WorldWideScience

Sample records for deep geological structures

  1. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  2. Application of AMT in detecting deep geological structures in Lejia district of Xiangshan uranium ore field

    International Nuclear Information System (INIS)

    Duan Shuxin; Liu Hu

    2014-01-01

    In recent years, exploration in Xiangshan uranium ore field shows that the intersection of faults and the interface of different rock formation and the basement is an important sign of deep ore- prospecting. In order to evaluate deep uranium resource in Lejia district, audio magnetotelluric method (AMT) was undertaken to carry out profile investigation. With that method, we discerned the interface of different rock formation and the basement successfully, and faults in the deep, which provides a good basis for the prediction of deep uranium resource. Drilling results show that AMT method has an obvious advantage in detecting deep geological structures in Xiangshan. (authors)

  3. Problems of solidificated radioactive wastes burial into deep geological structures

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Leonov, E.A.; Romadin, N.M.; Shishcits, I.Yu.

    1981-01-01

    Perspectives are noted of the radioactive wastes burial into deep geopogical structures. For these purposes it has been proposed to investigate severap types of rocks, which do not have intensive gas-generation when beeng heated; salt deposits and clays. Basing on the results of calculations it has been shown that the dimentions of zones of substantial deformations in the case of the high-level radioactive wastes burial to not exceed several hundreds of meters. Conclusion is made that in the case of choosing the proper geotogicat structure for burial and ir the case of inclusion in the structure of the burial site a zone of sanitary alienation, it is possible to isolate wastes safely for all the period of preservation. Preliminary demands have been formulated to geological structures and underground burial sites. As main tasks for optimizatiop of burial sited are considered: determination of necessary types, number and reliability of barriers which ensure isolation of wastes; to make prognoses of the stressed and deformed state of a geological massif on the influence of thermal field; investigation in changes of chemical and physical properties of rocks under heat, radiative and chemical influence; estimation of possible diffusion of radioactivity in a mountin massif; development of a rational mining-thechnological schemes of the burual of wastes of different types. A row of tasks in the farmeworks of this probtem are sotved successfutty. Some resutts are given of the theoretical investigations in determination of zones of distructions of rocks because of heat-load [ru

  4. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  5. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  6. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  7. Modelling of radionuclide transport along the underground access structures of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [SAM Switzerland GmbH, Zuerich (Switzerland); Mayer, G.; Hayek, M. [AF-Consult Switzerland AG, Baden (Switzerland)

    2014-08-15

    The arrangement and sealing of the access routes to a deep geological repository for radioactive waste should ensure that any radionuclide release from the emplacement rooms during the post closure phase does not by-pass the geological barriers of the repository system to a significant extent. The base case of the present study, where realistic values for the hydraulic properties of the seals and the associated excavation damage zones were assumed, assesses to what extent this is actually the case for different layout variants (ramp and shaft access and shaft access only). Furthermore, as a test of robustness of system performance against uncertainties related to such seals and the associated excavation damage zones, the present study also considers a broad spectrum of calculation cases including the hypothetical possibility that the seals perform much more poorly than expected and to check whether, consequently, the repository tunnel system and the access structures may provide significant release pathways. The study considers a generic repository system for high-level waste (HLW repository) and for low- and intermediate-level waste (L/ILW repository), both with Opalinus Clay as the host rock. It also considers the alternative possibilities of a ramp or a shaft as the access route for material transport (waste packages, etc.) to the underground facilities. Additional shafts, e.g. for the transport of persons and for ventilation, are included in both cases. The overall modelling approach consists of three broad steps: (a) the network of tunnels and access structures is implemented in a flow model, which serves to calculate water flow rates along the tunnels and through the host rock; (b) all relevant transport paths are implemented in a radionuclide release and transport model, the water flow rates being obtained from the preceding flow model calculations; (c) individual effective dose rates arising from the radionuclides released from the considered repository

  8. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  9. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  10. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  11. Three-dimensional Geological and Geo-mechanical Modelling of Repositories for Nuclear Waste Disposal in Deep Geological Structures

    International Nuclear Information System (INIS)

    Fahland, Sandra; Hofmann, Michael; Bornemann, Otto; Heusermann, Stefan

    2008-01-01

    To prove the suitability and safety of underground structures for the disposal of radioactive waste extensive geo-scientific research and development has been carried out by BGR over the last decades. Basic steps of the safety analysis are the geological modelling of the entire structure including the host rock, the overburden and the repository geometry as well as the geo-mechanical modelling taking into account the 3-D modelling of the underground structure. The geological models are generated using the special-construction openGEO TM code to improve the visualisation an d interpretation of the geological data basis, e.g. borehole, mine, and geophysical data. For the geo-mechanical analysis the new JIFE finite-element code has been used to consider large 3-D structures with complex inelastic material behaviour. To establish the finite-element models needed for stability and integrity calculations, the geological models are simplified with respect to homogenous rock layers with uniform material behaviour. The modelling results are basic values for the evaluation of the stability of the repository mine and the long-term integrity of the geological barrier. As an example of application, the results of geological and geo-mechanical investigations of the Morsleben repository based on 3-D modelling are presented. (authors)

  12. Assessment of deep geological environment condition

    International Nuclear Information System (INIS)

    Bae, Dae Seok; Han, Kyung Won; Joen, Kwan Sik

    2003-05-01

    The main tasks of geoscientific study in the 2nd stage was characterized focusing mainly on a near-field condition of deep geologic environment, and aimed to generate the geologic input data for a Korean reference disposal system for high level radioactive wastes and to establish site characterization methodology, including neotectonic features, fracture systems and mechanical properties of plutonic rocks, and hydrogeochemical characteristics. The preliminary assessment of neotectonics in the Korean peninsula was performed on the basis of seismicity recorded, Quarternary faults investigated, uplift characteristics studied on limited areas, distribution of the major regional faults and their characteristics. The local fracture system was studied in detail from the data obtained from deep boreholes in granitic terrain. Through this deep drilling project, the geometrical and hydraulic properties of different fracture sets are statistically analysed on a block scale. The mechanical properties of intact rocks were evaluated from the core samples by laboratory testing and the in-situ stress conditions were estimated by a hydro fracturing test in the boreholes. The hydrogeochemical conditions in the deep boreholes were characterized based on hydrochemical composition and isotopic signatures and were attempted to assess the interrelation with a major fracture system. The residence time of deep groundwater was estimated by C-14 dating. For the travel time of groundwater between the boreholes, the methodology and equipment for tracer test were established

  13. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  14. Nuclear waste and a deep geological disposal facility

    International Nuclear Information System (INIS)

    Vokal, A.; Laciok, A.; Vasa, I.

    2005-01-01

    The paper presents a systematic analysis of the individual areas of research into nuclear waste and deep geological disposal with emphasis on the contribution of Nuclear Research Institute Rez plc to such efforts within international projects, specifically the EURATOM 6th Framework Programme. Research in the area of new advanced fuel cycles with focus on waste minimisation is based on EU's REDIMPACT project. The individual fuel cycles, which are currently studied within the EU, are briefly described. Special attention is paid to fast breeders and accelerator-driven reactor concepts associated with new spent fuel reprocessing technologies. Results obtained so far show that none even of the most advanced fuel cycles, currently under consideration, would eliminate the necessity to have a deep geological repository for a safe storage of residual radioactive waste. As regards deep geological repository barriers, the fact is highlighted that the safety of a repository is assured by complementary engineered and natural barriers. In order to demonstrate the safety of a repository, a deep insight must be gained into any and all of the individual processes that occur inside the repository and thus may affect radioactivity releases beyond the repository boundaries. The final section of the paper describes methods of radioactive waste conditioning for its disposal in a repository. Research into waste matrices used for radionuclide immobilisation is also highlighted. (author)

  15. Human intruder dose assessment for deep geological disposal

    International Nuclear Information System (INIS)

    Smith, G. M.; Molinero, J.; Delos, A.; Valls, A.; Conesa, A.; Smith, K.; Hjerpe, T.

    2013-07-01

    For near-surface disposal, approaches to assessment of inadvertent human intrusion have been developed through international cooperation within the IAEA's ISAM programme. Other assessments have considered intrusion into deep geological disposal facilities, but comparable international cooperation to develop an approach for deep disposal has not taken place. Accordingly, the BIOPROTA collaboration project presented here (1) examined the technical aspects of why and how deep geological intrusion might occur; (2) considered how and to what degree radiation exposure would arise to the people involved in such intrusion; (3) identified the processes which constrain the uncertainties; and hence (4) developed and documented an approach for evaluation of human intruder doses which addresses the criteria adopted by the IAEA and takes account of other international guidance and human intrusion assessment experience. Models for radiation exposure of the drilling workers and geologists were developed and described together with compilation of relevant input data, taking into account relevant combinations of drilling technique, geological formation and repository material. Consideration has been given also to others who might be exposed to contaminated material left at the site after drilling work has ceased. The models have been designed to be simple and stylised, in accordance with international recommendations. The set of combinations comprises 58 different scenarios which cover a very wide range of human intrusion possibilities via deep drilling. (orig.)

  16. A method of identifying social structures in siting regions for deep geological repositories in Switzerland

    International Nuclear Information System (INIS)

    Brander, Simone

    2010-09-01

    Acceptance is a key element in the site selection process for deep geological repositories for high-level and low and intermediate-level radioactive waste in Switzerland. Participation requirements such as comprehensive negotiation issues and adequate resources have thus been defined by the Swiss Federal Office of Energy (SFOE). In 2008, on the basis of technical criteria Nagra (National Cooperative for the Disposal of Radioactive Waste) proposed several potential areas for deep geological repositories. The number of potential areas will be narrowed down within the next few years. All municipalities within the planning perimeter (the area in which surface facilities can be realised) are affected and form the siting region. In order to ensure that the local population have their say in the forthcoming discussions, regional participation bodies including all municipalities within a siting region are being set up by the SFOE. Regional participation ensures that local interests, needs and values are taken into account in the site selection process. Assembling the regional participation bodies is therefore of great importance. Before such bodies can be formed, however, the various interests, needs and values have to be identified, and special attention has to be paid to long-term interests of future generations, as well as to non-organised and under-represented interests. According to the concept of proportional representation, the interests, needs and values that are identified and weighted by the local population are to be represented in the regional participation procedure. The aim of this study is to share a method of mapping existing social structures in a defined geographical area. This involves a combination of an analysis of socio-economic statistical data and qualitative and quantitative social research methods

  17. Proceedings of the 1996 international conference on deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 September International Conference on Deep Geological Disposal of Radioactive Waste was held in Winnipeg, Canada. Speakers from many countries that have or are developing geological disposal technologies presented the current research and implementation strategies for the deep geological disposal of radioactive wastes. Special sessions focused on International Trends in Geological Disposal and Views on Confidence Building in Radioactive Waste Management; Excavation Disturbed Zone (EDZ) Workshop; Educator's Program and Workshop and a Roundtable on Social Issues in Siting

  18. Kincardine deep geologic repository proposal and the public

    International Nuclear Information System (INIS)

    Squire, T.

    2005-01-01

    'Full text:' In 2002, the Municipality of Kincardine and OPG signed a Memorandum of Understanding (MOU) regarding the long-term management of low and intermediate level radioactive wastes. The purpose of the MOU was for OPG, in consultation with Kincardine, to develop a plan for the long-term management of low and intermediate level waste at OPG's Western Waste Management Facility (WWMF) located on the Bruce site. An independent assessment, which included geotechnical feasibility and safety analyses, a community attitude survey and interviews with local residents, businesses and tourists, and economic modeling to determine the potential benefits and impacts, was completed in February 2004. Ultimately, Kincardine Council endorsed a resolution (Kincardine Council no. 2004-232) to: 'endorse the opinion of the Nuclear Waste Steering Committee and select the 'Deep Rock Vault' option as the preferred course of study in regards to the management of low and intermediate level radioactive waste'. The surrounding municipalities of Saugeen Shores, Brockton, Arran-Elderslie, and Huron-Kinloss expressed their support for the Deep Geologic Repository proposal. This presentation discusses the history, major steps and public processes surrounding the Kincardine Deep Geologic Repository proposal. (author)

  19. System to provide 3D information on geological anomaly zone in deep subsea

    Science.gov (United States)

    Kim, W.; Kwon, O.; Kim, D.

    2017-12-01

    The study on building the ultra long and deep subsea tunnel of which length is 50km and depth is 200m at least, respectively, is underway in Korea. To analyze the geotechnical information required for designing and building subsea tunnel, topographic/geologiccal information analysis using 2D seabed geophysical prospecting and topographic, geologic, exploration and boring data were analyzed comprehensively and as a result, automation method to identify the geological structure zone under seabed which is needed to design the deep and long seabed tunnel was developed using geostatistical analysis. In addition, software using 3D visualized ground information to provide the information includes Gocad, MVS, Vulcan and DIMINE. This study is intended to analyze the geological anomaly zone for ultra deep seabed l and visualize the geological investigation result so as to develop the exclusive system for processing the ground investigation information which is convenient for the users. Particularly it's compatible depending on file of geophysical prospecting result and is realizable in Layer form and for 3D view as well. The data to be processed by 3D seabed information system includes (1) deep seabed topographic information, (2) geological anomaly zone, (3) geophysical prospecting, (4) boring investigation result and (5) 3D visualization of the section on seabed tunnel route. Each data has own characteristics depending on data and interface to allow interlocking with other data is granted. In each detail function, input data is displayed in a single space and each element is selectable to identify the further information as a project. Program creates the project when initially implemented and all output from detail information is stored by project unit. Each element representing detail information is stored in image file and is supported to store in text file as well. It also has the function to transfer, expand/reduce and rotate the model. To represent the all elements in

  20. Should the U.S. proceed to consider licensing deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Curtiss, J.R.

    1993-01-01

    The United States, as well as other countries facing the question of how to handle high-level nuclear waste, has decided that the most appropriate means of disposal is in a deep geologic repository. In recent years, the Radioactive Waste Management Committee of the Nuclear Energy Agency has developed several position papers on the technical achievability of deep geologic disposal, thus demonstrating the serious consideration of deep geologic disposal in the international community. The Committee has not, as yet, formally endorsed disposal in a deep geologic repository as the preferred method of handling high-level nuclear waste. The United States, on the other hand, has studied the various methods of disposing of high-level nuclear waste, and has determined that deep geologic disposal is the method that should be developed. The purpose of this paper is to present a review of the United States' decision on selecting deep geologic disposal as the preferred method of addressing the high-level waste problem. It presents a short history of the steps taken by the U.S. in determining what method to use, discusses the NRC's waste Confidence Decision, and provides information on other issues in the U.S. program such as reconsideration of the final disposal standard and the growing inventory of spent fuel in storage

  1. Microbiological characterization of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Coulon, S.; Joulian, C.; Garrido, F.; Ollivier, B.

    2012-01-01

    Document available in extended abstract form only. Microbial life in deep sediments and Earth's crust is now acknowledged by the scientific world. The deep subsurface biosphere contributes significantly to fundamental biogeochemical processes. However, despite great advances in geo-microbiological studies, deep terrestrial ecosystems are microbiologically poorly understood, mainly due to their inaccessibility. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned the samples on the coring site, in as aseptic conditions as possible. In addition to storage at atmospheric pressure, a portion of the four Triassic samples was placed in a 190 bars pressurized chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the cores by the drilling fluids, samples of mud just before each sample drilling were taken and analyzed. The microbial exploration can be divided in two parts: - A cultural approach in different culture media for metabolic groups as methanogens, fermenters and sulphate reducing bacteria to stimulate their growth and to isolate microbial cells still viable. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. The limits are here the difficulties to extract DNA from these low biomass containing rocks. After comparison and optimization of several DNA extraction methods, the bacterial diversity present in rock cores was analyzed using DGGE (Denaturating Gel Gradient Electrophoresis) and cloning. The detailed results of all these investigations will be presented: - Despite all 400 cultural conditions experimented (with various media, salinities, temperatures, conservation pressure, agitation), no viable and

  2. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  3. Study on structural plane characteristics of deep rock mass based on acoustic borehole TV

    International Nuclear Information System (INIS)

    Wang Xiyong; Su Rui; Chen Liang; Tian Xiao

    2014-01-01

    Deep rock mass structural plane characteristics are one of the basic data for evaluating the quality of rock mass. Based on acoustic borehole TV, the structural plane quantity, density, attitude, dominant set, structural plane aperture of deep rock mass in boreholes BS15 # and BS16 # located in Beishan granite rock mass of Gansu Province have been calculated and compared with the results of geological documentation of drill core. The results indicate that acoustic borehole TV has the effect in study on characteristics of structural plane. But as a kind of technique of geophysical logging, the acoustic borehole TV has certain defect, and need to combine with the analysis of the other geological materials in applications. (authors)

  4. Final disposal in deep boreholes using multiple geological barriers. Digging deeper for safety. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido; Hurst, Stephanie; Merkel, Broder; Mueller, Birgit; Schilling, Frank

    2016-03-15

    The proceedings of the workshop on final disposal in deep boreholes using multiple geological barriers - digging deeper for safety include contributions on the following topics: international status and safety requirements; geological and physical barriers; deep drilling - shaft building; technical barriers and emplacement technology for high P/T conditions; recovery (waste retrieval); geochemistry and monitoring.

  5. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  6. Improvement of geological subsurface structure models for Kanto area, Japan, based on records of microtremor array and earthquake observations

    Science.gov (United States)

    Wakai, A.; Senna, S.; Jin, K.; Cho, I.; Matsuyama, H.; Fujiwara, H.

    2017-12-01

    To estimate damage caused by strong ground motions from a large earthquake, it is important to accurately evaluate broadband ground-motion characteristics in wide area. For realizing that, it is one of the important issues to model detailed subsurface structure from top surface of seismic bedrock to ground surface.Here, we focus on Kanto area, including Tokyo, where there are thicker sedimentary layers. We, first, have ever collected deep bore-hole data, soil physical properties obtained by some geophysical explorations, geological information and existing models for deep ground from top surface of seismic bedrock to that of engineering bedrock, and have collected a great number of bore-hole data and surficial geological ones for shallow ground from top surface of engineering bedrock to ground surface. Using them, we modeled initial geological subsurface structure for each of deep ground and shallow one. By connecting them appropriately, we constructed initial geological subsurface structure models from top surface of seismic bedrock to ground surface.In this study, we first collected a lot of records obtained by dense microtremor observations and earthquake ones in the whole Kanto area. About microtremor observations, we conducted measurements from large array with the size of hundreds of meters to miniature array with the size of 60 centimeters to cover both of deep ground and shallow one. And then, using ground motion characteristics such as disperse curves and H/V(R/V) spectral ratios obtained from these records, the initial geological subsurface structure models were improved in terms of velocity structure from top surface of seismic bedrock to ground surface in the area.We will report outlines on microtremor array observations, analysis methods and improved subsurface structure models.

  7. Exploring the Relationship between Students' Understanding of Conventional Time and Deep (Geologic) Time

    Science.gov (United States)

    Cheek, Kim A.

    2013-07-01

    Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.

  8. Geological aspects of a deep underground disposal facility in the Czech Republic

    International Nuclear Information System (INIS)

    Skopovy, J.; Woller, F.

    1997-01-01

    The basic requirements for the geological situation at a deep underground radioactive waste disposal site are highlighted, a survey of candidate host sites worldwide is presented, and the situation in the Czech Republic is analyzed. A 'General Project of Geological Activities Related to the Development of a Deep Underground Disposal Site for Radioactive Wastes and Spent Fuel in the Czech Republic' has been developed by the Nuclear Research Institute and approved and financed by the authorities. The Project encompasses the following stages: (i) preliminary study and research; (ii) examination of the seismicity, neotectonics, and geodynamics; (iii) search and critical assessment of archived geological information; (iv) non-destructive survey; and (v) destructive survey. The Project should take about 30 years and its scope will be updated from time to time. (P.A.)

  9. Geological study of radioactive waste repositories

    International Nuclear Information System (INIS)

    Oyama, Takahiro; Kitano, Koichi

    1987-01-01

    The investigation of the stability and the barrier efficiency of the deep underground radioactive waste repositories become a subject of great concern. The purpose of this paper is to gather informations on the geology, engineering geology and hydrogeology in deep galleries in Japan. Conclusion can be summarised as follows: (1) The geological structure of deep underground is complicated. (2) Stress in deep underground is greatly affected by crustal movement. (3) Rock-burst phenomena occur in the deep underground excavations. (4) In spite of deep underground, water occasionally gush out from the fractured zone of rock mass. These conclusion will be useful for feasibility study of underground waste disposal and repositories in Japan. (author)

  10. Drilling a deep geologic test well at Hilton Head Island, South Carolina

    Science.gov (United States)

    Schultz, Arthur P.; Seefelt, Ellen L.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.

  11. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    Science.gov (United States)

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  13. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  14. Generic description of facilities at the shaft head (auxiliary entrance installations) of deep geological repositories

    International Nuclear Information System (INIS)

    2016-10-01

    In a deep geological repository, the access structures function as the link between the surface and the installations and structures at the disposal level. In the planned implementation scenarios, at least two access structures will be in operation up to the time of closure of the repository. The radioactive waste will be transported via the main access from the surface to the disposal level during emplacement operations. For the construction and operation of a deep geological repository, additional access structures are required. These auxiliary accesses and the associated surface infrastructure (e.g. shaft head installations) form the subject of this report. To provide as broad and comprehensive a description as possible, seven types of auxiliary access facilities are defined; these are characterised in line with the current status of planning and their functions and impacts are described. During construction, operation and dismantling of auxiliary access facilities, the usual conventional safety measures (inter alia) have to be observed (e.g. groundwater protection, fire prevention, facility security, accident prevention). Regarding the 'Ordinance on Protection against Major Accidents' no large quantities of hazardous materials, i.e. above the corresponding threshold quantities, are to be expected in the auxiliary access facilities. Proper handling and compliance with applicable regulations in all phases will ensure no hazard to humans and the environment. As no handling of radioactive materials is foreseen in the auxiliary access facilities, and because exhaust air and waste water from the controlled zones of a repository will, in principle, be removed via the main access and not the auxiliary accesses, a safety-relevant emission of radioactive substances and transport of contaminated material can be ruled out for the auxiliary access facilities during both normal operation and also in the case of an accident. Based on the information presented in

  15. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  16. The safety case for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kwong, Gloria

    2014-01-01

    The concept of a 'safety case' for a deep geological repository for radioactive waste was first introduced by the NEA Expert Group on Integrated Performance Assessment (IPAG). It was further developed in the NEA report entitled Confidence in the Long-term Safety of Deep Geological Repositories (1999), and since then it has been taken up in international safety standards as promulgated by the International Atomic Energy Agency (IAEA, 2006, 2011) and more recently in recommendations by the International Commission on Radiological Protection on the application of the system of radiological protection in geological disposal (ICRP, 2013). Many national radioactive waste disposal programmes and regulatory guides are also applying this concept. The NEA has used the safety case as a guide in several international peer reviews of national repository programmes and safety documentation. In Europe, the EU Directive 2011/70/ Euratom (EU, 2011) establishes a framework to ensure responsible and safe management of spent fuel and radioactive waste by member states that, inter alia, requires a decision-making process based on safety evidence and arguments that mirror the safety case concept. In 2007, the NEA, the IAEA and the European Commission (EC) organised a symposium on Safety Cases for the Deep Disposal of Radioactive Waste: Where Do We Stand? Since this time, however, there have been some major developments in a number of national geological disposal programmes and significant experience in preparing and reviewing cases for the operational and long-term safety of proposed and operating geological repositories. A symposium on The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art was thus organised to assess developments since 2007 in the practice, understanding and roles of the safety case, as applied internationally at all stages of repository development, including the interplay of technical, regulatory and societal issues. The symposium

  17. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  18. Deep earth fluids and huge metallogenetic belt and fatal geological disaster: 60th anniversary of Professor Du Le-tian engaging in geology

    International Nuclear Information System (INIS)

    Ou Guangxi; Tao Shizhen; Liu Yinhe

    2012-01-01

    Professor Du Le-tian has been researching for a long time on scientific relationship between deep earth fluids and hydrocarbon accumulation and metallogenesis, as well as gestation and prediction of disasters. He has contributed greatly to the development of that scientific field. From 6 to 8, July, 2012, 'Workshop on Deep Earth Fluids and Huge Metallogenetic Belt, Fatal Geological Disaster, as well as 60 th Anniversary of Professor Du Le-tian Engaging in Geology' was successfully convened in Beijing, totally with 76 delegates present who were experts, scholars or students from USA, Hong Kong, or various institutes, colleges or universities of China. In the workshop, the scientific presentations discussed were counted up to 49, on aspects of geological processes of deep earth fluids, relationship between earth degassing and hydrocarbon accumulation or metallogenesis, gestating mechanism of volcanic eruptions and strong earthquakes as well as their relations with mine gas outburst, high-temperature and high-pressure experimental earth science, etc.. (authors)

  19. Retrievability in the Deep Geological Disposal motivation and implications

    International Nuclear Information System (INIS)

    Fernandez Polo, J. J.; Aneiros, J. M.; Alonso, J.

    2000-01-01

    The final disposal of High Level Wastes (HLW) in a repository without the intention of retrieval has been the conceptual basis used by most countries to define their deep geological disposal concepts. As a result, current disposal concepts allow, but do not facilitate, the retrieval of the waste. The concept of retrievability has been introduced in the stepwise development process of the deep geological disposal for a series of ethical, socio-political, and technological reasons, which have structured a great deal of attention in the international community. At present, although no clear definition has been given to the term retrievability there seems to be a general consensus in respect of its interpretation as the capacity to retrieve waste from the underground facilities of the repository up to several years after its closure. The retrieval of the HLW packages from the disposal cells entails tackling a series of technological and operational constraints stemming, on the one hand, from the configuration and state of the repository at the time of retrieval and, on the other, from the environmental conditions of temperature and radiation in which such operations have to be carried out. Most countries, Spain included, are assessing the technical feasibility of retrieving waste during the different stages of the repository lifetime, exploring at the same time the possibility of implementing some changes in the repository's design, construction and operation without affecting its long-term safety. The purpose of this paper is three-fold (1) to identify the motivations that have led the international community to consider retrievability in the repository's stepwise development process, (2) to analyse, qualitatively, the different implications this has on current repository concepts, and (3) to state the current Spanish position. (Author)

  20. Study of microorganisms present in deep geologic formations

    International Nuclear Information System (INIS)

    Camus, H.; Lion, R.; Bianchi, A.; Garcin, J.

    1987-01-01

    This work has been executed in the scope of the studies on high activity radioactive wastes storage in deep geological environments. The authors make reference to an as complete as possible literature on the existence of microorganisms in those environments or under similar conditions. Then they describe the equipment and methods they have implemented to perform their study of the populations present in three deep-reaching drill-holes in Auriat (France), Mol (Belgique) and Troon (Great Britain). The results of the study exhibit the presence of a certain biological activity, well adapted to that particular life environment. Strains appear to be very varied from the taxonomic point of view and seemingly show an important potential of mineral alteration when provided with an adequate source of energy. Complementary studies, using advanced techniques such as those employed during the work forming the basis of this paper, seem necessary for a more accurate evaluation of long-term risks of perturbation of a deep storage site [fr

  1. Current Status of Deep Geological Repository Development

    International Nuclear Information System (INIS)

    Budnitz, R J

    2005-01-01

    This talk provided an overview of the current status of deep-geological-repository development worldwide. Its principal observation is that a broad consensus exists internationally that deep-geological disposal is the only long-term solution for disposition of highly radioactive nuclear waste. Also, it is now clear that the institutional and political aspects are as important as the technical aspects in achieving overall progress. Different nations have taken different approaches to overall management of their highly radioactive wastes. Some have begun active programs to develop a deep repository for permanent disposal: the most active such programs are in the United States, Sweden, and Finland. Other countries (including France and Russia) are still deciding on whether to proceed quickly to develop such a repository, while still others (including the UK, China, Japan) have affirmatively decided to delay repository development for a long time, typically for a generation of two. In recent years, a major conclusion has been reached around the world that there is very high confidence that deep repositories can be built, operated, and closed safely and can meet whatever safety requirements are imposed by the regulatory agencies. This confidence, which has emerged in the last few years, is based on extensive work around the world in understanding how repositories behave, including both the engineering aspects and the natural-setting aspects, and how they interact together. The construction of repositories is now understood to be technically feasible, and no major barriers have been identified that would stand in the way of a successful project. Another major conclusion around the world is that the overall cost of a deep repository is not as high as some had predicted or feared. While the actual cost will not be known in detail until the costs are incurred, the general consensus is that the total life-cycle cost will not exceed a few percent of the value of the

  2. Deep drilling in the Chesapeake Bay impact structure - An overview

    Science.gov (United States)

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.

    2009-01-01

    The late Eocene Chesapeake Bay impact structure lies buried at moderate depths below Chesapeake Bay and surrounding landmasses in southeastern Virginia, USA. Numerous characteristics made this impact structure an inviting target for scientific drilling, including the location of the impact on the Eocene continental shelf, its threelayer target structure, its large size (??85 km diameter), its status as the source of the North American tektite strewn field, its temporal association with other late Eocene terrestrial impacts, its documented effects on the regional groundwater system, and its previously unstudied effects on the deep microbial biosphere. The Chesapeake Bay Impact Structure Deep Drilling Project was designed to drill a deep, continuously cored test hole into the central part of the structure. A project workshop, funding proposals, and the acceptance of those proposals occurred during 2003-2005. Initial drilling funds were provided by the International Continental Scientific Drilling Program (ICDP) and the U.S. Geological Survey (USGS). Supplementary funds were provided by the National Aeronautics and Space Administration (NASA) Science Mission Directorate, ICDP, and USGS. Field operations were conducted at Eyreville Farm, Northampton County, Virginia, by Drilling, Observation, and Sampling of the Earth's Continental Crust (DOSECC) and the project staff during September-December 2005, resulting in two continuously cored, deep holes. The USGS and Rutgers University cored a shallow hole to 140 m in April-May 2006 to complete the recovered section from land surface to 1766 m depth. The recovered section consists of 1322 m of crater materials and 444 m of overlying postimpact Eocene to Pleistocene sediments. The crater section consists of, from base to top: basement-derived blocks of crystalline rocks (215 m); a section of suevite, impact melt rock, lithic impact breccia, and cataclasites (154 m); a thin interval of quartz sand and lithic blocks (26 m); a

  3. Study on geology and geological structure based on literature studies

    International Nuclear Information System (INIS)

    Funaki, Hironori; Ishii, Eiichi; Yasue, Ken-ichi; Takahashi, Kazuharu

    2005-03-01

    Japan Nuclear Cycle Development Institute (JNC) is proceeding with underground research laboratory (URL) project for the sedimentary rock in Horonobe, Hokkaido. This project is an investigation project which is planned over 20 years. Surface-based investigations (Phase 1) have been conducted for the present. The purposes of the Phase 1 are to construct the geological environment model (geological-structural, hydrogeological, and hydrochemical models) and to confirm the applicability of investigation technologies for the geological environment. The geological-structural model comprises the base for the hydrogeological and hydrochemical models. We constructed the geological-structural model by mainly using data obtained from literature studies. Particulars regarding which data the model is based on and who has performed the interpretation are also saved for traceability. As a result, we explain the understanding of degree and the need of information on stratigraphy and discontinuous structure. (author)

  4. Deep geologic storage of high level radioactive wastes: conceptual generic designs

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the studies on deep geologic storage of radioactive wastes and specially for the high-level radioactive wastes. The study is focussed to the geotechnical assessment and generic-conceptual designs. Methodology analysis, geotechnical feasibility, costs and operation are studied

  5. A study on site characterization of the deep geological environment around KURT

    International Nuclear Information System (INIS)

    Park, Kw; Kim, Gy; Koh, Yk; Kim, Ks; Choi, Jw

    2009-01-01

    KURT (KAERI Underground Research Tunnel) is a small scale research tunnel which was constructed from 2005 to 2006 at Korea Atomic Energy Research Institute (KAERI). To understand the deep geological environment around KURT area, the surface geological surveys such as lineaments analysis and geophysical survey and borehole investigation were performed. For this study, a 3 dimensional geological model has been constructed using the surface and borehole geological data. The regional lineaments were determined using a topographical map and the surface geophysical survey data were collected for the geological model. In addition, statistical methods were applied to fracture data from borehole televiewer loggings to identify fracture zones in boreholes. For a hydro geological modeling, fixed interval hydraulic tests were carried out for all boreholes. The results of the hydraulic tests were analyzed and classified by the fracture zone data of geological model. At result, the hydrogeological elements were decided and the properties of each element were assessed around the KURT area

  6. Deep geologic repository for low and intermediate radioactive level waste in Canada

    International Nuclear Information System (INIS)

    Liu Jianqin; Li Honghui; Sun Qinghong; Yang Zhongtian

    2012-01-01

    Ontario Power Generation (OPG) is undergoing a project for the long-term management of low and intermediate level waste (LILW)-a deep geologic repository (DGR) project for low and intermediate level waste. The waste source term disposed, geologic setting, repository layout and operation, and safety assessment are discussed. It is expected to provide reference for disposal of low and intermediate level waste that contain the higher concentration of long-lived radionuclides in China. (authors)

  7. Behavior of colloids in radionuclide migration in deep geologic formation

    International Nuclear Information System (INIS)

    Kanno, Takuji

    1994-01-01

    In case high level waste is isolated in deep strata, it is important to elucidate the behavior of movement that radionuclides take in the strata. Recently, it has been recognized that the participation of colloids is very important, and it has been studied actively. In this study, as to the mechanism of the adsorption of colloids to geological media or buffers, analysis was carried out for a number of systems, and it was clarified in what case they are caught or they move without being caught. Also it is considered what research is necessary hereafter. First, the kinds of colloids are shown. As the properties of colloids that control the movement of colloids in groundwater in deep strata, the surface potential, shape, size and so on of colloids are conceivable. These properties are briefly discussed. As the interaction of colloids and geological media, the interaction by electrostatic attraction, the fast and slow movement of colloids through rock crevices, and the filtration of colloids in buffers and porous media are described. The experimental results on the movement of colloids are reported. (K.I.)

  8. Assessment of Deep Geological Environmental Condition for HLW Disposal in Korea

    International Nuclear Information System (INIS)

    Koh, Yong Kweon; Bae, Dae Seok; Kim, Kyung Su

    2010-04-01

    The research developed methods to study and evaluate geological factors and items to select radioactive waste disposal site, which should meet the safety requirements for radioactive waste disposal repositories according to the guidelines recommended by IAEA. A basic concept of site evaluation and selection for high level radioactive waste disposal and develop systematic geological data management with geological data system which will be used for site selection in future are provided. We selected 36 volcanic rock sites and 26 gneissic sites as the alternative host rocks for high level radioactive waste disposal and the geochemical characteristics of groundwaters of the four representative sites were statistically analyzed. From the hydrogeological and geochemical investigation, the spatial distribution characteristics were provided for the disposal system development and preliminary safety assessment. Finally, the technology and scientific methods were developed to obtain accurate data on the hydrogeological and geochemical characteristics of the deep geological environments

  9. Petroleum geological features and exploration prospect of deep marine carbonate rocks in China onshore: A further discussion

    Directory of Open Access Journals (Sweden)

    Zhao Wenzhi

    2014-10-01

    Full Text Available Deep marine carbonate rocks have become one of the key targets of onshore oil and gas exploration and development for reserves replacement in China. Further geological researches of such rocks may practically facilitate the sustainable, steady and smooth development of the petroleum industry in the country. Therefore, through a deep investigation into the fundamental geological conditions of deep marine carbonate reservoirs, we found higher-than-expected resource potential therein, which may uncover large oil or gas fields. The findings were reflected in four aspects. Firstly, there are two kinds of hydrocarbon kitchens which were respectively formed by conventional source rocks and liquid hydrocarbons cracking that were detained in source rocks, and both of them can provide large-scale hydrocarbons. Secondly, as controlled by the bedding and interstratal karstification, as well as the burial and hydrothermal dolomitization, effective carbonate reservoirs may be extensively developed in the deep and ultra-deep strata. Thirdly, under the coupling action of progressive burial and annealing heating, some marine source rocks could form hydrocarbon accumulations spanning important tectonic phases, and large quantity of liquid hydrocarbons could be kept in late stage, contributing to rich oil and gas in such deep marine strata. Fourthly, large-scale uplifts were formed by the stacking of multi-episodic tectonism and oil and gas could be accumulated in three modes (i.e., stratoid large-area reservoir-forming mode of karst reservoirs in the slope area of uplift, back-flow type large-area reservoir-forming mode of buried hill weathered crust karst reservoirs, and wide-range reservoir-forming mode of reef-shoal reservoirs; groups of stratigraphic and lithologic traps were widely developed in the areas of periclinal structures of paleohighs and continental margins. In conclusion, deep marine carbonate strata in China onshore contain the conditions for

  10. Radioactive waste disposal in deep geologic deposits. Associated research problems

    International Nuclear Information System (INIS)

    Rousset, G.

    1992-01-01

    This paper describes the research associated problems for radioactive waste disposal in deep geologic deposits such granites, clays or salt deposits. After a brief description of the underground disposal, the author studies the rheology of sedimentary media and proposes rheological models applied to radioactive wastes repositories. Waste-rock interactions, particularly thermal effects and temperature distribution versus time. 17 refs., 14 figs

  11. Integrated geophysical survey for the geological structural and hydrogeothermal study of the North-western Gargano promontory (Southern Italy

    Directory of Open Access Journals (Sweden)

    D. Schiavone

    1996-06-01

    Full Text Available A multimethodological geophysical survey was performed in the north-western part of the Gargano promontory to study the geological structural setting and the underground fluid flow characteristics. The area has a complex tectonics with some magmatic outcrops and shallow low-enthalpy waters. Electrical, seismic reflection, gravimetric and magnetic surveys were carried out to reconstruct the geological structures; and in order to delineate the hydrogeothermal characteristics of the area, the self-potential survey was mainly used. Moreover magnetic and self-potential measurements were also performed in the Lesina lake. The joint three-dimensional interpretation of the geophysical data disclosed a large horst and graben structure covering a large part of the area. In the central part of the horst a large ramified volcanic body was modelled. The models show some intrusions rising from it to or near to the surface. The main structures are well deep-seated in the Crust and along them deep warm fluids rise as the SP data interpretation indicates.

  12. Deep geological repository: Starting communication at potentially suitable sites

    International Nuclear Information System (INIS)

    Sumberova, Vera

    2001-01-01

    The siting of a deep geological repository in the Czech Republic is and will be a complicated process, since it is the first siting process of a nuclear facility designed from the start to be located at non-nuclear sites and to be organised under democratic conditions. This presentation describes the concept of radioactive waste and spent nuclear management in the Czech Republic, Communication activities of Radioactive Waste Repository Authority (RAWRA) with local representatives and lessons learned

  13. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  14. The deep geologic repository technology programme: toward a geoscience basis for understanding repository safety

    International Nuclear Information System (INIS)

    Jensen, M.R.

    2007-01-01

    Within the Deep Geologic Repository Technology Programme (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Canadian Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a deep geologic repository for used nuclear fuel waste. This is being achieved through a coordinated multi-disciplinary approach intent on: i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions, boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility of various geo-scientific data in supporting a safety case for a deep geologic repository. This multi-disciplinary DGRTP approach is yielding an improved understanding of groundwater flow system evolution and stability in Canadian Shield settings that is further contributing to the geo-scientific basis for understanding and communicating aspects of DGR safety. (author)

  15. Technetium behaviour under deep geological conditions

    International Nuclear Information System (INIS)

    Kumata, M.; Vandergraaf, T.T.

    1993-01-01

    The migration behaviour of technetium under deep geological conditions was investigated by performing column tests using groundwater and altered granitic rock sampled from a fracture zone in a granitic pluton at a depth of about 250 m. The experiment was performed under a pressure of about 0.7 MPa in a controlled atmosphere glove box at the 240 m level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. The technetium was strongly sorbed on the dark mafic minerals in the column. With the exception of a very small unretarded fraction that was eluted with the tritiated water, no further breakthrough of technetium was observed. This strong sorption of technetium on the mineral surface was caused by reduction of Tc(VII), probably to Tc(IV) even though the groundwater was only mildly reducing. (author) 5 figs., 4 tabs., 15 refs

  16. Deep Structure of the Zone of Tolbachik Fissure Eruptions (Kamchatka, Klyuchevskoy Volcano Group): Evidence from a Complex of Geological and Geophysical Data

    Science.gov (United States)

    Kugaenko, Yu. A.; Saltykov, V. A.; Gorvatikov, A. V.; Stepanova, M. Yu.

    2018-05-01

    With the use of the method of low-frequency microseismic sounding, the configuration of the magmatic feeding system of the Tolbachinsky Dol—a regional zone of areal basaltic volcanism in the southern part of the Klyuchevskoy volcano group in Kamchatka—is studied. The initial data are obtained by a stepby-step recording of the background microseismic noise in 2010-2015 within a thoroughly marked-out survey area covering the zones of fissure eruptions in 1975-1976 and 2012-2013 and, partly, the edifice of the Ploskii (flat) Tolbachik volcano. The depth sections reflecting the distributions of the relative velocities of seismic waves in the Earth's crust are constructed. For a more reliable interpretation of the revealed deep anomalies, the results of independent geological and geophysical studies are used. The ascertained low-velocity structures are closely correlated to the manifestations of present-day volcanism. It is shown that the feeding structure of the Tolbachinsky Dol is spatially heterogeneous, incorporating subvertical and lateral pipeshaped magma conduits, closely spaced magma feeding channels, and shallow magma reservoirs. A longlived local transcrustal magma conducting zone is revealed, and regularities in the deep structure of the feeding systems of fissure eruptions are identified. The configuration of the established subvertical magma conduits permits basalts moving to rise to the surface by different paths, which, inter alia, explains the contrasting magma compositions observed during a single eruption. Thus, based on the instrumental data, it is shown that the magmatic feeding structure of the Tolbachinsky Dol has a number of specific peculiarities and is significantly more complicated than has been previously thought about the areal volcanic fields.

  17. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  18. Earthquakes - a danger to deep-lying repositories?

    International Nuclear Information System (INIS)

    2012-03-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed

  19. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    International Nuclear Information System (INIS)

    McEvoy, F.M.; Schofield, D.I.; Shaw, R.P.; Norris, S.

    2016-01-01

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  20. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, F.M., E-mail: fmcevoy@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Schofield, D.I. [British Geological Survey, Tongwynlais, CF15 7NE (United Kingdom); Shaw, R.P. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Norris, S. [Radioactive Waste Management Limited, B587, Curie Avenue, Harwell, Didcot OX11 0RH (United Kingdom)

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  1. Development of an Integrated Natural Barrier Database System for Site Evaluation of a Deep Geologic Repository in Korea - 13527

    International Nuclear Information System (INIS)

    Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong; Lee, Jeong-Hwan

    2013-01-01

    Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel and other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)

  2. Microbes in deep geological systems and their possible influence on radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    West, J M; McKinley, I G; Chapman, N A [Institute of Geological Sciences, Harwell (UK). Environmental Protection Unit

    1982-09-01

    Although the fact is often overlooked, proposed nuclear waste repositories in geological formations would exist in an environment quite capable of sustaining microbial life which could considerably affect containment of radionuclides. In this paper a brief review of biological tolerance of extreme environments is presented with particular reference to studies of the microbiology of deep geological formations. The possible influence of such organisms on the integrity of a waste repository and subsequent transport of radionuclides to the surface is discussed.

  3. Deep geologic disposal. Lessons learnt from recent performance assessment studies

    International Nuclear Information System (INIS)

    Pescatore, C.; Andersson, J.

    1998-01-01

    Performance assessment (PA) studies are part of the decision basis for the siting, operation, and closure of deep repositories of long-lived nuclear wastes. In 1995 the NEA set up the Working Group on Integrated Performance Assessments of Deep Repositories (IPAG) with the goals to analyse existing PA studies, learn about what has been produced to date, and shed light on what could be done in future studies. Ten organisations submitted their most recent PA study for analysis and discussion, including written answers to over 70 questions. Waste management programmes, disposal concepts, geologies, and different types and amounts of waste offered a unique opportunity for exchanging information, assessing progress in PA since 1990, and identifying recent trends. A report was completed whose main lessons are overviewed. (author)

  4. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  5. The Mizunami underground research laboratory in Japan - programme for study of the deep geological environment

    International Nuclear Information System (INIS)

    Sakuma, Hideki; Sugihara, Kozo; Koide, Kaoru; Mikake, Shinichiro

    1998-01-01

    This paper is an overview of the PNC's Mizunami Underground Research Laboratory project in Mizunami City, central Japan. The Mizunami Underground Research Laboratory now will succeed the Kamaishi Mine as the main facility for the geoscientific study of the crystalline environment. The site will never be considered as a site for a repository. The surface-based investigations, planned to continue for some 5 years commenced in the autumn 1997. The construction of the facility to the depth of 1000 m is currently planned to: Develop comprehensive investigation techniques for geological environment; Acquire data on the deep geological environment and to; Develop a range of engineering techniques for deep underground application. Besides PNC research, the facility will also be used to promote deeper understanding of earthquakes, to perform experiments under micro-gravity conditions etc. The geology of the site is shortly as follows: The sedimentary overburden some 20 - 100 m in thickness is of age 2 - 20 million years. The basement granite is approx. 70 million years. A reverse fault is crosscutting the site. The identified fault offers interesting possibilities for important research. Part of the work during the surface-based investigations, is to drill and test deep boreholes to a planned depth up to 2000 m. Based on the investigations, predictions will be made what geological environment will be encountered during the Construction Phase. Also the effect of construction will be predicted. Methodology for evaluation of predictions will be established

  6. Deep storage of radioactive waste from a geological point of view

    International Nuclear Information System (INIS)

    Venzlaff, Helmut

    2015-01-01

    For a deep storage of radioactive waste geologists gave their preference to salt prior to other rock complexes such as clay or granite. Major deposits from pure rock salt are particularly suitable to safely seal radioactive wastes from the biosphere because due to their plasticity they are free from fissures in which liquids and gases could circulate and because their thermal conductivity is higher than of other rocks. The geological stability of salt domes can be shown by their geological evolution. Thus the salt dome in Gorleben was formed 100 million years ago and is older than the Atlantic, the Alps or the ascent of the low mountain range. During this long period it survived ocean floods, mountain formations, earthquakes, volcanism and ice ages without considerably changing its shape. There are no geological reasons, why it should not remain stable during the next million years.

  7. Deep storage of radioactive waste from a geological point of view

    Energy Technology Data Exchange (ETDEWEB)

    Venzlaff, Helmut [Federal Institute for Geo-Sciences and Raw Materials, Hannover (Germany)

    2015-08-15

    For a deep storage of radioactive waste geologists gave their preference to salt prior to other rock complexes such as clay or granite. Major deposits from pure rock salt are particularly suitable to safely seal radioactive wastes from the biosphere because due to their plasticity they are free from fissures in which liquids and gases could circulate and because their thermal conductivity is higher than of other rocks. The geological stability of salt domes can be shown by their geological evolution. Thus the salt dome in Gorleben was formed 100 million years ago and is older than the Atlantic, the Alps or the ascent of the low mountain range. During this long period it survived ocean floods, mountain formations, earthquakes, volcanism and ice ages without considerably changing its shape. There are no geological reasons, why it should not remain stable during the next million years.

  8. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    Science.gov (United States)

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  9. Deep Time Data Infrastructure: Integrating Our Current Geologic and Biologic Databases

    Science.gov (United States)

    Kolankowski, S. M.; Fox, P. A.; Ma, X.; Prabhu, A.

    2016-12-01

    As our knowledge of Earth's geologic and mineralogical history grows, we require more efficient methods of sharing immense amounts of data. Databases across numerous disciplines have been utilized to offer extensive information on very specific Epochs of Earth's history up to its current state, i.e. Fossil record, rock composition, proteins, etc. These databases could be a powerful force in identifying previously unseen correlations such as relationships between minerals and proteins. Creating a unifying site that provides a portal to these databases will aid in our ability as a collaborative scientific community to utilize our findings more effectively. The Deep-Time Data Infrastructure (DTDI) is currently being defined as part of a larger effort to accomplish this goal. DTDI will not be a new database, but an integration of existing resources. Current geologic and related databases were identified, documentation of their schema was established and will be presented as a stage by stage progression. Through conceptual modeling focused around variables from their combined records, we will determine the best way to integrate these databases using common factors. The Deep-Time Data Infrastructure will allow geoscientists to bridge gaps in data and further our understanding of our Earth's history.

  10. Microbial investigations of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Joulian, C.; Coulon, S.; Le Marrec, C.; Garrido, F.

    2010-01-01

    Document available in extended abstract form only. Deep sedimentary rocks are now considered to contain a significant part of the total bacterial population, but are microbiologically unexplored. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned and sub-sampled on the coring site, in as aseptic conditions as possible, the nine cores: two in the Callovo-Oxfordian clay, two in the Dogger, five in the Triassic compartments. In addition to storage at atmospheric pressure, a portion of the five Triassic samples was placed in a 190 bars pressurized bars chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the core by the drilling fluids, samples of mud just before each sample drilling were taken and analysed. The microbial exploration we started can be divided in two parts: - A cultural approach in different culture media for six metabolic groups to try to find microbial cells still viable. This type of experiment is difficult because of the small proportion of cultivable species, especially in these extreme environmental samples. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. Here, the limits are the difficulties to extract DNA from these low biomass containing rocks. The five Triassic samples were partly crushed in powder and inoculated in the six culture media with four NaCl concentrations, because this type of rock is known as saline or hyper-saline, and incubated at three temperatures: 30 deg. C, 55 deg. C under agitation and 70 deg. C. First results will be presented. The direct extraction of DNA needs a complete method optimisation to adapt existent procedures (using commercial kit and classical

  11. Relationship between deep structure and oil-gas in the eastern Tarim Basin

    Science.gov (United States)

    Yu, Changqing; Qu, Chen; Han, Jianguang

    2017-04-01

    The Tarim Basin is a large composite superimposed basin which developed in the Presinian continental basement. It is an important area for oil and gas replacement in China. In the eastern part of Tarim Basin, the exploration and research degree is very low and less system, especially in the study of tectonic evolution and physical property change. Basing on the study of geophysics, drilling and regional geological data in this area, analysis of comprehensive geophysical, geological and geophysical analysis comparison are lunched by new methods and new technology of geophysical exploration. Fault, tectonic evolution and change of deep character in the eastern Tarim Basin are analyzed in system. Through in-depth study and understanding of the deep structure and physical changes of the eastern region, we obtain the fault characteristics in the study area and the deep structure and physical change maps to better guide the oil and gas exploration in this area. The east area is located in the eastern Tarim Basin, west from the Garr Man depression, Well Kunan 1 - Well Gucheng 4 line to the East, north to Kuruketage uplift group near Qunke 1 wells, south to Cherchen fault zone, east to Lop Nor depression, an area of about 9 * 104 square kilometres, Including the East of Garr Man sag, Yingjisu depression, Kongquehe slope, Tadong low uplift and the Lop Nor uplift, five two grade tectonic units. The east area of Tarim is belonging to Tarim plate. It changes with the evolution of the Tarim plate. The Tarim plate is closely related to the collision between the Yining - the Junggar plate, the Siberia plate and the southern Qiangtang - the central Kunlun plate. Therefore, it creates a complex tectonic pattern in the eastern Tarim basin. Earth electromagnetic, gravity, deep seismic and other geophysical data are processed by a new generation of geophysical information theory and method, including multi-scale inversion of potential field inversion (Hou and Yang, 2011), 3D

  12. Application of deep geophysical data to the discussion on the relationship between deep faults, concealed over thrust napped structure and uranium metallogenesis in central-southern Jiangxi

    International Nuclear Information System (INIS)

    Jiang Jinyuan; Qi Liang

    1999-01-01

    Based on the comparative analysis and study on 10 profiles of telluric electromagnetic sounding (MT) and regional gravimetric, magnetic data and Moho surface, the deep geological-tectonic pattern of the central-southern Jiangxi is discussed. It is suggested that: the studied region belongs to the Soyth-China block; in the area along Pingxiang-Guangfeng, at the border with Yangzi block an approximately EW-trending mantle concave-mantle slope zone occurs; the NNE-NE trending mantle uplift-mantle slope-mantle concave structure is developed within the South-China block; deep fault zones are represented by variation sites of Moho surface. Then, a series of deep structures is inferred including the approximately EW-striking Pingxian-Guangfeng deep fault zone, the NNE-striking Fuzhou-Anyuan deep fault zone, the NNE-trending Fengcheng-Dayu deep fault zone, as well as the NE-striking Yudu-Ningdu over thrust napped and sliding thrust structural systems, the approximately E W-trending Le'an-Nancheng over thrust napped structural systems etc. According to the distribution of known uranium mineralizations it is confirmed that close time-space relation exists between the uranium metallogenesis and variations of Moho surface, and over thrust napped structures, providing clues for locating concealed uranium deposits

  13. Qualitative acceptance criteria for radioactive wastes to be disposed of in deep geological formations

    International Nuclear Information System (INIS)

    1990-05-01

    The present Safety Guide has to be seen as a companion document to the IAEA Safety Series No. 99. It is concerned with the waste form which is an important component of the overall disposal system. Because of the broad range of waste types and conditioned forms and variations in the sites, designs and constructional approaches being considered for deep geological repositories, this report necessarily approaches the waste acceptance criteria in a general way, recognizing that the assignment of quantitative limits to these criteria has to be the responsibility of national authorities. The main objective of this Safety Guide is to set out qualitative waste acceptance criteria as a basis for specifying quantitative limits for the waste forms and packages which are intended to be disposed of in deep geological repositories. It should serve as guidance for assigning such parameter values which would fully comply with the safety assessment and performance of a waste disposal system as a whole. This document is intended to serve both national authorities and regulatory bodies involved in the development of deep underground disposal systems. The qualitative waste acceptance criteria dealt with in the present Safety Guide are primarily concerned with the disposal of high level, intermediate level and long-lived alpha bearing wastes in deep geological repositories. Although some criteria are also applicable in other waste disposal concepts, it has to be borne in mind that the set of criteria presented here shall ensure the isolation capability of a waste disposal system for periods of time much longer than for other waste streams with shorter lifetimes. 51 refs, 1 tab

  14. Tectonics, Deep-Seated Structure and Recent Geodynamics of the Caucasus

    Science.gov (United States)

    Amanatashvili, I.; Adamia, Sh.; Lursmanashvili, N.; Sadradze, N.; Meskhia, V.; Koulakov, I.; Zabelina, I.; Jakovlev, A.

    2012-04-01

    The tectonics and deep-seated structure of the Caucasus are determined by its position between the still converging Eurasian and Africa-Arabian plates, within a wide zone of continental collision. The region in the Late Proterozoic - Early Cenozoic belonged to the Tethys Ocean and its Eurasian and Africa-Arabian margins. During Oligocene-Middle Miocene and Late Miocene-Quaternary time as a result of collision back-arc basins were inverted to form fold-thrust mountain belts and the Transcaucasian intermontane lowlands. The Caucasus is divided into platform and fold-thrust units, and forelands superimposed mainly on the rigid platform zones. The youngest structural units composed of Neogene-Quaternary continental volcanic formations of the Armenian and Javakheti highlands and extinct volcanoes of the Great Caucasus. As a result of detailed geophysical study of the gravity, magnetic, seismic, and thermal fields, the main features of the deep crustal structure of the Caucasus have been determined. Knowledge on the deep lithospheric structure of the Caucasus region is based on surface geology and deep and super deep drilling data combined with gravity, seismic, heat flow, and magnetic investigations. Close correlation between the geology and its deep-seated structures appears in the peculiarities of spatial distribution of gravitational, thermal and magnetic fields, particularly generally expressed in orientation of regional anomalies that is in good agreement with general tectonic structures. In this study we present two tomographic models derived for the region based on two different tomographic approaches. In the first case, we use the travel time data on regional seismicity recorded by networks located in Caucasus. The tomographic inversion is based on the LOTOS code which enables simultaneous determination of P and S velocity distributions and source locations. The obtained model covers the crustal and uppermost mantle depths. The second model, which is constructed

  15. Geological-geochemical evidence for deep fluid action in Daqiaowu uranium deposit, Zhejiang province

    International Nuclear Information System (INIS)

    Qiu Linfei; Ou Guangxi; Zhang Jianfeng; Zhang Min; Jin Miaozhang; Wang Binghua

    2009-01-01

    Through the contrast study of petrography, micro thermometry and laser Raman ingredient analysis of fluid inclusion, this paper has verified the basic nature of ore-forming fluid (temperature, salinity and ingredient) in daqiaowu uranium deposit, discussed the origin of the ore-forming fluid with its structure character and geology-geochemistry character. The testing results indicats that ore-forming temperature of this deposit is between 200 degree C and 250 degree C in main metallogenetic period, which belongs to middle temperature hydrothermal. The ore-forming fluids are of middle-high salinity and rich in valatility suchas CO 2 , H 2 , CH 4 . To sum up, the deposit mineralization process should be affected by the deep fluid primarily, and the ore-forming fluid is mainly the mantle fluid.(authors)

  16. Deep geological radioactive waste disposal in Germany: Lessons learned and future perspectives

    International Nuclear Information System (INIS)

    Lempert, J.P.; Biurrun, E.

    2001-01-01

    As far back as in the seventies a fully developed, integrated concept for closing the nuclear fuel cycle was agreed upon in Germany between the Federal Government of that time and the electricity utilities. In the twenty years elapsed since then it was further developed as necessary to permanently fit the state of the art of science and technology. For management of spent fuel, the concept currently considers two equivalent alternatives: direct disposal of the spent fuel or reprocessing the fuel and recycling in thermal reactors. Interim storage of spent fuel and vitrified high level waste (HLW) to allow for decay heat generation to decrease to a convenient level is carried out in centralized installations. Radioactive waste disposal in pursuant to German regulations for all kinds of waste is to be carried out exclusively in deep geologic repositories. At present in the country, there are three centralized interim storage facilities for spent fuel, one of them can also accept vitrified HLW. Several facilities are in use for low level waste (LLW) and intermediate level waste (ILW) storage at power plants and other locations. A pilot conditioning facility for encapsulating spent fuel and/or HLW for final disposal is now ready to be commissioned. Substantial progress has been achieved in realization of HLW disposal, including demonstration of all the needed technology and fabrication of a significant part of the equipment. With regard to deep geologic disposal of LLW and ILW, Germany has worldwide unique experience. The Asse salt mine was used as an experimental repository for some 10 years in the late sixties and seventies. After serving since then as an underground research facility, it is now being backfilled and sealed. The Morsleben deep geologic repository was in operation for more than 25 years until September 1998. (author)

  17. In situ experiments for disposal of radioactive wastes in deep geological formations

    International Nuclear Information System (INIS)

    1987-12-01

    This report reviews the current status of in-situ experiments undertaken to assess various concepts for disposal of spent fuel and reprocessed high-level waste in deep geological formations. Specifically it describes in-situ experiments in three geological formations - clay, granite and domed salt. The emphasis in this report is on the in-situ experiments which deal with the various issues related to the near-field effects in a repository and the geological environment immediately surrounding the repository. These near-field effects are due to the disturbance caused by both the construction of the repository and the waste itself. The descriptions are drawn primarily from four underground research facilities: the Underground Experimental Facility, Belgium (clay), the Stripa Project, Sweden and the Underground Research Laboratory, Canada (granite) and the Asse Mine, Federal Republic of Germany (salt). 54 refs, figs and tab

  18. Siting regions for deep geological repositories. Nagra’s proposals for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the selection of sites for deep geological repositories for nuclear wastes in Switzerland. The procedure proposed for the selection process is explained. The four sites for possible repositories of high-level radioactive waste as well as for low and intermediate-level wastes are described and rated with respect to the various safety factors involved. The reasons for the long-term safety measures proposed and the geological barriers involved are discussed. The four proposals for depository sites are looked at in more detail. The paper is well illustrated with several diagrams and tables

  19. Combined NLCG/SBI magnetotelluric data inversion for recognition of complex geological structures

    International Nuclear Information System (INIS)

    Michal Stefaniuk

    2009-01-01

    Complete text of publication follows. Geological interpretation of magnetotelluric data is a subject of some misunderstandings. Simplified geometrically and well contrasted in resistivity models do not response for real geological environment. The aim of outstripping magnetotelluric works widely made in Polish Outer Carpathians, is general structural and lithological recognising of geological environment and distinguishing of areas where oil prospection will be projected. The geological medium is formed by sedimentary formations, strongly deformed and containing relatively thin layers with essentially differentiated parameters, overlying rather flat, high resistivity basement. Application of simplified strongly contrasted interpretation model with fluently changing parameters gives frequently results not corresponding with geological reality. Presented analysis is based on surveys located in marginal zone of Carpathianst in the area relatively well recognised, where interpreted structural and lithologic model rather well reflects real geological medium. Then, it was used as reference model for obtained results of MT data inversion. Magnetotelluric continuous profiling located along reflection seismic profile, between two deep boreholes was made. Set of results of computations allows to evaluate of effectiveness of used procedures and suggest optimum way of dealing. First stage of data interpretation was based on 1D and EMAP inversion. The section was then applied as starting model for 2D NLCG inversion. Results of this method give rather generalized resistivity distribution well reflecting structure of flysch cover but not adequate for the basement. This models was applied as starting models for SBI inversion constrained by borehole data. Results of SBI procedure well reflects relatively flat complexes of the basement, but are rather unrealistic for folded flysch cover. The another NLCG inversion was computed with stabilised model of basement obtained from SBI

  20. Presumption of the distribution of the geological structure based on the geological survey and the topographic data in and around the Horonobe area

    International Nuclear Information System (INIS)

    Sakai, Toshihiro; Matsuoka, Toshiyuki

    2015-06-01

    The Horonobe Underground Research Laboratory (URL) Project, a comprehensive research project investigating the deep underground environment in sedimentary rock, is being pursued by the Japan Atomic Energy Agency (JAEA) at Horonobe-cho in Northern Hokkaido, Japan. One of the main goals of the URL project is to establish techniques for investigation, analysis and assessment of the deep geological environment. JAEA constructed the geologic map and the database of geological mapping in Horonobe-cho in 2005 based on the existing literatures and 1/200,000 geologic maps published by Geological Survey of Japan, and then updated the geologic map in 2007 based on the results of various investigations which were conducted around the URL as the surface based investigation phase of the URL project. On the other hand, there are many geological survey data which are derived from natural resources (petroleum, natural gas and coal, etc.) exploration in and around Horonobe-cho. In this report, we update the geologic map and the database of the geological mapping based on these geological survey and topographical analysis data in and around the Horonobe area, and construct a digital geologic map and a digital database of geological mapping as GIS. These data can be expected to improve the precision of modeling and analyzing of geological environment including its long-term evaluation. The digital data is attached on CD-ROM. (J.P.N.)

  1. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  2. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  3. Geological aspects of the deep disposal of radioactive waste

    International Nuclear Information System (INIS)

    McEwen, T.J.

    1998-01-01

    Various environments have been selected throughout the world for the potential deep disposal of long-lived radioactive waste. The selection of these environments has been carried out using a variety of methods, some of them more logical and defensible than others. The 'raison d'etre' for their selection also varies from country to country. Important lessons have been learnt from the site selection programmes, the site characterisation activities and the accompanying performance assessments that have been carried out concerning the suitability of geological environments for the disposal of long-lived waste. These lessons are the subject of this paper. 24 refs

  4. The geological and structural characterization of the Olkiluoto site in a critical perspective

    International Nuclear Information System (INIS)

    Cosgrove, J.; Jokinen, J.; Siivola, J.; Tiren, S.

    2003-05-01

    This report comments on aspects of Posiva's work relating to the interests of the IMGS (Investigations and Modelling of Geological Structures) Group who is concerned with the potential impact of the tectonic and geological setting of the Olkiluoto site, on the construction a deep repository for spent nuclear fuel. Since the Group's last report (IMGS 2002) a variety of relevant publications have been produced by Posiva. A number of issues have been identified in these documents relating to the procedure for updating the Bedrock model, factors influencing the location and layout of ONKALO, the mapping procedure planned for the access tunnel, the problem of oversimplification and uncertainties and the proposed extension of the repository. These are discussed in the present report. (orig.)

  5. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    International Nuclear Information System (INIS)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE's investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4)

  6. The use of interaction matrices for identification, structuring and ranking of FEPs in a repository system. Application on the far-field of a deep geological repository for spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, K; Wiborgh, M [Kemakta, Stockholm (Sweden); Stroem, A [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1995-11-01

    The basic device in the Rock Engineering Systems approach, the interaction matrix, has been used to identify, structure and rank Features, Events, and Processes (FEPs) describing barrier performance and radionuclide behaviour in the far-field of a deep geologic repository for spent fuel. The result is a first version of the Process System (PS), for the far-field of a deep repository, structured in an interaction matrix with supporting documentation. The documentation is compiled in databases, one containing matrix specific information and one containing general FEP descriptions. The study has shown that an interaction matrix is feasible to use both for the structuring of the PS and for visualisation of the PS. The developed documentation system increases the transparency of the system description and makes it possible to trace back the judgements made during the construction of the matrix. This will facilitate review work and future revisions as well as consistent treatment of different issues in the system. This study is a first step in the application of a systematic method to establish a structured description of the PS for a deep repository for spent fuel. The work could be seen as a part of the preparation for the forthcoming performance and safety analysis. The next step would be to develop the PS for the remaining parts of the repository system to the same level as has been done for the far-field system. Before the PS is evaluated for different selected system premises, a scientific review of the contents of the PS for the whole repository system would be beneficial. 5 refs.

  7. The use of interaction matrices for identification, structuring and ranking of FEPs in a repository system. Application on the far-field of a deep geological repository for spent fuel

    International Nuclear Information System (INIS)

    Skagius, K.; Wiborgh, M.; Stroem, A.

    1995-11-01

    The basic device in the Rock Engineering Systems approach, the interaction matrix, has been used to identify, structure and rank Features, Events, and Processes (FEPs) describing barrier performance and radionuclide behaviour in the far-field of a deep geologic repository for spent fuel. The result is a first version of the Process System (PS), for the far-field of a deep repository, structured in an interaction matrix with supporting documentation. The documentation is compiled in databases, one containing matrix specific information and one containing general FEP descriptions. The study has shown that an interaction matrix is feasible to use both for the structuring of the PS and for visualisation of the PS. The developed documentation system increases the transparency of the system description and makes it possible to trace back the judgements made during the construction of the matrix. This will facilitate review work and future revisions as well as consistent treatment of different issues in the system. This study is a first step in the application of a systematic method to establish a structured description of the PS for a deep repository for spent fuel. The work could be seen as a part of the preparation for the forthcoming performance and safety analysis. The next step would be to develop the PS for the remaining parts of the repository system to the same level as has been done for the far-field system. Before the PS is evaluated for different selected system premises, a scientific review of the contents of the PS for the whole repository system would be beneficial. 5 refs

  8. Swiss plans for deep geological repositories for radioactive wastes - Basics for communication at the localities affected

    International Nuclear Information System (INIS)

    Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the concept of how information concerning deep geological repositories for radioactive wastes should be presented and communicated to those in the areas which have been designated as potential sites for the repositories. Communication basics based on scientific knowledge in this area are discussed. The importance of a concept for general communication and risk-communication as a particular challenge are discussed. Trust and transparency are quoted as being indispensable in this connection. Ways of dealing with various target audiences and the media are examined. The report is concluded with a check-list that deals with important questions arising from the process of communicating information on deep geological repositories for radioactive wastes

  9. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs.

  10. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    International Nuclear Information System (INIS)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs

  11. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    Science.gov (United States)

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  12. Data to Support Development of Geologic Framework Models for the Deep Borehole Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Richard E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    This report summarizes work conducted in FY2017 to identify and document publically available data for developing a Geologic Framework Model (GFM) for the Deep Borehole Field Test (DBFT). Data was collected for all four of the sites being considered in 2017 for a DBFT site.

  13. Time evolution of the Clay Barrier Chemistry in a HLW deep geological disposal in granite

    International Nuclear Information System (INIS)

    Font, I.; Miguel, M. J.; Juncosa, R.

    2000-01-01

    The main goal of a high level waste geological disposal is to guarantee the waste isolation from the biosphere, locking them away into very deep geological formations. The best way to assure the isolation is by means of a multiple barrier system. These barriers, in a serial disposition, should assure the confinement function of the disposal system. Two kinds of barriers are considered: natural barriers (geological formations) and engineered barriers (waste form, container and backfilling and sealing materials). Bentonite is selected as backfilling and sealing materials for HLW disposal into granite formations, due to its very low permeability and its ability to fill the remaining spaces. bentonite has also other interesting properties, such as, the radionuclide retention capacity by sorption processes. Once the clay barrier has been placed, the saturation process starts. The granite groundwater fills up the voids of the bentonite and because of the chemical interactions, the groundwater chemical composition varies. Near field processes, such as canister corrosion, waste leaching and radionuclide release, strongly depends on the water chemical composition. Bentonite pore water composition is such a very important feature of the disposal system and its determination and its evolution have great relevance in the HLW deep geological disposal performance assessment. The process used for the determination of the clay barrier pore water chemistry temporal evolution, and its influence on the performance assessment, are presented in this paper. (Author)

  14. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  15. Study on geologic structure of hydrogenic deposits

    International Nuclear Information System (INIS)

    1985-01-01

    The problem of studying geologic structure of hydrogenic uranium deposits developed by underground leaching (UL), is elucidated. Geologic maps of the surface are used to characterize engineering and geologic conditions. Main geologoic papers are maps drawn up according to boring data. For total geologic characteristic of the deposit 3 types of maps are usually drawn up: structural maps of isohypses or isodepths, lithologic-facies maps on the horizon and rhythm, and maps of epigenetic alterations (geochemmcal). Besides maps systems of sections are drawn up. Problems of studying lithologic-facies and geohemical peculiarities of deposits, epigenotic alterations, substance composition of ores and enclosing rocks, documentation and core sampting, are considered in details

  16. Generic description of facilities at the shaft head (auxiliary entrance installations) of deep geological repositories; Generische Beschreibung von Schachtkopfanlagen (Nebenzugangsanlagen) geologischer Tiefenlager

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-10-15

    In a deep geological repository, the access structures function as the link between the surface and the installations and structures at the disposal level. In the planned implementation scenarios, at least two access structures will be in operation up to the time of closure of the repository. The radioactive waste will be transported via the main access from the surface to the disposal level during emplacement operations. For the construction and operation of a deep geological repository, additional access structures are required. These auxiliary accesses and the associated surface infrastructure (e.g. shaft head installations) form the subject of this report. To provide as broad and comprehensive a description as possible, seven types of auxiliary access facilities are defined; these are characterised in line with the current status of planning and their functions and impacts are described. During construction, operation and dismantling of auxiliary access facilities, the usual conventional safety measures (inter alia) have to be observed (e.g. groundwater protection, fire prevention, facility security, accident prevention). Regarding the 'Ordinance on Protection against Major Accidents' no large quantities of hazardous materials, i.e. above the corresponding threshold quantities, are to be expected in the auxiliary access facilities. Proper handling and compliance with applicable regulations in all phases will ensure no hazard to humans and the environment. As no handling of radioactive materials is foreseen in the auxiliary access facilities, and because exhaust air and waste water from the controlled zones of a repository will, in principle, be removed via the main access and not the auxiliary accesses, a safety-relevant emission of radioactive substances and transport of contaminated material can be ruled out for the auxiliary access facilities during both normal operation and also in the case of an accident. Based on the information presented in

  17. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  18. Automation method to identify the geological structure of seabed using spatial statistic analysis of echo sounding data

    Science.gov (United States)

    Kwon, O.; Kim, W.; Kim, J.

    2017-12-01

    Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics

  19. Nuclides migration tests under deep geological conditions

    International Nuclear Information System (INIS)

    Kumata, M.; Vandergraaf, T.T.

    1991-01-01

    Migration behaviour of technetium and iodine under deep geological conditions was investigated by performing column tests under in-situ conditions at the 240 m level of the Underground Research Laboratory (URL) constructed in a granitic batholith near Pinawa, Manitoba, Canada. 131 I was injected with tritiated water into the column. Tritium and 131 I were eluted simultaneously. Almost 100 % of injected 131 I was recovered in the tritium breakthrough region, indicating that iodine moved through the column almost without retardation under experimental conditions. On the other hand, the injected technetium with tritium was strongly retarded in the column even though the groundwater was mildly reducing. Only about 7 % of injected 95m Tc was recovered in the tritium breakthrough region and the remaining fraction was strongly sorbed on the dark mafic minerals of column materials. This strong sorption of technetium on the column materials had not been expected from the results obtained from batch experiments carried out under anaerobic conditions. (author)

  20. Study on systemizing technology on investigation and analysis of deep underground geological environment. Japanese fiscal year, 2007 (Contract research)

    International Nuclear Information System (INIS)

    Kojima, Keiji; Ohnishi, Yuzo; Aoki, Kenji; Watanabe, Kunio; Nishigaki, Makoto; Tosaka, Hiroyuki; Shimada, Jun; Tochiyama, Osamu; Yoshida, Hidekazu; Ogata, Nobuhisa; Nishio, Kazuhisa

    2009-03-01

    In this year, the following studies were carried out with the aim of systemizing the technology on the investigation and analysis to understand the deep underground geological environment in relation to the radioactive waste disposal. (1) The study on the research and development (R and D) subjects which turned to the practical investigation and analysis of deep underground geological environment. (2) The study on the advanced technical basis for the investigation and analysis of deep underground geological environment. The results obtained from the studies are as follows: Regarding (1), the specific investigations, measurements and numerical and chemical analyses were performed particularly for research subjects: 1) engineering technology and 2) geological environment. Based on the results on (1), 3) tasks of collaboration research on intermediate area between the research fields, including the safety assessment field, were selected. Also redefinition of the NFC (Near Field Concept) were discussed. Regarding (2), based on the extracted tasks of JAEA (Japan Atomic Energy Agency) research project, the study was implemented considering previous R and D results and detailed research at the research field was carried out. This study contributed to the R and D development for its practical application. Concurrently, information exchange and discussion on the 2nd phase (the Construction Phase) of the MIU (Mizunami Underground Research Laboratory) research program were often held. (author)

  1. Site selection for deep geologic repositories - Consequences for society, economy and environment

    International Nuclear Information System (INIS)

    2010-03-01

    In a few years, Switzerland will make the decision regarding site selection for geological underground repositories for the storage of radioactive wastes. Besides the safety issue, many citizens are interested in how such a repository will affect environment, economy and society in the selected site's region. This brochure summarizes the results of many studies on the socio-economic impacts of nuclear waste repositories. Radioactive wastes must be stored in such a way that mankind and environment are safely protected for a long period of time. How this goal may be achieved, is already known: geologic deep repositories warrant long-term safety. For the oncoming years in Switzerland the question is where the repository will be built. The search for an appropriate site for a repository in the proposed regions will launch discussions. Within the participative framework the regions may bring their requests. The demonstration of the safety of potential repository sites has the highest priority in the selection process. In the third procedural step additional rock investigations will be made. The socio-economic studies and the experience with existing plants show that radioactive waste management plants can be built and operated in good agreement with environmental requirements. The radioactive wastes in a deep underground repository are stored many hundred meters below the Earth's surface. There, they are isolated from our vital space. Technical barriers and the surrounding dense rock confinement prevent the release of radioactive materials into the environment. A deep repository has positive consequences for the regional economy. It increases trade and value creation and creates work places. The socio-economic impacts practically extend over one century, but strongly vary with time; they are the largest during the building period. High life quality and a positive population development in the selected site region are compatible with a deep repository. A fair and

  2. The deep structure of the Sichuan basin and adjacent orogenic zones revealed by the aggregated deep seismic profiling datum

    Science.gov (United States)

    Xiong, X.; Gao, R.; Li, Q.; Wang, H.

    2012-12-01

    The sedimentary basin and the orogenic belt are the basic two tectonic units of the continental lithosphere, and form the basin-mountain coupling system, The research of which is the key element to the oil and gas exploration, the global tectonic theory and models and the development of the geological theory. The Sichuan basin and adjacent orogenic belts is one of the most ideal sites to research the issues above, in particular by the recent deep seismic profiling datum. From the 1980s to now, there are 11 deep seismic sounding profiles and 6 deep seismic reflection profiles and massive seismic broadband observation stations deployed around and crossed the Sichuan basin, which provide us a big opportunity to research the deep structure and other forward issues in this region. Supported by the National Natural Science Foundation of China (Grant No. 41104056) and the Fundamental Research Funds of the Institute of Geological Sciences, CAGS (No. J1119), we sampled the Moho depth and low-velocity zone depth and the Pn velocity of these datum, then formed the contour map of the Moho depth and Pn velocity by the interpolation of the sampled datum. The result shows the Moho depth beneath Sichuan basin ranges from 40 to 44 km, the sharp Moho offset appears in the western margin of the Sichuan basin, and there is a subtle Moho depression in the central southern part of the Sichuan basin; the P wave velocity can be 6.0 km/s at ca. 10 km deep, and increases gradually deeper, the average P wave velocity in this region is ca. 6.3 km/s; the Pn velocity is ca. 8.0-8.02 km/s in Sichuan basin, and 7.70-7.76 km/s in Chuan-Dian region; the low velocity zone appears in the western margin of the Sichuan basin, which maybe cause the cause of the earthquake.

  3. Study on geological environment in the Tono area. An approach to surface-based investigation

    International Nuclear Information System (INIS)

    2002-12-01

    Mizunami Underground Research (MIU) Project has aimed at preparation of basis of investigation, analysis and evaluation of geology of deep underground and basis of engineering technologies of ultra deep underground. This report stated an approach and information of surface-based investigation for ground water flow system and MIU Project by the following contents, 1) objects and preconditions, 2) information of geological environment for analysis of material transition and design of borehole, 3) modeling, 4) tests and investigations and 5) concept of investigation. The reference data consists of results of studies such as the geological construction model, topography, geologic map, structural map, linear structure and estimated fault, permeability, underground stream characteristics, the quality of underground water and rock mechanics. (S.Y.)

  4. Earthquakes - a danger to deep-lying repositories?; erdbeben: eine gefahr fuer tiefenlager?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-03-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at geological factors concerning earthquakes and the safety of deep-lying repositories for nuclear waste. The geological processes involved in the occurrence of earthquakes are briefly looked at and the definitions for magnitude and intensity of earthquakes are discussed. Examples of damage caused by earthquakes are given. The earthquake situation in Switzerland is looked at and the effects of earthquakes on sub-surface structures and deep-lying repositories are discussed. Finally, the ideas proposed for deep-lying geological repositories for nuclear wastes are discussed.

  5. Two-dimensional magnetotelluric model of deep resistivity structure in the Bodie-Aurora district of California

    Science.gov (United States)

    Sampson, Jay A.

    2006-01-01

    Introduction: Magnetotelluric data were acquired during October 2001 by the U.S. Geological Survey (USGS) as part of a study to examine the structural nature of basins in the transition zone between the Sierra Nevada Mountains of California and the Basin and Range province of Nevada. Magnetotelluric (MT) geophysical studies assist the mapping of geologic structure and the inference of lithologic packages that are concealed beneath the Earth's surface. The Basin and Range province has a complicated geologic history, which includes extension and compression of the Earth's crust to form the basins and ranges that blanket much of Nevada. The basins and ranges in the vicinity of this study trend northeastward and are bounded by steeply dipping strike slip faults. Interestingly, deep east-west magnetic trends occur in the aeromagnetic data of this study area indicating that the northeast-trending basins and ranges represent only thin-skinned deformation at the surface with an underlying east-west structure. To investigate this issue, MT data were acquired at seven stations in eastern California, 20 km east of Mono Lake. The purpose of this report is to present a two-dimensional apparent resistivity model of the MT data acquired for this study.

  6. Search for and characterization of microorganisms in deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, Vanessa

    2011-01-01

    Over the past 50 years, the scientific community has shown a growing interest for deep geological compartments. However, these ecosystems remain largely unknown due to their inaccessibility. The aim of the present thesis was double; the first aim was to characterize, from a microbiological perspective, four terrestrial Triassic sedimentary formations located between 1700 and 2000 m depth in the Parisian Basin and collected by the ANDRA during a deep drilling campaign in 2008, and the second aim was to study the combined effects of temperature, pressure and salinity on the metabolic activity of anaerobic prokaryotes in order to predict their reaction to geological burial. Incubations in a large variety of media were carried out in order to stimulate the growth of the main trophic types found in such environments such as methanogens, fermenters and bacteria reducing sulphur compounds, however, no viable and cultivable microorganisms could be isolated. In parallel, a molecular approach was used to i) compare the efficacy of several DNA extractions methods and ii) analyse the bacterial diversity, using DGGE (Denaturing Gel Gradient Electrophoresis) and cloning, present in rock inner cores conserved either at atmospheric pressure or under pressure, in their initial states and following incubations in various media. The genetic exploration of these samples revealed a very low biomass and a poor diversity composed mainly of aerobic and mesophilic members of the Bacteria domain, a priori unadapted to such a deep, hot, saline and anoxic environment. This unexpected microbial community also found in many subsurface ecosystems as well as in extreme ecosystems could have partially originated from a paleo-recharge of the Trias aquifer with cold waters coming from the melting of ice formed during the last Pleistocene glaciation. The second objective was to study the combined effects of temperature (40, 55 and 70 C), pressure (1, 90 and 180 bars) and salinity (13, 50, 110, 180

  7. GIS-technologies as a mechanism to study geological structures

    Science.gov (United States)

    Sharapatov, Abish

    2014-05-01

    Specialized GIS-technologies allow creating multi-parameter models, completing multi-criteria optimisation tasks, and issues of geological profile forecasts using miscellaneous data. Pictorial and attributive geological and geophysical information collected to create GIS database is supplemented by the ERS (Earth's Remote Sensing) data, air spectrometry, space images, and topographic data. Among the important tasks are as follows: a unification of initial geological, geophysical and other types of information on a tectonic position, rock classification and stratigraphic scale; topographic bases (various projectures, scales); the levels of detail and exhaustibility; colors and symbols of legends; data structures and their correlation; units of measurement of physical quantities, and attribute systems of descriptions. Methods of the geological environment investigation using GIS-technology are based on a principle of the research target analogy with a standard. A similarity ratio is quantitative estimate. A geological forecast model is formed by structuring of geological information based on detailed analysis and aggregation of geological and formal knowledge bases on standard targets. Development of a bank of models of the analyzed geological structures of various range, ore-bearing features described by numerous prospecting indicators is the way to aggregate geological knowledge. The south terrain of the Valerianovskaya structure-facies zone (SFZ) of the Torgai paleo-rift structure covered with thick Mesozoic and Cenozoic rocks up to 2,000m is considered a so-called training ground for the development of GIS-technology. Parameters of known magnetite deposits located in the north of the SFZ (Sarybaiskoye, Sokolovskoye, etc.) are used to create the standard model. A meaning of the job implemented involves the following: - A goal-seeking nature of the research being performed and integration of the geological, geo-physical and other data (in many cases, efforts of the

  8. Efficiency analyses of the CANDU spent fuel repository using modified disposal canisters for a deep geological disposal system design

    International Nuclear Information System (INIS)

    Lee, J.Y.; Cho, D.K.; Lee, M.S.; Kook, D.H.; Choi, H.J.; Choi, J.W.; Wang, L.M.

    2012-01-01

    Highlights: ► A reference disposal concept for spent nuclear fuels in Korea has been reviewed. ► To enhance the disposal efficiency, alternative disposal concepts were developed. ► Thermal analyses for alternative disposal concepts were performed. ► From the result of the analyses, the disposal efficiency of the concepts was reviewed. ► The most effective concept was suggested. - Abstract: Deep geological disposal concept is considered to be the most preferable for isolating high-level radioactive waste (HLW), including nuclear spent fuels, from the biosphere in a safe manner. The purpose of deep geological disposal of HLW is to isolate radioactive waste and to inhibit its release of for a long time, so that its toxicity does not affect the human beings and the biosphere. One of the most important requirements of HLW repository design for a deep geological disposal system is to keep the buffer temperature below 100 °C in order to maintain the integrity of the engineered barrier system. In this study, a reference disposal concept for spent nuclear fuels in Korea has been reviewed, and based on this concept, efficient alternative concepts that consider modified CANDU spent fuels disposal canister, were developed. To meet the thermal requirement of the disposal system, the spacing of the disposal tunnels and that of the disposal pits for each alternative concept, were drawn following heat transfer analyses. From the result of the thermal analyses, the disposal efficiency of the alternative concepts was reviewed and the most effective concept suggested. The results of these analyses can be used for a deep geological repository design and detailed analyses, based on exact site characteristics data, will reduce the uncertainty of the results.

  9. Preliminary geologic framework developed for a proposed environmental monitoring study of a deep, unconventional Marcellus Shale drill site, Washington County, Pennsylvania

    Science.gov (United States)

    Stamm, Robert G.

    2018-06-08

    completed. This was done for three principal reasons. First, there was an immediate need to know the distribution of the relatively undisturbed surface to near-surface bedrock geology and unconsolidated materials for the collection of baseline surface data prior to drill site development (drill pad access road, drill pad leveling) and later during monitoring associated with well drilling, well development, and well production. Second, it was necessary to know the bedrock geology to support the siting of: (1) multiple shallow groundwater monitoring wells (possibly as many as four) surrounding and located immediately adjacent to the drill pad, and (2) deep groundwater monitoring wells (possibly two) located at distance from the drill pad with one possibly being sited along one of the deviated production drill legs. Lastly, the framework geology would provide the lateral extent, thickness, lithology, and expected discontinuities of geologic units (to be parsed or grouped as hydrostratigraphic units) and regional structure trends as inputs into the groundwater model.This report provides the methodology of geologic data accumulation and aggregation, and its integration into a geographic information system (GIS) based program. The GIS program will allow multiple data to be exported in various formats (shapefiles [.shp], database files [.dbf], and Keyhole Markup Language files [.KML]) for use in surface and subsurface geologic site characterization, for sampling strategies, and for inputs for groundwater modeling.

  10. Alteration of R7T7-type nuclear glass in deep geological storage conditions

    International Nuclear Information System (INIS)

    Combarieu, G. de

    2007-02-01

    This PhD thesis is aimed to study the alteration of SON68 glass, French inactive glass of R7T7-type, in contact with near field materials of a deep geological storage (French concept from ANDRA) which are mainly metallic iron and Callovo-Oxfordian clay. Therefore, experiments involving a 'glass-iron-clay' system at lab-scale have been carried out. Interactions between glass, iron and clay have been characterised from submicron to millimeter scale by means of SEM, TEM, XRD and XAS and Raman spectroscopies in terms of chemistry and crystal-chemistry. In the mean time, a conceptual model of glass alteration has been developed to account for most of the experimental observations and known mechanisms of alteration. The model has been then transposed within the transport-chemistry code HYTEC, together with developed models of clay and iron corrosion, to simulate the experiments described above. This work is thus a contribution to the understanding of iron corrosion in Callovo-Oxfordian clay and subsequent glass alteration in the newly formed corrosion products, the whole process being considered as a lab-scale model of a deep geological storage of radioactive wastes. (author)

  11. Site selection of a deep repository of HLRW in relation to geological conditions of Slovak Republic

    International Nuclear Information System (INIS)

    Kovacik, M.; Kovacikova, M.; Madaras, J.; Vandlikova, M.

    1996-01-01

    All countries which use nuclear energy to generate electricity face the problem of high level radioactive waste (HLRW) and spent fuel. Until 1987, this problem was addressed in Czechoslovakia by transferring the material to the former USSR. After the political changes in Central and Eastern Europe in 1989 and the division of Czechoslovakia into two states in 1993, Slovakia independently faced the complex problem of creating its own deep repository. Although Slovakia has begun to solve the problem of HLRW and spent fuel only recently, it can take advantage of the theoretical and practical knowledge of other countries in this field. The geological aspects of the setting of the deep repository of HLRW have been studied within the project R epositories of radioactive and hazardous wastes in geological environment. The assessment of the Slovak Republic for creating a repository of HLRW was based on the application of internationally determined and applied criteria

  12. Geological and structural interpretation of Peninsular Malaysia by marine and aeromagnetic data: Some preliminary results

    Science.gov (United States)

    Bahrudin, Nurul Fairuz Diyana Binti; Hamzah, Umar

    2016-11-01

    Magnetic data were processed to interpret the geology of Peninsular Malaysia especially in delineating the igneous bodies and structural lineament trends by potential field geophysical method. A total of about 32000 magnetic intensity data were obtained from Earth Magnetic Anomaly Grid (EMAG2) covering an area of East Sumatra to part of South China Sea within 99° E to 105° E Longitude and 1° N to 7°N Latitude. These data were used in several processing stages in generating the total magnetic intensity (TMI), reduce to equator (RTE), total horizontal derivative (THD) and total vertical derivative (TVD). Values of the possible surface and subsurface magnetic sources associated to the geological features of the study area. The magnetic properties are normally corresponding to features like igneous bodies and faults structures. The anomalies obtained were then compared to the geological features of the area. In general, the high magnetic anomalies of the TMI-RTE are closely matched with major igneous intrusion of Peninsular Malaysia such as the Main Range, Eastern Belt and the Mersing-Johor Bahru stretch. More dense lineaments of magnetic structures were observed in the THD and TVD results indicating the presence of more deep and shallow magnetic rich geological features. The positions of Bukit Tinggi, Mersing and Lepar faults are perfectly matched with the magnetic highs while the presence of Lebir and Bok Bak faults are not clearly observed in the magnetic results. The high magnetic values of igneous bodies may have concealed and obscured the magnetic values representing these faults.

  13. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  14. Elements of the geological structure of the Western Siberian platform determined from a review of fine-scale satellite photographs in oil and gas prospecting research

    Energy Technology Data Exchange (ETDEWEB)

    Borovskii, V V; Klopov, A L; Peskovskii, I D; Podsosova, L L

    1980-01-01

    Dislocations with breaks in continuity and annular objects are identified on fine-scale satellite photographs within the region of the Western Siberian platform. Based on an integrated interpretation of the geological and geophysical data, it is predicted that there exists a relation between the annular objects and the geological structure of deep portions of the earth's crust, the pre-Jurassic basement, and certain levels of the platform mantle. Procedural techniques for the use of magnetic and gravitional data for the purpose of obtaining information about the geological nature of the identified objects are considered.

  15. Canada's deep geological repository for used nuclear fuel - update on the site evaluation process and interweaving of aboriginal traditional knowledge

    International Nuclear Information System (INIS)

    Watts, B.; Belfadhel, M.B.; Facella, J.

    2015-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for the long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository (DGR) in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO initiated a nine-step site selection process to seek an informed and willing community to host Canada's deep geological repository. As of April 2015, twenty-two communities expressed interest in learning more about the project. This paper provides an update on the site evaluation process and describes the approach, methods and criteria used in the assessments, focusing on geological and community well-being studies. Engagement and field activities to interweave Aboriginal Traditional Knowledge with western science are also discussed. (author)

  16. Considerations on pressure build-up in deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Beer, Hans-Frieder

    2015-01-01

    Gas formation caused by corrosion of metals is a pivotal point with respect to the safety analysis of deep geological repositories. Solid corrosion products are formed unavoidably during the gas formation. The volumes of these solid corrosion products are multiples of the original waste volume. These solid corrosion products are chemically extremely stable and result in a pressure increase inside the repository. This pressure is considerably higher than that of the overlaying rock. The question that arises is, why this aspect is not considered in the consulted documents.

  17. Underground storage. Study of radwaste storage in deep geological formations: environmental protection

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.

    1993-01-01

    The purpose of the Agence nationale pour la gestion des dechets radioactifs (Andra) is to monitor the management methods and storage of radioactive waste produced in France. The agency has this undertaken a vast study program for the evaluation of the management conditions of long-life radwaste, which cannot be stored indefinitely in shallow-ground repositories. Underground laboratories are investigating the feasibility of a possible solution which is to store radwaste in a deep geological layer. However, there will be no decision on this type of storage before the year 2006. 7 figs

  18. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    International Nuclear Information System (INIS)

    Mao, N.; Ramirez, A.L.

    1980-01-01

    This report presents new developments in measurement technology relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis has been placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment

  19. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    Science.gov (United States)

    Mao, N. H.; Ramirez, A. L.

    1980-10-01

    Developments in measurement technology are presented which are relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis was placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment.

  20. Mathematical modelling of heat production in deep geological repository of high-level nuclear waste

    International Nuclear Information System (INIS)

    Kovanda, O.

    2017-01-01

    Waste produced by nuclear industry requires special handling. Currently, there is a research taking place, focused at possibilities of nuclear waste storage in deep geological repositories, hosted in stable geological environment. The high-level nuclear waste produces significant amount of heat for a long time, which can affect either environment outside of or within the repository in a negative way. Therefore to reduce risks, it is desirable to know the principles of such heat production, which can be achieved using mathematical modeling. This thesis comes up with a general model of heat production-time dependency, dependable on initial composition of the waste. To be able to model real situations, output of this thesis needs to be utilized in an IT solution. (authors)

  1. Ultra Deep Wave Equation Imaging and Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Alexander M. Popovici; Sergey Fomel; Paul Sava; Sean Crawley; Yining Li; Cristian Lupascu

    2006-09-30

    In this project we developed and tested a novel technology, designed to enhance seismic resolution and imaging of ultra-deep complex geologic structures by using state-of-the-art wave-equation depth migration and wave-equation velocity model building technology for deeper data penetration and recovery, steeper dip and ultra-deep structure imaging, accurate velocity estimation for imaging and pore pressure prediction and accurate illumination and amplitude processing for extending the AVO prediction window. Ultra-deep wave-equation imaging provides greater resolution and accuracy under complex geologic structures where energy multipathing occurs, than what can be accomplished today with standard imaging technology. The objective of the research effort was to examine the feasibility of imaging ultra-deep structures onshore and offshore, by using (1) wave-equation migration, (2) angle-gathers velocity model building, and (3) wave-equation illumination and amplitude compensation. The effort consisted of answering critical technical questions that determine the feasibility of the proposed methodology, testing the theory on synthetic data, and finally applying the technology for imaging ultra-deep real data. Some of the questions answered by this research addressed: (1) the handling of true amplitudes in the downward continuation and imaging algorithm and the preservation of the amplitude with offset or amplitude with angle information required for AVO studies, (2) the effect of several imaging conditions on amplitudes, (3) non-elastic attenuation and approaches for recovering the amplitude and frequency, (4) the effect of aperture and illumination on imaging steep dips and on discriminating the velocities in the ultra-deep structures. All these effects were incorporated in the final imaging step of a real data set acquired specifically to address ultra-deep imaging issues, with large offsets (12,500 m) and long recording time (20 s).

  2. Chesapeake Bay Impact Structure Deep Drilling Project Completes Coring

    Directory of Open Access Journals (Sweden)

    the Scientific Staff of the Chesapeake Bay Impact Structure Deep Drilling Project

    2006-09-01

    Full Text Available The Chesapeake Bay Impact Structure Deep Drilling Project (CBIS Project completed its coring operations during September–December 2005 and April–May 2006. Cores were collected continuously to a total depth of 1766 m. The recovered section consists of 1322 m of impactites beneath 444 m of post-impact continental shelf sediments.The CBIS Project is a joint venture of the International Continental Scientifi c Drilling Program (ICDP and the U.S. Geological Survey (USGS. Project activities began with a planning workshop in September 2003 attended by sixtythree scientists from ten countries. Field operations began with site preparation in July 2005, and coring began in September 2005. Drilling, Observation and Sampling of theEarth’s Continental Crust (DOSECC was the general contractor for the drilling operations throughout 2005.

  3. Mining and engineering aspects and variants for the underground construction of a deep geological repository for radioactive waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Milchev, M.; Michailov, B.; Nanovska, E.; Harizanov, A.

    2003-01-01

    The aim of the present report is to investigate and to describe systematically the foreign experience, scientific and technical achievements and stages of development concerning the mining and engineering aspects and variants for underground construction of a deep geological repository for radioactive waste (RAW) and spent nuclear fuel (SNF). The ideal solution in managing the problems with harmful wastes seems to be either to remove them permanently from Earth (which is related with high risks and high costs) or to transform long-lived radionuclides to short-lived radionuclides using nuclear transmutation processes in a reactor or a particle accelerator. The latter is also a complex and immensely costly process and it can only reduce the quantities of some long-lived radionuclides, which can be then disposed in a geological repository. At present, the deep geological disposal remains the only solution for solving the problem with the hazard of storing radioactive wastes. The report submits a brief description and systematization of the performed investigations, accompanied by analysis of the scientific and technical level on world scale. The analysis is related with the particular geological conditions and the existing scientific studies available so far in Bulgaria. The main conclusions are that the complex scientific-technical and engineering problems related with the construction of a deep geological repository for RAW and SNF require long-term scientific investigations and preliminary complex works and it is high time to launch them in Bulgaria. (authors)

  4. Geologic environments for nuclear waste repositories

    Directory of Open Access Journals (Sweden)

    Paleologos Evan K.

    2017-01-01

    Full Text Available High-level radioactive waste (HLW results from spent reactor fuel and reprocessed nuclear material. Since 1957 the scientific consensus is that deep geologic disposal constitutes the safest means for isolating HLW for long timescales. Nuclear power is becoming significant for the Arab Gulf countries as a way to diversify energy sources and drive economic developments. Hence, it is of interest to the UAE to examine the geologic environments currently considered internationally to guide site selection. Sweden and Finland are proceeding with deep underground repositories mined in bedrock at depths of 500m, and 400m, respectively. Equally, Canada’s proposals are deep burial in the plutonic rock masses of the Canadian Shield. Denmark and Switzerland are considering disposal of their relative small quantities of HLW into crystalline basement rocks through boreholes at depths of 5,000m. In USA, the potential repository at Yucca Mountain, Nevada lies at a depth of 300m in unsaturated layers of welded volcanic tuffs. Disposal of low and intermediate-level radioactive wastes, as well as the German HLW repository favour structurally-sound layered salt stata and domes. Our article provides a comprehensive review of the current concepts regarding HLW disposal together with some preliminary analysis of potentially appropriate geologic environments in the UAE.

  5. Finite element code FENIA verification and application for 3D modelling of thermal state of radioactive waste deep geological repository

    Science.gov (United States)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.

    2017-11-01

    The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.

  6. United States of America activities relative to the International Atomic Energy Agency (IAEA) initiative: Records management for deep geologic repositories

    Energy Technology Data Exchange (ETDEWEB)

    Warner, P.J.

    1997-03-01

    The International Atomic Energy Agency (IAEA) has conducted consultant and advisory meetings to prepare a Technical Document which is intended to provide guidance to all IAEA Member States (otherwise known as countries) that are currently planning, designing, constructing or operating a deep or near surface geological repository for the storage and protection of vitrified high-level radioactive waste, spent fuel waste and TRU-waste (transuranic). Eleven countries of the international community are presently in various stages of siting, designing, or constructing deep geologic repositories. Member States of the IAEA have determined that the principle safety of such completed and operation sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained in a manner that will provide information to future societies over a very long period of time. The radionuclide life is 10,000 years thus the retention of information must outlive current societies, languages, and be continually migrated to new technology to assure retrieval. This presentation will provide an overview of the status of consideration and implementation of these issues within the United States efforts relative to deep geologic repository projects.

  7. United States of America activities relative to the International Atomic Energy Agency (IAEA) initiative: Records management for deep geologic repositories

    International Nuclear Information System (INIS)

    Warner, P.J.

    1997-01-01

    The International Atomic Energy Agency (IAEA) has conducted consultant and advisory meetings to prepare a Technical Document which is intended to provide guidance to all IAEA Member States (otherwise known as countries) that are currently planning, designing, constructing or operating a deep or near surface geological repository for the storage and protection of vitrified high-level radioactive waste, spent fuel waste and TRU-waste (transuranic). Eleven countries of the international community are presently in various stages of siting, designing, or constructing deep geologic repositories. Member States of the IAEA have determined that the principle safety of such completed and operation sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained in a manner that will provide information to future societies over a very long period of time. The radionuclide life is 10,000 years thus the retention of information must outlive current societies, languages, and be continually migrated to new technology to assure retrieval. This presentation will provide an overview of the status of consideration and implementation of these issues within the United States efforts relative to deep geologic repository projects

  8. The structural integrity of high level waste containers for deep disposal

    International Nuclear Information System (INIS)

    Keer, T.J.; Martindale, N.J.; Haijtink, B.

    1990-01-01

    Most countries with a nuclear power program are developing plans to dispose of high level waste in deep geological repositories. These facilities are typically in the range 500-1000m below ground. Although long term safety analyses mainly rely on the isolation function of the geological barrier, for the medium term (between 500 and 1000 years) a barrier such as a container (overpack) may play an important role. This paper addresses the mechanical/structural behavior of these structures under extreme geological pressures. The work described in the paper was conducted within the COMPAS project (Container Mechanical Performance Assessment) funded by the Commission of the European Communities and the United Kingdom Department of the Environment. The work was aimed at predicting the modes of failure and failure pressures which characterize the heavy, thick walled mild steel containers which might be considered for the disposal of vitrified waste. The work involved a considerable amount of analytical work, using 3-D non-linear finite element techniques, coupled with a large parallel program of experimental work. The experimental work consisted of a number of scale model tests in which the response of the containers was examined under external pressures as high as 120MPa. Extensive strain-gauge instrumentation was used to record the behavior of the models as they were driven to collapse. A number of comparative computer calculations were carried out by organizations from various European countries. Correlations were established between experimental and analytical data and guidelines regarding the choice of suitable software were established. The work concluded with a full 3-D simulation of the behavior of a container under long-term disposal conditions. In this analysis, non-linearities due to geological effects and material/geometry effects in the container were properly accounted for. 6 refs., 9 figs., 4 tabs

  9. Deep-sea environment and biodiversity of the West African Equatorial margin

    OpenAIRE

    Sibuet, Myriam; Vangriesheim, Annick

    2009-01-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites...

  10. Important processes affecting the release and migration of radionuclides from a deep geological repository

    International Nuclear Information System (INIS)

    Barátová, Dana; Nečas, Vladimír

    2017-01-01

    The processes that affect significantly the transport of contaminants through the near field and far field of a deep geological repository of spent nuclear fuel were studied. The processes can be generally divided into (i) processes related to the release of radionuclides from the spent nuclear fuel; (ii) processes related to the radionuclide transport mechanisms (such as advection and diffusion); and (iii) processes affecting the rate of radionuclide migration through the multi-barrier repository system. A near-field and geosphere model of an unspecified geological repository sited in a crystalline rock is also described. Focus of the treatment is on the effects of the different processes on the activity flow of the major safety-relevant radionuclides. The activity flow was simulated for one spent fuel cask by using the GoldSim simulation tool. (orig.)

  11. Identification of scenarios in the safety assessment of a deep geological site for radioactive waste disposal

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1990-01-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them corresponding to a type of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an underground laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events. 4 refs., 1 tab [fr

  12. Process for structural geologic analysis of topography and point data

    Science.gov (United States)

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  13. Communication on the Safety Case for a Deep Geological Repository

    International Nuclear Information System (INIS)

    Bailey, Lucy; Bernier, Frederik; Bollingerfehr, Wilhelm; Cunado, Miguel; Ilett, Doug; Kwong, Gloria; ); Noseck, Ulrich; Roehlig, Klaus; Van Luik, Abe; Weber, Jan; Weetjens, Eef

    2017-01-01

    Communication has a specific role to play in the development of deep geological repositories. Building trust with the stakeholders involved in this process, particularly within the local community, is key for effective communication between the authorities and the public. There are also clear benefits to having technical experts hone their communication skills and having communication experts integrated into the development process. This report has compiled lessons from both failures and successes in communicating technical information to non-technical audiences. It addresses two key questions in particular: what is the experience base concerning the effectiveness or non-effectiveness of different tools for communicating safety case results to a non-technical audience and how can communication based on this experience be improved and included into a safety case development effort from the beginning? (authors)

  14. NUMO-RMS: a practical requirements management system for the long-term management of the deep geological disposal project - 16304

    International Nuclear Information System (INIS)

    Ueda, Hiroyoshi; Suzuki, Satoru; Ishiguro, Katsuhiko; Oyamada, Kiyoshi; Yashio, Shoko; White, Matt; Wilmot, Roger

    2009-01-01

    NUMO (Nuclear Waste Management Organization of Japan) has the responsibility for implementing deep geological disposal of high-level (HLW) and transuranic (TRU) radioactive waste from the Japanese nuclear programme. A formal Requirements Management System (RMS) is planned to efficiently and effectively support the computerised implementation of the management strategy and the methodology required to drive the step-wise siting processes, and the following repository operational phase,. The RMS will help in the comprehensive management of the decision-making processes in the geological disposal project, in change management as the disposal system is optimised, in driving projects such as the R and D programme efficiently, and in maintaining structured records regarding past decisions, all of which lead to soundness of the project in terms of long-term continuity. The system is planned to have information handling and management functions using a database that includes the decisions/requirements in the programme under consideration, the way in which these are structured in terms of the decision-making process and other associated information. A two-year development programme is underway to develop and enhance an existing trial RMS to a practical system. Functions for change management, history management and association with the external timeline management system are being implemented in the system development work. The database format is being improved to accommodate the requirements management data relating to the facility design and to safety assessment of the deep geological repository. This paper will present an outline of the development work with examples to demonstrate the system's practicality. In parallel with the system/database developments, a case research of the use of requirements management in radioactive waste disposal projects was undertaken to identify key issues in the development of an RMS for radioactive waste disposal and specify a number of

  15. Effects of heat from high-level waste on performance of deep geological repository components

    International Nuclear Information System (INIS)

    1984-11-01

    This report discusses the effects of heat on the deep geological repository systems and its different components. The report is focussed specifically on effects due to thermal energy release solely from high-level waste or spent fuel. It reviews the experimental data and theoretical models of the effects of heat both on the behaviour of engineered and natural barriers. A summary of the current status of research and repository development including underground test facilities is presented

  16. Geologic structure of Semipalatinsk test site territory

    International Nuclear Information System (INIS)

    Ergaliev, G.Kh.; Myasnikov, A.K.; Nikitina, O.I.; Sergeeva, L.V.

    2000-01-01

    This article gives a short description of the territory of Semipalatinsk test site. Poor knowledge of the region is noted, and it tells us about new data on stratigraphy and geology of Paleozoic layers, obtained after termination of underground nuclear explosions. The paper contains a list a questions on stratigraphy, structural, tectonic and geologic formation of the territory, that require additional study. (author)

  17. Role of waste packages in the safety of a high level waste repository in a deep geological formation

    International Nuclear Information System (INIS)

    Bretheau, F.; Lewi, J.

    1990-06-01

    The safety of a radioactive waste disposal facility lays on the three following barriers placed between the radioactive materials and the biosphere: the waste package; the engineered barriers; the geological barrier. The function assigned to each of these barriers in the performance assessment is an option taken by the organization responsible for waste disposal management (ANDRA in France), which must show that: expected performances of each barrier (confinement ability, life-time, etc.) are at least equal to those required to fulfill the assigned function; radiation protection requirements are met in all situations considered as credible, whether they be the normal situation or random event situations. The French waste management strategy is based upon two types of disposal depending on the nature and activity of waste packages: - surface disposal intended for low and medium level wastes having half-lives of about 30 years or less and alpha activity less than 3.7 MBq/kg (0.1 Ci/t), for individual packages and less than 0.37 MBq/kg (0.01 Ci/t) in the average. Deep geological disposal intended for TRU and high level wastes. The conditions of acceptance of packages in a surface disposal site are subject to the two fundamental safety rules no. I.2 and III.2.e. The present paper is only dealing with deep geological disposal. For deep geological repositories, three stages are involved: stage preceding definitive disposal (intermediate storage, transportation, handling, setting up in the disposal cavities); stage subsequent to definitive sealing of the disposal cavities but prior to the end of operation of the repository; stage subsequent to closure of the repository. The role of the geological barrier has been determined as the essential part of long term radioactivity confinement, by a working group, set up by the French safety authorities. Essential technical criteria relating to the choice of a site so defined by this group, are the following: very low permeability

  18. Paleocorrosion studies in deep sea sediments and the geological disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fehrenbach, L.; Maurette, M.; Guichard, F.; Havette, A.; Monaco, A.

    1984-01-01

    Uncertainties still surround assessment of the safety of disposal of nuclear wastes incorporated into 'radwaste' matrices. This is mostly due to the long time required for radioactive decay of 237 Np. The present work explores the usefulness of an experimental approach in 'paleocorrosion', which should help in minimizing such uncertainties. In this approach, polished sections of sediments containing high concentrations of natural analogues of radwaste matrices are subjected to element micromapping. Thus it is possible to characterize the long-term interactions of such analogues in their geological repositories, and to identify which generate reaction aureoles and protective and/or unprotective coatings. These analogues include grains incorporated in deep sea sediments (uraninite and quartz from the Oklo uranium ore deposit; volcanic ash particles; magnetic cosmic spherules). The present results indicate that uraninite should be a much more durable radwaste matrix than any type of glass in deep sea sediments. (orig./TWO)

  19. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination

    International Nuclear Information System (INIS)

    Delrive, C.

    1993-01-01

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10 -5 SI units and can generate magnetic susceptibility maps with 4 x 4 mm 2 pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends

  20. GIS Data Modeling of a Regional Geological Structure by Integrating Geometric and Semantic Expressions

    Directory of Open Access Journals (Sweden)

    HE Handong

    2017-08-01

    Full Text Available Using GIS, data models of geology via geometric descriptions and expressions are being developed. However, the role played by these data models in terms of the description and expression of geological structure phenomenon is limited. To improve the semantic information in geological GIS data models, this study adopts an object-oriented method that describes and expresses the geometric and semantic features of the geological structure phenomenon using geological objects and designs a data model of regional geological structures by integrating geometry and semantics. Moreover, the study designs a semantic "vocabulary-explanation-graph" method for describing the geological phenomenon of structures. Based on the semantic features of regional geological structures and a linear classification method, it divides the regional geological structure phenomenon into 3 divisions, 10 groups, 33 classes and defines the element set and element class. Moreover, it builds the basic geometric network for geological elements based on the geometric and semantic relations among geological objects. Using the ArcGIS Diagrammer Geodatabase, it considers the regional geological structure of the Ning-Zhen Mountains to verify the data model, and the results indicate a high practicability.

  1. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  2. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    International Nuclear Information System (INIS)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  3. Study on the development of geological environmental model

    International Nuclear Information System (INIS)

    Tsujimoto, Keiichi; Shinohara, Yoshinori; Ueta, Shinzo; Saito, Shigeyuki; Kawamura, Yuji; Tomiyama, Shingo; Ohashi, Toyo

    2002-03-01

    The safety performance assessment was carried out in potential geological environment in the conventional research and development of geological disposal, but the importance of safety assessment based on the repository design and scenario considering the concrete geological environment will increase in the future. The research considering the link of the major three fields of geological disposal, investigation of geological environment, repository design, and safety performance assessment, is the contemporary worldwide research theme. Hence it is important to organize information flow that contains the series of information process form the data production to analysis in the three fields, and to systemize the knowledge base that unifies the information flow hierarchically. The purpose of the research is to support the development of the unified analysis system for geological disposal. The development technology for geological environmental model studied for the second progress report by JNC are organized and examined for the purpose of developing database system with considering the suitability for the deep underground research facility. The geological environmental investigation technology and building methodology for geological structure and hydro geological structure models are organized and systemized. Furthermore, the quality assurance methods in building geological environment models are examined. Information which is used and stored in the unified analysis system are examined to design database structure of the system based on the organized methodology for building geological environmental model. The graphic processing function for data stored in the unified database are examined. furthermore, future research subjects for the development of detail models for geological disposal are surveyed to organize safety performance system. (author)

  4. Establishing and communicating confidence in the safety of deep geologic disposal. Approaches and arguments

    International Nuclear Information System (INIS)

    2002-01-01

    Confidence among both technical experts and the public in the safety of deep geologic repositories for radioactive waste is a key element in the successful development of the repositories. This report presents the approaches and arguments that are currently used in OECD countries to establish and communicate confidence in their safety. It evaluates the state of the art for obtaining, presenting and demonstrating confidence in long-term safety, and makes recommendations on future directions and initiatives to be taken for improving confidence. (author)

  5. A reappraaisal of the geology, geochemistry, structures and ...

    African Journals Online (AJOL)

    The largest segment of the Neoproterozoic Mozambique belt in Kenya occurs east of the north-south oriented Rift system. Geological works carried out in the country during the last few decades have progressively revealed the complexity of the geology, structures and tectonics of the Mozambique belt in the region.

  6. An overview on the national strategy to implement a deep geological repository in Romania

    International Nuclear Information System (INIS)

    Negut, G.; Ghitescu, P.; Dupleac, D.; Prisecaru, I.

    2010-01-01

    Since 1996 in Romania was started operation Candu 700 MW Unit 1 Cernavoda Nuclear Power Station and in 2007 begun operation of the Candu 700 MW Unit 2. The energy produced by nuclear units is accompanied by radioactive waste production. According with European Union requirements in Romania was created National Agency for Radioactive Waste (ANDRAD) in 2003. ANDRAD business is radioactive waste management. ANDRAD, together with the stakeholders, worked the law of great radioactive waste generators contribution for radioactive waste management, which was approved by Governmental Ordinance in September 2007. ANDRAD is responsible manager of this fund. ANDRAD is responsible, also, with the National Strategy for radioactive waste management. Romania's National Strategy for Energy approved in 2007 by Government Ordinance says that a deep geological repository for spent fuel (SF) and High Level Waste (HLW) is to be put in operation around 2055. IAEA supported ANDRAD in a Technical Cooperation Project for a concept of a geological repository of radioactive waste. A strategy to implement o geological repository in Romania was drafted. There are problems with potential rocks and sites to host a geological repository. There are problems for funding this project and also sensitive and serious problems connected with social and political issues. Paper presents this strategy and all the problems arisen by implantation of this strategy. (authors)

  7. Safety assessments for deep geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1984-01-01

    The objective of safety assessment for deep geological disposal of radioactive wastes is to evaluate how well the engineered barriers and geological setting inhibit radionuclide migration and prevent radiation dose to man. Safety assessment is influenced through interaction with the regulatory agencies, research groups, the public and the various levels of government. Under the auspices of the IAEA, a generic disposal system description has been developed to facilitate international exchange and comparison of data and results, and to enable development and comparison of performance for all components of the disposal system. It is generally accepted that a systems modelling approach is required and that safety assessment can be considered on two levels. At the systems level, all components of the system are taken into account to evaluate the risk to man. At the systems level, critical review and quality assurance on software provide the major validation techniques. Risk is a combination of dose estimate and probability of that dose. For analysis of the total system to be practical, the components are usually represented by simplified models. Recently, assessments have been taking uncertainties in the input data into account. At the detailed level, large-scale, complex computer programs model components of the system in sufficient detail that validation by comparison with field and laboratory measurements is possible. For example, three-dimensional fluid-flow, heat-transport and solute-transport computer programs have been used. Approaches to safety assessment are described, with illustrations from safety assessments performed in a number of countries. (author)

  8. Geological evidence for deep exploration in Xiazhuang uranium orefield and its periphery

    International Nuclear Information System (INIS)

    Feng Zhijun; Huang Hongkun; Zeng Wenwei; Wu Jiguang

    2011-01-01

    This paper first discussed the ore-controlling role of deep structure, the origin of metallogenic matter and fluid, the relation of diabase to silicification zone, then summarized the achievement of Geophysical survey and drilling, and finally analysed the potential for deep exploration in Xiazhuang uranium orefield.(authors)

  9. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. General report

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The present report and its annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful discussion

  10. Assessing European capacity for geological storage of carbon dioxide-the EU GeoCapacity project

    NARCIS (Netherlands)

    Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; Meer, B. van der; Le Gallo, Y. le; Bossie-Codreanu, D.; Wojcicki, A.; Nindre, Y.-M. le; Hendriks, C.; Dalhoff, F.; Peter Christensen, N.

    2009-01-01

    The focus of the GeoCapacity project is GIS mapping of CO2 point sources, infrastructure and geological storage in Europe. The main objective is to assess the European capacity for geological storage of CO2 in deep saline aquifers, oil and gas structures and coal beds. Other priorities are further

  11. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  12. Canada's deep geological repository for used nuclear fuel - update on the site evaluation process and interweaving of aboriginal traditional knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Watts, B.; Belfadhel, M.B.; Facella, J., E-mail: bwatt@nwmo.ca, E-mail: mbenbelfadhel@nwmo.ca, E-mail: jfacella@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for the long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository (DGR) in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO initiated a nine-step site selection process to seek an informed and willing community to host Canada's deep geological repository. As of April 2015, twenty-two communities expressed interest in learning more about the project. This paper provides an update on the site evaluation process and describes the approach, methods and criteria used in the assessments, focusing on geological and community well-being studies. Engagement and field activities to interweave Aboriginal Traditional Knowledge with western science are also discussed. (author)

  13. Safety- and performance indicators for a generic deep geological repository in clay

    International Nuclear Information System (INIS)

    Resele, G.; Niemeyer, M.; Wilhelm, St.; Heimer, St.; Mohlfeld, M.; Eilers, G.; Preuss, J.; Wollrath, J.

    2010-01-01

    Document available in extended abstract form only. As a first step of an impartial survey for an optimal site selection for a deep geological repository in Germany, potentially suitable regions shall be identified and localised according to their suitability. During the early phases of such a site selection procedure the information about the properties of the host rock and the geological situation at the potential sites is not very precise. As site investigation procedures are both expensive and time-consuming, it is essential to identify those properties of the geological barrier system that are most relevant for long-term safety. Furthermore, adequate indicators have to be chosen that allow a simple but efficient assessment of the suitability of the potential regions. Definition and application of 'exclusion criteria' based on single parameter values, e.g. the hydraulic conductivity of the host rock, is inadequate because the long-term safety depends on the interaction of many features and properties of the barrier system. In a research project, indicators have been developed which depend on the most relevant properties of the geological barriers and estimate the overall performance of a repository system. The application of these indicators on the barrier properties which have been found during the investigations of potential repository sites in clay located in Germany, Switzerland and France demonstrates how, for instance, an unfavourably high hydraulic permeability of the clay can be compensated by a large vertical extension of the clay layer and small hydraulic gradients. Other indicators evaluate the importance of hydraulic discontinuities and define the minimal requirements on technical barriers like seals and backfill of emplacement tunnels. When the information of the radionuclide inventory and the biosphere, especially the diluting aquifer is included, the indicators allow the estimation of the resulting dose which matches the result of a

  14. Architecture Design Issues of a Reversible Deep Geological Repository for HL and IL/LL Waste

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.; Londe, L.; Poisson, J.B. [Andra (France)

    2009-06-15

    In accordance with the Planning Act of 28 June 2006, the French National Radioactive Waste Management Agency (Agence nationale pour la gestion des dechets radioactifs - ANDRA) is currently investigating the possibility of disposing of high-level (HL) and intermediate-level long-lived (IL/LL) radioactive waste in a deep geological formation. The waste inventory intended for geological disposal is significant and represents approximately 80,000 m{sup 3} of primary waste. The required drifts and cells for such disposal are developing in a long and complex network, with plans calling for a total of about 300 km of drifts to be opened over the next century. This paper describes various issues relating to the architecture design and the way they are integrated. Long-term safety is at the basis of the major principles not only for dividing the different waste categories into separate disposal areas, but also for identifying the relevant constraints involving the topology of the network (fragmentation of disposal areas into modules, dead-end architecture) and the orientation of certain structures. In the case of exothermal waste, since the control over the phenomenological evolution also leads to selecting a thermal criterion in the geological layer in contact with the waste, there is an impact on the density of the repository and, consequently, on its architecture. Operational security and safety issues are reflected in ventilation needs and in personnel-evacuation requirements in case of fire, both of which require additional intersections and drifts. The section of drifts is also conditioned often by those security aspects. Nuclear zoning may also induce requirements for special structures having a potential impact on the architecture. Operation, taken into its broader sense encompassing construction and nuclear activities, imposes its own share of constraints quite independently from any security or safety considerations. Impacted areas include structure slopes, the

  15. Hot, deep origin of petroleum: deep basin evidence and application

    Science.gov (United States)

    Price, Leigh C.

    1978-01-01

    Use of the model of a hot deep origin of oil places rigid constraints on the migration and entrapment of crude oil. Specifically, oil originating from depth migrates vertically up faults and is emplaced in traps at shallower depths. Review of petroleum-producing basins worldwide shows oil occurrence in these basins conforms to the restraints of and therefore supports the hypothesis. Most of the world's oil is found in the very deepest sedimentary basins, and production over or adjacent to the deep basin is cut by or directly updip from faults dipping into the basin deep. Generally the greater the fault throw the greater the reserves. Fault-block highs next to deep sedimentary troughs are the best target areas by the present concept. Traps along major basin-forming faults are quite prospective. The structural style of a basin governs the distribution, types, and amounts of hydrocarbons expected and hence the exploration strategy. Production in delta depocenters (Niger) is in structures cut by or updip from major growth faults, and structures not associated with such faults are barren. Production in block fault basins is on horsts next to deep sedimentary troughs (Sirte, North Sea). In basins whose sediment thickness, structure and geologic history are known to a moderate degree, the main oil occurrences can be specifically predicted by analysis of fault systems and possible hydrocarbon migration routes. Use of the concept permits the identification of significant targets which have either been downgraded or ignored in the past, such as production in or just updip from thrust belts, stratigraphic traps over the deep basin associated with major faulting, production over the basin deep, and regional stratigraphic trapping updip from established production along major fault zones.

  16. Geological and geotechnical limitations of radioactive waste retrievability in geologic disposals

    Energy Technology Data Exchange (ETDEWEB)

    Stahlmann, Joachim; Leon-Vargas, Rocio; Mintzlaff, Volker; Treidler, Ann-Kathrin [TU Braunschweig (Germany). Inst. for Soil Mechanics and Foundation Engineering

    2015-07-01

    The capability of retrieving radioactive waste emplaced in deep geological formations is nowadays in discussion in many countries. Based on the storage of high-level radioactive waste (HAW) in deep geological repositories there is a number of possible scenarios for their retrieval. Measurements for an improved retrieving capability may impact on the geotechnical and geological barriers, e.g. keeping open the access drifts for a long period of time can result in a bigger evacuation damage zone (EDZ) in the host rock which implies potential flow paths for ground water. Nevertheless, to limit the possible scenarios associated to the retrieval implementation, it is necessary to take in consideration which criteria will be used for an efficient monitoring program, while clearly determining the performance reliability of the geotechnical barriers. In addition, the integrity of the host rock as geological barrier has to be verified. Therefore, it is important to evaluate different design solutions and the most appropriate measurement methods to improve the retrievability process of wastes from a geological repository. A short presentation of the host rocks is given is this paper.

  17. Spatial Abilities of High-School Students in the Perception of Geologic Structures.

    Science.gov (United States)

    Kali, Yael; Orion, Nir

    1996-01-01

    Characterizes specific spatial abilities required in geology studies through the examination of the performance of high school students in solving structural geology problems on the geologic spatial ability test (GeoSAT). Concludes that visual penetration ability and the ability to perceive the spatial configuration of the structure are…

  18. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. Annexes

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The general report and the present annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful

  19. Conceptual design and cost inputs associated with co-disposal of the spent fuel and long lived radioactive wastes in the deep geologic disposal facility

    International Nuclear Information System (INIS)

    Fako, R.; Sociu, F.; Nicolae, R.; Barariu, G

    2013-01-01

    The paper aims to be an integrated approach for the containment and isolation of spent fuel and / or long lived radioactive wastes in a Deep Geologic Repository in Romania. Several scenarios could be defined for the management of spent fuel and long lived radioactive waste in Romania considering many specific constraints in Romania (political, geological, economic, demographic, etc.). This paper intends to be an upgrade of several Research, Development and Demonstration (RD&D) works performed by SITON specialists on this subject, taking into account also the conclusions of the Workshop ôCost estimation on spent nuclear fuel disposal in Romaniaö organized by IAEA in cooperation with ANDR at the beginning of this year in Romania.This paper is, also, addressed to decision makers with target on to adopt the best strategy for construction of Deep Geologic Repository in Romania. (authors)

  20. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Bromenshenk, Jerry [Montana State Univ., Bozeman, MT (United States)

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO2 into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO2-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO2 leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  1. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008; Entsorgungsprogramm und Standortgebiete fuer geologische Tiefenlager. Zusammenfassung. November 2008

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-11-15

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  2. Mine layout, geological features and seismic hazard.

    CSIR Research Space (South Africa)

    Van Aswegen, G

    1993-01-01

    Full Text Available – Applied Structure Stability Analysis .................................................27 4.2. Modelled System Stiffness ...........................................................................................28 4.2.1. Instability and System Stiffness... with the potential for large(r) dynamic rockmass instability in response to deep level mining, e.g.: • tectonic stresses, depth, mechanical strength of intact rock, • the existence and the frequency of intermediate and larger geological features, specifically...

  3. Radioactive waste disposal process geological structure for the waste disposal

    International Nuclear Information System (INIS)

    Courtois, G.; Jaouen, C.

    1983-01-01

    The process described here consists to carry out the two phases of storage operation (intermediate and definitive) of radioactive wastes (especially the vitrified ones) in a geological dispositif (horizontal shafts) at an adequate deepness but suitable for a natural convection ventilation with fresh air from the land surface and moved only with the calorific heat released by the burried radioactive wastes when the radioactive decay has reached the adequate level, the shafts are totally and definitely occluded [fr

  4. Reconnaissance Geology and Structure of the Coso Range, California.

    Science.gov (United States)

    1982-05-01

    annual rainfall is slightly more than 2 inches in the valleys and 5 to 6 inches in the uplands; precipitation falls mostly from October through March...and Western Nevada. 1970. P. 42. (U.S. Geological Survey Professional Paper 623, UNCLASSIFIED.) 6 H. E. von Heiene. "Structural Geology and Gravimetry

  5. Iapetus: Tectonic structure and geologic history

    Science.gov (United States)

    Croft, Steven K.

    1991-01-01

    Many papers have been written about the surface of Iapetus, but most of these have discussed either the nature of the strongly contrasting light and dark materials or the cratering record. Little has been said about other geologic features on Iapetus, such as tectonic structures, which would provide constraints on Iapetus' thermal history. Most references have suggested that there is no conclusive evidence for any tectonic activity, even when thermal history studies indicate that there should be. However, a new study of Iapetus' surface involving the use of stereo pairs, an extensive tectonic network has been recognized. A few new observations concerning the craters and dark material were also made. Thus the geology and geologic history of Iapetus can be more fully outlined than before. The tectonic network is shown along with prominent craters and part of the dark material in the geologic/tectonic sketch map. The topology of crater rims and scarps are quite apparent and recognizable in the different image pairs. The heights and slopes of various features given are based on comparison with the depths of craters 50 to 100 km in diameter, which are assumed to have the same depths as craters of similar diameter on Rhea and Titania.

  6. Geophysical investigations of geology and structure at the Martis Creek Dam, Truckee, California

    Science.gov (United States)

    Bedrosian, P.A.; Burton, B.L.; Powers, M.H.; Minsley, B.J.; Phillips, J.D.; Hunter, L.E.

    2012-01-01

    A recent evaluation of Martis Creek Dam highlighted the potential for dam failure due to either seepage or an earthquake on nearby faults. In 1972, the U.S. Army Corps of Engineers constructed this earthen dam, located within the Truckee Basin to the north of Lake Tahoe, CA for water storage and flood control. Past attempts to raise the level of the Martis Creek Reservoir to its design level have been aborted due to seepage at locations downstream, along the west dam abutment, and at the base of the spillway. In response to these concerns, the U.S. Geological Survey has undertaken a comprehensive suite of geophysical investigations aimed at understanding the interplay between geologic structure, seepage patterns, and reservoir and groundwater levels. This paper concerns the geologic structure surrounding Martis Creek Dam and emphasizes the importance of a regional-scale understanding to the interpretation of engineering-scale geophysical data. Our studies reveal a thick package of sedimentary deposits interbedded with Plio-Pleistocene volcanic flows; both the deposits and the flows are covered by glacial outwash. Magnetic field data, seismic tomography models, and seismic reflections are used to determine the distribution and chronology of the volcanic flows. Previous estimates of depth to basement (or the thickness of the interbedded deposits) was 100 m. Magnetotelluric soundings suggest that electrically resistive bedrock may be up to 2500 m deep. Both the Polaris Fault, identified outside of the study area using airborne LiDAR, and the previously unnamed Martis Creek Fault, have been mapped through the dam area using ground and airborne geophysics. Finally, as determined by direct-current resistivity imaging, time-domain electromagnetic sounding, and seismic refraction, the paleotopography of the interface between the sedimentary deposits and the overlying glacial outwash plays a principal role both in controlling groundwater flow and in the distribution of the

  7. Geological Structures Mapping of Bukit Bunuh using 2-D Resistivity Imaging Method

    Science.gov (United States)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Rahman, Nazrin; Saidin, Mokhtar; Masnan, S. S. K.

    2018-04-01

    The geological area of Bukit Bunuh is very complex due to the meteorite impact that has occurred millions years ago at Lenggong, Perak. The lithology of the study area consists of alluvium, tephra dust, and granitic rock. The geological contact, fault and fracture zone were found at the study area may indicate the geological process that undergoes at a place locally or regionally. These important features have led to the further research on 2-D resistivity imaging method (2-D RIM) to study the geological features. This method can provide the subsurface image that will delineate the geological structures. The surveys include three separate lines of different length which depend on the accessibility. The surveys were done by using Pole-Dipole array and 10 m of electrodes spacing. The objectives of this research are to determine the subsurface geological contact and to determine the existence of fault/fracture zones at the contact zone. The results from 2-D inversion profiles have successfully signified the types of geological structural such as fault, contact, and fractures. Hence, the results from 2-D RIM were used to draw the geological lineaments of Bukit Bunuh. The discontinuity of the lineaments may indicate the structures present.

  8. Nuclear structure in deep-inelastic reactions

    International Nuclear Information System (INIS)

    Rehm, K.E.

    1986-01-01

    The paper concentrates on recent deep inelastic experiments conducted at Argonne National Laboratory and the nuclear structure effects evident in reactions between super heavy nuclei. Experiments indicate that these reactions evolve gradually from simple transfer processes which have been studied extensively for lighter nuclei such as 16 O, suggesting a theoretical approach connecting the one-step DWBA theory to the multistep statistical models of nuclear reactions. This transition between quasi-elastic and deep inelastic reactions is achieved by a simple random walk model. Some typical examples of nuclear structure effects are shown. 24 refs., 9 figs

  9. ON DISCRETE STRUCTURE OF GEOLOGIC MEDIUM AND CONTINUAL APPROACH TO MODELING ITS MOVEMENTS

    OpenAIRE

    Sh. A. Mukhamediev

    2016-01-01

    This paper discusses the structure of a geologic medium represented by accessible lithified rocks and provides an overview of methods used to describe its movements. Two basic opinions are considered in the framework of the discussion: (1) an initially homogeneous and continuous geologic medium acquires the structure composed of blocks in the process of the geologic medium’s deformation/destruction/degradation, and (2) a geologic medium is composed of blocks (and often has hierarchic, active,...

  10. Deep geological disposal of radioactive waste in Switzerland - Overview and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Schnellmann, M.; Zuidema, P.; Gautschi, A.

    2015-07-01

    This article reviews the situation in Switzerland regarding the disposal of radioactive wastes. The development of the Swiss concept for wastes with high, medium and low levels of activity is reviewed, as detailed in the Sectorial Plan for Deep Geological Repositories published in 2008. The three stages involved are described in detail. Further investigations carried out in the Grimsel and Mont Terri underground laboratories are reported on. The state of current work is reviewed. A map is provided of the areas in northern Switzerland which have been selected for further, more intensive research, along with a review of the possible rock formations to be investigated. Data already obtained are reviewed and proposals for further investigations are discussed. In the upcoming stage 3 of the plan, the selection of one site per repository type will be made, leading to the submission of a general licence application.

  11. Scenarios used for the evaluations of the safety of a site for adioactive waste disposal in deep geologic formations

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1989-11-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them coppresponding to a type, of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an undergound laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events [fr

  12. OPG's deep geologic repository for low and intermediate level waste - recent progress

    International Nuclear Information System (INIS)

    King, F.K.

    2006-01-01

    This paper provides a status report on Canada's first project to build a permanent repository for the long-term management of radioactive waste. Ontario Power Generation has initiated a project to construct a deep geologic repository for low- and intermediate-level waste at the Bruce Nuclear Site, at a depth in the range of 600 to 800 m in an Ordovician-age argillaceous limestone formation. The project is currently undergoing an Environmental Assessment and consulting companies in the areas of environmental assessment, geoscientific site characterization, engineering and safety assessment have been hired and technical studies are underway. Seismic surveys and borehole drilling will be initiated in the fall of 2006. The next major milestone for the project is the submission of the Environmental Assessment report, currently scheduled for December 2008. (author)

  13. Methods for Enhancing Geological Structures in Spectral Spatial Difference-Based on Remote-Sensing Image

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@In this paper, some image processing methods such as directional template (mask) matching enhancement, pseudocolor or false color enhancement, K-L transform enhancement are used to enhance a geological structure, one of important ore-controlling factors, shown in the remote-sensing images.This geological structure is regarded as image anomaly in the remote-sensing image, since considerable differences, based on the spatial spectral distribution pattern, in gray values (spectral), color tones and texture, are always present between the geological structure and background. Therefore,the enhancement of the geological structure in the remotesensing image is that of the spectral spatial difference.

  14. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  15. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  16. Geologic repositories for radioactive waste: the nuclear regulatory commission geologic comments on the environmental assessment

    International Nuclear Information System (INIS)

    Justus, P.S.; Trapp, J.S.; Westbrook, K.B.; Lee, R.; Blackford, M.B.; Rice, B.

    1985-01-01

    The NRC staff completed its review of the Environmental Assessments (EAs) issued by the Department of Energy (DOE) in December, 1984, in support of the site selection processes established by the Nuclear Waste Policy Act of 1982 (NWPA). The EAs contain geologic information on nine sites that DOE has identified as potentially acceptable for the first geologic repository in accordance with the requirements of NWPA. The media for the sites vary from basalt at Hanford, Washington, tuff at Yucca Mountain, Nevada, bedded salt in the Palo Duro Basin, Texas and Paradox Basin, Utah, to salt domes in Mississippi and Louisiana. Despite the diversity in media there are common areas of concern for all sites. These include; structural framework and pattern, rates of tectonic and seismic activity, characterization of subsurface features, and stratigraphic thickness, continuity and homogeneity. Site-specific geologic concerns include: potential volcanic and hydrothermal activity at Yucca Mountain, potential hydrocarbon targets and deep basalt and sub-basalt structure at Hanford, and potential dissolution at all salt sites. The NRC comments were influenced by the performance objectives and siting criteria of 10 CFR Part 60 and the environmental protection criteria in 40 CFR Part 191, the applicable standards proposed by EPA. In its review the NRC identified several areas of geologic concern that it recommended DOE re-examine to determine if alternative or modified conclusions are appropriate

  17. Definition imaging of anomalous geologic structure with radio waves

    International Nuclear Information System (INIS)

    Stolarczyk, L.G.

    1990-01-01

    Diamond core drilling from the surface and access drifts are routinely used in acquiring subsurface geologic data. Examination of core from a constellation of drillholes enables the characterization of the prevailing geology in the deposit. Similar geologic members in adjacent drillholes suggest that layered rock continuity exists between drillholes. Mineralogical and physical examination of core along with computer generated stratigraphic cross sections graphically represents the correlation and classification of the rock in the deposit. CW radio waves propagating on ray paths between drillholes have been used to validate the stratigraphic cross section and image anomalous geologic structure between drillholes. This paper compares the crosshole radio wave tomography images of faults in a nuclear waste repository site and a coal seam with the in-mine mapping results

  18. Canada's deep geological repository for used nuclear fuel - site selection process update

    International Nuclear Information System (INIS)

    Facella, J.

    2014-01-01

    In 2007, the Government of Canada selected Adaptive Phased Management as Canada's plan for the long-term management of Canada's used nuclear fuel in a deep geological repository, located in an informed and willing host. The process of site selection is an important milestone in this program. The NWMO describes its approach to working collaboratively with communities which expressed interest in exploring the project, as well as Aboriginal communities in the area and other surrounding communities. The project is designed to be implemented through a long-term partnership involving the interested community, Aboriginal communities and surrounding communities working with the NWMO. (author)

  19. Bayesian Chance-Constrained Hydraulic Barrier Design under Geological Structure Uncertainty.

    Science.gov (United States)

    Chitsazan, Nima; Pham, Hai V; Tsai, Frank T-C

    2015-01-01

    The groundwater community has widely recognized geological structure uncertainty as a major source of model structure uncertainty. Previous studies in aquifer remediation design, however, rarely discuss the impact of geological structure uncertainty. This study combines chance-constrained (CC) programming with Bayesian model averaging (BMA) as a BMA-CC framework to assess the impact of geological structure uncertainty in remediation design. To pursue this goal, the BMA-CC method is compared with traditional CC programming that only considers model parameter uncertainty. The BMA-CC method is employed to design a hydraulic barrier to protect public supply wells of the Government St. pump station from salt water intrusion in the "1500-foot" sand and the "1700-foot" sand of the Baton Rouge area, southeastern Louisiana. To address geological structure uncertainty, three groundwater models based on three different hydrostratigraphic architectures are developed. The results show that using traditional CC programming overestimates design reliability. The results also show that at least five additional connector wells are needed to achieve more than 90% design reliability level. The total amount of injected water from the connector wells is higher than the total pumpage of the protected public supply wells. While reducing the injection rate can be achieved by reducing the reliability level, the study finds that the hydraulic barrier design to protect the Government St. pump station may not be economically attractive. © 2014, National Ground Water Association.

  20. Source-book of International Activities Related to the Development of Safety Cases for Deep Geological Repositories

    International Nuclear Information System (INIS)

    2017-01-01

    All national radioactive waste management authorities recognise today that a robust safety case is essential in developing disposal facilities for radioactive waste. To improve the robustness of the safety case for the development of a deep geological repository, a wide variety of activities have been carried out by national programs and international organisations over the past years. The Nuclear Energy Agency, since first introducing the modern concept of the 'safety case', has continued to monitor major developments in safety case activities at the international level. This Source-book summarises the activities being undertaken by the Nuclear Energy Agency, the European Commission and the International Atomic Energy Agency concerning the safety case for the operational and post-closure phases of geological repositories for radioactive waste that ranges from low-level to high-level waste and for spent fuel. In doing so, it highlights important differences in focus among the three organisations

  1. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    International Nuclear Information System (INIS)

    Tiren, S.A.

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB's application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth

  2. Comparison of the SKI, SKB, and SKN geological and structural models of the Aespoe area

    Energy Technology Data Exchange (ETDEWEB)

    Tiren, S.A. [Geosigma AB, Uppsala (Sweden)

    1996-06-01

    Three sets of geological and structural models produced by three different groups are compared. The same set of basic data has been available to each of the groups. The models, all of which are 2 by 2 km by 1 km deep - or smaller, are based entirely on surface-based investigations. The modelled area is centered on the island of Aespoe, where SKB has built the Hard Rock Laboratory (HRL) in plutonic bedrock at a depth of 500 m. SKB (Swedish Nuclear Fuel and Waste Management Co) has recorded the basic data during the period 1986 to 1991, before starting the underground work. One of the main tasks in the SKB characterization of the HRL rock mass was to predict which of the geological structures will have the greatest rock-mechanical and hydraulic significance. The National Board for Spent Nuclear Fuel (SKN) constructed alternative models in 1992 to verify the SKB model. However, the SKN models were subsequently modified and converted into a hydrogeological model. The Swedish Nuclear Inspectorate (SKI) chose Aespoe as a hypothetical site for storage of nuclear waste in their SITE 94 project. The objective of the project is to assist SKI in their future review of SKB`s application for a license to dispose of spent nuclear fuel underground. The agreement of the three models is found to be best where the density of information is greatest. The main difference between the two geological models is related to the inferred effects of block faulting on the rock type distribution. The correlation of moderately to gently inclined zones between the models is relatively poor at depth. 46 refs, 30 figs, 18 tabs.

  3. Seismic-sequence stratigraphy and geologic structure of the Floridan aquifer system near "Boulder Zone" deep wells in Miami-Dade County, Florida

    Science.gov (United States)

    Cunningham, Kevin J.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, acquired, processed, and interpreted seismic-reflection data near the North and South District “Boulder Zone” Well Fields to determine if geologic factors may contribute to the upward migration of injected effluent into that upper part of the Floridan aquifer system designated by the U.S. Environmental Protection Agency as an underground source of drinking water. The depth of the Boulder Zone at the North and South District “Boulder Zone” Well Fields ranges from about 2,750 to 3,300 feet below land surface (ft bls), whereas overlying permeable zones used as alternative drinking water supply range in depth from about 825 to 1,580 ft bls at the North and South District “Boulder Zone” Well Fields. Seismic-sequence stratigraphy and geologic structures imaged on seismic-reflection profiles created for the study describe the part of the Floridan aquifer system overlying and within the Boulder Zone. Features of the Floridan aquifer system underlying the Boulder Zone were not studied because seismic-reflection profiles acquired near the North and South District “Boulder Zone” Well Fields lacked adequate resolution at such depths.

  4. A Corner-Point-Grid-Based Voxelization Method for Complex Geological Structure Model with Folds

    Science.gov (United States)

    Chen, Qiyu; Mariethoz, Gregoire; Liu, Gang

    2017-04-01

    3D voxelization is the foundation of geological property modeling, and is also an effective approach to realize the 3D visualization of the heterogeneous attributes in geological structures. The corner-point grid is a representative data model among all voxel models, and is a structured grid type that is widely applied at present. When carrying out subdivision for complex geological structure model with folds, we should fully consider its structural morphology and bedding features to make the generated voxels keep its original morphology. And on the basis of which, they can depict the detailed bedding features and the spatial heterogeneity of the internal attributes. In order to solve the shortage of the existing technologies, this work puts forward a corner-point-grid-based voxelization method for complex geological structure model with folds. We have realized the fast conversion from the 3D geological structure model to the fine voxel model according to the rule of isocline in Ramsay's fold classification. In addition, the voxel model conforms to the spatial features of folds, pinch-out and other complex geological structures, and the voxels of the laminas inside a fold accords with the result of geological sedimentation and tectonic movement. This will provide a carrier and model foundation for the subsequent attribute assignment as well as the quantitative analysis and evaluation based on the spatial voxels. Ultimately, we use examples and the contrastive analysis between the examples and the Ramsay's description of isoclines to discuss the effectiveness and advantages of the method proposed in this work when dealing with the voxelization of 3D geologic structural model with folds based on corner-point grids.

  5. The Folding and Fracturing of Rocks: A milestone publication in Structural Geology research

    Science.gov (United States)

    Lisle, Richard; Bastida, Fernando

    2017-04-01

    In the field of structural geology, the textbook written by John G Ramsay in 1967, reprinted in 2004 and translated into Spanish and Chinese, is the one that has made the greatest research impact. With citations exceeding 4000 (Google Scholar) it far surpasses books by other authors on the subject, with this figure only being approached by his later book Modern Structural Geology (Ramsay and Huber 1983). In this paper we consider the factors that account for the book's success despite the fact that it is a research-level text beyond the comfort zone of most undergraduates. We also take stock of other measures of the book's success; the way it influenced the direction subsequent research effort. We summarize the major advances in structural geology that were prompted by Ramsay's book. Finally we consider the book's legacy. Before the publication of the book in 1967 structural geology had been an activity that had concentrated almost exclusively on geological mapping aimed at establishing the geometrical configuration of rock units. In fact, Ramsay himself has produced beautiful examples of such maps. However, the book made us aware that the geometrical pattern is controlled by the spatial variation of material properties, the boundary conditions, the deformation environment and the temporal variation of stresses. With the arrival of the book Structural Geology came of age as a modern scientific discipline that employed a range of tools such as those of physics, maths and engineering as well as those of geology.

  6. ON DISCRETE STRUCTURE OF GEOLOGIC MEDIUM AND CONTINUAL APPROACH TO MODELING ITS MOVEMENTS

    Directory of Open Access Journals (Sweden)

    Sh. A. Mukhamediev

    2016-01-01

    Full Text Available This paper discusses the structure of a geologic medium represented by accessible lithified rocks and provides an overview of methods used to describe its movements. Two basic opinions are considered in the framework of the discussion: (1 an initially homogeneous and continuous geologic medium acquires the structure composed of blocks in the process of the geologic medium’s deformation/destruction/degradation, and (2 a geologic medium is composed of blocks (and often has hierarchic, active, energy-saturated features, and the continuity model is thus not valid for describing the geologic medium’s deformation. Proponents of the first point of view actively apply the standard or modified continuum model of a solid deformed body (SDB in estimations of the stress-strain state, but the input parameters of this model do not contain any information on discreteness in principle. Authors who support the second opinion, either explicitly or implicitly assume that the block structure of the geologic medium, which is detectable by geological methods, makes a direct and unambiguous impact on all other mechanical properties of the geologic medium and, above all, on the nature of its movements.Based on results obtained by interpreting the data collected in our long-term field studies of rock fracturing, mathematical processing of GPS-measurements, and theoretical models, we agree with the concept of the geologic medium’s block structure, but argue that the geologic block-structure property is not acquired but congenital. Regarding sedimentary rocks, it means that the discrete structure has been already embodied in the rock before sediment lithification, regardless of the intensity of macroscopic deformations. A discrete structure is the form of the geologic medium existence and a cause of the congenital anisotropy of the geologic medium’s strength characteristics. Due to subsequent deformation of the geologic medium, some elements of the structure can

  7. Hess Deep Interactive Lab: Exploring the Structure and Formation of the Oceanic Crust through Hands-On Models and Online Tools

    Science.gov (United States)

    Kurtz, N.; Marks, N.; Cooper, S. K.

    2014-12-01

    Scientific ocean drilling through the International Ocean Discovery Program (IODP) has contributed extensively to our knowledge of Earth systems science. However, many of its methods and discoveries can seem abstract and complicated for students. Collaborations between scientists and educators/artists to create accurate yet engaging demonstrations and activities have been crucial to increasing understanding and stimulating interest in fascinating geological topics. One such collaboration, which came out of Expedition 345 to the Hess Deep Rift, resulted in an interactive lab to explore sampling rocks from the usually inacessible lower oceanic crust, offering an insight into the geological processes that form the structure of the Earth's crust. This Hess Deep Interactive Lab aims to explain several significant discoveries made by oceanic drilling utilizing images of actual thin sections and core samples recovered from IODP expeditions. . Participants can interact with a physical model to learn about the coring and drilling processes, and gain an understanding of seafloor structures. The collaboration of this lab developed as a need to explain fundamental notions of the ocean crust formed at fast-spreading ridges. A complementary interactive online lab can be accessed at www.joidesresolution.org for students to engage further with these concepts. This project explores the relationship between physical and on-line models to further understanding, including what we can learn from the pros and cons of each.

  8. Process for selecting a site for Canada's deep geological repository for used nuclear fuel

    International Nuclear Information System (INIS)

    Facella, J.; Belfadhel, M.B.

    2011-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel waste generated by Canadian nuclear reactors. The ultimate objective of Adaptive Phased Management is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation at a depth of about 500m. The repository will consist of a series of access and service shafts and a series of tunnels leading to placement rooms where used fuel will be placed and sealed in competent rock using a multi-barrier system which includes long lived specially designed containers, sealing materials such as bentonite and the rock itself. The used fuel will be monitored throughout all phases of implementation and will also remain retrievable for an extended period of time. In May 2010, the NWMO published the site selection process that serves as the road map to decision-making on the location for the deep geological repository. NWMO initiated the process with a first stage that invites communities to learn more about the project and the site selection process. NWMO is actively building awareness of the project and, on request of communities, is delivering briefings, supporting community capacity building and undertaking high-level screenings of site suitability. The paper provides a brief description of: Adaptive Phased Management including the deep geological repository which is its ultimate goal, and the design of the site selection process, and importantly the approach to assessing the suitability of sites from both a social and technical perspective. The paper will outline how NWMO sought to develop a socially-acceptable site selection process as a firm foundation for future decisions on siting. Through a two-year collaborative process, NWMO sought to understand the expectations of

  9. Survey of naturally occurring hazardous materials in deep geologic formations: a perspective on the relative hazard of deep burial of nuclear wastes

    International Nuclear Information System (INIS)

    Tonnessen, K.A.; Cohen, J.J.

    1977-01-01

    Hazards associated with deep burial of solidified nuclear waste are considered with reference to toxic elements in naturally occurring ore deposits. This problem is put into perspective by relating the hazard of a radioactive waste repository to that of naturally occurring geologic formations. The basis for comparison derives from a consideration of safe drinking water levels. Calculations for relative toxicity of FBR waste and light water reactor (LWR) waste in an underground repository are compared with the relative toxicity indices obtained for average concentration ore deposits. Results indicate that, over time, nuclear waste toxicity decreases to levels below those of naturally occurring hazardous materials

  10. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer [Nuclear Waste Management Organization, 22 St. Clair Avenue East, Toronto, Ontario M4T 2S3 (Canada)

    2013-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  11. Recent activity of the regional geologic structures in western Slovenia

    Directory of Open Access Journals (Sweden)

    Miloš Bavec

    2007-06-01

    Full Text Available Several important geological structures in the western Slovenia were identifiedas active and their activity was quantified. Geologic interpretation is based on the analysis of repeated leveling line campaigns data along the Sečovlje–Bled polygon. Taking intoaccount the limitations of the method – only the vertical component of displacement is measured – the following structures were identified as active:a juvenile syncline between Strunjan and Koper, the Kras Imbricate Structure, the Diva~a fault, the Ra{a fault, the Southalpine Front and the Julian Alps thrust. Vertical movement rate is relative, calculated with respect to the benchmark in Sečovlje. The largest uplift rate difference between Sečovlje and Bled is 7 mm/a.Vertical Geodynamic Activity (VGA is introduced as a link between geologic interpretation of geodetic measurements on one side and possible applications on the other as well as a mean of comparison between tectonically active regions.

  12. Location of geologic structures from interpretation of ERTS-1 imagery, Carbon County, Wyoming

    Science.gov (United States)

    Marrs, R. W.; Barton, R.

    1974-01-01

    The author has identified the following significant results. Possible geologic structures in the basin sediments of Carbon County and vicinity were located by interpretation of ERTS-1 imagery. These same structures are not evident on existing conventional geologic maps of the area. Subsequent field checks confirmed much of the geologic interpretation, but revealed that two apparent closed structures identified on the ERTS-1 imagery were actually topographic pseudostructures in flat or homoclinal sediments. Stereoscopic coverage (where available) allows the interpreter to avoid such misinterpretations.

  13. A preliminary study on the regional fracture systems for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Young Kown; Park, Byoung Yoon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    For the deep geological disposal of high-level radioactive waste, it is essential to characterize the fracture system in rock mass which has a potential pathways of nuclide. Currently, none of research results are in classification and detailed properties for the fracture system in Korea. This study aims to classify and describe the regional fracture system in lithological and geotectonical point of view using literature review, shaded relief map, and aeromagnetic survey data. This report contains the following: - Theoretical review of the fracture development mechanism. - Overall fault and fracture map. - Geological description on the distributional characteristics of faults and fractures(zone) in terms of lithological domain and tectonical province. 122 refs., 22 figs., 4 tabs. (Author)

  14. Safety of geologic disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Zaitsu, Tomohisa; Ishiguro, Katsuhiko; Masuda, Sumio

    1992-01-01

    This article introduces current concepts of geologic disposal of high level radioactive waste and its safety. High level radioactive waste is physically stabilized by solidifying it in a glass form. Characteristics of deep geologic layer are presented from the viewpoint of geologic disposal. Reconstruction of multi-barrier system receives much attention to secure the safety of geologic disposal. It is important to research performance assessment of multi-barrier system for preventing dissolution or transfer of radionuclides into the ground water. Physical and chemical modeling for the performance assessment is outlined in the following terms: (1) chemical property of deep ground water, (2) geochemical modeling of artificial barrier spatial water, (3) hydrology of deep ground water, (4) hydrology of the inside of artificial barrier, and (5) modeling of radionuclide transfer from artificial barrier. (N.K.)

  15. Geological and Structural Inferences from Satellite Images in Parts of Deccan basalt covered regions of Central India

    Science.gov (United States)

    Harinarayana, Tirumalachetty; Borra, Veeraiah; Basava, Sharana; Suryabali, Singh

    In search of new areas for hydrocarbon exploration, integrated ground geophysical studies have been taken up in Central India with seismic, magnetotellurics, deep resistivity and gravity surveys. Since the region is covered with basalt and well known for its intensive tectonic activity, remote sensing method seems to have value addition to the subsurface information derived from geophysical, geological and tectonic studies. The Narmada and Tapti rift zone and Deccan basalt covered regions of Central India, stems from its complexity. A Resourcesat-1 (IRS- P6) LISS-III satellite images covering an area of approximately 250,000 sq. km corresponding to the region in and around Baroda(Vadodara), Indore, Nandurbar, Khandwa, Akot, Nasik, Aurangabad, Pune and Latur in Central India was digitally processed and interpreted to present a schematic map of the geology and elucidate the structural fabric of the region. From our study, the disposition of the intensive dyke system, various faults and other lineaments in the region are delineated. Ground truth studies have shown good correlation with lineaments/dykes indicated in remote sensing studies and have revealed distinct ENE-WSW trending lineaments, dykes which are more prominent near the Narmada and Tapti river course. Evolution of these features with Deccan volcanism is discussed with available geochronological data set. These findings are significant in relation to structural data and form a part of the geo-structural database for ground surveys.

  16. Deep inelastic singlet structure functions and scaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Wen-zhu, Li; Bing-xun, Hu

    1984-02-01

    The flavour singlet structure functions of deep inelastic scattering processes can yield more decisive tests of QCD than the non-singlet. We give analytical expression for flavour singlet structure functions through analysing the lepton-nucleon deep inelastic scattering processes by means of QCD and using Jacobi polynomials. This expression contains 4 to 5 parameters and shows the changes of the singlet structure functions with x and Q/sup 2/ very well. In QCD leading order, the conclusion is in reasonable agreement with experimental data.

  17. Determination of subsurface geological structure with borehole gravimetry

    International Nuclear Information System (INIS)

    Clark, S.R.; Hearst, J.R.

    1983-07-01

    Conventional gamma-gamma and gravimetric density measurements are routinely gathered for most holes used for underground nuclear tests. The logs serve to determine the subsurface structural geology near the borehole. The gamma-gamma density log measures density of the rock within about 15 cm of the borehole wall. The difference in gravity measured at two depths in a borehole can be interpreted in terms of the density of an infinite, homogeneous, horizontal bed between those depths. When the gravimetric density matches the gamma-gamma density over a given interval it is assumed that the bed actualy exists, and that rocks far from the hole must be the same as those encountered adjacent to the borehole. Conversely, when the gravimetric density differs from the gamma-gamma density it is apparent that the gravimeter is being influenced by a rock mass of different density than that at the hole wall. This mismatch can be a powerful tool to deduce the local structural geology. The geology deduced from gravity mesurements in emplacement hole, U4al, and the associated exploratory hole, UE4al, is an excellent example of the power of the method

  18. Resolution of Singularities Introduced by Hierarchical Structure in Deep Neural Networks.

    Science.gov (United States)

    Nitta, Tohru

    2017-10-01

    We present a theoretical analysis of singular points of artificial deep neural networks, resulting in providing deep neural network models having no critical points introduced by a hierarchical structure. It is considered that such deep neural network models have good nature for gradient-based optimization. First, we show that there exist a large number of critical points introduced by a hierarchical structure in deep neural networks as straight lines, depending on the number of hidden layers and the number of hidden neurons. Second, we derive a sufficient condition for deep neural networks having no critical points introduced by a hierarchical structure, which can be applied to general deep neural networks. It is also shown that the existence of critical points introduced by a hierarchical structure is determined by the rank and the regularity of weight matrices for a specific class of deep neural networks. Finally, two kinds of implementation methods of the sufficient conditions to have no critical points are provided. One is a learning algorithm that can avoid critical points introduced by the hierarchical structure during learning (called avoidant learning algorithm). The other is a neural network that does not have some critical points introduced by the hierarchical structure as an inherent property (called avoidant neural network).

  19. The Swedish approach to siting of a deep geological repository and interaction with the public

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1993-01-01

    The planned process for siting of a deep geological repository for encapsulated spent nuclear fuel in Sweden was presented in the 1992 SKB R and D programme. A first phase of the repository operation will be limited to disposal of a small amount of encapsulated spent nuclear fuel (approximately 800 tons). This phase will be followed by an evaluation of experiences as well as alternative options before deciding if, when and how to proceed with disposal of the remaining amounts of spent fuel. During the first phase it will be possible to retrieve the waste. Siting is planned to be done in stages. The field studies and safety assessments performed strongly indicate that it is possible to find geological suitable sites within many regions of Sweden. The potential for fulfilling safety requirements will be a crucial factor in site-selection. Local interest in, and attitude to a repository siting will play an important role in the siting process. It is important that an atmosphere of trust and openness can be established. Extensive geological site characterization work will be carried out at the sites selected and studies of other technical, social, economical or political matters will be equally important. Public communication and local participation will form an essential part of the siting programme from the outset. 3 refs., 3 figs

  20. 3D numerical modelling of the thermal state of deep geological nuclear waste repositories

    Science.gov (United States)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.

    2017-09-01

    One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.

  1. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  2. The application of geological computer modelling systems to the characterisation and assessment of radioactive waste repositories

    International Nuclear Information System (INIS)

    White, M.J.; Del Olmo, C.

    1996-01-01

    The deep disposal of radioactive waste requires the collection and analysis of large amounts of geological data. These data give information on the geological and hydrogeological setting of repositories and research sites, including the geological structure and the nature of the groundwater. The collection of these data is required in order to develop an understanding of the geology and the geological evolution of sites and to provide quantitative information for performance assessments. An integrated approach to the interpretation and provision of these data is proposed in this paper, via the use of computer systems, here termed geological modelling systems. Geological modelling systems are families of software programmes which allow the incorporation of site investigation data into integrated 3D models of sub-surface geology

  3. Combined constraints on the structure and physical properties of the East Antarctic lithosphere from geology and geophysics.

    Science.gov (United States)

    Reading, A. M.; Staal, T.; Halpin, J.; Whittaker, J. M.; Morse, P. E.

    2017-12-01

    The lithosphere of East Antarctica is one of the least explored regions of the planet, yet it is gaining in importance in global scientific research. Continental heat flux density and 3D glacial isostatic adjustment studies, for example, rely on a good knowledge of the deep structure in constraining model inputs.In this contribution, we use a multidisciplinary approach to constrain lithospheric domains. To seismic tomography models, we add constraints from magnetic studies and also new geological constraints. Geological knowledge exists around the periphery of East Antarctica and is reinforced in the knowledge of plate tectonic reconstructions. The subglacial geology of the Antarctic hinterland is largely unknown but the plate reconstructions allow the well-posed extrapolation of major terranes into the interior of the continent, guided by the seismic tomography and magnetic images. We find that the northern boundary of the lithospheric domain centred on the Gamburtsev Subglacial Mountains has a possible trend that runs south of the Lambert Glacier region, turning coastward through Wilkes Land. Other periphery-to-interior connections are less well constrained and the possibility of lithospheric domains that are entirely sub-glacial is high. We develop this framework to include a probabilistic method of handling alternate models and quantifiable uncertainties. We also show first results in using a Bayesian approach to predicting lithospheric boundaries from multivariate data.Within the newly constrained domains, we constrain heat flux (density) as the sum of basal heat flux and upper crustal heat flux. The basal heat flux is constrained by geophysical methods while the upper crustal heat flux is constrained by geology or predicted geology. In addition to heat flux constraints, we also consider the variations in friction experienced by moving ice sheets due to varying geology.

  4. PC operated acoustic transient spectroscopy of deep levels in MIS structures

    International Nuclear Information System (INIS)

    Bury, P.; Jamnicky, I.

    1996-01-01

    A new version of acoustic deep-level transient spectroscopy is presented to study the traps at the insulator-semiconductor interface. The acoustic deep-level transient spectroscopy uses an acoustoelectric response signal produced by the MIS structure interface when a longitudinal acoustic wave propagates through a structure. The acoustoelectric response signal is extremely sensitive to external conditions of the structure and reflects any changes in the charge distribution, connected also with charged traps. In comparison with previous version of acoustic deep-level transient spectroscopy that closely coincides with the principle of the original deep-level transient spectroscopy technique, the present technique is based on the computer-evaluated isothermal transients and represents an improved, more efficient and time saving technique. Many tests on the software used for calculation as well as on experimental setup have been performed. The improved acoustic deep-level transient spectroscopy method has been applied for the Si(p) MIS structures. The deep-level parameters as activation energy and capture cross-section have been determined. (authors)

  5. Research on geological disposal: R and D concept on geological disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The objective on geological disposal of high-level radioactive wastes are to ensure the long term radiological protection of the human and his environment in accordance with current internationally agreed radiation protection principles. The principle of geological disposal is to settle the high-level wastes in deep underground so as to isolate them from the human and his environment considering the existence of groundwater. Japan is currently in the stage of assessing technical feasibility of geological disposal to the extent practicable. In accordance with the AEC (Atomic Energy Commission) policy in 1989, PNC (Power Reactor and Nuclear Fuel Development Corporation) has conducted the research and development on geological disposal in three areas: 1) studies of geological environment, 2) research and development of disposal technology, and 3) performance assessment study. (author)

  6. Scientific basis for a safety case of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas [and others

    2012-11-15

    Within this project strategies and methods to build a safety case for deep geological repositories are further developed. This includes also the scientific fundamentals as a basis of the safety case. In the international framework the methodology of the Safety Case is frequently applied and continuously improved. According to definitions from IAEA and NEA the Safety Case is a compilation of arguments and facts, which describe, quantify and support the safety and the degree of confidence in the safety of the geological repository. The safety of the geological repository should be demonstrated by the safety case. The safety case is the basis for essential decisions during a repository programme. It comprises the results of safety assessments in combination with additional information like multiple lines of evidence and a discussion of robustness and quality of the repository, its design and the quality of all safety assessments including the basic assumptions. A crucial element of the Safety Case is the long-term safety analysis, i.e. the systematic analysis of the hazards connected with the facility and the capability of site and repository design to ensure the required safety functions and to fulfill the technical claims. Long-term safety analysis requires a powerful and qualified programme package, which contains appropriate hardware and software as well as well trained and experienced modellers performing the model calculations. The calculation tools used within safety cases need to be checked and verified and continuously adapted to the state-of-the-art science and technology. Especially it needs to be applicable to a real repository system. For the assessment of safety a deep process understanding is necessary. The R and D work performed within this project will contribute to the improvement of process and system understanding as well as to the further development of methods and strategies applied in the safety case. Emphasis was put on the following aspects

  7. Scientific basis for a safety case of deep geological repositories

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas

    2012-11-01

    Within this project strategies and methods to build a safety case for deep geological repositories are further developed. This includes also the scientific fundamentals as a basis of the safety case. In the international framework the methodology of the Safety Case is frequently applied and continuously improved. According to definitions from IAEA and NEA the Safety Case is a compilation of arguments and facts, which describe, quantify and support the safety and the degree of confidence in the safety of the geological repository. The safety of the geological repository should be demonstrated by the safety case. The safety case is the basis for essential decisions during a repository programme. It comprises the results of safety assessments in combination with additional information like multiple lines of evidence and a discussion of robustness and quality of the repository, its design and the quality of all safety assessments including the basic assumptions. A crucial element of the Safety Case is the long-term safety analysis, i.e. the systematic analysis of the hazards connected with the facility and the capability of site and repository design to ensure the required safety functions and to fulfill the technical claims. Long-term safety analysis requires a powerful and qualified programme package, which contains appropriate hardware and software as well as well trained and experienced modellers performing the model calculations. The calculation tools used within safety cases need to be checked and verified and continuously adapted to the state-of-the-art science and technology. Especially it needs to be applicable to a real repository system. For the assessment of safety a deep process understanding is necessary. The R and D work performed within this project will contribute to the improvement of process and system understanding as well as to the further development of methods and strategies applied in the safety case. Emphasis was put on the following aspects

  8. Analysis of geological condition of uranium mineralization in the Xiangshan northern uranium orefield in central region of Jiangxi Province

    International Nuclear Information System (INIS)

    Zhou Yulong; Liu Yunlang; Gao Yan

    2013-01-01

    According to the basic conditions of 'source, guide, transportation, storage' for uranium mineralization in strata and different types of geological structure, departure from the condition, the coupling effect of stratigraphy, lithology and structure are studied in the process of uranium mineralization in northern Xiangshan volcanic basin. Studies show that the northern ore field are of good metallogenic geological conditions and the uranium rich ancient land mass and uranium rich magma generated by the melting of deep metamorphic rocks. The main geologic events are volcanic eruptions, accompanied by repeated subvolcanic magma intrusion and strong faults and nappe tectonics which result in volcanic collapse and volcanic ring structures. These ore-forming geological condition control the structural frame for the formation of main uranium deposit type-subvolcanic rocks in northern Xiangshan ore field. (authors)

  9. Geological Geophysical and structural studies in Mina Ratones (Pluton de Albala)

    International Nuclear Information System (INIS)

    Perez-Estaun, A.; Carbonell, R.; Marti, D.; Flecha, I.; Escuder Viruete, J.

    2002-01-01

    Mina Ratones environmental restoration project included petrological, structural,geophysical, hydrogeological and hydrogeochemical studies. The main objective of the geologic-structural and geophysical studies was the Albala granite structural characterization around the Mina Ratones uranium mine. The location of facies, fault zones (faults and dykes) as well as the distribution of some physical properties inside the rock massif was obtained for a granitic black of 900, 500, and 500 m. The geologic-structural and geophysical techniques applied to Mina Ratones provided a multidisciplinary approach for high resolution characterization of rock massif, and the structures potentially containing fluids,able to be applied to the hydrogeological modelling to a particular area. Geological studies included a detailed structural mapping of the area surrounding the mine (1:5,000 scale), the geometric, kinematics, and dynamics analysis of fractures of all scales, the petrology and geochemistry of fault rocks and altered areas surrounding fractures, and the microstructural studies of samples from surface and core lags. The construction of geostatistical models in two and three dimensions had helped to characterize the Mina Ratones rock massif showing the spatial distribution of fault zones, fracture intensity, granite composition heterogeneities, fluid-rock interaction zones, and physical properties. (Author)

  10. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    Energy Technology Data Exchange (ETDEWEB)

    Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

    2012-07-01

    formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application

  11. Features of geology in Anyuan hot spot area of southern Jiangxi Province

    International Nuclear Information System (INIS)

    Lin Jinrong; Li Ziying; Pang Yaqing; Hu Zhihua; Gao Fei; Wang Yongjian; Zhong Qilong

    2013-01-01

    Based on the synthetical research on the characteristics of regional geology and structure, magmatic activity and metamorphism, it is considered that Anyuan area in southern Jiangxi Province has features of continent hot spot, and Anyuan hot spot area is an integrated geology body effected by the metamorphism. magmatism, tectonism and hydrothermal metallogenesis originated by the mantle upheaving. Anyuan hot spot area is a mineralization cluster area of uranium and poly-metal, which has the feature of ring structure, negative abnormity of gravity and high field of radioactivity. It is considered that metallogenesis of uranium and poly-metal is close to crust-mantle mixing and fluid of deep source. (authors)

  12. Techniques for Field Operation of Straddle-packer System in Deep Borehole

    International Nuclear Information System (INIS)

    Kim, Kyung Su; Park, Kyung Woo; Kim, Geon Young; Ji, Sung Hoon; Koh, Yong Kwon; Choi, Jong Won

    2010-05-01

    It is necessary to establish an appropriate hydro-testing tool for the qualified characterization of deep geological environments, especially for the hydraulic properties of rock formation. This research project had been initiated for the purpose of establishment of advanced infra-structures in KURT. The straddle packer system was developed for hydraulic characterization of geological formation using deep borehole. This technical report consists of design concept, basic requirements, function of each part, field operation procedures and techniques, detail design drawings, and specifications. The qualified hydro-testing tool, which is suitable for medium to low permeable formation, using large and deep borehole, has been developed. This tool will be applied for the research project on development of HLW disposal technologies and the site characterization activities of LILW disposal project. Prior to field operation using this hydro-testing equipment, every researchers should be well acquainted with this technical report

  13. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    International Nuclear Information System (INIS)

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-01-01

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations

  14. Selection of the situations taken into account for the safety demonstration of a repository in deep geological formations - French regulatory guidance and IPSN modelling experience

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Greneche, D.

    1993-01-01

    A regulatory guidance has been recently set up in France for the safety assessment of radwaste deep geological disposal: the present paper deals with the methodology related to the safety demonstration of such a disposal, particularly the situations to be taken into account to address the potential evolution of the repository under natural or human induced events. This approach, based on a selection of events considered as reasonably envisageable, relies on a reference scenario characterized by a great stability of the geological formation and on hypothetical situations corresponding to the occurrence of random events of natural origin or of conventional nature. The implementation of this methodology within the framework of the IPSN (Protection and Nuclear Safety Institute, CEA) participation in the CEC EVEREST project is addressed. This programme consists in the evaluation of the sensitivity of the radiological consequences associated to deep radwaste disposal systems to the different elements of the performance assessment (scenario characteristics, phenomena, physico-chemical parameters) in three types of geological formations (granite, salt and clay).(author). 11 refs., 3 tabs

  15. Ontario Power Generation's proposed L and ILW deep geologic repository: geo-scientific assessment

    International Nuclear Information System (INIS)

    Jensen, Mark; Raven, Ken; Leech, Robert

    2012-01-01

    Document available in extended abstract form only. The Nuclear Waste Management Organization (NWMO) on behalf of Ontario Power Generation (OPG) has conducted multi-disciplinary geo-scientific studies at the Bruce nuclear site to confirm the suitability of the site to host a proposed Deep Geologic Repository (DGR) for the long-term management of Low and Intermediate Level Radioactive Waste (L and ILW) from OPG owned or operated nuclear generating facilities. An Environmental Assessment for the proposed DGR is currently underway in accordance with the Canadian Environmental Assessment Act. Bruce nuclear site, situated 225 km northwest of Toronto on the eastern shore of Lake Huron, is underlain by an 850 m thick sedimentary sequence of Cambrian to Devonian age near-horizontally layered, weakly deformed shales, carbonates and evaporites of the Michigan Basin. Within this sedimentary pile, the proposed DGR would be excavated within the low permeability argillaceous limestone of the Cobourg Formation at a depth of 680 m, which is overlain by 200 m of Upper Ordovician shale formations (Figure 1). A key aspect of the DGR Safety Case is the predictable nature and long-term stability and integrity of the sedimentary sequence to contain and isolate L and ILW at time frames on the order of 1 Ma. Early in the project, geo-scientific studies that considered regional and site-specific public domain data sets indicated favourable geologic conditions for implementation of the DGR concept (Golder, 2003; Mazurek, 2004). Geo-scientific studies for the DGR were initiated in 2006 following decision by the Municipality of Kincardine to support the DGR concept. Geo-scientific activities were divided into two key areas; i) Site-specific geo-scientific studies of the Bruce nuclear site (i.e., Descriptive Geosphere Site Model); and ii) a Geo-synthesis to convey an understanding of past, present and future evolution of Geosphere enclosing the DGR relevant to communicating notions of

  16. Deep geological isolation of nuclear waste: numerical modeling of repository scale hydrology

    International Nuclear Information System (INIS)

    Dettinger, M.D.

    1980-04-01

    The Scope of Work undertaken covers three main tasks, described as follows: (Task 1) CDM provided consulting services to the University on modeling aspects of the study having to do with transport processes involving the local groundwater system near the repository and the flow of fluids and vapors through the various porous media making up the repository system. (Task 2) CDM reviewed literature related to repository design, concentrating on effects of the repository geometry, location and other design factors on the flow of fluids within the repository boundaries, drainage from the repository structure, and the eventual transport of radionucldies away from the repository site. (Task 3) CDM, in a joint effort with LLL personnel, identified generic boundary and initial conditions, identified processes to be modeled, and recommended a modeling approach with suggestions for appropriate simplifications and approximations to the problem and identifiying important parameters necessary to model the processes. This report consists of two chapters and an appendix. The first chapter (Chapter III of the LLL report) presents a detailed description and discussion of the modeling approach developed in this project, its merits and weaknesses, and a brief review of the difficulties anticipated in implementing the approach. The second chapter (Chapter IV of the LLL report) presents a summary of a survey of researchers in the field of repository performance analysis and a discussion of that survey in light of the proposed modeling approach. The appendix is a review of the important physical processes involved in the potential hydrologic transport of radionuclides through, around and away from deep geologic nuclear waste repositories

  17. SITE-94. Development of a geological and a structural model of Aespoe, southeastern Sweden

    International Nuclear Information System (INIS)

    Tiren, S.A.; Beckholmen, M.; Askling, P.; Voss, C.

    1996-12-01

    The objective of the present study is to construct three-dimensional geological and structural models to be used within the SKI SITE-94 project as a base for modelling hydrogeological, hydrochemical, and rock mechanical bedrock conditions, mass transport and layout of a hypothetical repository. The basic input data in the SITE-94 geological and structural models are restricted to geological and structural readings and geophysical measurements made prior to building the Hard Rock Laboratory. 114 refs, 82 figs, 28 tabs

  18. Application of Ga-Al discrimination plots in identification of high strength granitic host rocks for deep geological repository of high level radioactive waste

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Narayan, P.K.; Trivedi, R.K.; Purohit, M.K.

    2010-01-01

    The permanent disposal of vitrified high level wastes and in some cases even spent fuel, is being planned in specifically designed and built deep geological repository located in the depth range of 500-600m in appropriate host rock at carefully selected sites. Such facilities are expected to provide very long term isolation and confinement to the disposed waste by means of long term mechanical stability of such structures that results from very high strength and homogeneity of the chosen rock, geochemical compatible environment around the disposed waste and general lack of groundwater. In Indian geological repository development programme, granites have been selected as target host rock and large scale characterization studies have been undertaken to develop database of mineralogy, petrology, geochemistry and rock mechanical characteristics. The paper proposes a new approach for demarcation of high strength homogeneous granite rocks from within an area of about 100 square kilometres wherein a cocktail of granites of different origins with varying rock mass characteristics co exists. The study area is characterised by the presence of A, S and I type granites toughly intermixed. The S type granites are derived from sedimentary parent material and therefore carry relics of parent fabric and at times undigested material with resultant reduction in their strength and increased inhomogeneity. On the other hand I type varieties are derived from igneous parents and are more homogeneous with sufficient strength. The A type granites are emplaced as molten mass in a complete non-tectonic setting with resultant homogeneous compositions, absence of tectonic fabric and very high strength. Besides they are silica rich with less vulnerability to alterations with time. Thus A type granites are most suited for construction of Deep Geological Repository. For developing a geochemical approach for establishing relation between chemical compositions and rock strength parameters, a

  19. A methodology for the geological and numerical modelling of CO2 storage in deep saline formations

    Science.gov (United States)

    Guandalini, R.; Moia, F.; Ciampa, G.; Cangiano, C.

    2009-04-01

    Several technological options have been proposed to stabilize and reduce the atmospheric concentrations of CO2 among which the most promising are the CCS technologies. The remedy proposed for large stationary CO2 sources as thermoelectric power plants is to separate the flue gas, capturing CO2 and to store it into deep subsurface geological formations. In order to support the identification of potential CO2 storage reservoirs in Italy, the project "Identification of Italian CO2 geological storage sites", financed by the Ministry of Economic Development with the Research Fund for the Italian Electrical System under the Contract Agreement established with the Ministry Decree of march 23, 2006, has been completed in 2008. The project involves all the aspects related to the selection of potential storage sites, each carried out in a proper task. The first task has been devoted to the data collection of more than 6800 wells, and their organization into a geological data base supported by GIS, of which 1911 contain information about the nature and the thickness of geological formations, the presence of fresh, saline or brackish water, brine, gas and oil, the underground temperature, the seismic velocity and electric resistance of geological materials from different logs, the permeability, porosity and geochemical characteristics. The goal of the second task was the set up of a numerical modelling integrated tool, that is the in order to allow the analysis of a potential site in terms of the storage capacity, both from solubility and mineral trapping points of view, in terms of risk assessment and long-term storage of CO2. This tool includes a fluid dynamic module, a chemical module and a module linking a geomechanical simulator. Acquirement of geological data, definition of simulation parameter, run control and final result analysis can be performed by a properly developed graphic user interface, fully integrated and calculation platform independent. The project is then

  20. Structural geology practice and learning, from the perspective of cognitive science

    Science.gov (United States)

    Shipley, Thomas F.; Tikoff, Basil; Ormand, Carol; Manduca, Cathy

    2013-09-01

    Spatial ability is required by practitioners and students of structural geology and so, considering spatial skills in the context of cognitive science has the potential to improve structural geology teaching and practice. Spatial thinking skills may be organized using three dichotomies, which can be linked to structural geology practice. First, a distinction is made between separating (attending to part of a whole) and combining (linking together aspects of the whole). While everyone has a basic ability to separate and combine, experts attend to differences guided by experiences of rock properties in context. Second, a distinction is made between seeing the relations among multiple objects as separate items or the relations within a single object with multiple parts. Experts can flexibly consider relations among or between objects to optimally reason about different types of spatial problems. Third, a distinction is made between reasoning about stationary and moving objects. Experts recognize static configurations that encode a movement history, and create mental models of the processes that led to the static state. The observations and inferences made by a geologist leading a field trip are compared with the corresponding observations and inferences made by a cognitive psychologist interested in spatial learning. The presented framework provides a vocabulary for discussing spatial skills both within and between the fields of structural geology and cognitive psychology.

  1. Investigation of the deep structure of the Sivas Basin (innereast Anatolia, Turkey) with geophysical methods

    Science.gov (United States)

    Onal, K. Mert; Buyuksarac, Aydin; Aydemir, Attila; Ates, Abdullah

    2008-11-01

    Sivas Basin is the easternmost and third largest basin of the Central Anatolian Basins. In this study, gravity, aeromagnetic and seismic data are used to investigate the deep structure of the Sivas Basin, together with the well seismic velocity data, geological observations from the surface and the borehole data of the Celalli-1 well. Basement depth is modeled three-dimensionally (3D) using the gravity anomalies, and 2D gravity and magnetic models were constructed along with a N-S trending profile. Densities of the rock samples were obtained from the distinct parts of the basin surface and in-situ susceptibilities were also measured and evaluated in comparison with the other geophysical and geological data. Additionally, seismic sections, in spite of their low resolution, were used to define the velocity variation in the basin in order to compare depth values and geological cross-section obtained from the modeling studies. Deepest parts of the basin (12-13 km), determined from the 3D model, are located below the settlement of Hafik and to the south of Zara towns. Geometry, extension and wideness of the basin, together with the thickness and lithologies of the sedimentary units are reasonably appropriate for further hydrocarbon exploration in the Sivas Basin that is still an unexplored area with the limited number of seismic lines and only one borehole.

  2. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Science.gov (United States)

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-07-01

    This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [1-]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria) in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic. In order to evaluate seismicity and to assess the impact of seismic effects at depths of hypothetical deep geological repository for the next time period, the neo-deterministic method was selected as an extension of the probabilistic method. Each one out of the seven survey areas were assessed by the neo-deterministic evaluation of the seismic wave-field excited by selected individual events and determining the maximum loading. Results of seismological databases studies and neo-deterministic analysis of Čihadlo locality are presented.

  3. Analysis of effects of geological structures in rock driving by TBM

    Directory of Open Access Journals (Sweden)

    Ľudmila Tréfová

    2006-12-01

    Full Text Available Although mechanical properties belongs to important parameter for the excavation modelling, effect of geological structures on the rock massive fragmentation is often much higher than varying rock properties. This paper deals with the analysis of geological structures. It is focused on the schistosity orientation towards the tunnel azimuth. The aim is to define of schistosity effect on the penetration rate. It is a basis creating of fuzzy rules for the performance model full-profile tunnel boring machine

  4. Uruguayan geological Congress II meeting about environmental geology and territorial ordinance

    International Nuclear Information System (INIS)

    Oleaga, A.; Corbo, F.; Larenze, G.; Arzate, J.

    2004-01-01

    The use of the SAG in Argentina and Uruguay is centered in two big areas: the northeast of Uruguay (and south of Brazil), and the near one to the Uruguay River. In this it finishes, Area in which the present project is developed, an important thermal tourist cord exists in the one which with ten perforations they are extracted 25.000 m3/dia approximately. In both countries the lack of knowledge is remarkable, since they exist less than two dozens of deep perforations (of 1000 at 2200m), aspect very preocupante to carry out a plan of administration of the aquifer, since for it is indispensable to know the geologic structure that houses him. The present project intends to develop an exact model of the geologic structure of an area of 10,000Km2 centered in the thermal tourist cord. This it was based on 25 polls magnetoteluricos that will be supplemented with the information of the existent perforations and the one contributed by Oleaga, A. (2002) for the area in Uruguay. This will allow to evaluate the transborder continuity and the displacement of the main flaws in the study area, aspects of supreme importance for the knowledge of the system of existent flow [es

  5. Obtaining reasonable assurance on geochemical aspects of performance assessment of deep geologic repositories

    International Nuclear Information System (INIS)

    Van Luik, A.E.; Serne, R.J.

    1986-01-01

    Providing reasonable assurance that a deep geologic disposal system will perform as required by regulation involves, in part, the building of confidence by providing a sound scientific basis for the site characterization, engineered system design, and system performance modeling efforts. Geochemistry plays a role in each of these activities. Site characterization must result in a description of the in situ geochemical environment that will support the design of the engineered system and the modeling of the transport of specific radionuclides to the accessible environment. Judging the adequacy of this site characterization effort is a major aspect of providing reasonable assurance. Within site characterization, there are a number of geochemical issues that need to be addressed such as the usefulness of natural analog studies, and assessing the very long-term stability of the site geochemistry, given expected temperature and radiation conditions

  6. Surface facilities for geological deep repositories - Measures against dangers during construction and operation

    International Nuclear Information System (INIS)

    2013-09-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the measures that are to be taken to address the dangers encountered during the construction and operation of deep geological repositories for nuclear wastes. Firstly, the operation of such repositories during the emplacement of nuclear wastes is discussed and examples of possible repositories for fuel rods and highly-radioactive waste are presented. Various emission-protection issues and safety measures to be taken during construction of such repositories are looked at as is the protection of ground water. Safety considerations during the operational phase are discussed, including inclusion methods used for the wastes and radiation protection. The handling of radioactive wastes, the recognition of dangers and measures to be taken to counteract them are discussed. Various possible accidents are looked at

  7. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Advanced Nuclear Energy Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); MacKinnon, Robert J. [Advanced Nuclear Energy Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Leigh, Christi D. [Defense Waste Management Programs Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States); Hansen, Frank D. [Geoscience Research and Applications Group, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185 (United States)

    2013-07-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled by capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential

  8. A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350

    International Nuclear Information System (INIS)

    Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.; Hansen, Frank D.

    2013-01-01

    The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled by capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential

  9. Factors affecting the release of radioactivity to the biosphere during deep geologic disposal of radioactive solids through underground water

    International Nuclear Information System (INIS)

    Solomah, A.G.

    1984-01-01

    The chemical alteration formed by ground water on the solidified radioactive waste during deep geologic disposal represents the most likely mechanism by which dangerous radioactive species could be reintroduced into the biosphere. Knowing the geologic history of the repository, the chemistry of the ground water and the mechanisms involved in the corrosion of the radioactive solids can provide help to predict the long-term stability of these materials. The factors that must be considered in order to assess the safety and the risk associated with such a disposal strategy are presented. The leaching behavior of a solidified radioactive waste form called SYNROC-B (SYNthetic ROCks) is discussed. Different simulated ground water brines similar to those of the repository sites were prepared and used as the leaching media in leaching experiments

  10. A 3D visualization of spatial relationship between geological structure and groundwater chemical profile around Iwate volcano, Japan: based on the ARCGIS 3D Analyst

    Science.gov (United States)

    Shibahara, A.; Ohwada, M.; Itoh, J.; Kazahaya, K.; Tsukamoto, H.; Takahashi, M.; Morikawa, N.; Takahashi, H.; Yasuhara, M.; Inamura, A.; Oyama, Y.

    2009-12-01

    We established 3D geological and hydrological model around Iwate volcano to visualize 3D relationships between subsurface structure and groundwater profile. Iwate volcano is a typical polygenetic volcano located in NE Japan, and its body is composed of two stratovolcanoes which have experienced sector collapses several times. Because of this complex structure, groundwater flow around Iwate volcano is strongly restricted by subsurface construction. For example, Kazahaya and Yasuhara (1999) clarified that shallow groundwater in north and east flanks of Iwate volcano are recharged at the mountaintop, and these flow systems are restricted in north and east area because of the structure of younger volcanic body collapse. In addition, Ohwada et al. (2006) found that these shallow groundwater in north and east flanks have relatively high concentration of major chemical components and high 3He/4He ratios. In this study, we succeeded to visualize the spatial relationship between subsurface structure and chemical profile of shallow and deep groundwater system using 3D model on the GIS. In the study region, a number of geological and hydrological datasets, such as boring log data and groundwater chemical profile, were reported. All these paper data are digitized and converted to meshed data on the GIS, and plotted in the three dimensional space to visualize spatial distribution. We also inputted digital elevation model (DEM) around Iwate volcano issued by the Geographical Survey Institute of Japan, and digital geological maps issued by Geological Survey of Japan, AIST. All 3D models are converted into VRML format, and can be used as a versatile dataset on personal computer.

  11. Gan-Hang tectonic belt and its geologic significance

    International Nuclear Information System (INIS)

    Deng Jiarui; Zhang Zhiping.

    1989-01-01

    Gan-Hang tectonic belt is predominantly controlled by Gan-Hang fracture zone. It is mainly composed of Yongfeng-Zhuji downwarping zone, Gan-Hang volcanic activity structural belt and Gan-Hang red basin downfaulted zone. Gan-Hang fracture zone is derived from evolution and development of Shaoxing-Jiangshan deep fracture. It is mainly composed of three deep and large fracture and Fuzhou-Yongfeng large fracture. The fracture zone is a long active belt, but in each active period the geologic structural patterns intensity, depth and forming time were not same. Gan-Hang tectonic belt possesses obvious inheritance. It has always maintained the character of the relative depression or low land since the Caledonian movement. This specific structural environment is favourable for uranium mineralization. At any rate, the formation of this uranium minerogenetic zone has been experiencing a long and complicated processes which were closely associated with long activity of Gan-Hang fracture zone

  12. Research on deep electromagnetic induction methods (Fy 1985)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Hiroshi; Uchida, Toshihiro; Tanaka, Shin' ichi

    1987-06-01

    Geological Survey of Japan started from FY 1984 a research of deep electomagnetic induction methods as a part of the research on deep geothermal resources prospecting technology, the Sunshine Project. This article is the report of its second fiscal year. These methods are a generic term of the methods to survey specific resistance structure in the deep part of the earth by utilizing the technique of the electromagnetic induction method and the time domain CSMT method aiming to survey about estimated depth of 5Km as well as the CA method to estimate the general structure of the earth of the depth of 5Km or more are now being developed. This article reports the respective methods separately. Concerning the former, the reception of useful signals were successfully made during the FY 1984 field experiment and based on this, field experiments in a geothermal area were conducted in FY 1985 verifying its effectivenss. With regard to the latter, following FY 1984, CA observations were conducted in the northern part of Tohoku Region and the deep specific resistance structure in a wide area was surveyed. (43 figs, 1 tab, 11 refs)

  13. Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan

    Directory of Open Access Journals (Sweden)

    Maryline Le Béon

    2017-01-01

    Full Text Available The Meinong earthquake generated up to ~10 cm surface displacement located 10 - 35 km west of the epicenter and monitored by InSAR and GPS. In addition to coseismic deformation related to the deep earthquake source, InSAR revealed three sharp surface displacement gradients. One of them is extensional and is inconsistent with the westward interseismic shortening of ~45 mm yr-1 in this region. The gradient sharpness suggests slip triggering on shallow structures, some of which were not well documented before. To characterize these shallow structures, we investigated potential surface ruptures in the field. Sets of ~NS tension cracks distributed over 25 - 300 m width, with cumulative extension in the same order as InSAR observations, were found along 5.5 km distance along the extensional gradient and are interpreted as surface rupture. We build two E-W regional balanced cross-sections, based on surface geology, subsurface data, and coseismic and interseismic geodetic data. From the Coastal Plain to the east edge of the coseismic deformation area, we propose a series of three active west-dipping backthrusts: the Houchiali fault, the Napalin-Pitou backthrust, and the Lungchuan backthrust. They all root on the 3.5 - 4.0 km deep Tainan detachment located near the base of the 3-km-thick Gutingkeng mudstone. Further east, the detachment would ramp down to ~7 km depth. Coseismic surface deformation measurements suggest that, in addition to the deeper (15 - 20 km main rupture plane, mostly the ramp, the Lungchuan backthrust, and the Tainan detachment were activated during or right after the earthquake. Local extension is considered as transient deformation at the west edge of the shallow main slip zone.

  14. Geological Structure and Radon Hazards in Lublin Region

    Directory of Open Access Journals (Sweden)

    Lucjan Gazda

    2018-03-01

    Full Text Available The purpose of the study was to show the relationship between the geological structure of the Lublin region (eastern Poland and radon concentrations in the ground air, and therefore, in the indoor environment of buildings located in that area. The study was based on the information pertaining to the geological structure of Lublin region available in the literature. The radon concentrations in buildings, caves, wells, as well as coal, phosphate and chalk mines were measured with both passive and active methods. Elemental analyses and uranium and lead isotope analyses of ground rocks were also performed. The conducted studies indicated that the sources of radon in Lublin region constitute Paleogene and Mesozoic sedimentary rocks rich in radionuclides. Application of radon remediation methods is recommended in the existing buildings located in the vicinity of these rocks, which are characterized by relatively high radon exhalations. On the other hand, the designed buildings should employ the measures protecting against harmful effects of radon presence.

  15. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    Energy Technology Data Exchange (ETDEWEB)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations

  16. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  17. Multi-disciplinary study for the exploration of deep low enthalpy geothermal reservoirs, Neuchâtel, Switzerland

    Science.gov (United States)

    Mauri, G.; Abdelfettah, Y.; Negro, F.; Schill, E.; Vuataz, F.

    2011-12-01

    The authorities of the canton of Neuchâtel, in the Western part of Switzerland, are willing to develop geothermal energy for district heating in the two main cities of the canton: Neuchâtel, located along the Lake of Neuchâtel, and La Chaux-de-Fonds situated in a high valley of the Jura Massif. The geology of both areas is linked to the Jura Range and present complex structures, where the landscape is composed of anticlines associated with overthrust faults, which are overcut by strike-slip fault and secondary faulting events. The rock formations go from the Trias, which forms the detachment layer, up to the Quaternary rock. Bedrocks are mainly composed of limestones and marls, which can reach a thickness of several hundreds meters. The three main deep aquifers investigated in this area, from the shallowest (≤ 400 m below surface) to deepest (geological models and 3D gravimetry models to best characterize the underground structures and to find areas where the rock properties would be favourable to geothermal exploitation. This means targets where permeability and porosity are high in the potential aquifers, allowing a significant flow at the future production wells. The results indicate that gravity anomalies are associated with both shallow and deep geological structures in the two exploration sites and that high resolution of dense grid gravity measurements combined with realistic 3D models of the geological structures allow to characterize interesting features for deep geothermal exploration. Gravity corrections were carried out with a computing code using different DEM resolution ranging from a very high resolution (0.5 m pixel in the vicinity of each station) toward a lower resolution (25 m for the distal areas as far as 110 km away from each station). The bathymetry of the Lake of Neuchâtel (218 km2) has been used to correct gravity effects from the large volume of water along the Lake shore of Neuchâtel. The combination of 3D geological models with a

  18. Structural geologic study of southeastern Missouri

    International Nuclear Information System (INIS)

    Satterfield, I.R.; Ward, R.A.

    1978-01-01

    A geologic map at 1:62,500 scale was prepared of the Cretaceous (Mesozoic) and Tertiary (cenozoic) sediments and seven major units were recognized with emphasis on faulting. Faulted sediments of Pliocene age (possibly Pleistocene) were observed and younger units are suspected to be involved. Data from hand-augered holes plus water well data were logged and plotted. The feasibility of using physical data (size analysis and pH) as a correlation tool for determining structural disturbance in loess deposits was established

  19. Retrievability in the Deep Geological Disposal motivation and implications; La recuperabiliidad de los residuos en el almacenamiento geologico profundo: motivacion y repercusiones

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Polo, J. J.; Aneiros, J. M. [Empresarios Agrupados, A. I. E. Madrid (Spain); Alonso, J. [ENRESA (Spain)

    2000-07-01

    The final disposal of High Level Wastes (HLW) in a repository without the intention of retrieval has been the conceptual basis used by most countries to define their deep geological disposal concepts. As a result, current disposal concepts allow, but do not facilitate, the retrieval of the waste. The concept of retrievability has been introduced in the stepwise development process of the deep geological disposal for a series of ethical, socio-political, and technological reasons, which have structured a great deal of attention in the international community. At present, although no clear definition has been given to the term retrievability there seems to be a general consensus in respect of its interpretation as the capacity to retrieve waste from the underground facilities of the repository up to several years after its closure. The retrieval of the HLW packages from the disposal cells entails tackling a series of technological and operational constraints stemming, on the one hand, from the configuration and state of the repository at the time of retrieval and, on the other, from the environmental conditions of temperature and radiation in which such operations have to be carried out. Most countries, Spain included, are assessing the technical feasibility of retrieving waste during the different stages of the repository lifetime, exploring at the same time the possibility of implementing some changes in the repository's design, construction and operation without affecting its long-term safety. The purpose of this paper is three-fold (1) to identify the motivations that have led the international community to consider retrievability in the repository's stepwise development process, (2) to analyse, qualitatively, the different implications this has on current repository concepts, and (3) to state the current Spanish position. (Author)

  20. Report preceding the public debate on the Cigeo project of deep geological storage of radioactive wastes

    International Nuclear Information System (INIS)

    2013-01-01

    This report first presents and comments the inventory made by the ANDRA of materials and wastes which are to be stored in the Cigeo deep geological storage. It highlights the transparency of the decision process related to this project (public debate, investigations and expertise), and also outlines the opinions of some local representatives and associations committed in environment protection regarding the project preparation. Five recommendations are then made by the High Committee for transparency and information on nuclear safety (HCTISN). Additional information is provided in appendix about the material inventory, about the history of the decision process, and also about meetings and hearings held by the High Committee

  1. Deep divergences and extensive phylogeographic structure in a clade of lowland tropical salamanders

    Directory of Open Access Journals (Sweden)

    Rovito Sean M

    2012-12-01

    Full Text Available Abstract Background The complex geological history of Mesoamerica provides the opportunity to study the impact of multiple biogeographic barriers on population differentiation. We examine phylogeographic patterns in a clade of lowland salamanders (Bolitoglossa subgenus Nanotriton using two mitochondrial genes and one nuclear gene. We use several phylogeographic analyses to infer the history of this clade and test hypotheses regarding the geographic origin of species and location of genetic breaks within species. We compare our results to those for other taxa to determine if historical events impacted different species in a similar manner. Results Deep genetic divergence between species indicates that they are relatively old, and two of the three widespread species show strong phylogeographic structure. Comparison of mtDNA and nuclear gene trees shows no evidence of hybridization or introgression between species. Isolated populations of Bolitoglossa rufescens from Los Tuxtlas region constitute a separate lineage based on molecular data and morphology, and divergence between Los Tuxtlas and other areas appears to predate the arrival of B. rufescens in other areas west of the Isthmus of Tehuantepec. The Isthmus appears responsible for Pliocene vicariance within B. rufescens, as has been shown for other taxa. The Motagua-Polochic fault system does not appear to have caused population vicariance, unlike in other systems. Conclusions Species of Nanotriton have responded to some major geological events in the same manner as other taxa, particularly in the case of the Isthmus of Tehuantepec. The deep divergence of the Los Tuxtlas populations of B. rufescens from other populations highlights the contribution of this volcanic system to patterns of regional endemism, and morphological differences observed in the Los Tuxtlas populations suggests that they may represent an undescribed species of Bolitoglossa. The absence of phylogeographic structure in B

  2. Muon Tomography for Geological Repositories.

    Science.gov (United States)

    Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.

    2015-12-01

    Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.

  3. Study on synthesis of geological environment at Horonobe area. A technical review

    International Nuclear Information System (INIS)

    Toida, Masaru; Suyama, Yasuhiro; Shiogama, Yukihiro; Atsumi, Hiroyuki; Abe, Yasunori; Furuichi, Mitsuaki

    2003-03-01

    The objective of the Horonobe Under Ground Research Project includes enhancing reliability of disposal techniques and safety assessment methods which are based on data on deep underground geological environment obtained by surface explorations and models for geological environment developed using those data. In this study, through development of conceptual models of geological environment based on those data, the flows from data collection to modeling, which have been conducted independently for each geological environment of geology/geological structure, hydrogeology, geochemistry of groundwater and rock mechanics, were synthesized, and a systematic approach including processes from investigation of geological environment to its modeling was established, which is expected to ensure objectivity and traceability of the design and safety assessment of a disposal system. This study is also a part of a program that includes an iterative process in which geological models would be developed and revised repeatedly through the Horonobe Under Ground Research Project and development of geological environment investigation techniques. The results of the study are summarized as follows: (1) Models based on current knowledge were developed; conceptual geology/geological structural model, conceptual hydrogeological model, conceptual geochemical model of groundwater, and conceptual rock mechanical model, (2) Information of data flow and interpretation in the modeling process were synthesized into an data flow which includes knowledge on historical geology and palaeogeology in addition to four models shown above in terms of safety assessment, and (3) Based on modeling processes and syntheses of data flow shown above, tasks that should be considered were organized and suggestions of investigation program were provided for the next phase. (author)

  4. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  5. Construction and Operation of a Deep Geological Spent Fuel Repository in Sweden; Some Regulatory Aspects and Challenges

    International Nuclear Information System (INIS)

    Hedberg, Bengt

    2014-01-01

    The implementation of a deep geological spent fuel disposal concept in Sweden poses challenges on both implementer and regulator in many aspects. One such challenge is the application of the regulatory framework in a different situation compared to conventional process type nuclear facilities. A specific challenge in this regard is how to understand and address constraints from post-closure safety related to the construction and operation of the repository. The maybe most challenging aspect, however, is the unusually long time frame, i.e. many generations, for realization of the project. This paper addresses some of these challenges from a regulatory perspective. (authors)

  6. Evaluation of geologic and geophysical techniques for surface-to-subsurface projections of geologic characteristics in crystalline rock

    International Nuclear Information System (INIS)

    1985-07-01

    Granitic and gneissic rock complexes are being considered for their potential to contain and permanently isolate high-level nuclear waste in a deep geologic repository. The use of surface geologic and geophysical techniques has several advantages over drilling and testing methods for geologic site characterization in that the techniques are typically less costly, provide data over a wider area, and do not jeopardize the physical integrity of a potential repository. For this reason, an extensive literature review was conducted to identify appropriate surface geologic and geophysical techniques that can be used to characterize geologic conditions in crystalline rock at proposed repository depths of 460 to 1,220 m. Characterization parameters such as rock quality; fracture orientation, spacing; and aperture; depths to anomalies; degree of saturation; rock body dimensions; and petrology are considered to be of primary importance. Techniques reviewed include remote sensing, geologic mapping, petrographic analysis, structural analysis, gravity and magnetic methods, electrical methods, and seismic methods. Each technique was reviewed with regard to its theoretical basis and field application; geologic parameters that can be evaluated; advantages and limitations, and, where available, case history applications in crystalline rock. Available information indicates that individual techniques provide reliable information on characteristics at the surface, but have limited success in projections to depths greater that approximately 100 m. A combination of integrated techniques combines with data from a limited number of boreholes would significantly improve the reliability and confidence of early characterization studies to provide qualitative rock body characteristics for region-to-area and area-to-site selection evaluations. 458 refs., 32 figs., 14 tabs

  7. A Methodology to analyze the biosphere in the assessment of deep geological repositories for high level radioactive waste

    International Nuclear Information System (INIS)

    Pinedo, P.; Smith, G.

    1996-11-01

    This report summarizes the work done and the achievements reached within the R and D Project that IMA/CIEMAT has had with ENRESA during 1993-1995. The overall R and D Project has a wide radiological protection context, but the work reported here relates only to the development of a Methodology for considering the Biosphere sub-system in the assessments of deep geological repositories for high radioactive wastes (HLW). The main areas concerned within the Methodology have to do with the Biosphere structure and morphology in the long-term relevant to deep disposal of HLW: in the contexts of the assessment of these systems, and appropriate modelling of the behaviour of radionuclides released to the biosphere system and with the associated human exposure. This document first provides a review of the past and present international and national concerns about the biosphere modelling and its importance in relation to the definition of safety criteria. A joint ENRESA/ANDRA/IPSN/CIEMAT study about the definition and practical descriptions of the biosphere systems under different climatic states is then summarized. The Methodology developed by IMA/CIEMAT is outlined with an illustration of the way it works. Different steps and procedures are included for a better practical understanding of the software tools developed within the project to support the application of the Methodology. This methodology is widely based on an international working group on ''Reference Biospheres'', part of the BIOMOVS II Project. Specific software developments have been carried out in collaboration with Qunti Sci Itd and with the Polytechnical University of Madrid. (Author)

  8. Numerical Analysis on Seepage in the deep overburden CFRD

    Science.gov (United States)

    Zeyu, GUO; Junrui, CHAI; Yuan, QIN

    2017-12-01

    There are many problems in the construction of hydraulic structures on deep overburden because of its complex foundation structure and poor geological condition. Seepage failure is one of the main problems. The Combination of the seepage control system of the face rockfill dam and the deep overburden can effectively control the seepage of construction of the concrete face rockfill dam on the deep overburden. Widely used anti-seepage measures are horizontal blanket, waterproof wall, curtain grouting and so on, but the method, technique and its effect of seepage control still have many problems thus need further study. Due to the above considerations, Three-dimensional seepage field numerical analysis based on practical engineering case is conducted to study the seepage prevention effect under different seepage prevention methods, which is of great significance to the development of dam technology and the development of hydropower resources in China.

  9. From clay bricks to deep underground storage

    International Nuclear Information System (INIS)

    2012-05-01

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted

  10. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system.

  11. A preliminary study on the suitability of host rocks for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byung Yun; Koh, Young Kown

    2000-02-01

    It is expected that the key issues are listed as the disposal concept, reference disposal system and other relevant technical development for the deep geological disposal of HLW in each country. First above all, however, the preferred host rocks should be suggested prior execution of these activities. And, it is desirable to be reviewed and proposed some host rocks representative its country. For the reviewing of host rocks in Korean peninsula, several issues were considered such as the long-term geological stability, fracture system, surface and groundwater system and geochemical characteristics in peninsula. The three rock types such as plutonic rocks, crystalline gneisses and massive volcanic rocks were suggested as the preferred host rocks for the R and D of HLW disposal based on the upper stated information. In the following stages, it is suggested that these preferred host rocks would be made an object of all relevant R and D activities for HLW disposal. And, many references for these geologic medium should be characterized and constructed various technical development for the Korean reference disposal system

  12. Safety and performance indicators for the assessment of long-term safety of deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hugi, M.; Schneider, J.W.; Dorp, F. van; Zuidema, P.

    2005-01-01

    The evaluation of the ability to isolate radioactive waste and the assessment of the long-term safety of a deep geological repository is usually done in terms of the calculated dose and/or risk for an average individual of the population which is potentially most affected by the potential impacts of the repository. At present, various countries and international organisations are developing so-called complementary indicators to supplement such calculations. These indicators are called ''safety indicators'' if they refer to the safety of the whole repository system; if they address the isolation capability of individual system components or the whole system from a more technical perspective, they are called ''performance indicators''. The need for complementary indicators follows from the long time frames which characterise the safety assessment of a geological repository, and the corresponding uncertainty of the calculated radiation dose. The main reason for these uncertainties is associated with the uncertain long-term prognosis of the surface environment and the related human behaviour. (orig.)

  13. Deep reversible storage. Design options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This report aims at presenting a synthesis of currently studied solutions for the different components of the project of deep geological radioactive waste storage centre. For each of these elements, the report indicates the main operational objectives to be taken into account in relationship with safety functions or with reversibility. It identifies the currently proposed design options, presents the technical solutions (with sometime several possibilities), indicates industrial references (in the nuclear sector, in underground works) and comments results of technological tests performed by the ANDRA. After a description of functionalities and of the overall organisation of storage components, the different following elements and aspects are addressed: surface installations, underground architecture, parcel transfer between the surface and storage cells, storage container for medium-activity long-life (MAVL) waste, storage cell for medium-activity long-life waste, handling of MAVL parcels in storage cells, storage container for high-activity (HA) waste, storage cell for HA waste, handling of HA parcels in storage cells, and works for site closing

  14. A study on the groundwater flow system for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Kim, Kyung Su; Bae, Dae Seok; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    The basic framework of groundwater flow is defined as a conceptual 3-D unit of groundwater system based on hydrogeological environments. The fundamental parameters consisting of groundwater system should include topography, geology and climatic conditions. Climatic conditions control the distribution and amounts of groundwater in an interesting study area. The driving forces responsible for groundwater movement are mainly determined by topographic characteristics. The configuration of groundwater system is also controlled by topography. The geological setting and structures control the reservoir size and groundwater flow path. The hydrogeological setting in Korea was classified by primarily topographic characteristics and considered by geological structures and tectonic division. The regional groundwater regime can be grouped into 3 regimes by tectonic setting and four groundwater regions based on an altitude. 35 refs., 9 figs., 21 tabs. (Author)

  15. Geological disposal of high-level radioactive waste and geological environment in Japan

    International Nuclear Information System (INIS)

    Shimizu, Kazuhiko; Seo, Toshihiro; Yshida, Hidekazu

    2001-01-01

    The geological environment has two main functions in terms of ensuring the safety of geological disposal of high-level radioactive waste. One relates to the fundamental long-term stability of the site and the other to the properties of the host rock formations and groundwaters which facilitate the emplacement of the engineered barrier system and act as a natural barrier. In this connection, the feasibility of selecting a geological environment in Japan which is appropriate for geological disposal was discussed, based on findings obtained from case studies and field measurements. Considering long-term stability of the site, it is important to understand the effects and spatial distributions of the natural phenomena such as fault movement, volcanic activity, uplift/denudation and climatic/sea-level changes. Fault movement and volcanic activity are relatively localized phenomena, and can be avoided by considering only areas that are sufficiently remote from existing volcanoes and major active faults for these phenomena to have a negligible probability of causing significant effects. Uplift/denudation and climatic/sea-level changes are gradual phenomena and are more ubiquitous. It is, nevertheless, possible to estimate future trends by extrapolating the past changes into the future, and then to identify areas that may not be affected significantly by such phenomena. Considering the properties of the host rocks and groundwaters, it can be understood, from the presently available data, that deep groundwater in Japan generally flows slowly and its chemistry is in a reduced state. The data also suggest that deep rock masses, where the ground temperature is acceptably low and the rock pressure is almost homogeneous, are widely located throughout Japan. Based on the examination of the geological environment in Japan, it is possible to discuss the requirements for the geological environment to be considered and the investigations to be performed during the site selection

  16. Proposal for the classification of scenarios for deep geological repositories in probability classes

    International Nuclear Information System (INIS)

    Beuth, Thomas

    2013-03-01

    The provided report was elaborated in the framework of the project 3609R03210 ''Research and Development for Proof of the long-term Safety of Deep Geological Repositories''. It contains a proposal for a methodology that enables the assignment of developed scenarios in the frame of Safety Cases to defined probability classes. The assignment takes place indirectly through the categorization of the defining relevant factors (so-called FEP: Features, Events and Processes) of the respective scenarios also in probability classes. Therefore, decision trees and criteria were developed for the categorization of relevant factors in classes. Besides the description of the methodology another focal point of the work was the application of the method taking into account a defined scenario. By means of the scenario the different steps of the method and the decision criteria were documented, respectively. In addition, potential subjective influences along the path of decisions regarding the assignment of scenarios in probability classes were identified.

  17. Complex geologic characterization of the repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Harper, T R [British Petroleum Research Center, Sunberry, England; Szymanski, J S

    1982-01-01

    The present basis for characterizing geological environments is identified in this paper, and the additional requirements imposed by the need to isolate high-level waste safely are discussed. Solutions to these additional requirements are proposed. The time scale of concern and the apparent complexity of the required multidisciplinary approach are identified. It is proposed that an increased use of the geologic record, together with a recognition that all geologic processes operate within an interdependent system, be a key feature in geologic characterization of deep repositories.

  18. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    Science.gov (United States)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  19. Status and prospects of exploration and exploitation key technologies of the deep petroleum resources in onshore China

    Directory of Open Access Journals (Sweden)

    Genshun Yao

    2018-02-01

    Full Text Available In recent years, China's deep oil and gas exploration and exploitation have developed rapidly. Technological advancements have played an important role in the rapid exploration and highly efficient development. Aimed at the complex engineering geological environment of deep oil and gas in China, this paper has combined the four technological systems that have made significant progress, mainly including: (1 seismic imaging and reservoir prediction techniques for deep–burial complex structures, includign “2W1S” technique (wide-band, wide azimuth, and small bin, RTM (Reverse Time Migration, integrated modeling technology for complex structures and variable velocity mapping technique, improving structural interpretation accuracy, ensuring high precision ofimaging, and prediction for deep geological bodies; (2 deep speed raising and efficiency drilling technology series, which significantly improved the drilling speed, in turn reduced the drilling cost and drilling risk; (3 development of a deep high-temperature and high-pressure logging technology series, which provided a guarantee for the accurate identification of reservoir properties and fluid properties; (4 the efficient development technology for deep reservoirs, especially the development and maturity of the reconstruction volume technology, improve the production of single well and the benefit of deep oil and gas development. This paper further points out the improvement direction of the four major technology series of deep oil based on the analysis of the current development of the four major technological systems. Moreover, the development of applicability and economy for technical system is the key to realize high efficiency and low-cost exploration and development of deep oil and gas. Keywords: Deep oil & gas, Exploration and exploitation technologies, Seismic, Logging, Drilling, Petroleum reservoir stimulation

  20. Survey of the geological characteristics on the Japanese Islands for disposal of RI and research institute waste

    Energy Technology Data Exchange (ETDEWEB)

    Hagiwara, Shigeru [Chuo Kaihatsu Co., Ltd., Tokyo (Japan); Sakamoto, Yoshiaki; Takebe, Shinichi; Ogawa, Hiromichi; Nakayama, Shinichi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-12-01

    In the disposal of radioactive wastes arising from radioisotope utilization facilities and nuclear research facilities, it is necessary to establish the disposal system in proportion to half-lives of radionuclides and radioactivity concentrations in the wastes. According to this disposal system, the radioactive waste should be buried in the underground near the surface, shallow position and deep position. Therefore, it is important to grasp the features of the earth scientific phenomena and geological structure for the disposal system of radioactive waste. Then, for the purpose of the survey of the geological characteristics around the Japanese Islands whole neighborhood, the earth scientific phenomena at present, the geological structure and geotectonic history were summarized on the basis of the existing literatures. (author)

  1. The hydrogeologic environment for a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 59285

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Jensen, Mark R.

    2012-01-01

    A Deep Geologic Repository (DGR) for low and intermediate level radioactive waste has been proposed by Ontario Power Generation for the Bruce nuclear site in Ontario, Canada. As proposed the DGR would be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes the hydrogeology of the DGR site developed through both site characterization studies and regional-scale numerical modelling analysis. The analysis provides a framework for the assembly and integration of the site-specific geo-scientific data and examines the factors that influence the predicted long-term performance of the geosphere barrier. Flow system evolution was accomplished using both the density-dependent FRAC3DVS-OPG flow and transport model and the two-phase gas and water flow computational model TOUGH2-MP. In the geologic framework of the Province of Ontario, the DGR is located on the eastern flank of the Michigan Basin. Borehole logs covering Southern Ontario combined with site-specific data from 6 deep boreholes have been used to define the structural contours and hydrogeologic properties at the regional-scale of the modelled 31 sedimentary strata that may be partially present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an approximately 18500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian includes units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/L. The Ordovician sediments are significantly under-pressured. The horizontal hydraulic conductivity for the Cobourg limestone is estimated to be 2x10 -14 m/s based on straddle-packer hydraulic tests. The low advective velocities in the Cobourg and other Ordovician units result in solute transport that is diffusion dominant with Peclet numbers less than 0:003 for a characteristic length of unity. Long

  2. WIPP site and vicinity geological field trip

    International Nuclear Information System (INIS)

    Chaturvedi, L.

    1980-10-01

    The Environmental Evaluation Group is conducting an assessment of the radiological health risks to people from the Waste Isolation Pilot Plant. As a part of this work, EEG is making an effort to improve the understanding of those geological issues concerning the WIPP site which may affect the radiological consequences of the proposed repository. One of the important geological issues to be resolved is the timing and the nature of the dissolution processes which may have affected the WIPP site. EEG organized a two-day conference of geological scientists, on January 17-18, 1980. On the basis of the January conference and the June field trip, EEG has formed the following conclusions: (1) it has not been clearly established that the site or the surrounding area has been attacked by deep dissolution to render it unsuitable for the nuclear waste pilot repository; (2) the existence of an isolated breccia pipe at the site unaccompanied by a deep dissolution wedge, is a very remote possibility; (3) more specific information about the origin and the nature of the brine reservoirs is needed. An important question that should be resolved is whether each encounter with artesian brine represents a separate pocket or whether these occurrences are interconnected; (4) Anderson has postulated a major tectonic fault or a fracture system at the Basin margin along the San Simon Swale; (5) the area in the northern part of the WIPP site, identified from geophysical and bore hole data as the disturbed zone, should be further investigated to cleary understand the nature and significance of this structural anomaly; and (6) a major drawback encountered during the discussions of geological issues related to the WIPP site is the absence of published material that brings together all the known information related to a particular issue

  3. Surface analogue outcrops of deep fractured basement reservoirs in extensional geological settings. Examples within active rift system (Uganda) and proximal passive margin (Morocco).

    Science.gov (United States)

    Walter, Bastien; Géraud, Yves; Diraison, Marc

    2014-05-01

    The important role of extensive brittle faults and related structures in the development of reservoirs has already been demonstrated, notably in initially low-porosity rocks such as basement rocks. Large varieties of deep-seated resources (e.g. water, hydrocarbons, geothermal energy) are recognized in fractured basement reservoirs. Brittle faults and fracture networks can develop sufficient volumes to allow storage and transfer of large amounts of fluids. Development of hydraulic model with dual-porosity implies the structural and petrophysical characterization of the basement. Drain porosity is located within the larger fault zones, which are the main fluid transfer channels. The storage porosity corresponds both to the matrix porosity and to the volume produced by the different fractures networks (e.g. tectonic, primary), which affect the whole reservoir rocks. Multi-scale genetic and geometric relationships between these deformation features support different orders of structural domains in a reservoir, from several tens of kilometers to few tens of meters. In subsurface, 3D seismic data in basement can be sufficient to characterize the largest first order of structural domains and bounding fault zones (thickness, main orientation, internal architecture, …). However, lower order structural blocks and fracture networks are harder to define. The only available data are 1D borehole electric imaging and are used to characterize the lowest order. Analog outcrop studies of basement rocks fill up this resolution gap and help the understanding of brittle deformation, definition of reservoir geometries and acquirement of reservoir properties. These geological outcrop studies give information about structural blocks of second and third order, getting close to the field scale. This allows to understand relationships between brittle structures geometry and factors controlling their development, such as the structural inheritance or the lithology (e.g. schistosity, primary

  4. Electronic structure properties of deep defects in hBN

    Science.gov (United States)

    Dev, Pratibha; Prdm Collaboration

    In recent years, the search for room-temperature solid-state qubit (quantum bit) candidates has revived interest in the study of deep-defect centers in semiconductors. The charged NV-center in diamond is the best known amongst these defects. However, as a host material, diamond poses several challenges and so, increasingly, there is an interest in exploring deep defects in alternative semiconductors such as hBN. The layered structure of hBN makes it a scalable platform for quantum applications, as there is a greater potential for controlling the location of the deep defect in the 2D-matrix through careful experiments. Using density functional theory-based methods, we have studied the electronic and structural properties of several deep defects in hBN. Native defects within hBN layers are shown to have high spin ground states that should survive even at room temperature, making them interesting solid-state qubit candidates in a 2D matrix. Partnership for Reduced Dimensional Material (PRDM) is part of the NSF sponsored Partnerships for Research and Education in Materials (PREM).

  5. Canada's deep geological repository for used nuclear fuel - the geoscientific site evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Belfadhel, M.B.; Blyth, A.; Desroches, A.; Hirschorn, S.; Mckelvie, J.; Sanchez-Rico Castejon, M.; Parmenter, A.; Urrutia-Bustos, A.; Vorauer, A., E-mail: mbenbelfadhel@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2014-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for the long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO initiated a nine-step site selection process to find an informed and willing community to host the project. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process. The social, cultural and economic aspects of the assessment are discussed in a companion paper. (author)

  6. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  7. Research into the effects of seawater velocity variation on migration imaging in deep-water geology

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2016-07-01

    Full Text Available This paper aims at the problem that in deep water the migration quality is poor, and starts with the influence that velocity model accuracy has on migration, studying influence that variable seawater velocity makes on migration effect. At first, variable seawater velocity influenced by temperature, pressure and salinity is defined to replace the true seawater velocity. Then variable seawater velocity’s influence on interface migration location, layer sickness and migration energy focusing degree are analyzed in theory. And finally a deep water layered medium model containing variable seawater velocity, a syncline wedge shape model and a complex seafloor velocity model are constructed. By changing the seawater velocity of each model and comparing migration results of constant seawater-velocity model and variable seawater-velocity model, we can draw the conclusion: Under the condition of deep water, variable seawater-velocity’s impact on the quality of seismic migration is significant, which not only can change the location of geologic body migration result, but also can influence the resolution of geologic interface in the migration section and maybe can cause migration illusion.   Investigación de los efectos de la variación en la velocidad del agua marina sobre las imágenes de migración en la geología de aguas profundas Resumen Este artículo se enfoca en el problema de la baja calidad de la migración en aguas profundas. Se analiza la influencia que tiene el modelo de precisión de velocidad en la migración y se estudia el impacto que la variación de velocidad del agua marina tiene en el efecto de movimiento. En primera instancia, se define la variación de la velocidad del agua marina afectada por la temperatura, la presión y la salinidad para reemplazar la velocidad del agua marina actual. Luego se analiza la teoría de la influencia de la velocidad del agua marina sobre la interfaz de la ubicación de migración, el grosor de

  8. Modelling of gas generation in deep geological repositories after closure

    International Nuclear Information System (INIS)

    Poller, A.; Mayer, G.; Darcis M; Smith, P.

    2016-12-01

    In deep geological repositories for radioactive waste, significant quantities of gases will be generated in the long term as a result of various processes, notably the anaerobic corrosion of metals and the degradation of organic materials. Therefore, the impact of gas production on post-closure safety of the repositories needs to be assessed as part of a safety case. The present report provides a comprehensive description of the quantitative modelling of gas generation and associated water consumption during the post-closure phase of deep geological repositories in Opalinus Clay based on current scientific knowledge and on current preliminary repository designs. This includes a presentation of the modelling basis, namely the conceptual and mathematical models, the input data used, the computer tools developed, the relevant uncertainties and principal programme / design options, as well as the derivation, analysis and discussion of specific assessment cases. The modelling is carried out separately for the two main sources of gas, which are the emplaced waste including the disposal containers; and the construction materials. The contribution of construction materials to gas generation rates in emplacement tunnels for spent fuel (SF) and vitrified high-level waste (HLW) is significant during several thousand years after closure. In the long term, however, the corrosion of the disposal canisters, which are in the reference case assumed to be fabricated of carbon steel, accounts for the vast majority of the total gas produced in these tunnels. The contribution of construction materials in emplacement caverns for long lived intermediate-level waste (ILW) and low- and intermediate-level waste (L/ILW) to gas generation is generally small. In ILW emplacement caverns, gas generation is generally dominated by hydrogen generation from the corrosion of cast iron Mosaik-II waste containers for PWR internals and from the corrosion of aluminium in operational waste from the

  9. Modelling of gas generation in deep geological repositories after closure

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Mayer, G.; Darcis M [AF-Consult Switzerland Ltd, Baden-Dättwil, (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom)

    2016-12-15

    In deep geological repositories for radioactive waste, significant quantities of gases will be generated in the long term as a result of various processes, notably the anaerobic corrosion of metals and the degradation of organic materials. Therefore, the impact of gas production on post-closure safety of the repositories needs to be assessed as part of a safety case. The present report provides a comprehensive description of the quantitative modelling of gas generation and associated water consumption during the post-closure phase of deep geological repositories in Opalinus Clay based on current scientific knowledge and on current preliminary repository designs. This includes a presentation of the modelling basis, namely the conceptual and mathematical models, the input data used, the computer tools developed, the relevant uncertainties and principal programme / design options, as well as the derivation, analysis and discussion of specific assessment cases. The modelling is carried out separately for the two main sources of gas, which are the emplaced waste including the disposal containers; and the construction materials. The contribution of construction materials to gas generation rates in emplacement tunnels for spent fuel (SF) and vitrified high-level waste (HLW) is significant during several thousand years after closure. In the long term, however, the corrosion of the disposal canisters, which are in the reference case assumed to be fabricated of carbon steel, accounts for the vast majority of the total gas produced in these tunnels. The contribution of construction materials in emplacement caverns for long lived intermediate-level waste (ILW) and low- and intermediate-level waste (L/ILW) to gas generation is generally small. In ILW emplacement caverns, gas generation is generally dominated by hydrogen generation from the corrosion of cast iron Mosaik-II waste containers for PWR internals and from the corrosion of aluminium in operational waste from the

  10. Hydrogeologic modelling in support of a proposed deep geologic repository in Canada for low and intermediate level radioactive waste - 16264

    International Nuclear Information System (INIS)

    Sykes, Jonathan F.; Normani, Stefano D.; Yin, Yong; Sykes, Eric A.; Jensen, Mark R.

    2009-01-01

    A Deep Geologic Repository (DGR) for Low and Intermediate Level radioactive waste has been proposed by Ontario Power Generation for the Bruce Nuclear Power Development site in Ontario, Canada. The DGR is to be constructed at a depth of about 680 m below ground surface within the argillaceous Ordovician limestone of the Cobourg Formation. This paper describes a regional-scale geologic conceptual model for the DGR site and analyzes flow system evolution using the FRAC3DVSOPG flow and transport model. This provides a framework for the assembly and integration of site-specific geo-scientific data that explains and illustrates the factors that influence the predicted long-term performance of the geosphere barrier. In the geologic framework of the Province of Ontario, the Bruce DGR is located at the eastern edge of the Michigan Basin. Borehole logs covering Southern Ontario combined with site specific data have been used to define the structural contours at the regional and site scale of the 31 sedimentary strata that may be present above the Precambrian crystalline basement rock. The regional-scale domain encompasses an 18.500 km 2 region extending from Lake Huron to Georgian Bay. The groundwater zone below the Devonian is characterized by units containing stagnant water having high concentrations of total dissolved solids that can exceed 300 g/l. The computational sequence involves the calculation of steady-state density independent flow that is used as the initial condition for the determination of pseudo-equilibrium for a density dependent flow system that has an initial TDS distribution developed from observed data. Long-term simulations that consider future glaciation scenarios include the impact of ice thickness and permafrost. The selection of the performance measure used to evaluate a groundwater system is important. The traditional metric of average water particle travel time is inappropriate for geologic units such as the Ordovician where solute transport is

  11. Process for selecting a site for Canada's deep geological repository for used nuclear fuel

    International Nuclear Information System (INIS)

    Facella, J.; Ben Belfadhel, M.; Patton, P.

    2012-01-01

    'Full Text:' The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management, the approach selected by the Government of Canada for long-term management of used nuclear fuel waste generated by Canadian nuclear reactors. The ultimate objective of Adaptive Phased Management is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation at a depth of about 500m. The repository will consist of a series of access and service shafts and a series of tunnels leading to placement rooms where used fuel will be placed and sealed in competent rock using a multi-barrier system which includes long lived specially designed containers, sealing materials such as bentonite and the rock itself. The used fuel will be monitored throughout all phases of implementation and will also remain retrievable for an extended period of time. In May 2010, the NWMO published the site selection process that serves as the road map to decision-making on the location for the deep geological repository. NWMO initiated the process with a first stage that invites communities to learn more about the project and the site selection process. NWMO is actively building awareness of the project and, on request of communities, is delivering briefings, supporting community capacity building and undertaking screenings of site suitability. This panel presentation provides a brief description of: Adaptive Phased Management including the deep geological repository which is its ultimate goal, and the design of the site selection process, and importantly the approach to assessing the suitability of sites from both a social and technical perspective. The panel presentation will be conducted in three parts: site selection process and engagement, Aboriginal engagement and Technical evaluations, followed by a discussion. The presentation will outline how NWMO sought

  12. Why every national deep-geological-isolation program needs a long-term science & technology component

    International Nuclear Information System (INIS)

    Budnitz, R J

    2006-01-01

    The objective of this paper is to set down the rationale for a separate Science & Technology (S&T) Program within every national deep-geological-isolation program. The fundamental rationale for such a Program is to provide a dedicated focus for longer-term science and technology activities that ultimately will benefit the whole repository mission. Such a Program, separately funded and with a dedicated staff (separate from the ''mainline'' activities to develop the repository, the surface facilities, and the transportation system), can devote itself exclusively to the development and management of a long-term science and technology program. Broad experience in governments worldwide has demonstrated that line offices are unlikely to be able to develop and sustain both the appropriate longer-term philosophy and the specialized skills associated with managing longer-term science and technology projects. Accomplishing both of these requires a separate dedicated program office with its own staff

  13. Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region

    Science.gov (United States)

    Guglielmetti, L.; Comina, C.; Abdelfettah, Y.; Schill, E.; Mandrone, G.

    2013-11-01

    Thermal sources are common manifestations of geothermal energy resources in Alpine regions. The up-flow of the fluid is well-known to be often linked to cross-cutting fault zones providing a significant volume of fractures. Since conventional exploration methods are challenging in such areas of high topography and complicated logistics, 3D geological modeling based on structural investigation becomes a useful tool for assessing the overall geology of the investigated sites. Geological modeling alone is, however, less effective if not integrated with deep subsurface investigations that could provide a first order information on geological boundaries and an imaging of geological structures. With this aim, in the present paper the combined use of 3D geological modeling and gravity surveys for geothermal prospection of a hydrothermal area in the western Alps was carried out on two sites located in the Argentera Massif (NW Italy). The geothermal activity of the area is revealed by thermal anomalies with surface evidences, such as hot springs, at temperatures up to 70 °C. Integration of gravity measurements and 3D modeling investigates the potential of this approach in the context of geothermal exploration in Alpine regions where a very complex geological and structural setting is expected. The approach used in the present work is based on the comparison between the observed gravity and the gravity effect of the 3D geological models, in order to enhance local effects related to the geothermal system. It is shown that a correct integration of 3D modeling and detailed geophysical survey could allow a better characterization of geological structures involved in geothermal fluids circulation. Particularly, gravity inversions have successfully delineated the continuity in depth of low density structures, such as faults and fractured bands observed at the surface, and have been of great help in improving the overall geological model.

  14. Demonstrating the sealing of a deep geologic repository: the RECAP project

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Dixon, D.A.; Martino, J.B.; Kozak, E.T.; Bilinsky, D.M.; Thompson, P.M.

    2006-01-01

    Atomic Energy of Canada Limited (AECL) has operated an Underground Research Laboratory (URL) for twenty-three years (1982-2005). The URL was designed and constructed to carry out in situ geotechnical R and D needed for the Canadian Nuclear Fuel Waste Management program. The facility is now being closed, the final of several phases that have included siting, site evaluation, construction and operation. The closure phase presents a unique opportunity to develop and demonstrate the methodologies needed for closure and site restoration of a deep geologic repository for used nuclear fuel. A wealth of technical background and characterization data, dating back to before the first excavation work was carried out, are available to support closure activities. A number of closure-related activities are being proposed as part of a REpository Closure And Post-closure (RECAP) project. The RECAP project is proposed to include demonstrations of shaft and borehole sealing and monitoring as well as fracture sealing (grouting), room closure and monitoring system decommissioning, all activities that would occur when closing an actual repository. In addition to the closure-related activities, the RECAP project could provide a unique opportunity to conduct intrusion-monitoring demonstrations as part of a repository safeguards demonstration. (author)

  15. Geological aspects of the high level waste and spent fuel disposal programme in Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Matej, Gedeon; Milos, Kovacik; Jozef, Hok [Geological Survey of Slovak Republic, Bratislava (Slovakia)

    2001-07-01

    An autonomous programme for development of a deep geological high level waste and spent fuel disposal began in 1996. One of the most important parts in the programme is siting of the future deep seated disposal. Geological conditions in Slovakia are complex due to the Alpine type tectonics that formed the geological environment during Tertiary. Prospective areas include both crystalline complexes (tonalites, granites, granodiorites) and Neogene (Miocene) argillaceous complexes. (author)

  16. Methodology for the development of scenarios for the evaluation of the behaviour of a deep geological repository for high-level radioactive waste in a granite formation

    International Nuclear Information System (INIS)

    Cortes Martin, A.; Alonso, J.; Gonzalez, E.

    1996-01-01

    In time, deep geological repositories for radioactive waste undergo significant environmental changes caused either by natural processes or by human actions. In view of a long-term safety analysis, it is fundamental to identify all the possible evolutions of the system. This process is denominated scenario development. This paper deals with the methodology used to generate scenarios within the framework of the AGP (Deep Geological Repository) project for assessing behaviour in granite medium. It begins with a brief description of the methodology used to identify the relevant factors for the safety analysis on the system. It then presents the details of the actual scenario-generating methodology which consists of dividing the entire system into barrier states or subsystems a graphic procedure by means of which the factors are represented in relation to their predictable impact or extent of their effect on the subsystems. This methodology is a good tool for displaying and grouping the most significant scenarios for the subsequent analysis of consequences. (Author)

  17. Containers and overpacks for high-level radioactive waste in deep geological disposal. Conditions: French Corrosion Programme

    International Nuclear Information System (INIS)

    Crusset, D.; Plas, F.; Santarini, G.

    2003-01-01

    Within the framework of the act of French law dated 31 December, 1991, ANDRA (National Radioactive Waste Management Agency) is responsible for conducting the feasibility study on disposal of reversible and irreversible high-level or long-life radioactive waste in deep geological formations. Consequently, ANDRA is carrying out research on corrosion of the metallic materials envisaged for the possible construction of overpacks for vitrified waste packages or containers for spent nuclear fuel. Low-alloy or unalloyed steels and the passive alloys (Fe-Ni-Cr-Mo) constitute the two families of materials studied and ANDRA has set up a research programme in partnership with other research organisations. The 'broad outlines' of the programme, which includes experimental and modelling operations, are presented. (authors)

  18. The laboratories of geological studies

    International Nuclear Information System (INIS)

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA's activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  19. Microbial ecology of deep-water mid-Atlantic canyons

    Science.gov (United States)

    Kellogg, Christina A.

    2011-01-01

    The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.

  20. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  1. Geological Interpretation of the Structure and Stratigraphy of the A/M Area, Savannah River Site, South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, D. [Westinghouse Savannah River Company, AIKEN, SC (United States); Aadland, R.K.; Cumbest, R.J.; Stephenson, D.E.; Syms, F.H.

    1997-12-01

    The geological interpretation of the structure and stratigraphy of the A/M Area was undertaken in order to evaluate the effects of deeper Cretaceous aged geological strata and structure on shallower Tertiary horizons.

  2. Geological Interpretation of the Structure and Stratigraphy of the A/M Area, Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Wyatt, D.; Aadland, R.K.; Cumbest, R.J.; Stephenson, D.E.; Syms, F.H.

    1997-12-01

    The geological interpretation of the structure and stratigraphy of the A/M Area was undertaken in order to evaluate the effects of deeper Cretaceous aged geological strata and structure on shallower Tertiary horizons

  3. Structure functions in electron-nucleon deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, M.; Fazal-E-Aleem (University of the Punjab, Lahore (Pakistan). Dept. of Physics)

    1982-06-26

    The phenomenological expressions for the structure functions in electron-nucleon deep inelastic scattering are proposed and are shown to satisfy the experimental data as well as a number of sum rules.

  4. The geology and hydrogeology of Sellafield: an overview

    International Nuclear Information System (INIS)

    Chaplow, Robert

    1996-01-01

    Nirex is responsible for providing and managing a national facility for solid intermediate-level and low-level radioactive waste. Geological and hydrogeological investigations have been in progress at Sellafield in west Cumbria since 1989 aimed at determining whether or not the site is suitable for such a deep repository. Geological investigations have included the drilling of 20 deep boreholes with over 20 000 metres of drilling, together with almost 2000 line kilometres of seismic surveys and over 8000 line kilometres of airborne geophysical surveys. Hydrogeological testing and groundwater sampling and testing have provided additional information on the ground conditions at the site. (author)

  5. Some problems of geologic relations between the Amazon craton and east margins fold belts

    International Nuclear Information System (INIS)

    Almeida, F.F.M. de

    1986-01-01

    This paper deals with some geologic problems related to the limits between the Amazon craton and the fold belts developed at its margins during the Precambrian. These limits are diversified but clearly recognized. To the north, the Araguaia-Tocantins fold belt, of presumed Middle Proterozoic age, is separated from the cratonic block by a deep marginal fracture zone permeated by mafic and ultramafic rocks. The geologic, magmatic and aeromagnetic characteristics of this zone point out the presence of deep faults, supposed to be of Middle Proterozoic age. The southern Paraguay fold belt constitutes and accurated zone of linear structures supposed to be of Late Proterozoic development. Despite the great increase of knowledge during the last ten years many tectonic, stratigraphic and geochronologic problems remain unsolved. The aim of this paper is to point out some of these problems and suggest specific studies to solve them. (author)

  6. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh

    2015-07-26

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  7. Enhanced recovery of subsurface geological structures using compressed sensing and the Ensemble Kalman filter

    KAUST Repository

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2015-01-01

    Recovering information on subsurface geological features, such as flow channels, holds significant importance for optimizing the productivity of oil reservoirs. The flow channels exhibit high permeability in contrast to low permeability rock formations in their surroundings, enabling formulation of a sparse field recovery problem. The Ensemble Kalman filter (EnKF) is a widely used technique for the estimation of subsurface parameters, such as permeability. However, the EnKF often fails to recover and preserve the channel structures during the estimation process. Compressed Sensing (CS) has shown to significantly improve the reconstruction quality when dealing with such problems. We propose a new scheme based on CS principles to enhance the reconstruction of subsurface geological features by transforming the EnKF estimation process to a sparse domain representing diverse geological structures. Numerical experiments suggest that the proposed scheme provides an efficient mechanism to incorporate and preserve structural information in the estimation process and results in significant enhancement in the recovery of flow channel structures.

  8. Mineral resources, geologic structure, and landform surveys

    Science.gov (United States)

    Lattman, L. H.

    1973-01-01

    The use of ERTS-1 imagery for mineral resources, geologic structure, and landform surveys is discussed. Four categories of ERTS imagery application are defined and explained. The types of information obtained by the various multispectral band scanners are analyzed. Samples of land use maps and tectoning and metallogenic models are developed. It is stated that the most striking features visible on ERTS imagery are regional lineaments, or linear patterns in the topography, which reflect major fracture zones extending upward from the basement of the earth.

  9. Draft directive on the management of radioactive wastes based on deep geological disposal

    International Nuclear Information System (INIS)

    Anon.

    2010-01-01

    The European Commission works on a legal framework to assure that all the member states apply the same standards in all the stages of the management of spent fuels and radioactive wastes till their definitive disposal. The draft propositions are the following. The standards to follow are those proposed by the IAEA. First, each member state has to set a national program dedicated to the management of radioactive wastes. This program will have to detail: the chosen solution, the description of the project, a time schedule, costs and financing. Secondly, the exportation of nuclear wastes for definitive disposal is not allowed unless the 2 countries have agreed to build a common nuclear waste disposal center. Thirdly, the population will have to be informed on the project and will have to take part in the decision process. Fourthly, the standards set by IAEA will be enforced by law. There is a broad consensus between scientists and international organizations like IAEA to consider that the disposal in deep geological layers of high-level radioactive wastes is the most adequate solution. (A.C.)

  10. The application of structure from motion (SfM) to identify the geological structure and outcrop studies

    Science.gov (United States)

    Saputra, Aditya; Rahardianto, Trias; Gomez, Christopher

    2017-07-01

    Adequate knowledge of geological structure is an essential for most studies in geoscience, mineral exploration, geo-hazard and disaster management. The geological map is still one the datasets the most commonly used to obtain information about the geological structure such as fault, joint, fold, and unconformities, however in rural areas such as Central Java data is still sparse. Recent progress in data acquisition technologies and computing have increased the interest in how to capture the high-resolution geological data effectively and for a relatively low cost. Some methods such as Airborne Laser Scanning (ALS), Terrestrial Laser Scanning (TLS), and Unmanned Aerial Vehicles (UAVs) have been widely used to obtain this information, however, these methods need a significant investment in hardware, software, and time. Resolving some of those issues, the photogrammetric method structure from motion (SfM) is an image-based method, which can provide solutions equivalent to laser technologies for a relatively low-cost with minimal time, specialization and financial investment. Using SfM photogrammetry, it is possible to generate high resolution 3D images rock surfaces and outcrops, in order to improve the geological understanding of Indonesia. In the present contribution, it is shown that the information about fault and joint can be obtained at high-resolution and in a shorter time than with the conventional grid mapping and remotely sensed topographic surveying. The SfM method produces a point-cloud through image matching and computing. This task can be run with open- source or commercial image processing and 3D reconstruction software. As the point cloud has 3D information as well as RGB values, it allows for further analysis such as DEM extraction and image orthorectification processes. The present paper describes some examples of SfM to identify the fault in the outcrops and also highlight the future possibilities in terms of earthquake hazard assessment, based on

  11. Overview of Nagra's geological investigation programme in Northern Switzerland

    International Nuclear Information System (INIS)

    Thury, M.; Diebold, P.

    1987-01-01

    For the assessment of the feasibility and safety of a repository for high level radioactive waste, Nagra (National Cooperative for the Storage of Radioactive Waste) has started in 1980 in central Northern Switzerland an extensive geological investigation program. This overall program contains four field investigation programs and several programs for synthesis work. By the end of 1985, six deep drillings have been completed. The deepest borehole reached 2482 m. All in all, more than 8000 m of cores have been taken and analyzed in detail. In the boreholes, extensive hydrogeological tests have been carried out. Within the regional geophysical investigation program gravimetric, aeromagnetic and magnetotelluric, refraction seismic and reflection seismic surveys have been carried out. Vibroseis lines of 400 km length have been measured. Within the regional hydrogeological program, water samples of more than 100 springs and wells with hydrochemically or thermally abnormal waters have been analyzed in detail for their chemical and isotopic composition. Within the neotectonic program, geomorphologic, tectonic, geodetic and seismic studies and measurements have been carried out. In 1983, a microearthquake survey network was installed. All these data were analyzed in several synthetic programs: Structural geology, hydrochemistry, hydrodynamic modelling and long term stability scenarios. The Nagra program continues. As next, a deep borehole in the Canton of Schaffhausen is planned. Meanwhile all data are analyzed in detail and the understanding of the regional and local geology, geochemistry and hydrogeology of northern Switzerland is improved and refined. (author) 32 refs., 8 figs

  12. Method of magnetic susceptibility mapping of drilled cores. Experimental measurements for geologic structures determination; Methode de cartographie de susceptibilite magnetique sur carottes de forage. Mesures experimentales pour la determination de structures geologiques

    Energy Technology Data Exchange (ETDEWEB)

    Delrive, C

    1993-11-08

    The evaluation of the safety of a deep geologic repository for dangerous materials requires the knowledge of the interstitial system of the surrounding host rock. A method is proposed for the determination of geologic structures (in particular fractures) from the magnetic susceptibility mapping of drilled cores. The feasibility of the method has been demonstrated using a SQUID magneto-gradient meter. A measurement tool using a new magnetic susceptibility captor and a testing bench have been developed. This tool allows the measurement of rocks with a magnetic susceptibility greater than 10{sup -5} SI units and can generate magnetic susceptibility maps with 4 x 4 mm{sup 2} pixels. A magnetic visibility criterion has been defined which allows to foresee if a structure is visible or not. According to the measurements done, it is shown that any centimeter-scale structure with a sufficient magnetic contrast (20%) with respect to the matrix is visible. Therefore, the dip and the orientation of such structure can be determined with a 3 degree and a 5 degree precision, respectively. The position of the structure along the core axis is known with a 4 mm precision. On the other hand, about half of the magnetic contrasts observed do not correspond to the visual analyses and can be explained by very small variations of the mineralogic composition. This last point offers some interesting ways for future research using magnetic susceptibility mapping. (J.S.). 31 refs., 90 figs., 18 tabs., 2 photos., 6 appends.

  13. Methodology for the biosphere analysis in the evaluation of deep geological repositories for high radioactive waste

    International Nuclear Information System (INIS)

    Cancio, D.; Pinedo, P.; Aguero, A.; Simon, I.; Torres, C.; Robles, B.; Smith, G.M.; Little, R.; Watkings, B.; Brice, A.; Jaen, J.A.; Coronado, S.

    1997-01-01

    This report summarizes the work done and the achievements reached within the R and D Project that IMA/CIEMAT has had with ENRESA during 1993-1995. The overal R and D Project has a wide radiological protection context, but the work reported here relates only to the development of a Methodology for considering the Biosphere sub-system in the assessments of deep geological repositories for high radioactive wastes (HLW). The main areas concerned within the Methodology have to do with Biosphere structure and morphology in the long-term relevant to deep disposal of HLW: in the contexts of the assessment of these systems, and appropiate modelling of the behaviour of radionuclides released to the biosphere system and with the associated human exposure. This document first provides a review of the past and present international and national concerns about the biosphere modelling and its importance in relation to the definition of safety criteria. A joint ENRESA/ANDRA/IPSN/CIEMAT study about the definition and proactical descriptions of the biosphere systems under different climatic states is then summarized. The Methodology developed by IMA/CIEMAT is outlined with an illustration of the way it works. Different steps and procedures are included for a better proactical understanding of the software tools developed within the project to support the application of the Methologoy. This Methodology is widely based on an international working group on Reference Biospheres part national work for ENRESA has been supported under a collaborative agreement with QuantiSci Ltd. Specific software development have been carried out in collaboration with QuantiSci Ltd and with the Polytechnical University of Madrid. Most of the items included within the Methodology and moreover the Methodology as a whole, follows a continuos progressive development. It is increasinaly recognized that assessment capabilities, establisment of safety criteria and regulatory framework and the steps in a

  14. Southeastern Regional geologic characterization report. Volume 1. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in central Maryland; noncoastal Virginia, North Carolina, and South Carolina; and northern Georgia. For each of the states within the Southeastern Region, information is provided on the geological disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geological factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on the age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies

  15. Measurement method of the distribution coefficient on the sorption process. Basic procedure of the method relevant to the barrier materials used for the deep geological disposal: 2006

    International Nuclear Information System (INIS)

    2006-08-01

    This standard was approved by Atomic Energy Society of Japan after deliberation of the Subcommittee on the Radioactive Waste Management, the Nuclear Cycle Technical Committee and the Standard Committee, and after obtaining about 600 comments from specialists of about 30 persons. This document defines the basic measurement procedure of the distribution coefficient (hereafter referred as Kd) to judge the reliability, reproducibility and applications and to provide the requirements for inter-comparison of Kd for a variety of barrier materials used for deep geological disposal of radioactive wastes. The basic measurement procedure of Kd is standardized, following the preceded standard, 'Measurement Method of the Distribution Coefficient on the Sorption Process - Basic Procedure of Batch Method Relevant to the Barrier Materials Used for the Shallow Land Disposal: 2002 (hereafter referred as Standard for the Shallow Land Disposal)', and considering recent progress after its publication and specific issues to the deep geological disposal. (J.P.N.)

  16. Geological heterogeneity: Goal-oriented simplification of structure and characterization needs

    Science.gov (United States)

    Savoy, Heather; Kalbacher, Thomas; Dietrich, Peter; Rubin, Yoram

    2017-11-01

    Geological heterogeneity, i.e. the spatial variability of discrete hydrogeological units, is investigated in an aquifer analog of glacio-fluvial sediments to determine how such a geological structure can be simplified for characterization needs. The aquifer analog consists of ten hydrofacies whereas the scarcity of measurements in typical field studies precludes such detailed spatial models of hydraulic properties. Of particular interest is the role of connectivity of the hydrofacies structure, along with its effect on the connectivity of mass transport, in site characterization for predicting early arrival times. Transport through three realizations of the aquifer analog is modeled with numerical particle tracking to ascertain the fast flow channel through which early arriving particles travel. Three simplification schemes of two-facies models are considered to represent the aquifer analogs, and the velocity within the fast flow channel is used to estimate the apparent hydraulic conductivity of the new facies. The facies models in which the discontinuous patches of high hydraulic conductivity are separated from the rest of the domain yield the closest match in early arrival times compared to the aquifer analog, but assuming a continuous high hydraulic conductivity channel connecting these patches yields underestimated early arrivals times within the range of variability between the realizations, which implies that the three simplification schemes could be advised but pose different implications for field measurement campaigns. Overall, the results suggest that the result of transport connectivity, i.e. early arrival times, within realistic geological heterogeneity can be conserved even when the underlying structural connectivity is modified.

  17. Does geology help in the final disposal of radioactive wastes?

    International Nuclear Information System (INIS)

    Schaer, U.

    1987-01-01

    High-level radioactive wastes have to be stored safely for thousands of years in deep geological formations. The question discussed is whether or not a geological prognosis over this span of time is possible. The main problem is groundwater

  18. Study of deep fracturation of granitic rock mass. Documentary study

    International Nuclear Information System (INIS)

    Bles, J.L.; Landry, J.

    1984-01-01

    This documentary study realized with the financial support of the European Communities and the CEA aims at the utilization of available data for the understanding of the evolution of natural fractures in granitic rocks from the surface to deep underground. The Mt Blanc road tunnel, the EDF's Arc-Isere gallerie, the Auriat deep borehole and the Pyrenean rock mass of Bassies are studied because detailed structural and geological studies have been realized these last 20 years. In this study are more particularly analyzed the relationship between small fractures and large faults, evolution with depth of fracture density and direction, consequences of rock decompression and relationship between fracturation and groundwater

  19. New insight on the paleoproterozoic evolution of the São Francisco Craton: Reinterpretation of the geology, the suture zones and the thicknesses of the crustal blocks using geophysical and geological data

    Science.gov (United States)

    Sampaio, Edson E. S.; Barbosa, Johildo S. F.; Correa-Gomes, Luiz C.

    2017-07-01

    The Archean-Paleoproterozoic Jequié (JB) and Itabuna-Salvador-Curaçá (ISCB) blocks and their tectonic transition zone in the Valença region, Bahia, Brazil are potentially important for ore deposits, but the geological knowledge of the area is still meager. The paucity of geological information restricts the knowledge of the position and of the field characteristics of the tectonic suture zone between these two crustal segments JB and ISCB. Therefore, interpretation of geophysical data is necessary to supplement the regional structural and petrological knowledge of the area as well as to assist mining exploration programs. The analysis of the airborne radiometric and magnetic data of the region has established, respectively, five radiometric domains and five magnetic zones. Modeling of a gravity profile has defined the major density contrasts of the deep structures. The integrated interpretation of the geophysical data fitted to the known geological information substantially improved the suture zone (lower plate JB versus upper plate ISCB) delimitation, the geological map of the area and allowed to estimate the thicknesses of these two blocks, and raised key questions about the São Francisco Craton tectonic evolution.

  20. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Directory of Open Access Journals (Sweden)

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  1. Active Suppression of Drilling System Vibrations For Deep Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen; Mesh, Mikhail; Radigan, William Thomas; Su, Jiann-Cherng

    2015-10-01

    The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-based drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.

  2. From the repository to the deep geological repository - and back to the Terrain surface?

    International Nuclear Information System (INIS)

    Lahodynsky, R.

    2011-01-01

    How deep is 'safe'? How long is long-term? How and for how long will something be isolated? Which rock, which formation and which location are suitable? A repository constructed for the safekeeping of radioactive or highly toxic wastes can be erected either on the surface, near the surface or underground. Radioactive waste is currently often stored at near-surface locations. The storage usually takes place nearby of a nuclear power plant in pits or concrete tombs (vaults). However, repositories can also be found in restricted areas, e.g. near nuclear weapon production or reprocessing plants (WAA) or nuclear weapons test sites (including Tomsk, Russia, Hanford and Nevada desert, USA), or in extremely low rainfall regions (South Africa). In addition there are disused mines which are now used as underground repositories. Low-level and medium-active (SMA) but also high-level waste (HAA) are stored at these types of sites (NPP, WAA, test areas, former mines). In Russia (Tomsk, Siberia) liquid radioactive waste has been injected into deep geological formations for some time (Minatom, 2001). However, all these locations are not the result of a systematic, scientific search or a holistic process for finding a location, but the result of political decisions, sometimes ignoring scientific findings. Why underground storage is given preference over high-security landfill sites (HSD) often has economic reasons. While a low safety standard can significantly reduce the cost of an above-ground high-security landfill as a waste disposal depot, spending remains high, especially due to the need for capital formation to cover operating expenses after filling the HSD. In the case of underground storage, on the other hand, no additional expenses are required for the period after backfilling. The assumption of lower costs for a deep repository runs through the past decades and coincides with the assumption that the desired ideal underground conditions actually exist and will

  3. Postclosure safety assessment of a deep geological repository for Canada's used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, N.G.; Kremer, E.P.; Garisto, F.; Gierszewski, P.; Gobien, M.; Medri, C.L.D. [Nuclear Waste Management Organization, Toronto, ON (Canada); Avis, J.D. [Geofirma Engineering Ltd., Ottawa, ON (Canada); Chshyolkova, T.; Kitson, C.I.; Melnyk, W.; Wojciechowski, L.C. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    This paper reports on elements of a postclosure safety assessment performed for a conceptual design and hypothetical site for a deep geological repository for Canada's used nuclear fuel. Key features are the assumption of a copper used fuel container with a steel inner vessel, container placement in vertical in-floor boreholes, a repository depth of 500 m, and a sparsely fractured crystalline rock geosphere. The study considers a Normal Evolution Scenario together with a series of Disruptive Event Scenarios. The Normal Evolution Scenario is a reasonable extrapolation of present day site features and receptor lifestyles, while the Disruptive Event Scenarios examine abnormal and unlikely failures of the containment and isolation systems. Both deterministic and probabilistic simulations were performed. The results show the peak dose consequences occur far in the future and are well below the applicable regulatory acceptance criteria and the natural background levels. (author)

  4. Study of the possibilities of radioactive waste storage in crystalline formations. Investigation by deep drilling of the Auriat granite

    International Nuclear Information System (INIS)

    1982-01-01

    Various and complex scientific problems are raised in many areas by the disposal of radioactive waste in geological formations. Research works are therefore numerous, and are carried out in four basic areas: - improvement of the knowledge of geological media; - characterization of their behaviour vis a vis radioactive waste; - design of deep repositories; - long-term safety assessment of the selected disposal strategies. Aim of the present research is to develop a methodology for investigating granite formations at great depth, in order to characterize their internal structure, and to acquire data about the various physical properties of granite. This research therefore covers the first basic aspect. These goals were obtained by continuous core-drilling of two vertical boreholes at 10m pitch. The main borehole was drilled down to 1003.15m deep, the second one was stopped at 504.40m deep

  5. Deep geological disposal of radioactive waste - An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted.

  6. Deep geological disposal of radioactive waste - An international perspective

    International Nuclear Information System (INIS)

    Gautschi, A.

    2015-01-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted

  7. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  8. NAGRA - Sites for geological repositories - Geological surveys for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) examines the aims involved in the selection of sites for deep geological repositories for nuclear wastes in Switzerland. Various methods involved in their implementation are described. These include 3D-seismology, deep probe drillings, shallow drillings as well as field studies, gravimetric measurements and the study of the electrical properties of the ground and rock involved. These factors are discussed in detail. Maps are presented of the locations that are to be surveyed and details of the selected perimeters are shown. Also, the layout of a sample drilling site is presented. A timescale for the various surveys and work to be done is presented

  9. PyGPlates - a GPlates Python library for data analysis through space and deep geological time

    Science.gov (United States)

    Williams, Simon; Cannon, John; Qin, Xiaodong; Müller, Dietmar

    2017-04-01

    A fundamental consideration for studying the Earth through deep time is that the configurations of the continents, tectonic plates, and plate boundaries are continuously changing. Within a diverse range of fields including geodynamics, paleoclimate, and paleobiology, the importance of considering geodata in their reconstructed context across previous cycles of supercontinent aggregation, dispersal and ocean basin evolution is widely recognised. Open-source software tools such as GPlates provide paleo-geographic information systems for geoscientists to combine a wide variety of geodata and examine them within tectonic reconstructions through time. The availability of such powerful tools also brings new challenges - we want to learn something about the key associations between reconstructed plate motions and the geological record, but the high-dimensional parameter space is difficult for a human being to visually comprehend and quantify these associations. To achieve true spatio-temporal data-mining, new tools are needed. Here, we present a further development of the GPlates ecosystem - a Python-based tool for geotectonic analysis. In contrast to existing GPlates tools that are built around a graphical user interface (GUI) and interactive visualisation, pyGPlates offers a programming interface for the automation of quantitative plate tectonic analysis or arbitrary complexity. The vast array of open-source Python-based tools for data-mining, statistics and machine learning can now be linked to pyGPlates, allowing spatial data to be seamlessly analysed in space and geological "deep time", and with the ability to spread large computations across multiple processors. The presentation will illustrate a range of example applications, both simple and advanced. Basic examples include data querying, filtering, and reconstruction, and file-format conversions. For the innovative study of plate kinematics, pyGPlates has been used to explore the relationships between absolute

  10. Siting, design and construction of a deep geological repository for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1990-06-01

    The main objective of this document is to summarize the basic principles and approaches to siting, design and construction of a deep geological repository for disposal of high level and alpha bearing radioactive wastes, as commonly agreed upon by Member States. This report is addressed to decision makers and technical managers as well as to specialists planning for siting, design and construction of geological repositories for disposal of high level and alpha bearing wastes. This document is intended to provide Member States of the IAEA with a summary outline for the responsible implementing organizations to use for siting, designing and constructing confinement systems for high level and alpha bearing radioactive waste in accordance with the protection objectives set by national regulating authorities or derived from safety fundamentals and standards of the IAEA. The protection objectives will be achieved by the isolation of the radionuclides from the environment by a repository system, which consists of a series of man made and natural safety barriers. Engineered barriers are used to enhance natural geological containment in a variety of ways. They must complement the natural barriers to provide adequate safety and necessary redundancy to the barrier system to ensure that safety standards are met. Because of the long timescales involved and the important role of the natural barrier formed by the host rock, the site selection process is a key activity in the repository design and development programme. The choice of the site, the investigation of its geological setting, the exploration of the regional hydrogeological setting and the primary underground excavations are all considered to be part of the siting process. 16 refs

  11. Effects of gas overpressurisation on the geological environment of a deep repository

    International Nuclear Information System (INIS)

    Nash, P.J.; Rodwell, W.R.

    1990-04-01

    The effect of gas generated from the deep burial of low and intermediate level radioactive wastes is being assessed. Significant volumes of gas are expected to be produced by anaerobic corrosion of metals and microbial degradation of organic materials. Work is being carried out to determine how easily the gas generated can move away from the repository, since if its flow were impeded the pressure in the repository would rise. If the flow were sufficiently impeded then the pressure rise could ultimately lead to fracturing of the vault or the flow field environment, possibly providing pathways that could accelerate the movement of radionuclides to the surface. This study considers the effects of such an overpressurisation on the integrity of the geological environment containing the repository. It attempts to quantify the pore fluid pressures at which fracturing of hard rock masses may occur by investigating a number of models of rock failure in homogeneously stressed rock and the effects of the presence of an idealised vault on the stress field. A crack opening model has also been developed which considers the effect of the overpressurisation on the dimensions of existing cracks within the rock and hence on the value of its permeability. (Author)

  12. Siting regions for deep geological repositories. Why just here?

    International Nuclear Information System (INIS)

    Rieser, A.

    2009-09-01

    This report helps to the popularization of the Nagra works accomplished for the management and disposal of the radioactive wastes in Switzerland. The programme for management and disposal of the radioactive wastes are extensively determined by regulations. Protection of mankind and environment is the primary objective. The basic storage process is considered as having been solved. The question addressed in the report is where the facility has to be built; the site selection procedure includes five steps: 1) according to their type the wastes have to be allocated to two different repositories: for low- and intermediate-level wastes (L/ILW), and for high-level and alpha-toxic wastes (HLW); 2) the safety concept for both repositories and the requirements on the geology have to be determined; 3) large suitable geological-tectonic zones must be found where repositories could be built; 4) in these geological zones a suitable host rock has to be identified; 5) the most important spatial geological conditions of the host rock (minimum depth with respect to surface erosion, maximum depth in terms of engineering requirements, lateral extent) have to be identified. Based on these criteria, three suitable siting regions for a HLW repository were found in the North of Switzerland. The preferred host rock is Opalinus clay because of its very low permeability; it is therefore an excellent barrier against nuclide transport. In the three proposed siting regions, Opalinus clay is present in sufficient volumes at a suitable depth. For a L/ILW repository six different possible siting regions were identified, five in Northern Switzerland and one in Central Switzerland. In the three siting regions found for a possible HLW repository, it would also be possible to built a combined repository for both HLW and L/ILW wastes

  13. Santos Basin Geological Structures Mapped by Cross-gradient Method

    Science.gov (United States)

    Jilinski, P.; Fontes, S. L.

    2011-12-01

    Introduction We mapped regional-scale geological structures localized in offshore zone Santos Basin, South-East Brazilian Coast. The region is dominated by transition zone from oceanic to continental crust. Our objective was to determine the imprint of deeper crustal structures from correlation between bathymetric, gravity and magnetic anomaly maps. The region is extensively studied for oil and gas deposits including large tectonic sub-salt traps. Our method is based on gradient directions and their magnitudes product. We calculate angular differences and cross-product and access correlation between properties and map structures. Theory and Method We used angular differences and cross-product to determine correlated region between bathymetric, free-air gravity and magnetic anomaly maps. This gradient based method focuses on borders of anomalies and uses its morphological properties to access correlation between their sources. We generated maps of angles and cross-product distribution to locate correlated regions. Regional scale potential fields maps of FA and MA are a reflection of the overlaying and overlapping effects of the adjacent structures. Our interest was in quantifying and characterizing the relation between shapes of magnetic anomalies and gravity anomalies. Results Resulting maps show strong correlation between bathymetry and gravity anomaly and bathymetry and magnetic anomaly for large strictures including Serra do Mar, shelf, continental slope and rise. All maps display the regional dominance of NE-SW geological structures alignment parallel to the shore. Special interest is presented by structures transgressing this tendency. Magnetic, gravity anomaly and bathymetry angles map show large correlated region over the shelf zone and smaller scale NE-SW banded structures over abyssal plane. From our interpretation the large band of inverse correlation adjacent to the shore is generated by the gravity effect of Serra do Mar. Disrupting structures including

  14. Interaction Deep Excavation Adjacent Structure Numerical Two and Three Dimensional Modeling

    International Nuclear Information System (INIS)

    Abdallah, M.; Chehade, F. H.; Chehade, W.; Fawaz, A.

    2011-01-01

    Urban development often requires the construction of deep excavations near to buildings or other structures. We have to study complex material structure interactions where we should take into consideration several particularities. In this paper, we perform a numerical modeling with the finite element method, using PLAXIS software, of the interaction deep excavation-diaphragm wall-soil-structure in the case of non linear soil behavior. We focus our study on a comparison of the results given respectively by two and three dimensional modelings. This allows us to give some recommendations concerning the validity of twodimensional study. We perform a parametric study according to the initial loading on the structure and the struts number. (author)

  15. Radiological impact of a spent fuel disposal in a deep geological granite formation - results of the european spa project

    International Nuclear Information System (INIS)

    Baudoin, P.; Gay, D.; Certes, C.; Serres, C.

    2000-01-01

    The SPA project (Spent fuel disposal Performance Assessment) is the latest of four integrated performance assessment exercises on nuclear waste disposal in geological formations, carried out in the framework of the European Community 'Nuclear Fission' Research Programmes. The SPA project, which was undertaken by ENRESA, GRS, IPSN, NRG, SCK.CEN and VTT between May 1996 and April 1999, was devoted to the study of disposal of spent fuel in various host rock formations (clay, crystalline rocks and salt formation). This project is a direct continuation of the efforts made by the European Community since 1982 to build a common understanding of the methods applicable to deep disposal performance assessment. (authors)

  16. Study on a monitoring strategy to support decision making for geological repository closure

    International Nuclear Information System (INIS)

    Suyama, Yasuhiro; Tanabe, Hiromi; Eto, Jiro; Yoshimura, Kimitaka

    2010-01-01

    Japan currently plans to dispose of high-level radioactive wastes (vitrified HLWs) produced from the reprocessing of spent nuclear fuel in deep geological formations, in order to isolate the radioactive wastes from the human environment for tens of thousands of years. Such a geological repository must be designed to ensure operational safety and post-closure safety. Then, following the closure of the geological repository, post-closure safety will be provided by an engineered barrier system (EBS) and a natural barrier system (NBS) without relying on monitoring or institutional control. However, from a technical standpoint, monitoring has been required during backfilling in current studies. Additionally, there has been strong social pressure to continue monitoring during all the phases including post-closure. On the basis of the current situations, a monitoring strategy for geological disposal must be studied to ensure the long term safety of geological disposal. Focusing on decision making for geological repository closure, the authors have created a basic logical structure for the decision making process with the principles for ensuring safety and have developed a monitoring strategy based on the logical structure. The monitoring strategy is founded on three key aspects: the role of monitoring, boundary conditions of monitoring at the time of decision making, and a methodology for monitoring planning. Then, the monitoring strategy becomes a starting point of monitoring planning during site characterization, construction, operation and staged closure, as well as post-closure with institutional control, and of social science studies. (author)

  17. Macro- and micro- geodynamic of Terebliya-Riksk geodetic man-caused polygon of Ukrainian Carpathians influenced by specificities of structure-geological and hydro-geological conditions

    Science.gov (United States)

    Kulchyzkyy, A.; Serebryannyy, Y.; Tretyak, K.; Trevogo, I.; Zadoroznnyy, V.

    2009-04-01

    Terebliya-Riksk diversion power station is located on two levels ( with difference of 180m ) of south mountainside of Ukrainian Carpathians and separate parts of this power station lie inside rock. Therefore influential parameters of it's stability are geological, tectonic and hydrogeological conditions in complex. Monitoring of intensity and nature of displacements of flow ( pressure) pipe and other objects of power station with geoditic methods indicates that fluctuations of water-level in reservoir caused bouth by natural and artificial efects are of great influence on objects mentioned. Based on geodetical high-precision observations made by LeicaTPS 1201 robotic total station short-periodic components of fundamental vibrations which result in their destructive deformation were determined. Mathematical apparatus ( which uses function of Fourie series and theory of cinematic coefficients ) for displacements determinations of pressure pipe was disigned. Complex of engineering-geological surveys gave an opportunity to define the origin of macro- and micro- geodynamics movements of Terebliya-Riksk diversion power station region. Engineering-geological conditions which influence on power station structure most of all were determined as following : small foldings and cleavage areas appearances, also fluctuations of level of underground water (refered to hydrogeological conditions). Periodic micro-displacemets appearances ( which operate on reducing-stretching scheme) fixed on power station structure are turned to be in direct relation on to what exend reservoir is filled up. Permanent macro- displacements appearances ( which operates in north-west direction ) fixed on pressure pipe are the result sum of residual micro-displacements caused by return periodic movements and are determined by structure-geological, engineering-geological and tectonic conditions.

  18. Shallow Investigations of the Deep Seafloor: Quantitative Morphology in the Levant Basin, Eastern Mediterranean

    Science.gov (United States)

    Kanari, M.; Ketter, T.; Tibor, G.; Schattner, U.

    2017-12-01

    We aim to characterize the seafloor morphology and its shallow sub-surface structures and deformations in the deep part of the Levant basin (eastern Mediterranean) using recently acquired high-resolution shallow seismic reflection data and multibeam bathymetry, which allow quantitative analysis of morphology and structure. The Levant basin at the eastern Mediterranean is considered a passive continental margin, where most of the recent geological processes were related in literature to salt tectonics rooted at the Messinian deposits from 6Ma. We analyzed two sets of recently acquired high-resolution data from multibeam bathymetry and 3.5 kHz Chirp sub-bottom seismic reflection in the deep basin of the continental shelf offshore Israel (water depths up to 2100 m). Semi-automatic mapping of seafloor features and seismic data interpretation resulted in quantitative morphological analysis of the seafloor and its underlying sediment with penetration depth up to 60 m. The quantitative analysis and its interpretation are still in progress. Preliminary results reveal distinct morphologies of four major elements: channels, faults, folds and sediment waves, validated by seismic data. From the spatial distribution and orientation analyses of these phenomena, we identify two primary process types which dominate the formation of the seafloor in the Levant basin: structural and sedimentary. Characterization of the geological and geomorphological processes forming the seafloor helps to better understand the transport mechanisms and the relations between sediment transport and deposition in deep water and the shallower parts of the shelf and slope.

  19. Advances in the self-burial concept for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Logan, S.E.

    1996-01-01

    The self-burial concept for deep geological disposal of high-level radioactive waste seeks to utilize the radioactive decay heat emitted by the wastes to melt rock and allow descent by gravity into crystalline rock for isolation. Logan developed the governing equations for the self-disposal process in a paper published in 1973 and 1974 showing that moderate waste concentrations in capsules 1 to 2 m in diameter could descend through granite or basalt to considerable depths, in some cases grater than 10 km. Safety considerations related to filling, handling, and initial cooling of such large capsules prior to release, plus the severe container material environment, has prevented use of the concept. Byalko in Russia recently proposed using a sulfur-filled borehole as a conduit for conveying small capsules down to an accumulation zone at a safe depth of several kilometers. This advance in the self-burial concept overcomes previous problems with self-burial. First, capsules of 0.3 m or less in diameter are relatively simple to fill and handle. Second, investigations indicate that once emplaced at an initial accumulation depth, rock-melting can proceed without an enveloping waste container

  20. Swiss plans for deep geological repositories for radioactive wastes - Basics for communication at the localities affected; Sachplan geologische Tiefenlager. Forschungsprojekt 'Kommunikation mit der Gesellschaft': Grundlagen fuer die Kommunikation in den Standortregionen

    Energy Technology Data Exchange (ETDEWEB)

    Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the concept of how information concerning deep geological repositories for radioactive wastes should be presented and communicated to those in the areas which have been designated as potential sites for the repositories. Communication basics based on scientific knowledge in this area are discussed. The importance of a concept for general communication and risk-communication as a particular challenge are discussed. Trust and transparency are quoted as being indispensable in this connection. Ways of dealing with various target audiences and the media are examined. The report is concluded with a check-list that deals with important questions arising from the process of communicating information on deep geological repositories for radioactive wastes

  1. Flexible deep brain neural probes based on a parylene tube structure

    Science.gov (United States)

    Zhao, Zhiguo; Kim, Eric; Luo, Hao; Zhang, Jinsheng; Xu, Yong

    2018-01-01

    Most microfabricated neural probes have limited shank length, which prevents them from reaching many deep brain structures. This paper reports deep brain neural probes with ultra-long penetrating shanks based on a simple but novel parylene tube structure. The mechanical strength of the parylene tube shank is temporarily enhanced during implantation by inserting a metal wire. The metal wire can be removed after implantation, making the implanted probe very flexible and thus minimizing the stress caused by micromotions of brain tissues. Optogenetic stimulation and chemical delivery capabilities can be potentially integrated by taking advantage of the tube structure. Single-shank prototypes with a shank length of 18.2 mm have been developed. The microfabrication process comprises of deep reactive ion etching (DRIE) of silicon, parylene conformal coating/refilling, and XeF2 isotropic silicon etching. In addition to bench-top insertion characterization, the functionality of developed probes has been preliminarily demonstrated by implanting into the amygdala of a rat and recording neural signals.

  2. Geological Feasibility of Underground Oil Storage in Jintan Salt Mine of China

    Directory of Open Access Journals (Sweden)

    Xilin Shi

    2017-01-01

    Full Text Available A number of large underground oil storage spaces will be constructed in deep salt mines in China in the coming years. According to the general geological survey, the first salt cavern oil storage base of China is planned to be built in Jintan salt mine. In this research, the geological feasibility of the salt mine for oil storage is identified in detail as follows. (1 The characteristics of regional structure, strata sediment, and impermeable layer distribution of Jintan salt mine were evaluated and analyzed. (2 The tightness of cap rock was evaluated in reviews of macroscopic geology and microscopic measuring. (3 According to the geological characteristics of Jintan salt mine, the specific targeted formation for building underground oil storage was chosen, and the sealing of nonsalt interlayers was evaluated. (4 Based on the sonar measuring results of the salt caverns, the characteristics of solution mining salt caverns were analyzed. In addition, the preferred way of underground oil storage construction was determined. (5 Finally, the results of closed well observation in solution mining salt caverns were assessed. The research results indicated that Jintan salt mine has the basic geological conditions for building large-scale underground oil storage.

  3. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  4. Structure, functioning, and cumulative stressors of Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Sardà, Francisco

    2015-06-01

    Environmental stressors, such as climate fluctuations, and anthropogenic stressors, such as fishing, are of major concern for the management of deep-sea ecosystems. Deep-water habitats are limited by primary productivity and are mainly dependent on the vertical input of organic matter from the surface. Global change over the latest decades is imparting variations in primary productivity levels across oceans, and thus it has an impact on the amount of organic matter landing on the deep seafloor. In addition, anthropogenic impacts are now reaching the deep ocean. The Mediterranean Sea, the largest enclosed basin on the planet, is not an exception. However, ecosystem-level studies of response to varying food input and anthropogenic stressors on deep-sea ecosystems are still scant. We present here a comparative ecological network analysis of three food webs of the deep Mediterranean Sea, with contrasting trophic structure. After modelling the flows of these food webs with the Ecopath with Ecosim approach, we compared indicators of network structure and functioning. We then developed temporal dynamic simulations varying the organic matter input to evaluate its potential effect. Results show that, following the west-to-east gradient in the Mediterranean Sea of marine snow input, organic matter recycling increases, net production decreases to negative values and trophic organisation is overall reduced. The levels of food-web activity followed the gradient of organic matter availability at the seafloor, confirming that deep-water ecosystems directly depend on marine snow and are therefore influenced by variations of energy input, such as climate-driven changes. In addition, simulations of varying marine snow arrival at the seafloor, combined with the hypothesis of a possible fishery expansion on the lower continental slope in the western basin, evidence that the trawling fishery may pose an impact which could be an order of magnitude stronger than a climate

  5. 3D imaging of geological structures by R-VSP utilizing vibrations caused by shaft excavations at the Mizunami Underground Research Laboratory in Japan

    Science.gov (United States)

    Matsuoka, T.; Hodotsuka, Y.; Ishigaki, K.; Lee, C.

    2009-12-01

    Japan Atomic Energy Agency is now conducting the Mizunami Underground Research Laboratory (MIU) project. The MIU consists of two shafts (main shaft: 6.5m, ventilation shaft: 4.5m diameter) and horizontal research galleries, in sedimentary and granitic rocks at Mizunami City, Central Japan. The MIU project is a broad scientific study of the deep geological environment providing the basis for research and development for geological disposal of high level radioactive waste. One of the main goals is to establish techniques for investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. As a part of the MIU project, we carried out the Reverse-Vertical Seismic Profile (R-VSP) using vibrations from the blasting for the shaft excavations and drilling of boreholes in the horizontal research galleries and examined the applicability of this method to imaging of geological structures around underground facilities, such as the unconformity between the sedimentary rocks and the basal granite, and faults and fracture zones in the granite. R-VSP method is a seismic method utilizing the receiver arrays on surface and seismic sources underground (e.g. in boreholes). This method is advantageous in that planning of 3-dimensional surveys is easy compared with reflection seismic surveying and conventional VSP because seismic source arrays that are major constraint for conducting surveys on surface are unnecessary. The receiver arrays consist of six radial lines on surface with a central focus on the main shaft. Seven blast rounds for the main shaft excavation from GL-52.8m to GL-250m and the borehole drilling in the GL-200m horizontal research gallery were observed. Three types of data processing, conventional VSP data processing (VSP-CDP transform and VSP migration), Reflection data processing utilizing Seismic interferometry method (“Seismic interferometry”) and Reflection mapping utilizing Image Point transform method (“IP transform

  6. The Suitable Geological Formations for Spent Fuel Disposal in Romania

    International Nuclear Information System (INIS)

    Marunteanu, C.; Ionita, G.; Durdun, I.

    2007-01-01

    Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodor - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)

  7. Construction of the Geological Model around KURT area based on the surface investigations

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Koh, Yong Kwon; Kim, Kyung Su; Choi, Jong Won

    2009-01-01

    To characterize the geological features in the study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing several geological investigations such as geophysical surveys and borehole drillings since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep boreholes, which have 500 m depth inside the left research module of the KURT and 1,000 m depth outside the KURT, were drilled to confirm and validate the results from a geological model. The objective of this research was to investigate hydrogeological conditions using a 3-D geological model around the KURT. The geological analysis from the surface and borehole investigations determined four important geological elements including subsurface weathered zone, low-angled fractures zone, fracture zones and bedrock for the geological model. In addition, the geometries of these elements were also calculated for the three-dimensional model. The results from 3-D geological model in this study will be beneficial to understand hydrogeological environment in the study area as an important part of high-level radioactive waste disposal technology.

  8. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  9. Crustal structure under the central High Atlas Mountains (Morocco) from geological and gravity data

    Science.gov (United States)

    Ayarza, P.; Alvarez-Lobato, F.; Teixell, A.; Arboleya, M. L.; Tesón, E.; Julivert, M.; Charroud, M.

    2005-05-01

    Seismic wide angle and receiver function results together with geological data have been used as constraints to build a gravity-based crustal model of the central High Atlas of Morocco. Integration of a newly acquired set of gravity values with public data allowed us to undertake 2-2.5D gravity modelling along two profiles that cross the entire mountain chain. Modelling suggests moderate crustal thickening, and a general state of Airy isostatic undercompensation. Localized thickening appears restricted to the vicinity of a north-dipping crustal-scale thrust fault, that offsets the Moho discontinuity and defines a small crustal root which accounts for the minimum Bouguer gravity anomaly values. Gravity modelling indicates that this root has a northeasterly strike, slightly oblique to the ENE general orientation of the High Atlas belt. A consequence of the obliquity between the High Atlas borders and its internal and deep structure is the lack of correlation between Bouguer gravity anomaly values and topography. Active buckling affecting the crust, a highly elevated asthenosphere, or a combination of both are addressed as side mechanisms that help to maintain the high elevations of the Atlas mountains.

  10. Sediment Transport Capacity of Turbidity Currents: from Microscale to Geological Scale.

    Science.gov (United States)

    Eggenhuisen, J. T.; Tilston, M.; Cartigny, M.; Pohl, F.; de Leeuw, J.; van der Grind, G. J.

    2016-12-01

    A big question in sedimentology concerns the magnitude of fluxes of sediment particles, solute matter and dissolved gasses from shallow marine waters to deep basins by turbidity current flow. Here we establish sediment transport capacity of turbidity current flow on three levels. The most elementary level is set by the maximum amount of sediment that can be contained at the base of turbidity currents without causing complete extinction of boundary layer turbulence. The second level concerns the capacity in a vertical column within turbidity currents. The third level involves the amount of sediment that can be transported in turbidite systems on geological timescales. The capacity parameter Γ compares turbulent forces near the boundary of a turbulent suspension to gravity and buoyancy forces acting on suspended particles. The condition of Γ>1 coincides with complete suppression of coherent boundary layer turbulence in Direct Numerical Simulations of sediment-laden turbulent flow. Γ=1 coincides with the upper limit of observed suspended particle concentrations in flume and field measurements. Γ is grainsize independent, yet capacity of the full vertical structure of turbidity currents becomes grainsize dependent. This is due to the appearance of grainsize dependent vertical motions within turbulence as a primary control on the shape of the vertical concentration profile. We illustrate this dependence with experiments and theory and conclude that capacity depends on the competence of prevailing turbulence to suspend particle sizes. The concepts of capacity and competence are thus tangled. Finally, the capacity of turbidity current flow structure is coupled to geological constraints on recurrence times, channel and lobe life cycles, and allogenic forcing on system activity to arrive at system scale sediment transport capacity. We demonstrate a simple model that uses the fundamental process insight described above to estimate geological sediment budgets from

  11. Potential collapse due to geological structures influence in Seropan Cave, Gunung Kidul, Yogyakarta, Indonesia

    Science.gov (United States)

    Nugroho, B.; Pranantya, P. A.; Witjahjati, R.; Rofinus

    2018-01-01

    This study aims to estimate the potential collapse in the Seropan cave, based on the existing geological structure conditions in the cave. This is very necessary because in the Seropan cave will be built Microhydro installation for power plants. The electricity will be used to raise the underground river water in the cave to a barren soil surface, which can be used for surface irrigation. The method used is analysis the quality of rock mass along the cave. Analysis of rock mass quality using Geomechanical Classification or Rock Mass Rating (RMR), to determine the magnitude of the effect of geological structure on rock mass stability. The research path is divided into several sections and quality analysis is performed on each section. The results show that the influence of geological structure is very large and along the cave where the research there are several places that have the potential to collapse, so need to get serious attention in handling it. Nevertheless, the construction of this Microhydro installation can still be carried out by making a reinforcement on potentially collapsing parts

  12. Geologic structure mapping database Spent Fuel Test - Climax, Nevada Test Site

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1984-01-01

    Information on over 2500 discontinuities mapped at the SFT-C is contained in the geologic structure mapping database. Over 1800 of these features include complete descriptions of their orientations. This database is now available for use by other researchers. 6 references, 3 figures, 2 tables

  13. Characteristics of Chongan ring structure and its controlling role on uranium mineralization

    International Nuclear Information System (INIS)

    Liu Linqing

    2001-01-01

    A large ring structure has been discovered in Chong'an region on the basis of geological interpretation of remote sensing images. The data acquired from analysis of regional geology and in-situ investigation indicate that the ring structure is initiated during caledonian and activated for several times afterwards; It displays the highest activity during Yanshanian. Under the effect of this structure, Gulou-Masha lenticular geological body was firmed, controlling the regional distribution of uranium mineralization and anomalies occur in forms of central and bilateral symmetry. The data indicate that it is prospective to prospect uranium deposit in this region; therefore, more work should be placed on the deep levels

  14. Layer dividing and zone dividing of physical property of crust and deep structure in Jiangxi province

    International Nuclear Information System (INIS)

    Li Chunhua; Yang Yaxin; Gong Yuling; Huang Linping

    2001-01-01

    On the base of summing experiences both at home and abroad, the Bugar gravitative anomalies are studied by major means of data processing. According to the anomalous character, three layer crust models (surface layer, middle layer in region and material layer under crust) are built up, depth of upper and bottom surfaces for every layer is calculated quantitatively, their varied characters of depth are studied and deep geological tectonics are outlined. The 'density' and 'mass' of every layer are calculated, and according to these two parameters, the shallow geological tectonics are researched. The relation-factor R between the surface altitude and Bugar gravitative anomalies are calculated and the stable or unstable crust zones are divided. The favorable mine zones for uranium deposit in Jiangxi Province are outlined

  15. New developments in measurement technology relevant to the studies of deep geological repositories in domed salt and basalt

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Mao, N.H.

    1980-01-01

    This report briefly describes recent geophysical and geotechnical instrumentation developments relevant to the studies of deep geologic repositories. Special emphasis has been placed on techniques that appear to minimize measurement problems associated with repositories constructed in basalt or domed salt. Included in the listing are existing measurement capabilities and deficiencies that have been identified by a few authors and instrumentation workshops that have assessed the capabilities of existing instrumentation with respect to repository applications. These deficiencies have been compared with the reported advantages and limitations of the new developments described. Based on these comparisons, areas that merit further research and development have been identified. The report is based on a thorough literature review and on discussions with several instrumentation specialists involved in instrumentation development

  16. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finley

    2005-09-30

    reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  17. CONTRIBUTION OF SATELLITE ALTIMETRY DATA IN GEOLOGICAL STRUCTURE RESEARCH IN THE SOUTH CHINA SEA

    Directory of Open Access Journals (Sweden)

    T. D. Tran

    2016-06-01

    Full Text Available The study area is bordered on the East China Sea, the Philippine Sea, and the Australian-Indo plate in the Northeast, in the East and in the South, respectively. It is a large area with the diversely complicated conditions of geological structure. In spite of over the past many years of investigation, marine geological structure in many places have remained poorly understood because of a thick seawater layer as well as of the sensitive conflicts among the countries in the region. In recent years, the satellite altimeter technology allows of enhancement the marine investigation in any area. The ocean surface height is measured by a very accurate radar altimeter mounted on a satellite. Then, that surface can be converted into marine gravity anomaly or bathymetry by using the mathematical model. It is the only way to achieve the data with a uniform resolution in acceptable time and cost. The satellite altimetry data and its variants are essential for understanding marine geological structure. They provide a reliable opportunity to geologists and geophysicists for studying the geological features beneath the ocean floor. Also satellite altimeter data is perfect for planning the more detailed shipboard surveys. Especially, it is more meaningful in the remote or sparsely surveyed regions. In this paper, the authors have effectively used the satellite altimetry and shipboard data in combination. Many geological features, such as seafloor spreading ridges, fault systems, volcanic chains as well as distribution of sedimentary basins are revealed through the 2D, 3D model methods of interpretation of satellite-shipboard-derived data and the others. These results are improved by existing boreholes and seismic data in the study area.

  18. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  19. Tectonic constraints on a deep-seated rock slide in weathered crystalline rocks

    Science.gov (United States)

    Borrelli, Luigi; Gullà, Giovanni

    2017-08-01

    Deep-seated rock slides (DSRSs), recognised as one of the most important mass wasting processes worldwide, involve large areas and cause several consequences in terms of environmental and economic damage; they result from a complex of controlling features and processes. DSRSs are common in Calabria (southern Italy) where the complex geo-structural setting plays a key role in controlling the geometry of the failure surface and its development. This paper describes an integrated multi-disciplinary approach to investigate a DSRS in Palaeozoic high-grade metamorphic rocks of the Sila Massif; it focuses on the definition of the internal structure and the predisposing factors of the Serra di Buda landslide near the town of Acri, which is a paradigm for numerous landslides in this area. An integrated interdisciplinary study based on geological, structural, and geomorphological investigations-including field observations of weathering grade of rocks, minero-petrographic characterisations, geotechnical investigations and, in particular, fifteen years of displacement monitoring-is presented. Stereoscopic analysis of aerial photographs and field observations indicate that the Serra di Buda landslide consists of two distinct compounded bodies: (i) an older and dormant body ( 7 ha) and (ii) a more recent and active body ( 13 ha) that overlies the previous one. The active landslide shows movement linked to a deep-seated translational rock slide (block slide); the velocity scale ranges from slow (1.6 m/year during paroxysmal stages) to extremely slow (affected by weathering processes that significantly reduce the rock strength and facilitate the extensive failure of the Serra di Buda landslide. Finally, the landslide's internal structure, according to geotechnical investigations and displacement monitoring, is proposed. The proposed approach and the obtained results can be generalised to typify other deep landslides in similar geological settings.

  20. The growth of geological structures by repeated earthquakes, 1, conceptual framework

    Science.gov (United States)

    King, G.C.P.; Stein, R.S.; Rundle, J.B.

    1988-01-01

    In many places, earthquakes with similar characteristics have been shown to recur. If this is common, then relatively small deformations associated with individual earthquake cycles should accumulate over time to create geological structures. It is shown that existing models developed to describe leveling line changes associated with the seismic cycle can be adapted to explain geological features associated with a fault. In these models an elastic layer containing the fault overlies a viscous half-space with a different density. Fault motion associated with an earthquake results in immediate deformation followed by a long period of readjustment as stresses relax in the viscous layer and isostatic equilibrium is restored. The flexural rigidity of the crust (or the apparent elastic thickness) provides the main control of the width of a structure. The loading due to erosion and deposition of sediment determines the ratio of uplift to subsidence between the two sides of the fault. -Authors

  1. Deep geological repositories. Safe operation and long-term safety in the prism of reversibility

    Energy Technology Data Exchange (ETDEWEB)

    Espivent, Camille; Tichauer, Michael [IRSN, Fontenay-aux-Roses (France)

    2015-07-01

    A deep geological repository is the reference solution enshrined in the French law for the long-term management of high-level radioactive waste. The current project is led by Andra, the French radioactive waste management organization. As a technical support organization, IRSN's mission is, on the basis of the safety case produced by Andra, to assess the safety of such a facility at its various stages of development, that is to say the design, construction, operation and post-closure phases of the facility. Such a facility will have to meet specific requirements, within different time frames as stated above. One of the requirements is ''reversibility'': in fact, French law poses that the geological disposal will have to be ''reversible'' for a certain time, yet not fully defined. Reversibility is nevertheless believed encompassing both the decision making process related to the waste emplacement process during operational phase and the ability to retrieve waste, should such a decision be made. Thus, underground structures have to be designed and operated to allow both waste emplacement and removal. Moreover, future decision making about the disposal process will have to rely on a sound technical basis. This implies a data collection scheme and a monitoring program of the facility to check if the disposal process is bound by limits, controls and conditions compatible with (i) a safe operation of the facility and (ii) the state of the facility that the operator wants to achieve at the time of its closure, so that long-term safety is guaranteed. Therefore, technical criteria and key parameters have to be selected and monitored during construction and operation, that is to say for decades. Then, reversibility have to make room for corrective actions, including the retrieval of waste, if something goes wrong and especially if the facility is not seen as safe anymore, especially in the perspective of long-term safety. To

  2. Deep geological repositories. Safe operation and long-term safety in the prism of reversibility

    International Nuclear Information System (INIS)

    Espivent, Camille; Tichauer, Michael

    2015-01-01

    A deep geological repository is the reference solution enshrined in the French law for the long-term management of high-level radioactive waste. The current project is led by Andra, the French radioactive waste management organization. As a technical support organization, IRSN's mission is, on the basis of the safety case produced by Andra, to assess the safety of such a facility at its various stages of development, that is to say the design, construction, operation and post-closure phases of the facility. Such a facility will have to meet specific requirements, within different time frames as stated above. One of the requirements is ''reversibility'': in fact, French law poses that the geological disposal will have to be ''reversible'' for a certain time, yet not fully defined. Reversibility is nevertheless believed encompassing both the decision making process related to the waste emplacement process during operational phase and the ability to retrieve waste, should such a decision be made. Thus, underground structures have to be designed and operated to allow both waste emplacement and removal. Moreover, future decision making about the disposal process will have to rely on a sound technical basis. This implies a data collection scheme and a monitoring program of the facility to check if the disposal process is bound by limits, controls and conditions compatible with (i) a safe operation of the facility and (ii) the state of the facility that the operator wants to achieve at the time of its closure, so that long-term safety is guaranteed. Therefore, technical criteria and key parameters have to be selected and monitored during construction and operation, that is to say for decades. Then, reversibility have to make room for corrective actions, including the retrieval of waste, if something goes wrong and especially if the facility is not seen as safe anymore, especially in the perspective of long-term safety. To

  3. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  4. Monitoring of Deep Foundation Pit Support and Construction Process in Soft Soil Area of Pearl River Delta

    Science.gov (United States)

    Weiyi, Xie; Pengcheng

    2018-03-01

    The deep foundation pit supporting technology in the soft soil area of the Pearl River Delta is more complicated, and many factors influence and restrict it. In this project as an example, according to the geological conditions and the surrounding circumstances, the main foundation using bored piles and pre-stressed anchor cable supporting structure + five axis cement mixing pile curtain supporting form; partial use of double row piles supporting structure + five axis cement mixing pile curtain support type. Through the monitoring results of construction show that the foundation pit, the indicators of environmental changes are in the design range, the supporting scheme of deep foundation pit technology is feasible and reliable.

  5. The use of scientific and technical results from underground research laboratory investigations for the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2001-09-01

    The objective of the report is to provide information on the use of results obtained from underground research laboratory investigations for the development of a deep geological repository system for long lived and/or high level radioactive waste including spent fuel. Specifically, it should provide Member States that intend to start development of a geological disposal system with an overview of existing facilities and of the sorts and quality of results that have already been acquired. The report is structured into six main themes: rock characterization methodologies and testing; assessment of the geological barrier; assessment of the engineered barrier system; respository construction techniques; demonstration of repository operations; confidence building and international co-operation

  6. Considerations on pressure build-up in deep geological repositories for radioactive waste; Betrachtungen zum Druckaufbau in einem geologischen Tiefenlager fuer radioaktive Abfaelle

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Hans-Frieder [Paul Scherrer Institut, Villigen-PSI (Switzerland)

    2015-07-01

    Gas formation caused by corrosion of metals is a pivotal point with respect to the safety analysis of deep geological repositories. Solid corrosion products are formed unavoidably during the gas formation. The volumes of these solid corrosion products are multiples of the original waste volume. These solid corrosion products are chemically extremely stable and result in a pressure increase inside the repository. This pressure is considerably higher than that of the overlaying rock. The question that arises is, why this aspect is not considered in the consulted documents.

  7. Monte-Carlo based comparison of the personal dose for emplacement scenarios of spent nuclear fuel casks in generic deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Hector Sauri; Becker, Franz; Metz, Volker [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal (INE); Pang, Bo [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Nuclear Waste Disposal (INE); Shenzhen Univ. (China). College of Physics and Energy

    2017-06-15

    In the operational phase of a deep geological disposal facility for high-level nuclear waste, the radiation field in the vicinity of a waste cask is influenced by the backscattered radiation of the surrounding walls of the emplacement drift. For a comparison of disposal of spent nuclear fuel in various host rocks, it is of interest to investigate the influence of the surrounding materials on the radiation field and the personal radiation exposure. In this generic study individual dosimetry of personnel involved in emplacement of casks with spent nuclear fuel in drifts in rock salt and in a clay formation was modelled.

  8. Geology and bedrock engineering

    International Nuclear Information System (INIS)

    1985-11-01

    This book deals with geology of Korea which includes summary, geology in central part and southern part in Korea and characteristic of geology structure, limestone like geology property of limestone, engineered property of limestone, and design and construction case in limestone area. It also introduces engineered property of the cenozoic, clay rock and shale, geologic and engineered property of phyllite and stratum.

  9. Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong, southern China

    Science.gov (United States)

    Bai, Denghai; Meju, Maxwell A.; Liao, Zhijie

    2001-12-01

    Broadband (0.004-4096s) magnetotelluric (MT) soundings have been applied to the determination of the deep structure across the Rehai geothermal field in a Quaternary volcanic area near the Indo-Eurasian collisional margin. Tensorial analysis of the data show evidence of weak to strong 3-D effects but for approximate 2-D imaging, we obtained dual-mode MT responses for an assumed strike direction coincident with the trend of the regional-scale faults and with the principal impedance azimuth at long periods. The data were subsequently inverted using different approaches. The rapid relaxation inversion models are comparable to the sections constructed from depth-converted invariant impedance phase data. The results from full-domain 2-D conjugate-gradient inversion with different initial models are concordant and evoke a picture of a dome-like structure consisting of a conductive (50-1000 Ωm) cap which is about 5-6km thick in the central part of the known geothermal field and thickens outwards to about 15-20km. The anomalous structure rests on a mid-crustal zone of 20-30 Ωm resistivity extending down to about 25km depth where there appears to be a moderately resistive (>30 Ωm) substratum. The MT images are shown to be in accord with published geological, isotopic and geochemical results that suggested the presence of a magma body underneath the area of study.

  10. Geophysical prospecting for the deep geothermal structure of the Zhangzhou basin, Southeast China

    Science.gov (United States)

    Wu, Chaofeng; Liu, Shuang; Hu, Xiangyun; Wang, Guiling; Lin, Wenjing

    2017-04-01

    Zhangzhou basin located at the Southeast margins of Asian plate is one of the largest geothermal fields in Fujian province, Southeast China. High-temperature natural springs and granite rocks are widely distributed in this region and the causes of geothermal are speculated to be involved the large number of magmatic activities from Jurassic to Cretaceous periods. To investigate the deep structure of Zhangzhou basin, magnetotelluric and gravity measurements were carried out and the joint inversion of magnetotelluric and gravity data delineated the faults and the granites distributions. The inversion results also indicated the backgrounds of heat reservoirs, heat fluid paths and whole geothermal system of the Zhangzhou basin. Combining with the surface geological investigation, the geophysical inversion results revealed that the faults activities and magma intrusions are the main reasons for the formation of geothermal resources of the Zhangzhou basin. Upwelling mantle provides enormous heats to the lower crust leading to metamorphic rocks to be partially melt generating voluminous magmas. Then the magmas migration and thermal convection along the faults warm up the upper crust. So finally, the cap rocks, basements and major faults are the three favorable conditions for the formation of geothermal fields of the Zhangzhou basin.

  11. Deep structure of crust and the upper mantle of the Mendeleev Rise on the Arktic­-2012 DSS profile

    DEFF Research Database (Denmark)

    Kashubin, Sergey; Petrov, Oleg; Artemieva, Irina

    2016-01-01

    During high­latitude combined geological and geophysical expedition “Arctic­-2012”, deep seismic sounding (DSS) with ocean bottom seismometers were carried out in the Arctic Ocean along the line 740 km long, crossing the Mendeleev Rise at about 77° N. Crustal and upper mantle Vp­velocity and Vp...

  12. Northeastern Regional geologic characterization report. Volume 1. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. For each of the states within the Northeastern Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, postemplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major ground-water discharge zones, ground-water resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crusal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline bodies; ground-water resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented on the relationship between the US Department of Energy (DOE) Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process

  13. Deep borehole investigations on the southwest side of the Asse anticline

    International Nuclear Information System (INIS)

    Klarr, K.; Kolditz, H.; Kull, H.; Schmidt, M.W.; Schweinsberg, A.; Steinberg, S.; Starke, C.; Wallmueller, R.

    1990-09-01

    By means of five deep borings on the south-west side of the Asse anticline, the roof rock strata series in the vicinity of the mine building erected eastwestwards, and potentials aquiferous geologic horizons were investigated. A seismic cross profile gives a survey of the whole geologic structure of the Asse salt mine. Geologic and hydrogeologic explorations of the roof rock were carried out to analyse the characteristic formation and stratification of the rock strata adjacent to the Zechstein salt anticline in respect of their water-carrying and water-impounding features, as well as the saliniferous interstratification in the Keuper, Middle Shell-lime and Upper Bunter. Geomechanic and sediment-petrographic laboratory investigations on drill cores made it possible to determine the stiffness and jointing of the roof rock strata. Using borehole measurements, rock parameters measured in situ by geophysical methods were determined and the roof rock lithology described. (HP) [de

  14. Decommissioning of surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes

    International Nuclear Information System (INIS)

    Heckman, R.A.

    1978-11-01

    A methodology is presented in this paper to evaluate the decommissioning of the surface facilities associated with repositories for the deep geological disposal of high-level nuclear wastes. A cost/risk index (figure of merit), expressed as $/manrem, is proposed as an evaluation criteria. On the basis of this cost/risk index, we gain insight into the advisability of adapting certain decontamination design options into the original facility. Three modes are considered: protective storage, entombment, and dismantlement. Cost estimates are made for the direct labor involved in each of the alternative modes for a baseline design case. Similarly, occupational radiation exposures are estimated, with a larger degree of uncertainty, for each of the modes. Combination of these estimates produces the cost/risk index. To illustrate the methodology, an example using a preliminary baseline repository design is discussed

  15. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier. Two technologies for storage of the captured CO2 are reviewed--sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies. This review also includes discussion of possible problems related to deep injection of CO2. There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring. Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal

  16. Deep geological disposal system development; mechanical structural stability analysis of spent nuclear fuel disposal canister under the internal/external pressure variation

    Energy Technology Data Exchange (ETDEWEB)

    Kwen, Y. J.; Kang, S. W.; Ha, Z. Y. [Hongik University, Seoul (Korea)

    2001-04-01

    This work constitutes a summary of the research and development work made for the design and dimensioning of the canister for nuclear fuel disposal. Since the spent nuclear fuel disposal emits high temperature heats and much radiation, its careful treatment is required. For that, a long term(usually 10,000 years) safe repository for spent fuel disposal should be securred. Usually this repository is expected to locate at a depth of 500m underground. The canister construction type introduced here is a solid structure with a cast iron insert and a corrosion resistant overpack, which is designed for spent nuclear fuel disposal in a deep repository in the crystalline bedrock, which entails an evenly distributed load of hydrostatic pressure from undergroundwater and high pressure from swelling of bentonite buffer. Hence, the canister must be designed to withstand these high pressure loads. Many design variables may affect the structural strength of the canister. In this study, among those variables array type of inner baskets and thicknesses of outer shell and lid and bottom are tried to be determined through the mechanical linear structural analysis, thicknesses of outer shell is determined through the nonlinear structural analysis, and the bentonite buffer analysis for the rock movement is conducted through the of nonlinear structural analysis Also the thermal stress effect is computed for the cast iron insert. The canister types studied here are one for PWR fuel and another for CANDU fuel. 23 refs., 60 figs., 23 tabs. (Author)

  17. Guidelines for the operation and closure of deep geological repositories for the disposal of high level and alpha bearing wastes

    International Nuclear Information System (INIS)

    1991-10-01

    The operation and closure of a deep geological repository for the disposal of high level and alpha bearing wastes is a long term project involving many disciplines. This unique combination of nuclear operations in a deep underground location will require careful planning by the operating organization. The basic purpose of the operation stage of the deep repository is to ensure the safe disposal of the radioactive wastes. The purpose of the closure stage is to ensure that the wastes are safely isolated from the biosphere, and that the surface region can be returned to normal use. During these two stages of operation and closure, it is essential that both workers and the public are safely protected from radiation hazards, and that workers are protected from the hazards of working underground. For these periods of the repository, it is essential to carry out monitoring for purposes of radiological protection, and to continue testing and investigations to provide data for repository performance confirmation and for final safety assessment. Over the lengthy stages of operation and closure, there will be substantial feedback of experience and generation of site data. These will lead both to improved quality of operation and a better understanding of the site characteristics, thereby enhancing the confidence in the ability of the repository system to isolate the waste and protect future generations. 15 refs

  18. Deep boreholes; Tiefe Bohrloecher

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido [Gesellschaft fuer Anlagen- und Reaktorsicherheit gGmbH Koeln (Germany); Charlier, Frank [NSE international nuclear safety engineering gmbh, Aachen (Germany); Geckeis, Horst [Karlsruher Institut fuer Technologie (Germany). Inst. fuer Nukleare Entsorgung; and others

    2016-02-15

    The report on deep boreholes covers the following subject areas: methods for safe enclosure of radioactive wastes, requirements concerning the geological conditions of possible boreholes, reversibility of decisions and retrievability, status of drilling technology. The introduction covers national and international activities. Further chapters deal with the following issues: basic concept of the storage in deep bore holes, status of the drilling technology, safe enclosure, geomechanics and stability, reversibility of decisions, risk scenarios, compliancy with safe4ty requirements and site selection criteria, research and development demand.

  19. Subsurface geology of the Cold Creek syncline

    International Nuclear Information System (INIS)

    Meyers, C.W.; Price, S.M.

    1981-07-01

    Bedrock beneath the Hanford Site is being evaluated by the Basalt Waste Isolation Project (BWIP) for possible use by the US Department of Energy as a geologic repository for nuclear waste storage. Initial BWIP geologic and hydrologic studies served to determine that the central Hanford Site contains basalt flows with thick, dense interiors that have low porosities and permeabilities. Furthermore, within the Cold Creek syncline, these flows appear to be nearly flat lying across areas in excess of tens of square kilometers. Such flows have been identified as potential repository host rock candidates. The Umtanum flow, which lies from 900 to 1150 m beneath the surface, is currently considered the leading host rock candidate. Within the west-central Cold Creek syncline, a 47-km 2 area designated as the reference repository location (RRL) is currently considered the leading candidate site. The specific purpose of this report is to present current knowledge of stratigraphic, lithologic, and structural factors that directly relate to the suitability of the Umtanum flow within the Cold Creek syncline for use as a nuclear waste repository host rock. The BWIP geologic studies have concentrated on factors that might influence groundwater transport of radionuclides from this flow. These factors include: (1) intraflow structures within the interiors of individual lava flows, (2) interflow zones and flow fronts between adjacent lava flows, and (3) bedrock structures. Data have been obtained primarily through coring and geophysical logging of deep boreholes, petrographic, paleomagnetic, and chemical analysis, seismic-reflection, gravity, and magnetic (ground and multilevel airborne) surveys, and surface mapping. Results included in this document comprise baseline data which will be utilized to prepare a Site Characterization Report as specified by the US Nuclear Regulatory Commission

  20. Geological safety aspects of nuclear waste disposalin in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, L; Hakkarainen, V; Kaija, J; Kuivamaki, A; Lindberg, A; Paananen, M; Paulamaki, S; Ruskeeniemi, T

    2011-07-01

    The management of nuclear waste from Finnish power companies is based on the final geological disposal of encapsulated spent fuel at a depth of several hundreds of metres in the crystalline bedrock. Permission for the licence requires that the safety of disposal is demonstrated in a safety case showing that processes, events and future scenarios possibly affecting the performance of the deep repository are appropriately understood. Many of the safety-related issues are geological in nature. The Precambrian bedrock of Finland has a long history, even if compared with the time span considered for nuclear waste disposal, but the northern location calls for a detailed study of the processes related to Quaternary glaciations. This was manifested in an extensive international permafrost study in northern Canada, coordinated by GTK. Hydrogeology and the common existence of saline waters deep in the bedrock have also been targets of extensive studies, because water chemistry affects the chemical stability of the repository near-field, as well as radionuclide transport. The Palmottu natural analogue study was one of the international high-priority natural analogue studies in which transport phenomena were explored in a natural geological system. Currently, deep biosphere processes are being investigated in support of the safety of nuclear waste disposal. (orig.)

  1. Aesthetics-based classification of geological structures in outcrops for geotourism purposes: a tentative proposal

    Science.gov (United States)

    Mikhailenko, Anna V.; Nazarenko, Olesya V.; Ruban, Dmitry A.; Zayats, Pavel P.

    2017-03-01

    The current growth in geotourism requires an urgent development of classifications of geological features on the basis of criteria that are relevant to tourist perceptions. It appears that structure-related patterns are especially attractive for geotourists. Consideration of the main criteria by which tourists judge beauty and observations made in the geodiversity hotspot of the Western Caucasus allow us to propose a tentative aesthetics-based classification of geological structures in outcrops, with two classes and four subclasses. It is possible to distinguish between regular and quasi-regular patterns (i.e., striped and lined and contorted patterns) and irregular and complex patterns (paysage and sculptured patterns). Typical examples of each case are found both in the study area and on a global scale. The application of the proposed classification permits to emphasise features of interest to a broad range of tourists. Aesthetics-based (i.e., non-geological) classifications are necessary to take into account visions and attitudes of visitors.

  2. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  3. Geological Study of Monica Pintado mine. Florida town

    International Nuclear Information System (INIS)

    Medina, E.; Carrion, R.

    1988-01-01

    This work is about the geological study carried in Monica Pintado mine in Florida town by photointepretation - scale 1.20.000. In the area were found rocks granites, deep metamorfites and black granite

  4. The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art. Symposium Proceedings, 7-9 October 2013, Paris, France

    International Nuclear Information System (INIS)

    2014-01-01

    In 2007, the Nuclear Energy Agency (NEA), in concert with the International Atomic Energy Agency (IAEA) and the European Commission (EC), organised a Symposium, entitled 'Safety Cases for the Deep Disposal of Radioactive Waste: Where Do We Stand?' (NEA, 2008). Since then, there have been major developments in a number of national geological disposal programmes and significant experience has been obtained in preparing and reviewing cases for the operational and long-term safety of proposed and operating geological repositories. Especially, three national programmes are now, or will shortly be, at the stage of licence application for a deep geological repository for the disposal of spent nuclear fuel or high-level and other long-lived radioactive waste. Thus, the purpose of this Symposium, 'The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art', was to assess the practice, understanding and roles of the safety case, as applied internationally at all stages of repository development, including the interplay of technical, regulatory and societal issues, as they have developed since 2007. In particular, the symposium aims were: - to share experiences on preparing for, developing and documenting a safety case from both the implementer's and reviewer's perspectives; - to share developments in requirements, expectations and experience gained in judging the adequacy of safety cases; - to identify issues that may arise as repository programmes mature; - to understand the importance of a safety case in promoting and gaining societal confidence; - to gain experience from other fields of industry and technology in which concepts similar to the safety case are applied; - to receive indications useful to the future working programme of the NEA and other international organisations. The symposium was organised into main plenary sessions covering: - international activities and experience related to the safety case since 2007, including

  5. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ( 18 O, 2 H, 13 C, 34 S, 87 Sr, 15 N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs

  6. Confidence in the long-term safety of deep geological repositories. Its development and communication

    International Nuclear Information System (INIS)

    1999-01-01

    The technical aspects of confidence have been the subject of considerable debate, especially the concept of model validation. The safety case that is provided at a particular stage in the planning, construction, operation or closure of a deep geological repository is a part of a broader decision basis that guides the repository-development process. The basic steps for deriving the safety case at various stages of repository development involve: a safety assessment; and the documentation of the safety assessment, a statement of confidence in the safety indicated by the assessment, and the confirmation of the appropriateness of the safety strategy. The approaches to establish confidence in the evaluation of safety should aim to ensure that the decisions taken within the incremental process of repository development are well-founded. Various aspects of confidence in the evaluation of safety, and their integration within a safety case, are presented in detail in the present report. When communicating confidence in the findings of a safety assessment, clarity in the communication of concepts is always required. Consistent with this requirement, key concepts are specifically defined in the main text of the report. (R.P.)

  7. Feasibility study for siting of a deep repository within the Malaa municipality

    International Nuclear Information System (INIS)

    1996-03-01

    Factors of importance for localizing a deep nuclear waste repository at Malaa in northern Sweden are analyzed in this study. The geologic structures of the area have been reviewed, using mostly data from published studies. Existing infrastructure and necessary improvements are discussed, as well as land use, environment, employment and other social effects. (This report is almost identical to the report NEI-SE--222, referred to in INIS 27:12 (AN: 27-040802))

  8. Acoustic emission localization on ship hull structures using a deep learning approach

    DEFF Research Database (Denmark)

    Georgoulas, George; Kappatos, Vassilios; Nikolakopoulos, George

    2016-01-01

    In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high dimension......In this paper, deep belief networks were used for localization of acoustic emission events on ship hull structures. In order to avoid complex and time consuming implementations, the proposed approach uses a simple feature extraction module, which significantly reduces the extremely high...

  9. The study of fracture mineralization and relationship with high level radioactive waste of deep geological repository

    International Nuclear Information System (INIS)

    Reyes, Cristina N.

    2003-01-01

    Extensive investigations of the Ordovician, Dinantian and Permo-Triassic rocks of the Sellafield area of northwest England were undertaken by United Kingdom Nirex Ltd. as a possible national site for geological disposal of intermediate and low-level radioactive waste. Very detailed studies of fracture mineralisation at Sellafield were thus put in hand by Nirex Ltd. and the results summarised by the British Geological Survey. Deep (up to 2 km) boreholes were put down with excellent core recovery. It is generally agreed that the most significant pathway for the escape of all but a very few radionuclides is by solution in and advection of groundwater. In this context, rock fracture systems are particularly important because they offer a potentially rapid pathway to the surface and the biosphere. One striking aspect of this work is that the fracture mineralisation seemingly records major and rapid fluctuations in redox conditions -sometimes during apparently continuous precipitation of cements (ferroan and non-ferroan calcites, dolomite). Carbonate cements record variations in Fe 2+ availability. Fe(III) precipitates also as oxide (hematite) and Fe(II) as sulphide (pyrite). This study focuses on these elements and valence states and also on Mn; another element susceptible to redox controls but known to respond differently from Fe. Shallow sub-surface stores or repositories would be more likely to have oxidising or fluctuating redox conditions. The mineralisation sequences documented at Sellafield are potentially promising in this context. Ferroan carbonate cements are sensitive indicators of later movement of oxidising ground waters. (author)

  10. Internet-based information system of digital geological data providing

    Science.gov (United States)

    Yuon, Egor; Soukhanov, Mikhail; Markov, Kirill

    2015-04-01

    One of the Russian Federal аgency of mineral resources problems is to provide the geological information which was delivered during the field operation for the means of federal budget. This information should be present in the current, conditional form. Before, the leading way of presenting geological information were paper geological maps, slices, borehole diagrams reports etc. Technologies of database construction, including distributed databases, technologies of construction of distributed information-analytical systems and Internet-technologies are intensively developing nowadays. Most of geological organizations create their own information systems without any possibility of integration into other systems of the same orientation. In 2012, specialists of VNIIgeosystem together with specialists of VSEGEI started the large project - creating the system of providing digital geological materials with using modern and perspective internet-technologies. The system is based on the web-server and the set of special programs, which allows users to efficiently get rasterized and vectorised geological materials. These materials are: geological maps of scale 1:1M, geological maps of scale 1:200 000 and 1:2 500 000, the fragments of seamless geological 1:1M maps, structural zoning maps inside the seamless fragments, the legends for State geological maps 1:200 000 and 1:1 000 000, full author's set of maps and also current materials for international projects «Atlas of geological maps for Circumpolar Arctic scale 1:5 000 000» and «Atlas of Geologic maps of central Asia and adjacent areas scale 1:2 500 000». The most interesting and functional block of the system - is the block of providing structured and well-formalized geological vector materials, based on Gosgeolkart database (NGKIS), managed by Oracle and the Internet-access is supported by web-subsystem NGKIS, which is currently based on MGS-Framework platform, developed by VNIIgeosystem. One of the leading elements

  11. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Directory of Open Access Journals (Sweden)

    Kaláb Zdeněk

    2017-07-01

    Full Text Available This paper deals with the seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel in the Czech Republic. The basic source of data for historical earthquakes up to 1990 was the seismic website [10]. The most intense earthquake described occurred on September 15, 1590 in the Niederroesterreich region (Austria in the historical period; its reported intensity is Io = 8-9. The source of the contemporary seismic data for the period since 1991 to the end of 2014 was the website [11]. It may be stated based on the databases and literature review that in the period from 1900, no earthquake exceeding magnitude 5.1 originated in the territory of the Czech Republic.

  12. Radionuclide migration in geological formations

    International Nuclear Information System (INIS)

    Barbreau, A.; Heremans, R.; Skytte Jensen, B.

    1980-01-01

    Radioactive waste disposal into geological formation is based on the capacity of rocks to confine radioactivity for a long period of time. Radionuclide migration from the repository to the environment depends on different mechanisms and phenomena whose two main ones are groundwater flow and the retention and ion-exchange property of rocks. Many studies are underway presently in EEC countries concerning hydrodynamic characteristics of deep geological formations as well as in radionuclide retention capacity and modelling. Important results have already been achieved which show the complexity of some phenomena and further studies shall principally be developed taking into account real conditions of the repository and its environment

  13. Public perceptions of geology

    Science.gov (United States)

    Gibson, Hazel; Stewart, Iain; Anderson, Mark; Pahl, Sabine; Stokes, Alison

    2014-05-01

    Geological issues are increasingly intruding on the everyday lives of ordinary people. Whether it be onshore exploration and extraction of oil and gas, deep injection of water for geothermal power or underground storage of carbon dioxide and radioactive waste, many communities across Europe are being faced with potentially contested geological activity under their backyard. As well as being able to communicate the technical aspects of such work, geoscience professionals also need to appreciate that for most people the subsurface is an unfamiliar realm. In order to engage communities and individuals in effective dialogue about geological activities, an appreciation of what 'the public' already know and what they want to know is needed, but this is a subject that is in its infancy. In an attempt to provide insight into these key issues, this study examines the concerns the public have, relating to geology, by constructing 'Mental Models' of people's perceptions of the subsurface. General recommendations for public engagement strategies will be presented based on the results of selected case studies; specifically expert and non-expert mental models for communities in the south-west of England.

  14. A study on the regional geological setting of uranium metallogenesis in Lu-Zong region

    International Nuclear Information System (INIS)

    Chen Yifeng; Ma Changming; Fan Huanxin

    1996-01-01

    This paper presents a new understanding of features of main ore-bearing horizons and magmatic rocks, evolution regularities, regional tectonic characteristics and the compositions and formation of the Yangtze tectonic belt in Lu-Zong region. Favourable horizons, magmatic series of Yangtze-type crust-mantle mixed melting magmatic rocks, activities of regional gigantic deep-seated faults and their subsidiary structures provided good regional geological setting for the formation of uranium and polymetallic mineral resources in this region

  15. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  16. Study on high-level waste geological disposal metadata model

    International Nuclear Information System (INIS)

    Ding Xiaobin; Wang Changhong; Zhu Hehua; Li Xiaojun

    2008-01-01

    This paper expatiated the concept of metadata and its researches within china and abroad, then explain why start the study on the metadata model of high-level nuclear waste deep geological disposal project. As reference to GML, the author first set up DML under the framework of digital underground space engineering. Based on DML, a standardized metadata employed in high-level nuclear waste deep geological disposal project is presented. Then, a Metadata Model with the utilization of internet is put forward. With the standardized data and CSW services, this model may solve the problem in the data sharing and exchanging of different data form A metadata editor is build up in order to search and maintain metadata based on this model. (authors)

  17. Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time

    Directory of Open Access Journals (Sweden)

    Daniel J. Conley

    2017-12-01

    Full Text Available Biosilicification has driven variation in the global Si cycle over geologic time. The evolution of different eukaryotic lineages that convert dissolved Si (DSi into mineralized structures (higher plants, siliceous sponges, radiolarians, and diatoms has driven a secular decrease in DSi in the global ocean leading to the low DSi concentrations seen today. Recent studies, however, have questioned the timing previously proposed for the DSi decreases and the concentration changes through deep time, which would have major implications for the cycling of carbon and other key nutrients in the ocean. Here, we combine relevant genomic data with geological data and present new hypotheses regarding the impact of the evolution of biosilicifying organisms on the DSi inventory of the oceans throughout deep time. Although there is no fossil evidence for true silica biomineralization until the late Precambrian, the timing of the evolution of silica transporter genes suggests that bacterial silicon-related metabolism has been present in the oceans since the Archean with eukaryotic silicon metabolism already occurring in the Neoproterozoic. We hypothesize that biological processes have influenced oceanic DSi concentrations since the beginning of oxygenic photosynthesis.

  18. Deep Convolutional Neural Networks: Structure, Feature Extraction and Training

    Directory of Open Access Journals (Sweden)

    Namatēvs Ivars

    2017-12-01

    Full Text Available Deep convolutional neural networks (CNNs are aimed at processing data that have a known network like topology. They are widely used to recognise objects in images and diagnose patterns in time series data as well as in sensor data classification. The aim of the paper is to present theoretical and practical aspects of deep CNNs in terms of convolution operation, typical layers and basic methods to be used for training and learning. Some practical applications are included for signal and image classification. Finally, the present paper describes the proposed block structure of CNN for classifying crucial features from 3D sensor data.

  19. Deep inelastic structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    Sanjose, V.; Vento, V.; Centro Mixto CSIC/Valencia Univ., Valencia

    1989-01-01

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.)

  20. Deep inelastic structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V. (Valencia Univ. (Spain). Dept. de Didactica de las Ciencias Experimentales); Vento, V. (Valencia Univ. (Spain). Dept. de Fisica Teorica; Centro Mixto CSIC/Valencia Univ., Valencia (Spain). Inst. de Fisica Corpuscular)

    1989-10-02

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.).

  1. North Central Regional geologic characterization report. Volume 1. Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report presents available geologic information pertinent to siting a repository for high-level nuclear waste in crystalline rock in Minnesota, Wisconsin, and the Upper Peninsula of Michigan. For each of the states within the North Central Region, information is provided on the geologic disqualifying factor and the geologic regional screening variables to be used in region-to-area screening. The geologic factor and variables include deep mines and quarries, rock mass extent, post-emplacement faulting, suspected Quaternary faulting, seismicity, rock and mineral resources, major groundwater discharge zones, groundwater resources, state of stress, thickness of rock mass, and thickness of overburden. Information is presented on age, areal extent, shape, composition, texture, degree and type of alteration, thickness, and structural features associated with each rock body or complex. Regional seismic and tectonic information is presented, including patterns of earthquake occurrence, earthquake magnitudes, horizontal ground accelerations, and vertical crustal movements. Also included are discussions of the rock and mineral deposits or mines located within or near crystalline rock bodies; groundwater resources and regional hydrology; postulated changes in climate and the associated effects; and landforms, surface processes, and surficial materials on or near the rock bodies. A discussion is also presented of the relationship between the US Department of Energy Siting Guidelines (10 CFR 960) and the geologic disqualifying factor and regional screening variables to be used in the region-to-area screening process. 43 figs., 15 tabs

  2. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    International Nuclear Information System (INIS)

    Ashby, J.P.; Rawlings, G.E.; Soto, C.A.; Wood, D.F.; Chorley, D.W.

    1979-12-01

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed

  3. Derivation of parameters necessary for the evaluation of performance of sites for deep geological repositories with particular reference to bedded salt, Livermore, California. Volume I. Main text

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, J.P.; Rawlings, G.E.; Soto, C.A.; Wood, D.F.; Chorley, D.W.

    1979-12-01

    A survey of parameters to be considered in the evaluation of sites for deep geologic nuclear waste repositories is presented. As yet, no comprehensive site selection procedure or performance evaluation approach has been adopted. A basis is provided for the development of parameters by discussing both site selection and performance evaluation. Three major groups of parameters are considered in this report: geologic, mining/rock mechanics, and hydrogeologic. For each type, the role of the parameter in the evaluation of repository sites is discussed. The derivation of the parameter by measurement, correlation, inference, or other method is discussed. Geologic parameters define the framework of the repository site and can be used in development of conceptual models and the prediction of long-term performance. Methods for deriving geological parameters include mapping, surveying, drilling, geophysical investigation, and historical and regional analysis. Rock mechanics/mining parameters are essential for the prediction of short-term performance and the development of initial conditions for modeling of long-term performance. Rock mechanics/mapping parameters can be derived by field or laboratory investigation, correlation, and theoretically or empirically based inference. Hydrogeologic parameters are the most important for assessment of long-term radionuclide confinement, since transport throughout the regional hydrogeologic system is the most likely mode of radionuclide escape from geologic repositories. Hydrogeologic parameters can be derived by hydrogeologic mapping and interpretation, hydrogeologic system modeling, field measurements, and lab tests. Procedures used in determination and statistical evaluation of geologic and rock mechanics parameters are discussed.

  4. Analyses of the deep borehole drilling status for a deep borehole disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Choi, Heui Joo; Lee, Min Soo; Kim, Geon Young; Kim, Kyung Su [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The purpose of disposal for radioactive wastes is not only to isolate them from humans, but also to inhibit leakage of any radioactive materials into the accessible environment. Because of the extremely high level and long-time scale radioactivity of HLW(High-level radioactive waste), a mined deep geological disposal concept, the disposal depth is about 500 m below ground, is considered as the safest method to isolate the spent fuels or high-level radioactive waste from the human environment with the best available technology at present time. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general status of deep drilling technologies was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, very preliminary applicability of deep drilling technology for deep borehole disposal analyzed. In this paper, as one of key technologies of deep borehole disposal system, the general status of deep drilling technologies in oil industry, geothermal industry and geo scientific field was reviewed for deep borehole disposal of high level radioactive wastes. Based on the results of these review, the very preliminary applicability of deep drilling technology for deep borehole disposal such as relation between depth and diameter, drilling time and feasibility classification was analyzed.

  5. Geological and Seismic Data Mining For The Development of An Interpretation System Within The Alptransit Project

    Science.gov (United States)

    Klose, C. D.; Giese, R.; Löw, S.; Borm, G.

    Especially for deep underground excavations, the prediction of the locations of small- scale hazardous geotechnical structures is nearly impossible when exploration is re- stricted to surface based methods. Hence, for the AlpTransit base tunnels, exploration ahead has become an essential component of the excavation plan. The project de- scribed in this talk aims at improving the technology for the geological interpretation of reflection seismic data. The discovered geological-seismic relations will be used to develop an interpretation system based on artificial intelligence to predict hazardous geotechnical structures of the advancing tunnel face. This talk gives, at first, an overview about the data mining of geological and seismic properties of metamorphic rocks within the Penninic gneiss zone in Southern Switzer- land. The data results from measurements of a specific geophysical prediction system developed by the GFZ Potsdam, Germany, along the 2600 m long and 1400 m deep Faido access tunnel. The goal is to find those seismic features (i.e. compression and shear wave velocities, velocity ratios and velocity gradients) which show a significant relation to geological properties (i.e. fracturing and fabric features). The seismic properties were acquired from different tomograms, whereas the geolog- ical features derive from tunnel face maps. The features are statistically compared with the seismic rock properties taking into account the different methods used for the tunnel excavation (TBM and Drill/Blast). Fracturing and the mica content stay in a positive relation to the velocity values. Both, P- and S-wave velocities near the tunnel surface describe the petrology better, whereas in the interior of the rock mass they correlate to natural micro- and macro-scopic fractures surrounding tectonites, i.e. cataclasites. The latter lie outside of the excavation damage zone and the tunnel loos- ening zone. The shear wave velocities are better indicators for rock

  6. Feasibility study for siting of a deep repository within the Malaa municipality

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Factors of importance for localizing a deep nuclear waste repository at Malaa in northern Sweden are analyzed in this study. The geologic structures of the area have been reviewed, using mostly data from published studies. Existing infrastructure and necessary improvements are discussed, as well as land use, environment, employment and other social effects. (This report is almost identical to the report NEI-SE--222, referred to in INIS 27:12 (AN: 27-040802)). 47 refs, 41 figs, 8 tabs.

  7. Redox reactions induced by hydrogen in deep geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Truche, L.

    2009-10-01

    The aim of this study is to evaluate the abiotic hydrogen reactivity in deep geological nuclear waste storage. One crucial research interest concerns the role of H 2 as a reducing agent for the aqueous/mineral oxidised species present in the site. Preliminary batch experiments carried out with Callovo-Oxfordian argillite, synthetic pore water and H 2 gas lead to an important H 2 S production, in only few hours at 250 C to few months at 90 C. In order to explore whether H 2 S can originate from sulphate or pyrite (few percents of the argillite) reduction we performed dedicated experiments. Sulphate reduction experimented in di-phasic systems (water+gas) at 250-300 C and under 4 to 16 bar H 2 partial pressure exhibits a high activation energy (131 kJ/mol) and requires H 2 S initiation and low pH condition as already observed in other published TSR experiments. The corresponding half-life is 210,000 yr at 90 C (thermal peak of the site). On the contrary, pyrite reduction into pyrrhotite by H 2 occurs in few days at temperature as low as 90 C at pH buffered by calcite. The rate of the reaction could be described by a diffusion-like rate law in the 90-180 C temperature interval. The obtained results suggest that pyrite reduction is a process controlled both by the H 2 diffusion across the pyrrhotite pits increasing during reaction progress and the reductive dissolution of pyrite. These new kinetics data can be applied in computation modelling, to evaluate the degree and extent of gas pressure buildup by taking into account the H 2 reactive geochemistry. (author)

  8. A preliminary study on the geochemical environment for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Koh, Yong Kwon; Park, Byoung Yun

    2000-03-01

    Geochemical study on the groundwater from crystalline rocks (granite and gneiss) for the deep geological disposal of high-level radioactive waste was carried out in order to elucidate the hydrogeochemical and isotope characteristics and geochemical evolution of the groundwater. Study areas are Jungwon, Chojeong, Youngcheon and Yusung for granite region, Cheongyang for gneiss region, and Yeosu for volcanic region. Groundwaters of each study areas weree sampled and analysed systematically. Groundwaters can be grouped by their chemistry and host rock. Origin of the groundwater was proposed by isotope ({sup 18}O, {sup 2}H, {sup 13}C, {sup 34}S, {sup 87}Sr, {sup 15}N) studies and the age of groundwater was inferred from their tritium contents. Based ont the geochemical and isotope characteristics, the geochemical evolutions of each types of groundwater were simulated using SOLVEQ/CHILLER and PHREEQC programs.

  9. Shallow Geological Structures Triggered During the Mw6.4 Meinong Earthquake and Their Significance in Accommodating Long-term Shortening Across the Foothills of Southwestern Taiwan

    Science.gov (United States)

    Le Beon, M.; Suppe, J.; Huang, M. H.; Huang, S. T.; Ulum, H. H. M.; Ching, K. E.; Hsieh, Y. H.

    2017-12-01

    The 2016 Mw6.4 Meinong earthquake generated up to 10 cm surface displacement located 10-35 km W of the epicenter and monitored by InSAR and GPS. In addition to coseismic deformation related to the deep earthquake source, InSAR revealed three sharp surface displacement gradients that suggest slip triggering on shallow structures. To characterize these shallow structures, we build two EW regional balanced cross-sections, based on surface geology, subsurface data, and coseismic and interseismic geodetic data. From the Coastal Plain to the eastern edge of the coseismic deformation area, we propose a series of three active W-dipping back-thrusts: the Houchiali fault, the Napalin-Pitou back-thrust, and the Lungchuan back-thrust. They all root on the 3.5-4.0 km deep Tainan detachment located near the base of the 3-km-thick Plio-Pleistocene Gutingkeng mudstone. Further east, the detachment would ramp down to a 7-km-deep detachment, allowing the E-dipping Lungchuan thrust and Pingxi thrust to bring Miocene formations to the surface. Another ramp from 7 to 11-km depth, is expected further east to bring the slate belt to the surface. Coseismic surface deformation measurements suggest that, in addition to the deeper (15-20 km) main rupture plane, mostly the 4-7-km deep ramp, the Lungchuan back-thrust, and the Tainan detachment slipped aseismically during or right after the earthquake. Preliminary restorations show that the E-dipping Lungchuan thrust and Pingxi thrust consumed >10 km shortening each, while evidence for present-day tectonic activity remains to be found. By contrast, structures located west of the 4-7-km deep ramp accommodated all together <10 km shortening since 450 ka ago or less based on published nannostratigraphy, and they show numerous evidence of Late Quaternary and present-day activity. The restorations also allow connecting the 11-km-depth detachment to a main detachment level evidenced from a velocity inversion in the local tomography. By contrast, the

  10. Deep reversible storage. Safety options for the storage in deep geological formation - High-medium activity, long living wastes 2009 milestone

    International Nuclear Information System (INIS)

    2010-09-01

    This large document aims at presenting safety options which have been adopted for the current design status (notably for the installation architecture), elements of description of envisaged technical solutions and exploitation principles which are required for the control of risks (either internal or external) and uncertainties on a long term which could lead to radiological consequences for the project of storage of nuclear wastes in a deep geological formation. After a presentation of the context and of input data, this report discusses the principle of a modular construction and then discusses the safety approach. One part deals with risk analysis for surface installations and aims at showing how internal risks (handling, fire) and external risks (earthquake, plane crash) are taken into account in terms of design choices, processes and control measures. Another part deals with risk analysis for underground installations during the reversible exploitation phase (the considered risks are about the same as in the previous part). The next part addresses risk analysis after closing, and tries to describe how the location, storage construction elements and its architecture ensure a passive safety. Uncertainty management is presented in relationship with envisaged technical solutions and scientific knowledge advances. Additional elements (detailed study, researches and experimentations) for the establishment of the future creation authorization request are identified all along the report

  11. What safety indicators for a storage in deep geologic deposit?

    International Nuclear Information System (INIS)

    Crouail, P.; Schneider, T.; Mure, J.M.; Voinis, S.

    1999-01-01

    Indicators must allow to discriminate and compare different options of facility conception and help the decision-makers in their choices. In the case of a deep storage, these indicators can also allow a comparison in terms of impact with other existing industrial systems (thermal or nuclear power plants, uranium ores) or even the natural radioactivity. Through Swedish and Canadian examples, the presentation makes an inventory of indicators that could be kept in a safety analysis of a deep storage. (N.C.)

  12. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia

    Science.gov (United States)

    Pour, Amin Beiranvand; Hashim, Mazlan

    2014-08-01

    The application of optical remote sensing data for geological mapping is difficult in the tropical environment. The persistent cloud coverage, dominated vegetation in the landscape and limited bedrock exposures are constraints imposed by the tropical climate. Structural geology investigations that are searching for epithermal or polymetallic vein-type ore deposits can be developed using Synthetic Aperture Radar (SAR) remote sensing data in tropical/sub-tropical regions. The Bau gold mining district in the State of Sarawak, East Malaysia, on the island of Borneo has been selected for this study. The Bau is a gold field similar to Carlin style gold deposits, but gold mineralization at Bau is much more structurally controlled. Geological analyses coupled with the Phased Array type L-band Synthetic Aperture Radar (PALSAR) remote sensing data were used to detect structural elements associated with gold mineralization. The PALSAR data were used to perform lithological-structural mapping of mineralized zones in the study area and surrounding terrain. Structural elements were detected along the SSW to NNE trend of the Tuban fault zone and Tai Parit fault that corresponds to the areas of occurrence of the gold mineralization in the Bau Limestone. Most of quartz-gold bearing veins occur in high-angle faults, fractures and joints within massive units of the Bau Limestone. The results show that four deformation events (D1-D4) in the structures of the Bau district and structurally controlled gold mineralization indicators, including faults, joints and fractures are detectable using PALSAR data at both regional and district scales. The approach used in this study can be more broadly applicable to provide preliminary information for exploration potentially interesting areas of epithermal or polymetallic vein-type mineralization using the PALSAR data in the tropical/sub-tropical regions.

  13. Safety guidebook relative to the disposal of radioactive wastes in deep geologic formation

    International Nuclear Information System (INIS)

    2008-01-01

    The French nuclear safety authority (ASN) initiated in 2003 a revision process of the objectives to be considered during the research and work steps of the implementation of a radioactive waste storage facility in deep geologic formations. The purpose of this document is to define the safety objectives that have to be retained at each step of this implementation, from the site characterization to the closure of the facility. This update takes into account the works carried out by the ANDRA (French national agency of radioactive wastes) in the framework of the law from December 30, 1991, and the advices of the permanent experts group about these works. It takes also into consideration the international research works in this domain and the choices defined in the program law no 2006-739 from June 28, 2006 relative to the sustainable management of radioactive materials and wastes. The main modifications concern: the notion of reversibility, the definition of the safety functions of disposal components, the safety goals and the design principles assigned to waste packages, the control of nuclear materials and the monitoring objectives of the facility. The documents treats of the following points: 1 - the objectives of public health and environment protection; 2 - the safety principles and the safety-related design bases of the facility; and 3 - the method used for demonstrating the disposal safety. (J.S.)

  14. Function and structure of the deep cervical extensor muscles in patients with neck pain.

    Science.gov (United States)

    Schomacher, Jochen; Falla, Deborah

    2013-10-01

    The deep cervical extensors are anatomically able to control segmental movements of the cervical spine in concert with the deep cervical flexors. Several investigations have confirmed changes in cervical flexor muscle control in patients with neck pain and as a result, effective evidence-based therapeutic exercises have been developed to address such dysfunctions. However, knowledge on how the deep extensor muscles behave in patients with neck pain disorders is scare. Structural changes such as higher concentration of fat within the muscle, variable cross-sectional area and higher proportions of type II fibres have been observed in the deep cervical extensors of patients with neck pain compared to healthy controls. These findings suggest that the behaviour of the deep extensors may be altered in patients with neck pain. Consistent with this hypothesis, a recent series of studies confirm that patients display reduced activation of the deep cervical extensors as well as less defined activation patterns. This article provides an overview of the various different structural and functional changes in the deep neck extensor muscles documented in patients with neck pain. Relevant recommendations for the management of muscle dysfunction in patients with neck pain are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  16. Structure-dependent interactions between alkali feldspars and organic compounds: implications for reactions in geologic carbon sequestration.

    Science.gov (United States)

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-01-02

    Organic compounds in deep saline aquifers may change supercritical CO(2) (scCO(2))-induced geochemical processes by attacking specific components in a mineral's crystal structure. Here we investigate effects of acetate and oxalate on alkali feldspar-brine interactions in a simulated geologic carbon sequestration (GCS) environment at 100 atm of CO(2) and 90 °C. We show that both organics enhance the net extent of feldspar's dissolution, with oxalate showing a more prominent effect than acetate. Further, we demonstrate that the increased reactivity of Al-O-Si linkages due to the presence of oxalate results in the promotion of both Al and Si release from feldspars. As a consequence, the degree of Al-Si order may affect the effect of oxalate on feldspar dissolution: a promotion of ~500% in terms of cumulative Si concentration was observed after 75 h of dissolution for sanidine (a highly disordered feldspar) owing to oxalate, while the corresponding increase for albite (a highly ordered feldspar) was ~90%. These results provide new insights into the dependence of feldspar dissolution kinetics on the crystallographic properties of the mineral under GCS conditions.

  17. Applicability of the spatial autocorrection method for estimation of basement structure in Kanto plain. Array measurements of microtremors close to the Iwatsuki and Shimosa deep borehole observatory; Kanto heiya no kiban kozo suitei no tame no kukan jiko sokanho no tekiyosei. Iwatsuki Shimosa jiban katsudo kansokusei ni okeru array bido kansoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, T; Umezawa, N; Shiraishi, H [Saitama Institute of Environmental Pollution, Saitama (Japan)

    1996-10-01

    To investigate applicability of the spatial autocorrection method which is a microtremors exploration method for the estimation of basement structure, array measurements of microtremors were performed using the Iwatsuki and Shimosa deep borehole observatory where detailed structures were clarified as well as the Fuchu and Koto deep borehole observatory. In this study, estimated velocity structures of S-wave were compared with the geological sequence and results of acoustic velocity logging. The phase velocity was estimated by the spatial autocorrection method using FFT. The phase velocity with a smooth normal dispersion was observed in the periodic range from 0.5 to 5 sec in Iwatsuki, and from 0.5 to 4 sec in Shimosa by the combination of four-point circular arrays with radii of 100, 300, and 600 m. The underground structures estimated from the phase velocities coincided well with the geological sequence, and results of acoustic velocity logging and velocity logging for each borehole. For the Iwatsuki borehole, the basement velocity was also estimated properly in the periodic range of observation. While, for the Shimosa borehole, measurements with the period around 6 sec were required to estimate the basement velocity more accurately. 13 refs., 11 figs., 1 tab.

  18. Field Investigation of Surface Deformation Induced by the 2016 Meinong Earthquake and its Implications to Regional Geological Structures

    Science.gov (United States)

    Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei

    2017-04-01

    We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern

  19. TWO EXAMPLES FOR IMAGING BURIED GEOLOGICAL BOUNDARIES: SINKHOLE STRUCTURE AND SEYİT HACI FAULT, KARAPINAR, KONYA

    Directory of Open Access Journals (Sweden)

    Ertan TOKER

    2014-12-01

    Full Text Available Once anomalies with positive and negative circular closures are assessed together inpotential field maps, the ones which have meaningful geometric structure appear as moredistinguishable. When the edge detection is applied, the preliminary geological modelabout the geological structure may or may not be verified. When it is not verified then it isunderstood that the predicted geological model should be reconsidered and discussedagain. In this study, the edge detection was introduced and the success of the method wastested in an artificial data. Following that, its effect on sinkholes was studied applying themethod on detailed gravity data collected in Karapınar (Konya region. At the same time,this method was applied on data related to active Seyit Hacı Fault zone. It was detectedthat the fault had shown continuity towards SW and these evidences were discussed

  20. Use of deep seismic shooting to study graben-like troughs. [Urals

    Energy Technology Data Exchange (ETDEWEB)

    Makalovskiy, V.V.; Silayev, V.A.

    1983-01-01

    In the Southeast Perm Oblast, in the zone of articulation of the Russian platform and the Cisural trough, in order to study the structure of the graben-like troughs together with deep drilling, well seismic exploration is used by the method of deep seismic shooting (DSS). The DSS method developed by the Kamskiy department of the VNIGNI consists of blasting in the well shaft and recording of the elastic fluctuations on the Earth's surface. The use of the DSS made it possible to pinpoint structural details of the graben-like trough, and to clarify that this is in essence a zone of fracturing, where the lowered blocks alternated with elevated, and to establish the location and amplitude of the tectonic disorders. High geological information content, low labor intensity and rapidity of obtaining the results make it possible to recommend the DSS together with prospecting and exploratory drilling to study complexly constructed objects in order to reduce the number of unproductive wells.

  1. Deep structure and origin of active volcanoes in China

    Directory of Open Access Journals (Sweden)

    Dapeng Zhao

    2010-10-01

    Full Text Available We synthesize significant recent results on the deep structure and origin of the active volcanoes in mainland China. Magmatism in the western Pacific arc and back-arc areas is caused by dehydration of the subducting slab and by corner flow in the mantle wedge, whereas the intraplate magmatism in China has different origins. The active volcanoes in Northeast China (such as the Changbai and Wudalianchi are caused by hot upwelling in the big mantle wedge (BMW above the stagnant slab in the mantle transition zone and deep slab dehydration as well. The Tengchong volcano in Southwest China is caused by a similar process in the BMW above the subducting Burma microplate (or Indian plate. The Hainan volcano in southernmost China is a hotspot fed by a lower-mantle plume which may be associated with the Pacific and Philippine Sea slabs’ deep subduction in the east and the Indian slab’s deep subduction in the west down to the lower mantle. The stagnant slab finally collapses down to the bottom of the mantle, which can trigger the upwelling of hot mantle materials from the lower mantle to the shallow mantle beneath the subducting slabs and may cause the slab–plume interactions.

  2. Site selection for deep geologic repositories - Consequences for society, economy and environment; was kommt auf die regionen zu? Auswirkungen geologischer tiefenlager auf gesellschaft, wirtschaft und lebensraum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    In a few years, Switzerland will make the decision regarding site selection for geological underground repositories for the storage of radioactive wastes. Besides the safety issue, many citizens are interested in how such a repository will affect environment, economy and society in the selected site's region. This brochure summarizes the results of many studies on the socio-economic impacts of nuclear waste repositories. Radioactive wastes must be stored in such a way that mankind and environment are safely protected for a long period of time. How this goal may be achieved, is already known: geologic deep repositories warrant long-term safety. For the oncoming years in Switzerland the question is where the repository will be built. The search for an appropriate site for a repository in the proposed regions will launch discussions. Within the participative framework the regions may bring their requests. The demonstration of the safety of potential repository sites has the highest priority in the selection process. In the third procedural step additional rock investigations will be made. The socio-economic studies and the experience with existing plants show that radioactive waste management plants can be built and operated in good agreement with environmental requirements. The radioactive wastes in a deep underground repository are stored many hundred meters below the Earth's surface. There, they are isolated from our vital space. Technical barriers and the surrounding dense rock confinement prevent the release of radioactive materials into the environment. A deep repository has positive consequences for the regional economy. It increases trade and value creation and creates work places. The socio-economic impacts practically extend over one century, but strongly vary with time; they are the largest during the building period. High life quality and a positive population development in the selected site region are compatible with a deep repository. A fair

  3. Technical expertise on the safety of the proposed geological repository sites. Planning for geological deep repositories, step 1; Sicherheitstechnisches Gutachten zum Vorschlag geologischer Standortgebiete. Sachplan geologische Tiefenlager, Etappe 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-01-15

    On October 17, 2010, on request of those Swiss government institutions responsible for the disposal of radioactive wastes, the National Co-operative for the Disposal of Radioactive Waste (NAGRA) presented its project concerning geological sites for the foreseen disposal of radioactive wastes to the Federal Authorities. According to the present disposal concept, two types of repository are foreseen: one for highly radioactive wastes (HAA) and the other for low radioactive and intermediate-level radioactive wastes (SMA). If a site fulfils the necessary conditions for both HAA as well as for SMA, a combined site for both types of waste may be chosen. As a qualified control authority in Switzerland, the Federal Nuclear Safety Inspectorate (ENSI) has to examine the quality of the NAGRA proposals from the point of view of the nuclear safety of the sites. The project for deep underground waste disposal first defines the process and the criteria according to which sites for the geological storage of all types of radioactive wastes in Switzerland have to be chosen. The choice is based on the actual knowledge of Swiss geology. After dividing the wastes into SMA and HAA, some large-scale areas are to be identified according to their suitability from the geological and tectonic points of view. NAGRA's division of waste into SMA and HAA is based on calculations of the long-term safety for a broad range of different rock types and geological situations and takes the different properties of all waste types into account. As a conclusion, a small portion of SMA has to be stored with {alpha}-toxic wastes in the HAA repository. The estimation of the total volume of wastes to be stored is based on 60 years of operation of the actual nuclear power plants, augmented with the wastes from possible replacement plants with a total power of 5 GW{sub e} during a further 60 years. The safety concept of the repository is based on passive systems using technical and natural barriers. The

  4. Effect Of Up-Scaling On The Study Of The Steel/Bentonite Interface In A Deep Geological Repository

    International Nuclear Information System (INIS)

    Torres Alvarez, Elena; Turrero, Maria Jesus; Martin, Pedro Luis; Escribano, Alicia

    2008-01-01

    Deep geological disposal is the most accepted management option for High Level Nuclear Wastes. The multi-barrier system for the isolation of high-level radioactive waste includes the concept of the spent fuel encapsulated in canisters of carbon steel. Corrosion phenomena affect the integrity of the canister and can modify the chemical environment either at the interface or in the bentonite pore water. The experimental studies conducted by CIEMAT are focused on the iron canister corrosion products interaction with the bentonite system and are based on a series of short term and medium term experiments conceived at different scales, from conventional laboratory experiments and experiments in cylindrical cells, to those specifically designed 3D mock up experiments, the so called 'GAME (Geochemical Mock up experiments) scale'. The results obtained from the up-scaling could be a useful tool to understand the key processes at the steel/bentonite interface and the later modelling work. (authors)

  5. Effect Of Up-Scaling On The Study Of The Steel/Bentonite Interface In A Deep Geological Repository

    Energy Technology Data Exchange (ETDEWEB)

    Torres Alvarez, Elena; Turrero, Maria Jesus; Martin, Pedro Luis; Escribano, Alicia [CIEMAT, Avda. Complutense 22, 28040, Madrid (Spain)

    2008-07-01

    Deep geological disposal is the most accepted management option for High Level Nuclear Wastes. The multi-barrier system for the isolation of high-level radioactive waste includes the concept of the spent fuel encapsulated in canisters of carbon steel. Corrosion phenomena affect the integrity of the canister and can modify the chemical environment either at the interface or in the bentonite pore water. The experimental studies conducted by CIEMAT are focused on the iron canister corrosion products interaction with the bentonite system and are based on a series of short term and medium term experiments conceived at different scales, from conventional laboratory experiments and experiments in cylindrical cells, to those specifically designed 3D mock up experiments, the so called 'GAME (Geochemical Mock up experiments) scale'. The results obtained from the up-scaling could be a useful tool to understand the key processes at the steel/bentonite interface and the later modelling work. (authors)

  6. Deep-sea environment and biodiversity of the West African Equatorial margin

    Science.gov (United States)

    Sibuet, Myriam; Vangriesheim, Annick

    2009-12-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.

  7. Deep-water northern Gulf of Mexico hydrocarbon plays

    International Nuclear Information System (INIS)

    Peterson, R.H.; Cooke, D.W.

    1995-01-01

    The geologic setting in the deep-water (depths greater than 1,500 feet) Gulf of Mexico is very favorable for the existence of large, commercial hydrocarbon accumulations. These areas have active salt tectonics that create abundant traps, underlying mature Mesozoic source rocks that can be observed expelling oil and gas to the ocean surface, and good quality reservoirs provided by turbidite sand deposits. Despite the limited amount of drilling in the deep-water Gulf of Mexico, 11 deep-water accumulations have been discovered which, when developed, will rank in the top 100 largest fields in the Gulf of Mexico. Proved field discoveries (those with announced development plans) have added over 1 billion barrels of oil equivalent to Gulf of Mexico reserves, and unproved field discoveries may add to additional billion barrels of oil equivalent. The Minerals Management Service, United States Department of the Interior, has completed a gulf-wide review of over 1,086 oil and gas fields and placed every pay sand in each field into a hydrocarbon play (plays are defined by chronostratigraphy, lithostratigraph, structure, and production). Seven productive hydrocarbon plays were identified in the deep-water northern Gulf of Mexico. Regional maps illustrate the productive limits of each play. In addition, field data, dry holes, and wells with sub-economic pay were added to define the facies and structural limits for each play. Areas for exploration potential are identified for each hydrocarbon play. A type field for each play is chosen to demonstrate the play's characteristics

  8. Preliminary geologic site selection factors for the National Waste Terminal Storage Program

    International Nuclear Information System (INIS)

    1977-06-01

    The geologic considerations and the associated factors that have to be addressed in the selection of repository sites in deep geologic formations are listed and described. In addition a description is given of the information necessary to assess the geologic factors. The methods of obtaining this information are described. An illustration is given of a general approach of how the geologic factors could be applied and integrated to assess the acceptability of candidate sites. No consideration is given to a detailed description of the application of integration of the geologic factors. The criteria associated with each factor that will be used are not defined

  9. ENSI's view on NTB-10-01 'Evaluation of the geological documents for the provisional safety assessment in SGT Stage 2' - Sectoral Plan 'Deep Geological Disposal'

    International Nuclear Information System (INIS)

    2011-03-01

    As a preliminary action ahead of Stage 2 in the Sectoral Plan 'Deep Geological Disposal' ('Sachplan Geologische Tiefenlager': SGT) the bodies in charge of the management of the radioactive wastes have to determine, together with the Swiss Federal Nuclear Safety Inspectorate (ENSI), which complementary investigations are needed for the provisional safety assessment of the foreseen repositories. In particular, comparisons between the different sites must be possible. If some doubts remain, new investigations have to be conducted. In SGT Stage 1 the National Cooperative for the Disposal of Radioactive Waste (NAGRA) stated that a time period of 100'000 years shall be considered for the storage of low- and intermediate-level radioactive wastes (SMA) and of 1 million years for the storage of high-level wastes (HAA). In SGT Stage 2, considerations about possible modifications of the biosphere during the considered time periods for SMA as well as for HAA have to be included. In what regards the host rock, ENSI declares that the dataset describing the Opalinus clay is sufficient for the site-specific safety analyses. What regards the Wellenberg site for a SMA repository, ENSI has earlier analysed the license request of the NAGRA. For the Mergel formations of the Helveticum, NAGRA conducted a complete safety analysis. ENSI considers the knowledge acquired for these rock types as sufficient for the technical safety comparisons in SGT Stage 2. The knowledge of the rock 'Brauner Dogger' is correct but some more information about the lithostratigraphy and the biostratigraphy is requested. The understanding of the effect of the rock density reduction on the hydraulic conductibility of Opalinus clay and Mergel formations is accurate enough for the comparisons in SGT Stage 2. For the 'Brauner Dogger', comparable data are missing, but the proposed thickness of 300 m of the host rock offers a sufficient protection against density reduction effects. Concerning the behaviour of the

  10. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    Science.gov (United States)

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  11. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.; Izabel, C.

    1990-01-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  12. Determination of the scenarios to be included in the assessment of the safety of site for the disposal of radioactive waste in a deep geological formation

    Energy Technology Data Exchange (ETDEWEB)

    Escalier des Orres, P; Devillers, C; Cernes, A; Izabel, C [Agence Nationale pour la Gestion des Dechets Radioactifs - ANDRA (France)

    1990-07-01

    The procedure for selection and qualification of a site for the disposal of radioactive waste in a deep geological formation began in France in the early eighties. The public authorities, working from a recommendation by the ANDRA, made a pre-selection of four sites, each of which corresponded to a particular type of geological formation - granite, clay, salt and shale. Within two years, one of these sites would be chosen as the location for an underground laboratory, intended to verify whether the site was suitable as a nuclear waste repository and to prepare for its construction. The safety analysis for site qualification makes use of evolutionary scenarios representing the repository and its environment, selected by means of a deterministic method. This analysis defines, with an appropriate level of detail, a 'reference' scenario and 'random events' scenarios. (author)

  13. Geology of kilauea volcano

    Science.gov (United States)

    Moore, R.B.; Trusdell, F.A.

    1993-01-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower cast rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. ?? 1993.

  14. Reflection of block neotectonics in geological structure of paleogene strata of Chornobyl exclusion zone

    International Nuclear Information System (INIS)

    Skvortsov, V.V.; Oleksandrova, N.V.; Khodorovs'kij, A.Ya.

    2014-01-01

    Neotectonic block differentiation of Chernobyl Exclusion zone area was fixed by the results of the geological and structure analysis of paleogene strata in complex with the space survey data interpretation. Structural plan of the latest tectonic movements had a block character; it was shown by the fracture systems, which represent the components of known regional tectonic zones of various trends and are found in the features of phanerozoic rock mass structure. The territory under study is divided into two parts - the northern one, where in the neotectonic movements are generally more intensive with manifestation practically all over the fracture zones, and the southern part, where in the newest breaks belong mainly to submeridional also to south-western regional fracture zones. The southern part of the Exclusion zone, as a whole, holds the greatest promise by comparison with the northern one in the view of neotectonic criteria regarding the geological repository siting for radioactive waste disposal

  15. Structural damage detection using deep learning of ultrasonic guided waves

    Science.gov (United States)

    Melville, Joseph; Alguri, K. Supreet; Deemer, Chris; Harley, Joel B.

    2018-04-01

    Structural health monitoring using ultrasonic guided waves relies on accurate interpretation of guided wave propagation to distinguish damage state indicators. However, traditional physics based models do not provide an accurate representation, and classic data driven techniques, such as a support vector machine, are too simplistic to capture the complex nature of ultrasonic guide waves. To address this challenge, this paper uses a deep learning interpretation of ultrasonic guided waves to achieve fast, accurate, and automated structural damaged detection. To achieve this, full wavefield scans of thin metal plates are used, half from the undamaged state and half from the damaged state. This data is used to train our deep network to predict the damage state of a plate with 99.98% accuracy given signals from just 10 spatial locations on the plate, as compared to that of a support vector machine (SVM), which achieved a 62% accuracy.

  16. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil

    Directory of Open Access Journals (Sweden)

    RODRIGO I. CERRI

    2017-08-01

    Full Text Available ABSTRACT This paper presents a new approach of landslides zonation hazard studies, based on an integrated study of structural data along with geomorphological and external factors, in a hilly regions of Brazil, covered by a tropical humid rain-forest, called Serra do Mar. The Serra do Mar consists of a hilly region along the east coast of Brazil, with high slopes and many geological structures in a gneiss - migmatitic terrain. In contrast to traditional approaches, this method proposes that structural data (foliation, fractures and bedding planes and its relation with the slope geometry, is important to be consider in the landslide zonation hazard, along with declivity, relative relief, soil and rock properties, land use and vegetation cover and hydrogeological and climate factors. Results show that slopes with high hazard have the same dip direction of geological structures. Landslide zonation hazard using structural data contributes to a better understanding of how these structures, preserved in tropical residual soils, influence on slope stability and generates landslides.

  17. Landslides Zonation Hazard: relation between geological structures and landslides occurrence in hilly tropical regions of Brazil.

    Science.gov (United States)

    Cerri, Rodrigo I; Reis, Fábio A G V; Gramani, Marcelo F; Giordano, Lucilia C; Zaine, José Eduardo

    2017-01-01

    This paper presents a new approach of landslides zonation hazard studies, based on an integrated study of structural data along with geomorphological and external factors, in a hilly regions of Brazil, covered by a tropical humid rain-forest, called Serra do Mar. The Serra do Mar consists of a hilly region along the east coast of Brazil, with high slopes and many geological structures in a gneiss - migmatitic terrain. In contrast to traditional approaches, this method proposes that structural data (foliation, fractures and bedding planes) and its relation with the slope geometry, is important to be consider in the landslide zonation hazard, along with declivity, relative relief, soil and rock properties, land use and vegetation cover and hydrogeological and climate factors. Results show that slopes with high hazard have the same dip direction of geological structures. Landslide zonation hazard using structural data contributes to a better understanding of how these structures, preserved in tropical residual soils, influence on slope stability and generates landslides.

  18. Geological Structures in the WaIls of Vestan Craters

    Science.gov (United States)

    Mittlefehldt, David; Nathues, A.; Beck, A. W.; Hoffmann, M.; Schaefer, M.; Williams, D. A.

    2014-01-01

    A compelling case can be made that Vesta is the parent asteroid for the howardite, eucrite and diogenite (HED) meteorites [1], although this interpretation has been questioned [2]. Generalized models for the structure of the crust of Vesta have been developed based on petrologic studies of basaltic eucrites, cumulate eucrites and diogenites. These models use inferred cooling rates for different types of HEDs and compositional variations within the clan to posit that the lower crust is dominantly diogenitic in character, cumulate eucrites occur deep in the upper crust, and basaltic eucrites dominate the higher levels of the upper crust [3-5]. These models lack fine-scale resolution and thus do not allow for detailed predictions of crustal structure. Geophysical models predict dike and sill intrusions ought to be present, but their widths may be quite small [6]. The northern hemisphere of Vesta is heavily cratered, and the southern hemisphere is dominated by two 400-500 km diameter basins that excavated deep into the crust [7-8]. Physical modeling of regolith formation on 300 km diameter asteroids predicts that debris layers would reach a few km in thickness, while on asteroids of Vesta's diameter regolith thicknesses would be less [9]. This agrees well with the estimated =1 km thickness of local debris excavated by a 45 km diameter vestan crater [10]. Large craters and basins may have punched through the regolith/megaregolith and exposed primary vestan crustal structures. We will use Dawn Framing Camera (FC) [11] images and color ratio maps from the High Altitude and Low Altitude Mapping Orbits (HAMO, 65 m/pixel; LAMO, 20 m/pixel) to evaluate structures exposed on the walls of craters: two examples are discussed here.

  19. Charnockitic ortho gneisses and mafic granulites of Cerro Olivo complex, proterozoic basement of SE Uruguay, Part 1: Geology

    International Nuclear Information System (INIS)

    Masquelin, H.

    2008-01-01

    Charnockitic ortho gneisses and mafic granulite s exposed in the Cerro Bori Block, in the center of Punta del Este terrain, were the first document occurrence of granulitic rocks from SE sector of the Uruguayan Shield. We present here their main geological features, with the purpose to suggest some petrologic and structural interesting problems for a future lithogeochemical, mineral chemistry, stable isotopes and fluid inclusion studies about these rocks. We propose some speculation form field-based studies considering a cognate magmatic origin of both kinds of rocks, previous to a homogeneous granulitic metamorphism. Some structural evidences indicate that after their uplift, these rocks were located on over thickened crust, at great to medium deepness. A cataclasis during anatexis and amphibolite-facies mineral association stabilization are common phenomena. Other evidences suggest a polycyclic character for the regional geologic evolution

  20. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    International Nuclear Information System (INIS)

    Paulamaeki, S.; Paananen, M.; Elo, S.

    2002-02-01

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  1. Formation of secondary phases during deep geological final disposal of research reactor fuel elements. Structure and phase analysis

    International Nuclear Information System (INIS)

    Neumann, Andreas

    2012-01-01

    For the assessment of a confident und sustainable final disposal of high level radioactive waste - fuel elements of german research reactors also account for such waste - in suitable, deep geological facilities, processes of the alteration of the disposed of waste and therefore the formation of the corrosion products, i. e. secondary phases must be well understood considering an accident scenario of a potential water inflow. In order to obtain secondary phases non-irradiated research reactor fuel elements (FR-BE) consisting of UAl x -Al were subjected to magnesium chloride rich brine (brine 2, salt repository) and to clay pore solution, respectively and furthermore of the type U 3 Si 2 -Al were solely subjected to magnesium chloride rich brine. Considering environmental aspects of final repositories the test conditions of the corrosion experiments were adjusted in a way that the temperature was kept constant at 90 C and a reducing anaerobic environment was ensured. As major objective of this research secondary phases, obtained from the autoclave experiments after appropriate processing and grain size separation have been identified and quantified. Powder X-ray diffraction (PXRD) and the application of Rietveld refinement methods allowed the identification of the corrosion products and a quantitative assessment of crystalline and amorphous contents. Scanning and transmission electron microscopy were additionally applied as a complementary method for the characterisation of the secondary phases. The qualitative phase analysis of the preprocessed secondary phases of the systems UAl x -Al and U 3 Si 2 -Al in brine 2 shows many similarities. Lesukite - an aluminium chloro hydrate - was observed for the first time considering the given experimental conditions. Further on different layered structures of the LDH type, iron oxyhydroxide and possibly iron chlorides, uncorroded residues of nuclear fuel and elementary iron were identified as well. Depending on preceding

  2. Erbium-doped fiber lasers as deep-sea hydrophones

    International Nuclear Information System (INIS)

    Bagnoli, P.E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-01-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos

  3. Gravity inversion of deep-crust and mantle interfaces in the Three Gorges area

    Directory of Open Access Journals (Sweden)

    Wang Jian

    2012-11-01

    Full Text Available To better understand the heterogeneity of deep-crust and mantle interfaces in the region of the Three Gorges, China, we used the Parker-Oldenburg iterative inversion method to invert existing Bouguer gravity data from the Three Gorges area (1 : 500000, a new gravity map of the Three Gorges Dam (1 : 200000, and the results of deep seismic soundings. The inversion results show a Moho depth of 42 km between Badong and Zigui and the depth of the B2 lower-crustal interface beneath the Jianghan Plain and surrounding areas at 21–25 km. The morphology of crustal interfaces and the surface geology present an overpass structure. The mid-crust beneath the Three Gorges Dam is approximately 9 km thick, which is the thinnest in the Three Gorges area and may be related to the shallow low-density body near the Huangling anticline. The upper crust is seismogenic, and there is a close relationship between seismicity and the deep-crust and mantle interfaces. For example, the M5. 1 Zigui earthquake occurred where the gradients of the Moho and the B2 interface are the steepest, showing that deep structure has a very important effect on regional seismicity.

  4. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  5. 3D Geological modelling of the Monfrague synform: a value added to the geologic heritage of the National Park

    International Nuclear Information System (INIS)

    Gumiel, P.; Arias, M.; Monteserin, V.; Segura, M.

    2010-01-01

    3D geological modelling of a tectonic structure called the Monfrague synform has been carried out to obtain a better insight into the geometry of this folding structure. It is a kilometric variscan WNW-ESE trending fold verging towards north and made up by a Palaeozoic sequence (Ordovician-Silurian).This structure with its lithology make up the morphology and the relief of the Park. The Monfrague synform is an asymmetrical folding structure showing southern limb dipping steeply to the south (reverse limb) what is well observed in the Armorican Quartzite at the Salto del Gitano. However, northern limb dips gently (less than 40 degree centigrade) to the south (normal limb). 3D geological modelling has been built on the basis of the geological knowledge and the structural interpretation, using 3D GeoModeller. (www.geomodeller.com). In this software, lithological units are described by a stratigraphic pile. A major original feature of this software is that the 3D description of the geological space is achieved through a potential field formulation in which geological boundaries are isopotential surfaces, and their dips are represented by gradients of the potential. Finally, it is emphasized the idea that a 3D geologic model of these characteristics, with its three-dimensional representation, together with suitable geological sections that clarify the structure in depth, represents a value added to the Geologic Heritage of the National Park and besides it supposes an interesting academic exercise which have a great didactic value. (Author)

  6. Deep Interior: Multiple-Rendezvous Prospecting of NEOs

    Science.gov (United States)

    Kakuda, R. Y.; Asphaug, E.; Belton, M. J. S.; Gulkis, S.; Huebner, W. F.

    2000-10-01

    This is an international multiple-rendezvous mission designed to prospect the deep interior and subsurface geophysical properties of diverse near-Earth objects, using reflection radar tomography, imaging, gravity, and explosions. What we learn will greatly influence future missions and guide strategies for the diversion, disruption, or utilization of potentially hazardous objects. Deep Interior. Low-frequency radar to determine internal variations of complex permittivity at resolutions approaching 20 m. Map inclusions or voids, fracture geometries, and compositional or structural boundaries. Subsurface. High-frequency radar to determine depth of regolith, existence and nature of cometary mantle, geology beneath and around craters, and subsurface expressions to surface geology. Topography and Geodesy. Stereogrammetric imaging with 1 m/pixel spatial resolution, supplemented by radar altimetry in shadowed regions, to determine detailed shape, volume, and spin state. Compare with radar sounding to learn how internal structure is manifested on the surface. Mass and Density. Total mass and lower moments of the internal mass distribution by mapping the exterior gravitational field. Look for mass concentrations. Surface microphysics and composition. Map color, albedo, and scattering properties of the surface over sunlit regions in six optical filters. Material properties. Deploy grenades to characterize the mechanics and dynamics of surface materials. Record 8 frame/sec, 20 cm/pixel videos of crater formation and ejecta dynamics, to enable simple and direct laboratory constraints on material density, cohesion and porosity. Dust. Look for dust lofted by surface waves propagating from the explosions, to constrain elastic properties and attenuation. Observe longer-term dynamics and optical properties of dust "atmosphere" generated by human activity. Cometary Activity. At comet 107P/Wilson-Harrington, look for expressions of past cometary activity, and for possible awakening

  7. From clay bricks to deep underground storage; vom lehmziegel bis zum tiefenlager -- anwendung von ton

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    This booklet issued by the Swiss National Cooperative for the Disposal of Radioactive Waste NAGRA takes a look at the use of clay strata for the storage of radioactive wastes in deep-lying repositories. First of all, a geological foray is made concerning the history of the use of clay and its multifarious uses. The characteristics of clay and its composition are examined and its formation in the geological past is explained. In particular Opalinus clay is looked at and the structures to be found are discussed. The clay's various properties and industrial uses are examined and its sealing properties are examined. Also, Bentonite clay is mentioned and work done by Nagra and co-researchers is noted.

  8. Grimsel test site. Research on safe geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2010-07-01

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  9. Grimsel test site. Research on safe geological disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-15

    The Grimsel Test Site is located at an altitude of 1730 meters in the granitic formations of the Aare Massif. Some 300 million years ago, magmas solidified to form granitic rocks in the Grimsel area. New molten masses flowed into fissures of the cooling rock and formed dyke rocks. During the alpine orogeny around 40 million years ago, the rocks of the Aare Massif were passed over by the northwards-moving alpine layers and subsided by around 12 kilometres. The rocks were then overprinted under high temperature and pressure conditions and shear zones and fracture systems were formed. Uplift (0.5 to 0.8 mm/a) and erosion processes, which are still continuing today, brought the rocks of the Aare Massif to the surface once more. The mineral fractures for which the Grimsel area is famous, formed around 14 million years ago. Deep in the rock, the range of geological conditions found in the laboratory present ideal boundary conditions for investigating the functioning of both the geological and engineered barriers of deep repositories. Projects that look at the disposal concepts on a large scale are also an important aspect of the work at the Test Site. A radiation controlled zone allows radionuclides to be used under monitored conditions, giving a direct insight into the transport of radioactive substances in the rock. Around 25 partner organisations from various countries are involved in the projects at the Test Site. The European Union and the Swiss State Secretariat for Education and Research provide financial support to several experiments. In Switzerland, deep geological disposal is required by law for all types of radioactive waste. Field investigations for determining the suitability of potential disposal sites are an important component of a waste management programme. The field work is complemented by laboratory studies, investigations of relevant natural processes and research projects in underground rock laboratories; these provide a better understanding of the

  10. The application of the csamt method in the tectonic transformation of the deep-level fore exploration in the shandongkeng area in Nanxiong basin

    International Nuclear Information System (INIS)

    Xu Zhan

    2010-01-01

    With the national policy efforts on the strengthening of mining exploration, uranium exploration has also ushered in its second s pring . The topic of the new round exploration is P rospect the deeply minerals . Therefore, the changes of the deep structure of the mining area are the premise to carry out survey work. This article states briefly the working principle and characteristics of CSAMT method. The Application of the CSAMT Method in the Tectonic Transformation of The Deep-Level Exploration in the Shangdongkeng area in Nanxiong basin expresses that the method has a good application and effectiveness in research of deep geological objectives. It provides design basis for the mining exploration of deep-level area. (authors)

  11. Characterization and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The third Aespoe International Seminar was organised by SKB to assess the state of the art in characterisation and evaluation of sites for deep geological disposal of radioactive waste in fractured rocks. Site characterisation and evaluation are important elements for determining the site suitability and long-term safety of a geological repository for radioactive waste disposal. Characterisation work also provides vital information for the design of the underground facility and the engineered barrier system that will contain the waste. The aim of the seminar was to provide a comprehensive assessment of the current know-how on this topic based on world-wide experience from more than 20 years of characterisation and evaluation work. The seminar, which was held at the Aespoe Hard Rock Laboratory was attended by 72 scientists from 10 different countries. The program was divided into four sessions of which two were run in parallel. A total of 38 oral and 5 poster presentations were given at the seminar. The presentations gave a comprehensive summary of recently completed and current work on site characterisation, modelling and application in performance assessments. The results presented at the seminar generally show that significant progress has been made in this field during the last decade. New characterisation techniques have become available, strategies for site investigations have developed further, and model concepts and codes have reached new levels of refinement. Data obtained from site characterisation have also successfully been applied in several site specific performance assessments. The seminar clearly showed that there is a solid scientific basis for assessing the suitability of sites for actual repositories based on currently available site characterisation technology and modelling capabilities. Separate abstracts have been prepared for 38 of the presentations

  12. The 1 000-year prediction. A state-of-the-art review on the research activity for the structural integrity of geological disposal packages of high-level nuclear waste

    International Nuclear Information System (INIS)

    Akashi, Masatsune

    1996-01-01

    The geological disposal package for high-level nuclear waste to be buried deep underground must be assured of structural integrity for ultra-long services of 1 000 years or even longer. The greatest and essentially the sole adversary to those packages in such a service is corrosion by ground water. Therefore, quantitative assessment of the corrosion form, the corrosion rate, and the corrosion lifetime is indispensable. This paper reviews the research activities to clarify what has been known, and discusses the future items to be studied. The largest detriment to the integrity of the package is not the uniform corrosion but the localized corrosion. The critical potential concept can quantify the safety usage domain for the material concerned. (author)

  13. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  14. Verification study on technology for preliminary investigation for HLW geological disposal. Part 2. Verification of surface geophysical prospecting through establishing site descriptive models

    International Nuclear Information System (INIS)

    Kondo, Hirofumi; Suzuki, Koichi; Hasegawa, Takuma; Goto, Keiichiro; Yoshimura, Kimitaka; Muramoto, Shigenori

    2012-01-01

    The Yokosuka demonstration and validation project using Yokosuka CRIEPI site has been conducted since FY 2006 as a cooperative research between NUMO (Nuclear Waste Management Organization of Japan) and CRIEPI. The objectives of this project are to examine and to refine the basic methodology of the investigation and assessment of properties of geological environment in the stage of Preliminary Investigation for HLW geological disposal. Within Preliminary Investigation technologies, surface geophysical prospecting is an important means of obtaining information from deep geological environment for planning borehole surveys. In FY 2010, both seismic prospecting (seismic reflection and vertical seismic profiling methods) for obtaining information about geological structure and electromagnetic prospecting (magneto-telluric and time domain electromagnetic methods) for obtaining information about resistivity structure reflecting the distribution of salt water/fresh water boundary to a depth of over several hundred meters were conducted in the Yokosuka CRIEPI site. Through these surveys, the contribution of geophysical prospecting methods in the surface survey stage to improving the reliability of site descriptive models was confirmed. (author)

  15. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  16. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won [Korea Atomic Energy Institue, Daejeon (Korea, Republic of)

    2012-09-15

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  17. Hydrogeological Properties of Geological Elements in Geological Model around KURT

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Soo; Koh, Yong Kwon; Choi, Jong Won

    2012-01-01

    To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

  18. Geological-structural interpretation using products of remote sensing in the region of Carrancas, Minas Gerais, Brazil

    Science.gov (United States)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. R.; Dosanjos, C. E.; Barbosa, M. P.; Veneziani, P.

    1982-01-01

    The efficiency of some criteria developed for the utilization of small scale and low resolution remote sensing products to map geological and structural features was demonstrated. Those criteria were adapted from the Logical Method of Photointerpretation which consists of textural qualitative analysis of landforms and drainage net patterns. LANDSAT images of channel 5 and 7, 4 LANDSAT-RBV scenes, and 1 radar mosiac were utilized. The region of study is characterized by supracrustal metassediments (quartzites and micaschist) folded according to a "zig-zag" pattern and gnaissic basement. Lithological-structural definition was considered outstanding when compared to data acquired during field work, bibliographic data and geologic maps acquired in larger scales.

  19. Data of fractures based on the deep borehole investigations in the Horonobe Underground Research Laboratory project. Phase 1

    International Nuclear Information System (INIS)

    Kusano, Tomohiro; Ishii, Eiichi

    2016-02-01

    Japan Atomic Energy Agency (JAEA) is performing the Horonobe Underground Research Laboratory Project, which includes a scientific study of the deep geological environment as a basis of research and development for geological disposal of high level radioactive wastes (HLW), in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in the sedimentary rock. This report aims at compiling fracture data of drill core obtained from the Horonobe Underground Research Laboratory Project (Phase 1). (author)

  20. Geological storage of radioactive waste

    International Nuclear Information System (INIS)

    Barthoux, A.

    1983-01-01

    Certain radioactive waste contains substances which present, although they disappear naturally in a progressive manner, a potential risk which can last for very long periods, of over thousands of years. To ensure a safe long-term handling, provision has been made to bury it deep in stable geological structures which will secure its confinement. Radioactive waste is treated and conditioned to make it insoluble and is then encased in matrices which are to immobilize them. The most radioactive waste is thus incorporated in a matrix of glass which will ensure the insulation of the radioactive substances during the first thousands of years. Beyond that time, the safety will be ensured by the properties of the storage site which must be selected from now on. Various hydrogeological configurations have been identified. They must undergo detailed investigations, including even the creation of an underground laboratory. This document also presents examples of underground storage installations which are due to be built [fr

  1. A preliminary study on the long-term geologic stability for deep geological disposal of high level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chun Soo; Bae, Dae Seok; Kim, Kyung Su; Park, Byoung Yoon; Koh, Young Kown [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-03-01

    Geology of the Korean peninsula could be grouped by 7 rock types such as plutonic rocks, crystalline gneisses, metasedimentary rocks, Paleozoic and Mesozoic sedimentary rocks, porous and massive volcanic rocks. The plutonic rock type is the largest rock groups occupying about 35.2% over the peninsula. Tectonic movement could be classified as four great stages as Precambrian, Songnim, Daebo and Bulkuksa even though the ambiguous of prior Songnim. It would be supposed to deep relationship between tectonic movement, orogeny and magmatism. And also, the magmatism within the peninsula could be divided into 5 stages such as 1st stage of Precambrian(>570Ma), 2nd stage of late Paleozoic(>250Ma), 3rd stage of early to mid Mesozoic(200-300Ma), 4th stage of late Mesozoic(135-60Ma) and 5th stage of post early Tertiary(50Ma>). In the seismicities, the peninsula has some characteristics that of the intra-plate seismic characteristics located at south eastern part of the Eurasian plate apart from the boundary of the Pacific and Philippine plate. Eurasian plate is under the two stress direction acting eastward stresses induced the collision of Indo- Australlian plate and westward stresses due to the subduction of due the Pacific and Philippine plate. For the purpose of the quantitative analysis for the safety assessment of HLW disposal, it would be desired to have the long range approach concept for the characterization of FEPs such as upper stated including climate, sae level change, uplift and subsidence, erosion and sedimentation. 38 refs., 18 figs., 25 tabs. (Author)

  2. The laboratories of geological studies; Les laboratoires d`etudes geologiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    This educational document comprises 4 booklets in a folder devoted to the presentation of the ANDRA`s activities in geological research laboratories. The first booklet gives a presentation of the missions of the ANDRA (the French agency for the management of radioactive wastes) in the management of long life radioactive wastes. The second booklet describes the approach of waste disposal facilities implantation. The third booklet gives a brief presentation of the scientific program concerning the underground geologic laboratories. The last booklet is a compilation of questions and answers about long-life radioactive wastes, the research and works carried out in geologic laboratories, the public information and the local socio-economic impact, and the storage of radioactive wastes in deep geological formations. (J.S.)

  3. Doses in various parts of the biosphere due to long-lived radionuclides originating from deep geological repositories

    International Nuclear Information System (INIS)

    Bergstroem, U.; Karlsson, Sara; Nordlinder, S.

    1999-01-01

    Turnover of radionuclides and resulting doses to man were modelled for various parts of the biosphere. This was made for different scenarios of leakage of radionuclides from a deep geological repository for spent nuclear fuel and other waste. In previous studies, the emphasis was on doses from contaminated ground water represented by a well or various surface waters. This was because radionuclides were assumed to be released directly to surface water, the use of which subsequently formed the major pathway for radionuclides to agricultural areas. In the present study, radionuclides were considered to reach lakes, running waters, coastal areas, agricultural areas and peat areas. The inflow of radionuclides to agricultural areas was supposed to be from below. Doses due to direct use of contaminated ground water from a well were also considered. Altogether 44 radionuclides contained in the waste were assumed to be released during 10,000 years, with a rate of 1 Bq/year of each radionuclide, to each of the above mentioned biospheric parts. During that time, the biospheric conditions were assumed to be the same as they are today. Doses to the critical group were calculated by exposure pathways specific for each entry-point All calculations were performed with estimation of confidence due to time-dependent parameter variation and uncertainty in input values. The results indicate that drinking water from wells is not a critical exposure pathway for all studied radionuclides. Instead, inflow of contaminated water to soil and peat bogs may be crucial for illustration of doses for geological high-level waste disposal. Improved knowledge of processes at the geosphere-biosphere interface is therefore important

  4. Deep underground disposal facility and the public

    International Nuclear Information System (INIS)

    Sumberova, V.

    1997-01-01

    Factors arousing public anxiety in relation to the deep burial of radioactive wastes are highlighted based on Czech and foreign analyses, and guidelines are presented to minimize public opposition when planning a geologic disposal site in the Czech Republic. (P.A.)

  5. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-07-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  6. Low- and intermediate level radioactive waste from Risoe, Denmark. Location studies for potential disposal areas. Report no. 3. Geological setting and tectonic framework in Denmark

    International Nuclear Information System (INIS)

    Schack Pedersen, S.A.; Gravesen, P.

    2011-01-01

    The low and intermediate level radioactive waste from Risoe (the nuclear reactor buildings plus different types of material from the research periods) and radioactive waste from hospitals and research institutes have to be stored in a final disposal in Denmark for at least 300 years. The Minister for Health and Prevention presented the background and decision plan for the Danish Parliament in January 2009. All political parties agreed on the plan. The task for the Geological Survey of Denmark and Greenland (GEUS) is to find approximately 20 areas potentially useful for a waste disposal. These 20 areas are afterwards reduced to 2-3 most optimal locations. At these 2-3 locations, detailed field investigations of the geological, hydrogeological - hydrochemical and technical conditions will be performed. This report provides an introduction to the geological setting of Denmark with the focus on providing an overview of the distribution of various tectonic and structural features. These are considered important in the context of choosing suitable areas for the location of a disposal for radioactive waste. The geological structures, deep and shallow are important for the selection of potential disposals basically because the structures describes the geometry of the areas. Additionally, the structures provides the information about the risk of unwanted movements of the geological layers around the disposal that have to be investigated and evaluated as a part of the selection process. (LN)

  7. Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada

    Directory of Open Access Journals (Sweden)

    Rasim Latifovic

    2018-02-01

    Full Text Available Mapping of surficial geology is an important requirement for broadening the geoscience database of northern Canada. Surficial geology maps are an integral data source for mineral and energy exploration. Moreover, they provide information such as the location of gravels and sands, which are important for infrastructure development. Currently, surficial geology maps are produced through expert interpretation of aerial photography and field data. However, interpretation is known to be subjective, labour-intensive and difficult to repeat. The expert knowledge required for interpretation can be challenging to maintain and transfer. In this research, we seek to assess the potential of deep neural networks to aid surficial geology mapping by providing an objective surficial materials initial layer that experts can modify to speed map development and improve consistency between mapped areas. Such an approach may also harness expert knowledge in a way that is transferable to unmapped areas. For this purpose, we assess the ability of convolution neural networks (CNN to predict surficial geology classes under two sampling scenarios. In the first scenario, a CNN uses samples collected over the area to be mapped. In the second, a CNN trained over one area is then applied to locations where the available samples were not used in training the network. The latter case is important, as a collection of in situ training data can be costly. The evaluation of the CNN was carried out using aerial photos, Landsat reflectance, and high-resolution digital elevation data over five areas within the South Rae geological region of Northwest Territories, Canada. The results are encouraging, with the CNN generating average accuracy of 76% when locally trained. For independent test areas (i.e., trained over one area and applied over other, accuracy dropped to 59–70% depending on the classes selected for mapping. In the South Rae region, significant confusion was found

  8. Deep-sea geohazards in the South China Sea

    Science.gov (United States)

    Wu, Shiguo; Wang, Dawei; Völker, David

    2018-02-01

    Various geological processes and features that might inflict hazards identified in the South China Sea by using new technologies and methods. These features include submarine landslides, pockmark fields, shallow free gas, gas hydrates, mud diapirs and earthquake tsunami, which are widely distributed in the continental slope and reefal islands of the South China Sea. Although the study and assessment of geohazards in the South China Sea came into operation only recently, advances in various aspects are evolving at full speed to comply with National Marine Strategy and `the Belt and Road' Policy. The characteristics of geohazards in deep-water seafloor of the South China Sea are summarized based on new scientific advances. This progress is aimed to aid ongoing deep-water drilling activities and decrease geological risks in ocean development.

  9. Technical reliability of geological disposal for high-level radioactive wastes in Japan. The second progress report. Part 1. Geological environment of Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    Based on the Advisory Committee Report on Nuclear Fuel Cycle Backend Policy submitted to the Japanese Government in 1997, JNC documents the progress of research and development program in the form of the second progress report (the first one published in 1992). It summarizes an evaluation of the technical reliability and safety of the geological disposal concept for high-level radioactive wastes (HLW) in Japan. The present document, the part 1 of the progress report, describes first in detail the role of geological environment in high-level radioactive wastes disposal, the features of Japanese geological environment, and programs to proceed the investigation in geological environment. The following chapter summarizes scientific basis for possible existence of stable geological environment, stable for a long period needed for the HLW disposal in Japan including such natural phenomena as volcano and faults. The results of the investigation of the characteristics of bed-rocks and groundwater are presented. These are important for multiple barrier system construction of deep geological disposal. The report furthermore describes the present status of technical and methodological progress in investigating geological environment and finally on the results of natural analog study in Tono uranium deposits area. (Ohno, S.)

  10. Geology of high-level nuclear waste disposal: an introduction

    International Nuclear Information System (INIS)

    Roxbugh, I.S.

    1987-01-01

    Hazardous waste is produced by the nuclear fuel cycle from mining and milling of uranium ore, refinement and enrichment, reactor use, and during reprocessing of spent fuel. Waste can be classified according to origin, physical state, and levels of radioactivity and radiotoxicity. The method of the long-term waste disposal is based on the degree of the hazard and the length of time (1000 years to millions of years) for the waste to become safe. The International Atomic Energy Agency (IAEA) has classified radioactive waste into five categories (I-V) based on the amount of radioactivity and heat output of the waste. The text is concerned mainly with the two most hazardous categories (I and II). Disposal at various geological sites using proven mining, engineering, and deep drilling techniques has been proposed and studied. An ideal geological repository would have (1) minimum ground water movement, (2) geochemical and mineralogical properties to retard or immobilize the effects of the nuclear waste from reaching the biosphere, (3) thermochemical properties to allow for heat loading without damage, and (4) structural strength for the operational period. Types of geological environments (both undersea and on land) include evaporites, crystalline rocks, and argillaceous deposits. European and North American case histories are described, and there is a glossary and an extensive list of references in this concise review

  11. Regional evolution of geological structure in south China and U mineralization

    International Nuclear Information System (INIS)

    Chen Guoda; Kang Zili; Shen Jinrui; Jin Yushu

    1992-01-01

    This paper states the development laws of regional geological structure of South China and its controlling effect on uranium deposit evolution, and the characteristics of rich uranium formation in different periods of geo-history are analysed. It also discusses the relationship between the distribution of time and space and tectonic structure and environmental vicissitudes. The rock-magma activities-the strong formation of the Diwa Era is of great significance to the formation of uranium deposits within the region, especially to the formation of a series of multi-genesis polygene uranium deposits which are a potential direction in which to look for minerals within the region

  12. The geology of the Romuvaara area

    International Nuclear Information System (INIS)

    Anttila, P.; Paulamaeki, S.; Lindberg, A.; Paananen, M.; Pitkaenen, P.; Front, K.

    1990-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent uranium fuel from the Olkiluoto nuclear power plant deep in the Finnish bedrock. The report presents a summary of the geological conditions at Romuvaara in Kuhmo, which was one of the five areas selected in 1987 for the preliminary site investigations. The Romuvaara site and its surroundings belong to the Archaean basement complex, the age of the oldest parts of which is over 2800 Ma. The bedrock consists mainly of migmatic banded gneisses (tonalite, leucotonalite and mica gneiss). These rock types are intersected by granodiorite and metadiabase dykes. Proterozoic metadiabases represent the youngest rock unit in the area. Except for the metadiabase, the rocks have undergone a multiphase Archaean deformation. The bedrock structures are interpreted as representing six deformation phases, after which sharp faults developed during at least four further movement phases

  13. Geological storage of carbon dioxide: the role of sedimentary basins

    International Nuclear Information System (INIS)

    Gunter, W.D.; Bachu, S.

    2001-01-01

    Sedimentary basins, occuring throughout the world, are thick piles of geologically deposited sediments that are the hosts for fossil fuel deposits. They may become even more important in the future if their large storage capacity is utilized for disposing of carbon dioxide. Sedimentary basins are dynamic, in the sense that they have an intricate plumbing system defined by the location of high and low permeability strata that control the flow of fluids throughout the basins and define 'hydrogeological' traps. The most secure type of hydrogeological trapping is found in oil and gas reservoirs in the form of 'structural' or 'stratigraphic' traps, termed 'closed' hydrogeological traps which have held oil and gas for millions of years. Obviously, these would be very attractive for CO 2 storage due to their long history of containment. A second type of hydrogeological trapping has been recognized in aquifers of sedimentary basins that have slow flow rates. The pore space in such 'open' hydrogeological traps is usually filled with saline ground or formation water. A volume of CO 2 injected into a deep open hydrogeological trap can take over a million years to travel updip to reach the surface and be released to the atmosphere. Although the capacity of structural/stratigraphic traps for CO 2 storage is small relative to open hydrogeological traps in deep sedimentary basins, they are likely to be used first as they are known to be secure, having held oil and gas for geological time. As the capacity of closed traps is exhausted and more is learned about geochemical trapping, the large storage capacity available in open hydrogeological traps will be utilized where security of the geological storage of CO 2 can be enhanced by geochemical reactions of the CO 2 with basic silicate minerals to form carbonates. Potential short circuits to the surface through faults or abandoned wells must be located and their stability evaluated before injection of CO 2 . In any event, a

  14. Modelling of processes occurring in deep geological repository - development of new modules in the GoldSim environment

    International Nuclear Information System (INIS)

    Vopalka, D.; Lukin, D.; Vokal, A.

    2006-01-01

    Three new modules modelling the processes that occur in a deep geological repository have been prepared in the GoldSim computer code environment (using its Transport Module). These modules help to understand the role of selected parameters in the near-field region of the final repository and to prepare an own complex model of the repository behaviour. The source term module includes radioactive decay and ingrowth in the canister, first order degradation of fuel matrix, solubility limitation of the concentration of the studied nuclides, and diffusive migration through the surrounding bentonite layer controlled by the output boundary condition formulated with respect to the rate of water flow in the rock. The corrosion module describes corrosion of canisters made of carbon steel and transport of corrosion products in the near-field region. This module computes balance equations between dissolving species and species transported by diffusion and/or advection from the surface of a solid material. The diffusion module that includes also non-linear form of the interaction isotherm can be used for an evaluation of small-scale diffusion experiments. (author)

  15. Modelling of processes occurring in deep geological repository - Development of new modules in the GoldSim environment

    Science.gov (United States)

    Vopálka, D.; Lukin, D.; Vokál, A.

    2006-01-01

    Three new modules modelling the processes that occur in a deep geological repository have been prepared in the GoldSim computer code environment (using its Transport Module). These modules help to understand the role of selected parameters in the near-field region of the final repository and to prepare an own complex model of the repository behaviour. The source term module includes radioactive decay and ingrowth in the canister, first order degradation of fuel matrix, solubility limitation of the concentration of the studied nuclides, and diffusive migration through the surrounding bentonite layer controlled by the output boundary condition formulated with respect to the rate of water flow in the rock. The corrosion module describes corrosion of canisters made of carbon steel and transport of corrosion products in the near-field region. This module computes balance equations between dissolving species and species transported by diffusion and/or advection from the surface of a solid material. The diffusion module that includes also non-linear form of the interaction isotherm can be used for an evaluation of small-scale diffusion experiments.

  16. Novel light trapping scheme for thin crystalline cells utilizing deep structures on both wafer sides [solar cells

    DEFF Research Database (Denmark)

    Jørgensen, Anders Michael; Clausen, Thomas; Leistiko, Otto

    1998-01-01

    62 times the average thickness. The structure consists of deep (-200 μm) inverted pyramids on the front side and deep (-200 μm) truncated pyramids with eight sides on the back. The structure is realized in crystalline silicon by wet chemical etching using potassium hydroxide (KOH) and isopropanol...

  17. Application of seismic interferometry to an exploration of subsurface structure by using microtremors. Estimation of deep ground structures in the Wakasa bay region

    International Nuclear Information System (INIS)

    Sato, Hiroaki; Kuriyama, Masayuki; Higashi, Sadanori; Shiba, Yoshiaki; Okazaki, Atsushi

    2015-01-01

    We carried out continuous measurements of microtremors to synthesize Green's function based on seismic interferometry in order to estimate deep subsurface structures of the Ohshima peninsula (OSM) and the Otomi peninsula (OTM) in the Wakasa bay region. Using more than 80 days of data, dispersive waveforms in the cross correlations were identified as a Green's function based on seismic interferometry. Rayleigh-wave phase velocities at OSM and OTM were estimated by two different method using microtremors: first, by analyzing microtremor array data, and second, by applying the f-k spectral analysis to synthesized Green's functions derived from cross-correlation with a common observation station. Relatively longer period of phase velocities were estimated by the f-k spectral analysis using the synthesized Green's functions with a common observation station. This suggests that the synthesized Green's functions from seismic interferometry can provide a valuable data for phase velocity inversion to estimate a deep subsurface structure. By identifying deep subsurface structures at OSM and OTM based on an inversion of phase velocity from both methods, the depth of S wave velocity of about 3.5 km/s, considered as a top of seismogenic layer, were determined to be 3.8 - 4.0 km at OSM and 4.4 - 4.6 km at OTM, respectively. Love- and Rayleigh-wave group velocities were estimated from the multiple filtering analysis of the synthesized Green's functions. From the comparison of observed surface wave group velocities and theoretical group velocities of OSM and OTM, we demonstrated that the observed group velocities were in good agreement with the average of theoretical group velocities calculated by identified deep subsurface structures at OSM and OTM. It is suggested that the deep subsurface structure of the shallow sea region between two peninsulas is continuous structure from OSM to OTM and that Love- and Rayleigh-wave group velocities using

  18. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  19. The geology of the Olkiluoto area

    International Nuclear Information System (INIS)

    Anttila, P.; Paulamaeki, S.; Lindberg, A.; Paananen, M.; Koistinen, T.; Front, K.; Pitkaenen, P.

    1992-12-01

    Teollisuuden Voima Oy (TVO) is preparing for the final disposal of spent nuclear fuel from the Olkiluoto nuclear power plant deep in the Finnish bedrock. An area close to the power plant at Olkiluoto, Eurajoki, was one of the five areas selected in 1987 for the preliminary site investigations. A summary of the geological conditions at the Olkiluoto site is presented in the report

  20. Key Factors to Determine the Borehole Spacing in a Deep Borehole Disposal for HLW

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Choi, Heuijoo; Lee, Minsoo; Kim, Geonyoung; Kim, Kyeongsoo

    2015-01-01

    Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose critical radionuclides at the depth. Finally, high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. After then an analysis on key factors for the distance between boreholes for the disposal of HLW was carried out. In this paper, the general concept for deep borehole disposal of spent fuels or HLW wastes, as an alternative method to the deep geological disposal method, were reviewed. After then an analysis on key factors for the determining the distance between boreholes for the disposal of HLW was carried out. These results can be used for the development of the HLW deep borehole disposal system

  1. Key Factors to Determine the Borehole Spacing in a Deep Borehole Disposal for HLW

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Choi, Heuijoo; Lee, Minsoo; Kim, Geonyoung; Kim, Kyeongsoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose critical radionuclides at the depth. Finally, high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept, i.e., deep borehole disposal technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept for deep borehole disposal of spent fuels or high level radioactive wastes which has been developed by some countries according to the rapid advance in the development of drilling technology, as an alternative method to the deep geological disposal method, was reviewed. After then an analysis on key factors for the distance between boreholes for the disposal of HLW was carried out. In this paper, the general concept for deep borehole disposal of spent fuels or HLW wastes, as an alternative method to the deep geological disposal method, were reviewed. After then an analysis on key factors for the determining the distance between boreholes for the disposal of HLW was carried out. These results can be used for the development of the HLW deep borehole disposal system.

  2. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.

    Science.gov (United States)

    Sun, Wenqing; Zheng, Bin; Qian, Wei

    2017-10-01

    This study aimed to analyze the ability of extracting automatically generated features using deep structured algorithms in lung nodule CT image diagnosis, and compare its performance with traditional computer aided diagnosis (CADx) systems using hand-crafted features. All of the 1018 cases were acquired from Lung Image Database Consortium (LIDC) public lung cancer database. The nodules were segmented according to four radiologists' markings, and 13,668 samples were generated by rotating every slice of nodule images. Three multichannel ROI based deep structured algorithms were designed and implemented in this study: convolutional neural network (CNN), deep belief network (DBN), and stacked denoising autoencoder (SDAE). For the comparison purpose, we also implemented a CADx system using hand-crafted features including density features, texture features and morphological features. The performance of every scheme was evaluated by using a 10-fold cross-validation method and an assessment index of the area under the receiver operating characteristic curve (AUC). The observed highest area under the curve (AUC) was 0.899±0.018 achieved by CNN, which was significantly higher than traditional CADx with the AUC=0.848±0.026. The results from DBN was also slightly higher than CADx, while SDAE was slightly lower. By visualizing the automatic generated features, we found some meaningful detectors like curvy stroke detectors from deep structured schemes. The study results showed the deep structured algorithms with automatically generated features can achieve desirable performance in lung nodule diagnosis. With well-tuned parameters and large enough dataset, the deep learning algorithms can have better performance than current popular CADx. We believe the deep learning algorithms with similar data preprocessing procedure can be used in other medical image analysis areas as well. Copyright © 2017. Published by Elsevier Ltd.

  3. Alteration of R7T7-type nuclear glass in deep geological storage conditions; Alteration du verre de confinement de dechets type R7T7 en condition de stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    Combarieu, G de

    2007-02-15

    This PhD thesis is aimed to study the alteration of SON68 glass, French inactive glass of R7T7-type, in contact with near field materials of a deep geological storage (French concept from ANDRA) which are mainly metallic iron and Callovo-Oxfordian clay. Therefore, experiments involving a 'glass-iron-clay' system at lab-scale have been carried out. Interactions between glass, iron and clay have been characterised from submicron to millimeter scale by means of SEM, TEM, XRD and XAS and Raman spectroscopies in terms of chemistry and crystal-chemistry. In the mean time, a conceptual model of glass alteration has been developed to account for most of the experimental observations and known mechanisms of alteration. The model has been then transposed within the transport-chemistry code HYTEC, together with developed models of clay and iron corrosion, to simulate the experiments described above. This work is thus a contribution to the understanding of iron corrosion in Callovo-Oxfordian clay and subsequent glass alteration in the newly formed corrosion products, the whole process being considered as a lab-scale model of a deep geological storage of radioactive wastes. (author)

  4. Alteration of R7T7-type nuclear glass in deep geological storage conditions; Alteration du verre de confinement de dechets type R7T7 en condition de stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    Combarieu, G. de

    2007-02-15

    This PhD thesis is aimed to study the alteration of SON68 glass, French inactive glass of R7T7-type, in contact with near field materials of a deep geological storage (French concept from ANDRA) which are mainly metallic iron and Callovo-Oxfordian clay. Therefore, experiments involving a 'glass-iron-clay' system at lab-scale have been carried out. Interactions between glass, iron and clay have been characterised from submicron to millimeter scale by means of SEM, TEM, XRD and XAS and Raman spectroscopies in terms of chemistry and crystal-chemistry. In the mean time, a conceptual model of glass alteration has been developed to account for most of the experimental observations and known mechanisms of alteration. The model has been then transposed within the transport-chemistry code HYTEC, together with developed models of clay and iron corrosion, to simulate the experiments described above. This work is thus a contribution to the understanding of iron corrosion in Callovo-Oxfordian clay and subsequent glass alteration in the newly formed corrosion products, the whole process being considered as a lab-scale model of a deep geological storage of radioactive wastes. (author)

  5. Development of In situ Geological Investigation and Test Equipment in KURT

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Yong Kweon; Kim, Kyung Su; Park, Kyung Woo; Koh, Yong Kweon; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2010-12-15

    For establishment of the advanced infrastructures of KURT, geological investigation and in situ test equipment were installed. The optical sensor technique could be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc. The micro-seismic monitoring system is able to predict the location and timing of fracturing of rock mass and rock fall around an underground openings as well as analysis on safety of various kinds of engineering structures such as nuclear facilities and other structures. The straddle packer system for hydro-testing in a deep borehole will lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project

  6. Solar illumination geometry and its influence on the observance of geological structures in orbital imagery

    Science.gov (United States)

    Rodrigues, Jose Eduardo; Liu, Chan Chiang

    1991-04-01

    The geology of the westernmost part of Rio de Janeiro State (Brazil) is characterized by the conspicuous presence of the Alem Paraiba lineament, a large shear zone extending more than 200 km in N50-60E direction. Parts of Paraiba do Sul river and of the regional topography are strongly related to this geologic feature. Several other lineament directions complete the structural framework that can be seen on remote sensing products. According to well accepted theories of photointerpretation, LANDSAT images with low sun elevation angles should more clearly show those lineaments, because the shadow enhancement of the relief is greatest. Also, considering the high grade of relief conditionment by the Alem Paraiba lineament, it is expected that this structure could be clearly observed on LANDSAT images of all seasons. However, these hypotheses are not confirmed. The images with low sun elevation angles belong to the epoch (winter) in which the solar azimuths are nearly parallel to the regional structure, making its identification difficult. In summer, the images have high sun elevation angles but their solar azimuths, oblique to the regional structures, allow an adequate identification of the main structural trend.

  7. Conduct of Geologic Field Work During Planetary Exploration: Why Geology Matters

    Science.gov (United States)

    Eppler, Dean B.

    2010-01-01

    The science of field geology is the investigative process of determining the distribution of rock units and structures on a planet fs surface, and it is the first-order data set that informs all subsequent studies of a planet, such as geochemistry, geochronology, geophysics, or remote sensing. For future missions to the Moon and Mars, the surface systems deployed must support the conduct of field geology if these endeavors are to be scientifically useful. This lecture discussed what field geology is all about.why it is important, how it is done, how conducting field geology informs many other sciences, and how it affects the design of surface systems and the implementation of operations in the future.

  8. Spectroscopy of Deep Traps in Cu2S-CdS Junction Structures

    Directory of Open Access Journals (Sweden)

    Eugenijus Gaubas

    2012-12-01

    Full Text Available Cu2S-CdS junctions of the polycrystalline material layers have been examined by combining the capacitance deep level transient spectroscopy technique together with white LED light additional illumination (C-DLTS-WL and the photo-ionization spectroscopy (PIS implemented by the photocurrent probing. Three types of junction structures, separated by using the barrier capacitance characteristics of the junctions and correlated with XRD distinguished precipitates of the polycrystalline layers, exhibit different deep trap spectra within CdS substrates.

  9. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  10. Geology of Kilauea volcano

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.B. (Geological Survey, Denver, CO (United States). Federal Center); Trusdell, F.A. (Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory)

    1993-08-01

    This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, but the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems that develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water. Important features of some of these hydrothermal-convection systems are known through studies of surface geology and drill holes. Observations of eruptions during the past two centuries, detailed geologic mapping, radiocarbon dating, and paleomagnetic secular-variation studies indicate that Kilauea has erupted frequently from its summit and two radial rift zones during Quaternary time. Petrologic studies have established that Kilauea erupts only tholeiitic basalt. Extensive ash deposits at Kilauea's summit and on its LERZ record locally violent, but temporary, disruptions of local hydrothermal-convection systems during the interaction of water or steam with magma. Recent drill holes on the LERZ provide data on the temperatures of the hydrothermal-convection systems, intensity of dike intrusion, porosity and permeability, and an increasing amount of hydrothermal alteration with depth. The prehistoric and historic record of volcanic and seismic activity indicates that magma will continue to be supplied to deep and shallow reservoirs beneath Kilauea's summit and rift zones and that the volcano will be affected by eruptions and earthquakes for many thousands of years. 71 refs., 2 figs.

  11. Application of PALSAR-2 remote sensing data for structural geology and topographic mapping in Kelantan river basin, Malaysia

    Science.gov (United States)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    Natural hazards of geological origin are one of major problem during heavy monsoons rainfall in Kelantan state, peninsular Malaysia. Several landslides occur in this region are obviously connected to geological and topographical features, every year. Satellite synthetic aperture radar (SAR) data are particularly applicable for detection of geological structural and topographical features in tropical conditions. In this study, Phased Array type L-band Synthetic Aperture Radar (PALSAR-2), remote sensing data were used to identify high potential risk and susceptible zones for landslide in the Kelantan river basin. Adaptive Local Sigma filter was selected and applied to accomplish speckle reduction and preserving both edges and features in PALSAR-2 fine mode observation images. Different polarization images were integrated to enhance geological structures. Additionally, directional filters were applied to the PALSAR-2 Local Sigma resultant image for edge enhancement and detailed identification of linear features. Several faults, drainage patterns and lithological contact layers were identified at regional scale. In order to assess the results, fieldwork and GPS survey were conducted in the landslide affected zones in the Kelantan river basin. Results demonstrate the most of the landslides were associated with N-S, NNW-SSE and NE-SW trending faults, angulate drainage pattern and metamorphic and Quaternary units. Consequently, geologic structural map were produced for Kelantan river basin using recent PALSAR-2 data, which could be broadly applicable for landslide hazard assessment and delineation of high potential risk and susceptible areas. Landslide mitigation programmes could be conducted in the landslide recurrence regions for reducing catastrophes leading to economic losses and death.

  12. Non-metric close range photogrammetric system for mapping geologic structures in mines

    Energy Technology Data Exchange (ETDEWEB)

    Brandow, V D

    1976-01-01

    A stereographic close-range photogrammetric method of obtaining structural data for mine roof stability analyses is described. Stereo pairs were taken with 70 mm and 35 mm non-metric cameras. Photo co-ordinates were measured with a stereo-comparator and reduced by the direct linear transformation method. Field trials demonstrate that the technique is sufficiently accurate for geological work and is a practical method of mapping.

  13. Use of space imagery for studying geologic structure of the North-Ustyurtskaya oil and gas-bearing region

    Energy Technology Data Exchange (ETDEWEB)

    Lion, Yu A; Solovyova, L I

    1981-01-01

    Overview of issues concerning landscape and geomorphologic analysis of space imagery and the subsequent interpretation of structural and geologic values with use of geophysical data. Examples of clues of different value structural elements on images of differing generalization levels. Potential for studying overall patterns for local structures on the basis of structural and geomorphologic zonation is discussed.

  14. Structure function measurements in the deep inelastic muon-nucleon scattering

    International Nuclear Information System (INIS)

    Peschel, H.

    1990-03-01

    Measurements of deep inelastic scattering events on a combined copper and deuterium target were performed by the European Muon Collaboration (EMC) using a muon beam at CERN's SPS with energies at 100 GeV and 280 GeV. The data are analysed and compared with a detailed Monte-Carlo simulation and allow the determination of structure functions from both targets. In the light of the present discrepancy between EMC's and BCDMS's structure functions, stringend cuts were applied to the data. The results confirm the EMC structure function measurements on unbound nucleons. The comparison between the copper structure function from this experiment and the NA2 iron structure function shows a trend to lower values at low x Bj . (orig.) [de

  15. Strategic program for deep geological disposal of high level radioactive waste in China

    International Nuclear Information System (INIS)

    Wang Ju

    2004-01-01

    A strategic program for deep geological disposal of high level radioactive waste in China is proposed in this paper. A '3-step technical strategy': site selection and site characterization-site specific underground research laboratory-final repository, is proposed for the development of China's high level radioactive waste repository. The activities related with site selection and site characterization for the repository can be combined with those for the underground research laboratory. The goal of the strategy is to build China's repository around 2040, while the activities can be divided into 4 phases: 1) site selection and site characterization; 2) site confirmation and construction of underground research laboratory, 3) in-situ experiment and disposal demonstration, and 4) construction of repository. The targets and tasks for each phase are proposed. The logistic relationship among the activities is discussed. It is pointed out that the site selection and site characterization provide the basis for the program, the fundamental study and underground research laboratory study are the key support, the performance assessment plays a guiding role, while the construction of a qualified repository is the final goal. The site selection can be divided into 3 stages: comparison among pre-selected areas, comparison among pre-selected sites and confirmation of the final site. According to this strategy, the final site for China's underground research laboratory and repository will be confirmed in 2015, where the construction of an underground laboratory will be started. In 2025 the underground laboratory will have been constructed, while in around 2040, the construction of a final repository is to be completed

  16. Key scientific challenges in geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Wang Ju

    2007-01-01

    The geological disposal of high radioactive waste is a challenging task facing the scientific and technical world. This paper introduces the latest progress of high level radioactive disposal programs in the latest progress of high level radioactive disposal programs in the world, and discusses the following key scientific challenges: (1) precise prediction of the evolution of a repository site; (2) characteristics of deep geological environment; (3) behaviour of deep rock mass, groundwater and engineering material under coupled con-ditions (intermediate to high temperature, geostress, hydraulic, chemical, biological and radiation process, etc); (4) geo-chemical behaviour of transuranic radionuclides with low concentration and its migration with groundwater; and (5) safety assessment of disposal system. Several large-scale research projects and several hot topics related with high-level waste disposal are also introduced. (authors)

  17. Granites petrology, structure, geological setting, and metallogeny

    CERN Document Server

    Nédélec, Anne; Bowden, Peter

    2015-01-01

    Granites are emblematic rocks developed from a magma that crystallized in the Earth’s crust. They ultimately outcrop at the surface worldwide. This book, translated and updated from the original French edition Pétrologie des Granites (2011) is a modern presentation of granitic rocks from magma genesis to their crystallization at a higher level into the crust. Segregation from the source, magma ascent and shapes of granitic intrusions are also discussed, as well as the eventual formation of hybrid rocks by mingling/mixing processes and the thermomechanical aspects in country rocks around granite plutons. Modern techniques for structural studies of granites are detailed extensively. Granites are considered in their geological spatial and temporal frame, in relation with plate tectonics and Earth history from the Archaean eon. A chapter on granite metallogeny explains how elements of economic interest are concentrated during magma crystallization, and examples of Sn, Cu, F and U ore deposits are presented. Mi...

  18. Working program for deep borehole investigations. HDB-6,7,8, borehole

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Takahashi, Kazuharu; Ishii, Eiichi; Takeuchi, Ryuji; Sasaki, Manabu; Kunimaru, Takanori; Eki, Nobuhiro; Matsui, Hiroya

    2003-08-01

    In the Horonobe Underground Research Laboratory project, a wide range of geoscientific research and development activities are planned to be performed in three phases, Surface-based Investigations (Phase I), Construction (Phase II) and Operations (Phase III), over period of 20 years. Surface-based investigations have been conducted since 2000. Main goals of the Horonobe project are; To establish comprehensive techniques for investigating the geological environment, and To develop a range of engineering techniques for deep underground applications. The specific goals of the surface-based investigations are, To construct geological models of the geological environment based on the surface-based investigations and develop an understanding of the deep geological environment (undisturbed, initial conditions) before excavation of the shaft and experimental drifts To formulate detailed design and plans for the construction of the shaft and experimental drifts, and To plan scientific investigations during the construction phase. Field investigations during the surface-based investigations phase are planned for completion by the end of 2005, with excavation of the main shaft, Phase 2 construction, planned to start in 2005. The diameter of the main shafts has provisionally been set at 6.5 meters and the proposed depth is 500 meters. Details of the geometry and depth of specific underground facilities, including the main shaft, the ventilation shaft and the drifts, will be defined using data on the geological environment obtained during the surface-based investigation phase. As part of the surface-based investigations, geological, geophysical, hydrogeological, hydrochemical and rock mechanical investigations were carried out. Deep borehole investigations started in 2000 in order to characterize the sedimentary rocks. Taking into account the status of the investigations as of April 2003 and the remaining time (i.e., three year) for the surface-based investigations, an

  19. Plume Migration of Different Carbon Dioxide Phases During Geological Storage in Deep Saline Aquifers

    Directory of Open Access Journals (Sweden)

    Chien-Hao Shen

    2015-01-01

    Full Text Available This study estimates the plume migration of mobile supercritical phase (flowing, aqueous phase (dissolved, and ionic phase CO2 (bicarbonate, and evaluates the spatial distribution of immobile supercritical phase (residual and mineral phase CO2 (carbonates when CO2 was sequestered. This utilized a simulation, in an anticline structure of a deep saline aquifer in the Tiechenshan (TCS field, Taiwan. All of the trapping mechanisms and different CO2 phases were studied using the fully coupled geochemical equation-of-state GEM compositional simulator. The mobile supercritical phase CO2 moved upward and then accumulated in the up-dip of the structure because of buoyancy. A large amount of immobile supercritical phase CO2 was formed at the rear of the moving plume where the imbibition process prevailed. Both the aqueous and ionic phase CO2 finally accumulated in the down-dip of the structure because of convection. The plume volume of aqueous phase CO2 was larger than that of the supercritical phase CO2, because the convection process increased vertical sweep efficiency. The up-dip of the structure was not the major location for mineralization, which is different from mobile supercritical phase CO2 accumulation.

  20. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested.

  1. Preliminary analyses of the deep geoenvironmental characteristics for the deep borehole disposal of high-level radioactive waste in Korea

    International Nuclear Information System (INIS)

    Lee, Jong Youl; Lee, Min Soo; Choi, Heui Joo; Kim, Geon Young; Kim, Kyung Su

    2016-01-01

    Spent fuels from nuclear power plants, as well as high-level radioactive waste from the recycling of spent fuels, should be safely isolated from human environment for an extremely long time. Recently, meaningful studies on the development of deep borehole radioactive waste disposal system in 3-5 km depth have been carried out in USA and some countries in Europe, due to great advance in deep borehole drilling technology. In this paper, domestic deep geoenvironmental characteristics are preliminarily investigated to analyze the applicability of deep borehole disposal technology in Korea. To do this, state-of-the art technologies in USA and some countries in Europe are reviewed, and geological and geothermal data from the deep boreholes for geothermal usage are analyzed. Based on the results on the crystalline rock depth, the geothermal gradient and the spent fuel types generated in Korea, a preliminary deep borehole concept including disposal canister and sealing system, is suggested

  2. Higher twist contributions to deep-inelastic structure functions

    International Nuclear Information System (INIS)

    Bluemlein, J.; Boettcher, H.

    2008-07-01

    We report on a recent extraction of the higher twist contributions to the deep inelastic structure functions F ep,ed 2 (x,Q 2 ) in the large x region. It is shown that the size of the extracted higher twist contributions is strongly correlated with the higher order corrections applied to the leading twist part. A gradual lowering of the higher twist contributions going from NLO to N 4 LO is observed, where in the latter case only the leading large x terms were considered. (orig.)

  3. Corrosion of high purity copper as engineering barrier in deep geological repositories

    International Nuclear Information System (INIS)

    Ochoa, Maité; Rodríguez Martín, A.; Farina Silvia, B.

    2013-01-01

    Pure copper with oxygen content below 5 ppm (to minimize segregation at grain boundaries) and doped with phosphorus (to increase creep resistance) is the chosen material for the corrosion-resistant barrier of the High Level Radioactive 2 Wastecontainers in the Swedish and Finnish repository models. These models include the construction of the repository below the water table, which is a reducing environment in which copper has excellent resistance to general and localized corrosion in aqueous electrolytes. The aim of this work is contribute to determine the durability of the material, given that deep geological repositories of HLW are designed to ensure the protection of the environment for periods of hundreds of thousands years. As a first step in a more general analysis the effects of chloride, one of the main aggressive species of corrosion, are evaluated. To this purpose corrosion potential was determined and anodic polarization curves were performed in deaerated solutions varying the chloride concentration between 0.01 and 1M and the temperature between 30 and 90°C. Several electrochemical techniques were used: the evolution of corrosion potential was measured, anodic polarization curves were obtained and electrochemical impedance tests were performed. The analysis was complemented with microscopic observations of the type of corrosive attack, as well as determinations of the eventual corrosion products formed using Energy-Dispersive X-ray Analysis (EDS). Results show that the corrosion potential decreases with the increase of temperature and with the increase of chloride concentration. A correlation of the corrosion potential as a function of temperature and chloride concentration was obtained, with the purpose of making predictions in variable conditions.The current density increases both with temperature and with chloride concentration. A pitting potential is observed in certain conditions. (author)

  4. Remote sensing data exploiration for geologic characterization of difficult targets : Laboratory Directed Research and Development project 38703 final report.

    Energy Technology Data Exchange (ETDEWEB)

    Costin, Laurence S.; Walker, Charles A.; Lappin, Allen R.; Hayat, Majeed M. (University of New Mexico, Albuquerque, NM); Ford, Bridget K.; Paskaleva, Biliana (University of New Mexico, Albuquerque, NM); Moya, Mary M.; Mercier, Jeffrey Alan (University of Arizona, Tucson, AZ); Stormont, John C. (University of New Mexico, Albuquerque, NM); Smith, Jody Lynn

    2003-09-01

    Characterizing the geology, geotechnical aspects, and rock properties of deep underground facility sites can enhance targeting strategies for both nuclear and conventional weapons. This report describes the results of a study to investigate the utility of remote spectral sensing for augmenting the geological and geotechnical information provided by traditional methods. The project primarily considered novel exploitation methods for space-based sensors, which allow clandestine collection of data from denied sites. The investigation focused on developing and applying novel data analysis methods to estimate geologic and geotechnical characteristics in the vicinity of deep underground facilities. Two such methods, one for measuring thermal rock properties and one for classifying rock types, were explored in detail. Several other data exploitation techniques, developed under other projects, were also examined for their potential utility in geologic characterization.

  5. Structure and geological evolution of the bedrock at southern Satakunta, SW Finland

    Energy Technology Data Exchange (ETDEWEB)

    Paulamaeki, S.; Paananen, M.; Elo, S. [Geological Survey of Finland (Finland)

    2002-02-01

    The southern Satakunta area lies on the west coast of Finland, mainly covering the mainland (with main towns Pori and Rauma), but also including the coastal archipelago and part of the Bothnian Sea. Near the centre of the area lies the island of Olkiluoto, on which Finland's site for a deep repository for spent nuclear fuel is located. The purpose of the present report is to compile and interpret all available geological and geophysical data relevant to understanding the regional geological setting of the Olkiluoto site. The area described is covered by four 1:100 000 scale geological map sheets, published by the Geological Survey of Finland, which, together with low-altitude aeromagnetic maps, provide the basis for a new 1:250 000 geological map compilation. This shows that the bedrock of southern Satakunta can be subdivided into three main zones: a pelitic migmatite belt in the southwest, a central, NW-SE trending area of sandstone, and a psammitic migmatite belt in the northeast. The migmatite belts formed during the Svecofennian orogeny, 1900-1800 Ma ago (Palaeoproterozoic). The sandstone area is the remnant of an alluvial basin, preserved now in a NW-SE trending graben, bounded on both sides by normal fault zones. The sandstones are thought to be at least 1400-1300 Ma old (Mesoproterozoic), and they are cut by Postjotnian olivine diabase dykes, 1270-1250 Ma in age. The Svecofennian migmatite belts show a complex history of formation, with various phases of anatexis/metamorphism, deformation and intrusion. In the pelitic migmatite belt, in which the Olkiluoto site is situated, four phases of ductile deformation (D-D4) and two phases of regional highT/lowP metamorphism and migmatite formation can be recognised, together with synorogenic (tonalite, granodiotite) and late orogenic ( potassium granite) intrusions. Subsequently, this very heterogeneous complex was intruded by anorogenic rapakivi granites, with ages 1580-1550 Ma. One pluton, the Eurajoki stock

  6. Experience from the ECORS program in regions of complex geology

    Science.gov (United States)

    Damotte, B.

    1993-04-01

    The French ECORS program was launched in 1983 by a cooperation agreement between universities and petroleum companies. Crustal surveys have tried to find explanations for the formation of geological features, such as rifts, mountains ranges or subsidence in sedimentary basins. Several seismic surveys were carried out, some across areas with complex geological structures. The seismic techniques and equipment used were those developed by petroleum geophysicists, adapted to the depth aimed at (30-50 km) and to various physical constraints encountered in the field. In France, ECORS has recorded 850 km of deep seismic lines onshore across plains and mountains, on various kinds of geological formations. Different variations of the seismic method (reflection, refraction, long-offset seismic) were used, often simultaneously. Multiple coverage profiling constitutes the essential part of this data acquisition. Vibrators and dynamite shots were employed with a spread generally 15 km long, but sometimes 100 km long. Some typical seismic examples show that obtaining crustal reflections essentialy depends on two factors: (1) the type and structure of shallow formations, and (2) the sources used. Thus, when seismic energy is strongly absorbed across the first kilometers in shallow formations, or when these formations are highly structured, standard multiple-coverage profiling is not able to provide results beyond a few seconds. In this case, it is recommended to simultaneously carry out long-offset seismic in low multiple coverage. Other more methodological examples show: how the impact on the crust of a surface fault may be evaluated according to the seismic method implemented ( VIBROSEIS 96-fold coverage or single dynamite shot); that vibrators make it possible to implement wide-angle seismic surveying with an offset 80 km long; how to implement the seismic reflection method on complex formations in high mountains. All data were processed using industrial seismic software

  7. The Strabo digital data system for Structural Geology and Tectonics

    Science.gov (United States)

    Tikoff, Basil; Newman, Julie; Walker, J. Doug; Williams, Randy; Michels, Zach; Andrews, Joseph; Bunse, Emily; Ash, Jason; Good, Jessica

    2017-04-01

    We are developing the Strabo data system for the structural geology and tectonics community. The data system will allow researchers to share primary data, apply new types of analytical procedures (e.g., statistical analysis), facilitate interaction with other geology communities, and allow new types of science to be done. The data system is based on a graph database, rather than relational database approach, to increase flexibility and allow geologically realistic relationships between observations and measurements. Development is occurring on: 1) A field-based application that runs on iOS and Android mobile devices and can function in either internet connected or disconnected environments; and 2) A desktop system that runs only in connected settings and directly addresses the back-end database. The field application also makes extensive use of images, such as photos or sketches, which can be hierarchically arranged with encapsulated field measurements/observations across all scales. The system also accepts Shapefile, GEOJSON, KML formats made in ArcGIS and QGIS, and will allow export to these formats as well. Strabo uses two main concepts to organize the data: Spots and Tags. A Spot is any observation that characterizes a specific area. Below GPS resolution, a Spot can be tied to an image (outcrop photo, thin section, etc.). Spots are related in a purely spatial manner (one spot encloses anther spot, which encloses another, etc.). Tags provide a linkage between conceptually related spots. Together, this organization works seamlessly with the workflow of most geologists. We are expanding this effort to include microstructural data, as well as to the disciplines of sedimentology and petrology.

  8. Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?

    International Nuclear Information System (INIS)

    Gale, John

    2004-01-01

    If deep reductions in anthropogenic greenhouse gas emissions are to be achieved, the introduction of CO 2 capture and storage in geological reservoirs is likely to be necessary. The technology would be deployed alongside other mitigation measures such as renewables, energy efficiency and fuel switching. Currently, research programmes on the geological storage of CO 2 are underway in the United States, the European Union, Australia and Japan. The aim of this paper is to present an overview of the research work that is currently underway and provide an analysis of the current state of knowledge on geological storage of CO 2. The analysis will be broken down to address the key geological storage options: deep coal seams, depleted hydrocarbon reservoirs and deep saline aquifers. In each case, areas of uncertainty will be highlighted as well as areas where it is considered that further work will be needed so that the technology can be accepted by Governments and the general public as a mitigation option suitable for wide-scale application throughout the world

  9. Geological storage of CO2: what do we know, where are the gaps and what more needs to be done?

    International Nuclear Information System (INIS)

    Gale, J.

    2004-01-01

    If deep reductions in anthropogenic greenhouse gas emissions are to be achieved, the introduction of CO 2 capture and storage in geological reservoirs is likely to be necessary. The technology would be deployed alongside other mitigation measures such as renewables, energy efficiency and fuel switching. Currently, research programmes on the geological storage of CO 2 are underway in the United States, the European Union, Australia and Japan. The aim of this paper is to present an overview of the research work that is currently underway and provide an analysis of the current state of knowledge on geological storage of CO 2 . The analysis will be broken down to address the key geological storage options: deep coal seams, depleted hydrocarbon reservoirs and deep saline aquifers. In each case, areas of uncertainty will be highlighted as well as areas where it is considered that further work will be needed so that the technology can be accepted by Governments and the general public as a mitigation option suitable for wide-scale application throughout the world. (author)

  10. Clayey cap-rocks reactivity in presence of CO2 in deep geological storage conditions: experimentation/modeling integrated approach

    International Nuclear Information System (INIS)

    Credoz, A.

    2009-10-01

    CO 2 capture, transport and geological storage is one of the main solutions considered in the short and medium term to reduce CO 2 and others greenhouse gases emissions towards the atmosphere, by storing CO 2 in deeper geological reservoirs during 100 to 10 000 years. This Ph-D study offers a multi-scale vision of complex clayey cap-rocks reactivity and evolution. These formations are identified for the CO 2 containment and sealing into the reservoir. From the experimental scale on purified clay minerals to integrative modeling at high space and time scales, the strategy developed allowed identifying the main geochemical processes, to check the good agreement between experiment and modeling, and to lay emphasis the operational impacts on long-term cap-rocks integrity. Carbonated cements alteration is likely to open cap-rock porosity and to create preferential reactive pathway for reactive fluid flow. Besides, this could alter the cap-rock structure and the global geo-mechanic properties. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at low and high scale, is coupled with silica precipitation. The final porosity increase control results of these two reactive processes balance. By a fundamental side, this study reveals new kinetic parameters of clay minerals and highlights new structural transformations. By an operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey cap-rocks, coupled reactivity carbonates/clays) and quantitative data (CO 2 penetration distance into the cap-rock) to partly answer to the performance and safety assessment CO 2 capture and geological storage. (author)

  11. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    KAUST Repository

    Sana, Furrukh; Katterbauer, Klemens; Al-Naffouri, Tareq Y.; Hoteit, Ibrahim

    2016-01-01

    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  12. Orthogonal Matching Pursuit for Enhanced Recovery of Sparse Geological Structures With the Ensemble Kalman Filter

    KAUST Repository

    Sana, Furrukh

    2016-02-23

    Estimating the locations and the structures of subsurface channels holds significant importance for forecasting the subsurface flow and reservoir productivity. These channels exhibit high permeability and are easily contrasted from the low-permeability rock formations in their surroundings. This enables formulating the flow channels estimation problem as a sparse field recovery problem. The ensemble Kalman filter (EnKF) is a widely used technique for the estimation and calibration of subsurface reservoir model parameters, such as permeability. However, the conventional EnKF framework does not provide an efficient mechanism to incorporate prior information on the wide varieties of subsurface geological structures, and often fails to recover and preserve flow channel structures. Recent works in the area of compressed sensing (CS) have shown that estimating in a sparse domain, using algorithms such as the orthogonal matching pursuit (OMP), may significantly improve the estimation quality when dealing with such problems. We propose two new, and computationally efficient, algorithms combining OMP with the EnKF to improve the estimation and recovery of the subsurface geological channels. Numerical experiments suggest that the proposed algorithms provide efficient mechanisms to incorporate and preserve structural information in the EnKF and result in significant improvements in recovering flow channel structures.

  13. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 12. Repository preconceptual design studies: shale

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in shale. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area, and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/13, ''Drawings for Repository Preconceptual Design Studies: Shale.''

  14. Technical support for GEIS: radioactive waste isolation in geologic formations. Volume 14. Repository preconceptual design studies: basalt

    International Nuclear Information System (INIS)

    1978-04-01

    This document describes a preconceptual design for a nuclear waste storage facility in basalt. The facility design consists of several chambers excavated deep within a geologic formation together with access shafts and supportive surface structures. The facility design provides for: receiving and unloading waste containers; lowering them down shafts to the mine level; transporting them to the proper storage area and emplacing them in mined storage rooms. Drawings of the facility design are contained in TM-36/15, ''Drawings for Repository Preconceptual Design Studies: Basalt.''

  15. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along

  16. Nucleon deep-inelastic structure functions in a quark model with factorizability assumptions

    International Nuclear Information System (INIS)

    Linkevich, A.D.; Skachkov, N.B.

    1979-01-01

    Formula for structure functions of deep-inelastic electron scattering on nucleon is derived. For this purpose the dynamic model of factorizing quark amplitudes is used. It has been found that with increase of Q 2 transferred pulse square at great values of x kinemastic variable the decrease of structure function values is observed. At x single values the increase of structure function values is found. The comparison With experimental data shows a good agreement of the model with experiment

  17. A three-dimensional model of the Pyrenees and their foreland basins from geological and gravimetric data

    Science.gov (United States)

    Wehr, H.; Chevrot, S.; Courrioux, G.; Guillen, A.

    2018-06-01

    We construct a three-dimensional geological model of the Pyrenees and their foreland basins with the Geomodeller. This model, which accounts for different sources of geological and geophysical informations, covers the whole Pyrenees, from the Atlantic Ocean to the Mediterranean Sea, and from the Iberian range to the Massif Central, down to 70 km depth. We model the geological structure with a stratigraphic column composed of a superposition of layers representing the mantle, lower, middle, and upper crusts. The sedimentary basins are described by two layers which allow us to make the distinction between Mesozoic and Cenozoic sediments, which are characterized by markedly different densities and seismic velocities. Since the Pyrenees result from the convergence between the Iberian and European plates, we ascribe to each plate its own stratigraphic column in order to be able to model the imbrication of Iberian and European crusts along this fossile plate boundary. We also introduce two additional units which describe the orogenic prism and the water column in the Bay of Biscay and in the Mediterranean Sea. The last ingredient is a unit that represents bodies of shallow exhumed and partly serpentinized lithospheric mantle, which are assumed to produce the positive Bouguer gravity anomalies in the North Pyrenean Zone. A first 3D model is built using only the geological information coming from geological maps, drill-holes, and seismic sections. We use the potential field method implemented in Geomodeller to interpolate these geological data. This model is then refined in order to better explain the observed Bouguer anomalies by adding new constraints on the main crustal interfaces. The final model explains the observed Bouguer anomalies with a standard deviation less than 3.4 mGal, and reveals anomalous deep structures beneath the eastern Pyrenees.

  18. THE TECTONICS STRESS AND STRAIN FIELD MODELING ADJUSTED FOR EVOLUTION OF GEOLOGICAL STRUCTURES (SAILAG INTRUSION, EASTERN SAYAN

    Directory of Open Access Journals (Sweden)

    V. N. Voytenko

    2013-01-01

    Full Text Available The article describes a tectonophysical model showing evolution of structures in the Sailag granodiorite massif in relation to its gold-bearing capacity. The model takes into account the load patterns according to geological data, accumulated deformation, and gravity stresses. This model provides for updating the structural-geological model showing development of the intrusion body and the ore field. Forecasted are destruction patterns in the apical and above-dome parts of the massif  in the intrusion and contraction phase, formation of the long-term shear zone at the steeply dipping slope of the intrusion body, and subvertical fractures associated with the long-term shear zone and vertical mechanical ‘layering’ of the intrusive body.  

  19. Evaluation of geological structure and uranium mineralization model in West Lemajung Sector, Kalan Basin, West Kalimantan

    International Nuclear Information System (INIS)

    Ngadenin; Sularto, P.

    2000-01-01

    The fieldwork is based on the data of strike (S0) and schistosity (S1) of cores that could not penetrate the geological structure model and result of observation on some cores has shown that U mineralization veins are not always parallel to S1. The problems were encountered in core drill data to improve the estimation of U resources from indication category to measured category. The purpose of the evaluation is to establish the advisability of geological structure model and U mineralization model which was applied by this time. The research used remapping of geological structure with surface method in the scale of 1:1000. The result of remapping shows the difference of the dipping between new geological structure model and the old model. The dipping of the new model is to South East until vertical and the old model is to North West until vertical and to South East until vertical. Despite the difference between both of them, the substantive of folding system is identical so that the new and old models can be applied in drilling in West Lemajung sector. U mineralization model of remapping result consists of 3 types : type 1 U mineralization lens form with West-East direction and vertical dipping which is associated with tourmaline, type 2 U mineralization filling in the open fractures with West-East direction and 70 o to North dipping and parallel with S1, and type 3 U mineralization fill in opening fractures with N 110 o - 130 o E the direction and 60 o to North East until subvertical dipping while the old model is only one type. It is U mineralization filling in the open fractures with West-East the direction and 70 o to North the dipping and parallel with S1. Because of this significant difference, data collection of drill core must follow the new mineralization model. (author)

  20. Deep Neural Network for Structural Prediction and Lane Detection in Traffic Scene.

    Science.gov (United States)

    Li, Jun; Mei, Xue; Prokhorov, Danil; Tao, Dacheng

    2017-03-01

    Hierarchical neural networks have been shown to be effective in learning representative image features and recognizing object classes. However, most existing networks combine the low/middle level cues for classification without accounting for any spatial structures. For applications such as understanding a scene, how the visual cues are spatially distributed in an image becomes essential for successful analysis. This paper extends the framework of deep neural networks by accounting for the structural cues in the visual signals. In particular, two kinds of neural networks have been proposed. First, we develop a multitask deep convolutional network, which simultaneously detects the presence of the target and the geometric attributes (location and orientation) of the target with respect to the region of interest. Second, a recurrent neuron layer is adopted for structured visual detection. The recurrent neurons can deal with the spatial distribution of visible cues belonging to an object whose shape or structure is difficult to explicitly define. Both the networks are demonstrated by the practical task of detecting lane boundaries in traffic scenes. The multitask convolutional neural network provides auxiliary geometric information to help the subsequent modeling of the given lane structures. The recurrent neural network automatically detects lane boundaries, including those areas containing no marks, without any explicit prior knowledge or secondary modeling.