protection system metrics provide the guiding metrics to proceed with concept developments. After a downselect to four primary methods, the concepts were analyzed for dosage severity and the amount of shielding mass necessary to bring dosage to acceptable values. Besides analytical assessments, subscale models of several concepts and one full scale concept demonstrator were created. FY12 work terminated with a plan to demonstrate test articles of two selected approaches. The process of arriving at these selections and their current envisioned implementation are presented in this paper.

  8. Increased Levels of NF-kB-Dependent Markers in Cancer-Associated Deep Venous Thrombosis.

    Science.gov (United States)

    Malaponte, Grazia; Signorelli, Salvatore S; Bevelacqua, Valentina; Polesel, Jerry; Taborelli, Martina; Guarneri, Claudio; Fenga, Concettina; Umezawa, Kazou; Libra, Massimo

    2015-01-01

    Several studies highlight the role of inflammatory markers in thrombosis as well as in cancer. However, their combined role in cancer-associated deep vein thrombosis (DVT) and the molecular mechanisms, involved in its pathophysiology, needs further investigations. In the present study, C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1β), matrix metalloproteases-9 (MMP-9), vascular endothelial growth factor (VEGF), tissue factor (TF), fibrinogen and soluble P-selectin, were analyzed in plasma and in monocyte samples from 385 cancer patients, of whom 64 were concomitantly affected by DVT (+). All these markers were higher in cancer patients DVT+ than in those DVT-. Accordingly, significantly higher NF-kB activity was observed in cancer patients DVT+ than DVT-. Significant correlation between data obtained in plasma and monocyte samples was observed. NF-kB inhibition was associated with decreased levels of all molecules in both cancer DVT+ and DVT-. To further demonstrate the involvement of NF-kB activation by the above mentioned molecules, we treated monocyte derived from healthy donors with a pool of sera from cancer patients with and without DVT. These set of experiments further suggest the significant role played by some molecules, regulated by NF-kB, and detected in cancer patients with DVT. Our data support the notion that NF-kB may be considered as a therapeutic target for cancer patients, especially those complicated by DVT. Treatment with NF-kB inhibitors may represent a possible strategy to prevent or reduce the risk of DVT in cancer patients.

  9. The structural integrity of high level waste containers for deep disposal

    International Nuclear Information System (INIS)

    Keer, T.J.; Martindale, N.J.; Haijtink, B.

    1990-01-01

    Most countries with a nuclear power program are developing plans to dispose of high level waste in deep geological repositories. These facilities are typically in the range 500-1000m below ground. Although long term safety analyses mainly rely on the isolation function of the geological barrier, for the medium term (between 500 and 1000 years) a barrier such as a container (overpack) may play an important role. This paper addresses the mechanical/structural behavior of these structures under extreme geological pressures. The work described in the paper was conducted within the COMPAS project (Container Mechanical Performance Assessment) funded by the Commission of the European Communities and the United Kingdom Department of the Environment. The work was aimed at predicting the modes of failure and failure pressures which characterize the heavy, thick walled mild steel containers which might be considered for the disposal of vitrified waste. The work involved a considerable amount of analytical work, using 3-D non-linear finite element techniques, coupled with a large parallel program of experimental work. The experimental work consisted of a number of scale model tests in which the response of the containers was examined under external pressures as high as 120MPa. Extensive strain-gauge instrumentation was used to record the behavior of the models as they were driven to collapse. A number of comparative computer calculations were carried out by organizations from various European countries. Correlations were established between experimental and analytical data and guidelines regarding the choice of suitable software were established. The work concluded with a full 3-D simulation of the behavior of a container under long-term disposal conditions. In this analysis, non-linearities due to geological effects and material/geometry effects in the container were properly accounted for. 6 refs., 9 figs., 4 tabs

  10. The relationship between the deep-level structure in crust and brewing of strong earthquakes in Xingtai area

    Science.gov (United States)

    Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu

    1999-11-01

    In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.

  11. Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador Sea

    Science.gov (United States)

    Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.

    2016-02-01

    Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating exchanges of heat as well as important gases such as CO2 and oxygen. The Labrador Sea is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador Sea, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep sea biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador Sea. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the air-sea oxygen flux using a range of air-sea gas exchange parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen exchanges with the atmosphere at a faster rate than CO2, is

  12. Language arts achievement level, attitude survey format, and adolescents' attitudes towards reading.

    Science.gov (United States)

    Smith, L R; Ryan, B E

    1997-01-01

    The joint effects of student achievement level and attitude survey format upon attitudes toward reading were investigated. Sixth-grade students completed reading attitude surveys involving a standard Likert-type format or one involving pictures of the comic strip character, Garfield. The survey items were identical for both formats; only the presentation format was varied. There was no significant main effect on attitude responses due to achievement level, but the main effect due to survey format was significant, with the Likert-type format producing significantly higher attitude responses than the Garfield format. The interaction between achievement level and format also was significant, with above average students and average students giving higher attitude responses than did below average students when the Garfield format was used. When the Likert-type format was used, average students and below average students gave higher attitude responses than did above average students. The results imply that attitude responses of adolescents can be manipulated by varying the format of the survey.

  13. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  14. The role of deep level traps in barrier height of 4H-SiC Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Zaremba, G., E-mail: gzaremba@ite.waw.pl [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Adamus, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Jung, W.; Kaminska, E.; Borysiewicz, M.A.; Korwin-Mikke, K. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2012-09-01

    This paper presents a discussion about the influence of deep level defects on the height of Ni-Si based Schottky barriers to 4H-SiC. The defects were characterized by deep level transient spectroscopy (DLTS) in a wide range of temperatures (78-750 K). The numerical simulation of barrier height value as a function of dominant defect concentration was carried out to estimate concentration, necessary to 'pin' Fermi level and thus significantly influence the barrier height. From comparison of the results of simulation with barrier height values obtained by capacitance-voltage (C-V) measurements it seems that dominant defect in measured concentration has a very small impact on the barrier height and on the increase of reverse current.

  15. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John; Cedhagen, Tomas

    2009-01-01

    Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubu......Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between...... suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea....

  16. Novel microspheres reduce the formation of deep venous thrombosis and repair the vascular wall in a rat model.

    Science.gov (United States)

    Dai, Bingyang; Li, Lan; Li, Qiangqiang; Song, Xiaoxiao; Chen, Dongyang; Dai, Jin; Yao, Yao; Yan, Wenjin; Teng, Huajian; Yang, Fang; Xu, Zhihong; Jiang, Qing

    2017-07-01

    : L-Arginine (L-arg), widely known as a substrate for endogenous nitric oxide synthesis, can improve endothelial function associated with the vasculature, inhibit platelet aggregation, and alter the activity of vascular smooth muscle cells. P-selectin is a membrane component of the platelet alpha-granule and the endothelial cell-specific Wiebel-Palade body that plays a central role in mediating interactions between platelets and both leukocytes and the endothelium. The experiment was designed to evaluate the effect of novel microspheres with L-arg targeting P-selectin on the formation of deep vein thrombosis and repair of vascular wall in a rat model. Thrombosis of the inferior vena cava was induced by applying a piece of filter paper (5 mm × 10 mm) saturated with 10% FeCl3 solution for 5 min. Targeted microspheres with L-arg, targeted microspheres with water, and saline were injected into the tail veins of the rats after 30 min of applying the filter paper saturated with 10% FeCl3 solution. The dry weight and length of the thrombus isolated from the inferior vena cava were significantly decreased in the group with L-arg in microsphere after 24 h. No significant differences in prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen among the groups were indicated. Images revealed that apoptosis in the vascular wall was less in the group injected with targeted microspheres with L-arg than in the other two groups at 1 and 8 d postsurgery. Meanwhile, cell proliferation was considerably excessive in the group injected with L-arg wrapped in targeted microspheres. Therefore, these novel microspheres could decrease the formation of thrombus in the early stages and in the subsequent periods of thrombosis. The microspheres can also enhance the vitality of impaired endothelial cells and reduce cell apoptosis.

  17. Leach behavior of high-level borosilicate glasses under deep geological environment

    International Nuclear Information System (INIS)

    Kim, Seung Soo; Chun, Kwan Sik; Park, Hyun Soo

    1998-02-01

    This report presents an overview of the activities in high-level radioactive waste glass which is considered as the most practicable form of waste, and also is intended to be used in the disposal of national high-level radioactive waste in future. Leach theory of waste glass and the leach effects of ground water, metal barrier, buffer materials and rocks on the waste glass were reviewed. The leach of waste glass was affected by various factors such as composition, pH and Eh of ground water, temperature, pressure, radiation and humic acid. The crystallization, crack, weathering and the formation of altered phases of waste glass which is expected to occur in real disposal site were reviewed. The results of leaching in laboratory and in-situ were compared. The behaviors of radioactive elements leached from waste glass and the use of basalt glass for the long-term natural analogue of waste glass were also written in this report. The appraisal of durability of borosilicate waste glass as a waste media was performed from the known results of leach test and international in-situ tests were introduced. (author). 134 refs., 15 tabs., 24 figs

  18. Mechanical behavior of host rock close to H.L.W. disposal cavities in a deep granitic formation

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.; Dourthe, M.

    1986-01-01

    The construction of a H.L.W. repository in a deep granitic formation creates mechanical disturbances in the rock on the scale of the massif and in the nearfield. Amongst all the disturbances noted in the nearfield, this study is concerned with examining the evolution of stresses linked with the excavation of the rock and the rise in temperature in the proximity of the waste packages. Several linear elasticity calculations were made using on the one hand finite element models and on the other simple analytical models. These calculations concern two different storage concepts - in room concept and in floor concept- whose differences in mechanical behavior are analyzed. A study of sensitivity with regard to the characteristics of the rock and to the initial geostatic stresses is presented. The comparison of the calculated stresses with three-dimensional failure criteria gives a clear indication of the satisfactory behavior of granite for final storage. However, the need for experimental study and complementary calculation must be emphasized

  19. Control of environmental impact of low-level aqueous fuel reprocessing wastes by deep-well disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Steindler, M.J.

    1978-01-01

    The following conclusions are made: (1) the technology and much experience for this disposal method are available; (2) large areas of the U.S. offer geological formations suitable for deep well disposal, but substantial effort may be required in the choice of a specific site; (3) although costs are substantial, they are small compared to associated environmental and energy benefits; (4) impacts on water consumers would be minimized through regulatory checks of siting, construction, and monitoring, and also through natural dilution and radioactive decay; (5) disposal wells must satisfy regulations, of recently-increased stringency, on siting, design, construction, operation, monitoring, and decommissioning

  20. Decreased plasma levels of activated factor VII in patients with deep vein thrombosis

    NARCIS (Netherlands)

    Schut, A. M.; Meijers, J. C. M.; Lisman-van Leeuwen, Y.; van Montfoort, M. L.; Roest, M.; de Groot, P. G.; Urbanus, R. T.; Coppens, M.; Lisman, T.

    BackgroundThe initiating trigger in the development of deep vein thrombosis (DVT) remains unidentified. It has been suggested that tissue factor (TF)-bearing microparticles play a key role, which indicates a role for the TF pathway in the initiation of DVT. ObjectiveTo assess the role of the TF

  1. Decreased plasma levels of activated factor VII in patients with deep vein thrombosis

    NARCIS (Netherlands)

    Schut, A. M.; Meijers, J. C M; Lisman- van Leeuwen, Y.; van Montfoort, M. L.; Roest, M.; de Groot, P. G.; Urbanus, R. T.; Coppens, M.; Lisman, T.

    2015-01-01

    Background: The initiating trigger in the development of deep vein thrombosis (DVT) remains unidentified. It has been suggested that tissue factor (TF)-bearing microparticles play a key role, which indicates a role for the TF pathway in the initiation of DVT. Objective: To assess the role of the TF

  2. Decreased plasma levels of activated factor VII in patients with deep vein thrombosis

    NARCIS (Netherlands)

    Schut, A. M.; Meijers, J. C. M.; Lisman-van Leeuwen, Y.; van Montfoort, M. L.; Roest, M.; de Groot, P. G.; Urbanus, R. T.; Coppens, M.; Lisman, T.

    2015-01-01

    The initiating trigger in the development of deep vein thrombosis (DVT) remains unidentified. It has been suggested that tissue factor (TF)-bearing microparticles play a key role, which indicates a role for the TF pathway in the initiation of DVT. To assess the role of the TF pathway in the

  3. The behaviour of cemented backfill and the surrounding rockmass at western deep levels south mine

    CSIR Research Space (South Africa)

    York, G

    1992-11-01

    Full Text Available Cemented backfill is used at Western Deep Mine as local and regional support areas of high stopping width. The in situ performance is reported and compared to laboratory tests. A back analysis was carried out to obtain a more accurate value...

  4. SeaWiFS Deep Blue Aerosol Optical Thickness Monthly Level 3 Climatology Data Gridded at 0.5 Degrees V004

    Data.gov (United States)

    National Aeronautics and Space Administration — The SeaWiFS Deep Blue Level 3 Monthly Climatology Product contains monthly global climatology gridded (0.5 x 0.5 deg) data derived from SeaWiFS Deep Blue Level 3...

  5. Deep and shallow acceptor levels in solid solutions Pb0.98Sm0.02S

    International Nuclear Information System (INIS)

    Hasanov, H.A.; Rahimov, R.Sh.

    2010-01-01

    It is well known that the metal vacancies the energy levels of which take place between permitted energies of valency band, are the main acceptor centers in the led salts and solid solutions on their base. The aim of the given paper is founding of character of acceptor levels in single crystals Pb 0 .98Sm 0 .02S with low concentrations of charge carrier. The deep and shallow acceptor levels are found at investigation of Hall effect in Pb 0 .98Sm 0 .02S solid solution with character of low concentrations of charge carriers in crystals

  6. Aspects on the gas generation and migration in repositories for high level waste in salt formations

    International Nuclear Information System (INIS)

    Ruebel, Andre; Buhmann, Dieter; Meleshyn, Artur; Moenig, Joerg; Spiessl, Sabine

    2013-07-01

    In a deep geological repository for high-level waste, gases may be produced during the post-closure phase by several processes. The generated gases can potentially affect safety relevant features and processes of the repository, like the barrier integrity, the transport of liquids and gases in the repository and the release of gaseous radionuclides from the repository into the biosphere. German long-term safety assessments for repositories for high-level waste in salt which were performed prior 2010 did not explicitly consider gas transport and the consequences from release of volatile radionuclides. Selected aspects of the generation and migration of gases in repositories for high-level waste in a salt formation are studied in this report from the viewpoint of the performance assessment. The knowledge on the availability of water in the repository, in particular the migration of salt rock internal fluids in the temperature field of the radioactive waste repository towards the emplacement drifts, was compiled and the amount of water was roughly estimated. Two other processes studied in this report are on the one hand the release of gaseous radionuclides from the repository and their potential impact in the biosphere and on the other hand the transport of gases along the drifts and shafts of the repository and their interaction with the fluid flow. The results presented show that there is some gas production expected to occur in the repository due to corrosion of container material from water disposed of with the backfill and inflowing from the host rock during the thermal phase. If not dedicated gas storage areas are foreseen in the repository concept, these gases might exceed the storage capacity for gases in the repository. Consequently, an outflow of gases from the repository could occur. If there are failed containers for spent fuel, radioactive gases might be released from the containers into the gas space of the backfill and subsequently transported together

  7. Summary report of a seminar on geosphere modelling requirements of deep disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Piper, D.; Paige, R.W.; Broyd, T.W.

    1989-02-01

    A seminar on the geosphere modelling requirements of deep disposal of low and intermediate level radioactive wastes was organised by WS Atkins Engineering Sciences as part of Her Majesty's Inspectorate of Pollution's Radioactive Waste Assessment Programme. The objectives of the seminar were to review geosphere modelling capabilities and prioritise, if possible, any requirements for model development. Summaries of the presentations and subsequent discussions are given in this report. (author)

  8. Assessing the Level of Disability, Deep Cervical Flexor Endurance and Fear Avoidance Beliefs in Bankers with Neck Pain

    Directory of Open Access Journals (Sweden)

    Deptee Warikoo

    2013-08-01

    Full Text Available Objective: To assess the level of disability, the deep cervical flexor endurance and fear avoidance beliefs (FAB in bankers with neck pain and to find a correlation between disability and deep cervical muscle endurance, FAB and disability, FAB and deep flexor muscle endurance. Methods: It ws an observational study. The Subjects who had neck pain and minimum 5 years’ experience as a Banker participated in the study. Total 100 subjects were selected. All the subjects were assessed for their disability by the neck pain and disability score (NPDI, their deep cervical flexor endurance using Pressure Biofeedback using Cranio-Cervical flexion test (CCFT and Fear Avoidance Belief by using questionnaire( FABQ. Results: It was found that bankers have a moderate level of disability. The results showed an elevated fear avoidance belief with a mean value of FABQ-PA 21.61±4.42 and FABQ-W 37.81± 5.69. The results indicated that a negative correlation was found between NPDI and CCFT (r=0.855. A positive correlation was found between NPDI and FABQ-PA(r=0.337, FABQ-W(r=0.500. In the present study a negative correlation was found between CCFT and FABQ-W(r=0.553, FABQ-PA (0.348 and positive correlation (r=0.540 was found between FABQ-PA and FABQ-W. Conclusion: The present study concluded that there was a significant level of disability and significantly decreased endurance level and increased fear avoidance beliefs (both work and physical activity related among bankers with neck pain. In addition to that there was a significant correlation found between NPDI and CCFT, NPDI and FABQ, CCFT and FABQ, FABQ-W and FABQ-PA.

  9. Resolving the EH6/7 level in 4H-SiC by Laplace-transform deep level transient spectroscopy

    International Nuclear Information System (INIS)

    Alfieri, G.; Kimoto, T.

    2013-01-01

    We show that Laplace transform deep level transient spectroscopy (LDLTS) is an effective technique for the separation of the overlapping emission rates of the EH 6 and EH 7 levels, which are known to constitute EH 6/7 , a mid-gap level in n-type 4H-SiC. The analysis of the electron irradiation dose, electric field dependence, and the effects of carbon interstitials injection on the emission rates of EH 6 and EH 7 shows that EH 7 is dominant over EH 6 and confirms that their nature is related to a carbon vacancy.

  10. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    International Nuclear Information System (INIS)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE's investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4)

  11. Capacitance transient study of a bistable deep level in e--irradiated n-type 4H-SiC

    International Nuclear Information System (INIS)

    Beyer, F C; Hemmingsson, C G; Pedersen, H; Henry, A; Janzén, E; Isoya, J; Ohshima, T; Morishita, N

    2012-01-01

    Using capacitance transient techniques, a bistable centre, called FB centre here, was observed in electron irradiated 4H-SiC. In configuration A, the deep level known as EH5 (E a = E C - 1.07 eV) is detected in the deep level transient spectroscopy spectrum, whereas for configuration B no obvious deep level is observed in the accessible part of the band gap. Isochronal annealing revealed the transition temperatures to be T A→B > 730 K and for the opposite process T B→A ≈ 710 K. The energy needed to conduct the transformations were determined to be E A (A → B) = (2.1 ± 0.1) eV and E A (B → A) = (2.3 ± 0.1) eV, respectively. The pre-factor indicated an atomic jump process for the opposite transition A → B and a charge carrier-emission dominated process in the case of B → A. Minority charge carrier injection enhanced the transformation from configuration B to configuration A by lowering the transition barrier by about 1.4 eV. Since the bistable FB centre is already present after low-energy electron irradiation (200 keV), it is likely related to carbon.

  12. Considerations affecting deep-well disposal of tritium-bearing low-level aqueous waste from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Warner, D.L.; Steindler, M.J.

    1977-03-01

    Present concepts of disposal of low-level aqueous wastes (LLAW) that contain much of the fission-product tritium from light water reactors involve dispersal to the atmosphere or to surface streams at fuel reprocessing plants. These concepts have been challenged in recent years. Deep-well injection of low-level aqueous wastes, an alternative to biospheric dispersal, is the subject of this presentation. Many factors must be considered in assessing its feasibility, including technology, costs, environmental impact, legal and regulatory constraints, and siting. Examination of these factors indicates that the technology of deep-well injection, extensively developed for other industrial wastes, would require little innovation before application to low-level aqueous wastes. Costs would be low, of the order of magnitude of 10 -4 mill/kWh. The environmental impact of normal deep-well disposal would be small, compared with dispersal to the atmosphere or to surface streams; abnormal operation would not be expected to produce catastrophic results. Geologically suitable sites are abundant in the U.S., but a well would best be co-located with the fuel-reprocessing plant where the LLAW is produced. Legal and regulatory constraints now being developed will be the most important determinants of the feasibility of applying the method

  13. Deep levels in metamorphic InAs/InGaAs quantum dot structures with different composition of the embedding layers

    Science.gov (United States)

    Golovynskyi, S.; Datsenko, O.; Seravalli, L.; Kozak, O.; Trevisi, G.; Frigeri, P.; Babichuk, I. S.; Golovynska, I.; Qu, Junle

    2017-12-01

    Deep levels in metamorphic InAs/In x Ga1-x As quantum dot (QD) structures are studied with deep level thermally stimulated conductivity (TSC), photoconductivity (PC) and photoluminescence (PL) spectroscopy and compared with data from pseudomorphic InGaAs/GaAs QDs investigated previously by the same techniques. We have found that for a low content of indium (x = 0.15) the trap density in the plane of self-assembled QDs is comparable or less than the one for InGaAs/GaAs QDs. However, the trap density increases with x, resulting in a rise of the defect photoresponse in PC and TSC spectra as well as a reduction of the QD PL intensity. The activation energies of the deep levels and some traps correspond to known defect complexes EL2, EL6, EL7, EL9, and EL10 inherent in GaAs, and three traps are attributed to the extended defects, located in InGaAs embedding layers. The rest of them have been found as concentrated mainly close to QDs, as their density in the deeper InGaAs buffers is much lower. This an important result for the development of light-emitting and light-sensitive devices based on metamorphic InAs QDs, as it is a strong indication that the defect density is not higher than in pseudomorphic InAs QDs.

  14. Dual deep modeling: multi-level modeling with dual potencies and its formalization in F-Logic.

    Science.gov (United States)

    Neumayr, Bernd; Schuetz, Christoph G; Jeusfeld, Manfred A; Schrefl, Michael

    2018-01-01

    An enterprise database contains a global, integrated, and consistent representation of a company's data. Multi-level modeling facilitates the definition and maintenance of such an integrated conceptual data model in a dynamic environment of changing data requirements of diverse applications. Multi-level models transcend the traditional separation of class and object with clabjects as the central modeling primitive, which allows for a more flexible and natural representation of many real-world use cases. In deep instantiation, the number of instantiation levels of a clabject or property is indicated by a single potency. Dual deep modeling (DDM) differentiates between source potency and target potency of a property or association and supports the flexible instantiation and refinement of the property by statements connecting clabjects at different modeling levels. DDM comes with multiple generalization of clabjects, subsetting/specialization of properties, and multi-level cardinality constraints. Examples are presented using a UML-style notation for DDM together with UML class and object diagrams for the representation of two-level user views derived from the multi-level model. Syntax and semantics of DDM are formalized and implemented in F-Logic, supporting the modeler with integrity checks and rich query facilities.

  15. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    NARCIS (Netherlands)

    Liu, X.; Qin, S.; Rijpkema, M.J.P.; Luo, J.; Fernandez, G.S.E.

    2010-01-01

    BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly

  16. Preliminary analysis on the disposal of high-level radioactive wastes in geological formations of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Mattos, Luis Antonio Terribile de

    1981-01-01

    Several studies show that deep geological formations are the most promising solution - technical and economical - for the safe disposal of the high-level radioactive wastes produced by the nuclear industry. In order to obtain the necessary information to assess on the use of geological sites in Brazil - for the disposal of high-level radioactive waste generated by the brazilian nuclear industry - a careful survey on the basalt and granite rocks of Sao Paulo State was made. The data obtained were evaluated according to guidelines established by the International Atomic Energy Agency. The favourable and unfavourable characteristics of the basalts, granites and their respective occurrence areas in the Sao Paulo state territory - as potential waste disposal sites - were analysed. This preliminary and regional characterization is not a conclusive study whether these two rocks types are definitively the most suitable geological formations for use as nuclear waste repository or not. It is the subsidy for a more detailed analysis. Other factors such as social, political and economical aspects, ecological effects, engineering geology, heat generation rate of the waste, type of radiation emitted and corrosive nature of the waste must also be taken into account. (author)

  17. Hydrogeologic modelling in support of a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 16264

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Sykes, Eric A.; Jensen, Mark R.

    2009-01-01

    A Deep Geologic Repository (DGR) for Low and Intermediate Level radioactive waste has been proposed by Ontario Power Generation for the Bruce Nuclear Power Development site in Ontario, Canada. The DGR is to be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes a regional-scale geologic conceptual model for the DGR site and analyzes flow system evolution using the FRAC3DVSOPG flow and transport model. This provides a framework for the assembly and integration of site-specific geo-scientific data that explains and illustrates the factors that influence the predicted long-term performance of the geosphere barrier. In the geologic framework of the Province of Ontario, the Bruce DGR is located at the eastern edge of the Michigan Basin. Borehole logs covering Southern Ontario combined with site specific data have been used to define the structural contours at the regional and site scale of the 31 sedimentary strata that may be present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an 18.500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian is characterized by units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/l. The computational sequence involves the calculation of steady-state density independent flow that is used as the initial condition for the determination of pseudo-equilibrium for a density dependent flow system that has an initial TDS distribution developed from observed data. Long-term simulations that consider future glaciation scenarios include the impact of ice thickness and permafrost. The selection of the performance measure used to evaluate a groundwater system is important. The traditional metric of average water particle travel time is inappropriate for geologic units such as the Ordovician where solute transport is

  18. Production-Level Facial Performance Capture Using Deep Convolutional Neural Networks

    OpenAIRE

    Laine, Samuli; Karras, Tero; Aila, Timo; Herva, Antti; Saito, Shunsuke; Yu, Ronald; Li, Hao; Lehtinen, Jaakko

    2016-01-01

    We present a real-time deep learning framework for video-based facial performance capture -- the dense 3D tracking of an actor's face given a monocular video. Our pipeline begins with accurately capturing a subject using a high-end production facial capture pipeline based on multi-view stereo tracking and artist-enhanced animations. With 5-10 minutes of captured footage, we train a convolutional neural network to produce high-quality output, including self-occluded regions, from a monocular v...

  19. Exploring the Deep-Level Reasoning Questions Effect during Vicarious Learning among Eighth to Eleventh Graders in the Domains of Computer Literacy and Newtonian Physics

    Science.gov (United States)

    Gholson, Barry; Witherspoon, Amy; Morgan, Brent; Brittingham, Joshua K.; Coles, Robert; Graesser, Arthur C.; Sullins, Jeremiah; Craig, Scotty D.

    2009-01-01

    This paper tested the deep-level reasoning questions effect in the domains of computer literacy between eighth and tenth graders and Newtonian physics for ninth and eleventh graders. This effect claims that learning is facilitated when the materials are organized around questions that invite deep-reasoning. The literature indicates that vicarious…

  20. Using environmental isotopes along with major hydro-geochemical compositions to assess deep groundwater formation and evolution in eastern coastal China

    Science.gov (United States)

    Xu, Naizheng; Gong, Jianshi; Yang, Guoqiang

    2018-01-01

    Hydrochemical analysis and environmental isotopic tracing are successfully applied to study groundwater evolution processes. Located in eastern China, the Jiangsu Coastal Plain is characterized by an extensively exploited deep groundwater system, and groundwater salinization has become the primary water environmental problem. This paper provides a case study on the use of a hydrochemical and environmental isotopic approach to assess possible mixing and evolution processes at Yoco Port, Jiangsu Province, China. Hydrochemical and isotopic patterns of deep groundwater allow one to distinguish different origins in deep water systems. HCO3- is the dominant anion in the freshwater samples, whereas Na+ and Cl- are the dominant major ions in the saline samples. According to δ18O, δ2H and 14C dating, the fresh water is derived from precipitation under a colder climate during the Glacial Maximum (Dali Glacial), while the saline groundwater is influenced by glacial-interglacial cycles during the Holocene Hypsithermal. The δ18O, δ2H and 3H data confirm that deep groundwater in some boreholes is mixed with overlying saline water. The deep groundwater reservoir can be divided into a saline water sector and a fresh water sector, and each show distinct hydrochemical and isotopic compositions. The saline groundwater found in the deep aquifer cannot be associated with present seawater intrusion. Since the Last Glacial Maximum in the Late Pleistocene, the deep groundwater flow system has evolved to its current status with the decrease in ice cover and the rising of sea level. However, the hydraulic connection is strengthened by continuous overexploitation, and deep groundwater is mixed with shallow groundwater at some points.

  1. AlxGa1--xN/GaN band offsets determined by deep-level emission

    International Nuclear Information System (INIS)

    Hang, D. R.; Chen, C. H.; Chen, Y. F.; Jiang, H. X.; Lin, J. Y.

    2001-01-01

    We present studies of the compositional dependence of the optical properties of Al x Ga 1-x N(0 x Ga 1-x N. As aluminum concentration increases, the color of the band changes from yellow (2.2 eV) to blue (2.6 eV). The shift was less than that of the band gap. Together with previously published studies, it implies that the deep acceptor level is pinned to a common reference level to both materials, thus the deep level responsible for the yellow emission is used as a common reference level to determine the band alignment in Al x Ga 1-x N/GaN heterojunctions. Combining with the near-band-edge modulation spectra, the estimated ratio of conduction-to-valence band discontinuity is 65:35. Our results are close to the values obtained from PL measurements on Al 0.14 Ga 0.86 N/GaN quantum wells and those calculated by linear muffin-tin orbital method and linearized augmented plane wave method. copyright 2001 American Institute of Physics

  2. Guidelines for the operation and closure of deep geological repositories for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-10-01

    The operation and closure of a deep geological repository for the disposal of high level and alpha bearing wastes is a long term project involving many disciplines. This unique combination of nuclear operations in a deep underground location will require careful planning by the operating organization. The basic purpose of the operation stage of the deep repository is to ensure the safe disposal of the radioactive wastes. The purpose of the closure stage is to ensure that the wastes are safely isolated from the biosphere, and that the surface region can be returned to normal use. During these two stages of operation and closure, it is essential that both workers and the public are safely protected from radiation hazards, and that workers are protected from the hazards of working underground. For these periods of the repository, it is essential to carry out monitoring for purposes of radiological protection, and to continue testing and investigations to provide data for repository performance confirmation and for final safety assessment. Over the lengthy stages of operation and closure, there will be substantial feedback of experience and generation of site data. These will lead both to improved quality of operation and a better understanding of the site characteristics, thereby enhancing the confidence in the ability of the repository system to isolate the waste and protect future generations. 15 refs

  3. Deep level transient spectroscopic analysis of p/n junction implanted with boron in n-type silicon substrate

    Science.gov (United States)

    Wakimoto, Hiroki; Nakazawa, Haruo; Matsumoto, Takashi; Nabetani, Yoichi

    2018-04-01

    For P-i-N diodes implanted and activated with boron ions into a highly-resistive n-type Si substrate, it is found that there is a large difference in the leakage current between relatively low temperature furnace annealing (FA) and high temperature laser annealing (LA) for activation of the p-layer. Since electron trap levels in the n-type Si substrate is supposed to be affected, we report on Deep Level Transient Spectroscopy (DLTS) measurement results investigating what kinds of trap levels are formed. As a result, three kinds of electron trap levels are confirmed in the region of 1-4 μm from the p-n junction. Each DLTS peak intensity of the LA sample is smaller than that of the FA sample. In particular, with respect to the trap level which is the closest to the silicon band gap center most affecting the reverse leakage current, it was not detected in LA. It is considered that the electron trap levels are decreased due to the thermal energy of LA. On the other hand, four kinds of trap levels are confirmed in the region of 38-44 μm from the p-n junction and the DLTS peak intensities of FA and LA are almost the same, considering that the thermal energy of LA has not reached this area. The large difference between the reverse leakage current of FA and LA is considered to be affected by the deep trap level estimated to be the interstitial boron.

  4. Determination of deep-level impurities and their effects on the small-single and LF noise properties of ion-implanted GaAs MESFETs

    International Nuclear Information System (INIS)

    Sriram, S.; Kim, B.; Ghosh, P.K.; Das, M.B.; Pennsylvania State Univ., University Park; Pennsylvania State Univ., University Park

    1982-01-01

    A large number of deep levels, with energies ranging from Esub(c)-0.19eV to Esub(c)-0.9eV, have been identified and characterized using ion-implanted MESFET's on undoped and Cr-doped LEC-grown semi-insulating GaAs substrates. Measurement techniques used include deep level transient (DLTS) and steady state spectroscopic (DLSS) methods. Large capture cross-section values are obtained for levels below Esub(c)-0.5eV, possibly due to high electric field. Spectral densities of LF noise with distinct bulges have been shown to be related to deep levels. In some samples, natural deep level related oscillations have been observed and their ionization energies have been determined. (author)

  5. Feasibility of high level radioactive waste disposal in deep sea sediments

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1987-01-01

    For the past ten years, an international program has been conducted to investigate the concept feasibility for disposing of spent nuclear fuel waste in deep ocean sediments. These studies by the Seabed Working Group were coordinated by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. Penetrators have been considered as the primary method of waste emplacement. This required emphasis on studies of the nature of the plastic sediments which would form the primary barrier to the release of radionuclides into the biosphere. Site qualification guidelines, included criteria for tectonic and sedimentary stability over periods of at least 10 5 years. Using these guidelines two potential areas were identified: one in the Madeira Abyssal Plain; and one in the Southern Nares Abyssal Plain, both in the North Atlantic

  6. Studies on the deep-level defects in CdZnTe crystals grown by travelling heater method

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Boru; Jie, Wanqi; Wang, Tao; Xu, Lingyan; Yang, Fan; Yin, Liying; Fu, Xu [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Key Laboratory of Radiation Detection Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi (China); Nan, Ruihua [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi' an (China); Shaanxi Key Laboratory of Optoelectronic Functional Materials and Devices, School of Materials and Chemical Engineering, Xi' an Technological University, Xi' an (China)

    2017-05-15

    The variation of deep level defects along the axis of CZT:In ingots grown by Travelling Heater Method was investigated by the means of thermally stimulated current (TSC) spectra. Models for the reaction among different defects In, Te{sub i}, and V{sub Cd} were used to analyze the variation of deep level defects along the growth direction. It was found that the density of In dopant-related defects is lower in the tip, but those of Te antisites and Te interstitials are higher in the tip. The density of cadmium vacancy exhibits an initial increase followed by a decrease from the tip to tail of the ingot. In PL spectra, the intensities of (D{sub 0}, X), (DAP) and D{sub complex} peaks obviously increase from the tip to the tail, due to the increase of the density of In dopant-related defects (IN{sup +}{sub CD}), Cd vacancies, and impurities. The low concentration of net free holes was found by Hall measurements, and high resistivity with p-type conduction was demonstrated from I-V analysis. The mobility for electrons was found to increase significantly from 634 ± 26 cm{sup 2} V{sup -1} s{sup -1} in the tip to 860 ± 10 cm{sup 2} V{sup -1} s{sup -1} in the tail, due to the decrease of the deep level defect densities. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Intermediate levels of hippocampal activity appear optimal for associative memory formation.

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    Full Text Available BACKGROUND: It is well established that hippocampal activity is positively related to effective associative memory formation. However, in biological systems often optimal levels of activity are contrasted by both sub- and supra-optimal levels. Sub-optimal levels of hippocampal activity are commonly attributed to unsuccessful memory formation, whereas the supra-optimal levels of hippocampal activity related to unsuccessful memory formation have been rarely studied. It is still unclear under what circumstances such supra-optimal levels of hippocampal activity occur. To clarify this issue, we aimed at creating a condition, in which supra-optimal hippocampal activity is associated with encoding failure. We assumed that such supra-optimal activity occurs when task-relevant information is embedded in task-irrelevant, distracting information, which can be considered as noise. METHODOLOGY/PRINCIPAL FINDINGS: In the present fMRI study, we probed neural correlates of associative memory formation in a full-factorial design with associative memory (subsequently remembered versus forgotten and noise (induced by high versus low distraction as factors. Results showed that encoding failure was associated with supra-optimal activity in the high-distraction condition and with sub-optimal activity in the low distraction condition. Thus, we revealed evidence for a bell-shape function relating hippocampal activity with associative encoding success. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that intermediate levels of hippocampal activity are optimal while both too low and too high levels appear detrimental for associative memory formation. Supra-optimal levels of hippocampal activity seem to occur when task-irrelevant information is added to task-relevant signal. If such task-irrelevant noise is reduced adequately, hippocampal activity is lower and thus optimal for associative memory formation.

  8. Observations of CO{sub 2} clathrate hydrate formation and dissolution under deep-ocean disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Warzinski, R.P.; Cugini, A.V. [Department of Energy, Pittsburgh, PA (United States); Holder, G.D. [Univ. of Pittsburgh, Pittsburgh, PA (United States)

    1995-11-01

    Disposal of anthropogenic emissions of CO{sub 2} may be required to mitigate rises in atmospheric levels of this greenhouse gas if other measures are ineffective and the worst global warming scenarios begin to occur. Long-term storage of large quantities of CO{sub 2} has been proposed, but the feasibility of large land and ocean disposal options remains to be established. Determining the fate of liquid CO{sub 2} injected into the ocean at depths greater than 500 m is complicated by uncertainties associated with the physical behavior of CO{sub 2} under these conditions, in particular the possible formation of the ice-like CO{sub 2} clathrate hydrate. Resolving this issue is key to establishing the technical feasibility of this option. Experimental and theoretical work in this area is reported.

  9. Behavior of deep level defects on voltage-induced stress of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.W.; Cho, S.E. [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of); Jeong, J.H. [Solar Cell Center, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Cho, H.Y., E-mail: hycho@dongguk.edu [Department of Physics and Semiconductor Science, Dongguk University, Seoul (Korea, Republic of)

    2015-05-01

    The behavior of deep level defects by a voltage-induced stress for CuInGaSe{sub 2} (CIGS) solar cells has been investigated. CIGS solar cells were used with standard structures which are Al-doped ZnO/i-ZnO/CdS/CIGSe{sub 2}/Mo on soda lime glass, and that resulted in conversion efficiencies as high as 16%. The samples with the same structure were isothermally stressed at 100 °C under the reverse voltages. The voltage-induced stressing in CIGS samples causes a decrease in the carrier density and conversion efficiency. To investigate the behavior of deep level defects in the stressed CIGS cells, photo-induced current transient spectroscopy was utilized, and normally 3 deep level defects (including 2 hole traps and 1 electron trap) were found to be located at 0.18 eV and 0.29 eV above the valence band maximum (and 0.36 eV below the conduction band). In voltage-induced cells, especially, it was found that the decrease of the hole carrier density could be responsible for the increase of the 0.29 eV defect, which is known to be observed in less efficient CIGS solar cells. And the carrier density and the defects are reversible at least to a large extent by resting at room-temperature without the bias voltage. From optical capture kinetics in photo-induced current transient spectroscopy measurement, the types of defects could be distinguished into the isolated point defect and the extended defect. In this work, it is suggested that the increase of the 0.29 eV defect by voltage-induced stress could be due to electrical activation accompanied by a loss of positive ion species and the activated defect gives rise to reduction of the carrier density. - Highlights: • We investigated behavior of deep level defects by voltage-induced stress. • Defect generation could affect the decrease of the conversion efficiency of cells. • Defect generation could be electrically activated by a loss of positive ion species. • Type of defects could be studied with models of point defects

  10. Inversion of Qubit Energy Levels in Qubit-Oscillator Circuits in the Deep-Strong-Coupling Regime

    Science.gov (United States)

    Yoshihara, F.; Fuse, T.; Ao, Z.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Aoki, T.; Koshino, K.; Semba, K.

    2018-05-01

    We report on experimentally measured light shifts of superconducting flux qubits deep-strongly coupled to L C oscillators, where the coupling constants are comparable to the qubit and oscillator resonance frequencies. By using two-tone spectroscopy, the energies of the six lowest levels of each circuit are determined. We find huge Lamb shifts that exceed 90% of the bare qubit frequencies and inversions of the qubits' ground and excited states when there are a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.

  11. The Methodological Approach to Determining the Level of Formation and Provision of Enterprise Personnel Security

    Directory of Open Access Journals (Sweden)

    Gavkalova Nataliia L.

    2016-11-01

    Full Text Available The aim of the article is to substantiate the methodical approach to determining the level of formation and provision of enterprise personnel security. By analyzing, systematizing and generalizing scientific achievements of many scientists, approaches to the evaluation of personnel security at the enterprise were considered, a set of indices for evaluation of personnel security was defined. There justified the urgency of creating a comprehensive approach to evaluation of personnel security that includes implementation of the following stages: defining a list of indices corresponding to the level of formation and provision of personnel security with the help of the expert evaluation method; calculating integral indices of personnel security for each component and the corresponding level by means of the taxonomic analysis; grouping enterprises by the level of formation and provision of personnel security with the use of the cluster and discriminant analysis. It is found that the implementation of this approach will allow not only determining the level of formation and provision of personnel security at the enterprise, but also developing appropriate recommendations on improving its state. Prospects for further research in this direction are evaluation of conditions for formation and provision of personnel security at the enterprise, which will enable revealing negative destabilizing factors that influence personnel security

  12. In situ investigations on the impact of heat production and gamma radiation with regard to high-level radioactive waste disposal in rock salt formations

    International Nuclear Information System (INIS)

    Rothfuchs, T.

    1986-01-01

    Deep geological formations especially rock salt formations, are considered worldwide as suitable media for the final disposal of radioactive high-level waste (HLW). In the Federal Republic of Germany, the Institut fur Tieflagerung of the Gesellschaft fur Strahlen- und Umweltforschung mbH Munchen operates the Asse Salt Mine as a pilot facility for testing the behavior of an underground nuclear waste repository. The tests are performed using heat and radiation sources to simulate disposed HLW canisters. The measured data obtained since 1965 show that the thermomechanical response of the salt formation and the physical/chemical changes in the vicinity of disposal boreholes are not a serious concern and that their long-term consequences can be estimated based on theoretical considerations and in-situ investigations

  13. Study on deep levels in near-surface region of Hgsub(1-x)Cdsub(x)Te semiconductor

    International Nuclear Information System (INIS)

    Antonov, V.V.; Vojtsekhovskij, A.V.; Kazak, E.P.; Lanskaya, O.G.; Pakhorukov, V.A.

    1983-01-01

    Experimental investigation into MOS-structures on the basis of narrow-band n-Hgsub(1-x)Cdsub(X)Te semiconductor was conducted. Anode-oxide film, grown in 0.1N KOH solution in ethylenglycol was used as dielectric laer, olt-farad characteristics of the MOS- structures, measured, at different frequencies of test voltage, testify to the presence of deep monoenergetic levels (Esub(t)) in near surface region of semicondUctor located within the limits of the energy gap of Hgsub(1-x)Cdsub(x)Te. Two types of levels are observed in the n-Hgsub(1-x)Cdsub(x)Te-base MOS-structures at x approximately equal to 0.21: Isub(t)=0.105-0.096 eV and Esub(t)=0.045-0.042 eV (with respect to the valent zone ceiling). The frequency dependence of the equivalent parallel conductivity of the Hgsub(1-x)Cdsub(x)Te-base MOS-structure different voltages on a field electrode was used to show, that the observed deep level has the bulk nature. Results of numeral estimations of the state densities on the impurity center and of capture cross-section of a positive charge (deltasub(p)=6.7x10 -17 -1.4x10 -16 )sm 2 ) are given

  14. Clay 2001 dossier: progress report on feasibility studies and research into deep geological disposal of high-level, long-lived waste

    International Nuclear Information System (INIS)

    2001-12-01

    A French Act of Parliament passed on 30 December 1991 set out the main areas of research required to prepare solutions for the long-term management of high-level, long-lived radioactive waste. The three avenues of research listed in the Act included a feasibility study of the deep geological disposal of these waste, with responsibility for steering the study given to ANDRA, France National Agency for Radioactive Waste Management. Following government decisions taken in 1998, the study focused on two types of geological medium, clay and granite. The clay formations study is essentially based on results from an underground laboratory sited at the border between the Meuse and Haute-Marne departments, where the Callovo-Oxfordian argillite beds are being investigated. No site has yet been chosen for an underground laboratory for the granite study, so for the time being this will draw on generic work and on research carried out in laboratories outside France. ANDRA has decided to present an initial report on the results of its research programme, publishing a dossier on the work on clay formations in 2001 with a second dossier covering the work on granite due for release in 2002. This dossier is thus a review of the work carried out by ANDRA on the feasibility study into a radioactive waste repository in a clay formation. It represents one step in a process of studies and research work leading up to the submission of a report due in 2005 containing ANDRA conclusions on the feasibility of a repository in the clay formation. (author)

  15. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  16. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  17. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, P

    2003-11-01

    This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the {sup 234}U/{sup 238}U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation in the current settings. Conversely, ({sup 234}U/{sup 238}U) disequilibria are systematically observed within zones, located in the surrounding carbonate formations, that are characterized by pressure dissolution structures (stylolites or dissolution seams). These disequilibria provide evidence for a discrete uranium relocation during the last two million years in the vicinity of stylolitic structures. This is a surprising result since it is generally supposed that these deep, low permeability, compact formations behave as closed system at the time scale of the U-series. (author)

  18. Tracing of natural radionuclides mobility in deep sedimentary environment using radioactive ({sup 234}U/{sup 238}U) disequilibria: application to the Mesozoic formations of the Eastern part of the Paris Basin; Tracage de la mobilite des radionucleides naturels en milieu sedimentaire profond a l'aide des desequilibres radioactifs ({sup 234}U/{sup 238}U): application aux formations mesozoiques de l'est du Bassin de Paris

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, P

    2003-11-01

    This thesis forms part of the geological investigations undertaken by the French agency for nuclear waste management, ANDRA, around the Meuse/Haute-Marne Underground Research Laboratory (URL) located in the Eastern part of the Paris Basin in order to evaluate the feasibility of high-level radioactive waste repository in deep argilite formations. The aim of the study is to examine the radionuclide migration in the deep Callovo-Oxfordian target argilite layer and its surrounding low- permeability Bathonian and Oxfordian limestone formations in order to assess the long term confining capacities of the sedimentary series. This study is based on measurement of radioactive disequilibria within U-series by Multiple- Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). The high precision and accuracy achieved allowed to demonstrate the {sup 234}U/{sup 238}U radioactive equilibrium in the Callovo-Oxfordian argilites. This result shows the uranium immobility in the target formation and provides a strong evidence for the current chemical stability and closure of the system for uranium and most probably for the other actinides. This is a fundamental result with respect to the problematic of disposal of high level radioactive waste in deep geological formation since it provides a in situ indication of the confining capacities of the clayey target formation in the current settings. Conversely, ({sup 234}U/{sup 238}U) disequilibria are systematically observed within zones, located in the surrounding carbonate formations, that are characterized by pressure dissolution structures (stylolites or dissolution seams). These disequilibria provide evidence for a discrete uranium relocation during the last two million years in the vicinity of stylolitic structures. This is a surprising result since it is generally supposed that these deep, low permeability, compact formations behave as closed system at the time scale of the U-series. (author)

  19. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  20. Feasibility of high level radioactive waste disposal in deep sea sediments

    International Nuclear Information System (INIS)

    Buckley, D.E.

    1987-01-01

    For the past ten years, an international program has been conducted to investigate the concept feasibility for disposing of spent nuclear fuel waste in deep ocean sediments. These studies by the Seabed Working Group were coordinated by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development. Penetrators have been considered as the primary method of waste emplacement. This required emphasis on studies of the nature of the plastic sediments which would form the primary barrier to the release of radionuclides into the biosphere. Site qualification guidelines, included criteria for tectonic and sedimentary stability over periods of at least 10 5 years. Using these guidelines two potential areas were identified: one in the Madeira Abyssal Plain; and one in the Southern Nares Abyssal Plain, both in the North Atlantic. The sediment barrier properties are quite different in terms of dominant mineralogy (carbonates in MAP, and silicous clays in SNAP). The MAP is dominated by thick wide-spread turbidites, but SNAP is dominated by thin discontinuous turbidites

  1. Growth temperature and dopant species effects on deep levels in Si grown by low temperature molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chung, Sung-Yong; Jin, Niu; Rice, Anthony T.; Berger, Paul R.; Yu, Ronghua; Fang, Z-Q.; Thompson, Phillip E.

    2003-01-01

    Deep-level transient spectroscopy measurements were performed in order to investigate the effects of substrate growth temperature and dopant species on deep levels in Si layers during low-temperature molecular beam epitaxial growth. The structures studied were n + -p junctions using B doping for the p layer and p + -n junctions using P doping for the n layer. While the density of hole traps H1 (0.38-0.41 eV) in the B-doped p layers showed a clear increase with decreasing growth temperature from 600 to 370 degree sign C, the electron trap density was relatively constant. Interestingly, the minority carrier electron traps E1 (0.42-0.45 eV) and E2 (0.257 eV), found in the B-doped p layers, are similar to the majority carrier electron traps E11 (0.48 eV) and E22 (0.269 eV) observed in P-doped n layers grown at 600 degree sign C. It is hypothesized that these dominating electron traps are associated with pure divacancy defects and are independent of the dopant species

  2. Radiation-induced bistable centers with deep levels in silicon n{sup +}–p structures

    Energy Technology Data Exchange (ETDEWEB)

    Lastovskii, S. B., E-mail: lastov@ifttp.bas-net.by [Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus (Belarus); Markevich, V. P. [Manchester University, Photon Science Institute (United Kingdom); Yakushevich, H. S.; Murin, L. I. [Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus (Belarus); Krylov, V. P. [Vladimir State University (Russian Federation)

    2016-06-15

    The method of deep level transient spectroscopy is used to study electrically active defects in p-type silicon crystals irradiated with MeV electrons and α particles. A new radiation-induced defect with the properties of bistable centers is determined and studied. After keeping the irradiated samples at room temperature for a long time or after their short-time annealing at T ∼ 370 K, this defect does not display any electrical activity in p-type silicon. However, as a result of the subsequent injection of minority charge carriers, this center transforms into the metastable configuration with deep levels located at E{sub V} + 0.45 and E{sub V} + 0.54 eV. The reverse transition to the main configuration occurs in the temperature range of 50–100°C and is characterized by the activation energy ∼1.25 eV and a frequency factor of ∼5 × 10{sup 15} s{sup –1}. The determined defect is thermally stable at temperatures as high as T ∼ 450 K. It is assumed that this defect can either be a complex of an intrinsic interstitial silicon atom with an interstitial carbon atom or a complex consisting of an intrinsic interstitial silicon atom with an interstitial boron atom.

  3. DIAGNOSTICS OF LEVELS OF FORMATION OF FUTURE MUSIC TEACHERS’ ART REFLECTION

    Directory of Open Access Journals (Sweden)

    Zhang Jingjing

    2016-11-01

    Full Text Available Features of diagnostics of levels of formation of art reflection are justified in the article. Four levels of future music teachers’ art reflection are defined. These levels are based on the research measures of desire to master art reflection; the degree of understanding the nature and characteristics of art reflection; measures of the emotional involvement into art reflection; degree of possession of the necessary skills for art reflection; formation of professionalism in music and performing activities. They are initial, satisfactory, sufficient and optimal. The importance of formation of future music teachers’ art reflection is considered as the basis for professional development, self-regulation on the acquisition of implementing art knowledge. The formation of art reflection requires the creation and implementation of specific methods of diagnostics of future music teachers’ art reflection. The article is dedicated to the problem of developing and testing diagnostic methods of formation of future music teachers’ art reflection. While writing the article there methods of analysis, synthesis, method of systematization of the material, the principles of objectivity and scientific character are being used. Diagnostics and analysis of the levels of future music teachers’ art reflection shows that the vast majority of students have art reflection at a satisfactory level (67.24%. 22.41% of students are found to have the initial level of formation of art reflection. Only 10.34% of students are found to have the sufficient level of art reflection. There are no students having the optimal level of art reflection. The author concluded that educational and behavior tasks, which the future music teachers have, are identified while testing the features of formation of future music teachers’ art reflection. They cause picking out the most appropriate areas and focus on the most prospective and effective methods of formation in the course of

  4. Decomposition of groundwater level fluctuations using transfer modelling in an area with shallow to deep unsaturated zones

    Science.gov (United States)

    Gehrels, J. C.; van Geer, F. C.; de Vries, J. J.

    1994-05-01

    Time series analysis of the fluctuations in shallow groundwater levels in the Netherlands lowlands have revealed a large-scale decline in head during recent decades as a result of an increase in land drainage and groundwater withdrawal. The situation is more ambiguous in large groundwater bodies located in the eastern part of the country, where the unsaturated zone increases from near zero along the edges to about 40 m in the centre of the area. As depth of the unsaturated zone increases, groundwater level reacts with an increasing delay to fluctuations in climate and influences of human activities. The aim of the present paper is to model groundwater level fluctuations in these areas using a linear stochastic transfer function model, relating groundwater levels to estimated precipitation excess, and to separate artificial components from the natural groundwater regime. In this way, the impact of groundwater withdrawal and the reclamation of a 1000 km 2 polder area on the groundwater levels in the adjoining higher ground could be assessed. It became evident that the linearity assumption of the transfer functions becomes a serious drawback in areas with the deepest groundwater levels, because of non-linear processes in the deep unsaturated zone and the non-synchronous arrival of recharge in the saturated zone. Comparison of the results from modelling the influence of reclamation with an analytical solution showed that the lowering of groundwater level is partly compensated by reduced discharge and therefore is less than expected.

  5. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along

  6. Correlation of Salivary Statherin and Calcium Levels with Dental Calculus Formation: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Deepak Gowda Sadashivappa Pateel

    2017-01-01

    Full Text Available Background. Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. Methods. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20–55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA and statherin levels by using ELISA Kit (Cusabio Biotech. Results. Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96 μg/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups (p<0.05. Conclusions. Our preliminary data indicates that statherin could possibly play a role in the formation of dental calculus.

  7. Deep levels in SiC:V by high temperature transport measurements

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, W.C.; Perrin, R.; Goldstein, J.; Roth, M.; Ahoujja, M.; Smith, S.R.; Solomon, J.S.; Landis, G.; Jenny, J. [Air Force Materials Lab., Wright-Patterson AFB, OH (United States). Research and Technology Div.; Evwaraye, A.O. [Univ. of Dayton, Dayton, OH (United States); Hobgood, H.McD.; Augustine, G.; Balakrishna, V. [Northrop Grumman Corp., Science and Technology Center, Pittsburgh, PA (United States)

    1998-06-01

    Vanadium doped 6H and 4H SiC have been studied with high temperature Hall effect and resistivity, optical absorption and SIMS. The 6H samples were found to exhibit three thermal activation energies, 0.35 eV, 0.7 eV and near mid-gap. The 0.3 eV level is due to thermal ionization of residual uncompensated boron. We attribute the mid-gap level to thermal ionization of the vanadium donor level. The 0.7 eV activation is believed to be due to transfer of electrons from the ionized vanadium acceptor levels to the conduction band. These results suggest that the vanadium donor and acceptor levels are located at E{sub c}-1.42 eV and E{sub V} + 2.4 eV respectively. (orig.) 7 refs.

  8. Effect of antimony on the deep-level traps in GaInNAsSb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Muhammad Monirul, E-mail: islam.monir.ke@u.tsukuba.ac.jp; Miyashita, Naoya; Ahsan, Nazmul; Okada, Yoshitaka [Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro ku, Tokyo 153-8904 (Japan); Sakurai, Takeaki; Akimoto, Katsuhiro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-09-15

    Admittance spectroscopy has been performed to investigate the effect of antimony (Sb) on GaInNAs material in relation to the deep-level defects in this material. Two electron traps, E1 and E2 at an energy level 0.12 and 0.41 eV below the conduction band (E{sub C}), respectively, were found in undoped GaInNAs. Bias-voltage dependent admittance confirmed that E1 is an interface-type defect being spatially localized at the GaInNAs/GaAs interface, while E2 is a bulk-type defect located around mid-gap of GaInNAs layer. Introduction of Sb improved the material quality which was evident from the reduction of both the interface and bulk-type defects.

  9. Basic reasons and the practice of using deep water-bearing levels for liquid radioactive waste disposal

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    1978-01-01

    Speculations are presented on the development and organization of liquid radioactive waste underground disposal in deep water-bearing levels completely isolated from other levels and the surface. Major requirements are formulated that are laid down to low-, moderate-and high-radioactive wastes subject to the disposal. Geological and hydrological conditions as well as the scheme and design features of pilot field facilities are described, where works on high-active waste disposal were started in 1972. In 1972 and 1973 450 and 1050 m 3 of the wastes (7.5 and 53 MCi) respecrespectively were disposed. The first results of the pilot disposal and the 3-year surveillance over the plate-collector condition and the performance of the facilities have reaffirmed the feasibility, medical and radiation safety and economic attractiveness of the disposal of wastes with up to 10-25 Ci/l specific activity

  10. Physical simulation of gas reservoir formation in the Liwan 3-1 deep-water gas field in the Baiyun sag, Pearl River Mouth Basin

    Directory of Open Access Journals (Sweden)

    Gang Gao

    2015-01-01

    Full Text Available To figure out the process and controlling factors of gas reservoir formation in deep-waters, based on an analysis of geological features, source of natural gas and process of reservoir formation in the Liwan 3-1 gas field, physical simulation experiment of the gas reservoir formation process has been performed, consequently, pattern and features of gas reservoir formation in the Baiyun sag has been found out. The results of the experiment show that: ① the formation of the Liwan 3-1 faulted anticline gas field is closely related to the longstanding active large faults, where natural gas is composed of a high proportion of hydrocarbons, a small amount of non-hydrocarbons, and the wet gas generated during highly mature stage shows obvious vertical migration signs; ② liquid hydrocarbons associated with natural gas there are derived from source rock of the Enping & Zhuhai Formation, whereas natural gas comes mainly from source rock of the Enping Formation, and source rock of the Wenchang Formation made a little contribution during the early Eocene period as well; ③ although there was gas migration and accumulation, yet most of the natural gas mainly scattered and dispersed due to the stronger activity of faults in the early period; later as fault activity gradually weakened, gas started to accumulate into reservoirs in the Baiyun sag; ④ there is stronger vertical migration of oil and gas than lateral migration, and the places where fault links effective source rocks with reservoirs are most likely for gas accumulation; ⑤ effective temporal-spatial coupling of source-fault-reservoir in late stage is the key to gas reservoir formation in the Baiyun sag; ⑥ the nearer the distance from a trap to a large-scale fault and hydrocarbon source kitchen, the more likely gas may accumulate in the trap in late stage, therefore gas accumulation efficiency is much lower for the traps which are far away from large-scale faults and hydrocarbon source

  11. Deep uncertainty and broad heterogeneity in country-level social cost of carbon

    Science.gov (United States)

    Ricke, K.; Drouet, L.; Caldeira, K.; Tavoni, M.

    2017-12-01

    The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages expected from carbon dioxide (CO2) emissions. Recent estimates of SCC range from approximately 10/tonne of CO2 to as much as 1000/tCO2, but these have been computed at the global level. While useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damages and vast differences in country-level contributions to global SCC, as well as climate and socio-economic uncertainties, which are much larger at the regional level. For the first time, we estimate country-level contributions to SCC using recent climate and carbon-cycle model projections, empirical climate-driven economic damage estimations, and information from the Shared Socio-economic Pathways. Central specifications show high global SCC values (median: 417 /tCO2, 66% confidence intervals: 168 - 793 /tCO2) with country-level contributions ranging from -11 (-8 - -14) /tCO2 to 86 (50 - 158) /tCO2. We quantify climate-, scenario- and economic damage- driven uncertainties associated with the calculated values of SCC. We find that while the magnitude of country-level social cost of carbon is highly uncertain, the relative positioning among countries is consistent. Countries incurring large fractions of the global cost include India, China, and the United States. The share of SCC distributed among countries is robust, indicating climate change winners and losers from a geopolitical perspective.

  12. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History

    Science.gov (United States)

    Bouwens, R. J.; Illingworth, G. D.; Franx, Marijn; Ford, Holland

    2007-12-01

    We use the ACS BViz data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to find large samples of star-forming galaxies at z~4 and ~5 and to extend our previous z~6 sample. These samples contain 4671, 1416, and 627 B-, V-, and i-dropouts, respectively, and reach to extremely low luminosities [(0.01-0.04)L*z=3 or MUV~-16 to -17], allowing us to determine the rest-frame UV LF and faint-end slope α at z~4-6 to high accuracy. We find faint-end slopes α=-1.73+/-0.05, -1.66+/-0.09, and -1.74+/-0.16 at z~4, ~5, and ~6, respectively, suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We find that M*UV brightens considerably in the 0.7 Gyr from z~6 to ~4 (by ~0.7 mag from M*UV=-20.24+/-0.19 to -20.98+/-0.10). The observed increase in the characteristic luminosity over this range is almost identical to that expected for the halo mass function, suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in φ* is not significant. The UV luminosity density at z~6 is modestly lower than (0.45+/-0.09 times) that at z~4 (integrated to -17.5 mag) although a larger change is seen in the dust-corrected SFR density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes α found here suggest that lower luminosity galaxies play a significant role in reionizing the universe. Finally, recent search results for galaxies at z~7-8 are used to extend our estimates of the evolution of M* from z~7-8 to z~4. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs 9425, 9575, 9803, 9978, 10189, 10339, 10340, and 10632.

  13. Sandy berm and beach-ridge formation in relation to extreme sea-levels

    DEFF Research Database (Denmark)

    Bendixen, Mette; Clemmensen, Lars B; Kroon, Aart

    2013-01-01

    The formation of berms and their transformation into beach ridges in a micro-tidal environment is coupled to wave run-up and overtopping during extreme sea levels. A straight-forward comparison between extreme sea levels due to storm-surges and active berm levels is impossible in the semi...... prograding spit on the south-eastern Baltic shores of Zealand, Denmark. The modern, sandy beach at this location consists of a beachface with a shallow incipient berm, a mature berm, and a dune-covered beach ridge. It borders a beach-ridge plain to the west, where more than 20 N–S oriented beach ridges...... and swales are present. Measured water-level data from 1991 to 2012 and topographical observations, carried out during fair weather period and during a storm event, provided the basis for a conceptual model exhibiting berm formation and transformation into the local beach-ridge system. The character...

  14. DEEP RADIO CONTINUUM IMAGING OF THE DWARF IRREGULAR GALAXY IC 10: TRACING STAR FORMATION AND MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Heesen, V.; Brinks, E.; Rau, U.; Rupen, M. P.; Hunter, D. A.

    2011-01-01

    We exploit the vastly increased sensitivity of the Expanded Very Large Array to study the radio continuum and polarization properties of the post-starburst, dwarf irregular galaxy IC 10 at 6 cm, at a linear resolution of ∼50 pc. We find close agreement between radio continuum and Hα emission, from the brightest H II regions to the weaker emission in the disk. A quantitative analysis shows a strictly linear correlation, where the thermal component contributes 50% to the total radio emission, the remainder being due to a non-thermal component with a surprisingly steep radio spectral index of between -0.7 and -1.0 suggesting substantial radiation losses of the cosmic-ray electrons. We confirm and clearly resolve polarized emission at the 10%-20% level associated with a non-thermal superbubble, where the ordered magnetic field is possibly enhanced due to the compression of the expanding bubble. A fraction of the cosmic-ray electrons has likely escaped because the measured radio emission is a factor of three lower than what is suggested by the Hα-inferred star formation rate.

  15. Level of Processing Modulates the Neural Correlates of Emotional Memory Formation

    Science.gov (United States)

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2011-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on…

  16. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    Science.gov (United States)

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  17. Numerical investigations on the link between the 60 Fe anomaly in a deep-sea ferromanganese crust and the formation of the Local Bubble

    OpenAIRE

    Schulreich, Michael Mathias

    2015-01-01

    Some time ago, an enhanced concentration of the radionuclide 60Fe was discovered in a deep-sea ferromanganese crust, isolated in layers dating from about 2.2 Myr ago. Since 60Fe (whose half-life is about 2.6 Myr) is not naturally produced on Earth, such an excess can only be attributed to extraterrestrial sources, particularly one or several nearby supernovae in the recent past. It has been speculated that these supernovae might have been involved in the formation of the Local Bubble, a soft ...

  18. Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure

    International Nuclear Information System (INIS)

    Zhu Qing; Ma Xiao-Hua; Chen Wei-Wei; Hou Bin; Zhu Jie-Jie; Zhang Meng; Chen Li-Xiang; Cao Yan-Rong; Hao Yue

    2016-01-01

    Deep level transient spectroscopy (DLTS) as a method to investigate deep traps in AlGaN/GaN heterostructure or high electron mobility transistors (HEMTs) has been widely utilized. The DLTS measurements under different bias conditions are carried out in this paper. Two hole-like traps with active energies of E v + 0.47 eV, and E v + 0.10 eV are observed, which are related to surface states. The electron traps with active energies of E c − 0.56 eV are located in the channel, those with E c − 0.33 eV and E c − 0.88 eV are located in the AlGaN layer. The presence of surface states has a strong influence on the detection of electron traps, especially when the electron traps are low in density. The DLTS signal peak height of the electron trap is reduced and even disappears due to the presence of plentiful surface state. (paper)

  19. Deep-level transient spectroscopy on an amorphous InGaZnO{sub 4} Schottky diode

    Energy Technology Data Exchange (ETDEWEB)

    Chasin, Adrian, E-mail: adrian.chasin@imec.be; Bhoolokam, Ajay; Nag, Manoj; Genoe, Jan; Heremans, Paul [imec, Kapeldreef 75, 3001 Leuven (Belgium); ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium); Simoen, Eddy [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, 9000 Gent (Belgium); Gielen, Georges [ESAT, KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven (Belgium)

    2014-02-24

    The first direct measurement is reported of the bulk density of deep states in amorphous IGZO (indium-gallium-zinc oxide) semiconductor by means of deep-level transient spectroscopy (DLTS). The device under test is a Schottky diode of amorphous IGZO semiconductor on a palladium (Pd) Schottky-barrier electrode and with a molybdenum (Mo) Ohmic contact at the top. The DLTS technique allows to independently measure the energy and spatial distribution of subgap states in the IGZO thin film. The subgap trap concentration has a double exponential distribution as a function energy, with a value of ∼10{sup 19} cm{sup −3} eV{sup −1} at the conduction band edge and a value of ∼10{sup 17} cm{sup −3} eV{sup −1} at an energy of 0.55 eV below the conduction band. Such spectral distribution, however, is not uniform through the semiconductor film. The spatial distribution of subgap states correlates well with the background doping density distribution in the semiconductor, which increases towards the Ohmic Mo contact, suggesting that these two properties share the same physical origin.

  20. Development of Human-level Decision Making Algorithm for NPPs through Deep Neural Networks : Conceptual Approach

    International Nuclear Information System (INIS)

    Kim, Seung Geun; Seong, Poong Hyun

    2017-01-01

    Development of operation support systems and automation systems are closely related to machine learning field. However, since it is hard to achieve human-level delicacy and flexibility for complex tasks with conventional machine learning technologies, only operation support systems with simple purposes were developed and high-level automation related studies were not actively conducted. As one of the efforts for reducing human error in NPPs and technical advance toward automation, the ultimate goal of this research is to develop human-level decision making algorithm for NPPs during emergency situations. The concepts of SL, RL, policy network, value network, and MCTS, which were applied to decision making algorithm for other fields are introduced and combined with nuclear field specifications. Since the research is currently at the conceptual stage, more research is warranted.

  1. Open high-level data formats and software for gamma-ray astronomy

    Science.gov (United States)

    Deil, Christoph; Boisson, Catherine; Kosack, Karl; Perkins, Jeremy; King, Johannes; Eger, Peter; Mayer, Michael; Wood, Matthew; Zabalza, Victor; Knödlseder, Jürgen; Hassan, Tarek; Mohrmann, Lars; Ziegler, Alexander; Khelifi, Bruno; Dorner, Daniela; Maier, Gernot; Pedaletti, Giovanna; Rosado, Jaime; Contreras, José Luis; Lefaucheur, Julien; Brügge, Kai; Servillat, Mathieu; Terrier, Régis; Walter, Roland; Lombardi, Saverio

    2017-01-01

    In gamma-ray astronomy, a variety of data formats and proprietary software have been traditionally used, often developed for one specific mission or experiment. Especially for ground-based imaging atmospheric Cherenkov telescopes (IACTs), data and software are mostly private to the collaborations operating the telescopes. However, there is a general movement in science towards the use of open data and software. In addition, the next-generation IACT instrument, the Cherenkov Telescope Array (CTA), will be operated as an open observatory. We have created a Github organisation at https://github.com/open-gamma-ray-astro where we are developing high-level data format specifications. A public mailing list was set up at https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro and a first face-to-face meeting on the IACT high-level data model and formats took place in April 2016 in Meudon (France). This open multi-mission effort will help to accelerate the development of open data formats and open-source software for gamma-ray astronomy, leading to synergies in the development of analysis codes and eventually better scientific results (reproducible, multi-mission). This write-up presents this effort for the first time, explaining the motivation and context, the available resources and process we use, as well as the status and planned next steps for the data format specifications. We hope that it will stimulate feedback and future contributions from the gamma-ray astronomy community.

  2. Effect of NOx level on secondary organic aerosol (SOA formation from the photooxidation of terpenes

    Directory of Open Access Journals (Sweden)

    R. C. Flagan

    2007-10-01

    Full Text Available Secondary organic aerosol (SOA formation from the photooxidation of one monoterpene (α-pinene and two sesquiterpenes (longifolene and aromadendrene is investigated in the Caltech environmental chambers. The effect of NOx on SOA formation for these biogenic hydrocarbons is evaluated by performing photooxidation experiments under varying NOx conditions. The NOx dependence of α-pinene SOA formation follows the same trend as that observed previously for a number of SOA precursors, including isoprene, in which SOA yield (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted decreases as NOx level increases. The NOx dependence of SOA yield for the sesquiterpenes, longifolene and aromadendrene, however, differs from that determined for isoprene and α-pinene; the aerosol yield under high-NOx conditions substantially exceeds that under low-NOx conditions. The reversal of the NOx dependence of SOA formation for the sesquiterpenes is consistent with formation of relatively low-volatility organic nitrates, and/or the isomerization of large alkoxy radicals leading to less volatile products. Analysis of the aerosol chemical composition for longifolene confirms the presence of organic nitrates under high-NOx conditions. Consequently the formation of SOA from certain biogenic hydrocarbons such as sesquiterpenes (and possibly large anthropogenic hydrocarbons as well may be more efficient in polluted air.

  3. Trace Fossils as Indicators of Depositional Sequence Boundaries in Lower Carboniferous Deep-Sea Fan Environment Moravice Formation, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lehotský, T.; Bábek, O.; Mikuláš, Radek; Zapletal, J.

    2002-01-01

    Roč. 14, - (2002), s. 59-60 ISSN 1210-9606. [Áelazno 2002. Meeting of the Czech Tectonic Studies Group /7./. Áelazno, 09.05.2002-12.05.2002] R&D Projects: GA ČR GA205/00/0118 Keywords : trace fossils * Carboniferous * Deep- Sea Environment Subject RIV: DB - Geology ; Mineralogy http://geolines.gli.cas.cz/fileadmin/volumes/volume14/G14-059.pdf

  4. Deep layer-resolved core-level shifts in the beryllium surface

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1993-01-01

    Core-level energy shifts for the beryllium surface region are calculated by means of a Green’s function technique within the tight-binding linear muffin-tin orbitals method. Both initial- and final-state effects in the core-ionization process are fully accounted for. Anomalously large energy shifts...

  5. China's deep geological disposal program for high level radioactive waste, background and status 1998

    International Nuclear Information System (INIS)

    Ju Wang; Xu Guoqing; Guo Yonghai

    2001-01-01

    This paper presents the background and progress made in the study of China's high level radioactive waste, including site screening, site evaluation, the study on radionuclide migration, bentonite, natural analogue studies, and performance assessment, etc. The study on Beishan area, the potential area for China's geological repository, is also presented in this paper. (author)

  6. "Complex Teaching Realities" and "Deep Rooted Cultural Traditions": Barriers to the Implementation and Internalisation of Formative Assessment in China

    Science.gov (United States)

    Poole, Adam; Adamson, Bob

    2016-01-01

    This article forms the first part of an Action Research project designed to incorporate formative assessment into the culture of learning of a bilingual school in Shanghai, China. It synthesises the empirical literature on formative assessment in China to establish some of the difficulties that teachers have faced in trying to incorporate this…

  7. The application of the csamt method in the tectonic transformation of the deep-level fore exploration in the shandongkeng area in Nanxiong basin

    International Nuclear Information System (INIS)

    Xu Zhan

    2010-01-01

    With the national policy efforts on the strengthening of mining exploration, uranium exploration has also ushered in its second s pring . The topic of the new round exploration is P rospect the deeply minerals . Therefore, the changes of the deep structure of the mining area are the premise to carry out survey work. This article states briefly the working principle and characteristics of CSAMT method. The Application of the CSAMT Method in the Tectonic Transformation of The Deep-Level Exploration in the Shangdongkeng area in Nanxiong basin expresses that the method has a good application and effectiveness in research of deep geological objectives. It provides design basis for the mining exploration of deep-level area. (authors)

  8. New particle formation at ground level and in the vertical column over the Barcelona area

    Science.gov (United States)

    Minguillón, M. C.; Brines, M.; Pérez, N.; Reche, C.; Pandolfi, M.; Fonseca, A. S.; Amato, F.; Alastuey, A.; Lyasota, A.; Codina, B.; Lee, H.-K.; Eun, H.-R.; Ahn, K.-H.; Querol, X.

    2015-10-01

    The vertical profiles (up to 975 m a.s.l.) of ultrafine and micronic particles across the planetary boundary layer and the free troposphere over a Mediterranean urban environment were investigated. Measurements were carried out using a tethered balloon equipped with a miniaturized condensation particle counter, a miniaturized optical particle counter, a micro-aethalometer, a rotating impactor, and meteorological instrumentation. Simultaneous ground measurements were carried out at an urban and a regional background site. New particle formation episodes initiating in the urban area were observed under high insolation conditions. The precursors were emitted by the city and urban photochemically-activated nucleation occurred both at high atmospheric levels (tens to hundreds of meters) and at ground level. The new particle formation at ground level was limited by the high particulate matter concentrations recorded during the morning traffic rush hours that increase the condensation sink and prevent new particle formation, and therefore restricted to midday and early afternoon. The aloft new particle formation occurred earlier as the thermally ascending polluted air mass was diluted. The regional background was only affected from midday and early afternoon when sea and mountain breezes transported the urban air mass after particle growth. These events are different from most new particle formation events described in literature, characterized by a regionally originated nucleation, starting early in the morning in the regional background and persisting with a subsequent growth during a long period. An idealized and simplified model of the spatial and time occurrence of these two types of new particle formation episodes into, around and over the city was elaborated.

  9. Sensitivity of on-resistance and threshold voltage to buffer-related deep level defects in AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Armstrong, Andrew M; Allerman, Andrew A; Baca, Albert G; Sanchez, Carlos A

    2013-01-01

    The influence of deep levels defects located in highly resistive GaN:C buffers on the on-resistance (R ON ) and threshold voltage (V th ) of AlGaN/GaN high electron mobility transistors (HEMTs) power devices was studied by a combined photocapacitance deep level optical spectroscopy (C-DLOS) and photoconductance deep level optical spectroscopy (G-DLOS) methodology as a function of electrical stress. Two carbon-related deep levels at 1.8 and 2.85 eV below the conduction band energy minimum were identified from C-DLOS measurements under the gate electrode. It was found that buffer-related defects under the gate shifted V th positively by approximately 10%, corresponding to a net areal density of occupied defects of 8 × 10 12 cm −2 . The effect of on-state drain stress and off-state gate stress on buffer deep level occupancy and R ON was also investigated via G-DLOS. It was found that the same carbon-related deep levels observed under the gate were also active in the access region. Off-state gate stress produced significantly more trapping and degradation of R ON (∼140%) compared to on-state drain stress (∼75%). Greater sensitivity of R ON to gate stress was explained by a more sharply peaked lateral distribution of occupied deep levels between the gate and drain compared to drain stress. The overall greater sensitivity of R ON compared to V th to buffer defects suggests that electron trapping is significantly greater in the access region compared to under the gate, likely due to the larger electric fields in the latter region. (invited paper)

  10. Correlation of Salivary Statherin and Calcium Levels with Dental Calculus Formation: A Preliminary Study.

    Science.gov (United States)

    Pateel, Deepak Gowda Sadashivappa; Gunjal, Shilpa; Math, Swarna Y; Murugeshappa, Devarasa Giriyapura; Nair, Sreejith Muraleedharan

    2017-01-01

    Salivary constituents have a wide range of functions including oral calcium homeostasis. Salivary proteins such as statherin inhibit crystal growth of calcium phosphate in supersaturated solutions and interact with several oral bacteria to adsorb on hydroxyapatite. Concurrently, saliva, which is supersaturated with respect to calcium phosphates, is the driving force for plaque mineralization and formation of calculus. Thus, the aim of the present study was to estimate and correlate salivary statherin and calcium concentration to the dental calculus formation. A cross-sectional study was conducted to assess the relationship between salivary statherin, calcium, and dental calculus among 70 subjects, aged 20-55 years. Subjects were divided into 3 groups based on the calculus scores as interpreted by Calculus Index which was followed by collection of whole saliva using Super•SAL™. Salivary calcium levels were assessed by calorimetric method using Calcium Assay kit (Cayman Chemical, Michigan, USA) and statherin levels by using ELISA Kit (Cusabio Biotech). Statherin levels showed a weak negative correlation with the calcium levels and with calculus formation. The mean salivary statherin and calcium concentration were found to be 0.96  μ g/ml and 3.87 mg/ml, respectively. Salivary statherin levels differed significantly among the three groups ( p dental calculus.

  11. The case for deep-sea disposal of low-level solid radioactive wastes

    International Nuclear Information System (INIS)

    Lewis, J.B.

    1983-01-01

    The scientific justification for the sea disposal of low-level solid radioactive wastes is summarized and the relevant national and international codes of practice and legislation are outlined. It is concluded that, since the amount of radioactivity disposed of in the oceans is very small compared with the natural radioactivity, the environmental hazard is small and sea dumping could be increased. (U.K.)

  12. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ( 18 O, 2 H, 13 C, 34 S, 87 Sr, 15 N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  13. Decommissioning of surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1978-11-01

    A methodology is presented in this paper to evaluate the decommissioning of the surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes. A cost/risk index (figure of merit), expressed as $/manrem, is proposed as an evaluation criteria. On the basis of this cost/risk index, we gain insight into the advisability of adapting certain decontamination design options into the original facility. Three modes are considered: protective storage, entombment, and dismantlement. Cost estimates are made for the direct labor involved in each of the alternative modes for a baseline design case. Similarly, occupational radiation exposures are estimated, with a larger degree of uncertainty, for each of the modes. Combination of these estimates produces the cost/risk index. To illustrate the methodology, an example using a preliminary baseline repository design is discussed

  14. Predicted peak temperature-rises around a high-level radioactive waste canister emplaced in the deep ocean bed

    International Nuclear Information System (INIS)

    Kipp, K.L.

    1978-06-01

    A simple mathematical model of heat conduction was used to evaluate the peak temperature-rise along the wall of a canister of high-level radioactive waste buried in deep ocean sediment. Three different amounts of vitrified waste, corresponding to standard Harvest, large Harvest, and AVM canisters, and three different waste loadings were studied. Peak temperature-rise was computed for the nine cases as a function of canister geometry and storage time between reprocessing and burial. Lower waste loadings or longer storage times than initially envisaged are necessary to prevent the peak temperature-rise from exceeding 200 0 C. The use of longer, thinner cylinders only modestly reduces the storage time for a given peak temperature. Effects of stacking of waste canisters and of close-packing were also studied. (author)

  15. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ({sup 18}O, {sup 2}H, {sup 13}C, {sup 34}S, {sup 87}Sr, {sup 15}N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  16. A preliminary study on the regional fracture systems for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Young Kown; Park, Byoung Yoon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    For the deep geological disposal of high-level radioactive waste, it is essential to characterize the fracture system in rock mass which has a potential pathways of nuclide. Currently, none of research results are in classification and detailed properties for the fracture system in Korea. This study aims to classify and describe the regional fracture system in lithological and geotectonical point of view using literature review, shaded relief map, and aeromagnetic survey data. This report contains the following: - Theoretical review of the fracture development mechanism. - Overall fault and fracture map. - Geological description on the distributional characteristics of faults and fractures(zone) in terms of lithological domain and tectonical province. 122 refs., 22 figs., 4 tabs. (Author)

  17. Interactive Sea Level Rise App & Online Viewer Offers Deep Dive Into Climate

    Science.gov (United States)

    Turrin, M.; Porter, D. F.; Ryan, W. B. F.; Pfirman, S. L.

    2015-12-01

    Climate has captured the attention of the public but its complexity can cause interested individuals to turn to opinion pieces, news articles or blogs for information. These platforms often oversimplify or present heavily interpreted or personalized perspectives. Data interactives are an extremely effective way to explore complex geoscience topics like climate, opening windows of understanding for the user that have previously been closed. Layering data onto maps through programs like GeoMapApp and the Earth Observer App has allowed users to dig directly into science data, but with only limited scaffolding. The interactive 'Polar Explorer: Sea Level Explorer App' provides a richly layered introduction to a range of topics connected to sea level rise. Each map is supported with a pop up and a short audio file of supplementary material, and an information page that includes the data source and links for further reading. This type of learning platform works well for both the formal and informal learning environment. Through science data displayed as map visualizations the user is invited into topics through an introductory question, such as "Why does sea level change?" After clicking on that question the user moves to a second layer of questions exploring the role of the ocean, the atmosphere, the contribution from the world's glaciers, world's ice sheets and other less obvious considerations such as the role of post-glacial rebound, or the mining of groundwater. Each question ends in a data map, or series of maps, that offer opportunities to interact with the topic. Under the role of the ocean 'Internal Ocean Temperature' offers the user a chance to touch to see temperature values spatially over the world's ocean, or to click through a data series starting at the ocean surface and diving to 5000 meters of depth showing how temperature changes with depth. Other sections, like the role of deglaciation of North America, allow the user to click and see change through

  18. Effects of gravity level on bubble formation and rise in low-viscosity liquids

    Science.gov (United States)

    Suñol, Francesc; González-Cinca, Ricard

    2015-05-01

    We present an experimental analysis of the effects of gravity level on the formation and rise dynamics of bubbles. Experiments were carried out with millimeter-diameter bubbles in the hypergravity environment provided by the large-diameter centrifuge of the European Space Agency. Bubble detachment from a nozzle is determined by buoyancy and surface tension forces regardless of the gravity level. Immediately after detachment, bubble trajectory is deviated by the Coriolis force. Subsequent bubble rise is dominated by inertial forces and follows a zig-zag trajectory with amplitude and frequency dependent on the gravity level. Vorticity production is enhanced as gravity increases, which destabilizes the flow and therefore the bubble path.

  19. Ecological risk assessment of deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Hart, D.R.; Lush, D.L.; Acton, D.W.

    1993-01-01

    Contaminant fate and transport models, radiological dosimetry models, chemical dose-response models and population dynamic models were used to estimate ecological risks to moose and brook trout populations arising from a proposed high-level nuclear waste repository. Risks from potential contaminant releases were compared with risks from physical habitat alteration in constructing a repository and service community, and with risks from increased hunting and fish pressure in the area. For a reference environment typical of a proposed location somewhere in the Canadian Shield, preliminary results suggest that the population consequences of contaminant release will be minor relative to those of habitat alteration and natural resource use

  20. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-10-01

    In this paper, the major elements of the site selection and characterization processes used in the US high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the US program, these processes, which are well defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the US program

  1. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    International Nuclear Information System (INIS)

    Costin, L.S.

    1997-01-01

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs

  2. Determination of deep levels in semi-insulating cadmium telluride by thermally stimulated current measurements

    International Nuclear Information System (INIS)

    Scharager, C.; Muller, J.C.; Stuck, R.; Siffert, P.

    1975-01-01

    Thermally stimulated current (TSC) measurements have been performed in high resistivity (rho approximately 10 7 ohms.cm) CdTe γ-ray detectors between 35 and 300K. The TSC curves have been analyzed by different methods, including those taking into account the retrapping of the carriers. The trap characteristics have been determined; especially three levels located at E(v)+0.13eV, E(v)+0.30eV and E(c)-0.55eV have been investigated [fr

  3. Site selection and characterization processes for deep geologic disposal of high level nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Costin, L.S. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    In this paper, the major elements of the site selection and characterization processes used in the U. S. high level waste program are discussed. While much of the evolution of the site selection and characterization processes have been driven by the unique nature of the U. S. program, these processes, which are well-defined and documented, could be used as an initial basis for developing site screening, selection, and characterization programs in other countries. Thus, this paper focuses more on the process elements than the specific details of the U. S. program. (author). 3 refs., 2 tabs., 5 figs.

  4. Selection of the situations taken into account for the safety demonstration of a repository in deep geological formations - French regulatory guidance and IPSN modelling experience

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Greneche, D.

    1993-01-01

    A regulatory guidance has been recently set up in France for the safety assessment of radwaste deep geological disposal: the present paper deals with the methodology related to the safety demonstration of such a disposal, particularly the situations to be taken into account to address the potential evolution of the repository under natural or human induced events. This approach, based on a selection of events considered as reasonably envisageable, relies on a reference scenario characterized by a great stability of the geological formation and on hypothetical situations corresponding to the occurrence of random events of natural origin or of conventional nature. The implementation of this methodology within the framework of the IPSN (Protection and Nuclear Safety Institute, CEA) participation in the CEC EVEREST project is addressed. This programme consists in the evaluation of the sensitivity of the radiological consequences associated to deep radwaste disposal systems to the different elements of the performance assessment (scenario characteristics, phenomena, physico-chemical parameters) in three types of geological formations (granite, salt and clay).(author). 11 refs., 3 tabs

  5. Thermal effects on clay rocks for deep disposal of high-level radioactive waste

    Directory of Open Access Journals (Sweden)

    Chun-Liang Zhang

    2017-06-01

    Full Text Available Thermal effects on the Callovo-Oxfordian and Opalinus clay rocks for hosting high-level radioactive waste were comprehensively investigated with laboratory and in situ experiments under repository relevant conditions: (1 stresses covering the range from the initial lithostatic state to redistributed levels after excavation, (2 hydraulic drained and undrained boundaries, and (3 heating from ambient temperature up to 90 °C–120 °C and a subsequent cooling phase. The laboratory experiments were performed on normal-sized and large hollow cylindrical samples in various respects of thermal expansion and contraction, thermally-induced pore water pressure, temperature influences on deformation and strength, thermal impacts on swelling, fracture sealing and permeability. The laboratory results obtained from the samples are consistent with the in situ observations during heating experiments in the underground research laboratories at Bure and Mont-Terri. Even though the claystones showed significant responses to thermal loading, no negative effects on their favorable barrier properties were observed.

  6. The Containment of Radioactive Wastes in Deep Geologic Formations; L'Elimination des Dechets Radioactifs dans les Formations Geologiques Profondes; 0423 0414 0414 ; Evacuacion de Desechos Radiactivos en Formaciones Geologicas Profundas

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, W. J. [University of California, Berkeley (United States)

    1960-07-01

    Generally the volumes of low- and intermediate-level radioactive wastes produced at chemical processing sites are so great as to make permanent storage prohibitively costly. In many instances chemical treatment may provide sufficient decontamination to allow the discharge of these effluents to surface streams or estuaries. However, in some circumstances such methods are costly and either do not make possible adequate decontamination, or result in excessively large volumes of semi-solid wastes that must be permanently stored. It is believed that in such a situation the deep underlying formations of the earth may constitute a safe and economic waste-disposal resource. In sandstone formations large volumes of waste may be stored with a high degree of containment integrity. Both the interstitial voids and ion-exchange properties serve to make available a great storage capacity. The disposal system employing deep formations of the earth is conceived to consist of a pattern of injection wells for introducing the waste, and of relief wells which serve to reduce well-head pressures, permit monitoring, and direct the flow in such a manner as to make maximum use of the formation. Information needed for the design of such a system includes data on the dispersion or short-circuiting properties of the formations, ion-exchange characteristics of the media, and the chemical and radiochemical properties of the waste. A two-well prototype injection system has been in operation for two years at the Engineering Field Station of the University of California. (author) [French] En general, les dechets de faible ou moyenne activite produits dans les usines de traitement chimique atteignent un volume tel que le cout de leur entreposage permanent est prohibitif. Dans plusieurs cas, un traitement chimique peut produire une decontamination suffisante pour que ces effluents puissent etre jetes dans des cours d'eau et des estuaires. Dans certaines circonstances, cependant, ces methodes sont

  7. Low-cost, high-precision micro-lensed optical fiber providing deep-micrometer to deep-nanometer-level light focusing.

    Science.gov (United States)

    Wen, Sy-Bor; Sundaram, Vijay M; McBride, Daniel; Yang, Yu

    2016-04-15

    A new type of micro-lensed optical fiber through stacking appropriate high-refractive microspheres at designed locations with respect to the cleaved end of an optical fiber is numerically and experimentally demonstrated. This new type of micro-lensed optical fiber can be precisely constructed with low cost and high speed. Deep micrometer-scale and submicrometer-scale far-field light spots can be achieved when the optical fibers are multimode and single mode, respectively. By placing an appropriate teardrop dielectric nanoscale scatterer at the far-field spot of this new type of micro-lensed optical fiber, a deep-nanometer near-field spot can also be generated with high intensity and minimum joule heating, which is valuable in high-speed, high-resolution, and high-power nanoscale detection compared with traditional near-field optical fibers containing a significant portion of metallic material.

  8. Dumping of low-level radioactive waste in the deep ocean

    International Nuclear Information System (INIS)

    Templeton, W.L.

    1980-01-01

    Two international agreements relate to the dumping of packaged radioactive waste into the oceans - the Convention on the Prevention of Marine Pollution by Dumping Wastes and Other Matter of 1972 (London Convention) and the Multilateral Consultation and Surveillance Mechanism for Sea Dumping of Radioactive Waste of 1977 under the Organization for Economic Co-operation and Development (OECD). The International Atomic Energy Agency was given the responsibility to define high-level radioactive wastes which are unsuitable for dumping in the oceans and to make recommendations for the dumping of other radioactive wastes. A revised Definition and Recommendations was submitted and accepted by the London Convention. This paper reviews the technical basis for the Definition and describes how it has been applied to the radiological assessment of the only operational dumping site in the North East Atlantic

  9. Characterization of deep energy levels in mercury iodide. Application to nuclear detection

    International Nuclear Information System (INIS)

    Mohammed Brahim, Tayeb.

    1982-07-01

    The last few years have seen an increasing interest in HgI 2 detectors for room temperature gamma and X-ray spectrometry. Performance and effective thickness of these detectors are presently limited by carrier trapping which results in incomplete charge collection. Characterization of the trapping levels has been performed by several photoelectronic methods (photoconductivity, thermal and optical quenching of the photoconductivity, TSC, lifetime measurement). A model is proposed taking into account the results obtained by these techniques and the polarization phenomena observed in nuclear detection in both vapor phase and solution grown crystals. For the latter, polarization can be eliminated or notably reduced by illumination of the positive electrode or by using a MIS positively biased structure [fr

  10. Enthalpies of formation of dihydroxybenzenes revisited: Combining experimental and high-level ab initio data

    International Nuclear Information System (INIS)

    Gonçalves, Elsa M.; Agapito, Filipe; Almeida, Tânia S.; Martinho Simões, José A.

    2014-01-01

    Highlights: • Thermochemistry of hydroxyphenols probed by experimental and theoretical methods. • A new paradigm for obtaining enthalpies of formation of crystalline compounds. • High-level ab initio results for the thermochemistry of gas-phase hydroxyphenols. • Sublimation enthalpies of hydroxyphenols determined by Calvet microcalorimetry. - Abstract: Accurate values of standard molar enthalpies of formation in condensed phases can be obtained by combining high-level quantum chemistry calculations of gas-phase enthalpies of formation with experimentally determined enthalpies of sublimation or vapourization. The procedure is illustrated for catechol, resorcinol, and hydroquinone. Using W1-F12, the gas-phase enthalpies of formation of these compounds at T = 298.15 K were computed as (−270.6, −269.4, and −261.0) kJ · mol −1 , respectively, with an uncertainty of ∼0.4 kJ · mol −1 . Using well characterised solid samples, the enthalpies of sublimation were determined with a Calvet microcalorimeter, leading to the following values at T = 298.15 K: (88.3 ± 0.3) kJ · mol −1 , (99.7 ± 0.4) kJ · mol −1 , and (102.0 ± 0.9) kJ · mol −1 , respectively. It is shown that these results are consistent with the crystalline structures of the compounds

  11. Greedy Deep Dictionary Learning

    OpenAIRE

    Tariyal, Snigdha; Majumdar, Angshul; Singh, Richa; Vatsa, Mayank

    2016-01-01

    In this work we propose a new deep learning tool called deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion, one layer at a time. This requires solving a simple (shallow) dictionary learning problem, the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like stacked autoencoder and deep belief network; and state of the art supervised dictionary learning t...

  12. Chronic Deep Brain Stimulation of the Hypothalamic Nucleus in Wistar Rats Alters Circulatory Levels of Corticosterone and Proinflammatory Cytokines

    Science.gov (United States)

    Calleja-Castillo, Juan Manuel; De La Cruz-Aguilera, Dora Luz; Manjarrez, Joaquín; Velasco-Velázquez, Marco Antonio; Morales-Espinoza, Gabriel; Moreno-Aguilar, Julia; Hernández, Maria Eugenia; Aguirre-Cruz, Lucinda

    2013-01-01

    Deep brain stimulation (DBS) is a therapeutic option for several diseases, but its effects on HPA axis activity and systemic inflammation are unknown. This study aimed to detect circulatory variations of corticosterone and cytokines levels in Wistar rats, after 21 days of DBS-at the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), unilateral cervical vagotomy (UCVgX), or UCVgX plus DBS. We included the respective control (C) and sham (S) groups (n = 6 rats per group). DBS treated rats had higher levels of TNF-α (120%; P < 0.01) and IFN-γ (305%; P < 0.001) but lower corticosterone concentration (48%; P < 0.001) than C and S. UCVgX animals showed increased corticosterone levels (154%; P < 0.001) versus C and S. UCVgX plus DBS increased IL-1β (402%; P < 0.001), IL-6 (160%; P < 0.001), and corsticosterone (178%; P < 0.001 versus 48%; P < 0.001) compared with the C and S groups. Chronic DBS at VMHvl induced a systemic inflammatory response accompanied by a decrease of HPA axis function. UCVgX rats experienced HPA axis hyperactivity as result of vagus nerve injury; however, DBS was unable to block the HPA axis hyperactivity induced by unilateral cervical vagotomy. Further studies are necessary to explore these findings and their clinical implication. PMID:24235973

  13. SPRAYED CLAY TECHNOLOGY FOR THE DEEP REPOSITORY OF HIGH-LEVEL RADIOACTIVE WASTE

    Directory of Open Access Journals (Sweden)

    Lucie Hausmannová

    2012-07-01

    Full Text Available The sealing barrier will play very important role in the Czech disposal concept of high level radioactive waste. It follows Swedish SKB3 design where granitic rock environment will host the repository. Swelling clay based materials as the most favorable for sealing purposes were selected. Such clays must fulfill certain requirements (e.g. on swelling properties, hydraulic conductivity or plasticity and must be stable for thousands of years. Better sealing behavior is obtained when the clay is compacted. Technology of the seal construction can vary according to its target dry density. Very high dry density is needed for buffer (sealing around entire canister with radioactive waste. Less strict requirements are on material backfilling the access galleries. It allows compaction to lower dry density than in case of buffer. One of potential technology for backfilling is to compact clay layers in most of the gallery profile by common compaction machines (rollers etc. and to spray clay into the uppermost part afterwards. The paper introduces the research works on sprayed clay technology performed at the Centre of Experimental Geotechnics of the Czech Technical University in Prague. Large scale in situ demonstration of filling of short drift in the Josef Gallery is also mentioned.

  14. Power penalties for multi-level PAM modulation formats at arbitrary bit error rates

    Science.gov (United States)

    Kaliteevskiy, Nikolay A.; Wood, William A.; Downie, John D.; Hurley, Jason; Sterlingov, Petr

    2016-03-01

    There is considerable interest in combining multi-level pulsed amplitude modulation formats (PAM-L) and forward error correction (FEC) in next-generation, short-range optical communications links for increased capacity. In this paper we derive new formulas for the optical power penalties due to modulation format complexity relative to PAM-2 and due to inter-symbol interference (ISI). We show that these penalties depend on the required system bit-error rate (BER) and that the conventional formulas overestimate link penalties. Our corrections to the standard formulas are very small at conventional BER levels (typically 1×10-12) but become significant at the higher BER levels enabled by FEC technology, especially for signal distortions due to ISI. The standard formula for format complexity, P = 10log(L-1), is shown to overestimate the actual penalty for PAM-4 and PAM-8 by approximately 0.1 and 0.25 dB respectively at 1×10-3 BER. Then we extend the well-known PAM-2 ISI penalty estimation formula from the IEEE 802.3 standard 10G link modeling spreadsheet to the large BER case and generalize it for arbitrary PAM-L formats. To demonstrate and verify the BER dependence of the ISI penalty, a set of PAM-2 experiments and Monte-Carlo modeling simulations are reported. The experimental results and simulations confirm that the conventional formulas can significantly overestimate ISI penalties at relatively high BER levels. In the experiments, overestimates up to 2 dB are observed at 1×10-3 BER.

  15. Level of processing modulates the neural correlates of emotional memory formation

    OpenAIRE

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under ...

  16. The roles of the temperature on the structural and electronic properties of deep-level V{sub As}V{sub Ga} defects in gallium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Deming, E-mail: xautmdm@163.com; Chen, Xi; Qiao, Hongbo; Shi, Wei; Li, Enling

    2015-07-15

    Highlights: • The energy gap of the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} is 0.82 eV. • Proves that the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} belongs to EL2 deep-level defect in GaAs. • Proves that EL2 and EL6 deep-level defects can transform into each other. • Temperature has an important effect on the microstructure of deep-level defects. - Abstract: The roles of temperature on the structural and electronic properties of V{sub As}V{sub Ga} defects in gallium arsenide have been studied by using ab-initio molecular dynamic (MD) simulation. Our calculated results show that the relatively stable quaternary complex defect of Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} can be converted from the V{sub As}V{sub Ga} complex clusters defect between 300 K and 1173 K; however, from 1173 K to 1373 K, the decomposition of the complex defect Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} occurs, turning into a deep-level V{sub As}V{sub Ga} cluster defect and an isolated As{sub Ga} antisite defect, and relevant defect of Ga{sub As} is recovered. The properties of Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} defect has been studied by first-principles calculations based on hybrid density functional theory. Our calculated results show that the Ga{sub As}As{sub Ga}V{sub As}V{sub Ga} belongs to EL2 deep-level defect in GaAs. Thus, we reveal that the temperature has an important effect on the microstructure of deep-level defects and defect energy level in gallium arsenide that EL2 and EL6 deep-level defects have a certain correlation, which means they could transform into each other. Controlling temperature in the growth process of GaAs could change the microstructure of deep-level defects and defect energy levels in gallium arsenide materials, whereby affects the electron transport properties of materials.

  17. Hydrate prevention during formation test of gas in deep water; Prevencao de formacao de hidratos durante teste de formacao de poco de gas em lamina d'agua profunda

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Renato Cunha [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This work shows a scenery of formation test in deep water, for a well of gas, for which, there were made simulations with objective of identifying possible pairs of points (Pressure x Temperature), favorable to the hydrates formation. Besides, they were made comparisons of the values obtained in the simulation with the values registered during the formation test for the well Alfa of the field Beta. Of ownership of those information, we made an evaluation of the real needs of injection of inhibitors with intention of preventing the hydrates formation in each phase of the test. In an including way, the work has as objective recommends the volumes of hydrates inhibitors to be injected in each phase of a test of formation of well of gas in deep water, in way to assure that the operations are made without there is risk of hydrates formation. (author)

  18. POLARIZED LINE FORMATION WITH LOWER-LEVEL POLARIZATION AND PARTIAL FREQUENCY REDISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Supriya, H. D.; Sampoorna, M.; Nagendra, K. N.; Ravindra, B. [Indian Institute of Astrophysics, Bangalore 560034 (India); Stenflo, J. O. [Institute of Astronomy, ETH Zurich, CH-8093 Zurich (Switzerland)

    2016-09-10

    In the well-established theories of polarized line formation with partial frequency redistribution (PRD) for a two-level and two-term atom, it is generally assumed that the lower level of the scattering transition is unpolarized. However, the existence of unexplained spectral features in some lines of the Second Solar Spectrum points toward a need to relax this assumption. There exists a density matrix theory that accounts for the polarization of all the atomic levels, but it is based on the flat-spectrum approximation (corresponding to complete frequency redistribution). In the present paper we propose a numerical algorithm to solve the problem of polarized line formation in magnetized media, which includes both the effects of PRD and the lower level polarization (LLP) for a two-level atom. First we derive a collisionless redistribution matrix that includes the combined effects of the PRD and the LLP. We then solve the relevant transfer equation using a two-stage approach. For illustration purposes, we consider two case studies in the non-magnetic regime, namely, the J {sub a} = 1, J {sub b} = 0 and J {sub a} = J {sub b} = 1, where J {sub a} and J {sub b} represent the total angular momentum quantum numbers of the lower and upper states, respectively. Our studies show that the effects of LLP are significant only in the line core. This leads us to propose a simplified numerical approach to solve the concerned radiative transfer problem.

  19. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    International Nuclear Information System (INIS)

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs

  20. Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California

    Science.gov (United States)

    Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J.

    2007-01-01

    The Tehachapi complex lies at the southern end of the Sierra Nevada batholith adjacent to the Neogene-Quaternary Garlock fault. The complex is composed principally of high-pressure (8-10 kbar) Cretaceous batholithic rocks, and it represents the deepest exposed levels of a continuous oblique crustal section through the southern Sierra Nevada batholith. Over the southern ???100 km of this section, structural/petrologic continuity and geochronological data indicate that ???35 km of felsic to intermediate-composition crust was generated by copious arc magmatism primarily between 105 and 99 Ma. In the Tehachapi complex, these batholithic rocks intrude and are bounded to the west by similar-composition gneissic-textured high-pressure batholithic rocks emplaced at ca. 115-110 Ma. This lower crustal complex is bounded below by a regional thrust system, which in Late Cretaceous time tectonically eroded the underlying mantle lithosphere, and in series displaced and underplated the Rand Schist subduction assemblage by low-angle slip from the outboard Franciscan trench. Geophysical and mantle xenolith studies indicate that the remnants of this shallow subduction thrust descend northward through the crust and into the mantle, leaving the mantle lithosphere intact beneath the greater Sierra Nevada batholith. This north-dipping regional structure records an inflection in the Farallon plate, which was segmented into a shallow subduc-tion trajectory to the south and a normal steeper trajectory to the north. We combine new and published data from a broad spectrum of thermochronom-eters that together form a coherent data array constraining the thermal evolution of the complex. Integration of these data with published thermobarometric and petro-genetic data also constrains the tectonically driven decompression and exhumation history of the complex. The timing of arc magmatic construction of the complex, as denoted above, is resolved by a large body of U/Pb zircon ages. High

  1. Deep Uncertainties in Sea-Level Rise and Storm Surge Projections: Implications for Coastal Flood Risk Management.

    Science.gov (United States)

    Oddo, Perry C; Lee, Ben S; Garner, Gregory G; Srikrishnan, Vivek; Reed, Patrick M; Forest, Chris E; Keller, Klaus

    2017-09-05

    Sea levels are rising in many areas around the world, posing risks to coastal communities and infrastructures. Strategies for managing these flood risks present decision challenges that require a combination of geophysical, economic, and infrastructure models. Previous studies have broken important new ground on the considerable tensions between the costs of upgrading infrastructure and the damages that could result from extreme flood events. However, many risk-based adaptation strategies remain silent on certain potentially important uncertainties, as well as the tradeoffs between competing objectives. Here, we implement and improve on a classic decision-analytical model (Van Dantzig 1956) to: (i) capture tradeoffs across conflicting stakeholder objectives, (ii) demonstrate the consequences of structural uncertainties in the sea-level rise and storm surge models, and (iii) identify the parametric uncertainties that most strongly influence each objective using global sensitivity analysis. We find that the flood adaptation model produces potentially myopic solutions when formulated using traditional mean-centric decision theory. Moving from a single-objective problem formulation to one with multiobjective tradeoffs dramatically expands the decision space, and highlights the need for compromise solutions to address stakeholder preferences. We find deep structural uncertainties that have large effects on the model outcome, with the storm surge parameters accounting for the greatest impacts. Global sensitivity analysis effectively identifies important parameter interactions that local methods overlook, and that could have critical implications for flood adaptation strategies. © 2017 Society for Risk Analysis.

  2. Procedural method for the development of scenarios in the operational phase following closure of final repositories in deep geological formations. Report on the working package 1. Development of the international status of science and technology concerning methods and tools for operational and long-term safety cases; Vorgehensweise bei der Szenarienentwicklung in der Nachverschlussphase von Endlagern in tiefen geologieschen Formationen. Bericht zum Arbeitspaket 1. Weiterentwicklung des internationalen Stands von Wissenschaft und Technik zu Methoden und Werkzeugen fuer Betriebs- und Langzeitsicherheitsnachweise

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, Stephan

    2016-09-15

    For the disposal of high-level radioactive wastes the disposal in deep geological formations is internationally favored. The safety cases include the scientific, technical, administrative and operational safety analyses and arguments, including the management system. According to IAEA the safety case includes site qualification, the design of the facility, construction and operation including an accident analysis, the closure phase and the post-closure phase. The safety case includes the evaluation of radiological risks for several scenarios. The report covers the methodology of scenario assumption in the post-closure phase of repositories in deep geological formations.

  3. Macro-level enabling conditions for the formation of social business enterprises in the Philippines

    Directory of Open Access Journals (Sweden)

    Aaron Laylo

    2018-05-01

    Full Text Available Purpose - A conducive and enabling environment is imperative for the formation of sustainable social business enterprises (SBEs. This paper aims to identify the macro-level enabling conditions necessary for SBE formation and to analyze them in the context of the Philippines, an emerging economy that is yet to be transformed into an inclusive one. Design/methodology/approach - Major developments on micro-, small- and medium-sized enterprises, specifically on social enterprises, were revisited and analyzed. The author also looked into how they are sustained, supported and nurtured in the Philippines’ overall economic landscape. Extensive data were collected from relevant agencies in public and private sectors, after which they were analyzed parallel to existing academic literature, i.e. theories, models and concepts, on social entrepreneurship and development nexus. Findings - It has been found that the four macro-level enabling conditions, namely, governance, socially inclusive economic approach, financial services and entrepreneurial culture, presumed to be vital for SBE formation, contribute to the latter at various levels, but surely complement each other in the process. Research limitations/implications - The significance of exploring the context in which social enterprises are formed and flourish lies in the sheer importance of understanding the sustained prevalence of SBEs in many economies – both in developed and developing ones. Originality/value - By having a more structured knowledge of the components surrounding SBE formation, the community may be able to also simultaneously explore why and how social entrepreneurs form profit-earning business entities that are primarily driven by social advocacies and goals.

  4. Numerical simulation of water and sand blowouts when penetrating through shallow water flow formations in deep water drilling

    Science.gov (United States)

    Ren, Shaoran; Liu, Yanmin; Gong, Zhiwu; Yuan, Yujie; Yu, Lu; Wang, Yanyong; Xu, Yan; Deng, Junyu

    2018-02-01

    In this study, we applied a two-phase flow model to simulate water and sand blowout processes when penetrating shallow water flow (SWF) formations during deepwater drilling. We define `sand' as a pseudo-component with high density and viscosity, which can begin to flow with water when a critical pressure difference is attained. We calculated the water and sand blowout rates and analyzed the influencing factors from them, including overpressure of the SWF formation, as well as its zone size, porosity and permeability, and drilling speed (penetration rate). The obtained data can be used for the quantitative assessment of the potential severity of SWF hazards. The results indicate that overpressure of the SWF formation and its zone size have significant effects on SWF blowout. A 10% increase in the SWF formation overpressure can result in a more than 90% increase in the cumulative water blowout and a 150% increase in the sand blowout when a typical SWF sediment is drilled. Along with the conventional methods of well flow and pressure control, chemical plugging, and the application of multi-layer casing, water and sand blowouts can be effectively reduced by increasing the penetration rate. As such, increasing the penetration rate can be a useful measure for controlling SWF hazards during deepwater drilling.

  5. RNA deep sequencing reveals novel candidate genes and polymorphisms in boar testis and liver tissues with divergent androstenone levels.

    Directory of Open Access Journals (Sweden)

    Asep Gunawan

    Full Text Available Boar taint is an unpleasant smell and taste of pork meat derived from some entire male pigs. The main causes of boar taint are the two compounds androstenone (5α-androst-16-en-3-one and skatole (3-methylindole. It is crucial to understand the genetic mechanism of boar taint to select pigs for lower androstenone levels and thus reduce boar taint. The aim of the present study was to investigate transcriptome differences in boar testis and liver tissues with divergent androstenone levels using RNA deep sequencing (RNA-Seq. The total number of reads produced for each testis and liver sample ranged from 13,221,550 to 33,206,723 and 12,755,487 to 46,050,468, respectively. In testis samples 46 genes were differentially regulated whereas 25 genes showed differential expression in the liver. The fold change values ranged from -4.68 to 2.90 in testis samples and -2.86 to 3.89 in liver samples. Differentially regulated genes in high androstenone testis and liver samples were enriched in metabolic processes such as lipid metabolism, small molecule biochemistry and molecular transport. This study provides evidence for transcriptome profile and gene polymorphisms of boars with divergent androstenone level using RNA-Seq technology. Digital gene expression analysis identified candidate genes in flavin monooxygenease family, cytochrome P450 family and hydroxysteroid dehydrogenase family. Moreover, polymorphism and association analysis revealed mutation in IRG6, MX1, IFIT2, CYP7A1, FMO5 and KRT18 genes could be potential candidate markers for androstenone levels in boars. Further studies are required for proving the role of candidate genes to be used in genomic selection against boar taint in pig breeding programs.

  6. A review of the predictive modelling and data requirements for the long-term safety assessment of the deep disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Broyd, T.W.

    1988-06-01

    This report considers the Her Majesty's Inspectorate of Pollution research and modelling requirements for a robust post-closure radiological risk assessment methodology applicable to the deep disposal of Low-Level Wastes and Intermediate-Level Wastes. Two disposal concepts have been envisaged: horizontal tunnels or galleries in a low permeability stratum of a sedimentary sequence located inland; vertical boreholes or shafts up to 15m diameter lined with concrete and of the order 500m to 1000m deep sunk into the seabed within territorial coastal waters of the United Kingdom. (author)

  7. Dual-wavelength photo-Hall effect spectroscopy of deep levels in high resistive CdZnTe with negative differential photoconductivity

    Science.gov (United States)

    Musiienko, A.; Grill, R.; Moravec, P.; Korcsmáros, G.; Rejhon, M.; Pekárek, J.; Elhadidy, H.; Šedivý, L.; Vasylchenko, I.

    2018-04-01

    Photo-Hall effect spectroscopy was used in the study of deep levels in high resistive CdZnTe. The monochromator excitation in the photon energy range 0.65-1.77 eV was complemented by a laser diode high-intensity excitation at selected photon energies. A single sample characterized by multiple unusual features like negative differential photoconductivity and anomalous depression of electron mobility was chosen for the detailed study involving measurements at both the steady and dynamic regimes. We revealed that the Hall mobility and photoconductivity can be both enhanced and suppressed by an additional illumination at certain photon energies. The anomalous mobility decrease was explained by an excitation of the inhomogeneously distributed deep level at the energy Ev + 1.0 eV, thus enhancing potential non-uniformities. The appearance of negative differential photoconductivity was interpreted by an intensified electron occupancy of that level by a direct valence band-to-level excitation. Modified Shockley-Read-Hall theory was used for fitting experimental results by a model comprising five deep levels. Properties of the deep levels and their impact on the device performance were deduced.

  8. BOREAS Level-3a Landsat TM Imagery: Scaled At-sensor Radiance in BSQ Format

    Science.gov (United States)

    Nickerson, Jaime; Hall, Forrest G. (Editor); Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef

    2000-01-01

    For BOREAS, the level-3a Landsat TM data, along with the other remotely sensed images, were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy, detailed land cover, and biophysical parameter maps such as FPAR and LAI. Although very similar in content to the level-3s Landsat TM products, the level-3a images were created to provide users with a more usable BSQ format and to provide information that permitted direct determination of per-pixel latitude and longitude coordinates. Geographically, the level-3a images cover the BOREAS NSA and SSA. Temporally, the images cover the period of 22-Jun-1984 to 30-Jul-1996. The images are available in binary, image-format files. With permission from CCRS and RSI, several of the full-resolution images are included on the BOREAS CD-ROM series. Due to copyright issues, the images not included on the CD-ROM may not be publicly available. See Sections 15 and 16 for information about how to acquire the data. Information about the images not on the CD-ROMs is provided in an inventory listing on the CD-ROMs.

  9. Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster.

    Directory of Open Access Journals (Sweden)

    Shigeharu Kinoshita

    Full Text Available BACKGROUND: Despite its economic importance, we have a limited understanding of the molecular mechanisms underlying shell formation in pearl oysters, wherein the calcium carbonate crystals, nacre and prism, are formed in a highly controlled manner. We constructed comprehensive expressed gene profiles in the shell-forming tissues of the pearl oyster Pinctada fucata and identified novel shell formation-related genes candidates. PRINCIPAL FINDINGS: We employed the GS FLX 454 system and constructed transcriptome data sets from pallial mantle and pearl sac, which form the nacreous layer, and from the mantle edge, which forms the prismatic layer in P. fucata. We sequenced 260477 reads and obtained 29682 unique sequences. We also screened novel nacreous and prismatic gene candidates by a combined analysis of sequence and expression data sets, and identified various genes encoding lectin, protease, protease inhibitors, lysine-rich matrix protein, and secreting calcium-binding proteins. We also examined the expression of known nacreous and prismatic genes in our EST library and identified novel isoforms with tissue-specific expressions. CONCLUSIONS: We constructed EST data sets from the nacre- and prism-producing tissues in P. fucata and found 29682 unique sequences containing novel gene candidates for nacreous and prismatic layer formation. This is the first report of deep sequencing of ESTs in the shell-forming tissues of P. fucata and our data provide a powerful tool for a comprehensive understanding of the molecular mechanisms of molluscan biomineralization.

  10. Comparison of temperature calculations for an arbitrary high-level waste disposal configuration in salt formations

    International Nuclear Information System (INIS)

    Kevenaar, J.W.A.M.; Janssen, L.G.J.; Ploumen, P.; Winske, P.

    1979-05-01

    The objective of this report is the comparison of the results of temperature analyses for an arbitrary high-level radioactive waste disposal configuration in salt formations. The analyses were carried out at the RWTH and ECN. The computer programs used are based on finite difference and finite element techniques. From the local temperature analyses that were intended to check the solution techniques, it could be concluded that both finite difference and finite elements are capable to analyse this type of problems. From the global temperature analyses it could be concluded that both analysis approaches: temperature dependent and iteratively determined temperature independent material properties, are suited to analyse the global temperature distribution in the salt formation

  11. Penicillenols from a deep-sea fungus Aspergillus restrictus inhibit Candida albicans biofilm formation and hyphal growth.

    Science.gov (United States)

    Wang, Jie; Yao, Qi-Feng; Amin, Muhammad; Nong, Xu-Hua; Zhang, Xiao-Yong; Qi, Shu-Hua

    2017-06-01

    Penicillenols (A1, A2, B1, B2, C1 and C2) were isolated from Aspergillus restrictus DFFSCS006, and could differentially inhibit biofilm formation and eradicate pre-developed biofilms of Candida albicans. Their structure-bioactivity relationships suggested that the saturation of hydrocarbon chain at C-8, R-configuration of C-5 and trans-configuration of the double bond between C-5 and C-6 of pyrrolidine-2,4-dione unit were important for their anti-biofilm activities. Penicillenols A2 and B1 slowed the hyphal growth and suppressed the transcripts of hypha specific genes HWP1, ALS1, ALS3, ECE1 and SAP4. Moreover, penicillenols A2 and B1 were found to act synergistically with amphotericin B against C. albicans biofilm formation.

  12. Siting, design and construction of a deep geological repository for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1990-06-01

    The main objective of this document is to summarize the basic principles and approaches to siting, design and construction of a deep geological repository for disposal of high level and alpha bearing radioactive wastes, as commonly agreed upon by Member States. This report is addressed to decision makers and technical managers as well as to specialists planning for siting, design and construction of geological repositories for disposal of high level and alpha bearing wastes. This document is intended to provide Member States of the IAEA with a summary outline for the responsible implementing organizations to use for siting, designing and constructing confinement systems for high level and alpha bearing radioactive waste in accordance with the protection objectives set by national regulating authorities or derived from safety fundamentals and standards of the IAEA. The protection objectives will be achieved by the isolation of the radionuclides from the environment by a repository system, which consists of a series of man made and natural safety barriers. Engineered barriers are used to enhance natural geological containment in a variety of ways. They must complement the natural barriers to provide adequate safety and necessary redundancy to the barrier system to ensure that safety standards are met. Because of the long timescales involved and the important role of the natural barrier formed by the host rock, the site selection process is a key activity in the repository design and development programme. The choice of the site, the investigation of its geological setting, the exploration of the regional hydrogeological setting and the primary underground excavations are all considered to be part of the siting process. 16 refs

  13. The influence of sea-level changes on tropical coastal lowlands; the Pleistocene Coropina Formation, Suriname

    Science.gov (United States)

    Wong, Th. E.; de Kramer, R.; de Boer, P. L.; Langereis, C.; Sew-A-Tjon, J.

    2009-04-01

    The Pleistocene Coropina Formation largely constitutes the Old Coastal Plain of Suriname. It is exposed fully only in open-pit bauxite mines in the central coastal plain as part of the unconsolidated overburden of Paleocene-Eocene bauxites. This study deals with the stratigraphy, sedimentology and chronology of this formation, and is based on a study in the recently closed Lelydorp-III bauxite mine operated by N.V. BHP Billiton Maatschappij Suriname. The Coropina Formation consists of the Para and Lelydorp Members. We present a detailed lithological subdivision of these members. In the Para Member, four units are discerned which are grouped in two transgressive cycles, both ranging upward from terrestrial towards chenier and coastal mudflat deposits reflecting glacio-eustatic sea-level changes. The sandy sediments represent fluviatile and beach-bar (chenier) deposits, and were supplied by rivers from the Precambrian basement and to a lesser extent by westward longshore coastal drift. Clays, largely derived from the Amazon River and transported alongshore over the shelf, were deposited in extensive coastal mudflats. The Lelydorp Member, also comprising four units, represents a depositional system that is closely comparable to the recent Suriname coastal setting, i.e., a lateral and vertical alternation of mudflat and chenier deposits formed over a period characterised by more or less constant sea level. Palaeomagnetic data indicate a dominantly reversed magnetic polarity in the Para Member, whereas the Lelydorp Member shows a normal magnetic polarity with a minor reversed polarity overprint. The reversed polarities of the Para Member exclude a Brunhes Chron (0.78-0.0 Ma) age, and thus assign it to the Matuyama Chron (2.58-0.78 Ma). This implies that the Coropina Formation is much older than hitherto assumed, and that one or more (long-term) hiatuses are not recognizable in the lithological succession.

  14. Observations of the Hubble Deep Field with the Infrared Space Observatory .5. Spectral energy distributions, starburst models and star formation history

    DEFF Research Database (Denmark)

    Rowan Robinson, M.; Mann, R.G.; Oliver, S.J.

    1997-01-01

    We have modelled the spectral energy distributions of the 13 Hubble Deep Field (HDF) galaxies reliably detected by the Infrared Space Observatory (ISO). For two galaxies the emission detected by ISO is consistent with being starlight or the infrared 'cirrus' in the galaxies. For the remaining II...... galaxies there is a clear midinfrared excess, which we interpret as emission from dust associated with a strong starburst. 10 of these galaxies are spirals or interacting pairs, while the remaining one is an elliptical with a prominent nucleus and broad emission lines. We give a new discussion of how...... compared with nearby normal galaxies, We discuss the implications of our detections for the history of star and heavy element formation in the Universe, Although uncertainties in the calibration, reliability of source detection, associations and starburst models remain, it is clear that dust plays...

  15. DeepPy: Pythonic deep learning

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces DeepPy – a deep learning framework built on top of NumPy with GPU acceleration. DeepPy bridges the gap between highperformance neural networks and the ease of development from Python/NumPy. Users with a background in scientific computing in Python will quickly...... be able to understand and change the DeepPy codebase as it is mainly implemented using high-level NumPy primitives. Moreover, DeepPy supports complex network architectures by letting the user compose mathematical expressions as directed graphs. The latest version is available at http...

  16. DEEP CHANDRA, HST-COS, AND MEGACAM OBSERVATIONS OF THE PHOENIX CLUSTER: EXTREME STAR FORMATION AND AGN FEEDBACK ON HUNDRED KILOPARSEC SCALES

    International Nuclear Information System (INIS)

    McDonald, Michael; Bautz, Marshall W.; Miller, Eric D.; ZuHone, John A.; McNamara, Brian R.; Weeren, Reinout J. van; Bayliss, Matthew; Jones-Forman, Christine; Applegate, Douglas E.; Benson, Bradford A.; Carlstrom, John E.; Mantz, Adam B.; Bleem, Lindsey E.; Chatzikos, Marios; Edge, Alastair C.; Fabian, Andrew C.; Garmire, Gordon P.; Hlavacek-Larrondo, Julie; Stalder, Brian; Veilleux, Sylvain

    2015-01-01

    We present new ultraviolet, optical, and X-ray data on the Phoenix galaxy cluster (SPT-CLJ2344-4243). Deep optical imaging reveals previously undetected filaments of star formation, extending to radii of ∼50–100 kpc in multiple directions. Combined UV-optical spectroscopy of the central galaxy reveals a massive (2 × 10 9 M ⊙ ), young (∼4.5 Myr) population of stars, consistent with a time-averaged star formation rate of 610 ± 50 M ⊙ yr −1 . We report a strong detection of O vi λλ1032,1038, which appears to originate primarily in shock-heated gas, but may contain a substantial contribution (>1000 M ⊙ yr −1 ) from the cooling intracluster medium (ICM). We confirm the presence of deep X-ray cavities in the inner ∼10 kpc, which are among the most extreme examples of radio-mode feedback detected to date, implying jet powers of 2–7 × 10 45 erg s −1 . We provide evidence that the active galactic nucleus inflating these cavities may have only recently transitioned from “quasar-mode” to “radio-mode,” and may currently be insufficient to completely offset cooling. A model-subtracted residual X-ray image reveals evidence for prior episodes of strong radio-mode feedback at radii of ∼100 kpc, with extended “ghost” cavities indicating a prior epoch of feedback roughly 100 Myr ago. This residual image also exhibits significant asymmetry in the inner ∼200 kpc (0.15R 500 ), reminiscent of infalling cool clouds, either due to minor mergers or fragmentation of the cooling ICM. Taken together, these data reveal a rapidly evolving cool core which is rich with structure (both spatially and in temperature), is subject to a variety of highly energetic processes, and yet is cooling rapidly and forming stars along thin, narrow filaments

  17. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Arehart, A. R.; Ringel, S. A., E-mail: ringel.5@osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Kyle, E. C. H.; Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106-5050 (United States); Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D. [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2016-04-28

    The impact of proton irradiation on the threshold voltage (V{sub T}) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of V{sub T} was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 10{sup 14} cm{sup −2}. Silvaco Atlas simulations of V{sub T} shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different V{sub T} dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed V{sub T} shifts. The proton irradiation induced V{sub T} shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  18. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    Science.gov (United States)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2016-04-01

    The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  19. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    International Nuclear Information System (INIS)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Arehart, A. R.; Ringel, S. A.; Kyle, E. C. H.; Speck, J. S.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.

    2016-01-01

    The impact of proton irradiation on the threshold voltage (V T ) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of V T was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 10 14  cm −2 . Silvaco Atlas simulations of V T shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different V T dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed V T shifts. The proton irradiation induced V T shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  20. Deep defect levels in standard and oxygen enriched silicon detectors before and after **6**0Co-gamma-irradiation

    CERN Document Server

    Stahl, J; Lindström, G; Pintilie, I

    2003-01-01

    Capacitance Deep Level Transient Spectroscopy (C-DLTS) measurements have been performed on standard and oxygen-doped silicon detectors manufactured from high-resistivity n-type float zone material with left angle bracket 111 right angle bracket and left angle bracket 100 right angle bracket orientation. Three different oxygen concentrations were achieved by the so-called diffusion oxygenated float zone (DOFZ) process initiated by the CERN-RD48 (ROSE) collaboration. Before the irradiation a material characterization has been performed. In contrast to radiation damage by neutrons or high- energy charged hadrons, were the bulk damage is dominated by a mixture of clusters and point defects, the bulk damage caused by **6**0Co-gamma-radiation is only due to the introduction of point defects. The dominant electrically active defects which have been detected after **6**0Co-gamma-irradiation by C-DLTS are the electron traps VO//i, C//iC//s, V//2( = /-), V //2(-/0) and the hole trap C//i O//i. The main difference betwe...

  1. The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Chapman, N.A.; Smellie, J.A.T.

    1984-08-01

    Many of the processes which will lead to the breakdown of engineered barriers and the mobilisation of radionuclides in a deep waste repository have analogies in natural geological systems. These 'natural analogues' are seen as a particularly important means of validating predictive models, under the broad heading of radionuclide migration, which are used in long-term safety analyses. Their principal value is the opportunity they provide to examine processes occurring over geological timescales, hence allowing more confident extrapolation of short timescales experimental data. This report begins by reviewing the processes leading to breakdown of containment in a high-level radioactive waste repository in crystalline bedrock and the subsequent migration mechanisms for radionuclides back to the biosphere. Nine specific processes are identified as being of the most significance in migration models, based on available sensitivity analyses. Existing studies are assessed and possibilities considered for additional analogues. Conclusions are drawn for each process as to the extent to which analogues validate current predictions on scale and effect, longevity of function, etc. Where possible, quantitative evaluations are given, derived from analogue studies. A considerable amount of the information reviewed and presented could be used in the assessment of disposal of other waste types in other host rocks. (Auth.)

  2. OPG's deep geologic repository for low and intermediate level waste - public participation and aboriginal engagement

    International Nuclear Information System (INIS)

    Wilson, M.

    2011-01-01

    Ontario Power Generation (OPG)'s Public Participation and Aboriginal Engagement Program for the proposed Deep Geologic Repository (DGR) for low and intermediate level waste (L and ILW) began with the signing of a Memorandum of Understanding (MOU) in 2002 between OPG and the Municipality of Kincardine. The MOU set out the terms under which the two parties would jointly study the feasibility of different options for the long-term management of L and ILW at the Bruce nuclear site. A consultant, independent from both the Municipality of Kincardine and OPG, was retained to manage the assessment of options as well as a communication plan to ensure the public and Aboriginal peoples were kept apprised of all activities associated with the MOU. This early commitment to transparency and openness, with its ensuing opportunities for the public and Aboriginal peoples to become informed, ask questions, and engage in meaningful two-way dialogue about the early assessment of options, established the foundation and later became the hallmark of the DGR Project's Public Participation and Aboriginal Engagement program. This paper provides an overview of the development, nature and results of that program as it has evolved through the early investigative stages of options and through the environmental assessment and licencing process for the proposed DGR Project. (author)

  3. The OPG/Kincardine hosting agreement for a deep geologic repository for OPG's low- and intermediate-level waste

    International Nuclear Information System (INIS)

    Castellan, A.G.; Barker, D.E.

    2006-01-01

    A Hosting Agreement has been reached between Ontario Power Generation and the Municipality of Kincardine for the purpose of siting a long-term management facility for low- and intermediate-level radioactive waste at the Western Waste Management Facility. Following an independent review of the feasibility of three options for a long-term facility at the site, including a review of the safety, geotechnical feasibility, social and economic effects and potential environmental effects, Kincardine passed a resolution indicating their preference for a Deep Geologic Repository. A Host Community Agreement has been negotiated based on this preference, and on information that had been gathered from municipal authorities at other locations that have hosted similar facilities. The Hosting Agreement includes financial compensation, totalling $35.7 million (Canadian 2004) to the Municipality of Kincardine and to four surrounding municipalities. The financial aspects include lump sum payments based on achieving specific project milestones as well as annual payments to each of the municipalities. The payments are indexed to inflation, and are also contingent on the municipalities acting reasonably and in good faith during the licencing process of the proposed facility. In addition to the fees, the Agreement includes provision for a Property Value Protection Plan that would provide residents with compensation in the event that there is depreciation in property value shown to directly result from a release from the proposed facility. New permanent OPG jobs supporting the project would be located at the site. OPG and Kincardine will support a centre of nuclear excellence. (author)

  4. The radio-X-ray relation as a star formation indicator: results from the Very Large Array-Extended Chandra Deep Field-South

    Science.gov (United States)

    Vattakunnel, S.; Tozzi, P.; Matteucci, F.; Padovani, P.; Miller, N.; Bonzini, M.; Mainieri, V.; Paolillo, M.; Vincoletto, L.; Brandt, W. N.; Luo, B.; Kellermann, K. I.; Xue, Y. Q.

    2012-03-01

    In order to trace the instantaneous star formation rate (SFR) at high redshift, and thus help in understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4-Ms Chandra X-ray data and the deep Very Large Array radio data in the Extended Chandra Deep Field-South region. We find 268 sources detected both in the X-ray and radio bands. The availability of redshifts for ˜95 per cent of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than 10 years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star-forming candidates detected only in the radio and X-ray bands, respectively. We find a clear linear correlation between radio and X-ray luminosity in star-forming galaxies over three orders of magnitude and up to z˜ 1.5. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the LX(2-10 keV)-SFR relation at high redshift. The comparison of the SFR measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z≤ 0.2, and strong starburst galaxies with SFRs as high as ˜100 M⊙ yr-1, up to z˜ 1.5.

  5. Model simulations with COSMO-SPECS: impact of heterogeneous freezing modes and ice nucleating particle types on ice formation and precipitation in a deep convective cloud

    Directory of Open Access Journals (Sweden)

    K. Diehl

    2018-03-01

    Full Text Available In deep convective clouds, heavy rain is often formed involving the ice phase. Simulations were performed using the 3-D cloud resolving model COSMO-SPECS with detailed spectral microphysics including parameterizations of homogeneous and three heterogeneous freezing modes. The initial conditions were selected to result in a deep convective cloud reaching 14 km of altitude with strong updrafts up to 40 m s−1. At such altitudes with corresponding temperatures below −40 °C the major fraction of liquid drops freezes homogeneously. The goal of the present model simulations was to investigate how additional heterogeneous freezing will affect ice formation and precipitation although its contribution to total ice formation may be rather low. In such a situation small perturbations that do not show significant effects at first sight may trigger cloud microphysical responses. Effects of the following small perturbations were studied: (1 additional ice formation via immersion, contact, and deposition modes in comparison to solely homogeneous freezing, (2 contact and deposition freezing in comparison to immersion freezing, and (3 small fractions of biological ice nucleating particles (INPs in comparison to higher fractions of mineral dust INP. The results indicate that the modification of precipitation proceeds via the formation of larger ice particles, which may be supported by direct freezing of larger drops, the growth of pristine ice particles by riming, and by nucleation of larger drops by collisions with pristine ice particles. In comparison to the reference case with homogeneous freezing only, such small perturbations due to additional heterogeneous freezing rather affect the total precipitation amount. It is more likely that the temporal development and the local distribution of precipitation are affected by such perturbations. This results in a gradual increase in precipitation at early cloud stages instead of a strong increase at

  6. Electronic structure of deep levels in silicon. A study of gold, magnesium, and iron centers in silicon

    International Nuclear Information System (INIS)

    Thilderkvist, A. L.

    1994-02-01

    The electronic structure of gold, magnesium and iron related deep centers in silicon is investigated. Their deep and shallow levels are studied by means of fourier transform spectroscopy, combined with uniaxial stress and Zeeman spectroscopy. The neutral substitutional gold center in silicon is investigated and the center is paramagnetic, S=1/2, with g||≅2.8 and g≅0, and has a static distortion. Reorientation between different equivalent distortions is observed even at 1.9 K. A gold pair center in silicon is studied and several line series, with a zero-phonon line followed by several phonon replicas, are observed. Uniaxial stress and Zeeman results reveal a trigonal symmetry of the center, which together with the high dissociation energy of 1.7 eV suggests that the center consists of two nearest-neighbor substitutional gold atoms. A divacancy model is employed to explain the electronic properties of the center. The interstitial magnesium double donor in silicon in its two charge states Mg o and Mg + is investigated. Deviations in the binding energies of the excited states from those calculated within the effective-mass theory (EMT) are found and explained by a perturbation in the central-cell region. The quadratic Zeeman effect of shallow donors in silicon is analyzed within the framework of the EMT using a numerical approach. The wave functions are calculated in a discrete radial mesh and the Zeeman Hamiltonian has be evaluated for the lowest excited states for fields up to 6 T. The neutral interstitial iron defect in silicon gives rise to two sets of line spectra. The first set arises when an electron is excited to a shallow donor like state where the electron is decoupled from the Fe + core which has a 4 T 1 ground state term. The second set arises when an excited electron of a 1 symmetry is coupled by exchange interaction to the core, yielding at 5 T 1 final state. Experiments determine the multiplet splitting of the 4 T 1 and 5 T 1 states due to spring

  7. Long-term degradation of organic polymers under conditions found in deep repositories for low and intermediate-level wastes

    International Nuclear Information System (INIS)

    Warthmann, R.; Mosberger, L.; Baier, U.

    2013-06-01

    On behalf of Nagra, the Environmental Biotechnology Section of the Zürich University of Applied Sciences in Wädenswil investigated the potential for microbiological degradation of organic polymers under the conditions found in a deep geological repository for low- and intermediate-level waste (L/ILW). The existing scientific literature on the topic was analysed, some thermodynamic calculations carried out and input was elicited from internationally recognised experts in the field. The study was restricted to a few substances which, in terms of mass, are most significant in the Swiss L/ILW inventory; these are polystyrene (PS), polyvinyl chloride (PVC), other plastics and bitumen. There were no clear indications in the literature that the polymer structure of synthetic polymers is biodegraded under anoxic conditions. However, functional groups of ion exchangers and plasticizers in plastics are considered to be readily available and biodegradable. The greatest obstacle to biological degradation of synthetic polymers is depolymerisation to produce labile monomers. As energy is generally required for such breakdown, the chances of this process taking place outside the cells are very low. In so far as they are present, monomers are, in principle, anaerobically biodegradable. Thermodynamic considerations indicate that degradation of synthetic polymers under repository conditions is theoretically possible. However, the degradation of polystyrene is very close to thermodynamic equilibrium and the usable energy for microorganisms would barely be sufficient. Under high H2 partial pressures, it is predicted that there will be a thermodynamic inhibition of anaerobic degradation, as certain interim steps in degradation are endergonic. The starting conditions for microbial growth in a deep repository are unfavourable in terms of availability of water and prevailing pH values. Practically no known microorganisms can tolerate the combination of these conditions; most known

  8. Reconciling the sea level record of the last deglaciation with the δ18O spectra from deep sea cores

    International Nuclear Information System (INIS)

    Bard, Edouard; Columbia Univ., Palisades, NY; Arnold, Maurice; Duplessy, J.-C.

    1991-01-01

    In this paper we use the oxygen isotope record as a transient tracer to study palaeoceanography during the last deglaciation. By using 14 C and 18 O data obtained on four deep sea sediment cores, we show the presence of a measurable lag between the deglacial δ 18 O signal observed in the deep Atlantic and the deep Indo-Pacific oceans. Our study confirms that the major meltwater discharge occurred via the North Atlantic and that the thermohaline circulation was operating during the deglacial transition. (Author)

  9. Study of heat diffusion in a granitic geologic formation of high level radioactive wastes

    International Nuclear Information System (INIS)

    Goldstein, S.; Juignet, N.

    1980-06-01

    Thermal study of granitic underground storage of vitrified high level radioactive wastes in a regular network of shafts and galleries. The aim is to show influence on temperature rise of the geologic formation of main parameters to define the storage zone and to determine the network dimension in function of the rock properties. Two models were studied allowing a rapid variation of geometrical and physical parameters. A numerical method using finite element method or Green functions were used for calculations. Temperatures are determined either for the whole storage site or a unit cell of the lattice [fr

  10. Expectations, open questions to be addressed in the workshop within the context of a deep geological repository in clay formations

    International Nuclear Information System (INIS)

    Landais, Patrick

    2013-01-01

    Precise knowledge of the clay properties in the various domains concerned by the construction feasibility, the exploitation phase of repository facilities, as well as the long term evolution of the waste and of its environment is of crucial importance in assessing the performance and the safety of the various radioactive waste disposal concepts. The knowledge to be acquired on clays as such goes well beyond solely the field of disposal of radioactive waste. For both, clay formations or bentonites in engineered barriers, the characterization in a continuous way from the nanometer to the micrometer, of their internal structure and the study of the associated physico-chemical phenomena is a fundamental issue. It aims for explaining: The 'Initial state' of the clays, in particular for the clay formations: the nature of the mechanical, hydraulic and geochemical processes, in a broad sense, and the way these processes were involved during the geological history of these formations, The fundamental processes involved by physico-chemical or hydraulic stresses, related to the evolution of the repository at the macroscopic scale. The choice of the characterization scale and relevant modeling is of first importance in the approaches leading to the establishment of the models of representation. Various research works pointed to experimental difficulties in quantifying the microstructure of the clay rocks at scales smaller than a micrometer, because of technical/instrumental limitations. This lack of knowledge at small scales does not allow to fully connect all the Thermal-hydrological-mechanical-chemical (THMC) mechanisms and to integrate them into an up-scaling approach. There already exist conceptual models and experimental approaches to describe the microstructure of argillaceous formations in terms of porosity and texture. Examples on the undisturbed Callovo-Oxfordian (COx) argillite are given in this paper. Questions and objectives to be addressed during the

  11. Metal-Poor, Strongly Star-Forming Galaxies in the DEEP2 Survey: The Relationship Between Stellar Mass, Temperature-Based Metallicity, and Star Formation Rate

    Science.gov (United States)

    Ly, Chun; Rigby, Jane R.; Cooper, Michael; Yan, Renbin

    2015-01-01

    We report on the discovery of 28 redshift (z) approximately equal to 0.8 metal-poor galaxies in DEEP2. These galaxies were selected for their detection of the weak [O (sub III)] lambda 4363 emission line, which provides a "direct" measure of the gas-phase metallicity. A primary goal for identifying these rare galaxies is to examine whether the fundamental metallicity relation (FMR) between stellar mass, gas metallicity, and star formation rate (SFR) holds for low stellar mass and high SFR galaxies. The FMR suggests that higher SFR galaxies have lower metallicity (at fixed stellar mass). To test this trend, we combine spectroscopic measurements of metallicity and dust-corrected SFR with stellar mass estimates from modeling the optical photometry. We find that these galaxies are 1.05 plus or minus 0.61 dex above the redshift (z) approximately 1 stellar mass-SFR relation and 0.23 plus or minus 0.23 dex below the local mass-metallicity relation. Relative to the FMR, the latter offset is reduced to 0.01 dex, but significant dispersion remains dex with 0.16 dex due to measurement uncertainties). This dispersion suggests that gas accretion, star formation, and chemical enrichment have not reached equilibrium in these galaxies. This is evident by their short stellar mass doubling timescale of approximately equal to 100 (sup plus 310) (sub minus 75) million years which suggests stochastic star formation. Combining our sample with other redshift (z) of approximately 1 metal-poor galaxies, we find a weak positive SFR-metallicity dependence (at fixed stellar mass) that is significant at 94.4 percent confidence. We interpret this positive correlation as recent star formation that has enriched the gas but has not had time to drive the metal-enriched gas out with feedback mechanisms.

  12. Maximum flood hazard assessment for OPG's deep geologic repository for low and intermediate level waste

    International Nuclear Information System (INIS)

    Nimmrichter, P.; McClintock, J.; Peng, J.; Leung, H.

    2011-01-01

    Ontario Power Generation (OPG) has entered a process to seek Environmental Assessment and licensing approvals to construct a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW) near the existing Western Waste Management Facility (WWMF) at the Bruce nuclear site in the Municipality of Kincardine, Ontario. In support of the design of the proposed DGR project, maximum flood stages were estimated for potential flood hazard risks associated with coastal, riverine and direct precipitation flooding. The estimation of lake/coastal flooding for the Bruce nuclear site considered potential extreme water levels in Lake Huron, storm surge and seiche, wind waves, and tsunamis. The riverine flood hazard assessment considered the Probable Maximum Flood (PMF) within the local watersheds, and within local drainage areas that will be directly impacted by the site development. A series of hydraulic models were developed, based on DGR project site grading and ditching, to assess the impact of a Probable Maximum Precipitation (PMP) occurring directly at the DGR site. Overall, this flood assessment concluded there is no potential for lake or riverine based flooding and the DGR area is not affected by tsunamis. However, it was also concluded from the results of this analysis that the PMF in proximity to the critical DGR operational areas and infrastructure would be higher than the proposed elevation of the entrance to the underground works. This paper provides an overview of the assessment of potential flood hazard risks associated with coastal, riverine and direct precipitation flooding that was completed for the DGR development. (author)

  13. Decontamination by replacing soil and soil cover with deep-level soil in flower beds and vacant places in Northern Fukushima Prefecture

    International Nuclear Information System (INIS)

    Sugiura, Hiroyuki; Kawano, Keisuke; Kayama, Yukihiko; Koube, Nobuyuki

    2012-01-01

    Radioactivity decontamination by replacing soil and soil cover with deep-level soil and soil cover in flower beds and a vacant place in Northern Fukushima Prefecture were studied, which experienced radioactive contamination due to the accident at the TEPCO's Fukushima Daiichi Nuclear Power Plant. Radioactivity counting rate 1 cm above the soil surface after replacing surface soil with uncontaminated deep-level soil decreased to 13.7% of the control in gardens. The concentration of radioactive cesium in the cover soil increased after 132 days; however, it decreased in the old surface soil under the cover soil in flower beds. A 10 cm deep-level soil cover placed by heavy machinery decreased the radiation dose rate to 70.8% of the control and radioactivity counting rate to 24.6% in the vacant place. Replacing the radioactively contaminated surface soil and soil cover with a deep-level soil was a reasonable decontamination method for the garden and vacant place because it is quick, cost effective and labour efficient. (author)

  14. The level of pyruvate-formate lyase controls the shift from homolactic to mixed-acid product formation in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, C.R.; Jokumsen, K.V.; Villadsen, John

    2002-01-01

    promoters in L. lactis MG1363 and in the PFL-deficient strain CRM40. Strains with five different PFL levels were obtained. Variation in the PFL level markedly affected the resulting end-product formation in these strains. During growth on galactose, the flux towards mixed-acid products was to a great extent...

  15. Formation of carbonate concretions in deep-sea sediment below the CCD and above an active gas hydrate system

    Science.gov (United States)

    Dicus, C. M.; Snyder, G. T.; Dickens, G. R.

    2004-12-01

    Site 1230 of the Ocean Drilling Program targeted the chemistry and microbiology of an active deep-water gas hydrate system in the Peru Trench. The site is noteworthy because, at nearly 6000 m water depth, it lies well below the carbonate compensation depth and the sediments comprise mostly terrigenous clays and biogenic silica. Shipboard work at this site delineated a prominent sulfate-methane transition (SMT) at 8-10 m below seafloor (mbsf) as well as some carbonate horizons. In this study, we present calcium and strontium data for pore waters and sediments at this site, including across the SMT. Concentration profiles show that dissolved Ca2+ diffuses downward from the seafloor toward the SMT, where a sharp inflection indicates consumption of Ca2+ into an authigenic phase. Dissolved Sr2+, on the other hand, diffuses upward from depth toward the SMT. Again, however, a prominent inflection suggests removal of Sr2+ to sediment. The inferences from pore water profiles are borne out by sediment chemistry. Large peaks in the calcium and strontium content of sediment mark the SMT. The calcium and strontium fronts reach ˜2700 and ˜5 mmol/kg, respectively, at 9 mbsf, which are much greater than average background values of ˜10 and ˜1 mmol/kg. These authigenic fronts are primarily composed of carbonate minerals, as determined by acetic acid extractions and x-ray diffraction. Because the calcium and strontium fronts coincide with both the SMT and changes in dissolved chemistry, it is proposed that the carbonates are currently forming as follows: methane rising from the underlying gas hydrate system reacts with dissolved sulfate through anaerobic oxidation of methane which releases HCO3- and alkalinity and causes carbonate precipitation. The overall process has been observed elsewhere; the Peru Trench is interesting, however, because the process leads to carbonate in sediments otherwise devoid of carbonate.

  16. Influence of the level of subsoil water on the distribution of moisture content in a peat formation

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.I.; Kostyuk, N.S.

    1983-01-01

    Under laboratory and field conditions, observations are made of the influence of the level of subsoil water on the distribution of moisture content in the upper layers of the peat formation. It is established that prolonged evaporation sharply reduces the moisture content of the upper layers of the formation at a depth up to 20cm. Precipitation is mainly absorbed by the upper layers of the formation and can penetrate in the season with level of subsoil water about 1m at depth of no more than 50cm. The zone of complete capillary water-saturation of the upper formation does not exceed 45cm.

  17. Technetium migration in Boom Clay - Assessing the role of colloid-facilitated transport in a deep clay formation

    International Nuclear Information System (INIS)

    Bruggeman, C.; Martens, E.; Maes, N.; Jacops, E.; Van Gompel, M.; Van Ravestyn, L.

    2010-01-01

    Document available in extended abstract form only. The role of colloids - mainly dissolved natural organic matter (NOM, 50-150 mg/l) - in the transport of radionuclides in the Boom Clay formation (Mol, Belgium), has long since been a matter of (heavy) debate. For more than 20 years, batch experiments with Boom Clay suspensions showed a pronounced influence of the dissolved organic carbon concentration on the aqueous concentrations of different radionuclides like Tc, Np, Am and U. Moreover, small fractions of these radionuclides were also observed to elute almost un-retarded out of confined clay cores in percolation experiments. In the past years, a new conceptual model for the speciation of the long-lived fission product Technetium- 99 ( 99 Tc) under Boom Clay conditions has been drafted. In brief, the stable oxidation state of 99 Tc in these conditions is +IV, and, therefore, Tc solution concentrations are limited by the solubility of TcO 2 .nH 2 O(s). However, during reduction of TcVII (in the TcO 4 - form) to TcIV, precursor TcO 2 .nH 2 O colloids are formed, which are stabilised by the dissolved organic matter present in Boom Clay interstitial pore water, and in supernatants of Boom Clay batch suspensions. Moreover, this stabilisation process occurs in such a systematic way, that (conditional) interaction constants could be established, and the behaviour was described as a 'hydrophobic sorption', or, more accurately, a 'colloid-colloid' interaction. This conceptual model was implemented into PHREEQC geochemical and Hydrus transport code to come to a reactive transport model that was used to simulate both the outflow and the tracer profile in several long-term running percolation experiments (both in lab and under in situ conditions). To account for slow dissociation kinetics of Tc from the NOM colloid, a first-order kinetic rate equation was also added to the model. In order to describe the migration of colloidal particles (NOM), an

  18. GEODAT. Development of thermodynamic data for the thermodynamic equilibrium modeling of processes in deep geothermal formations. Combined report

    International Nuclear Information System (INIS)

    Moog, Helge C.; Regenspurg, Simona; Voigt, Wolfgang

    2015-02-01

    The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.

  19. The role of water-vapour photodissociation on the formation of a deep minimum in mesopause ozone

    Directory of Open Access Journals (Sweden)

    I. M. Vardavas

    1998-02-01

    Full Text Available A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.Key words. Atmospheric composition and structure · Middle atmosphere · Thermosphere · Transmission and scattering of radiation

  20. Geothermal properties of deep crystalline rock formations in the Rhone valley - Preliminary study; Geothermie du cristallin profond de la vallee du Rhone - Etude preliminaire

    Energy Technology Data Exchange (ETDEWEB)

    Bianchetti, G; Crestin, G [Alpgeo Sarl, Sierre (Switzerland); Kohl, T [Geowatt AG, Zuerich (Switzerland); Graf, G [Bureau de service et d' ingenierie BSI SA, Lausanne (Switzerland)

    2006-07-01

    This report prepared for the Swiss Federal Office of Energy (SFOE) examines the possibility of cogenerating electric power and heat from geothermal energy stored in deep aquifers in the southwestern Swiss Alps. The project AGEPP (Alpine Geothermal Power Production) investigates an alternative to the well known Hot-Dry-Rock systems by looking at the crystalline formations in the alpine Rhone valley. Since centuries, these formations have been utilized for thermal spas. Two locations, Brigerbad and Lavey-les-Bains have been evaluated in the present report by the companies ALPGEO Sarl, GEOWATT AG and BSI SA. Existing boreholes at both locations show ample flow and substantial temperature gradients down to 600 meters, suggesting possible reservoir temperatures above 110 {sup o}C and a low mineralization (below 5 grams per liter). Flow rates of 50 to 75 liters/s at 110 {sup o}C seem possible and could be utilized in an ORC (Organic Rankine Cycle) for power production up to 1.3 MW. The power production costs are estimated at 0.08 CHF/kWh (singlet system) and 0.27 CHF/kWh (doublet system) respectively. The study implies that cogenerated heat is sold at a price of 0.08 CHF/kWh. These prices could compete with other alternative energies. Phase 2 of the project will evaluate the feasibility at the location of Lavey-les-Bains.

  1. Final disposal of high-level radioactive waste in deep boreholes. An evaluation based on recent research on the bedrock at great depths

    International Nuclear Information System (INIS)

    Aahaell, Karl-Inge

    2006-05-01

    New knowledge in hydrogeology and boring technology have opened the possibility to use deep boreholes as a repository for the Swedish high-level radioactive wastes. The determining property is that the repository can be housed in the stable bedrock at levels where the ground water has no contact with the biosphere and disposal and sealing can take place without disturbing the ground water stratification outside the disposal area. An advantage compared to a shallow repository of KBS-3 type, that is now being planned in Sweden, is that a borehole repository is likely to be technologically more robust, since the concept 'deep boreholes' seems to admit such a deep disposal that the entire disposal area would be surrounded by stable density-layered ground water, while a KBS-3 repository would be surrounded by moving ground water in contact with level close to the surface. This hydrological difference is of great importance for the safety in scenarios with leaching of radioactive substances. A deep repository is also less vulnerable for effects from natural events such as glaciation and earthquakes as well as from technological mishaps and terrorist actions. A crucial factor is, however, that the radioactive waste can be disposed of, in a secure way, at the intended depth, which will require new research and technology development

  2. Deep levels in a-plane, high Mg-content MgxZn1−xO epitaxial layers grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Gür, Emre; Tabares, G.; Hierro, A.; Arehart, A.; Ringel, S. A.; Chauveau, J. M.

    2012-01-01

    Deep level defects in n-type unintentionally doped a-plane Mg x Zn 1−x O, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of Mg x Zn 1−x O were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of E c − 1.4 eV, 2.1 eV, 2.6 V, and E v + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at E c − 2.1 eV, E v + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at E v + 0.3 eV and E c − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the E v + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the E c − 1.4 eV and E c − 2.6 eV levels in Mg alloyed samples.

  3. Tuning of deep level emission in highly oriented electrodeposited ZnO nanorods by post growth annealing treatments

    International Nuclear Information System (INIS)

    Simimol, A.; Manikandanath, N. T.; Chowdhury, Prasanta; Barshilia, Harish C.; Anappara, Aji A.

    2014-01-01

    Highly dense and c-axis oriented zinc oxide (ZnO) nanorods with hexagonal wurtzite facets were deposited on fluorine doped tin oxide coated glass substrates by a simple and cost-effective electrodeposition method at low bath temperature (80 °C). The as-grown samples were then annealed at various temperatures (T A  = 100–500 °C) in different environments (e.g., zinc, oxygen, air, and vacuum) to understand their photoluminescence (PL) behavior in the ultra-violet (UV) and the visible regions. The PL results revealed that the as-deposited ZnO nanorods consisted of oxygen vacancy (V O ), zinc interstitial (Zn i ), and oxygen interstitial (O i ) defects and these can be reduced significantly by annealing in different environments at optimal annealing temperatures. However, the intensity of deep level emission increased for T A greater than the optimized values for the respective environments due to the introduction of various defect centers. For example, for T A  ≥ 450 °C in the oxygen and air environments, the density of O i defects increased, whereas, the green emission associated with V O is dominant in the vacuum annealed (T A  = 500 °C) ZnO nanorods. The UV peak red shifted after the post-growth annealing treatments in all the environments and the vacuum annealed sample exhibited highest UV peak intensity. The observations from the PL data are supported by the micro-Raman spectroscopy. The present study gives new insight into the origin of different defects that exist in the electrodeposited ZnO nanorods and how these defects can be precisely controlled in order to get the desired emissions for the opto-electronic applications

  4. The potential of natural analogues in assessing systems for deep disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Chapman, N.A.; McKinley, I.G.; Smellie, J.A.T.

    1984-08-01

    Many of the processes which will lead to the breakdown of engineered barriers and the mobilization of radionuclides in a deep waste repository have analogies in natural geological systems. These 'natural analogues' are seen as a particularly important means of validating predictive models, under the broad heading of radionuclide migration, which are used in long-term safety analyses. Their principal value is the opportunity they provide to examine processes occurring over geological timescales, hence allowing more confident extrapolation of short timescales experimental data. This report begins by reviewing the processes leading to breakdown of containment in a high-level radioactive waste repository in crystalline bedrock and the subsequent migration mechanisms for radionuclides back to the biosphere. Nine specific processes are identified as being of the most significance in migration models, based on available sensitivity analyses. These processes are considered separately in detail, reviewing first the mechanisms involved and the most important unknown then the types of natural analogue which could most usefully provide supporting evidence for the effects of the process. Conclusions are drawn, for each process as to the extent to which analogues validate current predictions on scale and effect, longevity of function, etc. Where possible, quantitative evaluations are given, derived from analogue studies. A summary is provided of the conclusions for each process, and the most important topics for further studies are listed. Specific examples of these requisite analogues are given. The report emphasises throughout the importance of linking analogues to well defined processes, concluding that analogues of complete disposal systems do not exist. The results are seen to be widely applicable. A considerable amount of the information reviewed and presented could be used in the assessment of disposal of other waste types in other host rocks. (Author)

  5. Deep level transient spectroscopy studies of charge traps introduced into silicon by channeling ion implantation of phosphorus

    International Nuclear Information System (INIS)

    McCallum, J.C.; Lay, M.; Deenapanray, P.N.K.; Jagadish, C.

    2002-01-01

    Full text: The operating conditions of a silicon-based quantum computer are expected to place stringent requirements on the quality of the material and the processes used to make it. In the Special Research Centre for Quantum Computer Technology, ion implantation is one of the principle processing techniques under investigation for forming an ordered array of phosphorus atoms. This technique introduces defect centres in silicon which act as charge traps. Charge traps are expected to be detrimental to operation of the device. These defect centres, their dependence on ion implantation and thermal annealing conditions are being quantified using Deep Level Transient Spectroscopy (DLTS). Since the aspect ratio of the masks required for the top-down fabrication process restrict the incident ions to a range of angles in which they may undergo channeling implantation in the silicon substrate, we have examined the effect of channeling implantation on the nature and quantity of the charge traps produced. This is the first time that DLTS studies have been performed for channeling implantation of a dopant species in silicon. DLTS is well-suited to the dose regime of ∼10 11 P/cm 3 required for the quantum computer, however, a standard DLTS measurement is unable to probe the shallow depth range of ∼ 20 nm required for the P atoms (∼ 10-15 keV implantation energy). Our aim has therefore been to perform P implants in the appropriate dose regime but using higher implantation energies, ∼ 75-450 keV, where DLTS can directly identify and profile the charge traps induced by the implantation step and monitor their annealing characteristics during subsequent processing. To map the behaviour observed in this energy regime onto the low energy range required for the quantum computer we are comparing the DLTS results to damage profiles predicted by the Monte Carlo code Crystal Trim which is used in the semiconductor industry to simulate ion implantation processes in crystalline

  6. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.

    Science.gov (United States)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing

    2017-03-01

    Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.

  7. SUBJECT «NUMBER SYSTEMS» IN TWO-LEVELED FORMAT PREPARATION TEACHERS OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    V. I. Igoshin

    2017-01-01

    Full Text Available The aim of this article is to analyze the format of a two-leveled training – bachelor and master – future teachers of mathematics from the point of view of the content of mathematical material, which is to develop prospective teachers of mathematics at those two levels, shaping their professional competence.Methods. The study involves the theoretical methods: the analysis of pedagogical and methodical literature, normative documents; historical, comparative and logical analysis of the content of pedagogical mathematical education; forecasting, planning and designing of two-leveled methodical system of training of future teachers of mathematics.Results and scientific novelty. The level differentiation of the higher education system requires developing the appropriate curricula for undergraduate and graduate programs. The fundamental principle must be the principle of continuity – the magister must continue to deepen and broaden knowledge and skills, along with competences acquired, developed and formed on the undergraduate level. From these positions, this paper examines the course «Number Systems» – the most important in terms of methodology course for future mathematics teachers, and shows what content should be filled with this course at the undergraduate level and the graduate level. At the undergraduate level it is proposed to study classical number systems – natural, integer, rational, real and complex. Further extensions of the number systems are studied at the graduate level. The theory of numeric systems is presented as a theory of algebraic systems, arising at the intersection of algebra and mathematical logic. Here we study algebras over a field, division algebra over a field, an alternative algebra with division over the field, Jordan algebra, Lie algebra. Comprehension of bases of the theory of algebras by the master of the «mathematical education» profile will promote more conscious

  8. High temperature annealing effects on deep-level defects in a high purity semi-insulating 4H-SiC substrate

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Naoya, E-mail: naoya.iwamoto@smn.uio.no; Azarov, Alexander; Svensson, Bengt G. [Department of Physics, Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo (Norway); Ohshima, Takeshi [Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, 370-1292 Gunma (Japan); Moe, Anne Marie M. [Washington Mills AS, N-7300 Orkanger (Norway)

    2015-07-28

    Effects of high-temperature annealing on deep-level defects in a high-purity semi-insulating 4H silicon carbide substrate have been studied by employing current-voltage, capacitance-voltage, junction spectroscopy, and chemical impurity analysis measurements. Secondary ion mass spectrometry data reveal that the substrate contains boron with concentration in the mid 10{sup 15 }cm{sup −3} range, while other impurities including nitrogen, aluminum, titanium, vanadium and chromium are below their detection limits (typically ∼10{sup 14 }cm{sup −3}). Schottky barrier diodes fabricated on substrates annealed at 1400–1700 °C exhibit metal/p-type semiconductor behavior with a current rectification of up to 8 orders of magnitude at bias voltages of ±3 V. With increasing annealing temperature, the series resistance of the Schottky barrier diodes decreases, and the net acceptor concentration in the substrates increases approaching the chemical boron content. Admittance spectroscopy results unveil the presence of shallow boron acceptors and deep-level defects with levels in lower half of the bandgap. After the 1400 °C annealing, the boron acceptor still remains strongly compensated at room temperature by deep donor-like levels located close to mid-gap. However, the latter decrease in concentration with increasing annealing temperature and after 1700 °C, the boron acceptor is essentially uncompensated. Hence, the deep donors are decisive for the semi-insulating properties of the substrates, and their thermal evolution limits the thermal budget for device processing. The origin of the deep donors is not well-established, but substantial evidence supporting an assignment to carbon vacancies is presented.

  9. The Relative Age Effect on Soccer Players in Formative Stages with Different Sport Expertise Levels.

    Science.gov (United States)

    Práxedes, Alba; Moreno, Alberto; García-González, Luis; Pizarro, David; Del Villar, Fernando

    2017-12-01

    The Relative Age Effect (RAE) in sport has been targeted by many research studies. The objective of this study was to analyze, in amateur clubs, the RAE of soccer players, according to the sport expertise level of the team (e.g., A, B, C and subsequent) that they belong to within the same game category. 1,098 soccer players in formative stages took part in the study, with ages varying between 6 and 18 years old (U8 to U19 categories). All of them were members of 4 Spanish federated clubs. The birth dates were classified into 4 quartiles (Q1 = Jan-Mar; Q2 = Apr-Jun; Q3 = Jul-Sept; Q4 = Oct-Dec)according to the team they belonged to. The results obtained in the chi-squared test and d value (effect size) revealed the existence of RAE in the teams with the highest expertise level, "A" (X2 = 15.342, p = .002, d = 0.4473) and "B" (X2 = 10.905, p = .012, d = 0.3657). However, in the lower level teams, "C and subsequent", this effect was not observed. Present findings show that players born during the first months of the year tend to be selected to play in teams with a higher sport expertise level of each category, due to their physical maturity. Consequently, this causes differences in terms of the experience they accumulate and the motivation that this creates in these players.

  10. The development of technologies for the long-term containment of low-level radioactive and hazardous wastes into geologic formations

    International Nuclear Information System (INIS)

    Lomenick, T.F.

    1990-01-01

    In the humid eastern half of the country, the disposal of low-level radioactive wastes has evolved from the use of shallow, sanitary landfill type, excavations to current plans for the complete containment of long half-life radionuclides in large-diameter boreholes and other excavations in the deeper subsurface. In general, the aim of current procedures and regulations is to prevent the migration of contaminants into groundwaters. For the short half-life materials, burials may be accommodated in lined and capped trenches along with ''tumulus'' or concrete encased structures that would ensure containment for a few tens of years to perhaps several hundreds of years. The greatest interest though is planned where new and emerging technologies are being developed to emplace special and long half-life wastes into geologic formations at moderate to deep depths for complete containment for periods of thousands of years. 7 refs., 2 figs

  11. The extended epoch of galaxy formation: Age dating of 3600 galaxies with 2 < z < 6.5 in the VIMOS Ultra-Deep Survey

    Science.gov (United States)

    Thomas, R.; Le Fèvre, O.; Scodeggio, M.; Cassata, P.; Garilli, B.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Pforr, J.; Tasca, L. A. M.; Zamorani, G.; Bardelli, S.; Hathi, N. P.; Tresse, L.; Zucca, E.; Koekemoer, A. M.

    2017-06-01

    In this paper we aim at improving constraints on the epoch of galaxy formation by measuring the ages of 3597 galaxies with reliable spectroscopic redshifts 2 ≤ z ≤ 6.5 in the VIMOS Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the simultaneous fitting with the GOSSIP+ software of observed UV rest-frame spectra and photometric data from the u band up to 4.5 μm using model spectra from composite stellar populations. We perform extensive simulations and conclude that at z ≥ 2 the joint analysis of spectroscopy and photometry, combined with restricted age possibilities when taking the age of the Universe into account, substantially reduces systematic uncertainties and degeneracies in the age derivation; we find that age measurements from this process are reliable. We find that galaxy ages range from very young with a few tens of million years to substantially evolved with ages up to 1.5 Gyr or more. This large age spread is similar for different age definitions including ages corresponding to the last major star formation event, stellar mass-weighted ages, and ages corresponding to the time since the formation of 25% of the stellar mass. We derive the formation redshift zf from the measured ages and find galaxies that may have started forming stars as early as zf 15. We produce the formation redshift function (FzF), the number of galaxies per unit volume formed at a redshift zf, and compare the FzF in increasing observed redshift bins finding a remarkably constant FzF. The FzF is parametrized with (1 + z)ζ, where ζ ≃ 0.58 ± 0.06, indicating a smooth increase of about 2 dex from the earliest redshifts, z 15, to the lowest redshifts of our sample at z 2. Remarkably, this observed increase in the number of forming galaxies is of the same order as the observed rise in the star formation rate density (SFRD). The ratio of the comoving SFRD with the FzF gives an average SFR per galaxy of 7-17M⊙/yr at z 4-6, in agreement with the

  12. The Pan-STARRS1 Medium-deep Survey: Star Formation Quenching in Group and Cluster Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Hung-Yu; Lin, Lihwai; Lin, Kai-Yang; Chen, Chin-Wei [Institute of Astronomy and Astrophysics, Academia Sinica, 106, Taipei, Taiwan, R.O.C. (China); Foucaud, Sebastien [Department of Earth Sciences, National Taiwan Normal University, N.88, Tingzhou Road, Sec. 4, Taipei 11677, Taiwan, R.O.C. (China); Chiueh, Tzihong [Department of Physics, National Taiwan University, 106, Taipei, Taiwan, R.O.C. (China); Bower, R. G.; Cole, Shaun; Draper, P. W.; Metcalfe, N. [Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Chen, Wen-Ping [Graduate Institute of Astronomy, National Central University, Chung-Li 32054, Taiwan, R.O.C. (China); Burgett, W. S.; Flewelling, H.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Wainscoat, R. J.; Waters, C., E-mail: hyjian@asiaa.sinica.edu.tw [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States)

    2017-08-10

    We make use of a catalog of 1600 Pan-STARRS1 groups produced by the probability friends-of-friends algorithm to explore how the galaxy properties, i.e., the specific star formation rate (SSFR) and quiescent fraction, depend on stellar mass and group-centric radius. The work is the extension of Lin et al. In this work, powered by a stacking technique plus a background subtraction for contamination removal, a finer correction and more precise results are obtained than in our previous work. We find that while the quiescent fraction increases with decreasing group-centric radius, the median SSFRs of star-forming galaxies in groups at fixed stellar mass drop slightly from the field toward the group center. This suggests that the main quenching process in groups is likely a fast mechanism. On the other hand, a reduction in SSFRs by ∼0.2 dex is seen inside clusters as opposed to the field galaxies. If the reduction is attributed to the slow quenching effect, the slow quenching process acts dominantly in clusters. In addition, we also examine the density–color relation, where the density is defined by using a sixth-nearest-neighbor approach. Comparing the quiescent fractions contributed from the density and radial effect, we find that the density effect dominates the massive group or cluster galaxies, and the radial effect becomes more effective in less massive galaxies. The results support mergers and/or starvation as the main quenching mechanisms in the group environment, while harassment and/or starvation dominate in clusters.

  13. Deep bore well water level fluctuations in the Koyna region, India: the presence of a low order dynamical system in a seismically active environment

    Directory of Open Access Journals (Sweden)

    D. V. Ramana

    2009-05-01

    Full Text Available Water level fluctuations in deep bore wells in the vicinity of seismically active Koyna region in western India provides an opportunity to understand the causative mechanism underlying reservoir-triggered earthquakes. As the crustal porous rocks behave nonlinearly, their characteristics can be obtained by analysing water level fluctuations, which reflect an integrated response of the medium. A Fractal dimension is one such measure of nonlinear characteristics of porous rock as observed in water level data from the Koyna region. It is inferred in our study that a low nonlinear dynamical system with three variables can predict the water level fluctuations in bore wells.

  14. Aromatic volatile organic compounds and their role in ground-level ozone formation in Russia

    Science.gov (United States)

    Berezina, E. V.; Moiseenko, K. B.; Skorokhod, A. I.; Elansky, N. F.; Belikov, I. B.

    2017-05-01

    This paper reports proton mass spectrometry data on aromatic volatile organic compounds (VOCs) (benzene, toluene, phenol, styrene, xylene, and propylbenzene) obtained in different Russian regions along the Trans-Siberian Railway from Moscow to Vladivostok, based on expedition data retrieved using the TRO-ICA-12 mobile laboratory in the summer of 2008. The contribution of aromatic VOCs to ozone formation in the cities and regions along the measurement route has been estimated quantitatively. The greatest contribution of aromatic VOCs to ozone formation is characteristic of large cities along the Trans-Siberian Railway (up to 7.5 ppbv O3) specified by the highest concentrations of aromatic VOCs (1-1.7 ppbv) and nitrogen oxides (>20 ppbv). The results obtained are indicative of a considerable contribution (30-50%) of anthropogenic emissions of VOCs to photochemical ozone generation in the large cities along the Trans-Siberian Railway in hot and dry weather against the background of a powerful natural factor such as isoprene emissions controlling the regional balance of ground-level ozone in warm seasons.

  15. [Homocysteine levels and polymorphisms of MTHFR and CBS genes in Colombian patients with superficial and deep venous thrombosis].

    Science.gov (United States)

    Ayala, Claudia; García, Reggie; Cruz, Edith; Prieto, Karol; Bermúdez, Marta

    2010-01-01

    Thrombosis develops when the hemostatic system is incorrectly activated due to the unbalance between procoagulant, anticoagulant and fibrinolytic mechanisms allowing the formation of a clot within a blood vessel. The risk factors of this pathology can be acquired or can be genetic. To analyze in a Colombian population with diagnosis of venous thrombosis, lipid profile, glucose and homocystein levels, to calculate the alleles and genotypic frequencies of polymorphisms c.699 C>T, c.1080 C>T, c.844ins68 of the cystathionine ß synthase and the c.677 C>T of the methylenetetrahydrofolate reductase (MTHFR) genes. Thirty three patients and their controls were studied. The biochemical test was carried out by colorimetric methods and immunoassay. In this survey we used the restriction fragments longitude polymorphism (RLFP) technique to identify the polymorphisms mentioned. The association study was performed through the chi square test. We confirmed that gene alterations increase risk for pathology; we found statistically significant differences in the group with hypercholesterolemia in presence of the polymorphism c.699 C>T in the CBS gene, showing a protective effect in the individuals carrying this genetic variation. Likewise, we found a statistical trend for an eventual protective effect of the CBS c.844ins68 polymorphism to venous thrombotic disease. There were not any statistically significant differences in homocystein levels between cases and controls; nevertheless, the variability in the plasma concentrations was greater in the group of cases.

  16. Transport of a solute pulse through the bentonite barrier of deep geological high-level waste storage facilities in granite

    International Nuclear Information System (INIS)

    Cormenzana Lopez, J.L.; Alonso Diaz-Teran, J.; Gonzalez- Herranz, E.

    1997-01-01

    Spain like Sweden, Finland, Canada and other countries has opted for an open nuclear fuel cycle, and to store the unreprocessed spent fuel in a stable geological formation. Sweden, Finland and Canada have chosen granite rock for their high-level waste storage facilities. Their Performance Assessment of disposal systems have all obtained to the same result. The greatest annual doses are caused by I 129 in the gap between the fuel rods and the cladding. The reference concept for the Spanish high-level waste storage facility in granite provides for final storage in a granite mass at a depth of 500 m in carbon steel capsules in horizontal tunnels surrounded by a bentonite buffer. It the capsule fails due to generalised corrosion, an not giving credit for the cladding, the I 129 and other radionuclides in the gap would pass immediately into the surrounding water. This paper describes the modelling of the transport of the solute through the bentonite around the capsule to determine the fraction that crosses the bentonite each year. It also analyses the sensitivity of the results to the boundary condition adopted and changes in the values of the relevant parameters. (Author)

  17. Genesis and distribution pattern of carbonate cements in lacustrine deep-water gravity-flow sandstone reservoirs in the third member of the Shahejie Formation in the Dongying Sag, Jiyang Depression, Eastern China

    DEFF Research Database (Denmark)

    Yang, Tian; Cao, Yingchang; Friis, Henrik

    2018-01-01

    The lacustrine deep-water gravity-flow sandstone reservoirs in the third member of the Shahejie Formation are the main exploration target for hydrocarbons in the Dongying Sag, Eastern China. Carbonate cementation is responsible for much of the porosity and permeability reduction in the lacustrine...

  18. The Relative Age Effect on Soccer Players in Formative Stages with Different Sport Expertise Levels

    Directory of Open Access Journals (Sweden)

    Práxedes Alba

    2017-12-01

    Full Text Available The Relative Age Effect (RAE in sport has been targeted by many research studies. The objective of this study was to analyze, in amateur clubs, the RAE of soccer players, according to the sport expertise level of the team (e.g., A, B, C and subsequent that they belong to within the same game category. 1,098 soccer players in formative stages took part in the study, with ages varying between 6 and 18 years old (U8 to U19 categories. All of them were members of 4 Spanish federated clubs. The birth dates were classified into 4 quartiles (Q1 = Jan-Mar; Q2 = Apr-Jun; Q3 = Jul-Sept; Q4 = Oct-Decaccording to the team they belonged to. The results obtained in the chi-squared test and d value (effect size revealed the existence of RAE in the teams with the highest expertise level, “A” (X2 = 15.342, p = .002, d = 0.4473 and “B” (X2 = 10.905, p = .012, d = 0.3657. However, in the lower level teams, “C and subsequent”, this effect was not observed. Present findings show that players born during the first months of the year tend to be selected to play in teams with a higher sport expertise level of each category, due to their physical maturity. Consequently, this causes differences in terms of the experience they accumulate and the motivation that this creates in these players.

  19. Final deposition of high-level nuclear waste in very deep boreholes. An evaluation based on recent research of bedrock conditions at great depths

    International Nuclear Information System (INIS)

    Aahaell, Karl-Inge

    2007-01-01

    This report evaluates the feasibility of very deep borehole disposal of high-level nuclear waste, e.g., spent nuclear fuel, in the light of recent technological developments and research on the characteristics of bedrock at extreme depths. The evaluation finds that new knowledge in the field of hydrogeology and technical advances in drilling technology have advanced the possibility of using very deep boreholes (3-5 km) for disposal of the Swedish nuclear waste. Decisive factors are (1) that the repository can be located in stable bedrock at a level where the groundwater is isolated from the biosphere, and (2) that the waste can be deposited and the boreholes permanently sealed without causing long-term disturbances in the density-stratification of the groundwater that surrounds the repository. Very deep borehole disposal might offer important advantage compared to the relatively more shallow KBS approach that is presently planned to be used by the Swedish nuclear industry in Sweden, in that it has the potential of being more robust. The reason for this is that very deep borehole disposal appears to permit emplacement of the waste at depths where the entire repository zone would be surrounded by stable, density-stratified groundwater having no contact with the surface, whereas a KBS-3 repository would be surrounded by upwardly mobile groundwater. This hydro-geological difference is a major safety factor, which is particularly apparent in all scenarios that envisage leakage of radioactive substances. Another advantage of a repository at a depth of 3 to 5 km is that it is less vulnerable to impacts from expected events (e.g., changes in groundwater conditions during future ice ages) as well as undesired events (e.g. such as terrorist actions, technical malfunction and major local earthquakes). Decisive for the feasibility of a repository based on the very deep borehole concept is, however, the ability to emplace the waste without failures. In order to achieve this

  20. Evidence for two distinct defects contributing to the H4 deep-level transient spectroscopy peak in electron-irradiated InP

    International Nuclear Information System (INIS)

    Darwich, R.; Massarani, B.; Kaaka, M.; Awad, F.

    2000-01-01

    Deep-level transient spectroscopy (DLTS) has been used to study the dominant deep-level H4 produced in InP by electron irradiation. The characteristics of the H4 peak in Zn-doped Inp has been studied as a function of pulse duration (t p ) before and after annealing. The results show that at least two traps contribute to the H4 peak: one is a fast trap (labeled H4 f ) and the other is a show trap (labeled H4 s ). This is show through several results concerning the activation energy, the capture cross section, the full width at half-maximum, and the peak temperature shift. It is shown that both traps are irradiation defects created in P sublattice. (authors)

  1. Impact of the silicon substrate resistivity and growth condition on the deep levels in Ni-Au/AlN/Si MIS Capacitors

    Science.gov (United States)

    Wang, Chong; Simoen, Eddy; Zhao, Ming; Li, Wei

    2017-10-01

    Deep levels formed under different growth conditions of a 200 nm AlN buffer layer on B-doped Czochralski Si(111) substrates with different resistivity were investigated by deep-level transient spectroscopy (DLTS) on metal-insulator-semiconductor capacitors. Growth-temperature-dependent Al diffusion in the Si substrate was derived from the free carrier density obtained by capacitance-voltage measurement on samples grown on p- substrates. The DLTS spectra revealed a high concentration of point and extended defects in the p- and p+ silicon substrates, respectively. This indicated a difference in the electrically active defects in the silicon substrate close to the AlN/Si interface, depending on the B doping concentration.

  2. Quantitative determination of heparin levels in serum with microtiter plate-format optode

    International Nuclear Information System (INIS)

    Kim, Sung Bae; Kang, Tae Young; Cha, Geun Sig; Nam, Hakhyun

    2006-01-01

    A new assay method has been developed for the quantitative determination of heparin in serum using a microtiter plate-format optode (MPO). Heparin and proton in physiological sample are favorably co-extracted into the solvent polymeric optode membrane containing both cationic lipophilic additive, tridodecylmethyl ammonium chloride (TDMAC), and proton-selective ionophore, 3-hydroxy-4-(4-nitrophenylazo)-phenyloctadecanoate (ETH 2412), resulting in the absorbance change of the membrane to varying heparin levels. The optimized MPO composition contains low polymer-to-plasticizer ratio compared to those of conventional ion-selective optodes or electrodes, i.e., poly(vinyl chloride) (20.0)/dioctylsebacate (76.3)/ETH 2412 (1.7)/TDMAC (1.0) (wt.%): it resulted in a quantitative response to heparin from 0 to 15 unit/mL in serum with high sensitivity. The heparin-protamine titration on the MPO could provide rapid and precise determination of heparin. It was shown that the heparin levels in serum sample could be determined from the rate of absorbance change over time (ΔA/Δt); this method was more effective than the direct absorbance measurement in minimizing the interferences from color and turbidity of serum samples. MPO has been developed as a high throughput and convenient disposable sensing device, and may find a wide application in the determination of polyions and charged macromolecules

  3. A 2-d modeling approach for studying the formation, maintenance, and decay of Tropical Tropopause Layer Cirrus associated with Deep Convection

    Science.gov (United States)

    Henz, D. R.; Hashino, T.; Tripoli, G. J.; Smith, E. A.

    2009-12-01

    This study is being conducted to examine the distribution, variability, and formation-decay processes of TTL cirrus associated with tropical deep convection using the University of Wisconsin Non-Hydrostatic modeling system (NMS). The experimental design is based on Tripoli, Hack and Kiehl (1992) which explicitly simulates the radiative-convective equilibrium of the tropical atmosphere over extended periods of weeks or months using a 2D periodic cloud resolving model. The experiment design includes a radiation parameterization to explicitly simulate radiative transfer through simulated crystals. Advanced Microphysics Prediction System (AMP) will be used to simulate microphysics by employing SHIPS (Spectral Habit Ice Prediction System) for ice, SLiPS (Spectral Liquid Prediction System) for droplets, and SAPS (Spectral Aerosol Prediction System) for aerosols. The ice scheme called SHIPS is unique in that ice particle properties (such as size, particle density, and crystal habitats) are explicitly predicted in a CRM (Hashino and Tripoli, 2007, 2008). The Advanced Microphysics Prediction System (AMPS) technology provides a particularly strong tool that effectively enables the explicit modeling of the TTL cloud microphysics and dynamical processes which has yet to be accomplished by more traditional bulk microphysics approaches.

  4. Researching the Components of Formation of the Export Potential of Industry on the Micro-and Meso-Levels

    Directory of Open Access Journals (Sweden)

    Pavlenchyk Nataliya F.

    2017-11-01

    Full Text Available The article analyses approaches to formation of the export potential of industry on the micro- and meso-levels. A number of factors influencing the formation of the export potential of industry on the micro- and meso-levels has been considered. It was found that the components of the export potential of industry on the micro- and meso-levels are factors, capabilities (potential, and resources. It has been suggested to perceive the defining resources of formation of the export potential of industrial enterprises as: personnel, production, financial-investment, innovation, marketing, information, organizational, and managerial. It has been found that the main resources of export potential of the industry of region include: production, raw material, natural, financial, investment, social, and innovation. There is a number of opportunities that contribute to the formation of the export potential of the region’s industry, in particular: labor, industrial, financial, raw material, natural, investment, innovation, social, information, and organizational-managerial.

  5. Direct observation and measurements of neutron induced deep levels responsible for N{sub eff} changes in high resistivity silicon detectors using TCT

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.; Li, C.J. [Brookhaven National Lab., Upton, NY (United States); Eremin, V.; Verbitskaya, E. [AN SSSR, Leningrad (Russian Federation). Fiziko-Tekhnicheskij Inst.

    1996-03-01

    Neutron induced deep levels responsible for changes of space charge concentration {ital N{sub eff}} in high resistivity silicon detectors have been observed directly using the transient current technique (TCT). It has been observed by TCT that the absolute value and sign of {ital N{sub eff}} experience changes due to the trapping of non- equilibrium free carriers generated near the surface (about 5 micrometers depth into the silicon) by short wavelength laser pulses in fully depleted detectors. Electron trapping causes {ital N{sub eff}} to change toward negative direction (or more acceptor-like space charges) and hole trapping causes {ital N{sub eff}} to change toward positive direction (or more donor-like space charges). The specific temperature associated with these {ital N{sub eff}} changes are those of the frozen-up temperatures for carrier emission of the corresponding deep levels. The carrier capture cross sections of various deep levels have been measured directly using different free carrier injection schemes. 10 refs., 12 figs., 3 tabs.

  6. Diode characteristics and residual deep-level defects of p+n abrupt junctions fabricated by rapid thermal annealing of boron implanted silicon

    International Nuclear Information System (INIS)

    Usami, A.; Katayama, M.; Wada, T.; Tokuda, Y.

    1987-01-01

    p + n diodes were fabricated by rapid thermal annealing (RTA) of boron implanted silicon in the annealing temperature range 700-1100 0 C for around 7 s, and the RTA temperature dependence of electrical characteristics of these diodes was studied. Deep-level transient spectroscopy (DLTS) measurements were made to evaluate residual deep-level defects in the n-type bulk. Three electron traps were observed in p + n diodes fabricated by RTA at 700 0 C. It was considered that these three traps were residual point defects near the tail of the implantation damage after RTA. Residual defect concentrations increased in the range 700-900 0 C and decreased in the range 1000-1100 0 C. The growth of defects in the bulk was ascribed to the diffusion of defects from the implanted layer during RTA. Concentrations of electron traps observed in p + n diodes fabricated by RTA at 1100 0 C were approx. 10 12 cm -3 . It was found that these residual deep-level defects observed by DLTS were inefficient generation-recombination centres since the reverse current was independent of the RTA temperatures. (author)

  7. Deep circulation in the Indian and Pacific Oceans and its implication for the dumping of low-level radioactive waste

    International Nuclear Information System (INIS)

    Harries, J.R.

    1980-06-01

    The complexity of ocean transport processes has meant that the limits for the dumping of low-activity radioactive wastes have had to be based on very simplified models of the oceans. This report discusses the models used to determine dumping limits and contrasts them with the known ocean circulation patterns. The deep circulations of the Indian and Pacific Oceans are reviewed to provide a basis for estimating the possible destinations and likely transit times for dissolved material released at the ocean floor

  8. The Spectral Energy Distributions of z ~ 8 Galaxies from the IRAC Ultra Deep Fields: Emission Lines, Stellar Masses, and Specific Star Formation Rates at 650 Myr

    Science.gov (United States)

    Labbé, I.; Oesch, P. A.; Bouwens, R. J.; Illingworth, G. D.; Magee, D.; González, V.; Carollo, C. M.; Franx, M.; Trenti, M.; van Dokkum, P. G.; Stiavelli, M.

    2013-11-01

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ~ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ~120h over the HUDF reaching depths of ~28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct >=3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at >=5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ~ 8 are markedly redder than those at z ~ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ~ 7 and z ~ 8 we estimate a rest-frame equivalent width of {W}_{[O\\,\\scriptsize{III}]\\ \\lambda \\lambda 4959,5007+H\\beta }=670^{+260}_{-170} Å contributing 0.56^{+0.16}_{-0.11} mag to the [4.5] filter at z ~ 8. The corresponding {W}_{H\\alpha }=430^{+160}_{-110} Å implies an average specific star formation rate of sSFR=11_{-5}^{+11} Gyr-1 and a stellar population age of 100_{-50}^{+100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ~3 ×, decreasing the integrated stellar mass density to \\rho ^*(z=8,M_{\\rm{UV}}Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with programs #11563, 9797. Based on observations with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of

  9. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR

    Energy Technology Data Exchange (ETDEWEB)

    Labbé, I.; Bouwens, R. J.; Franx, M. [Leiden Observatory, Leiden University, NL-2300 RA Leiden (Netherlands); Oesch, P. A.; Illingworth, G. D.; Magee, D.; González, V. [UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Carollo, C. M. [Institute for Astronomy, ETH Zurich, 8092 Zurich (Switzerland); Trenti, M. [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Van Dokkum, P. G. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Stiavelli, M. [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-11-10

    Using new ultradeep Spitzer/InfraRed Array Camera (IRAC) photometry from the IRAC Ultra Deep Field program, we investigate the stellar populations of a sample of 63 Y-dropout galaxy candidates at z ∼ 8, only 650 Myr after the big bang. The sources are selected from HST/ACS+WFC3/IR data over the Hubble Ultra Deep Field (HUDF), two HUDF parallel fields, and wide area data over the CANDELS/GOODS-South. The new Spitzer/IRAC data increase the coverage in [3.6] and [4.5] to ∼120h over the HUDF reaching depths of ∼28 (AB,1σ). The improved depth and inclusion of brighter candidates result in direct ≥3σ InfraRed Array Camera (IRAC) detections of 20/63 sources, of which 11/63 are detected at ≥5σ. The average [3.6]-[4.5] colors of IRAC detected galaxies at z ∼ 8 are markedly redder than those at z ∼ 7, observed only 130 Myr later. The simplest explanation is that we witness strong rest-frame optical emission lines (in particular [O III] λλ4959, 5007 + Hβ) moving through the IRAC bandpasses with redshift. Assuming that the average rest-frame spectrum is the same at both z ∼ 7 and z ∼ 8 we estimate a rest-frame equivalent width of contributing 0.56{sup +0.16}{sub -0.11} mag to the [4.5] filter at z ∼ 8. The corresponding W{sub Hα}=430{sup +160}{sub -110} Å implies an average specific star formation rate of sSFR=11{sub -5}{sup +11} Gyr{sup –1} and a stellar population age of 100{sub -50}{sup +100} Myr. Correcting the spectral energy distribution for the contribution of emission lines lowers the average best-fit stellar masses and mass-to-light ratios by ∼3 ×, decreasing the integrated stellar mass density to ρ{sup *}(z=8,M{sub UV}<-18)=0.6{sup +0.4}{sub -0.3}×10{sup 6} M{sub sun} Mpc{sup –3}.

  10. Suppression and enhancement of deep level emission of ZnO on Si4+ & V5+ substitution

    Science.gov (United States)

    Srivastava, T.; Bajpai, G.; Sen, S.

    2018-03-01

    ZnO possess a wide range of tunable properties depending on the type and concentration of dopant. Defects in ZnO due to doped aliovalent ions can generate certain functionalities. Such defects in the lattice do not deteriorate the material properties but actually modifies the material towards infinite number of possibilities. Defects like oxygen vacancies play a significant role in photocatalytic and sensing applications. Depending upon the functionality, defect state of ZnO can be modified by suitable doping. Amount and nature of different dopant has different effect on defect state of ZnO. It depends upon the ionic radii, valence state, chemical stability etc. of the ion doped. Two samples with two different dopants i.e., silicon and vanadium, Zn1-xSixO and Zn1-xVxO, for x=0 & 0.020, were synthesized using solgel method (a citric acid-glycerol route) followed by solid state sintering. A comparison of their optical properties, photoluminescence and UV-Vis spectroscopy, with pure ZnO was studied at room temperature. Silicon doping drastically reduces whereas vanadium doping enhances the green emission as compared with pure ZnO. Suppression and enhancement of defect levels (DLE) is rationalized by the effects of extra charge present on Si4+ & V5+ (in comparison to Zn2+) and formation of new hybrid state (V3d O2p) within bandgap. Reduction of defects in Zn1-xSixO makes it suitable material for opto-electronics application whereas enhancement in defects in Zn1-xVxO makes it suitable material for photocatalytic as well as gas sensing application.

  11. Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy

    Science.gov (United States)

    Zhang, Z.; Arehart, A. R.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Ringel, S. A.

    2015-01-01

    The impact of proton irradiation on the deep level states throughout the Mg-doped p-type GaN bandgap is investigated using deep level transient and optical spectroscopies. Exposure to 1.8 MeV protons of 1 × 1013 cm-2 and 3 × 1013 cm-2 fluences not only introduces a trap with an EV + 1.02 eV activation energy but also brings monotonic increases in concentration for as-grown deep states at EV + 0.48 eV, EV + 2.42 eV, EV + 3.00 eV, and EV + 3.28 eV. The non-uniform sensitivities for individual states suggest different physical sources and/or defect generation mechanisms. Comparing with prior theoretical calculations reveals that several traps are consistent with associations to nitrogen vacancy, nitrogen interstitial, and gallium vacancy origins, and thus are likely generated through displacing nitrogen and gallium atoms from the crystal lattice in proton irradiation environment.

  12. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS{sub 2} layered semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seyidov, MirHasan Yu., E-mail: smirhasan@gyte.edu.tr; Suleymanov, Rauf A.; Mikailzade, Faik A. [Department of Physics, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Institute of Physics of NAS of Azerbaijan, H. Javid ave. 33, Baku AZ-1143 (Azerbaijan); Kargın, Elif Orhan [Department of Physics, Gebze Technical University, Gebze, Kocaeli 41400 (Turkey); Odrinsky, Andrei P. [Institute of Technical Acoustics, National Academy of Sciences of Belarus, Lyudnikov ave. 13, Vitebsk 210717 (Belarus)

    2015-06-14

    Lanthanum-doped high quality TlInS{sub 2} (TlInS{sub 2}:La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS{sub 2}:La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS{sub 2}:La. Thermal treatments of TlInS{sub 2}:La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10{sup −14} cm{sup 2}, corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS{sub 2}:La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10{sup −16} cm{sup 2} were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles

  13. Characterization of deep level defects and thermally stimulated depolarization phenomena in La-doped TlInS2 layered semiconductor

    International Nuclear Information System (INIS)

    Seyidov, MirHasan Yu.; Suleymanov, Rauf A.; Mikailzade, Faik A.; Kargın, Elif Orhan; Odrinsky, Andrei P.

    2015-01-01

    Lanthanum-doped high quality TlInS 2 (TlInS 2 :La) ferroelectric-semiconductor was characterized by photo-induced current transient spectroscopy (PICTS). Different impurity centers are resolved and identified. Analyses of the experimental data were performed in order to determine the characteristic parameters of the extrinsic and intrinsic defects. The energies and capturing cross section of deep traps were obtained by using the heating rate method. The observed changes in the Thermally Stimulated Depolarization Currents (TSDC) near the phase transition points in TlInS 2 :La ferroelectric-semiconductor are interpreted as a result of self-polarization of the crystal due to the internal electric field caused by charged defects. The TSDC spectra show the depolarization peaks, which are attributed to defects of dipolar origin. These peaks provide important information on the defect structure and localized energy states in TlInS 2 :La. Thermal treatments of TlInS 2 :La under an external electric field, which was applied at different temperatures, allowed us to identify a peak in TSDC which was originated from La-dopant. It was established that deep energy level trap BTE43, which are active at low temperature (T ≤ 156 K) and have activation energy 0.29 eV and the capture cross section 2.2 × 10 −14 cm 2 , corresponds to the La dopant. According to the PICTS results, the deep level trap center B5 is activated in the temperature region of incommensurate (IC) phases of TlInS 2 :La, having the giant static dielectric constant due to the structural disorders. From the PICTS simulation results for B5, native deep level trap having an activation energy of 0.3 eV and the capture cross section of 1.8 × 10 −16 cm 2 were established. A substantial amount of residual space charges is trapped by the deep level localized energy states of B5 in IC-phase. While the external electric field is applied, permanent dipoles, which are originated from the charged B5

  14. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  15. Development of an assessment methodology for the disposal of high-level radioactive waste into deep ocean sediments

    International Nuclear Information System (INIS)

    Murray, C.N.; Stanners, D.A.

    1982-01-01

    This paper presents the results of a theoretical study concerning the option of disposal of vitrified high activity waste (HAW) into deep ocean sediments. The development of a preliminary methodology is presented which concerns the assessment of the possible effects of a release of radioactivity on the ecosystem and eventually on man. As the long-term hazard is considered basically to be due to transuranic elements (and daughter products) the period studied for the assessment is from 10 3 to 10 6 years. A simple ecosystem model is developed so that the transfer of activity between different compartments of the systems, e.g. the sediment column, sediment-water interface, deep sea water column, can be estimated. A critical pathway analysis is made for an imaginary critical group in order to complete the assessment. A sensitivity analysis is undertaken using the computed minimum-maximum credible values for the different parameters used in the calculations in order to obtain a minimum-maximum dose range for a critical group. (Auth.)

  16. Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Farzana, Esmat; Ahmadi, Elaheh; Speck, James S.; Arehart, Aaron R.; Ringel, Steven A.

    2018-04-01

    Deep level defects were characterized in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy (PAMBE) using deep level optical spectroscopy (DLOS) and deep level transient (thermal) spectroscopy (DLTS) applied to Ni/β-Ga2O3:Ge (010) Schottky diodes that displayed Schottky barrier heights of 1.50 eV. DLOS revealed states at EC - 2.00 eV, EC - 3.25 eV, and EC - 4.37 eV with concentrations on the order of 1016 cm-3, and a lower concentration level at EC - 1.27 eV. In contrast to these states within the middle and lower parts of the bandgap probed by DLOS, DLTS measurements revealed much lower concentrations of states within the upper bandgap region at EC - 0.1 - 0.2 eV and EC - 0.98 eV. There was no evidence of the commonly observed trap state at ˜EC - 0.82 eV that has been reported to dominate the DLTS spectrum in substrate materials synthesized by melt-based growth methods such as edge defined film fed growth (EFG) and Czochralski methods [Zhang et al., Appl. Phys. Lett. 108, 052105 (2016) and Irmscher et al., J. Appl. Phys. 110, 063720 (2011)]. This strong sensitivity of defect incorporation on crystal growth method and conditions is unsurprising, which for PAMBE-grown β-Ga2O3:Ge manifests as a relatively "clean" upper part of the bandgap. However, the states at ˜EC - 0.98 eV, EC - 2.00 eV, and EC - 4.37 eV are reminiscent of similar findings from these earlier results on EFG-grown materials, suggesting that possible common sources might also be present irrespective of growth method.

  17. Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels.

    Directory of Open Access Journals (Sweden)

    Dirk Maass

    Full Text Available BACKGROUND: As the first pathway-specific enzyme in carotenoid biosynthesis, phytoene synthase (PSY is a prime regulatory target. This includes a number of biotechnological approaches that have successfully increased the carotenoid content in agronomically relevant non-green plant tissues through tissue-specific PSY overexpression. We investigated the differential effects of constitutive AtPSY overexpression in green and non-green cells of transgenic Arabidopsis lines. This revealed striking similarities to the situation found in orange carrot roots with respect to carotenoid amounts and sequestration mechanism. METHODOLOGY/PRINCIPAL FINDINGS: In Arabidopsis seedlings, carotenoid content remained unaffected by increased AtPSY levels although the protein was almost quantitatively imported into plastids, as shown by western blot analyses. In contrast, non-photosynthetic calli and roots overexpressing AtPSY accumulated carotenoids 10 and 100-fold above the corresponding wild-type tissues and contained 1800 and 500 microg carotenoids per g dry weight, respectively. This increase coincided with a change of the pattern of accumulated carotenoids, as xanthophylls decreased relative to beta-carotene and carotene intermediates accumulated. As shown by polarization microscopy, carotenoids were found deposited in crystals, similar to crystalline-type chromoplasts of non-green tissues present in several other taxa. In fact, orange-colored carrots showed a similar situation with increased PSY protein as well as carotenoid levels and accumulation patterns whereas wild white-rooted carrots were similar to Arabidopsis wild type roots in this respect. Initiation of carotenoid crystal formation by increased PSY protein amounts was further confirmed by overexpressing crtB, a bacterial PSY gene, in white carrots, resulting in increased carotenoid amounts deposited in crystals. CONCLUSIONS: The sequestration of carotenoids into crystals can be driven by the

  18. A reconsideration on deep sea bed disposal of high level radiological wastes. A post-Fukushima reflection on sustainable nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yoshikawa, Hidekazu

    2013-01-01

    The ultimate disposal of high-level radioactive waste (HLW) is a common issue among all nuclear developing countries. However, this becomes especially a hard issue for sustainable nuclear energy in Japan after Fukushima Daiichi accident. In this paper, the difficulty of realizing underground HLW disposal in Japanese islands is first discussed from socio-political aspects. Then, revival of old idea of deep seabed disposal of HLW in Pacific Ocean is proposed as an alternative way of HLW disposal. Although this old idea had been abandoned in the past for the reason that it would violate London Convention which prohibits dumping radioactive wastes in public sea, the author will stress the merit of seabed disposal of HLW deep in Pacific Ocean not only from the view point of more safe and ultimate way of disposing HLWs (both vitrified and spent fuel) than by underground disposal, but also the emergence of new marine project by synergetic collaboration of rare-earth resource exploration from the deep sea floor in Pacific Ocean. (author)

  19. Probabilistic safety assessment for a generic deep geological repository for high-level waste and long-lived intermediate-level waste in clay

    International Nuclear Information System (INIS)

    Resele, G.; Holocher, J.; Mayer, G.; Hubschwerlen, N.; Niemeyer, M.; Beushausen, M.; Wollrath, J.

    2010-01-01

    Document available in extended abstract form only. In the selection procedure for the search of a final site location for the disposal of radioactive wastes, the comparison and evaluation of different potentially suitable repository systems in different types of host rocks will be an essential and crucial step. Since internationally accepted guidelines on how to perform such quantitative comparisons between repository systems with regard to their long-term safety behaviour are still lacking, in 2007 the German Federal Office for Radiation Protection launched the project 'VerSi' (Vergleichende Sicherheitsanalysen - Comparing Safety Assessments) that aims at the development of a methodology for the comparison of long-term safety assessments. A vital part of the VerSi project is the performance of long-term safety assessments for the comparison of two repository systems. The comparison focuses on a future repository for heat-generating, i.e. high-level and long-lived intermediate-level radioactive wastes in Germany. Rock salt is considered as a potential host rock for such a repository, and one repository system in VerSi is defined similarly to the potential site located in the Gorleben salt dome. Another suitable host rock formation may be clay. A generic location within the lower Cretaceous clays in Northern Germany is therefore chosen for the comparison of safety assessments within the VerSi project. The long-term safety assessment of a repository system for heat-generating radioactive waste at the generic clay location comprises different steps, amongst others: - Identifying the relevant processes in the near-field, in the geosphere and in the biosphere which are relevant for the long-term safety behaviour. - Development of a safety concept for the repository system. - Deduction of scenarios of the long-term evolution of the repository system. - Definition of statistic weights, i. e. the likelihood of occurrence of the scenarios. - Performance of a

  20. Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel

    Science.gov (United States)

    Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus

    2012-09-01

    The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.