WorldWideScience

Sample records for deep geologic co2

  1. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    Han, Weon Shik; McPherson, Brian J.

    2009-01-01

    The purpose of this research is to present a best-case paradigm for geologic CO 2 storage: CO 2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO 2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO 2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO 2 , CO 2 -brine, and CO 2 -oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO 2 migration, and mobility ratio (M), which characterizes the impeded CO 2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO 2 injection in oil reservoirs vs. brine formations: (1) CO 2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO 2 migration is smaller in oil reservoirs because density contrast between oil and CO 2 is smaller than it between brine and oil (the approximate density contrast between CO 2 and crude oil is ∼100 kg/m 3 and between CO 2 and brine is ∼350 kg/m 3 ); (3) the increased density of oil and brine due to the CO 2 dissolution is not significant (about 7-15 kg/m 3 ); (4) the viscosity reduction of oil due to CO 2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing

  2. A methodology for the geological and numerical modelling of CO2 storage in deep saline formations

    Science.gov (United States)

    Guandalini, R.; Moia, F.; Ciampa, G.; Cangiano, C.

    2009-04-01

    Several technological options have been proposed to stabilize and reduce the atmospheric concentrations of CO2 among which the most promising are the CCS technologies. The remedy proposed for large stationary CO2 sources as thermoelectric power plants is to separate the flue gas, capturing CO2 and to store it into deep subsurface geological formations. In order to support the identification of potential CO2 storage reservoirs in Italy, the project "Identification of Italian CO2 geological storage sites", financed by the Ministry of Economic Development with the Research Fund for the Italian Electrical System under the Contract Agreement established with the Ministry Decree of march 23, 2006, has been completed in 2008. The project involves all the aspects related to the selection of potential storage sites, each carried out in a proper task. The first task has been devoted to the data collection of more than 6800 wells, and their organization into a geological data base supported by GIS, of which 1911 contain information about the nature and the thickness of geological formations, the presence of fresh, saline or brackish water, brine, gas and oil, the underground temperature, the seismic velocity and electric resistance of geological materials from different logs, the permeability, porosity and geochemical characteristics. The goal of the second task was the set up of a numerical modelling integrated tool, that is the in order to allow the analysis of a potential site in terms of the storage capacity, both from solubility and mineral trapping points of view, in terms of risk assessment and long-term storage of CO2. This tool includes a fluid dynamic module, a chemical module and a module linking a geomechanical simulator. Acquirement of geological data, definition of simulation parameter, run control and final result analysis can be performed by a properly developed graphic user interface, fully integrated and calculation platform independent. The project is then

  3. Geological storage of CO2

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2005-01-01

    The industrial storage of CO 2 is comprised of three steps: - capture of CO 2 where it is produced (power plants, cement plants, etc.); - transport (pipe lines or boats); - storage, mainly underground, called geological sequestration... Three types of reservoirs are considered: - salted deep aquifers - they offer the biggest storage capacity; - exhausted oil and gas fields; - non-exploited deep coal mine streams. The two latter storage types may allow the recovery of sellable products, which partially or totally offsets the storage costs. This process is largely used in the petroleum industry to improve the productivity of an oil field, and is called FOR (Enhanced Oil Recovery). A similar process is applied in the coal mining industry to recover the imprisoned gas, and is called ECBM (Enhanced Coal Bed methane). Two storage operations have been initiated in Norway and in Canada, as well as research programmes in Europe, North America, Australia and Japan. International organisations to stimulate this technology have been created such as the 'Carbon Sequestration Leadership Forum' and 'the Intergovernmental Group for Climate Change'. This technology will be taken into account in the instruments provided by the Tokyo Protocol. (author)

  4. Global Sensitivity Analysis to Assess Salt Precipitation for CO2 Geological Storage in Deep Saline Aquifers

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2017-01-01

    Full Text Available Salt precipitation is generated near the injection well when dry supercritical carbon dioxide (scCO2 is injected into saline aquifers, and it can seriously impair the CO2 injectivity of the well. We used solid saturation (Ss to map CO2 injectivity. Ss was used as the response variable for the sensitivity analysis, and the input variables included the CO2 injection rate (QCO2, salinity of the aquifer (XNaCl, empirical parameter m, air entry pressure (P0, maximum capillary pressure (Pmax, and liquid residual saturation (Splr and Sclr. Global sensitivity analysis methods, namely, the Morris method and Sobol method, were used. A significant increase in Ss was observed near the injection well, and the results of the two methods were similar: XNaCl had the greatest effect on Ss; the effect of P0 and Pmax on Ss was negligible. On the other hand, with these two methods, QCO2 had various effects on Ss: QCO2 had a large effect on Ss in the Morris method, but it had little effect on Ss in the Sobol method. We also found that a low QCO2 had a profound effect on Ss but that a high QCO2 had almost no effect on the Ss value.

  5. Natural Analogues of CO2 Geological Storage

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Pelayo, M.; Recreo, F.

    2007-01-01

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  6. Clayey cap-rocks reactivity in presence of CO2 in deep geological storage conditions: experimentation/modeling integrated approach

    International Nuclear Information System (INIS)

    Credoz, A.

    2009-10-01

    CO 2 capture, transport and geological storage is one of the main solutions considered in the short and medium term to reduce CO 2 and others greenhouse gases emissions towards the atmosphere, by storing CO 2 in deeper geological reservoirs during 100 to 10 000 years. This Ph-D study offers a multi-scale vision of complex clayey cap-rocks reactivity and evolution. These formations are identified for the CO 2 containment and sealing into the reservoir. From the experimental scale on purified clay minerals to integrative modeling at high space and time scales, the strategy developed allowed identifying the main geochemical processes, to check the good agreement between experiment and modeling, and to lay emphasis the operational impacts on long-term cap-rocks integrity. Carbonated cements alteration is likely to open cap-rock porosity and to create preferential reactive pathway for reactive fluid flow. Besides, this could alter the cap-rock structure and the global geo-mechanic properties. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at low and high scale, is coupled with silica precipitation. The final porosity increase control results of these two reactive processes balance. By a fundamental side, this study reveals new kinetic parameters of clay minerals and highlights new structural transformations. By an operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey cap-rocks, coupled reactivity carbonates/clays) and quantitative data (CO 2 penetration distance into the cap-rock) to partly answer to the performance and safety assessment CO 2 capture and geological storage. (author)

  7. U.S. Department of Energy's site screening, site selection, and initial characterization for storage of CO2 in deep geological formations

    Science.gov (United States)

    Rodosta, T.D.; Litynski, J.T.; Plasynski, S.I.; Hickman, S.; Frailey, S.; Myer, L.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead Federal agency for the development and deployment of carbon sequestration technologies. As part of its mission to facilitate technology transfer and develop guidelines from lessons learned, DOE is developing a series of best practice manuals (BPMs) for carbon capture and storage (CCS). The "Site Screening, Site Selection, and Initial Characterization for Storage of CO2 in Deep Geological Formations" BPM is a compilation of best practices and includes flowchart diagrams illustrating the general decision making process for Site Screening, Site Selection, and Initial Characterization. The BPM integrates the knowledge gained from various programmatic efforts, with particular emphasis on the Characterization Phase through pilot-scale CO2 injection testing of the Validation Phase of the Regional Carbon Sequestration Partnership (RCSP) Initiative. Key geologic and surface elements that suitable candidate storage sites should possess are identified, along with example Site Screening, Site Selection, and Initial Characterization protocols for large-scale geologic storage projects located across diverse geologic and regional settings. This manual has been written as a working document, establishing a framework and methodology for proper site selection for CO2 geologic storage. This will be useful for future CO2 emitters, transporters, and storage providers. It will also be of use in informing local, regional, state, and national governmental agencies of best practices in proper sequestration site selection. Furthermore, it will educate the inquisitive general public on options and processes for geologic CO2 storage. In addition to providing best practices, the manual presents a geologic storage resource and capacity classification system. The system provides a "standard" to communicate storage and capacity estimates, uncertainty and project development risk, data guidelines and analyses for adequate site characterization, and

  8. System-level modeling for geological storage of CO2

    OpenAIRE

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2006-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO2) from industrial sources into deep geological formations such as brine formations or depleted oil or gas reservoirs. Research has and is being conducted to improve understanding of factors affecting particular aspects of geological CO2 storage, such as performance, capacity, and health, safety and environmental (HSE) issues, as well as to lower the cost of CO2 capture and related p...

  9. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    commercial CO2 capture facilities at electric power-generating stations based on the use of monoethanolamine are described, as is the Rectisol process used by Dakota Gasification to separate and capture CO2 from a coal gasifier. Two technologies for storage of the captured CO2 are reviewed--sequestration in deep unmineable coalbeds with concomitant recovery of CH4 and sequestration in deep saline aquifers. Key issues for both of these techniques include estimating the potential storage capacity, the storage integrity, and the physical and chemical processes that are initiated by injecting CO2 underground. Recent studies using computer modeling as well as laboratory and field experimentation are presented here. In addition, several projects have been initiated in which CO2 is injected into a deep coal seam or saline aquifer. The current status of several such projects is discussed. Included is a commercial-scale project in which a million tons of CO2 are injected annually into an aquifer under the North Sea in Norway. The review makes the case that this can all be accomplished safely with off-the-shelf technologies. However, substantial research and development must be performed to reduce the cost, decrease the risks, and increase the safety of sequestration technologies. This review also includes discussion of possible problems related to deep injection of CO2. There are safety concerns that need to be addressed because of the possibilities of leakage to the surface and induced seismic activity. These issues are presented along with a case study of a similar incident in the past. It is clear that monitoring and verification of storage will be a crucial part of all geological sequestration practices so that such problems may be avoided. Available techniques include direct measurement of CO2 and CH4 surface soil fluxes, the use of chemical tracers, and underground 4-D seismic monitoring. Ten new hypotheses were formulated to describe what happens when CO2 is pumped into a coal

  10. Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2009-09-30

    Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along

  11. Capture and geological storage of CO2

    International Nuclear Information System (INIS)

    2013-03-01

    Capture and geological storage of CO 2 could be a contribution to reduce CO 2 emissions, and also a way to meet the factor 4 objective of reduction of greenhouse gas emissions. This publication briefly presents the capture and storage definitions and principles, and comments some key data related to CO 2 emissions, and their natural trapping by oceans, soils and forests. It discusses strengths (a massive and perennial reduction of CO 2 emissions, a well defined regulatory framework) and weaknesses (high costs and uncertain cost reduction perspectives, a technology which still consumes a lot of energy, geological storage capacities still to be determined, health environmental impacts and risks to be controlled, a necessary consultation of population for planned projects) of this option. Actions undertaken by the ADEME are briefly reviewed

  12. CO2, the promises of geological sequestration

    International Nuclear Information System (INIS)

    Rouat, S.

    2006-01-01

    Trapping part of the world CO 2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO 2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO 2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  13. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.; Zapatero, M. A.; Suarez, I.; Arenillas, A.

    2007-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs

  14. Geological Storage of CO2. Site Selection Criteria

    International Nuclear Information System (INIS)

    Ruiz, C.; Martinez, R.; Recreo, F.; Prado, P.; Campos, R.; Pelayo, M.; Losa, A. de la; Hurtado, A.; Lomba, L.; Perez del Villar, L.; Ortiz, G.; Sastre, J.

    2006-01-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref

  15. On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, L.; Apps, J.A.; Zhang, Y.; Xu, T.; Birkholzer, J.T.

    2009-07-01

    If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO{sub 2} would change the geochemical conditions and cause secondary effects mainly induced by changes in pH In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO{sub 2}. An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO{sub 2} ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded.

  16. Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Researdh and Commercial-Scale Field Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Scott Reeves; George Koperna

    2008-09-30

    The Coal-Seq consortium is a government-industry collaborative consortium with the objective of advancing industry's understanding of complex coalbed methane and gas shale reservoir behavior in the presence of multi-component gases via laboratory experiments, theoretical model development and field validation studies. This will allow primary recovery, enhanced recovery and CO{sub 2} sequestration operations to be commercially enhanced and/or economically deployed. The project was initially launched in 2000 as a U.S. Department of Energy sponsored investigation into CO{sub 2} sequestration in deep, unmineable coalseams. The initial project accomplished a number of important objectives, which mainly revolved around performing baseline experimental studies, documenting and analyzing existing field projects, and establishing a global network for technology exchange. The results from that Phase have been documented in a series of reports which are publicly available. An important outcome of the initial phase was that serious limitations were uncovered in our knowledge of reservoir behavior when CO{sub 2} is injected into coal. To address these limitations, the project was extended in 2005 as a government-industry collaborative consortium. Selected accomplishments from this phase have included the identification and/or development of new models for multi-component sorption and diffusion, laboratory studies of coal geomechanical and permeability behavior with CO{sub 2} injection, additional field validation studies, and continued global technology exchange. Further continuation of the consortium is currently being considered. Some of the topics that have been identified for investigation include further model development/refinement related to multicomponent equations-of-state, sorption and diffusion behavior, geomechanical and permeability studies, technical and economic feasibility studies for major international coal basins, the extension of the work to gas shale

  17. Natural Analogues of CO2 Geological Storage; Analogos Naturales del Almacenamiento Geologico de CO2

    Energy Technology Data Exchange (ETDEWEB)

    Perez del Villar, L; Pelayo, M; Recreo, F

    2007-07-20

    Geological storage of carbon dioxide is nowadays, internationally considered as the most effective method for greenhouse gas emission mitigation, in order to minimize the global climate change universally accepted. Nevertheless, the possible risks derived of this long-term storage have a direct influence on its public acceptance. Among the favourable geological formations to store CO2, depleted oil and gas fields, deep saline reservoirs, and unamiable coal seams are highlighted. One of the most important objectives of the R and D projects related to the CO2 geological storage is the evaluation of the CO2 leakage rate through the above mentioned geological formations. Therefore, it is absolutely necessary to increase our knowledge on the interaction among CO2, storage and sealing formations, as well as on the flow paths and the physical resistance of the sealing formation. The quantification of the CO2 leakage rate is essential to evaluate the effects on the human and animal health, as well as for the ecosystem and water quality. To achieve these objectives, the study of the natural analogues is very useful in order to know the natural leakage rate to the atmosphere, its flow paths, the physical, chemical and mineralogical modifications due to the long term interaction processes among the CO2 and the storage and sealing formations, as well as the effects on the groundwaters and ecosystems. In this report, we have tried to summarise the main characteristics of the natural reservoirs and surficial sources of CO2, which are both natural analogues of the geological storage and CO2 leakage, studied in EEUU, Europe and Australia. The main objective of this summary is to find the possible applications for long-term risk prediction and for the performance assessment by means of conceptual and numerical modelling, which will allow to validate the predictive models of the CO2 storage behaviour, to design and develop suitable monitoring techniques to control the CO2 behaviour

  18. Capture and Geological Storage of CO2

    International Nuclear Information System (INIS)

    Kerr, T.; Brockett, S.; Hegan, L.; Barbucci, P.; Tullius, K.; Scott, J.; Otter, N.; Cook, P.; Hill, G.; Dino, R.; Aimard, N.; Giese, R.; Christensen, N.P.; Munier, G.; Paelinck, Ph.; Rayna, L.; Stromberg, L.; Birat, J.P.; Audigane, P.; Loizzo, M.; Arts, R.; Fabriol, H.; Radgen, P.; Hartwell, J.; Wartmann, S.; Drosin, E.; Willnow, K.; Moisan, F.

    2009-01-01

    To build on the growing success of the first two international symposia on emission reduction and CO 2 capture and geological storage, held in Paris in 2005 and again in 2007, IFP, ADEME and BRGM organised a third event on the same topic the 5-6 November 2009. This time, the focus was on the urgency of industrial deployment. Indeed, the IPCC 4. assessment report indicates that the world must achieve a 50 to 85% reduction in CO 2 emissions by 2050 compared to 2000, in order to limit the global temperature increase to around 2 deg. C. Moreover, IPCC stresses that a 'business as usual' scenario could lead to a temperature increase of between 4 deg. C to 7 deg. C across the planet. The symposium was organized in 4 sessions: Session I - Regulatory framework and strategies for enabling CCS deployment: - CCS: international status of political, regulatory and financing issues (Tom Kerr, IEA); - EC regulatory framework (Scott Brockett, European Commission, DG ENV); - Canada's investments towards implementation of CCS in Canada (Larry Hegan, Office of Energy Research and Development - Government of Canada); - A power company perspective (Pietro Barbucci, ENEL); - EC CCS demonstration network (Kai Tullius, European Commission, DG TREN); - Strategies and policies for accelerating global CCS deployment (Jesse Scott, E3G); - The global CCS Institute, a major initiative to facilitate the rapid deployment of CCS (Nick Otter, GCCSI); Session II - From pilot to demonstration projects: - Otway project, Australia (David Hilditch, CO2 CRC); - US regional partnerships (Gerald Hill, Southeast Regional Carbon Sequestration Partnership - SECARB); - CCS activities in Brazil (Rodolfo Dino, Petrobras); - Lessons learnt from Ketzin CO2Sink project in Germany (Ruediger Giese, GFZ); - CO 2 storage - from laboratory to reality (Niels-Peter Christensen, Vattenfall); - Valuation and storage of CO 2 : A global project for carbon management in South-East France (Gilles Munier, Geogreen); Session III

  19. Impact on the deep biosphere of CO2 geological sequestration in (ultra)mafic rocks and retroactive consequences on its fate

    Science.gov (United States)

    Ménez, Bénédicte; Gérard, Emmanuelle; Rommevaux-Jestin, Céline; Dupraz, Sébastien; Guyot, François; Arnar Alfreősson, Helgi; Reynir Gíslason, Sigurőur; Sigurőardóttir, Hólmfríiur

    2010-05-01

    Due to their reactivity and high potential of carbonation, mafic and ultramafic rocks constitute targets of great interest to safely and permanently sequestrate anthropogenic CO2 and thus, limit the potential major environmental consequences of its increasing atmospheric level. In addition, subsurface (ultra)mafic environments are recognized to harbor diverse and active microbial populations that may be stimulated or decimated following CO2 injection (± impurities) and subsequent acidification. However, the nature and amplitude of the involved biogeochemical pathways are still unknown. To avoid unforeseen consequences at all time scales (e.g. reservoir souring and clogging, bioproduction of H2S and CH4), the impact of CO2 injection on deep biota with unknown ecology, and their retroactive effects on the capacity and long-term stability of CO2 storage sites, have to be determined. We present here combined field and experimental investigations focused on the Icelandic pilot site, implemented in the Hengill area (SW Iceland) at the Hellisheidi geothermal power plant (thanks to the CarbFix program, a consortium between the University of Iceland, Reykjavik Energy, the French CNRS of Toulouse and Columbia University in N.Y., U.S.A. and to the companion French ANR-CO2FIX project). This field scale injection of CO2 charged water is here designed to study the feasibility of storing permanently CO2 in basaltic rocks and to optimize industrial methods. Prior to the injection, the microbiological initial state was characterized through regular sampling at various seasons (i.e., October '08, July '09, February '10). DNA was extracted and amplified from the deep and shallow observatory wells, after filtration of 20 to 30 liters of groundwater collected in the depth interval 400-980 m using a specifically developed sampling protocol aiming at reducing contamination risks. An inventory of living indigenous bacteria and archaea was then done using molecular methods based on the

  20. Public Acceptance for Geological CO2-Storage

    Science.gov (United States)

    Schilling, F.; Ossing, F.; Würdemann, H.; Co2SINK Team

    2009-04-01

    Public acceptance is one of the fundamental prerequisites for geological CO2 storage. In highly populated areas like central Europe, especially in the vicinity of metropolitan areas like Berlin, underground operations are in the focus of the people living next to the site, the media, and politics. To gain acceptance, all these groups - the people in the neighbourhood, journalists, and authorities - need to be confident of the security of the planned storage operation as well as the long term security of storage. A very important point is to show that the technical risks of CO2 storage can be managed with the help of a proper short and long term monitoring concept, as well as appropriate mitigation technologies e.g adequate abandonment procedures for leaking wells. To better explain the possible risks examples for leakage scenarios help the public to assess and to accept the technical risks of CO2 storage. At Ketzin we tried the following approach that can be summed up on the basis: Always tell the truth! This might be self-evident but it has to be stressed that credibility is of vital importance. Suspiciousness and distrust are best friends of fear. Undefined fear seems to be the major risk in public acceptance of geological CO2-storage. Misinformation and missing communication further enhance the denial of geological CO2 storage. When we started to plan and establish the Ketzin storage site, we ensured a forward directed communication. Offensive information activities, an information centre on site, active media politics and open information about the activities taking place are basics. Some of the measures were: - information of the competent authorities through meetings (mayor, governmental authorities) - information of the local public, e.g. hearings (while also inviting local, regional and nation wide media) - we always treated the local people and press first! - organizing of bigger events to inform the public on site, e.g. start of drilling activities (open

  1. Geological storage of CO2 : time frames, monitoring and verification

    International Nuclear Information System (INIS)

    Chalaturnyk, R.; Gunter, W.D.

    2005-01-01

    In order to ensure that carbon dioxide (CO 2 ) injection and storage occurs in an environmentally sound and safe manner, many organizations pursuing the development of a CO 2 geological storage industry are initiating monitoring programs that include operational monitoring; verification monitoring; and environmental monitoring. Each represents an increase in the level of technology used and the intensity and duration of monitoring. For each potential site, the project conditions must be defined, the mechanisms that control the fluid flow must be predicted and technical questions must be addressed. This paper reviewed some of the relevant issues in establishing a monitoring framework for geological storage and defined terms that indicate the fate of injected CO 2 . Migration refers to movement of fluids within the injection formation, while leakage refers to movement of fluids outside the injection formation, and seepage refers to movement of fluids from the geosphere to the biosphere. Currently, regulatory agencies focus mostly on the time period approved for waste fluid injection, including CO 2 , into depleted hydrocarbon reservoirs or deep saline aquifers, which is in the order of 25 years. The lifetime of the injection operation is limited by reservoir capacity and the injection rate. Monitoring periods can be divided into periods based on risk during injection-operation (10 to 25 years), at the beginning of the storage period during pressure equilibration (up to 100 years), and over the long-term (from 100 to 1000 years). The 42 commercial acid gas injection projects currently in operation in western Canada can be used to validate the technology for the short term, while validation of long-term storage can be based on natural geological analogues. It was concluded that a monitored decision framework recognizes uncertainties in the geological storage system and allows design decisions to be made with the knowledge that planned long-term observations and their

  2. Leakage and Seepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water

    International Nuclear Information System (INIS)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-01-01

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO 2 ) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO 2 may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO 2 leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO 2 and CH 4 fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO 2 and CH 4 fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO 2 overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO 2 bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s -1 at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s -1 . Liquid CO 2 bubbles rise slower in water than gaseous CO 2 bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO 2 and CH 4 at three different seepage rates reveals that

  3. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Selecci0n de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J; Zapatero, M A; Suarez, I; Arenillas, A

    2007-09-18

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmailable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 refs.

  4. Geological Storage of CO2. Site Selection Criteria; Almacenamiento Geologico de CO2. Criterios de Seleccion de Emplazamientos

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, C; Martinez, R; Recreo, F; Prado, P; Campos, R; Pelayo, M; Losa, A de la; Hurtado, A; Lomba, L; Perez del Villar, L; Ortiz, G; Sastre, J

    2006-07-01

    In year 2002 the Spanish Parliament unanimously passed the ratification of the Kyoto Protocol, signed December 1997, compromising to limiting the greenhouse gas emissions increase. Later on, the Environment Ministry submitted the Spanish National Assignment Emissions Plan to the European Union and in year 2005 the Spanish Greenhouse Gas market started working, establishing taxes to pay in case of exceeding the assigned emissions limits. So, the avoided emissions of CO2 have now an economic value that is promoting new anthropogenic CO2 emissions reduction technologies. Carbon Capture and Storage (CCS) are among these new technological developments for mitigating or eliminate climate change. CO2 can be stored in geological formations such as depleted oil or gas fields, deep permeable saline water saturated formations and unmineable coal seams, among others. This report seeks to establish the selection criteria for suitable geological formations for CO2 storage in the Spanish national territory, paying attention to both the operational and performance requirements of these storage systems. The report presents the physical and chemical properties and performance of CO2 under storage conditions, the transport and reaction processes of both supercritical and gaseous CO2, and CO2 trapping mechanisms in geological formations. The main part of the report is devoted to geological criteria at watershed, site and formation scales. (Author) 100 ref.

  5. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    Science.gov (United States)

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  6. Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration

    Science.gov (United States)

    Newell, P.; Martinez, M. J.; Bishop, J. E.

    2014-12-01

    Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Residual and Solubility trapping during Geological CO2 storage : Numerical and Experimental studies

    OpenAIRE

    Rasmusson, Maria

    2018-01-01

    Geological storage of carbon dioxide (CO2) in deep saline aquifers mitigates atmospheric release of greenhouse gases. To estimate storage capacity and evaluate storage safety, knowledge of the trapping mechanisms that retain CO2 within geological formations, and the factors affecting these is fundamental. The objective of this thesis is to study residual and solubility trapping mechanisms (the latter enhanced by density-driven convective mixing), specifically in regard to their dependency on ...

  8. Simulation of CO2–water–rock interactions on geologic CO2 sequestration under geological conditions of China

    International Nuclear Information System (INIS)

    Wang, Tianye; Wang, Huaiyuan; Zhang, Fengjun; Xu, Tianfu

    2013-01-01

    Highlights: • We determined the feasibilities of geologic CO 2 sequestration in China. • We determined the formation of gibbsite suggested CO 2 can be captured by rocks. • We suggested the mechanisms of CO 2 –water–rock interactions. • We found the corrosion and dissolution of the rock increased as temperature rose. -- Abstract: The main purpose of this study focused on the feasibility of geologic CO 2 sequestration within the actual geological conditions of the first Carbon Capture and Storage (CCS) project in China. This study investigated CO 2 –water–rock interactions under simulated hydrothermal conditions via physicochemical analyses and scanning electron microscopy (SEM). Mass loss measurement and SEM showed that corrosion of feldspars, silica, and clay minerals increased with increasing temperature. Corrosion of sandstone samples in the CO 2 -containing fluid showed a positive correlation with temperature. During reaction at 70 °C, 85 °C, and 100 °C, gibbsite (an intermediate mineral product) formed on the sample surface. This demonstrated mineral capture of CO 2 and supported the feasibility of geologic CO 2 sequestration. Chemical analyses suggested a dissolution–reprecipitation mechanism underlying the CO 2 –water–rock interactions. The results of this study suggested that mineral dissolution, new mineral precipitation, and carbonic acid formation-dissociation are closely interrelated in CO 2 –water–rock interactions

  9. International Symposium on Site Characterization for CO2Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu

    2006-02-23

    Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

  10. Some geomechanical aspects of geological CO2 sequestration

    NARCIS (Netherlands)

    Orlic, B.

    2008-01-01

    Reservoir depletion and subsequent CO 2 injection into the depleted geological reservoir induce stress changes that may mechanically damage top seal and wells, or trigger existing faults, creating the leakage pathways for CO 2 escape from the reservoir. The role of geomechanics is to assess the

  11. Some geomechanical aspects of geological CO2 sequestration

    NARCIS (Netherlands)

    Orlic, B.

    2009-01-01

    Reservoir depletion and subsequent CO2 injection into the depleted geological reservoir induce stress changes that may mechanically damage top seal and wells, or trigger existing faults, creating the leakage pathways for CO2 escape from the reservoir. The role of geomechanics is to assess the

  12. Well technologies for CO2 geological storage: CO2-resistant cement

    International Nuclear Information System (INIS)

    Barlet-Gouedard, V.; Rimmele, G.; Porcherie, O.; Goffe, B.

    2007-01-01

    Storing carbon dioxide (CO 2 ) underground is considered the most effective way for long-term safe and low-cost CO 2 sequestration. This recent application requires long-term well-bore integrity. A CO 2 leakage through the annulus may occur much more rapidly than geologic leakage through the formation rock, leading to economic loss, reduction of CO 2 storage efficiency, and potential compromise of the field for storage. The possibility of such leaks raises considerable concern about the long-term well-bore isolation and the durability of hydrated cement that is used to isolate the annulus across the producing/injection intervals in CO 2 -storage wells. We propose a new experimental procedure and methodology to study reactivity of CO 2 -Water-Cement systems in simulating the interaction of the set cement with injected supercritical CO 2 under downhole conditions. The conditions of experiments are 90 deg. C under 280 bars. The evolution of mechanical, physical and chemical properties of Portland cement with time is studied up to 6 months. The results are compared to equivalent studies on a new CO 2 -resistant material; the comparison shows significant promise for this new material. (authors)

  13. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  14. Managing geological uncertainty in CO2-EOR reservoir assessments

    Science.gov (United States)

    Welkenhuysen, Kris; Piessens, Kris

    2014-05-01

    Recently the European Parliament has agreed that an atlas for the storage potential of CO2 is of high importance to have a successful commercial introduction of CCS (CO2 capture and geological storage) technology in Europe. CO2-enhanced oil recovery (CO2-EOR) is often proposed as a promising business case for CCS, and likely has a high potential in the North Sea region. Traditional economic assessments for CO2-EOR largely neglect the geological reality of reservoir uncertainties because these are difficult to introduce realistically in such calculations. There is indeed a gap between the outcome of a reservoir simulation and the input values for e.g. cost-benefit evaluations, especially where it concerns uncertainty. The approach outlined here is to turn the procedure around, and to start from which geological data is typically (or minimally) requested for an economic assessment. Thereafter it is evaluated how this data can realistically be provided by geologists and reservoir engineers. For the storage of CO2 these parameters are total and yearly CO2 injection capacity, and containment or potential on leakage. Specifically for the EOR operation, two additional parameters can be defined: the EOR ratio, or the ratio of recovered oil over injected CO2, and the CO2 recycling ratio of CO2 that is reproduced after breakthrough at the production well. A critical but typically estimated parameter for CO2-EOR projects is the EOR ratio, taken in this brief outline as an example. The EOR ratio depends mainly on local geology (e.g. injection per well), field design (e.g. number of wells), and time. Costs related to engineering can be estimated fairly good, given some uncertainty range. The problem is usually to reliably estimate the geological parameters that define the EOR ratio. Reliable data is only available from (onshore) CO2-EOR projects in the US. Published studies for the North Sea generally refer to these data in a simplified form, without uncertainty ranges, and are

  15. Development of Science-Based Permitting Guidance for Geological Sequestration of CO2 in Deep Saline Aquifers Based on Modeling and Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Philippe Nicot; Renaud Bouroullec; Hugo Castellanos; Susan Hovorka; Srivatsan Lakshminarasimhan; Jeffrey Paine

    2006-06-30

    Underground carbon storage may become one of the solutions to address global warming. However, to have an impact, carbon storage must be done at a much larger scale than current CO{sub 2} injection operations for enhanced oil recovery. It must also include injection into saline aquifers. An important characteristic of CO{sub 2} is its strong buoyancy--storage must be guaranteed to be sufficiently permanent to satisfy the very reason that CO{sub 2} is injected. This long-term aspect (hundreds to thousands of years) is not currently captured in legislation, even if the U.S. has a relatively well-developed regulatory framework to handle carbon storage, especially in the operational short term. This report proposes a hierarchical approach to permitting in which the State/Federal Government is responsible for developing regional assessments, ranking potential sites (''General Permit'') and lessening the applicant's burden if the general area of the chosen site has been ranked more favorably. The general permit would involve determining in the regional sense structural (closed structures), stratigraphic (heterogeneity), and petrophysical (flow parameters such as residual saturation) controls on the long-term fate of geologically sequestered CO{sub 2}. The state-sponsored regional studies and the subsequent local study performed by the applicant will address the long-term risk of the particular site. It is felt that a performance-based approach rather than a prescriptive approach is the most appropriate framework in which to address public concerns. However, operational issues for each well (equivalent to the current underground injection control-UIC-program) could follow regulations currently in place. Area ranking will include an understanding of trapping modes. Capillary (due to residual saturation) and structural (due to local geological configuration) trappings are two of the four mechanisms (the other two are solubility and mineral trappings

  16. System-level modeling for economic evaluation of geological CO2 storage in gas reservoirs

    International Nuclear Information System (INIS)

    Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

    2007-01-01

    One way to reduce the effects of anthropogenic greenhouse gases on climate is to inject carbon dioxide (CO 2 ) from industrial sources into deep geological formations such as brine aquifers or depleted oil or gas reservoirs. Research is being conducted to improve understanding of factors affecting particular aspects of geological CO 2 storage (such as storage performance, storage capacity, and health, safety and environmental (HSE) issues) as well as to lower the cost of CO 2 capture and related processes. However, there has been less emphasis to date on system-level analyses of geological CO 2 storage that consider geological, economic, and environmental issues by linking detailed process models to representations of engineering components and associated economic models. The objective of this study is to develop a system-level model for geological CO 2 storage, including CO 2 capture and separation, compression, pipeline transportation to the storage site, and CO 2 injection. Within our system model we are incorporating detailed reservoir simulations of CO 2 injection into a gas reservoir and related enhanced production of methane. Potential leakage and associated environmental impacts are also considered. The platform for the system-level model is GoldSim [GoldSim User's Guide. GoldSim Technology Group; 2006, http://www.goldsim.com]. The application of the system model focuses on evaluating the feasibility of carbon sequestration with enhanced gas recovery (CSEGR) in the Rio Vista region of California. The reservoir simulations are performed using a special module of the TOUGH2 simulator, EOS7C, for multicomponent gas mixtures of methane and CO 2 . Using a system-level modeling approach, the economic benefits of enhanced gas recovery can be directly weighed against the costs and benefits of CO 2 injection

  17. Atmospheric and geological CO2 damage costs in energy scenarios

    International Nuclear Information System (INIS)

    Smekens, K.E.L.; Van der Zwaan, B.C.C.

    2006-05-01

    Geological carbon dioxide capture and storage (CCS) is currently seriously considered for addressing, in the near term, the problem of climate change. CCS technology is available today and is expected to become an increasingly affordable CO2 abatement alternative. Whereas the rapidly growing scientific literature on CCS as well as experimental and commercial practice demonstrate the technological and economic feasibility of implementing this clean fossil fuel option on a large scale, relatively little attention has been paid so far to the risks and environmental externalities of geological storage of CO2. This paper assesses the effects of including CCS damage costs in a long-term energy scenario analysis for Europe. An external cost sensitivity analysis is performed with a bottom-up energy technology model that accounts not only for CCS technologies but also for their external costs. Our main conclusion is that in a business-as-usual scenario (i.e. without climate change intervention or externality internalisation), CCS technologies are likely to be deployed at least to some extent, mainly in the power generation sector, given the economic benefits of opportunities such as enhanced coal bed methane, oil and gas recovery. Under a strict climate (CO2 emissions) constraint, CCS technologies are deployed massively. With the simultaneous introduction of both CO2 and CCS taxation in the power sector, designed to internalise the external atmospheric and geological effects of CO2 emissions and storage, respectively, we find that CCS will only be developed if the climate change damage costs are at least of the order of 100 euro/t CO2 or the CO2 storage damage costs not more than a few euro/t CO2. When the internalised climate change damage costs are as high as 67 euro/t CO2, the expensive application of CCS to biomass-fuelled power plants (with negative net CO2 emissions) proves the most effective CCS alternative to reduce CO2 emissions, rather than CCS applied to fossil

  18. Effect of Mineral Dissolution/Precipitation and CO2 Exsolution on CO2 transport in Geological Carbon Storage.

    Science.gov (United States)

    Xu, Ruina; Li, Rong; Ma, Jin; He, Di; Jiang, Peixue

    2017-09-19

    Geological carbon sequestration (GCS) in deep saline aquifers is an effective means for storing carbon dioxide to address global climate change. As the time after injection increases, the safety of storage increases as the CO 2 transforms from a separate phase to CO 2 (aq) and HCO 3 - by dissolution and then to carbonates by mineral dissolution. However, subsequent depressurization could lead to dissolved CO 2 (aq) escaping from the formation water and creating a new separate phase which may reduce the GCS system safety. The mineral dissolution and the CO 2 exsolution and mineral precipitation during depressurization change the morphology, porosity, and permeability of the porous rock medium, which then affects the two-phase flow of the CO 2 and formation water. A better understanding of these effects on the CO 2 -water two-phase flow will improve predictions of the long-term CO 2 storage reliability, especially the impact of depressurization on the long-term stability. In this Account, we summarize our recent work on the effect of CO 2 exsolution and mineral dissolution/precipitation on CO 2 transport in GCS reservoirs. We place emphasis on understanding the behavior and transformation of the carbon components in the reservoir, including CO 2 (sc/g), CO 2 (aq), HCO 3 - , and carbonate minerals (calcite and dolomite), highlight their transport and mobility by coupled geochemical and two-phase flow processes, and consider the implications of these transport mechanisms on estimates of the long-term safety of GCS. We describe experimental and numerical pore- and core-scale methods used in our lab in conjunction with industrial and international partners to investigate these effects. Experimental results show how mineral dissolution affects permeability, capillary pressure, and relative permeability, which are important phenomena affecting the input parameters for reservoir flow modeling. The porosity and the absolute permeability increase when CO 2 dissolved water is

  19. Capture and geological sequestration of CO2: fighting against global warming

    International Nuclear Information System (INIS)

    Czernichowski-Lauriol, I.

    2006-01-01

    In order to take up the global warming challenge, a set of emergency measures is to be implemented: energy saving, clean transportation systems, development of renewable energy sources.. CO 2 sequestration of massive industrial emission sources inside deep geologic formations is another promising solution, which can contribute to the division by two of the world CO 2 emissions between today and 2050. The CO 2 capture and sequestration industry is developing. Research projects and pilot facilities are on the increase over the world. Their aim is to warrant the efficiency and security of this technology over the centuries to come. (J.S.)

  20. Noble gas geochemistry to monitor CO2 geological storages

    International Nuclear Information System (INIS)

    Lafortune, St.

    2007-11-01

    According to the last IPCC (Intergovernmental Panel on Climate Change) report, a probability of 90 % can be now established for the responsibility of the anthropogenic CO 2 emissions for the global climate change observed since the beginning of the 20. century. To reduce these emissions and keep producing energy from coal, oil or gas combustions, CO 2 could be stored in geological reservoirs like aquifers, coal beds, and depleted oil or gas fields. Storing CO 2 in geological formations implies to control the efficiency and to survey the integrity of the storages, in order to be able to detect the possible leaks as fast as possible. Here, we study the feasibility of a geochemical monitoring through noble gas geochemistry. We present (1) the development of a new analytical line, Garodiox, developed to extract quantitatively noble gas from water samples, (2) the testing of Garodiox on samples from a natural CO 2 storage analogue (Pavin lake, France) and (3) the results of a first field work on a natural CO 2 accumulation (Montmiral, France). The results we obtain and the conclusions we draw, highlight the interest of the geochemical monitoring we suggest. (author)

  1. Interactions between CO2, saline water and minerals during geological storage of CO2

    International Nuclear Information System (INIS)

    Hellevang, Helge

    2006-06-01

    The topic of this thesis is to gain a better understanding of interactions between injected CO 2 , aqueous solutions and formation mineralogies. The main focus is concerned with the potential role mineral reactions play in safe long term storage of CO 2 . The work is divided into an experimental part concentrated on the potential of dawsonite (NaAl(OH) 2 CO 3 ) as a permanent storage host of CO 2 , and the development of a new geochemical code ACCRETE that is coupled with the ATHENA multiphase flow simulator. The thesis is composed of two parts: (I) the first part introducing CO 2 storage, geochemical interactions and related work; and (II) the second part that consists of the papers. Part I is composed as follows: Chapter 2 gives a short introduction to geochemical reactions considered important during CO 2 storage, including a thermodynamic framework. Chapter 3 presents objectives of numerical work related to CO 2 -water-rock interactions including a discussion of factors that influence the outcome of numerical simulations. Chapter 4 presents the main results from paper A to E. Chapter 5 give some details about further research that we propose based on the present work and related work in the project. Several new activities have emerged from research on CO 2 -water-rock interaction during the project. Several of the proposed activities are already initiated. Papers A to F are then listed in Part II of the thesis after the citation list. The thesis presents the first data on the reaction kinetics of dawsonite at different pH (Paper A), and comprehensive numerical simulations, both batch- and large scale 3D reactive transport, that illustrate the role different carbonates have for safe storage of CO 2 in geological formations (Papers C to F). The role of dawsonite in CO 2 storage settings is treated throughout the study (Papers A to E) After the main part of the thesis (Part I and II), two appendices are included: Appendix A lists reactions that are included in the

  2. Microorganisms implication in the CO2 geologic storage processes

    International Nuclear Information System (INIS)

    Dupraz, S.

    2008-01-01

    A first result of this thesis is the building and validation of a circulation reactor named BCC (Bio-mineralization Control Cell). The reactor has the functionality of a biological reactor and allows a monitoring of physico-chemical characteristics such as Eh, pH, electrical conductivity, spectro-photochemical parameters. It also has a capability of percolation through rock cores. It is a first step toward an analogical modeling of interactions between injected CO 2 and deep bio-spheric components. Moreover, a new spectro-photochemical method for monitoring reduced sulfur species has been developed which allows efficient monitoring of sulfate-reducing metabolisms. In the thesis, we have tested four metabolisms relevant to bio-mineralisation or biological assimilation of CO 2 : a reference ureolytic aerobic strain, Bacillus pasteurii, a sulfate-reducing bacterium, Desulfovibrio longus, a sulfate-reducing consortium (DVcons) and an homoacetogenic bacterium, Acetobacterium carbinolicum. In the case of Bacillus pasteurii, which is considered as a model for non photosynthetic prokaryotic carbonate bio-mineralization, we have demonstrated that the biological basification and carbonate bio-mineralization processes can be modelled accurately both analogically and numerically under conditions relevant to deep CO 2 storage, using a synthetic saline groundwater. We have shown that salinity has a positive effect on CO 2 mineral trapping by this bacterium; we have measured the limits of the system in terms of CO 2 pressure and we have shown that the carbonates that nucleate on intracellular calcium phosphates have specific carbon isotope signatures. The studied deep-subsurface strains (Desulfovibrio longus and Acetobacterium carbinolicum) as well as the sulfate-reducing consortium also have capabilities of converting CO 2 into solid carbonates, much less efficient though than in the case of Bacillus pasteurii. However, once inoculated in synthetic saline groundwater and

  3. Rates of CO2 Mineralization in Geological Carbon Storage.

    Science.gov (United States)

    Zhang, Shuo; DePaolo, Donald J

    2017-09-19

    Geologic carbon storage (GCS) involves capture and purification of CO 2 at industrial emission sources, compression into a supercritical state, and subsequent injection into geologic formations. This process reverses the flow of carbon to the atmosphere with the intention of returning the carbon to long-term geologic storage. Models suggest that most of the injected CO 2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO 3 . The transformation of CO 2 to carbonate minerals requires supply of the necessary divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are highly uncertain and difficult to predict by standard approaches. Here we show that the chemical kinetic observations and experimental results, when they can be reduced to a single cation-release time scale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior as a function of pH, fluid flow rate, and time that the rates of mineralization can be estimated with reasonable certainty. The rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released from silicate minerals by dissolution into pore fluid that has been acidified with dissolved CO 2 . Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when they are evaluated in the context of a reservoir-scale reactive transport simulation, this range becomes much smaller. The reservoir scale simulations provide limits on the applicable conditions under which silicate mineral dissolution and subsequent carbonate mineral precipitation are likely to occur (pH 4.5 to 6, fluid flow velocity less than 5 m/year, and 50-100 years or more after the start of injection). These constraints lead to estimates of

  4. Soil gas (222Rn, CO2, 4He) behaviour over a natural CO2 accumulation, Montmiral area (Drome, France): geographical, geological and temporal relationships

    International Nuclear Information System (INIS)

    Gal, Frederick; Joublin, Franck; Haas, Hubert; Jean-prost, Veronique; Ruffier, Veronique

    2011-01-01

    The south east basin of France shelters deep CO 2 reservoirs often studied with the aim of better constraining geological CO 2 storage operations. Here we present new soil gas data, completing an existing dataset (CO 2 , 222 Rn, 4 He), together with mineralogical and physical characterisations of soil columns, in an attempt to better understand the spatial distribution of gas concentrations in the soils and to rule on the sealed character of the CO 2 reservoir at present time. Anomalous gas concentrations were found but did not appear to be clearly related to geological structures that may drain deep gases up to the surface, implying a dominant influence of near surface processes as indicated by carbon isotope ratios. Coarse grained, quartz-rich soils favoured the existence of high CO 2 concentrations. Fine grained clayey soils preferentially favoured the existence of 222 Rn but not CO 2 . Soil formations did not act as barriers preventing gas migrations in soils, either due to water content or due to mineralogical composition. No abundant leakage from the Montmiral reservoir can be highlighted by the measurements, even near the exploitation well. As good correlation between CO 2 and 222 Rn concentrations still exist, it is suggested that 222 Rn migration is also CO 2 dependent in non-leaking areas - diffusion dominated systems.

  5. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    Science.gov (United States)

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  6. Classification of CO2 Geologic Storage: Resource and Capacity

    Science.gov (United States)

    Frailey, S.M.; Finley, R.J.

    2009-01-01

    The use of the term capacity to describe possible geologic storage implies a realistic or likely volume of CO2 to be sequestered. Poor data quantity and quality may lead to very high uncertainty in the storage estimate. Use of the term "storage resource" alleviates the implied certainty of the term "storage capacity". This is especially important to non- scientists (e.g. policy makers) because "capacity" is commonly used to describe the very specific and more certain quantities such as volume of a gas tank or a hotel's overnight guest limit. Resource is a term used in the classification of oil and gas accumulations to infer lesser certainty in the commercial production of oil and gas. Likewise for CO2 sequestration, a suspected porous and permeable zone can be classified as a resource, but capacity can only be estimated after a well is drilled into the formation and a relatively higher degree of economic and regulatory certainty is established. Storage capacity estimates are lower risk or higher certainty compared to storage resource estimates. In the oil and gas industry, prospective resource and contingent resource are used for estimates with less data and certainty. Oil and gas reserves are classified as Proved and Unproved, and by analogy, capacity can be classified similarly. The highest degree of certainty for an oil or gas accumulation is Proved, Developed Producing (PDP) Reserves. For CO2 sequestration this could be Proved Developed Injecting (PDI) Capacity. A geologic sequestration storage classification system is developed by analogy to that used by the oil and gas industry. When a CO2 sequestration industry emerges, storage resource and capacity estimates will be considered a company asset and consequently regulated by the Securities and Exchange Commission. Additionally, storage accounting and auditing protocols will be required to confirm projected storage estimates and assignment of credits from actual injection. An example illustrates the use of

  7. Applications of geological labs on chip for CO_2 storage issues

    International Nuclear Information System (INIS)

    Morais, Sandy

    2016-01-01

    CO_2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO_2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature micro-fluidic tools to investigate the different mechanisms associated with CO_2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 ≤ T ≤ 50 C, 50 ≤ p ≤ 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO_2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO_2/aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels. Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media [fr

  8. Evaluation of Deep Learning Models for Predicting CO2 Flux

    Science.gov (United States)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  9. Aluminosilicate Dissolution and Silicate Carbonation during Geologic CO2 Sequestration

    Science.gov (United States)

    Min, Yujia

    Geologic CO2 sequestration (GCS) is considered a promising method to reduce anthropogenic CO2 emission. Assessing the supercritical CO2 (scCO2) gas or liquid phase water (g, l)-mineral interactions is critical to evaluating the viability of GCS processes. This work contributes to our understanding of geochemical reactions at CO 2-water (g, l)-mineral interfaces, by investigating the dissolution of aluminosilicates in CO2-acidified water (l). Plagioclase and biotite were chosen as model minerals in reservoir rock and caprock, respectively. To elucidate the effects of brine chemistry, first, the influences of cations in brine including Na, Ca, and K, have been investigated. In addition to the cations, the effects of abundant anions including sulfate and oxalate were also examined. Besides the reactions in aqueous phase, we also examine the carbonation of silicates in water (g)-bearing supercritical CO2 (scCO2) under conditions relevant to GCS. For the metal carbonation, in particular, the effects of particle sizes, water, temperature, and pressure on the carbonation of wollastonite were systematically examined. For understanding the cations effects in brine, the impacts of Na concentrations up to 4 M on the dissolution of plagioclase and biotite were examined. High concentrations of Na significantly inhibited plagioclase dissolution by competing adsorption with proton and suppressing proton-promoted dissolution. Ca has a similar effect to Na, and their effects did not suppress each other when Na and Ca co-existed. For biotite, the inhibition effects of Na coupled with an enhancing effect due to ion exchange reaction between Na and interlayer K, which cracked the basal surfaces of biotite. The K in aqueous phase significantly inhibited the dissolution. If the biotite is equilibrated with NaCl solutions initially, the biotite dissolved faster than the original biotite and the dissolution was inhibited by Na and K in brine. The outcomes improve our current knowledge of

  10. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  11. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  12. Still needed data for successful deep CO2 sequestration

    International Nuclear Information System (INIS)

    Ulmer, Gene C.

    2013-01-01

    Despite chemical knowledge about CO 2 that extends back centuries, some data bases are still evolving that are needed to predict even the sub-critical CO 2 behavior down the geothermal gradient's P- and T-values which will be encountered in sequestration utilizing deep mines and wells. These needed data include IR-spectral interpretations of CO 2 molecular structure as P and T change; the unraveling of the Joule Thomson coefficient (heating or cooling?) that changes algebraic polarity around 10 6 Pa; more exact equations of state (EOS) that correlate to potential CO 2 polarity changes in molecular structure; newer EOS than those that have currently been derived by templating directly measured data; and focus is needed on the EOS-derived properties, like fugacity. Also, natural analogues like (1) the carbonate stability in metamorphic silicate-carbonation facies and (2) Lake Nyos aqueous geochemistry with concern about the potential redox-equilibria-predicted presence of CO (and graphite), as well as CO 2 . (authors)

  13. Numerical assessments of geological CO2 sequestration in the Changhua Coastal Industrial Park, Central Taiwan

    Science.gov (United States)

    Sung, R.; Li, M.

    2012-12-01

    Coal-fired power plants of the Taiwan Power Company are the main sources of CO2 emission in Taiwan. Due to the importation of coal mine and the need of cooling water circulation, power plants were built on the coast. Geological CO2 sequestration has been recognized as one of solutions for reducing anthropogenic CO2 emission by injecting CO2 captured from fossil fuel power plants into deep saline geologic formations. The Changhua Coastal Industrial Park (CCIP; 120.38° E, 24.11° N) in central Taiwan has been preliminary evaluated as one of potential sites for geological CO2 sequestration. The CCIP site has a sloping, layered heterogeneity formation with stagnant groundwater flow. Layers of sandstone and shale sequentially appeared to be the major components of geological formations with seaward transgression. Thickness of sedimentary formations gradually becomes thinner from east to west. Previous investigations [Chiao et al., 2010; Yu et al, 2011] did not find significant faults around this site. The TOUGHREACT/ECO2N model was employed with external mesh generator developed in this study to proceed to comprehensive assessments for CO2 injection into deep saline aquifers (salinity of 3%, pH of 7.2) at the CCIP site. A series of numerical experiments for investigating the physical, geochemical and its interactions included the deep saline-aquifer responses, CO2 plume migration, leakage risks, hydrogeochemistry processes, reservoir capacity and trapping mechanisms (i.e. hydrodynamics, capillarity, solubility, and mineral trapping) during and post CO2 injection were assessed. A 3-D lithological model applied in this study was conceptualized with two seismic profiles (along shore and cross shore) and one geological well nearby the study area. A total of 32 vertical layers was built with different porosities and permeabilities estimated from the TCDP-A borehole log samples adjusted with effects in geopressure differences. Cross-platform open source libraries of the CGAL

  14. A sensitivity analysis on seismic tomography data with respect to CO2 saturation of a CO2 geological sequestration field

    Science.gov (United States)

    Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook

    2013-04-01

    Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution

  15. What does CO2 geological storage really mean?

    International Nuclear Information System (INIS)

    2008-01-01

    It is now accepted that human activities are disturbing the carbon cycle of the planet. CO 2 , a greenhouse gas, has accumulated in the atmosphere where it contributes to climate change. Amongst the spectrum of short term measures that need to be urgently implemented to mitigate climate change, CO 2 capture and storage can play a decisive role as it could contribute 33% of the CO 2 reduction needed by 2050. This document aims to explain this solution by answering the following questions: where and how much CO 2 can we store underground, How can we transport and inject large quantities of CO 2 , What happens to the CO 2 once in the storage reservoir? Could CO 2 leak from the reservoir and if so, what might be the consequences? How can we monitor the storage site at depth and at the surface? What safety criteria need to be imposed and respected? (A.L.B.)

  16. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  17. Isotopic tracers of sources, wells and of CO2 reactivity in geological reservoirs

    International Nuclear Information System (INIS)

    Assayag, N.

    2006-12-01

    The aim of this research works consisted in studying the behaviour of the carbonate system (dissolved inorganic carbon: DIC) following a CO 2 injection (artificial or natural), in geological reservoirs. One part of the study consisted in improving an analytical protocol for the measurement of δ 13 C DIC and DIC, using a continuous flow mass spectrometer. As a first study, we have focused our attention on the Pavin Lake (Massif Central, France). Owing to its limnologic characteristics (meromictic lake) and a deep volcanic CO 2 contribution, it can be viewed as a natural analogue of reservoir storing important quantities of CO 2 in the bottom part. Isotopic measurements (δ 18 O, δ 13 C DIC) allowed to better constrain the dynamics of the lake (stratification, seasonal variations), the magnitudes of biological activities (photosynthesis, organic matter decay, methane oxidation, methano-genesis), carbon sources (magmatic, methano-genetic), and the hydrological budgets (sub-lacustrine inputs). The second study was conducted on the Lamont-Doherty test well site (NY, USA). It includes an instrumental borehole which cuts through most of the section of the Palisades sill and into the Newark Basin sediments. Single well push-pull tests were performed: a test solution containing conservative tracers and a reactive tracer (CO 2 ) was injected at a permeable depth interval located in basaltic and meta sedimentary rocks. After an incubation period, the test solution/groundwater mixture was extracted from the hydraulically isolated zone. Isotopic measurements (δ 18 O, δ 13 C DIC) confronted to chemical data (major elements) allowed to investigate the extent of in-situ CO 2 -water-rock interactions: essentially calcite dissolution and at a lesser extend silicate dissolution...and for one of the test, CO 2 degassing. (author)

  18. Deep Sea Memory of High Atmospheric CO2 Concentration

    Science.gov (United States)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    massive CDR interventions eventually bring down the global mean pH value to the RCP2.6 level, yet cannot restore a similarly homogenous distribution - while the pH of the upper ocean returns to the preindustrial value or even exceed it (in the 180 ppm scenario), the deep ocean remains acidified. The deep ocean is out of contact with the atmosphere and therefore unreachable by atmospheric CDR. Our results suggest that the proposition that the marine consequences of early emissions reductions are comparable to those of delayed reductions plus CDR is delusive and that a policy that allows for emitting CO2 today in the hopes of removing it tomorrow is bound to generate substantial regrets.

  19. Numerical Simulation of Natural Convection in Heterogeneous Porous media for CO2 Geological Storage

    NARCIS (Netherlands)

    Ranganathan, P.; Farajzadeh, R.; Bruining, J.; Zitha, P.L.J.

    2012-01-01

    We report a modeling and numerical simulation study of density-driven natural convection during geological CO2 storage in heterogeneous formations. We consider an aquifer or depleted oilfield overlain by gaseous CO2, where the water density increases due to CO2 dissolution. The heterogeneity of the

  20. Geoelectric Monitoring of geological CO2 storage at Ketzin, Germany (CO2SINK project): Downhole and Surface-Downhole measurements

    Science.gov (United States)

    Kiessling, D.; Schuett, H.; Schoebel, B.; Krueger, K.; Schmidt-Hattenberger, C.; Schilling, F.

    2009-04-01

    Numerical models of the CO2 storage experiment CO2SINK (CO2 Storage by Injection into a Natural Saline Aquifer at Ketzin), where CO2 is injected into a deep saline aquifer at roughly 650 m depth, yield a CO2 saturation of approximately 50% for large parts of the plume. Archie's equation predicts an increase of the resistivity by a factor of approximately 3 to 4 for the reservoir sandstone, and laboratory tests on Ketzin reservoir samples support this prediction. Modeling results show that tracking the CO2 plume may be doable with crosshole resistivity surveys under these conditions. One injection well and two observation wells were drilled in 2007 to a depth of about 800 m and were completed with "smart" casings, arranged L-shaped with distances of 50 m and 100 m. 45 permanent ring-shaped steel electrodes were attached to the electrically insulated casings of the three Ketzin wells at 590 m to 735 m depth with a spacing of about 10 m. It is to our knowledge the deepest permanent vertical electrical resistivity array (VERA) worldwide. The electrodes are connected to the current power supply and data registration units at the surface through custom-made cables. This deep electrode array allows for the registration of electrical resistivity tomography (ERT) data sets at basically any desired repetition rate and at very low cost, without interrupting the injection operations. The installation of all 45 electrodes succeeded. The electrodes are connected to the electrical cable, and the insulated casing stood undamaged. Even after 2-odd years under underground conditions only 6 electrodes are in a critical state now, caused by corrosion effects. In the framework of the COSMOS project (CO2-Storage, Monitoring and Safety Technology), supported by the German "Geotechnologien" program, the geoelectric monitoring has been performed. The 3D crosshole time-laps measurements are taken using dipole-dipole configurations. The data was inverted using AGI EarthImager 3D to obtain 3D

  1. Characterisation, quantification and modelling of CO2 transport and interactions in a carbonate vadose zone: application to a CO2 diffusive leakage in a geological sequestration context

    International Nuclear Information System (INIS)

    Cohen, Gregory

    2013-01-01

    Global warming is related to atmospheric greenhouse gas concentration increase and especially anthropogenic CO 2 emissions. Geologic sequestration has the potential capacity and the longevity to significantly diminish anthropogenic CO 2 emissions. This sequestration in deep geological formation induces leakage risks from the geological reservoir. Several leakage scenarios have been imagined. Since it could continue for a long period, inducing environmental issues and risks for human, the scenario of a diffusive leakage is the most worrying. Thus, monitoring tools and protocols are needed to set up a near-surface monitoring plan. The present thesis deals with this problematic. The aims are the characterisation, the quantification and the modelling of transport and interactions of CO 2 in a carbonate unsaturated zone. This was achieved following an experimental approach on a natural pilot site in Saint-Emilion (Gironde, France), where diffusive gas leakage experiments were set up in a carbonate unsaturated zone. Different aspects were investigated during the study: natural pilot site description and instrumentation; the physical and chemical characterisation of carbonate reservoir heterogeneity; the natural functioning of the carbonate unsaturated zone and especially the set-up of a CO 2 concentrations baseline; the characterisation of gas plume extension following induced diffusive leakage in the carbonate unsaturated zone and the study of gas-water-rock interactions during a CO 2 diffusive leakage in a carbonate unsaturated zone through numerical simulations. The results show the importance of the carbonate reservoir heterogeneity characterisation as well as the sampling and analysing methods for the different phases. The baseline set-up is of main interest since it allows discrimination between the induced and the natural CO 2 concentrations variations. The transfer of CO 2 in a carbonate unsaturated zone is varying in function of physical and chemical properties

  2. CO2 geological sequestration: state of art in Italy and abroad

    International Nuclear Information System (INIS)

    Quattrocchi, Fedora; Bencini, Roberto

    2005-01-01

    This paper proposes a wide scenario on the state of art in Italy and abroad of industrial CO 2 geological sequestration, with particular attention to Weyburn Project. Geochemical monitoring techniques are described, mentioning also geophysical monitoring techniques for CO 2 injected into the soil. Critical choices and objections in Italy to a complete use of clean fossil fuels, hydrogen carrier, clean coal technologies: all of these approaches require geological sequestration of CO 2 [it

  3. Probabilistic modelling of rock damage: application to geological storage of CO2

    International Nuclear Information System (INIS)

    Guy, N.

    2010-01-01

    The storage of CO 2 in deep geological formations is considered as a possible way to reduce emissions of greenhouse gases in the atmosphere. The condition of the rocks constituting the reservoir is a key parameter on which rely both storage safety and efficiency. The objective of this thesis is to characterize the risks generated by a possible change of mechanical and transfer properties of the material of the basement after an injection of CO 2 . Large-scale simulations aiming at representing the process of injection of CO 2 at the supercritical state into an underground reservoir were performed. An analysis of the obtained stress fields shows the possibility of generating various forms of material degradation for high injection rates. The work is devoted to the study of the emergence of opened cracks. Following an analytical and simplified study of the initiation and growth of opened cracks based on a probabilistic model, it is shown that the formation of a crack network is possible. The focus is then to develop in the finite element code Code Aster a numerical tool to simulate the formation of crack networks. A nonlocal model based on stress regularization is proposed. A test on the stress intensity factor is used to describe crack propagation. The initiation of new cracks is modeled by a Poisson-Weibull process. The used parameters are identified by an experimental campaign conducted on samples from an actual geological site for CO 2 storage. The model developed is then validated on numerical cases, and also against experimental results carried out herein. (author)

  4. Density-Driven Flow Simulation in Anisotropic Porous Media: Application to CO2 Geological Sequestration

    KAUST Repository

    Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu

    2014-01-01

    Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density

  5. A Review of Hazardous Chemical Species Associated with CO2 Capturefrom Coal-Fired Power Plants and Their Potential Fate in CO2 GeologicStorage

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.

    2006-02-23

    Conventional coal-burning power plants are major contributors of excess CO2 to the atmospheric inventory. Because such plants are stationary, they are particularly amenable to CO2 capture and disposal by deep injection into confined geologic formations. However, the energy penalty for CO2 separation and compression is steep, and could lead to a 30-40 percent reduction in useable power output. Integrated gas combined cycle (IGCC) plants are thermodynamically more efficient, i.e.,produce less CO2 for a given power output, and are more suitable for CO2 capture. Therefore, if CO2 capture and deep subsurface disposal were to be considered seriously, the preferred approach would be to build replacement IGCC plants with integrated CO2 capture, rather than retrofit existing conventional plants. Coal contains minor quantities of sulfur and nitrogen compounds, which are of concern, as their release into the atmosphere leads to the formation of urban ozone and acid rain, the destruction of stratospheric ozone, and global warming. Coal also contains many trace elements that are potentially hazardous to human health and the environment. During CO2 separation and capture, these constituents could inadvertently contaminate the separated CO2 and be co-injected. The concentrations and speciation of the co-injected contaminants would differ markedly, depending on whether CO2 is captured during the operation of a conventional or an IGCC plant, and the specific nature of the plant design and CO2 separation technology. However, regardless of plant design or separation procedures, most of the hazardous constituents effectively partition into the solid waste residue. This would lead to an approximately two order of magnitude reduction in contaminant concentration compared with that present in the coal. Potential exceptions are Hg in conventional plants, and Hg and possibly Cd, Mo and Pb in IGCC plants. CO2 capture and injection disposal could afford an opportunity to deliberately capture

  6. Geological storage of CO2: What do we know, where are the gaps and what more needs to be done?

    International Nuclear Information System (INIS)

    Gale, John

    2004-01-01

    If deep reductions in anthropogenic greenhouse gas emissions are to be achieved, the introduction of CO 2 capture and storage in geological reservoirs is likely to be necessary. The technology would be deployed alongside other mitigation measures such as renewables, energy efficiency and fuel switching. Currently, research programmes on the geological storage of CO 2 are underway in the United States, the European Union, Australia and Japan. The aim of this paper is to present an overview of the research work that is currently underway and provide an analysis of the current state of knowledge on geological storage of CO 2. The analysis will be broken down to address the key geological storage options: deep coal seams, depleted hydrocarbon reservoirs and deep saline aquifers. In each case, areas of uncertainty will be highlighted as well as areas where it is considered that further work will be needed so that the technology can be accepted by Governments and the general public as a mitigation option suitable for wide-scale application throughout the world

  7. Geological storage of CO2: what do we know, where are the gaps and what more needs to be done?

    International Nuclear Information System (INIS)

    Gale, J.

    2004-01-01

    If deep reductions in anthropogenic greenhouse gas emissions are to be achieved, the introduction of CO 2 capture and storage in geological reservoirs is likely to be necessary. The technology would be deployed alongside other mitigation measures such as renewables, energy efficiency and fuel switching. Currently, research programmes on the geological storage of CO 2 are underway in the United States, the European Union, Australia and Japan. The aim of this paper is to present an overview of the research work that is currently underway and provide an analysis of the current state of knowledge on geological storage of CO 2 . The analysis will be broken down to address the key geological storage options: deep coal seams, depleted hydrocarbon reservoirs and deep saline aquifers. In each case, areas of uncertainty will be highlighted as well as areas where it is considered that further work will be needed so that the technology can be accepted by Governments and the general public as a mitigation option suitable for wide-scale application throughout the world. (author)

  8. Could a geological storage of the CO2 emissions from Romanian power plants become a joint implementation project?

    International Nuclear Information System (INIS)

    Matei, Magdalena; Ene, Simona; Necula, Catalina; Matei, Lucian; Marinescu, Mihai

    2006-01-01

    Full text: Emissions trading is a solution that is most compatible with deregulated electricity markets. The Directive 2003/87/CE referring to CO 2 emission trading within Europe entered into force and till 31 March 2004 all the countries had to present to the Commission their national plan to comply with Directive's rules. Recent predictions of the Intergovernmental Panel on Climate Change indicate that global warming will accelerate within this century. CO 2 emitted by the burning of fossil fuels is thought to be a main driving factor of climate change. With the potential to produce power without releasing CO 2 into the atmosphere, CO 2 capturing may become an important part of the post- Kyoto strategies of many countries. Underground storage of CO 2 seems to be one of the most attractive alternative. Potential targets for CO 2 injection are: - depleted oil reservoirs, possibly in combination with enhanced oil recovery - former gas fields, possibly with additional gas production - deep aquifers containing saline, non-drinkable water - deep and unminable coal seams (exchange of absorbed methane by CO 2 with simultaneous gas production) - geothermal wells, after heat extraction from the aquifers - residual volumes of former deep coal and salt mines. An environmental political decision about the option of CO 2 underground storage has to consider forecasts about developments of global climate, societies, and economics. Due to the forthcoming emission trading there is a growing interest in underground storage options for CO 2 in Europe now. Flexible mechanisms agreed by Kyoto Protocol, namely the Project-based Joint Implementation (Art. 6) and the Emission Trading (Art. 17) could help Romania to attract investment with a long term impact on emissions reduction. The brief identification of major CO 2 emissions sources and of possible CO 2 geological storage capacities (coal mines, aquifers, geothermal wells, oil and gas fields) shows that it is very probable to

  9. The Géocarbone-Monitoring Project: Main Results and Recommendations for Monitoring Deep Geological CO2 Storage in the Paris Basin Le projet de recherche Géocarbone-Monitoring : principaux résultats et recommandations pour le monitoring des stockages géologiques profonds de CO2 dans le bassin Parisien

    Directory of Open Access Journals (Sweden)

    Fabriol H.

    2010-07-01

    Full Text Available The aim of the Géocarbone-Monitoring research project was the evaluation and testing, as far as possible, of the different monitoring methods that might be applied in the specific context of the Paris Basin. Their main objectives are to: detect and map CO2 in the reservoir rocks; detect and quantify possible leaks between the reservoir and the surface. The partners developed several thoughts and research concerning the various monitoring methods. This enabled drawing up a critical overview of existing methods and proposing leads for further work. At the end of the project, recommendations were made for the stakeholders of CO2 storage, i.e. the government departments regulating storage, decision-makers, and future site operators. In addition, a proposal was made for the general design and implementation of a monitoring programme of an injection test in the Paris Basin, within a depleted reservoir or a deep aquifer. Le projet de recherche Géocarbone-Monitoring avait pour but principal d’évaluer et de tester, le cas échéant, les différentes méthodes de surveillance qui pourraient être appliquées au contexte géologique spécifique du Bassin Parisien. Les objectifs principaux de celles-ci sont de : détecter et cartographier le CO2 dans le réservoir ; détecter les fuites éventuelles entre le réservoir et la surface et être en mesure de les quantifier. Les recherches et les réflexions menées par les partenaires sur les méthodes de surveillance et de monitoring ont permis de dresser une vision critique des méthodologies existantes et de proposer des pistes de progrès. À l’issue du projet, des recommandations ont été rédigées à l’intention des parties prenantes du stockage de CO2 (administration chargée de mettre en oeuvre la réglementation des stockages, décideurs et futurs opérateurs de site et un schéma général pour la conception et la mise en oeuvre d’un programme de monitoring pour un test d’injection dans

  10. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.; Nordbotten, Jan M.; Celia, Michael A.

    2012-01-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act

  11. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  12. Predicting capillarity of mudrocks for geological storage of CO2

    Science.gov (United States)

    Busch, Andreas; Amann-Hildenbrand, Alexandra

    2013-04-01

    Various rock types were investigated, with the main focus on the determination and prediction of the capillary breakthrough and snap-off pressure in mudrocks (e.g. shales, siltstones, mudstones). Knowledge about these two critical pressures is important for the prediction of the capillary sealing capacity of CO2 storage sites. Capillary pressure experiments, when performed on low-permeable core plugs, are difficult and time consuming. Laboratory measurements on core plugs under in-situ conditions are mostly performed using nitrogen, but also with methane and carbon dioxide. Therefore, mercury porosimetry measurements (MIP) are preferably used in the industry to determine an equivalent value for the capillary breakthrough pressure. These measurements have the advantage to be quick and cheap and only require cuttings or trim samples. When evaluating the database in detail we find that (1) MIP data plot well with the drainage breakthrough pressures determined on sample plugs, while the conversion of the system Hg/air to CO2/brine using interfacial and wettability data does not provide a uniform match, potentially caused by non fully water-wet conditions; (2) brine permeability versus capillary breakthrough pressure determined on sample plugs shows a good match and could provide a first estimate of Pc-values since permeability is easier to determine than capillary breakthrough pressures. For imbibition snap-off pressures a good correlation was found for CH4 measured on sample plugs only; (3) porosity shows a fairly good correlation with permeability for sandstone only, and with plug-derived capillary breakthrough pressures for sandstones, carbonates and evaporates. No such correlations exist for mudrocks; (4) air and brine-derived permeabilities show an excellent correlation and (5) from the data used we do not infer any direct correlations between specific surface area (SSA), mineralogy or organic carbon content with permeability or capillary pressure however were

  13. Reduction of emissions and geological storage of CO2. Innovation an industrial stakes

    International Nuclear Information System (INIS)

    Mandil, C.; Podkanski, J.; Socolow, R.; Dron, D.; Reiner, D.; Horrocks, P.; Fernandez Ruiz, P.; Dechamps, P.; Stromberg, L.; Wright, I.; Gazeau, J.C.; Wiederkehr, P.; Morcheoine, A.; Vesseron, P.; Feron, P.; Feraud, A.; Torp, N.T.; Christensen, N.P.; Le Thiez, P.; Czernichowski, I.; Hartman, J.; Roulet, C.; Roberts, J.; Zakkour, P.; Von Goerne, G.; Armand, R.; Allinson, G.; Segalen, L.; Gires, J.M.; Metz, B.; Brillet, B.

    2005-01-01

    An international symposium on the reduction of emissions and geological storage of CO 2 was held in Paris from 15 to 16 September 2005. The event, jointly organized by IFP, ADEME and BRGM, brought together over 400 people from more than 25 countries. It was an opportunity to review the international stakes related to global warming and also to debate ways of reducing CO 2 emissions, taking examples from the energy and transport sectors. The last day was dedicated to technological advances in the capture and geological storage of CO 2 and their regulatory and economic implications. This document gathers the available transparencies and talks presented during the colloquium: Opening address by F. Loos, French Minister-delegate for Industry; Session I - Greenhouse gas emissions: the international stakes. Outlook for global CO 2 emissions. The global and regional scenarios: Alternative scenarios for energy use and CO 2 emissions until 2050 by C. Mandil and J. Podkanski (IEA), The stabilization of CO 2 emissions in the coming 50 years by R. Socolow (Princeton University). Evolution of the international context: the stakes and 'factor 4' issues: Costs of climate impacts and ways towards 'factor 4' by D. Dron (ENS Mines de Paris), CO 2 emissions reduction policy: the situation in the United States by D. Reiner (MIT/Cambridge University), Post-Kyoto scenarios by P. Horrocks (European Commission), Possibilities for R and D in CO 2 capture and storage in the future FP7 program by P. Fernandez Ruiz and P. Dechamps (European Commission). Session II - CO 2 emission reductions in the energy and transport sectors. Reducing CO 2 emissions during the production and conversion of fossil energies (fixed installations): Combined cycles using hydrogen by G. Haupt (Siemens), CO 2 emission reductions in the oil and gas industry by I. Wright (BP). Reducing CO 2 emissions in the transport sector: Sustainable transport systems by P. Wiederkehr (EST International), The prospects for reducing

  14. An assessment on CO2 geosequestration in deep saline formations in the Taihsi Basin, central Taiwan

    Science.gov (United States)

    Cai, Mo-Si; Lin, Andrew T.; Fan, Jhen-Huei

    2015-04-01

    Geological storage of carbon dioxide (CO2) is to inject and store a large amount of anthropogenic CO2 in deep and sealed porous rocks in order to mitigate the aggravated threat of global climate changes. Borehole and reflection seismic data are used to understand the spatial distribution of suitable CO2 reservoirs and cap rocks in the Taihsi Basin, central Taiwan, where the level of seismicity is low. The Taihsi Basin was a rift basin during the Paleocene to Eocene, followed by a phase of post-rift subsidence during late Oligocene to late Miocene. The loading of the Taiwan mountain belt since late Miocene has turned the Taihsi Basin into a peripheral foreland basin, with strata gently dipping toward the mountain belts in the east. The coastal plain in central Taiwan (Changhua and Yunlin Counties) and its adjacent offshore areas are close to major CO2 emission sources and no active geological structures are found in these areas, making the study area a favorable CO2 storage site. Spatial distribution of formation thickness and depth for CO2 reservoirs and cap rocks indicates three CO2 storage systems existed in the study area. They are: (1) late Miocene to Pliocene Nanchuang Formation and Kueichulin Formation (reservoirs)-Chinshui Shale (seals) system (hereafter abbreviated as NK-C system), (2) early to middle Miocene Shihti Formation and Peiliao Formation (reservoirs)-Talu Shale (seals) system (SP-T system), (3) early Miocene Mushan Formation (reservoirs)-Piling Shale (seals) system (M-P system). The NK-C system contains multiple layers of porous sandstones from Nanchuang and Kueichulin formations, with total thickness around 210-280 m. In the vicinity of the northern bank of the Jhuoshuei River, reservoir top reaches a depth around 1850 m, with 60 m thick seal formation, the Chinshui Shale. However, the Chinshui Shale becomes sand-prone in the Changhua coastal and nearshore areas due to facies changes. The SP-T system consists of two porous sandstone layers from

  15. Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer

    Science.gov (United States)

    Abidoye, L. K.; Bello, A. A.

    2017-03-01

    The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noted that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.

  16. Capture and geological storage of CO2. Innovation, industrial stakes and realizations

    International Nuclear Information System (INIS)

    Lavergne, R.; Podkanski, J.; Rohner, H.; Otter, N.; Swift, J.; Dance, T.; Vesseron, Ph.; Reich, J.P.; Reynen, B.; Wright, L.; Marliave, L. de; Stromberg, L.; Aimard, N.; Wendel, H.; Erdol, E.; Dino, R.; Renzenbrink, W.; Birat, J.P.; Czernichowski-Lauriol, I.; Christensen, N.P.; Le Thiez, P.; Paelinck, Ph.; David, M.; Pappalardo, M.; Moisan, F.; Marston, Ph.; Law, M.; Zakkour, P.; Singer, St.; Philippe, Th.; Philippe, Th.

    2007-01-01

    : the ULCOS program; CO 2 capture technologies: road-maps and potential cost abatement; membranes: oxygen production and hydrogen separation; CO2GeoNet: integration of European research for the establishment of confidence in CO 2 geologic storage; CO2SINK, CO 2 geologic storage test at the European pilot site of Ketzin (Germany); storage in aquifers for European industrial projects: AQUA CO2; the US approach: US standards for the qualification of a CO 2 storage in agreement with federal and state regulations; legal and regulatory aspects; societal acceptation; CO 2 capture, geologic storage and carbon market; economic aspects of CO 2 capture and storage; an experience of implementation of 'clean development mechanisms' in an industrial strategy; closing talk. (J.S.)

  17. Numerical simulation of CO2 geological storage in saline aquifers – case study of Utsira formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheming; Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    CO2 geological storage (CGS) is one of the most promising technologies to address the issue of excessive anthropogenic CO2 emissions in the atmosphere due to fossil fuel combustion for electricity generation. In order to fully exploit the storage potential, numerical simulations can help in determining injection strategies before the deployment of full scale sequestration in saline aquifers. This paper presents the numerical simulations of CO2 geological storage in Utsira saline formation where the sequestration is currently underway. The effects of various hydrogeological and numerical factors on the CO2 distribution in the topmost hydrogeological layer of Utsira are discussed. The existence of multiple pathways for upward mobility of CO2 into the topmost layer of Utsira as well as the performance of the top seal are also investigated.

  18. Characterizing Microbial Diversity and Function in Natural Subsurface CO2 Reservoir Systems for Applied Use in Geologic Carbon Sequestration Environments

    Science.gov (United States)

    Freedman, A.; Thompson, J. R.

    2013-12-01

    community analysis to test the hypothesis that a low but non-zero diversity that includes taxa from other subsurface environments will be present, reflecting the extreme ecological selective pressures of scCO2. A wide range of phylogenies have been identified, including genera that fall within the Proteobacteria, Bacilli, and Clostridial classes. Several species identified by 16S BLAST best hits are also known to inhabit deep subsurface environments, preliminarily confirming that a non-zero diversity has been able to survive, and possibly thrive, in the extreme scCO2-exposed deep subsurface environment at McElmo Dome. It thus appears that at least a subsection of native subsurface community biota may withstand the severe stresses associated with the injection of scCO2 for long-term geologic carbon sequestration efforts.

  19. Leakage of CO2 from geologic storage: Role of secondaryaccumulation at shallow depth

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2007-05-31

    Geologic storage of CO2 can be a viable technology forreducing atmospheric emissions of greenhouse gases only if it can bedemonstrated that leakage from proposed storage reservoirs and associatedhazards are small or can be mitigated. Risk assessment must evaluatepotential leakage scenarios and develop a rational, mechanisticunderstanding of CO2 behavior during leakage. Flow of CO2 may be subjectto positive feedbacks that could amplify leakage risks and hazards,placing a premium on identifying and avoiding adverse conditions andmechanisms. A scenario that is unfavorable in terms of leakage behavioris formation of a secondary CO2 accumulation at shallow depth. This paperdevelops a detailed numerical simulation model to investigate CO2discharge from a secondary accumulation, and evaluates the role ofdifferent thermodynamic and hydrogeologic conditions. Our simulationsdemonstrate self-enhancing as well as self-limiting feedbacks.Condensation of gaseous CO2, 3-phase flow of aqueous phase -- liquid CO2-- gaseous CO2, and cooling from Joule-Thomson expansion and boiling ofliquid CO2 are found to play important roles in the behavior of a CO2leakage system. We find no evidence that a subsurface accumulation of CO2at ambient temperatures could give rise to a high-energy discharge, aso-called "pneumatic eruption."

  20. Australia's CO2 geological storage potential and matching of emission sources to potential sinks

    International Nuclear Information System (INIS)

    Bradshaw, J.; Bradshaw, B.E.; Wilson, P.; Spencer, L.; Allinson, G.; Nguyen, V.

    2004-01-01

    Within the GEODISC program of the Australian Petroleum Cooperative Research Centre (APCRC), Geoscience Australia (GA) and the University of New South Wales (UNSW) have completed an analysis of the potential for the geological storage of CO 2 . The geological analysis assessed over 100 potential environmentally sustainable sites for CO 2 injection (ESSCIs) by applying a deterministic risk assessment based on the five factors of: storage capacity, injectivity potential, site details, containment and natural resources. Utilising a risked storage capacity suggests that at a regional scale Australia has a CO 2 storage potential in excess of 1600 years of current annual total net emissions. Whilst this estimate does give an idea of the enormous magnitude of the geological storage potential of CO 2 in Australia, it does not account for various factors that are evident in source to sink matching. If preferences due to source to sink matching are incorporated, and an assumption is made that some economic imperative will apply to encourage geological storage of CO 2 , then a more realistic analysis can be derived. In such a case, Australia may have the potential to store a maximum of 25% of our total annual net emissions, or approximately 100-115 Mt CO 2 per year. (author)

  1. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.

    Science.gov (United States)

    Franks, Peter J; Beerling, David J

    2009-06-23

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.

  2. International and European legal aspects on underground geological storage of CO2

    International Nuclear Information System (INIS)

    Wall, C.; Olvstam, M.-L.; Bernstone, C.

    2005-01-01

    The often disconnected international and European legal rules regarding carbon dioxide (CO 2 ) storage in geological formations create legal uncertainty and a slow down in investments. Existing rules for waste dumping, such as the OSPAR and London Conventions implies that CO 2 storage in sub seabed geological formations is not permitted for climate change mitigating purposes. This paper emphasized that even in cases when complete certainty about the exact application of a legal rule is not possible, it is necessary to know if an activity is lawful. It also emphasized that CO 2 storage should be a priority in the international agenda. The current gaps in knowledge concerning the relevant international and European legislation directly related to CO 2 storage were identified in this paper, including long-term liability for risk of damages caused during the injection phase of the well. The current relevant legislation that is not directly concerned with CO 2 storage but which might have an impact on future legislation was also discussed along with relevant legal principles that might influence future legislation. Some of the many ongoing projects concerning CO 2 storage were reviewed along with papers and reports on regulating CO 2 storage. It was concluded that if CO 2 capture and storage is going to be a large-scale concept for mitigating climate change, the legal issues and requirements need to be an area of priority. 16 refs

  3. Gas-water-rock interactions induced by reservoir exploitation, CO2 sequestration, and other geological storage

    International Nuclear Information System (INIS)

    Lecourtier, J.

    2005-01-01

    Here is given a summary of the opening address of the IFP International Workshop: 'gas-water-rock interactions induced by reservoir exploitation, CO 2 sequestration, and other geological storage' (18-20 November 2003). 'This broad topic is of major interest to the exploitation of geological sites since gas-water-mineral interactions determine the physicochemical characteristics of these sites, the strategies to adopt to protect the environment, and finally, the operational costs. Modelling the phenomena is a prerequisite for the engineering of a geological storage, either for disposal efficiency or for risk assessment and environmental protection. During the various sessions, several papers focus on the great achievements that have been made in the last ten years in understanding and modelling the coupled reaction and transport processes occurring in geological systems, from borehole to reservoir scale. Remaining challenges such as the coupling of mechanical processes of deformation with chemical reactions, or the influence of microbiological environments on mineral reactions will also be discussed. A large part of the conference programme will address the problem of mitigating CO 2 emissions, one of the most important issues that our society must solve in the coming years. From both a technical and an economic point of view, CO 2 geological sequestration is the most realistic solution proposed by the experts today. The results of ongoing pilot operations conducted in Europe and in the United States are strongly encouraging, but geological storage will be developed on a large scale in the future only if it becomes possible to predict the long term behaviour of stored CO 2 underground. In order to reach this objective, numerous issues must be solved: - thermodynamics of CO 2 in brines; - mechanisms of CO 2 trapping inside the host rock; - geochemical modelling of CO 2 behaviour in various types of geological formations; - compatibility of CO 2 with oil-well cements

  4. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    DEFF Research Database (Denmark)

    Patil, Ravi; Colls, Jeremy J; Steven, Michael D

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response...... detection field facility developed at the University of Nottingham was used to inject CO2 gas at a controlled flow rate (1 l min-1) into soil to simulate build-up of soil CO2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO2....... This study showed adverse effects of CO2 gas on agro-ecosystem in case of leakage from storage sites to surface....

  5. Use of comparative assessment framework for comparison of geological nuclear waste and CO2 disposal technologies

    Energy Technology Data Exchange (ETDEWEB)

    Streimikiene, Dalia

    2010-09-15

    Comparative assessment of few future energy and climate change mitigation options for Lithuania in 2020 performed indicated that nuclear and combined cycle gas turbine technologies are very similar energy options in terms of costs taking into account GHG emission reduction costs. Comparative assessment of these energy options requires evaluation of the potentials and costs for geological CO2 and nuclear waste storage as the main uncertainties in comparative assessment of electricity generation technologies are related with these back-end technologies. The paper analyses the main characteristics of possible geological storage of CO2 and NW options in Lithuania.

  6. Uncertainty studies and risk assessment for CO2 storage in geological formations

    International Nuclear Information System (INIS)

    Walter, Lena Sophie

    2013-01-01

    Carbon capture and storage (CCS) in deep geological formations is one possible option to mitigate the greenhouse gas effect by reducing CO 2 emissions into the atmosphere. The assessment of the risks related to CO 2 storage is an important task. Events such as CO 2 leakage and brine displacement could result in hazards for human health and the environment. In this thesis, a systematic and comprehensive risk assessment concept is presented to investigate various levels of uncertainties and to assess risks using numerical simulations. Depending on the risk and the processes, which should be assessed, very complex models, large model domains, large time scales, and many simulations runs for estimating probabilities are required. To reduce the resulting high computational costs, a model reduction technique (the arbitrary polynomial chaos expansion) and a method for model coupling in space are applied. The different levels of uncertainties are: statistical uncertainty in parameter distributions, scenario uncertainty, e.g. different geological features, and recognized ignorance due to assumptions in the conceptual model set-up. Recognized ignorance and scenario uncertainty are investigated by simulating well defined model set-ups and scenarios. According to damage values, which are defined as a model output, the set-ups and scenarios can be compared and ranked. For statistical uncertainty probabilities can be determined by running Monte Carlo simulations with the reduced model. The results are presented in various ways: e.g., mean damage, probability density function, cumulative distribution function, or an overall risk value by multiplying the damage with the probability. If the model output (damage) cannot be compared to provided criteria (e.g. water quality criteria), analytical approximations are presented to translate the damage into comparable values. The overall concept is applied for the risks related to brine displacement and infiltration into drinking water

  7. Application of simplified models to CO2 migration and immobilization in large-scale geological systems

    KAUST Repository

    Gasda, Sarah E.

    2012-07-01

    Long-term stabilization of injected carbon dioxide (CO 2) is an essential component of risk management for geological carbon sequestration operations. However, migration and trapping phenomena are inherently complex, involving processes that act over multiple spatial and temporal scales. One example involves centimeter-scale density instabilities in the dissolved CO 2 region leading to large-scale convective mixing that can be a significant driver for CO 2 dissolution. Another example is the potentially important effect of capillary forces, in addition to buoyancy and viscous forces, on the evolution of mobile CO 2. Local capillary effects lead to a capillary transition zone, or capillary fringe, where both fluids are present in the mobile state. This small-scale effect may have a significant impact on large-scale plume migration as well as long-term residual and dissolution trapping. Computational models that can capture both large and small-scale effects are essential to predict the role of these processes on the long-term storage security of CO 2 sequestration operations. Conventional modeling tools are unable to resolve sufficiently all of these relevant processes when modeling CO 2 migration in large-scale geological systems. Herein, we present a vertically-integrated approach to CO 2 modeling that employs upscaled representations of these subgrid processes. We apply the model to the Johansen formation, a prospective site for sequestration of Norwegian CO 2 emissions, and explore the sensitivity of CO 2 migration and trapping to subscale physics. Model results show the relative importance of different physical processes in large-scale simulations. The ability of models such as this to capture the relevant physical processes at large spatial and temporal scales is important for prediction and analysis of CO 2 storage sites. © 2012 Elsevier Ltd.

  8. Potential impacts of leakage from deep CO2 geosequestration on overlying freshwater aquifers.

    Science.gov (United States)

    Little, Mark G; Jackson, Robert B

    2010-12-01

    Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).

  9. Numerical simulation of CO2 leakage from a geologic disposal reservoir, including transitions from super- to sub-critical conditions, and boiling of liquid of CO2

    International Nuclear Information System (INIS)

    Pruess, Karsten

    2003-01-01

    The critical point of CO 2 is at temperature and pressure conditions of T crit = 31.04 C, P crit = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO 2 can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO 2 into brine formations would be made at supercritical pressures. However, CO 2 escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO 2 would be in subcritical conditions. An assessment of the fate of leaking CO 2 requires a capability to model not only supercritical but also subcritical CO 2 , as well as phase changes between liquid and gaseous CO 2 in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO 2 mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO 2 . This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO 2 plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO 2 rises to elevations where it begins to boil and evolve a gaseous CO 2 phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO 2 to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO 2 upflow, causes the plume to spread out laterally, and gives rise to dispersed CO 2 discharge at the land surface. Our simulation suggests that temperatures along a CO 2 leakage path may decline to levels low enough so that solid water ice and CO 2 hydrate phases may be formed

  10. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    Science.gov (United States)

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    Geologic CO 2 sequestration (GCS) is a promising strategy to mitigate anthropogenic CO 2 emission to the atmosphere. Suitable geologic storage sites should have a porous reservoir rock zone where injected CO 2 can displace brine and be stored in pores, and an impermeable zone on top of reservoir rocks to hinder upward movement of buoyant CO 2 . The injection wells (steel casings encased in concrete) pass through these geologic zones and lead CO 2 to the desired zones. In subsurface environments, CO 2 is reactive as both a supercritical (sc) phase and aqueous (aq) species. Its nanoscale chemical reactions with geomedia and wellbores are closely related to the safety and efficiency of CO 2 storage. For example, the injection pressure is determined by the wettability and permeability of geomedia, which can be sensitive to nanoscale mineral-fluid interactions; the sealing safety of the injection sites is affected by the opening and closing of fractures in caprocks and the alteration of wellbore integrity caused by nanoscale chemical reactions; and the time scale for CO 2 mineralization is also largely dependent on the chemical reactivities of the reservoir rocks. Therefore, nanoscale chemical processes can influence the hydrogeological and mechanical properties of geomedia, such as their wettability, permeability, mechanical strength, and fracturing. This Account reviews our group's work on nanoscale chemical reactions and their qualitative impacts on seal integrity and storage capacity at GCS sites from four points of view. First, studies on dissolution of feldspar, an important reservoir rock constituent, and subsequent secondary mineral precipitation are discussed, focusing on the effects of feldspar crystallography, cations, and sulfate anions. Second, interfacial reactions between caprock and brine are introduced using model clay minerals, with focuses on the effects of water chemistries (salinity and organic ligands) and water content on mineral dissolution and

  11. Effects of CO2 gas as leaks from geological storage sites on agro-ecosystems

    International Nuclear Information System (INIS)

    Patil, Ravi H.; Colls, Jeremy J.; Steven, Michael D.

    2010-01-01

    Carbon capture and storage in geological formations has potential risks in the long-term safety because of the possibility of CO 2 leakage. Effects of leaking gas, therefore, on vegetation, soil, and soil-inhabiting organisms are critical to understand. An artificial soil gassing and response detection field facility developed at the University of Nottingham was used to inject CO 2 gas at a controlled flow rate (1 l min -1 ) into soil to simulate build-up of soil CO 2 concentrations and surface fluxes from two land use types: pasture grassland, and fallow followed by winter bean. Mean soil CO 2 concentrations was significantly higher in gassed pasture plots than in gassed fallow plots. Germination of winter bean sown in gassed fallow plots was severely hindered and the final crop stand was reduced to half. Pasture grass showed stress symptoms and above-ground biomass was significantly reduced compared to control plot. A negative correlation (r = -0.95) between soil CO 2 and O 2 concentrations indicated that injected CO 2 displaced O 2 from soil. Gassing CO 2 reduced soil pH both in grass and fallow plots (p = 0.012). The number of earthworm castings was twice as much in gassed plots than in control plots. This study showed adverse effects of CO 2 gas on agro-ecosystem in case of leakage from storage sites to surface.

  12. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  13. A Hydromechanic-Electrokinetic Model for CO2 Sequestration in Geological Formations

    NARCIS (Netherlands)

    Al-Khoury, R.I.N.; Talebian, M.; Sluys, L.J.

    2013-01-01

    In this contribution, a finite element model for simulating coupled hydromechanic and electrokinetic flow in a multiphase domain is outlined. The model describes CO2 flow in a deformed, unsaturated geological formation and its associated streaming potential flow. The governing field equations are

  14. Developments since 2005 in understanding potential environmental impacts of CO2 leakage from geological storage

    NARCIS (Netherlands)

    Jones, D.G.; Beaubien, S.E.; Blackford, J.C.; Foekema, E.M.; Lions, J.; Vittor, de C.; West, J.M.; Widdicombe, S.; Hauton, C.; Queiros, A.M.

    2015-01-01

    This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore

  15. Preliminary reactive geochemical transport simulation study on CO2 geological sequestration at the Changhua Coastal Industrial Park Site, Taiwan

    Science.gov (United States)

    Sung, R.; Li, M.

    2013-12-01

    Mineral trapping by precipitated carbonate minerals is one of critical mechanisms for successful long-term geological sequestration (CGS) in deep saline aquifer. Aquifer acidification induced by the increase of carbonic acid (H2CO3) and bicarbonate ions (HCO3-) as the dissolution of injected CO2 may induce the dissolution of minerals and hinder the effectiveness of cap rock causing potential risk of CO2 leakage. Numerical assessments require capabilities to simulate complicated interactions of thermal, hydrological, geochemical multiphase processes. In this study, we utilized TOUGHREACT model to demonstrate a series of CGS simulations and assessments of (1) time evolution of aquifer responses, (2) migration distance and spatial distribution of CO2 plume, (3) effects of CO2-saline-mineral interactions, and (4) CO2 trapping components at the Changhua Costal Industrial Park (CCIP) Site, Taiwan. The CCIP Site is located at the Southern Taishi Basin with sloping and layered heterogeneous formations. At this preliminary phase, detailed information of mineralogical composition of reservoir formation and chemical composition of formation water are difficult to obtain. Mineralogical composition of sedimentary rocks and chemical compositions of formation water for CGS in deep saline aquifer from literatures (e.g. Xu et al., 2004; Marini, 2006) were adopted. CGS simulations were assumed with a constant CO2 injection rate of 1 Mt/yr at the first 50 years. Hydrogeological settings included porosities of 0.103 for shale, 0.141 for interbedding sandstone and shale, and 0.179 for sandstone; initial pore pressure distributions of 24.5 MPa to 28.7 MPa, an ambient temperature of 70°C, and 0.5 M of NaCl in aqueous solution. Mineral compositions were modified from Xu et al. (2006) to include calcite (1.9 vol. % of solid), quartz (57.9 %), kaolinite (2.0 %), illite (1.0 %), oligoclase (19.8 %), Na-smectite (3.9 %), K-feldspar (8.2 %), chlorite (4.6 %), and hematite (0.5 %) and were

  16. Measurement of residual CO2 saturation at a geological storage site using hydraulic tests

    Science.gov (United States)

    Rötting, T. S.; Martinez-Landa, L.; Carrera, J.; Russian, A.; Dentz, M.; Cubillo, B.

    2012-12-01

    Estimating long term capillary trapping of CO2 in aquifers remains a key challenge for CO2 storage. Zhang et al. (2011) proposed a combination of thermal, tracer, and hydraulic experiments to estimate the amount of CO2 trapped in the formation after a CO2 push and pull test. Of these three types of experiments, hydraulic tests are the simplest to perform and possibly the most informative. However, their potential has not yet been fully exploited. Here, a methodology is presented to interpret these tests and analyze which parameters can be estimated. Numerical and analytical solutions are used to simulate a continuous injection in a porous medium where residual CO2 has caused a reduction in hydraulic conductivity and an increase in storativity over a finite thickness (a few meters) skin around the injection well. The model results are interpreted using conventional pressure build-up and diagnostic plots (a plot of the drawdown s and the logarithmic derivative d s / d ln t of the drawdown as a function of time). The methodology is applied using the hydraulic parameters estimated for the Hontomin site (Northern Spain) where a Technology Demonstration Plant (TDP) for geological CO2 storage is planned to be set up. The reduction of hydraulic conductivity causes an increase in observed drawdowns, the increased storativity in the CO2 zone causes a delay in the drawdown curve with respect to the reference curve measured before CO2 injection. The duration (characteristic time) of these effects can be used to estimate the radius of the CO2 zone. The effects of reduced permeability and increased storativity are well separated from wellbore storage and natural formation responses, even if the CO2-brine interface is inclined (i.e. the CO2 forms a cone around the well). We find that both skin hydraulic conductivity and storativity (and thus residual CO2 saturation) can be obtained from the water injection test provided that water flow rate is carefully controlled and head build

  17. Deep microbial life in the Altmark natural gas reservoir: baseline characterization prior CO2 injection

    Science.gov (United States)

    Morozova, Daria; Shaheed, Mina; Vieth, Andrea; Krüger, Martin; Kock, Dagmar; Würdemann, Hilke

    2010-05-01

    Within the framework of the CLEAN project (CO2 Largescale Enhanced gas recovery in the Altmark Natural gas field) technical basics with special emphasis on process monitoring are explored by injecting CO2 into a gas reservoir. Our study focuses on the investigation of the in-situ microbial community of the Rotliegend natural gas reservoir in the Altmark, located south of the city Salzwedel, Germany. In order to characterize the microbial life in the extreme habitat we aim to localize and identify microbes including their metabolism influencing the creation and dissolution of minerals. The ability of microorganisms to speed up dissolution and formation of minerals might result in changes of the local permeability and the long-term safety of CO2 storage. However, geology, structure and chemistry of the reservoir rock and the cap rock as well as interaction with saline formation water and natural gases and the injected CO2 affect the microbial community composition and activity. The reservoir located at the depth of about 3500m, is characterised by high salinity fluid and temperatures up to 127° C. It represents an extreme environment for microbial life and therefore the main focus is on hyperthermophilic, halophilic anaerobic microorganisms. In consequence of the injection of large amounts of CO2 in the course of a commercial EGR (Enhanced Gas Recovery) the environmental conditions (e.g. pH, temperature, pressure and solubility of minerals) for the autochthonous microorganisms will change. Genetic profiling of amplified 16S rRNA genes are applied for detecting structural changes in the community by using PCR- SSCP (PCR-Single-Strand-Conformation Polymorphism) and DGGE (Denaturing Gradient Gel Electrophoresis). First results of the baseline survey indicate the presence of microorganisms similar to representatives from other saline, hot, anoxic, deep environments. However, due to the hypersaline and hyperthermophilic reservoir conditions, cell numbers are low, so that

  18. Utilization of Integrated Assessment Modeling for determining geologic CO2 storage security

    Science.gov (United States)

    Pawar, R.

    2017-12-01

    Geologic storage of carbon dioxide (CO2) has been extensively studied as a potential technology to mitigate atmospheric concentration of CO2. Multiple international research & development efforts, large-scale demonstration and commercial projects are helping advance the technology. One of the critical areas of active investigation is prediction of long-term CO2 storage security and risks. A quantitative methodology for predicting a storage site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale projects where projects will require quantitative assessments of potential long-term liabilities. These predictions are challenging given that they require simulating CO2 and in-situ fluid movements as well as interactions through the primary storage reservoir, potential leakage pathways (such as wellbores, faults, etc.) and shallow resources such as groundwater aquifers. They need to take into account the inherent variability and uncertainties at geologic sites. This talk will provide an overview of an approach based on integrated assessment modeling (IAM) to predict long-term performance of a geologic storage site including, storage reservoir, potential leakage pathways and shallow groundwater aquifers. The approach utilizes reduced order models (ROMs) to capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. Applicability of the approach will be demonstrated through examples that are focused on key storage security questions such as what is the probability of leakage of CO2 from a storage reservoir? how does storage security vary for different geologic environments and operational conditions? how site parameter variability and uncertainties affect storage security, etc.

  19. Potential impacts on groundwater resources of deep CO2 storage: natural analogues for assessing potential chemical effects

    Science.gov (United States)

    Lions, J.; Gale, I.; May, F.; Nygaard, E.; Ruetters, H.; Beaubien, S.; Sohrabi, M.; Hatzignatiou, D. G.; CO2GeoNet Members involved in the present study Team

    2011-12-01

    Carbon dioxide Capture and Storage (CCS) is considered as one of the promising options for reducing atmospheric emissions of CO2 related to human activities. One of the main concerns associated with the geological storage of CO2 is that the CO2 may leak from the intended storage formation, migrate to the near-surface environment and, eventually, escape from the ground. This is a concern because such leakage may affect aquifers overlying the storage site and containing freshwater that may be used for drinking, industry and agriculture. The IEA Greenhouse Gas R&D Programme (IEAGHG) recently commissioned the CO2GeoNet Association to undertake a review of published and unpublished literature on this topic with the aim of summarizing 'state of the art' knowledge and identifying knowledge gaps and research priorities in this field. Work carried out by various CO2GeoNet members was also used in this study. This study identifies possible areas of conflict by combining available datasets to map the global and regional superposition of deep saline formations (DSF) suitable for CO2 storage and overlying fresh groundwater resources. A scenario classification is developed for the various geological settings where conflict could occur. The study proposes two approaches to address the potential impact mechanisms of CO2 storage projects on the hydrodynamics and chemistry of shallow groundwater. The first classifies and synthesizes changes of water quality observed in natural/industrial analogues and in laboratory experiments. The second reviews hydrodynamic and geochemical models, including coupled multiphase flow and reactive transport. Various models are discussed in terms of their advantages and limitations, with conclusions on possible impacts on groundwater resources. Possible mitigation options to stop or control CO2 leakage are assessed. The effect of CO2 pressure in the host DSF and the potential effects on shallow aquifers are also examined. The study provides a review of

  20. CO 2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage

    KAUST Repository

    Espinoza, D. Nicolas

    2017-10-23

    Small pores in high specific surface clay-rich caprocks give rise to high capillary entry pressures and high viscous drag that hinder the migration of buoyant carbon dioxide CO2. We measured the breakthrough pressure and ensuing CO2 permeability through sediment plugs prepared with sand, silt, kaolinite and smectite, and monitored their volumetric deformation using high-pressure oedometer cells. The data show water expulsion and volumetric contraction prior to CO2 breakthrough, followed by preferential CO2 flow thereafter. Our experimental results and data gathered from previous studies highlight the inverse relationship between breakthrough pressure and pore size, as anticipated by Laplace’s equation. In terms of macro-scale parameters, the breakthrough pressure increases as the sediment specific surface increases and the porosity decreases. The breakthrough pressure is usually lower than the values predicted with average pore size estimations; it can reach ∼6.2MPa in argillaceous formations, and 11.2MPa in evaporites. The CO2 permeability after breakthrough is significantly lower than the absolute permeability, but it may increase in time due to water displacement and desiccation. Leakage will be advection-controlled once percolation takes place at most storage sites currently being considered. Diffusive and advective CO2 leaks through non-fractured caprocks will be minor and will not compromise the storage capacity at CO2 injection sites. The “sealing number” and the “stability number” combine the initial fluid pressure, the buoyant pressure caused by the CO2 plume, the capillary breakthrough pressure of the caprock, and the stress conditions at the reservoir depth; these two numbers provide a rapid assessment of potential storage sites. Unexpected CO2 migration patterns emerge due to the inherent spatial variability and structural discontinuities in geological formations; sites with redundant seal layers should be sought for the safe and long

  1. The European FP7 ULTimateCO2 project: A comprehensive approach to study the long term fate of CO2 geological storage sites

    Science.gov (United States)

    Audigane, P.; Brown, S.; Dimier, A.; Pearce, J.; Frykman, P.; Maurand, N.; Le Gallo, Y.; Spiers, C. J.; Cremer, H.; Rutters, H.; Yalamas, T.

    2013-12-01

    The European FP7 ULTimateCO2 project aims at significantly advance our knowledge of specific processes that could influence the long-term fate of geologically stored CO2: i) trapping mechanisms, ii) fluid-rock interactions and effects on mechanical integrity of fractured caprock and faulted systems and iii) leakage due to mechanical and chemical damage in the well vicinity, iv) brine displacement and fluid mixing at regional scale. A realistic framework is ensured through collaboration with two demonstration sites in deep saline sandstone formations: the onshore former NER300 West Lorraine candidate in France (ArcelorMittal GeoLorraine) and the offshore EEPR Don Valley (former Hatfield) site in UK operated by National Grid. Static earth models have been generated at reservoir and basin scale to evaluate both trapping mechanisms and fluid displacement at short (injection) and long (post injection) time scales. Geochemical trapping and reservoir behaviour is addressed through experimental approaches using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions and through geochemical simulations. Collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland) (OPA), an analogue for caprock well investigated in the past for nuclear waste disposal purpose: - Characterization of elastic parameters in intact samples by measuring strain during an axial experiment, - A recording of hydraulic fracture flow properties by loading and shearing samples in order to create a 'realistic

  2. Demonstrating storage of CO2 in geological reservoirs: the Sleipner and SACS projects

    International Nuclear Information System (INIS)

    Torp, T.A.; Gale, J.

    2004-01-01

    At the Sleipner gas field in the North Sea, CO 2 has been stripped from the produced natural gas and injected into a sand layer called the Utsira formation. Injection started in October 1996, to date nearly 8 million tonnes of CO 2 have been injected without any significant operational problems observed in the capture plant or in the injection well. The Sleipner project is the first commercial application of CO 2 storage in deep saline aquifers in the world. To monitor the injected CO 2 , a separate project called the saline aquifer CO 0 2 storage (SACS) project was established in 1998. As part of the SACS project, 3D seismic surveying has been used to successfully monitor the CO 2 in the Utsira formation, an industry first. Repeat seismic surveys have successfully imaged movement of the injected CO 2 within the reservoir. Reservoir simulation tools have been successfully adapted to describe the migration of the CO 2 in the reservoir. The simulation packages have been calibrated against the repeat seismic surveys and shown themselves to be capable of replicating the position of the CO 2 in the reservoir. The possible reactions between minerals within the reservoir sand and the injected CO 2 have been studied by laboratory experiments and simulations. The cumulative experiences of the Sleipner and SACS projects will be embodied in a Best Practice Manual to assist other organisations planning CO 2 injection projects to take advantage of the learning processes undertaken and to assist in facilitating new projects of this type. (author)

  3. Effects of elevated atmospheric CO2 on dissolution of geological fluorapatite in water and soil.

    Science.gov (United States)

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  4. A laboratory study of supercritical CO2 adsorption on cap rocks in the geological storage conditions

    Science.gov (United States)

    Jedli, Hedi; Jbara, Abdessalem; Hedfi, Hachem; Bouzgarrou, Souhail; Slimi, Khalifa

    2017-04-01

    In the present study, various cap rocks have been experimentally reacted in water with supercritical CO2 in geological storage conditions ( P = 8 × 106 Pa and T = 80 °C) for 25 days. To characterize the potential CO2-water-rock interactions, an experimental setup has been built to provide additional information concerning the effects of structure, thermal and surface characteristics changes due to CO2 injection with cap rocks. In addition, CO2 adsorption capacities of different materials (i.e., clay evaporate and sandstone) are measured. These samples were characterized by XRD technique. The BET specific surface area was determined by nitrogen isotherms. In addition, thermal characteristics of untreated adsorbents were analyzed via TGA method and topography surfaces are identified by Scanning Electron Microscope (SEM). Taking into account pressure and temperature, the physical as well as chemical mechanisms of CO2 retention were determined. Isotherm change profiles of samples for relative pressure range indicate clearly that CO2 was adsorbed in different quantities. In accordance with the X-ray diffraction, a crystalline phase was formed due to the carbonic acid attack and precipitation of some carbonate.

  5. Southern Adriatic sea as a potential area for CO2 geological storage

    International Nuclear Information System (INIS)

    Volpi, V.; Forlin, F.; Donda, F.; Civile, D.; Facchin, L.; Sauli, L.; Merson, B.; Sinza-Mendieta, K.; Shams, A.

    2015-01-01

    The Southern Adriatic Sea is one of the five prospective areas for CO 2 storage being evaluated under the three year (FP7) European SiteChar project dedicated to the characterization of European CO 2 storage sites. The potential reservoir for CO 2 storage is represented by a carbonate formation, the wackstones and packstones of the Scaglia Formation (Upper Cretaceous-Paleogene). In this paper, we present the geological characterization and the 3D modeling that led to the identification of three sites, named Grazia, Rovesti and Grifone, where the Scaglia Formation, with an average thickness of 50 m, reveals good petrophysical characteristics and is overlain by an up to 1 200 thick cap-rock. The vicinity of the selected sites to the Enel - Federico II power plant (one of the major Italian CO 2 emitter) where a pilot plant for CO 2 capture has been already started in April 2010, represents a good opportunity to launch the first Carbon Capture and Storage (CCS) pilot project in Italy and to apply this technology at industrial level, strongly contributing at the same time at reducing the national CO 2 emissions. (authors)

  6. Geologic CO2 Sequestration: Predicting and Confirming Performance in Oil Reservoirs and Saline Aquifers

    Science.gov (United States)

    Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.

    2002-05-01

    Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now

  7. A Comprehensive Overview of CO2 Flow Behaviour in Deep Coal Seams

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2018-04-01

    Full Text Available Although enhanced coal bed methane recovery (ECBM and CO2 sequestration are effective approaches for achieving lower and safer CO2 levels in the atmosphere, the effectiveness of CO2 storage is greatly influenced by the flow ability of the injected CO2 through the coal seam. A precious understanding of CO2 flow behaviour is necessary due to various complexities generated in coal seams upon CO2 injection. This paper aims to provide a comprehensive overview on the CO2 flow behaviour in deep coal seams, specifically addressing the permeability alterations associated with different in situ conditions. The low permeability nature of natural coal seams has a significant impact on the CO2 sequestration process. One of the major causative factors for this low permeability nature is the high effective stresses applying on them, which reduces the pore space available for fluid movement with giving negative impact on the flow capability. Further, deep coal seams are often water saturated where, the moisture behave as barriers for fluid movement and thus reduce the seam permeability. Although the high temperatures existing at deep seams cause thermal expansion in the coal matrix, reducing their permeability, extremely high temperatures may create thermal cracks, resulting permeability enhancements. Deep coal seams preferable for CO2 sequestration generally are high-rank coal, as they have been subjected to greater pressure and temperature variations over a long period of time, which confirm the low permeability nature of such seams. The resulting extremely low CO2 permeability nature creates serious issues in large-scale CO2 sequestration/ECBM projects, as critically high injection pressures are required to achieve sufficient CO2 injection into the coal seam. The situation becomes worse when CO2 is injected into such coal seams, because CO2 movement in the coal seam creates a significant influence on the natural permeability of the seams through CO2

  8. Assessment of the potential for geological storage of CO2 in the vicinity of Moneypoint, Co. Clare, Ireland

    NARCIS (Netherlands)

    Farrelly, I.; Loske, B.; Neele, F.; Holdstock, M.

    2011-01-01

    The largest single point CO2 emitter in Ireland, the Moneypoint Power Station (3.95 Mt CO2 per annum), is located in Co. Clare and geologically lies within the Clare Basin. In terms of the economics of transportation of CO2 from Moneypoint, a possible local storage site would be favoured. The study

  9. Gas geochemistry of natural analogues for the studies of geological CO2 sequestration

    International Nuclear Information System (INIS)

    Voltattorni, N.; Sciarra, A.; Caramanna, G.; Cinti, D.; Pizzino, L.; Quattrocchi, F.

    2009-01-01

    Geological sequestration of anthropogenic CO 2 appears to be a promising method for reducing the amount of greenhouse gases released to the atmosphere. Geochemical modelling of the storage capacity for CO 2 in saline aquifers, sandstones and/or carbonates should be based on natural analogues both in situ and in the laboratory. The main focus of this paper has been to study natural gas emissions representing extremely attractive surrogates for the study and prediction of the possible consequences of leakage from geological sequestration sites of anthropogenic CO 2 (i.e., the return to surface, potentially causing localised environmental problems). These include a comparison among three different Italian case histories: (i) the Solfatara crater (Phlegraean Fields caldera, southern Italy) is an ancient Roman spa. The area is characterised by intense and diffuse hydrothermal activity, testified by hot acidic mud pools, thermal springs and a large fumarolic field. Soil gas flux measurements show that the entire area discharges between 1200 and 1500 tons of CO 2 per day; (ii) the Panarea Island (Aeolian Islands, southern Italy) where a huge submarine volcanic-hydrothermal gas burst occurred in November, 2002. The submarine gas emissions chemically modified seawater causing a strong modification of the marine ecosystem. All of the collected gases are CO 2 -dominant (maximum value: 98.43 vol.%); (iii) the Tor Caldara area (Central Italy), located in a peripheral sector of the quiescent Alban Hills volcano, along the faults of the Ardea Basin transfer structure. The area is characterised by huge CO 2 degassing both from water and soil. Although the above mentioned areas do not represent a storage scenario, these sites do provide many opportunities to study near-surface processes and to test monitoring methodologies.

  10. Coupled Model for CO2 Leaks from Geological Storage: Geomechanics, Fluid Flow and Phase Transitions

    Science.gov (United States)

    Gor, G.; Prevost, J.

    2013-12-01

    Deep saline aquifers are considered as a promising option for long-term storage of carbon dioxide. However, risk of CO2 leakage from the aquifers through faults, natural or induced fractures or abandoned wells cannot be disregarded. Therefore, modeling of various leakage scenarios is crucial when selecting a site for CO2 sequestration and choosing proper operational conditions. Carbon dioxide is injected into wells at supercritical conditions (t > 31.04 C, P > 73.82 bar), and these conditions are maintained in the deep aquifers (at 1-2 km depth) due to hydrostatic pressure and geothermal gradient. However, if CO2 and brine start to migrate from the aquifer upward, both pressure and temperature will decrease, and at the depth of 500-750 m, the conditions for CO2 will become subcritical. At subcritical conditions, CO2 starts boiling and the character of the flow changes dramatically due to appearance of the third (vapor) phase and latent heat effects. When modeling CO2 leaks, one needs to couple the multiphase flow in porous media with geomechanics. These capabilities are provided by Dynaflow, a finite element analysis program [1]; Dynaflow has already showed to be efficient for modeling caprock failure causing CO2 leaks [2, 3]. Currently we have extended the capabilities of Dynaflow with the phase transition module, based on two-phase and three-phase isenthalpic flash calculations [4]. We have also developed and implemented an efficient method for solving heat and mass transport with the phase transition using our flash module. Therefore, we have developed a robust tool for modeling CO2 leaks. In the talk we will give a brief overview of our method and illustrate it with the results of simulations for characteristic test cases. References: [1] J.H. Prevost, DYNAFLOW: A Nonlinear Transient Finite Element Analysis Program. Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ. http://www.princeton.edu/~dynaflow/ (last update 2013

  11. Pore-scale studies of multiphase flow and reaction involving CO2 sequestration in geologic formations

    Science.gov (United States)

    Kang, Q.; Wang, M.; Lichtner, P. C.

    2008-12-01

    In geologic CO2 sequestration, pore-scale interfacial phenomena ultimately govern the key processes of fluid mobility, chemical transport, adsorption, and reaction. However, spatial heterogeneity at the pore scale cannot be resolved at the continuum scale, where averaging occurs over length scales much larger than typical pore sizes. Natural porous media, such as sedimentary rocks and other geological media encountered in subsurface formations, are inherently heterogeneous. This pore-scale heterogeneity can produce variabilities in flow, transport, and reaction processes that take place within a porous medium, and can result in spatial variations in fluid velocity, aqueous concentrations, and reaction rates. Consequently, the unresolved spatial heterogeneity at the pore scale may be important for reactive transport modeling at the larger scale. In addition, current continuum models of surface complexation reactions ignore a fundamental property of physical systems, namely conservation of charge. Therefore, to better understand multiphase flow and reaction involving CO2 sequestration in geologic formations, it is necessary to quantitatively investigate the influence of the pore-scale heterogeneity on the emergent behavior at the field scale. We have applied the lattice Boltzmann method to simulating the injection of CO2 saturated brine or supercritical CO2 into geological formations at the pore scale. Multiple pore-scale processes, including advection, diffusion, homogeneous reactions among multiple aqueous species, heterogeneous reactions between the aqueous solution and minerals, ion exchange and surface complexation, as well as changes in solid and pore geometry are all taken into account. The rich pore scale information will provide a basis for upscaling to the continuum scale.

  12. Geological storage of CO2: risks analysis, monitoring and measures. Final report

    International Nuclear Information System (INIS)

    Abou Akar, A.; Audibert, N.; Audigane, P.; Baranger, P.; Bonijoly, D.; Carnec, C.; Czernichowski, I.; Debeglia, N.; Fabriol, H.; Foerster, E.; Gaus, I.; Le Nindre, Y.; Michel, K.; Morin, D.; Roy, S.; Sanjuan, B.; Sayedi, D.

    2005-01-01

    To use the CO 2 geological storage as a coherent solution in the greenhouse gases reduction it needs to answer to safety and monitoring conditions. In this framework the BRGM presents this study in six chapters: risks analysis, the monitoring methods (geochemistry, geophysics, aerial monitoring, biochemistry, hydrogeology), the metrology, the corrosion problems, the thermal, hydrodynamical, geochemical and mechanical simulation and the today and future regulations. (A.L.B.)

  13. Multiphase, multicomponent simulations and experiments of reactive flow, relevant for combining geologic CO2 sequestration with geothermal energy capture

    Science.gov (United States)

    Saar, Martin O.

    2011-11-01

    Understanding the fluid dynamics of supercritical carbon dioxide (CO2) in brine- filled porous media is important for predictions of CO2 flow and brine displacement during geologic CO2 sequestration and during geothermal energy capture using sequestered CO2 as the subsurface heat extraction fluid. We investigate multiphase fluid flow in porous media employing particle image velocimetry experiments and lattice-Boltzmann fluid flow simulations at the pore scale. In particular, we are interested in the motion of a drop (representing a CO2 bubble) through an orifice in a plate, representing a simplified porous medium. In addition, we study single-phase/multicomponent reactive transport experimentally by injecting water with dissolved CO2 into rocks/sediments typically considered for CO2 sequestration to investigate how resultant fluid-mineral reactions modify permeability fields. Finally, we investigate numerically subsurface CO2 and heat transport at the geologic formation scale.

  14. Relationship between sea level and climate forcing by CO2 on geological timescales.

    Science.gov (United States)

    Foster, Gavin L; Rohling, Eelco J

    2013-01-22

    On 10(3)- to 10(6)-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO(2) and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO(2) in determining Earth's climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO(2) and sea level we describe portrays the "likely" (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO(2) stabilized at 400-450 ppm (as required for the frequently quoted "acceptable warming" of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO(2) should be reduced to levels similar to those of preindustrial times.

  15. Density-Driven Flow Simulation in Anisotropic Porous Media: Application to CO2 Geological Sequestration

    KAUST Repository

    Negara, Ardiansyah

    2014-04-21

    Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density is smaller than the hosting brine. This motivates an upward motion and eventually CO2 is trapped beneath the cap rock. The trapped CO2 slowly dissolves into the brine causing the density of the mixture to become larger than the host brine. This causes gravitational instabilities that is propagated and magnified with time. In this kind of density-driven flows, the CO2-rich brines migrate downward while the brines with low CO2 concentration move upward. With respect to the properties of the subsurface aquifers, there are instances where saline formations can possess anisotropy with respect to their hydraulic properties. Such anisotropy can have significant effect on the onset and propagation of flow instabilities. Anisotropy is predicted to be more influential in dictating the direction of the convective flow. To account for permeability anisotropy, the method of multipoint flux approximation (MPFA) in the framework of finite differences schemes is used. The MPFA method requires more point stencil than the traditional two-point flux approximation (TPFA). For example, calculation of one flux component requires 6-point stencil and 18-point stencil in 2-D and 3-D cases, respectively. As consequence, the matrix of coefficient for obtaining the pressure fields will be quite complex. Therefore, we combine the MPFA method with the experimenting pressure field technique in which the problem is reduced to solving multitude of local problems and the global matrix of coefficients is constructed automatically, which significantly reduces the complexity. We present several numerical scenarios of density-driven flow simulation in homogeneous, layered, and heterogeneous anisotropic porous media. The numerical results emphasize the

  16. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers

    International Nuclear Information System (INIS)

    Xu Tianfu; Apps, John A.; Pruess, Karsten

    2004-01-01

    Carbon dioxide disposal into deep aquifers is a potential means whereby atmospheric emissions of greenhouse gases may be reduced. However, our knowledge of the geohydrology, geochemistry, geophysics, and geomechanics of CO 2 disposal must be refined if this technology is to be implemented safely, efficiently, and predictably. As a prelude to a fully coupled treatment of physical and chemical effects of CO 2 injection, the authors have analyzed the impact of CO 2 immobilization through carbonate mineral precipitation. Batch reaction modeling of the geochemical evolution of 3 different aquifer mineral compositions in the presence of CO 2 at high pressure were performed. The modeling considered the following important factors affecting CO 2 sequestration: (1) the kinetics of chemical interactions between the host rock minerals and the aqueous phase, (2) CO 2 solubility dependence on pressure, temperature and salinity of the system, and (3) redox processes that could be important in deep subsurface environments. The geochemical evolution under CO 2 injection conditions was evaluated. In addition, changes in porosity were monitored during the simulations. Results indicate that CO 2 sequestration by matrix minerals varies considerably with rock type. Under favorable conditions the amount of CO 2 that may be sequestered by precipitation of secondary carbonates is comparable with and can be larger than the effect of CO 2 dissolution in pore waters. The precipitation of ankerite and siderite is sensitive to the rate of reduction of Fe(III) mineral precursors such as goethite or glauconite. The accumulation of carbonates in the rock matrix leads to a considerable decrease in porosity. This in turn adversely affects permeability and fluid flow in the aquifer. The numerical experiments described here provide useful insight into sequestration mechanisms, and their controlling geochemical conditions and parameters

  17. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

    Directory of Open Access Journals (Sweden)

    C. Heinze

    2011-07-01

    Full Text Available The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.

  18. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.

    2009-04-23

    Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling has created millions of oil and gas wells. Models of CO 2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic framework is required. These models must be able to capture both the large-scale CO 2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and analytical models with a specific set of simplifying assumptions to produce an efficient numerical-analytical hybrid model. The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency for applications of risk analysis in many CO2 sequestration problems. © 2009 Springer Science+Business Media B.V.

  19. The effect of CO2 on the mechanical properties of the Captain Sandstone: Geological storage of CO2 at the Goldeneye field (UK)

    NARCIS (Netherlands)

    Hangx, Suzanne|info:eu-repo/dai/nl/30483579X; van der Linden, A.; Marcelis, F.; Bauer, A.

    2013-01-01

    Geological storage of CO2 in clastic reservoirs is expected to have a variety of coupled chemical-mechanical effects, which may damage the overlying caprock and/or the near-wellbore area. We performed conventional triaxial creep experiments, combined with fluid flow-through experiments (brine and

  20. Simplified models of rates of CO2 mineralization in Geologic Carbon Storage

    Science.gov (United States)

    DePaolo, D. J.; Zhang, S.

    2017-12-01

    Geologic carbon storage (GCS) reverses the flow of carbon to the atmosphere, returning the carbon to long-term geologic storage. Models suggest that most of the injected CO2 will be "trapped" in the subsurface by physical means, but the most risk-free and permanent form of carbon storage is as carbonate minerals (Ca,Mg,Fe)CO3. The transformation of CO2 to carbonate minerals requires supply of divalent cations by dissolution of silicate minerals. Available data suggest that rates of transformation are difficult to predict. We show that the chemical kinetic observations and experimental results, when reduced to a single timescale that describes the fractional rate at which cations are released to solution by mineral dissolution, show sufficiently systematic behavior that the rates of mineralization can be estimated with reasonable certainty. Rate of mineralization depends on both the abundance (determined by the reservoir rock mineralogy) and the rate at which cations are released by dissolution into pore fluid that has been acidified with dissolved CO2. Laboratory-measured rates and field observations give values spanning 8 to 10 orders of magnitude, but when evaluated in the context of reservoir-scale reactive transport simulations, this range becomes much smaller. Reservoir scale simulations indicate that silicate mineral dissolution and subsequent carbonate mineral precipitation occur at pH 4.5 to 6, fluid flow velocity less than 5m/yr, and 50-100 years or more after the start of injection. These constraints lead to estimates of 200 to 2000 years for conversion of 60-90% of injected CO2 when the reservoir rock has a sufficient volume fraction of divalent cation-bearing silicate minerals (ca. 20%), and confirms that when reservoir rock mineralogy is not favorable the fraction of CO2 converted to carbonate minerals is minimal over 104 years. A sufficient amount of reactive minerals represents the condition by which the available cations per volume of rock plus pore

  1. Continuous atmospheric monitoring of the injected CO2 behavior over geological storage sites using flux stations: latest technologies and resources

    Science.gov (United States)

    Burba, George; Madsen, Rodney; Feese, Kristin

    2014-05-01

    quantify leakages from the subsurface, to improve storage efficiency, and for other storage characterizations [5-8]. In this presentation, the latest regulatory and methodological updates are provided regarding atmospheric monitoring of the injected CO2 behavior using flux stations. These include 2013 improvements in methodology, as well as the latest literature, including regulatory documents for using the method and step-by-step instructions on implementing it in the field. Updates also include 2013 development of a fully automated remote unattended flux station capable of processing data on-the-go to continuously output final CO2 emission rates in a similar manner as a standard weather station outputs weather parameters. References: [1] Burba G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications. LI-COR Biosciences; 2013. [2] International Energy Agency. Quantification techniques for CO2 leakage. IEA-GHG; 2012. [3] US Department of Energy. Best Practices for Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations. US DOE; 2012. [4] Liu G. (Ed.). Greenhouse Gases: Capturing, Utilization and Reduction. Intech; 2012. [5] Finley R. et al. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin - Phase III. DOE-MGSC; DE-FC26-05NT42588; 2012. [6] LI-COR Biosciences. Surface Monitoring for Geologic Carbon Sequestration. LI-COR, 980-11916, 2011. [7] Eggleston H., et al. (Eds). IPCC Guidelines for National Greenhouse Gas Inventories, IPCC NGGI P, WMO/UNEP; 2006-2011. [8] Burba G., Madsen R., Feese K. Eddy Covariance Method for CO2 Emission Measurements in CCUS Applications: Principles, Instrumentation and Software. Energy Procedia, 40C: 329-336; 2013.

  2. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    Science.gov (United States)

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  3. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    Science.gov (United States)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    2014-05-01

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a combined emission of just over 20Mt/y. According to the IEA, CO2 capture and geological storage (CCS) can reduce the global CO2 emission until 2050 by 17%. A correct assessment of CCS needs to start with the storage potential. Prior to this study, only general estimates of the theoretical capacity of Austrian reservoirs were available, thus, up until now, the realistic potential for CCS technology has not been assessed. Both for policy and industry, an assessment of the matched capacity is required, which is the capacity that actually will be used in CCS projects. This hurdle can be taken by applying a recently developed methodology (Welkenhuysen et al., 2013). This policy support system (PSS) consists of two parts, PSS Explorer and PSS III simulator. In brief, the methodology is based on expert judgements of potential reservoirs. These assessments can provide the best available data, including the expert's experience and possibly confidential data, without disclosing specific data. The geo-techno-economic calculation scheme PSS Explorer uses the expert input to calculate for each individual reservoir an assessment of the practical capacity (as probability density functions), in function of an acceptable price for storage. This practical capacity can then be used by the techno-economic PSS III simulator to perform advanced source-sink matching until 2050 and thus provide the matched reservoir capacity. The analysed reservoirs are 7 active or abandoned oil and gas reservoirs in Austria. The simulation of the electricity and iron & steel sector of Austria resulted in the estimation of the geological storage potential, taking into account geological, technological and

  4. Lift-off process for deep-submicron-size junctions using supercritical CO2

    International Nuclear Information System (INIS)

    Fukushima, A.; Kubota, H.; Yuasa, S.; Takahachi, T.; Kadoriku, S.; Miyake, K.

    2007-01-01

    Deep-submicron-size (∼100-nm-size) junctions are a key element to investigate spin-torque transfer phenomena such as current induced magnetization reversal or the spin-torque diode effect. In the fabrication of submicron-size junctions using an etching method, the lift-off process after the etching process tends to be difficult as the size of junctions shrinks. In this study, we present a new lift-off process using supercritical CO 2 . In this process, the samples were immersed in solvent (mixture of N-Methyl-2-pyrrolidone and isopropanol), and pressurized by CO 2 gas. The CO 2 gas then went into supercritical phase and the solvent was removed by a continuous flow of CO 2 . We obtained considerable yield rate (success ratio in lift-off process) of more than 50% for the samples down to 100-nm-size junctions

  5. PC-SAFT modeling of CO2 solubilities in hydrophobic deep eutectic solvents

    NARCIS (Netherlands)

    Dietz, C.H.J.T.; van Osch, D.J.G.P.; Kroon, M.C.; Sadowski, G.; van Sint Annaland, M.; Gallucci, F.; Zubeir, L.F.; Held, C.

    2017-01-01

    The PC-SAFT 'pseudo-pure' approach was used for the modeling of CO2 solubilities in various hydrophobic deep eutectic solvents (DESs) for the first time. Only liquid density data were used to obtain the segment number, the temperature-independent segment diameter and the dispersion-energy parameter,

  6. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal Mohammed

    2017-09-18

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  7. Probabilistic modeling and global sensitivity analysis for CO 2 storage in geological formations: a spectral approach

    KAUST Repository

    Saad, Bilal Mohammed; Alexanderian, Alen; Prudhomme, Serge; Knio, Omar

    2017-01-01

    This work focuses on the simulation of CO2 storage in deep underground formations under uncertainty and seeks to understand the impact of uncertainties in reservoir properties on CO2 leakage. To simulate the process, a non-isothermal two-phase two-component flow system with equilibrium phase exchange is used. Since model evaluations are computationally intensive, instead of traditional Monte Carlo methods, we rely on polynomial chaos (PC) expansions for representation of the stochastic model response. A non-intrusive approach is used to determine the PC coefficients. We establish the accuracy of the PC representations within a reasonable error threshold through systematic convergence studies. In addition to characterizing the distributions of model observables, we compute probabilities of excess CO2 leakage. Moreover, we consider the injection rate as a design parameter and compute an optimum injection rate that ensures that the risk of excess pressure buildup at the leaky well remains below acceptable levels. We also provide a comprehensive analysis of sensitivities of CO2 leakage, where we compute the contributions of the random parameters, and their interactions, to the variance by computing first, second, and total order Sobol’ indices.

  8. Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage

    KAUST Repository

    Allen, Rebecca

    2015-04-01

    ABSTRACT Modeling Diffusion and Buoyancy-Driven Convection with Application to Geological CO2 Storage Rebecca Allen Geological CO2 storage is an engineering feat that has been undertaken around the world for more than two decades, thus accurate modeling of flow and transport behavior is of practical importance. Diffusive and convective transport are relevant processes for buoyancy-driven convection of CO2 into underlying fluid, a scenario that has received the attention of numerous modeling studies. While most studies focus on Darcy-scale modeling of this scenario, relatively little work exists at the pore-scale. In this work, properties evaluated at the pore-scale are used to investigate the transport behavior modeled at the Darcy-scale. We compute permeability and two different forms of tortuosity, namely hydraulic and diffusive. By generating various pore ge- ometries, we find hydraulic and diffusive tortuosity can be quantitatively different in the same pore geometry by up to a factor of ten. As such, we emphasize that these tortuosities should not be used interchangeably. We find pore geometries that are characterized by anisotropic permeability can also exhibit anisotropic diffusive tortuosity. This finding has important implications for buoyancy-driven convection modeling; when representing the geological formation with an anisotropic permeabil- ity, it is more realistic to also account for an anisotropic diffusivity. By implementing a non-dimensional model that includes both a vertically and horizontally orientated 5 Rayleigh number, we interpret our findings according to the combined effect of the anisotropy from permeability and diffusive tortuosity. In particular, we observe the Rayleigh ratio may either dampen or enhance the diffusing front, and our simulation data is used to express the time of convective onset as a function of the Rayleigh ratio. Also, we implement a lattice Boltzmann model for thermal convective flows, which we treat as an analog for

  9. The influence of open fracture anisotropy on CO2 movement within geological storage complexes

    Science.gov (United States)

    Bond, C. E.; Wightman, R.; Ringrose, P. S.

    2012-12-01

    Carbon mitigation through the geological storage of carbon dioxide is dependent on the ability of geological formations to store CO2 trapping it within a geological storage complex. Secure long-term containment needs to be demonstrated, due to both political and social drivers, meaning that this containment must be verifiable over periods of 100-105 years. The effectiveness of sub-surface geological storage systems is dependent on trapping CO2 within a volume of rock and is reliant on the integrity of the surrounding rocks, including their chemical and physical properties, to inhibit migration to the surface. Oil and gas reservoir production data, and field evidence show that fracture networks have the potential to act as focused pathways for fluid movement. Fracture networks can allow large volumes of fluid to migrate to the surface within the time scales of interest. In this paper we demonstrate the importance of predicting the effects of fracture networks in storage, using a case study from the In Salah CO2 storage site, and show how the fracture permeability is closely controlled by the stress regime that determines the open fracture network. Our workflow combines well data of imaged fractures, with a discrete fracture network (DFN) model of tectonically induced fractures, within the horizon of interest. The modelled and observed fractures have been compared and combined with present day stress data to predict the open fracture network and its implications for anisotropic movement of CO2 in the sub-surface. The created fracture network model has been used to calculate the 2D permeability tensor for the reservoir for two scenarios: 1) a model in which all fractures are permeable, based on the whole DFN model and 2) those fractures determined to be in dilatational failure under the present day stress regime, a sub-set of the DFN. The resulting permeability anisotropy tensors show distinct anisotropies for the predicted CO2 movement within the reservoir. These

  10. ULTimateCO2 - State of the art report. Dealing with uncertainty associated with long-term CO2 geological storage

    International Nuclear Information System (INIS)

    2014-01-01

    ULTimateCO2, a four-year collaborative project financed by the 7. Framework Programme and coordinated by BRGM, aims to shed more light on the long-term processes associated with the geological storage of CO 2 . ULTimateCO2 unites 12 partners (research institutes, universities, industrialists) and a varied panel of experts (NGOs, national authority representatives, IEAGHG,...). Based on a multidisciplinary approach, and bringing together laboratory experiments, numerical modelling and natural analogue field studies, ULTimateCO2 will increase our understanding of the long-term effects of CO 2 Capture and Storage (CCS) in terms of hydrodynamics, geochemistry, mechanics of the storage formations and their vicinity. The report contains the partners' pooled knowledge and provides a view of the current state-of-the-art for the issues addressed by this project: - The long-term reservoir trapping efficiency (WP3); - The long-term sealing integrity of faulted and fractured cap-rock (WP4); - The near-well leakage characterisation and chemical processes (WP5); - The long-term behavior of stored CO 2 looking at the basin scale (WP2); - Uncertainty assessment (WP6). Each chapter is divided into two sections: (i) a summary which explains in 'simple words' the main issues and objectives of the WP, and (ii) a current state of the art section which provides a more sound review on the specific studied processes. The aim is to provide answers to pertinent questions from a variety of users, particularly project owners, site operators and national authorities, about their exposure to uncertainty downstream of closure of a CO 2 geological storage site

  11. Experiment and simulation study on the effects of cement minerals on the water-rock-CO2 interaction during CO2 geological storage

    Science.gov (United States)

    Liu, N.; Cheng, J.

    2016-12-01

    The CO2 geological storage is one of the most promising technology to mitigate CO2 emission. The fate of CO2 underground is dramatically affected by the CO2-water-rock interaction, which are mainly dependent on the initial aquifer mineralogy and brine components. The cement minerals are common materials in sandstone reservoir but few attention has been paid for its effects on CO2-water-rock interaction. Five batch reactions, in which 5% cement minerals were assigned to be quartz, calcite, dolomite, chlorite and Ca-montmorillonite, respectively, were conducted to understanding the cement minerals behaviors and its corresponding effects on the matrix minerals alterations during CO2 geological storage. Pure mineral powders were selected to mix and assemble the 'sandstone rock' with different cement components meanwhile keeping the matrix minerals same for each group as 70% quartz, 20% K-feldspar and 5% albite. These `rock' reacted with 750ml deionized water and CO2 under 180° and 18MPa for 15 days, during which the water chemistry evolution and minerals surface micromorphology changes has been monitored. The minerals saturation indexes calculation and phase diagram as well as the kinetic models were made by PHREEQC to uncover the minerals reaction paths. The experiment results indicated that the quartz got less eroded, on the contrary, K-feldspar and albite continuously dissolved to favor the gibbsite and kaolinite precipitations. The carbonates cement minerals quickly dissolved to reach equilibrium with the pH buffered and in turn suppressed the alkali feldspar dissolutions. No carbonates minerals precipitations occurred until the end of reactions for all groups. The simulation results were basically consistent with the experiment record but failed to simulate the non-stoichiometric reactions and the minerals kinetic rates seemed underestimated at the early stage of reactions. The cement minerals significantly dominated the reaction paths during CO2 geological

  12. Model for CO2 leakage including multiple geological layers and multiple leaky wells.

    Science.gov (United States)

    Nordbotten, Jan M; Kavetski, Dmitri; Celia, Michael A; Bachu, Stefan

    2009-02-01

    Geological storage of carbon dioxide (CO2) is likely to be an integral component of any realistic plan to reduce anthropogenic greenhouse gas emissions. In conjunction with large-scale deployment of carbon storage as a technology, there is an urgent need for tools which provide reliable and quick assessments of aquifer storage performance. Previously, abandoned wells from over a century of oil and gas exploration and production have been identified as critical potential leakage paths. The practical importance of abandoned wells is emphasized by the correlation of heavy CO2 emitters (typically associated with industrialized areas) to oil and gas producing regions in North America. Herein, we describe a novel framework for predicting the leakage from large numbers of abandoned wells, forming leakage paths connecting multiple subsurface permeable formations. The framework is designed to exploit analytical solutions to various components of the problem and, ultimately, leads to a grid-free approximation to CO2 and brine leakage rates, as well as fluid distributions. We apply our model in a comparison to an established numerical solverforthe underlying governing equations. Thereafter, we demonstrate the capabilities of the model on typical field data taken from the vicinity of Edmonton, Alberta. This data set consists of over 500 wells and 7 permeable formations. Results show the flexibility and utility of the solution methods, and highlight the role that analytical and semianalytical solutions can play in this important problem.

  13. A Framework to Estimate CO2 Leakage associated with Geological Storage in Mature Sedimentary Basins

    Science.gov (United States)

    Celia, M. A.; Bachu, S.; Gasda, S.

    2002-12-01

    Geological storage of carbon dioxide requires careful risk analysis to avoid unintended consequences associated with the subsurface injection. Most negative consequences of subsurface injection are associated with leakage of the injected CO2 out of the geological formation into which it is injected. Such leakage may occur through natural geological features, including fractures and faults, or it may occur through human-created pathways such as existing wells. Possible leakage of CO2 through existing wells appears to be especially important in mature sedimentary basins that have been explored intensively and exploited for hydrocarbon production. In the Alberta Basin of western Canada, more than 300,000 oil and gas wells have been drilled, while in the state of Texas in the United States, more than 1,500,000 wells have been drilled. Many of these wells have been abandoned, and the information available to describe their current state is highly variable and sometimes nonexistent. Because these wells represent possible direct conduits from the injection zone to the land surface, a comprehensive assessment of leakage potential associated with these wells needs to be pursued. Analysis of leakage potential associated with existing wells must combine a data mining component with a multi-level modeling effort to assess leakage potential in a probabilistic framework. Information available for existing wells must be categorized and analyzed, and general leakage characteristics associated with wells of varying properties must be quantified. One example of a realistic target formation is the Viking Formation in Alberta, which is overlain by a thick shale layer and contains hydrocarbon in some locations. The existence of hydrocarbon in the formation indicates that the overlying shale layer is an effective barrier to flow, and therefore this is a good candidate formation for CO2 storage. However, the formation and its cap rock are punctured by approximately 180,000 wells, with

  14. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet; Zulfiqar, Sonia; Edhaim, Fatimah; Ruiperez, Fernando; Rothenberger, Alexander; Mecerreyes, David

    2016-01-01

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  15. Sustainable Poly(Ionic Liquids) for CO2 Capture Based on Deep Eutectic Monomers

    KAUST Repository

    Isik, Mehmet

    2016-10-05

    The design of high performance solid sorbent materials for CO2 capture is a technology which has been employed to mitigate global warming. However, the covalent incorporation of functionalities into polymeric supports usually involves multistep energy-intensive chemical processes. This fact makes the net CO2 balance of the materials negative even though they possess good properties as CO2 sorbents. Here we show a new family of polymers which are based on amines, amidoximes, and natural carboxylic acids and can be obtained using sustainable low energy processes. Thus, deep eutectic monomers based on natural carboxylic acids, amidoximes, and amines have been prepared by just mixing with cholinium type methacrylic ammonium monomer. The formation of deep eutectic monomers was confirmed by differential scanning calorimetry measurements. In all cases, the monomers displayed glass transition temperatures well below room temperature. Computational studies revealed that the formation of eutectic complexes lengthens the distance between the cation and the anion causing charge delocalization. The liquid nature of the resulting deep eutectic monomers (DEMs) made it possible to conduct a fast photopolymerization process to obtain the corresponding poly(ionic liquids). Materials were characterized by means of nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction to evaluate the properties of the polymers. The polymers were then used as solid sorbents for CO2 capture. It has been shown that the polymers prepared with citric acid displayed better performance both experimentally and computationally. The current endeavor showed that sustainable poly(ionic liquids) based on deep eutectic monomers can be easily prepared to produce low-energy-cost alternatives to the materials currently being researched for CO2 capture. © 2016 American Chemical Society.

  16. 3D Geological Model for "LUSI" - a Deep Geothermal System

    Science.gov (United States)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  17. The Tiehchanshan structure of NW Taiwan: A potential geological reservoir for CO2 sequestration

    Directory of Open Access Journals (Sweden)

    Kenn-Ming Yang

    2017-01-01

    Full Text Available The Tiehchanshan structure is the largest gas-field in the outer foothills of northwestern Taiwan and has been regarded as the best site for CO2 sequestration. This study used a grid of seismic sections and wellbore data to establish a new 3-D geometry of subsurface structure, which was combined with lithofacies characters of the target reservoir rock, the Yutengping Sandstone, to build a geological model for CO2 sequestration. On the surface, the Tiehchanshan structure is characterized by two segmented anticlines offset by a tear fault. The subsurface geometry of the Tiehchanshan structure is, however, composed of two thrust-related anticlines with opposite vergence and laterally increasing fold symmetry toward each other. The folds are softly linked via the transfer zone in the subsurface, implying that the suspected tear fault in the surface transfer zone may not exist in the subsurface. The Yutengping Sandstone is composed of several sandstone units characterized by coarsening-upward cycles. The sandstone member can be further divided into four well-defined sandstone layers, separated by laterally continuous shale layers. In view of the structural and stratigraphic characteristics, the optimum area for CO2 injection and storage is in the structurally high in the northern part of the Tiehchanshan structure. The integrity of the closure and the overlying seal are not disrupted by the pre-orogenic high-angle faults. On the other hand, a thick continuous shale layer within the Yutengping Sandstone isolates the topmost sandy layer from the underlying ones and gives another important factor to the CO2 injection simulation.

  18. Screening and ranking framework (SRF) for geologic CO2 storagesite selection on the basis of HSE risk

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.

    2006-11-27

    A screening and ranking framework (SRF) has been developedto evaluate potential geologic carbon dioxide (CO2) storage sites on thebasis of health, safety, and environmental (HSE) risk arising from CO2leakage. The approach is based on the assumption that CO2 leakage risk isdependent on three basic characteristics of a geologic CO2 storage site:(1) the potential for primary containment by the target formation; (2)the potential for secondary containment if the primary formation leaks;and (3) the potential for attenuation and dispersion of leaking CO2 ifthe primary formation leaks and secondary containment fails. Theframework is implemented in a spreadsheet in which users enter numericalscores representing expert opinions or published information along withestimates of uncertainty. Applications to three sites in Californiademonstrate the approach. Refinements and extensions are possible throughthe use of more detailed data or model results in place of propertyproxies.

  19. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system.

    Science.gov (United States)

    Moretti, R; Troise, C; Sarno, F; De Natale, G

    2018-05-29

    Interpreting volcanic unrest is a highly challenging and non-unique problem at calderas, since large hydrothermal systems may either hide or amplify the dynamics of buried magma(s). Here we use the exceptional ground displacement and geochemical datasets from the actively degassing Campi Flegrei caldera (Southern Italy) to show that ambiguities disappear when the thermal evolution of the deep hydrothermal system is accurately tracked. By using temperatures from the CO 2 -CH 4 exchange of 13 C and thermodynamic analysis of gas ascending in the crust, we demonstrate that after the last 1982-84 crisis the deep hydrothermal system evolved through supercritical conditions under the continuous isenthalpic inflow of hot CO 2 -rich gases released from the deep (~8 km) magma reservoir of regional size. This resulted in the drying of the base of the hot hydrothermal system, no more buffered along the liquid-vapour equilibrium, and excludes any shallow arrival of new magma, whose abundant steam degassing due to decompression would have restored liquid-vapour equilibrium. The consequent CO 2 -infiltration and progressive heating of the surrounding deforming rock volume cause the build-up of pore pressure in aquifers, and generate the striking temporal symmetry that characterizes the ongoing uplift and the post-1984 subsidence, both originated by the same but reversed deformation mechanism.

  20. Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs.

    Science.gov (United States)

    Carroll, Susan A; Iyer, Jaisree; Walsh, Stuart D C

    2017-08-15

    Wells are considered to be high-risk pathways for fluid leakage from geologic CO 2 storage reservoirs, because breaches in this engineered system have the potential to connect the reservoir to groundwater resources and the atmosphere. Given these concerns, a few studies have assessed leakage risk by evaluating regulatory records, often self-reported, documenting leakage in gas fields. Leakage is thought to be governed largely by initial well-construction quality and the method of well abandonment. The geologic carbon storage community has raised further concerns because acidic fluids in the CO 2 storage reservoir, alkaline cement meant to isolate the reservoir fluids from the overlying strata, and steel casings in wells are inherently reactive systems. This is of particular concern for storage of CO 2 in depleted oil and gas reservoirs with numerous legacy wells engineered to variable standards. Research suggests that leakage risks are not as great as initially perceived because chemical and mechanical alteration of cement has the capacity to seal damaged zones. Our work centers on defining the coupled chemical and mechanical processes governing flow in damaged zones in wells. We have developed process-based models, constrained by experiments, to better understand and forecast leakage risk. Leakage pathways can be sealed by precipitation of carbonate minerals in the fractures and deformation of the reacted cement. High reactivity of cement hydroxides releases excess calcium that can precipitate as carbonate solids in the fracture network under low brine flow rates. If the flow is fast, then the brine remains undersaturated with respect to the solubility of calcium carbonate minerals, and zones depleted in calcium hydroxides, enriched in calcium carbonate precipitates, and made of amorphous silicates leached of original cement minerals are formed. Under confining pressure, the reacted cement is compressed, which reduces permeability and lowers leakage risks. The

  1. Efficient parallel simulation of CO2 geologic sequestration in saline aquifers

    International Nuclear Information System (INIS)

    Zhang, Keni; Doughty, Christine; Wu, Yu-Shu; Pruess, Karsten

    2007-01-01

    An efficient parallel simulator for large-scale, long-term CO2 geologic sequestration in saline aquifers has been developed. The parallel simulator is a three-dimensional, fully implicit model that solves large, sparse linear systems arising from discretization of the partial differential equations for mass and energy balance in porous and fractured media. The simulator is based on the ECO2N module of the TOUGH2code and inherits all the process capabilities of the single-CPU TOUGH2code, including a comprehensive description of the thermodynamics and thermophysical properties of H2O-NaCl- CO2 mixtures, modeling single and/or two-phase isothermal or non-isothermal flow processes, two-phase mixtures, fluid phases appearing or disappearing, as well as salt precipitation or dissolution. The new parallel simulator uses MPI for parallel implementation, the METIS software package for simulation domain partitioning, and the iterative parallel linear solver package Aztec for solving linear equations by multiple processors. In addition, the parallel simulator has been implemented with an efficient communication scheme. Test examples show that a linear or super-linear speedup can be obtained on Linux clusters as well as on supercomputers. Because of the significant improvement in both simulation time and memory requirement, the new simulator provides a powerful tool for tackling larger scale and more complex problems than can be solved by single-CPU codes. A high-resolution simulation example is presented that models buoyant convection, induced by a small increase in brine density caused by dissolution of CO2

  2. Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers

    Science.gov (United States)

    Rosenbauer, R.J.; Koksalan, T.; Palandri, J.L.

    2005-01-01

    Deep-saline aquifers are potential repositories for excess CO2, currently being emitted to the atmosphere from anthropogenic activities, but the reactivity of supercritical CO2 with host aquifer fluids and formation minerals needs to be understood. Experiments reacting supercritical CO2 with natural and synthetic brines in the presence and absence of limestone and plagioclase-rich arkosic sandstone showed that the reaction of CO2-saturated brine with limestone results in compositional, mineralogical, and porosity changes in the aquifer fluid and rock that are dependent on initial brine composition, especially dissolved calcium and sulfate. Experiments reacting CO2-saturated, low-sulfate brine with limestone dissolved 10% of the original calcite and increased rock porosity by 2.6%. Experiments reacting high-sulfate brine with limestone, both in the presence and absence of supercritical CO2, were characterized by the precipitation of anhydrite, dolomitization of the limestone, and a final decrease in porosity of 4.5%. However, based on favorable initial porosity changes of about 15% due to the dissolution of calcite, the combination of CO2 co-injection with other mitigation strategies might help alleviate some of the well-bore scale and formation-plugging problems near the injection zone of a brine disposal well in Paradox Valley, Colorado, as well as provide a repository for CO2. Experiments showed that the solubility of CO2 is enhanced in brine in the presence of limestone by 9% at 25 ??C and 6% at 120 ??C and 200 bar relative to the brine itself. The solubility of CO2 is enhanced also in brine in the presence of arkosic sandstone by 5% at 120 ??C and 300 bar. The storage of CO 2 in limestone aquifers is limited to only ionic and hydraulic trapping. However, brine reacted with supercritical CO2 and arkose yielded fixation and sequestration of CO2 in carbonate mineral phases. Brine desiccation was observed in all experiments containing a discrete CO2 phase

  3. NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III

    Energy Technology Data Exchange (ETDEWEB)

    Neeraj Gupta

    2006-01-23

    As part of the Department of Energy's (DOE) initiative on developing new technologies for storage of carbon dioxide in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, The Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the October through December 2005 period of the project. As discussed in the following report, the main field activity was reservoir testing in the Copper Ridge ''B-zone'' in the AEP No.1 well. In addition reservoir simulations were completed to assess feasibility of CO{sub 2} injection for the Mountaineer site. These reservoir testing and computer simulation results suggest that injection potential may be substantially more than anticipated for the Mountaineer site. Work also continued on development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase project is proceeding according to plans.

  4. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making

  5. Experimental Studies on the Interaction of scCO2 and scCO2-SO2 With Rock Forming Minerals at Conditions of Geologic Carbon Storages - First Results

    Science.gov (United States)

    Erzinger, J.; Wilke, F.; Wiersberg, T.; Vasquez Parra, M.

    2010-12-01

    Co-injection of SO2 (plus possibly NOx and O2) during CO2 storage in deep saline aquifers may cause stronger brine acidification than CO2 alone. Because of that, we investigate chemical corrosion of rocks and rock-forming minerals with impure supercritical CO2 (scCO2) at possible storage conditions of >73.7 bar and >31°C. Contaminates were chosen with respect to the composition of CO2 captured industrially from coal-fired power plants using the oxyfuel technology. The resulting data should build a base for the long-term prediction of the behavior of CO2 in geologic storage reservoirs. Experiments of up to 1000 hrs duration have been performed with 10 natural mineral concentrates (calcite, dolomite, siderite, anhydrite, hematite, albite, microcline, kaolinite, muscovite, biotite) in 3n NaCl solution and pure scCO2 or scCO2+SO2 (99.5+0.5 vol%). The NaCl reaction fluid resembles the average salinity of deep formation waters of the North German Basin and is not free of oxygen. To increase reaction rates all minerals were ground and the reagents agitated either by stirring or shaking in autoclaves of about one liter in volume. The autoclaves consist of Hastelloy™ or ferromagnetic stainless steel fully coated with PTFE. We used in average 15 g of solids, 700 ml liquid, and the vessels were pressurized up to 100 bars with CO2 or CO2-SO2 mixture. Experiments were run at temperatures up to 90°C. Before, during and after the experiments small amounts fluids were sampled and analyzed for dissolved constituents and pH. Solid phases were characterized by XRF, XRD, and EMPA before and after the experiments. Pure scCO2 corrodes all carbonates, reacts only slightly with anhydrite, albite, and microcline at a minimum pH of 4, and does not recognizably interact with the others. After the experiment, albite has gained in a, not yet fully identified, carbonate phase which might be dawsonite. Reaction fluids of the experiments with scCO2+SO2 have mostly lower pH than using scCO2

  6. Assessment of deep geological environment condition

    International Nuclear Information System (INIS)

    Bae, Dae Seok; Han, Kyung Won; Joen, Kwan Sik

    2003-05-01

    The main tasks of geoscientific study in the 2nd stage was characterized focusing mainly on a near-field condition of deep geologic environment, and aimed to generate the geologic input data for a Korean reference disposal system for high level radioactive wastes and to establish site characterization methodology, including neotectonic features, fracture systems and mechanical properties of plutonic rocks, and hydrogeochemical characteristics. The preliminary assessment of neotectonics in the Korean peninsula was performed on the basis of seismicity recorded, Quarternary faults investigated, uplift characteristics studied on limited areas, distribution of the major regional faults and their characteristics. The local fracture system was studied in detail from the data obtained from deep boreholes in granitic terrain. Through this deep drilling project, the geometrical and hydraulic properties of different fracture sets are statistically analysed on a block scale. The mechanical properties of intact rocks were evaluated from the core samples by laboratory testing and the in-situ stress conditions were estimated by a hydro fracturing test in the boreholes. The hydrogeochemical conditions in the deep boreholes were characterized based on hydrochemical composition and isotopic signatures and were attempted to assess the interrelation with a major fracture system. The residence time of deep groundwater was estimated by C-14 dating. For the travel time of groundwater between the boreholes, the methodology and equipment for tracer test were established

  7. Processes governing transient responses of the deep ocean buoyancy budget to a doubling of CO2

    Science.gov (United States)

    Palter, J. B.; Griffies, S. M.; Hunter Samuels, B. L.; Galbraith, E. D.; Gnanadesikan, A.

    2012-12-01

    Recent observational analyses suggest there is a temporal trend and high-frequency variability in deep ocean buoyancy in the last twenty years, a phenomenon reproduced even in low-mixing models. Here we use an earth system model (GFDL's ESM2M) to evaluate physical processes that influence buoyancy (and thus steric sea level) budget of the deep ocean in quasi-steady state and under a doubling of CO2. A new suite of model diagnostics allows us to quantitatively assess every process that influences the buoyancy budget and its temporal evolution, revealing surprising dynamics governing both the equilibrium budget and its transient response to climate change. The results suggest that the temporal evolution of the deep ocean contribution to sea level rise is due to a diversity of processes at high latitudes, whose net effect is then advected in the Eulerian mean flow to mid and low latitudes. In the Southern Ocean, a slowdown in convection and spin up of the residual mean advection are approximately equal players in the deep steric sea level rise. In the North Atlantic, the region of greatest deep steric sea level variability in our simulations, a decrease in mixing of cold, dense waters from the marginal seas and a reduction in open ocean convection causes an accumulation of buoyancy in the deep subpolar gyre, which is then advected equatorward.

  8. Preliminary Safety and Risk HSE Assessment. Application to the Potential Locations of a CO2 Geological Storage Pilot

    International Nuclear Information System (INIS)

    Recreo, F.; Eguilior, S.; Ruiz, C.; Lomba, L.; Hurtado, A.

    2015-01-01

    The location of a site safe and able to sequester CO2 for long periods of time is essential to gain public acceptance. This requires a long-term safety assessment developed in a robust and reliable framework. Site selection is the first step and requires specific research. This paper describes the application of the Selection and Classification Method of Geological Formations (SCF) developed to assess the potential of geological formations to CO2 storage. This assessment is based in the analysis of risks to Health, Safety and Environment (HSE) derived from potential CO2 leakage. Comparisons of the results obtained from a number of potential sites can help to select the best candidate for CO2 injection. The potential impact will be related to three key potential features of CO2 geological storage: the potential of the target geological formation for long term CO2 containment; the potential for secondary containment on containment failure of the target formation; and the site's potential to mitigate and/or disperse CO2 leakage if the primary and secondary containments fail. The methodology assesses each of these three characteristics through an analysis and assessment of properties of certain attributes of them. Uncertainty will remain as an input and output value of the methodology due to the usual lack of data in most site selection processes. The global uncertainty reports on the trust on the knowledge of the site characteristics. Therefore, the methodology enables comparing sites taking into account both the HSE risk expectation and the estimation of the quality of knowledge concerning such risk. The objective is to contribute to the selection of potential sites for a CO2 injection pilot plant in the Iberian Peninsula from the perspective of Safety and Risk Analysis.

  9. Deep geological disposal research in Argentina

    International Nuclear Information System (INIS)

    Ninci Martinez, Carlos A.; Ferreyra, Raul E.; Vullien, Alicia R.; Elena, Oscar; Lopez, Luis E.; Maloberti, Alejandro; Nievas, Humberto O.; Reyes, Nancy C.; Zarco, Juan J.; Bevilacqua, Arturo M.; Maset, Elvira R.; Jolivet, Luis A.

    2001-01-01

    Argentina shall require a deep geological repository for the final disposal of radioactive wastes, mainly high-level waste (HLW) and spent nuclear fuel produced at two nuclear power plants and two research reactors. In the period 1980-1990 the first part of feasibility studies and a basic engineering project for a radioactive high level waste repository were performed. From the geological point of view it was based on the study of granitic rocks. The area of Sierra del Medio, Province of Chubut, was selected to carry out detailed geological, geophysical and hydrogeological studies. Nevertheless, by the end of the eighties the project was socially rejected and CNEA decided to stop it at the beginning of the nineties. That decision was strongly linked with the little attention paid to social communication issues. Government authorities were under a strong pressure from social groups which demanded the interruption of the project, due to lack of information and the fear it generated. The lesson learned was: social communication activities shall be carried out very carefully in order to advance in the final disposal of HLW at deep geological repositories (author)

  10. Electrochemical CO2 Reduction by Ni-containing Iron Sulfides: How Is CO2 Electrochemically Reduced at Bisulfide-Bearing Deep-sea Hydrothermal Precipitates?

    International Nuclear Information System (INIS)

    Yamaguchi, Akira; Yamamoto, Masahiro; Takai, Ken; Ishii, Takumi; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2014-01-01

    The discovery of deep-sea hydrothermal vents on the late 1970's has led to many hypotheses concerning chemical evolution in the prebiotic ocean and the early evolution of energy metabolism in ancient Earth. Such studies stand on the quest for the bioenergetic evolution to utilize reducing chemicals such as H 2 for CO 2 reduction and carbon assimilation. In addition to the direct reaction of H 2 and CO 2 , the electrical current passing across a bisulfide-bearing chimney structure has pointed to the possible electrocatalytic CO 2 reduction at the cold ocean-vent interface (R. Nakamura, et al. Angew. Chem. Int. Ed. 2010, 49, 7692 − 7694). To confirm the validity of this hypothesis, here, we examined the energetics of electrocatalytic CO 2 reduction by iron sulfide (FeS) deposits at slightly acidic pH. Although FeS deposits inefficiently reduced CO 2 , the efficiency of the reaction was substantially improved by the substitution of Fe with Ni to form FeNi 2 S 4 (violarite), of which surface was further modified with amine compounds. The potential-dependent activity of CO 2 reduction demonstrated that CO 2 reduction by H 2 in hydrothermal fluids was involved in a strong endergonic electron transfer reaction, suggesting that a naturally occurring proton-motive force (PMF) as high as 200 mV would be established across the hydrothermal vent chimney wall. However, in the chimney structures, H 2 generation competes with CO 2 reduction for electrical current, resulting in rapid consumption of the PMF. Therefore, to maintain the PMF and the electrosynthesis of organic compounds in hydrothermal vent mineral deposits, we propose a homeostatic pH regulation mechanism of FeS deposits, in which elemental hydrogen stored in the hydrothermal mineral deposits is used to balance the consumption of the electrochemical gradient by H 2 generation

  11. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee

    2015-08-19

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  12. Geometry-coupled reactive fluid transport at the fracture scale -Application to CO 2 geologic storage

    KAUST Repository

    Kim, Seunghee; Santamarina, Carlos

    2015-01-01

    Water acidification follows CO2 injection and leads to reactive fluid transport through pores and rock fractures, with potential implications to reservoirs and wells in CO2 geologic storage and enhanced oil recovery. Kinetic rate laws for dissolution reactions in calcite and anorthite are combined with Navier-Stokes law and advection-diffusion transport to perform geometry-coupled numerical simulations in order to study the evolution of chemical reactions, species concentration and fracture morphology. Results are summarized as a function of two dimensionless parameters: the Damköhler number Da which is the ratio between advection and reaction times, and the transverse Peclet number Pe defined as the ratio between the time for diffusion across the fracture and the time for advection along the fracture. Reactant species are readily consumed near the inlet in a carbonate reservoir when the flow velocity is low (low transverse Peclet number and Da>10-1). At high flow velocities, diffusion fails to homogenize the concentration field across the fracture (high transverse Peclet number Pe>10-1). When the reaction rate is low as in anorthite reservoirs (Da<10-1) reactant species are more readily transported towards the outlet. At a given Peclet number, a lower Damköhler number causes the flow channel to experience a more uniform aperture enlargement along the length of the fracture. When the length-to-aperture ratio is sufficiently large, say l/d>30, the system response resembles the solution for 1-D reactive fluid transport. A decreased length-to-aperture ratio slows the diffusive transport of reactant species to the mineral fracture surface, and analyses of fracture networks must take into consideration both the length and slenderness of individual fractures in addition to Pe and Da numbers.

  13. Performance comparison of CO2 and diode lasers for deep-section concrete cutting

    International Nuclear Information System (INIS)

    Crouse, Philip L.; Li, Lin; Spencer, Julian T.

    2004-01-01

    Layer-by-layer laser machining with mechanical removal of vitrified dross between passes is a new technique with a demonstrated capability for deep-section cutting, not only of concrete, but of ceramic and refractory materials in general. For this application fairly low power densities are required. A comparison of experimental results using high-power CO 2 and diode lasers under roughly equivalent experimental conditions, cutting to depths of >100 mm, is presented. A marked improvement in cutting depth per pass is observed for the case of the diode laser. The increased cutting rate is rationalized in terms of the combined effects of coupling efficiency and beam shape

  14. Geological storage of CO2 : Mechanical and chemical effects on host and seal formations

    NARCIS (Netherlands)

    Hangx, Suzanne

    2009-01-01

    The socio-economic impact of global warming resulting from anthropogenic CO2 emissions has lead to much attention for carbon mitigation strategies in recent years. One of the most promising ways of disposing of CO2 is through Carbon Capture and Storage (CCS), entailing CO2 capture at source,

  15. A contribution to risk analysis for leakage through abandoned wells in geological CO2 storage

    DEFF Research Database (Denmark)

    Kopp, Andreas; Binning, Philip John; Johannsen, K.

    2010-01-01

    2 leakage from subsurface reservoirs. The amounts of leaking CO2 are estimated by evaluating the extent of CO2 plumes after numerically simulating a large number of reservoir realizations with a radially symmetric, homogeneous model To conduct the computationally very expensive simulations, the 'CO2...

  16. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    Science.gov (United States)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic

  17. Brine/CO2 Interfacial Properties and Effects on CO2 Storage in Deep Saline Aquifers Propriétés interfaciales saumure/CO2 et effets sur le stockage du CO2 dans des aquifères salins profonds

    Directory of Open Access Journals (Sweden)

    Chalbaud C.

    2010-05-01

    Full Text Available It has been long recognized that interfacial interactions (interfacial tension, wettability, capillarity and interfacial mass transfer govern fluid distribution and behaviour in porous media. Therefore the interfacial interactions between CO2, brine and reservoir oil and/or gas have an important influence on the effectiveness of any CO2 storage operation. There is a lack of experimental data related to interfacial properties for all the geological storage options (oil & gas reservoirs, coalbeds, deep saline aquifers. In the case of deep saline aquifers, there is a gap in data and knowledge of brine-CO2 interfacial properties at storage conditions. More specifically, experimental interfacial tension values and experimental tests in porous media are necessary to better understand the wettability evolution as a function of thermodynamic conditions and it’s effects on fluid flow in the porous media. In this paper, a complete set of experimental values of brine-CO2 Interfaciale Tension (IFT at pressure, temperature and salt concentration conditions representative of those of a CO2 storage operation. A correlation is derived from experimental data published in a companion paper [Chalbaud C., Robin M., Lombard J.-M., Egermann P., Bertin H. (2009 Interfacial Tension Measurements and Wettability Evaluation for Geological CO2 Storage, Adv. Water Resour. 32, 1, 1-109] to model IFT values. This paper pays particular attention to coreflooding experiments showing that the CO2 partially wets the surface in a Intermediate-Wet (IW or Oil-Wet (OW limestone rock. This wetting behavior of CO2 is coherent with observations at the pore scale in glass micromodels and presents a negative impact on the storage capacity of a given site. Il est admis depuis longtemps que les propriétés interfaciales (tension interfaciale, mouillabilité, capillarité et transfert de masse régissent la distribution et le comportement des fluides au sein des milieux poreux. Par cons

  18. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    Science.gov (United States)

    Plampin, Michael R.; Lassen, Rune N.; Sakaki, Toshihiro; Porter, Mark L.; Pawar, Rajesh J.; Jensen, Karsten H.; Illangasekare, Tissa H.

    2014-12-01

    A primary concern for geologic carbon storage is the potential for leakage of stored carbon dioxide (CO2) into the shallow subsurface where it could degrade the quality of groundwater and surface water. In order to predict and mitigate the potentially negative impacts of CO2 leakage, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2 concentration in the flowing water, the distance between the heterogeneity and the leakage location, and some fundamental properties of the porous media. Results also show that interfaces where a less permeable material overlies a more permeable material affect gas phase evolution more significantly than interfaces with the opposite layering.

  19. Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations

    NARCIS (Netherlands)

    Wollenweber, J.; Alles, S.a.; Kronimus, A.; Busch, A.; Stanjek, H.; Krooss, B.M.

    2009-01-01

    A comprehensive set of experimental and analytical methods has been used to characterise the sealing and fluid -transport properties of fine-grained (pelitic) sedimentary rocks under the pressure and temperature conditions of geological CO2 storage. The flow experiments were carried out on

  20. Heterogeneity-enhanced gas phase formation in shallow aquifers during leakage of CO2-saturated water from geologic sequestration sites

    DEFF Research Database (Denmark)

    Plampin, Michael R.; Lassen, Rune Nørbæk; Sakaki, Toshihiro

    2014-01-01

    sands. Soil moisture sensors were utilized to observe the formation of gas phase near the porous media interfaces. Results indicate that the conditions under which heterogeneity controls gas phase evolution can be successfully predicted through analysis of simple parameters, including the dissolved CO2......, it is important to understand the physical processes that CO2 will undergo as it moves through naturally heterogeneous porous media formations. Previous studies have shown that heterogeneity can enhance the evolution of gas phase CO2 in some cases, but the conditions under which this occurs have not yet been...... quantitatively defined, nor tested through laboratory experiments. This study quantitatively investigates the effects of geologic heterogeneity on the process of gas phase CO2 evolution in shallow aquifers through an extensive set of experiments conducted in a column that was packed with layers of various test...

  1. Carbon Dioxide Impacts in the Deep-Sea: Is Maintaining a Metabolically Required CO2 Efflux Rate Challenging?

    Science.gov (United States)

    Peltzer, E. T.; Hofmann, A. F.; Brewer, P. G.

    2011-12-01

    Increasing ocean acidification from fossil fuel CO2 invasion, from temperature driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Here we describe the rate problem for animals who must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary of marine animals in a changing ocean in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2 - HCO3- - CO3= acid-base system needs to be considered. These reactions appear as an enhancement factor which significantly facilitates CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations. Possibly as an adaptation to this chemical advantage marine animals typically can respond to external CO2 stress simply by metabolic adjustment. This is energetically more favorable than having to resort to mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that the combination of an increase in T combined with declining O2 poses a greater respiratory challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life from the combined effects of changing T, O2, and CO2 than can be estimated from single variable studies.

  2. Microbiological characterization of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Coulon, S.; Joulian, C.; Garrido, F.; Ollivier, B.

    2012-01-01

    Document available in extended abstract form only. Microbial life in deep sediments and Earth's crust is now acknowledged by the scientific world. The deep subsurface biosphere contributes significantly to fundamental biogeochemical processes. However, despite great advances in geo-microbiological studies, deep terrestrial ecosystems are microbiologically poorly understood, mainly due to their inaccessibility. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned the samples on the coring site, in as aseptic conditions as possible. In addition to storage at atmospheric pressure, a portion of the four Triassic samples was placed in a 190 bars pressurized chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the cores by the drilling fluids, samples of mud just before each sample drilling were taken and analyzed. The microbial exploration can be divided in two parts: - A cultural approach in different culture media for metabolic groups as methanogens, fermenters and sulphate reducing bacteria to stimulate their growth and to isolate microbial cells still viable. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. The limits are here the difficulties to extract DNA from these low biomass containing rocks. After comparison and optimization of several DNA extraction methods, the bacterial diversity present in rock cores was analyzed using DGGE (Denaturating Gel Gradient Electrophoresis) and cloning. The detailed results of all these investigations will be presented: - Despite all 400 cultural conditions experimented (with various media, salinities, temperatures, conservation pressure, agitation), no viable and

  3. CO 2 breakthrough—Caprock sealing efficiency and integrity for carbon geological storage

    KAUST Repository

    Espinoza, D. Nicolas; Santamarina, Carlos

    2017-01-01

    Small pores in high specific surface clay-rich caprocks give rise to high capillary entry pressures and high viscous drag that hinder the migration of buoyant carbon dioxide CO2. We measured the breakthrough pressure and ensuing CO2 permeability

  4. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    settings such as the carbonate reservoirs in the North Sea. The final aim of our project is to find out how to control the evolution of petrophysical parameters during CO2 injection using an optimal combination of flow rate, injection pressure and chemical composition of the influent. The first step...... to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection...

  5. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  6. The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Cortis, Andrea; Oldenburg, Curtis M.; Benson, Sally M.

    2008-09-15

    Storage of large amounts of carbon dioxide (CO{sub 2}) in deep geological formations for greenhouse gas mitigation is gaining momentum and moving from its conceptual and testing stages towards widespread application. In this work we explore various optimization strategies for characterizing surface leakage (seepage) using near-surface measurement approaches such as accumulation chambers and eddy covariance towers. Seepage characterization objectives and limitations need to be defined carefully from the outset especially in light of large natural background variations that can mask seepage. The cost and sensitivity of seepage detection are related to four critical length scales pertaining to the size of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and (3) main seepage zone; and (4) region in which concentrations or fluxes are influenced by seepage. Seepage characterization objectives may include one or all of the tasks of detecting, locating, and quantifying seepage. Each of these tasks has its own optimal strategy. Detecting and locating seepage in a region in which there is no expected or preferred location for seepage nor existing evidence for seepage requires monitoring on a fixed grid, e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are expected to require large numbers of eddy covariance towers for large-scale geologic CO{sub 2} storage. Once seepage has been detected and roughly located, seepage zones and features can be optimally pinpointed through a dynamic search strategy, e.g., employing accumulation chambers and/or soil-gas sampling. Quantification of seepage rates can be done through measurements on a localized fixed grid once the seepage is pinpointed. Background measurements are essential for seepage detection in natural ecosystems. Artificial neural networks are considered as regression models useful for distinguishing natural system behavior from anomalous behavior

  7. The feasibility of TEA CO2 laser-induced plasma for spectrochemical analysis of geological samples in simulated Martian conditions

    Science.gov (United States)

    Savovic, Jelena; Stoiljkovic, Milovan; Kuzmanovic, Miroslav; Momcilovic, Milos; Ciganovic, Jovan; Rankovic, Dragan; Zivkovic, Sanja; Trtica, Milan

    2016-04-01

    The present work studies the possibility of using pulsed Transversely Excited Atmospheric (TEA) carbon dioxide laser as an energy source for laser-induced breakdown spectroscopy (LIBS) analysis of rocks under simulated Martian atmospheric conditions. Irradiation of a basaltic rock sample with the laser intensity of 56 MW cm- 2, in carbon-dioxide gas at a pressure of 9 mbar, created target plasma with favorable conditions for excitation of all elements usually found in geological samples. Detection limits of minor constituents (Ba, Cr, Cu, Mn, Ni, Sr, V, and Zr) were in the 3 ppm-30 ppm range depending on the element. The precision varied between 5% and 25% for concentration levels of 1% to 10 ppm, respectively. Generally, the proposed relatively simple TEA CO2 laser-LIBS system provides good sensitivity for geological studies under reduced CO2 pressure.

  8. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2 emissions.

    Science.gov (United States)

    Queisser, Manuel; Burton, Mike; Allan, Graham R; Chiarugi, Antonio

    2017-07-15

    A 24 kg, suitcase sized, CW laser remote sensing spectrometer (LARSS) with a ~2 km range has been developed. It has demonstrated its flexibility in measuring both atmospheric CO2 from an airborne platform and terrestrial emission of CO2 from a remote mud volcano, Bledug Kuwu, Indonesia, from a ground-based sight. This system scans the CO2 absorption line with 20 discrete wavelengths, as opposed to the typical two-wavelength online offline instrument. This multi-wavelength approach offers an effective quality control, bias control, and confidence estimate of measured CO2 concentrations via spectral fitting. The simplicity, ruggedness, and flexibility in the design allow for easy transportation and use on different platforms with a quick setup in some of the most challenging climatic conditions. While more refinement is needed, the results represent a stepping stone towards widespread use of active one-sided gas remote sensing in the earth sciences.

  9. Technetium behaviour under deep geological conditions

    International Nuclear Information System (INIS)

    Kumata, M.; Vandergraaf, T.T.

    1993-01-01

    The migration behaviour of technetium under deep geological conditions was investigated by performing column tests using groundwater and altered granitic rock sampled from a fracture zone in a granitic pluton at a depth of about 250 m. The experiment was performed under a pressure of about 0.7 MPa in a controlled atmosphere glove box at the 240 m level of the Underground Research Laboratory (URL) near Pinawa, Manitoba, Canada. The technetium was strongly sorbed on the dark mafic minerals in the column. With the exception of a very small unretarded fraction that was eluted with the tritiated water, no further breakthrough of technetium was observed. This strong sorption of technetium on the mineral surface was caused by reduction of Tc(VII), probably to Tc(IV) even though the groundwater was only mildly reducing. (author) 5 figs., 4 tabs., 15 refs

  10. Nuclides migration tests under deep geological conditions

    International Nuclear Information System (INIS)

    Kumata, M.; Vandergraaf, T.T.

    1991-01-01

    Migration behaviour of technetium and iodine under deep geological conditions was investigated by performing column tests under in-situ conditions at the 240 m level of the Underground Research Laboratory (URL) constructed in a granitic batholith near Pinawa, Manitoba, Canada. 131 I was injected with tritiated water into the column. Tritium and 131 I were eluted simultaneously. Almost 100 % of injected 131 I was recovered in the tritium breakthrough region, indicating that iodine moved through the column almost without retardation under experimental conditions. On the other hand, the injected technetium with tritium was strongly retarded in the column even though the groundwater was mildly reducing. Only about 7 % of injected 95m Tc was recovered in the tritium breakthrough region and the remaining fraction was strongly sorbed on the dark mafic minerals of column materials. This strong sorption of technetium on the column materials had not been expected from the results obtained from batch experiments carried out under anaerobic conditions. (author)

  11. Comparison of Pore-scale CO2-water-glass System Wettability and Conventional Wettability Measurement on a Flat Plate for Geological CO2 Sequestration

    Science.gov (United States)

    Jafari, M.; Cao, S. C.; Jung, J.

    2017-12-01

    Goelogical CO2 sequestration (GCS) has been recently introduced as an effective method to mitigate carbon dioxide emission. CO2 from main producer sources is collected and then is injected underground formations layers to be stored for thousands to millions years. A safe and economical storage project depends on having an insight of trapping mechanisms, fluids dynamics, and interaction of fluids-rocks. Among different forces governing fluids mobility and distribution in GCS condition, capillary pressure is of importance, which, in turn, wettability (measured by contact angel (CA)) is the most controversial parameters affecting it. To explore the sources of discrepancy in the literature for CA measurement, we conducted a series of conventional captive bubble test on glass plates under high pressure condition. By introducing a shape factor, we concluded that surface imperfection can distort the results in such tests. Since the conventional methods of measuring the CA is affected by gravity and scale effect, we introduced a different technique to measure pore-scale CA inside a transparent glass microchip. Our method has the ability to consider pore sizes and simulate static and dynamics CA during dewetting and imbibition. Glass plates shows a water-wet behavior (CA 30° - 45°) by a conventional experiment consistent with literature. However, CA of miniature bubbles inside of the micromodel can have a weaker water-wet behavior (CA 55° - 69°). In a more realistic pore-scale condition, water- CO2 interface covers whole width of a pore throats. Under this condition, the receding CA, which is used for injectability and capillary breakthrough pressure, increases with decreasing pores size. On the other hand, advancing CA, which is important for residual or capillary trapping, does not show a correlation with throat sizes. Static CA measured in the pores during dewetting is lower than static CA on flat plate, but it is much higher when measured during imbibition implying

  12. Methods to Assess Geological CO2 Storage Capacity: Status and Best Practice

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    To understand the emission reduction potential of carbon capture and storage (CCS), decision makers need to understand the amount of CO2 that can be safely stored in the subsurface and the geographical distribution of storage resources. Estimates of storage resources need to be made using reliable and consistent methods. Previous estimates of CO2 storage potential for a range of countries and regions have been based on a variety of methodologies resulting in a correspondingly wide range of estimates. Consequently, there has been uncertainty about which of the methodologies were most appropriate in given settings, and whether the estimates produced by these methods were useful to policy makers trying to determine the appropriate role of CCS. In 2011, the IEA convened two workshops which brought together experts for six national surveys organisations to review CO2 storage assessment methodologies and make recommendations on how to harmonise CO2 storage estimates worldwide. This report presents the findings of these workshops and an internationally shared guideline for quantifying CO2 storage resources.

  13. Current Status of Deep Geological Repository Development

    International Nuclear Information System (INIS)

    Budnitz, R J

    2005-01-01

    This talk provided an overview of the current status of deep-geological-repository development worldwide. Its principal observation is that a broad consensus exists internationally that deep-geological disposal is the only long-term solution for disposition of highly radioactive nuclear waste. Also, it is now clear that the institutional and political aspects are as important as the technical aspects in achieving overall progress. Different nations have taken different approaches to overall management of their highly radioactive wastes. Some have begun active programs to develop a deep repository for permanent disposal: the most active such programs are in the United States, Sweden, and Finland. Other countries (including France and Russia) are still deciding on whether to proceed quickly to develop such a repository, while still others (including the UK, China, Japan) have affirmatively decided to delay repository development for a long time, typically for a generation of two. In recent years, a major conclusion has been reached around the world that there is very high confidence that deep repositories can be built, operated, and closed safely and can meet whatever safety requirements are imposed by the regulatory agencies. This confidence, which has emerged in the last few years, is based on extensive work around the world in understanding how repositories behave, including both the engineering aspects and the natural-setting aspects, and how they interact together. The construction of repositories is now understood to be technically feasible, and no major barriers have been identified that would stand in the way of a successful project. Another major conclusion around the world is that the overall cost of a deep repository is not as high as some had predicted or feared. While the actual cost will not be known in detail until the costs are incurred, the general consensus is that the total life-cycle cost will not exceed a few percent of the value of the

  14. The Baltic Basin: structure, properties of reservoir rocks, and capacity for geological storage of CO2

    Directory of Open Access Journals (Sweden)

    Vaher, Rein

    2009-12-01

    Full Text Available Baltic countries are located in the limits of the Baltic sedimentary basin, a 700 km long and 500 km wide synclinal structure. The axis of the syneclise plunges to the southwest. In Poland the Precambrian basement occurs at a depth of 5 km. The Baltic Basin includes the Neoproterozoic Ediacaran (Vendian at the base and all Phanerozoic systems. Two aquifers, the lower Devonian and Cambrian reservoirs, meet the basic requirements for CO2 storage. The porosity and permeability of sandstone decrease with depth. The average porosity of Cambrian sandstone at depths of 80–800, 800–1800, and 1800–2300 m is 18.6, 14.2, and 5.5%, respectively. The average permeability is, respectively, 311, 251, and 12 mD. Devonian sandstone has an average porosity of 26% and permeability in the range of 0.5–2 D. Prospective Cambrian structural traps occur only in Latvia. The 16 largest ones have CO2 storage capacity in the range of 2–74 Mt, with total capacity exceeding 400 Mt. The structural trapping is not an option for Lithuania as the uplifts there are too small. Another option is utilization of CO2 for enhanced oil recovery (EOR. The estimated total EOR net volume of CO2 (part of CO2 remaining in the formation in Lithuania is 5.6 Mt. Solubility and mineral trapping are a long-term option. The calculated total solubility trapping capacity of the Cambrian reservoir is as high as 11 Gt of CO2 within the area of the supercritical state of carbon dioxide.

  15. Investigation on CO2 property and its geological disposal in coal bed

    International Nuclear Information System (INIS)

    Liang Weiguo; Wu Di; Hao Shuping

    2008-01-01

    Carbon dioxide is main green house gas, and it has been increased greatly in the atmosphere since the industrial revolution. The human living environment has been worsened with more and more carbon dioxide in the air. In this paper, the authors analyzed the physical property of carbon dioxide and green house gas effect, then studied the disposal measures for carbon dioxide. At last it was pointed out that various measures should be taken to carry out the carbon dioxide disposal, more economic benefit can be anticipated along with carbon dioxide disposal by EOR, CO 2 -ECBM, CAES, et al, of which CO 2 -ECBM is one of the way with best benefits. (authors)

  16. Clean coal technologies. The capture and geological storage of CO2 - Panorama 2008

    International Nuclear Information System (INIS)

    2008-01-01

    There is no longer any doubt about the connection between carbon dioxide emissions of human origin and global warming. Nearly 40% of world CO 2 emissions are generated by the electricity production sector, in which the combustion of coal - developing at a roaring pace, especially in China - accounts for a good proportion of the total. At a time when the reduction of greenhouse gases has become an international priority, this growth is a problem. Unless CO 2 capture and storage technologies are implemented, it will be very difficult to contain global warming

  17. Inverse Problem for 3D coupled Flow-Geomechanics Models and Induced Seismicity: Application to Subsurface Characterization and Seismicity Forecasting in Geologic CO2 Storage

    Science.gov (United States)

    Castineira, D.; Jha, B.; Juanes, R.

    2016-12-01

    Carbon Capture and Sequestration (CCS) is regarded as a promising technology to mitigate rising CO2 concentrations in the atmosphere from industrial emissions. However, as a result of the inherent uncertainty that is present in geological structures, assessing the stability of geological faults and quantifying the potential for induced seismicity is a fundamental challenge for practical implementation of CCS. Here we present a formal framework for the solution of the inverse problem associated with coupled flow and geomechanics models of CO2 injection and subsurface storage. Our approach builds from the application of Gaussian Processes, MCMC and posterior predictive analysis to evaluate relevant earthquake attributes (earthquake time, location and magnitude) in 3D synthetic models of CO2 storage under geologic, observational and operational uncertainty. In our approach, we first conduct hundreds of simulations of a high-fidelity 3D computational model for CO2 injection into a deep saline aquifer, dominated by an anticline structure and a fault. This ensemble of realizations accounts for uncertainty in the model parameters (including fault geomechanical and rock properties) and observations (earthquake time, location and magnitude). We apply Gaussian processes (GP) to generate a valid surrogate that closely approximates the behavior of the high fidelity (and computationally intensive) model, and apply hyperparameter optimization and cross-validation techniques in the solution of this multidimensional data-fit problem. The net result of this process is the generation of a fast model that can be effectively used for Bayesian analysis. We then implement Markov chain Monte Carlo (MCMC) to determine the posterior distribution of the model uncertain parameters (given some prior distributions for those parameters and given the likelihood defined in this case by the GP model). Our results show that the resulting posterior distributions correctly converge towards the "true

  18. Deep pulse fractional CO2 laser combined with a radiofrequency system: results of a case series.

    Science.gov (United States)

    Cannarozzo, Giovanni; Sannino, Mario; Tamburi, Federica; Chiricozzi, Andrea; Saraceno, Rosita; Morini, Cristiano; Nisticò, Steven

    2014-07-01

    The purpose of this study was evaluation of the safety and efficacy of this new combined technology that adds deep ablation to thermal stimulation. Minimally ablative or subablative lasers, such as fractional CO2 lasers, have been developed in an attempt to achieve the same clinical results observed with traditional ablative lasers, but with fewer side effects. Despite being an ablative laser, the system used in this study is able to produce a fractional supply of the beam of light. Fractional ablation of skin is performed through the development of microscopic vertical columns surrounded by spared areas of epidermis and dermis, ensuring rapid wound healing and minimum down time. Simultaneous synchronized delivery of a radiofrequency (RF) current to the deeper layers of the skin completes the therapeutic scenario, ensuring an effective skin tightening effect over the entire treated area. Nine adult patients were treated for wrinkles and acne scars using this new laser technology. An independent observer evaluated the improvement using a five point scale. All patients had good results in terms of improvement of skin texture, with mild and transitory side effects. This novel combined system produced improvement in wrinkles and acne scars, with progressive enhancement of skin tone and elasticity.

  19. The safety case for deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Kwong, Gloria

    2014-01-01

    The concept of a 'safety case' for a deep geological repository for radioactive waste was first introduced by the NEA Expert Group on Integrated Performance Assessment (IPAG). It was further developed in the NEA report entitled Confidence in the Long-term Safety of Deep Geological Repositories (1999), and since then it has been taken up in international safety standards as promulgated by the International Atomic Energy Agency (IAEA, 2006, 2011) and more recently in recommendations by the International Commission on Radiological Protection on the application of the system of radiological protection in geological disposal (ICRP, 2013). Many national radioactive waste disposal programmes and regulatory guides are also applying this concept. The NEA has used the safety case as a guide in several international peer reviews of national repository programmes and safety documentation. In Europe, the EU Directive 2011/70/ Euratom (EU, 2011) establishes a framework to ensure responsible and safe management of spent fuel and radioactive waste by member states that, inter alia, requires a decision-making process based on safety evidence and arguments that mirror the safety case concept. In 2007, the NEA, the IAEA and the European Commission (EC) organised a symposium on Safety Cases for the Deep Disposal of Radioactive Waste: Where Do We Stand? Since this time, however, there have been some major developments in a number of national geological disposal programmes and significant experience in preparing and reviewing cases for the operational and long-term safety of proposed and operating geological repositories. A symposium on The Safety Case for Deep Geological Disposal of Radioactive Waste: 2013 State of the Art was thus organised to assess developments since 2007 in the practice, understanding and roles of the safety case, as applied internationally at all stages of repository development, including the interplay of technical, regulatory and societal issues. The symposium

  20. The potential of geological storage of CO2 in Austria: a techno-economic assessment

    NARCIS (Netherlands)

    Brüstle, Anna Katharina; Welkenhuysen, Kris; Bottig, Magdalena; Piessens, Kris; Ramirez, Andrea; Swenner, Rudy

    An impressive two-third or about 40GWh/y of electricity in Austria is produced from renewable energy sources, in particular hydro energy. For the remaining part the country depends on fossil fuels, which together with iron & steel production form the most CO2 intensive industries in Austria with a

  1. Supercritical Fluid Behavior at Nanoscale Interfaces: Implications for CO2 Sequestration in Geologic Formations

    Czech Academy of Sciences Publication Activity Database

    Cole, D.R.; Chialvo, A. A.; Rother, G.; Vlček, Lukáš; Cummings, P. T.

    2010-01-01

    Roč. 90, 17-18 (2010), s. 2329-2363 ISSN 1478-6435 Institutional research plan: CEZ:AV0Z40720504 Keywords : sequestration * nanostructures * supercritical CO2 Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.302, year: 2010

  2. Tagging CO2 to Enable Quantitative Inventories of Geological Carbon Storage

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Klaus; Matter, Juerg; Park, Ah-Hyung; Stute, Martin; Carson, Cantwell; Ji, Yinghuang

    2014-06-30

    In the wake of concerns about the long term integrity and containment of sub-surface CO2 sequestration reservoirs, many efforts have been made to improve the monitoring, verification, and accounting methods for geo-sequestered CO2. Our project aimed to demonstrate the feasibility of a system designed to tag CO2 with carbon isotope 14C immediately prior to sequestration to a level that is normal on the surface (one part per trillion). Because carbon found at depth is naturally free of 14C, this tag would easily differentiate pre-existing carbon from anthropogenic injected carbon and provide an excellent handle for monitoring its whereabouts in the subsurface. It also creates an excellent handle for adding up anthropogenic carbon inventories. Future inventories in effect count 14C atoms. Accordingly, we have developed a 14C tagging system suitable for use at the part-per-trillion level. This system consists of a gas-exchange apparatus to make disposable cartridges ready for controlled injection into a fast flowing stream of pressurized CO2. We built a high-pressure injection and tagging system, and a 14C detection system. The disposable cartridge and injection system have been successfully demonstrated in the lab with a high-pressure flow reactor, as well as in the field at the CarbFix CO2 sequestration site in Iceland. The laser-based 14C detection system originally conceived has been shown to possess inadequate sensitivity for ambient levels. Alternative methods for detecting 14C, such as saturated cavity absorption ringdown spectroscopy and scintillation counting, may still be suitable. KEYWORDS

  3. Vertical equilibrium with sub-scale analytical methods for geological CO2 sequestration

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2009-01-01

    equilibrium with sub-scale analytical method (VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the efficiency and accuracy of an analytical method, thereby eliminating expensive grid

  4. Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage

    DEFF Research Database (Denmark)

    Zheng, Yi; Yang, Yan; Rogowska, M.

    2017-01-01

    to achieve this is to find a suitable condition to create a stable 3D space in carbonate rock by injecting liquid to prepare space for the later CO2 injection. Micro-CT imaging is a non-destructive 3D method that can be used to study the property changes of carbonate rocks during and after CO2 injection....... The advance in lab source based micro-CT has made it capable of in situ experiments. We used a commercial bench top micro-CT (Zeiss Versa XRM410) to study the microstructure changes of chalk during liquid injection. Flexible temporal CT resolution is essential in this study because that the time scales...... of coupled physical and chemical processes can be very different. The results validated the feasibility of using a bench top CT system with a pressure cell to monitor the mesoscale multiphase interactions in chalk....

  5. Intelligent monitoring system for real-time geologic CO2 storage, optimization and reservoir managemen

    Science.gov (United States)

    Dou, S.; Commer, M.; Ajo Franklin, J. B.; Freifeld, B. M.; Robertson, M.; Wood, T.; McDonald, S.

    2017-12-01

    Archer Daniels Midland Company's (ADM) world-scale agricultural processing and biofuels production complex located in Decatur, Illinois, is host to two industrial-scale carbon capture and storage projects. The first operation within the Illinois Basin-Decatur Project (IBDP) is a large-scale pilot that injected 1,000,000 metric tons of CO2 over a three year period (2011-2014) in order to validate the Illinois Basin's capacity to permanently store CO2. Injection for the second operation, the Illinois Industrial Carbon Capture and Storage Project (ICCS), started in April 2017, with the purpose of demonstrating the integration of carbon capture and storage (CCS) technology at an ethanol plant. The capacity to store over 1,000,000 metric tons of CO2 per year is anticipated. The latter project is accompanied by the development of an intelligent monitoring system (IMS) that will, among other tasks, perform hydrogeophysical joint analysis of pressure, temperature and seismic reflection data. Using a preliminary radial model assumption, we carry out synthetic joint inversion studies of these data combinations. We validate the history-matching process to be applied to field data once CO2-breakthrough at observation wells occurs. This process will aid the estimation of permeability and porosity for a reservoir model that best matches monitoring observations. The reservoir model will further be used for forecasting studies in order to evaluate different leakage scenarios and develop appropriate early-warning mechanisms. Both the inversion and forecasting studies aim at building an IMS that will use the seismic and pressure-temperature data feeds for providing continuous model calibration and reservoir status updates.

  6. Towards a sustainable mining law: geothermal, CO2 capture and geological storage?

    International Nuclear Information System (INIS)

    Lanoy, Laurence

    2013-01-01

    The author comments how the French mining code has been able to adapt itself to the development of new techniques such as geothermal power, CO 2 capture and storage in a context of environmental concerns. She comments how the mining code evolved towards a new concept of soil use and valorisation in relationship with the development of these techniques, and how the mining code has thus become a new actor in the field of renewable energies. Its reform is briefly discussed

  7. Adaptive management for subsurface pressure and plume control in application to geological CO2 storage

    Science.gov (United States)

    Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.

    2016-12-01

    Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.

  8. CO2 Injectivity in Geological Storages: an Overview of Program and Results of the GeoCarbone-Injectivity Project

    International Nuclear Information System (INIS)

    Lombard, J.M.; Egermann, P.; Azaroual, M.; Pironon, J.; Broseta, D.; Egermann, P.; Munier, G.; Mouronval, G.

    2010-01-01

    The objective of the GeoCarbone-Injectivity project was to develop a methodology to study the complex phenomena involved in the near well bore region during CO 2 injection. This paper presents an overview of the program and results of the project, and some further necessary developments. The proposed methodology is based on experiments and simulations at the core scale, in order to understand (physical modelling and definition of constitutive laws) and quantify (calibration of simulation tools) the mechanisms involved in injectivity variations: fluid/rock interactions, transport mechanisms, geomechanical effects. These mechanisms and the associated parameters have then to be integrated in the models at the well bore scale. The methodology has been applied for the study of a potential injection of CO 2 in the Dogger geological formation of the Paris Basin, in collaboration with the other ANR GeoCarbone projects. (authors)

  9. Microbial investigations of deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, V.; Sergeant, C.; Vesvres, M.H.; Joulian, C.; Coulon, S.; Le Marrec, C.; Garrido, F.

    2010-01-01

    Document available in extended abstract form only. Deep sedimentary rocks are now considered to contain a significant part of the total bacterial population, but are microbiologically unexplored. The drilling down to the base of the Triassic (1980 meters deep) in the geological formations of the eastern Paris Basin performed by ANDRA (EST433) in 2008 provides us a good opportunity to explore the deep biosphere. We conditioned and sub-sampled on the coring site, in as aseptic conditions as possible, the nine cores: two in the Callovo-Oxfordian clay, two in the Dogger, five in the Triassic compartments. In addition to storage at atmospheric pressure, a portion of the five Triassic samples was placed in a 190 bars pressurized bars chamber to investigate the influence of the conservation pressure factor on the found microflora. In parallel, in order to evaluate a potential bacterial contamination of the core by the drilling fluids, samples of mud just before each sample drilling were taken and analysed. The microbial exploration we started can be divided in two parts: - A cultural approach in different culture media for six metabolic groups to try to find microbial cells still viable. This type of experiment is difficult because of the small proportion of cultivable species, especially in these extreme environmental samples. - A molecular approach by direct extraction of genomic DNA from the geological samples to explore a larger biodiversity. Here, the limits are the difficulties to extract DNA from these low biomass containing rocks. The five Triassic samples were partly crushed in powder and inoculated in the six culture media with four NaCl concentrations, because this type of rock is known as saline or hyper-saline, and incubated at three temperatures: 30 deg. C, 55 deg. C under agitation and 70 deg. C. First results will be presented. The direct extraction of DNA needs a complete method optimisation to adapt existent procedures (using commercial kit and classical

  10. Numerical modeling of CO2 mineralisation during storage in deep saline aquifers

    NARCIS (Netherlands)

    Ranganathan, P.; Van Hemert, P.; Rudolph, S.J.; Zitha, P.L.J.

    2011-01-01

    Simulations are performed to evaluate the feasibility of a potential site within the Rotliegend sandstone formation in the Dutch subsurface at a depth of around 3000 m for CO2 sequestration using the numerical simulator CMG-GEM. Three CO2 storage trapping mechanisms are studied: (1) mobility

  11. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  12. A framework for predicting global silicate weathering and CO2 drawdown rates over geologic time-scales.

    Science.gov (United States)

    Hilley, George E; Porder, Stephen

    2008-11-04

    Global silicate weathering drives long-time-scale fluctuations in atmospheric CO(2). While tectonics, climate, and rock-type influence silicate weathering, it is unclear how these factors combine to drive global rates. Here, we explore whether local erosion rates, GCM-derived dust fluxes, temperature, and water balance can capture global variation in silicate weathering. Our spatially explicit approach predicts 1.9-4.6 x 10(13) mols of Si weathered globally per year, within a factor of 4-10 of estimates of global silicate fluxes derived from riverine measurements. Similarly, our watershed-based estimates are within a factor of 4-18 (mean of 5.3) of the silica fluxes measured in the world's ten largest rivers. Eighty percent of total global silicate weathering product traveling as dissolved load occurs within a narrow range (0.01-0.5 mm/year) of erosion rates. Assuming each mol of Mg or Ca reacts with 1 mol of CO(2), 1.5-3.3 x 10(8) tons/year of CO(2) is consumed by silicate weathering, consistent with previously published estimates. Approximately 50% of this drawdown occurs in the world's active mountain belts, emphasizing the importance of tectonic regulation of global climate over geologic timescales.

  13. CO2 storage in deep underground strata. Integrity of deep wells under the influence of CO2; CO{sub 2} Lagerung im Geogrund. Integritaet von Tiefbohrungen unter Einfluss von CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Reinicke, K.M.; Franz, O. [Technische Univ. Clausthal (Germany). Inst. fuer Erdoel- und Erdgastechnik; Nangue Donfack, R. [Baker Hughes GmbH, Houston, TX (United States); Shinde, S. [Shell (Germany)

    2007-09-13

    Deep underground storage of CO2 is possible in petroleum reservoirs, gas reservoirs, aquifers and coal seams. Two aspects must be considered for safety: First, the technical integrity of the production and injection systems must be ensured during the operating phase of, typically, 10 to 50 years. Secondly, the technical integrity of the boreholes must be ensured for the whole storage period of 100 to 5000 years in order to prevent release of CO2 through the boreholes after sealing. The industry has long years of experience with injection of CO2 gained in CO2 enhanced oil recovery (EOR), in the production of high-pressure acid gas from natural gas wells, and in the injection of the acid components H2S and CO2 separated during acid gas production. Completion equipment and components of CO2 EOR and acid gas projects were analyzed, and detailed information on potential failure processes and their consequences. There are no major problems in ensuring safe injection and production during the operating phase. In contrast, the proof of technical stability over a period of 1000 years and more is a challenge as the experience so far covers only a few decades. This is the focus of research projects worldwide. The contribution presents the state of the art and shows how safe storage of CO2 may be possible. The results presented are part of the activities carried out in the CSEGR project (Carbon Sequestration with Enhanced Gas REcovery). The partners of Clausthal University are: Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hanover, EEG - Erdgas Erdoel GmbH Berlin, Wintershall AG Kassel, Vattenfall AB, and E.ON Ruhrgas GmbH, Essen. The project receives BMBF funds from the GEOTECHNOLOGIEN programme. (orig.)

  14. Highly Efficient Closed-Loop CO2 Removal System for Deep-Space ECLSS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TDA Research Inc.(TDA) in collaboration with University of Puerto Rico ? Mayaguez (UPRM is proposing to develop a highly efficient CO2 removal system based on UPRM...

  15. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water

  16. Effects of CO2 hydrate on deep-sea foraminiferal assemblages

    International Nuclear Information System (INIS)

    Ricketts, E. R.; Kennett, J. P.; Hill, T. M.; Barry, J. P.

    2005-01-01

    This study, conducted with the Monterey Bay Aquarium Research Institute (MBARI), is the first to investigate potential effects of carbon dioxide (CO2) hydrates on benthic microfossils, specifically oraminifera. The experiment was conducted in September 2003 aboard the R/V Western Flier using the ROV Tiburon. Experimental (CO2 exposed) and control cores were collected at 3600m and stained to distinguish live (stained) from dead (unstained) individuals. Foraminifera are ideal for these investigations because of differing test composition (calcareous and agglutinated) and thickness, and diverse epifaunal and infaunal depth preferences. The effects of the CO2 on assemblages have been tracked both vertically (10cm depth) and horizontally, and between live and dead individuals. Increased mortality and dissolution of calcareous forms resulted from exposure to CO2 hydrate. Preliminary results suggest several major effects on surface sediment assemblages: 1) total number of foraminifera in a sample decreases; 2) foraminiferal diversity decreases in both stained and unstained specimens. The number of planktonic and hyaline calcareous tests declines greatly, with milliolids being more resistant to dissolution when stained; and 3) percentage of stained (live) forms is higher. Down-core trends (up to 10cm) indicate: 1) percent agglutinated forms decline and calcareous forms increasingly dominate; 2) agglutinated diversity decreases with depth; and 3) assemblages become increasingly similar with depth to those in control cores not subjected to CO2 hydrate. These results imply almost complete initial mortality and dissolution upon CO2 hydrate emplacement in the corrals. (Author)

  17. A Dynamic Programming Model for Optimizing Frequency of Time-Lapse Seismic Monitoring in Geological CO2 Storage

    Science.gov (United States)

    Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.

    2005-12-01

    Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic

  18. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    Science.gov (United States)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  19. Carbon and oxygen isotope analysis of leaf biomass reveals contrasting photosynthetic responses to elevated CO2 near geologic vents in Yellowstone National Park

    Directory of Open Access Journals (Sweden)

    D. G. Williams

    2009-01-01

    Full Text Available In this study we explore the use of natural CO2 emissions in Yellowstone National Park (YNP in Wyoming, USA to study responses of natural vegetation to elevated CO2 levels. Radiocarbon (14C analysis of leaf biomass from a conifer (Pinus contortus; lodgepole pine and an invasive, non-native herb (Linaria dalmatica; Dalmation toadflax was used to trace the inputs of vent CO2 and quantify assimilation-weighted CO2 concentrations experienced by individual plants near vents and in comparable locations with no geologic CO2 exposure. The carbon and oxygen isotopic composition and nitrogen percent of leaf biomass from the same plants was used to investigate photosynthetic responses of these plants to naturally elevated atmospheric CO2 concentrations. The coupled shifts in carbon and oxygen isotope values suggest that dalmation toadflax responded to elevated CO2 exposure by increasing stomatal conductance with no change in photosynthetic capacity and lodgepole pine apparently responded by decreasing stomatal conductance and photosynthetic capacity. Lodgepole pine saplings exposed to elevated levels of CO2 likewise had reduced leaf nitrogen concentrations compared to plants with no enhanced CO2 exposure, further suggesting widespread and dominant conifer down-regulated photosynthetic capacity under elevated CO2 levels near geologic vents.

  20. Reservoir Characterization and CO2 Plume Migration Modeling Based on Bottom-hole Pressure Data: An Example from the AEP Mountaineer Geological Storage Project

    Science.gov (United States)

    Mishra, Srikanta; Kelley, Mark; Oruganti, YagnaDeepika; Bhattacharya, Indra; Spitznogle, Gary

    2014-05-01

    We present an integrated approach for formation permeability estimation, front tracking, reservoir model calibration, and plume migration modeling based on injection rate and down-hole pressure data from CO2 geologic sequestration projects. The data are taken from the 20 MW CO2 capture and storage project at American Electric Power's Mountaineer Plant in West Virginia, USA. The Mountaineer CO2 injection system consists of two injection wells - one in the Copper Ridge Dolomite formation and one in the Rose Run sandstone formation, and three deep observation wells that were operational between October 2009 and May 2011. Approximately 27000 MT and 10000 MT were injected into the Copper Ridge dolomite formation and Rose Run sandstone formation, respectively. A wealth of pressure and rate data from injection and observation wells is available covering a series of injection and pressure falloff events. The methodology developed and applied for interpreting and integrating the data during reservoir analysis and modeling from the Rose Run formation is the subject of this paper. For the analysis of transient pressure data at the injection and observation wells, the CO2 storage reservoir is conceptualized as a radial composite system, where the inner (invaded) zone consists of both supercritical CO2 and brine, and the outer (uninvaded) zone consists of undisturbed brine. Using established analytical solutions for analyzing fluid injection problems in the petroleum reservoir engineering literature, we show how the late-time pressure derivative response from both injection and observation wells will be identical - reflecting the permeability-thickness product of the undisturbed brine-filled formation. We also show how the expanding CO2 plume affects the "effective" compressibility that can be estimated by history matching injection-falloff data and how this can be used to develop a relationship between the plume radius and "effective" compressibility. This provides a novel non

  1. Probabilistic risk assessment for CO2 storage in geological formations: robust design and support for decision making under uncertainty

    Science.gov (United States)

    Oladyshkin, Sergey; Class, Holger; Helmig, Rainer; Nowak, Wolfgang

    2010-05-01

    CO2 storage in geological formations is currently being discussed intensively as a technology for mitigating CO2 emissions. However, any large-scale application requires a thorough analysis of the potential risks. Current numerical simulation models are too expensive for probabilistic risk analysis and for stochastic approaches based on brute-force repeated simulation. Even single deterministic simulations may require parallel high-performance computing. The multiphase flow processes involved are too non-linear for quasi-linear error propagation and other simplified stochastic tools. As an alternative approach, we propose a massive stochastic model reduction based on the probabilistic collocation method. The model response is projected onto a orthogonal basis of higher-order polynomials to approximate dependence on uncertain parameters (porosity, permeability etc.) and design parameters (injection rate, depth etc.). This allows for a non-linear propagation of model uncertainty affecting the predicted risk, ensures fast computation and provides a powerful tool for combining design variables and uncertain variables into one approach based on an integrative response surface. Thus, the design task of finding optimal injection regimes explicitly includes uncertainty, which leads to robust designs of the non-linear system that minimize failure probability and provide valuable support for risk-informed management decisions. We validate our proposed stochastic approach by Monte Carlo simulation using a common 3D benchmark problem (Class et al. Computational Geosciences 13, 2009). A reasonable compromise between computational efforts and precision was reached already with second-order polynomials. In our case study, the proposed approach yields a significant computational speedup by a factor of 100 compared to Monte Carlo simulation. We demonstrate that, due to the non-linearity of the flow and transport processes during CO2 injection, including uncertainty in the analysis

  2. Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Mohammad Jafari

    2017-12-01

    Full Text Available The pore-level two-phase fluids flow mechanism needs to be understood for geological CO2 sequestration as a solution to mitigate anthropogenic emission of carbon dioxide. Capillary pressure at the interface of water–CO2 influences CO2 injectability, capacity, and safety of the storage system. Wettability usually measured by contact angle is always a major uncertainty source among important parameters affecting capillary pressure. The contact angle is mostly determined on a flat surface as a representative of the rock surface. However, a simple and precise method for determining in situ contact angle at pore-scale is needed to simulate fluids flow in porous media. Recent progresses in X-ray tomography technique has provided a robust way to measure in situ contact angle of rocks. However, slow imaging and complicated image processing make it impossible to measure dynamic contact angle. In the present paper, a series of static and dynamic contact angles as well as contact angles on flat surface were measured inside a micromodel with random pattern of channels under high pressure condition. Our results showed a wide range of pore-scale contact angles, implying complexity of the pore-scale contact angle even in a highly smooth and chemically homogenous glass micromodel. Receding contact angle (RCA showed more reproducibility compared to advancing contact angle (ACA and static contact angle (SCA for repeating tests and during both drainage and imbibition. With decreasing pore size, RCA was increased. The hysteresis of the dynamic contact angle (ACA–RCA was higher at pressure of one megapascal in comparison with that at eight megapascals. The CO2 bubble had higher mobility at higher depths due to lower hysteresis which is unfavorable. CO2 bubbles resting on the flat surface of the micromodel channel showed a wide range of contact angles. They were much higher than reported contact angle values observed with sessile drop or captive bubble tests on a

  3. Characterization of the Helderberg Group as a geologic seal for CO 2 sequestration

    Science.gov (United States)

    Lewis, J.E.; McDowell, R.R.; Avary, K.L.; Carter, K.M.

    2009-01-01

    The Midwest Regional Carbon Sequestration Partnership recognizes that both the Devonian Oriskany Sandstone and the Silurian Salina Group offer potential for subsurface carbon dioxide storage in northern West Virginia. The Silurian-Devonian Helderberg Group lies stratigraphically between these two units, and consequendy, its potential as a geologic seal must be evaluated. Predominantly a carbonate interval with minor interbedded siliciclastics and chert, the Helderberg Group was deposited in an ancient epeiric sea. Although most previous investigations of this unit have concentrated on outcrops in eastern West Virginia, new information is available from an injection well drilled along the Ohio River at First Energy's R. E. Burger electric power plant near Shadyside, Ohio. Geophysical, seismic, and core data from this well have been combined with existing outcrop information to evaluate the Helderberg Group's potential as a seal. The data collected suggest that only secondary porosity remains, and permeability, if it exists, most likely occurs along faults or within fractures. ?? 2009. The American Association of Petroleum Geologists/Division of Environmental Geosciences. All rights reserved.

  4. Rapid invasion of anthropogenic CO2 into the deep circulation of the Weddell Gyre

    NARCIS (Netherlands)

    van Heuven, Steven M. A. C.; Hoppema, Mario; Jones, Elisabeth Marie; de Baar, Henricus

    2014-01-01

    Data are presented for total carbon dioxide (TCO2), oxygen and nutrients from 14 cruises covering two repeat sections across the Weddell Gyre, from 1973 to 2010. Assessments of the rate of increase in anthropogenic CO2 (C-ant) are made at three locations. Along the Prime Meridian, TCO2 is observed

  5. Providing adequate economic incentives for bioenergies with CO2 capture and geological storage

    International Nuclear Information System (INIS)

    Ricci, Olivia

    2012-01-01

    Knowing that carbon capture and storage (CCS) could play an important role in reducing emissions, it is important to have a good understanding of this role and the importance of environmental policies to support carbon capture and geological storage from bioenergies (BECCS). To date CCS technologies are not deployed on a commercial level, and policy instruments should be used to provide incentives to firms to use these technologies to reduce pollution. The aim of this paper is to compare the cost-efficiency of several incentive-based instruments (a fossil fuel tax, an emissions tax, a cap and trade system, and a subsidy on captured emissions) needed to spur the adoption of CCS and BECCS, using a dynamic general equilibrium model. This type of model has become the standard for assessing economy-wide impacts of environmental and technological policies. The study shows that BECCS will be deployed only if a specific subsidy per unit of biomass emissions captured with a CCS technology is available. We show also that the two most cost-efficient instruments for achieving a given emissions reduction target are a specific subsidy that rewards captured emissions and a carbon tax whose revenues are recycled to subsidize BECCS. - Highlights: ► We investigate the suitability of economic instruments to support CCS and BECCS. ► We model CCS and BECCS in a dynamic general equilibrium model. ► We compare the cost-efficiency of economic instruments to reduce emissions. ► A subsidy that rewards biomass captured emissions is appropriate to encourage BECCS. ► A carbon tax whose revenues are recycled to subsidize BECCS is cost-efficient.

  6. Experimental simulation of the geological storage of CO2: particular study of the interfaces between well cement, cap-rock and reservoir rock

    International Nuclear Information System (INIS)

    Jobard, Emmanuel

    2013-01-01

    The geological storage of the CO 2 is envisaged to mitigate the anthropogenic greenhouse gas emissions in the short term. CO 2 is trapped from big emitters and is directly injected into a reservoir rock (mainly in deep salty aquifers, depleted hydrocarbon oil fields or unexploited charcoal lodes) located at more than 800 m deep. In the framework of the CO 2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO 2 leakage from the injection well. The experimental simulations are performed under pressure and temperature conditions of the geological storage (100 bar and from 80 to 100 deg. C). The first experimental model, called COTAGES (for 'Colonne Thermoregulee A Grains pour Gaz a Effet de Serre') allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25 deg. C in a hotter reservoir (submitted to the geothermal gradient). This device composed of an aqueous saline solution (4 g.L -1 of NaCl), crushed rock (Lavoux limestone or Callovo-Oxfordian argillite) and gas (N 2 or CO 2 ) allows demonstrating an important matter transfer from the cold area (30 deg. C) toward the hot area (100 deg. C). The observed dissolution/precipitation phenomena leading to changes of the petro-physical rocks properties occur in presence of N 2 or CO 2 but are significantly amplified by the presence of CO 2 . Concerning the experiments carried out with Lavoux limestone, the dissolution in the cold zone causes a raise of porosity of about 2% (initial porosity of 8%) due to the formation of about 500 pores/mm 2 with a size ranging between 10 and 100 μm 2 . The precipitation in the hot zone forms a micro-calcite fringe on the external part of the grains and fills the intergrain porosity

  7. CO2 storage in deep aquifers. Study in real conditions of cap-rock confinement properties and of their alteration

    International Nuclear Information System (INIS)

    Bachaud, P.

    2010-01-01

    A promising solution to reduce anthropogenic emissions of greenhouse effect gases consists in the injection and long-term storage of a part of the industrial carbon dioxide discharges in underground formations. These formations must be composed of a reservoir surrounded by tight cap-rocks, which represent the first barrier preventing fluids migration. The characterization of their confining properties and of their evolution in presence of CO 2 is thus a key element regarding a storage site security. This work presents a methodology allowing the measurement of cap-rocks transport parameters and the consequences of an alteration under representative conditions of deep aquifers storage. This methodology was applied to carbonate rocks from the Paris basin. The breakthrough pressure, the diffusion coefficient of CO 2 dissolution products,and the permeability, controlling parameters of leakage mechanisms, were measured before and after alteration of the materials by reaction with a CO 2 -saturated brine under reservoir thermodynamic conditions (about 80 C and 100 bar). Results revealed a satisfactory global behaviour under these aggressive conditions, but also a strong diminution of the confinement potential in presence of initial structural faults (sealed fractures, large-diameter pores...) forming higher-permeability zones. A numeric simulation describing the evolution of a homogeneous rock formation during 1000 years was also realized based on parameters directly measured or obtained by modelling of the alteration experiments. It showed that the transformations brought by the CO 2 storage under a rock formation with no initial faults remain very localized spatially. (author)

  8. Radon in underground waters as a natural analogue to study the escape of CO2 in geological repositories.

    Science.gov (United States)

    Martín Sánchez, A; Ruano Sánchez, A B; de la Torre Pérez, J; Jurado Vargas, M

    2015-11-01

    Activity concentrations of dissolved (222)Rn and (226)Ra were measured in several underground aquifers, which are candidates for repositories or for the study of analogue natural escapes of CO2. The concentration of both radionuclides in water was determined using liquid scintillation counting. The values obtained for the (222)Rn concentrations varied from 0 to 150 Bq l(-1), while the levels of (226)Ra were in general very low. This indicates that (222)Rn is coming from the decay of the undissolved (226)Ra existing in the rocks and deep layers of the aquifers, being later transported by diffusion in water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers

    2011-12-31

    The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting the Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume

  10. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  11. A workflow for handling heterogeneous 3D models with the TOUGH2 family of codes: Applications to numerical modeling of CO 2 geological storage

    Science.gov (United States)

    Audigane, Pascal; Chiaberge, Christophe; Mathurin, Frédéric; Lions, Julie; Picot-Colbeaux, Géraldine

    2011-04-01

    This paper is addressed to the TOUGH2 user community. It presents a new tool for handling simulations run with the TOUGH2 code with specific application to CO 2 geological storage. This tool is composed of separate FORTRAN subroutines (or modules) that can be run independently, using input and output files in ASCII format for TOUGH2. These modules have been developed specifically for modeling of carbon dioxide geological storage and their use with TOUGH2 and the Equation of State module ECO2N, dedicated to CO 2-water-salt mixture systems, with TOUGHREACT, which is an adaptation of TOUGH2 with ECO2N and geochemical fluid-rock interactions, and with TOUGH2 and the EOS7C module dedicated to CO 2-CH 4 gas mixture is described. The objective is to save time for the pre-processing, execution and visualization of complex geometry for geological system representation. The workflow is rapid and user-friendly and future implementation to other TOUGH2 EOS modules for other contexts (e.g. nuclear waste disposal, geothermal production) is straightforward. Three examples are shown for validation: (i) leakage of CO 2 up through an abandoned well; (ii) 3D reactive transport modeling of CO 2 in a sandy aquifer formation in the Sleipner gas Field, (North Sea, Norway); and (iii) an estimation of enhanced gas recovery technology using CO 2 as the injected and stored gas to produce methane in the K12B Gas Field (North Sea, Denmark).

  12. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.

    2010-01-01

    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  13. Evidence for long term deep CO2 confinement below thick Jurassic shales at Montmiral site (SE Basin of France)

    Science.gov (United States)

    Rubert, Y.; Ramboz, C.; Le Nindre, Y. M.; Lerouge, C.; Lescanne, M.

    2009-04-01

    Studies of natural CO2 analogues bring key information on the factors governing the long term (>1My) stability/instability of future anthropogenic CO2 storages. The main objective of this work is to trace the deep-origin CO2 migrations in fractures in the Montmiral CO2 deep natural occurrence (Valence Basin, SE France). The final objective is to document the reservoir feeding and the possible leakages through overlying series. The CO2 reservoir is hosted within a horst controlled by a N-S fault network. From the Triassic to Eocene, the Montmiral area was part of the South-East Basin of France. This period is marked by the Tethysian extension phase (Triassic-Cretaceous) followed by the closure of the basin which culminated during the Pyrenean compressive phase (Eocene). Then, from the late Eocene, the Valence Basin was individualised in particular during the Oligocene E-W rifting affecting the West of Europe. Finally the eastern border of the Basin was overthrusted by Mesozoic formations during the Alpine orogenesis (Miocene). The Montmiral CO2 reservoir is intersected by the currently productive V.Mo.2 well, drilled through Miocene to Triassic sedimentary formations, and reaching the Palaeozoic substratum at a depth of 2771 meters. The CO2 is trapped below a depth of 2340 meters, at the base of sandy, evaporitic and calcareous formations (2340-2771m), Triassic to Sinemurian in age. These units are overlain by a 575 m-thick Domerian to Oxfordian marly sequence which seals the CO2 reservoir. Above these marls, calcareous strata (1792-1095 m), Oxfordian to Cretaceous in age, and sandy clayey formations (1095-0 m), Oligocene and Miocene in age, are deposited. The various stratigraphic levels from the Miocene to the basement were cored over a total length of ~100m. From bottom to top, three lithological units, which exhibit well characterised contrasted diagenetic evolution, record various stages and effects of the CO2 migration: - Lower unit: Palaeozoic metamorphic

  14. Supercritical CO2 drying of poly(methyl methacrylate) photoresist for deep x-ray lithography: a brief note

    Science.gov (United States)

    Shukla, Rahul; Abhinandan, Lala; Sharma, Shivdutt

    2017-07-01

    Poly(methyl methacrylate) (PMMA) is an extensively used positive photoresist for deep x-ray lithography. The post-development release of the microstructures of PMMA becomes very critical for high aspect ratio fragile and freestanding microstructures. Release of high aspect ratio comb-drive microstructure of PMMA made by one-step x-ray lithography (OXL) is studied. The effect of low-surface tension Isopropyl alcohol (IPA) over water is investigated for release of the high aspect ratio microstructures using conventional and supercritical (SC) CO2 drying. The results of conventional drying are also compared for the samples released or dried in both in-house developed and commercial SC CO2 dryer. It is found that in all cases the microstructures of PMMA are permanently deformed and damaged while using SC CO2 for drying. For free-standing high aspect ratio microstructures of PMMA made by OXL, it is advised to use low-surface tension IPA over DI water. However, this brings a limitation on the design of the microstructure.

  15. Risk Assessment and Management for Long-Term Storage of CO2 in Geologic Formations — United States Department of Energy R&D

    Directory of Open Access Journals (Sweden)

    Dawn Deel

    2007-02-01

    Full Text Available Concern about increasing atmospheric concentrations of carbon dioxide (CO2 and other greenhouse gases (GHG and their impact on the earth's climate has grown significantly over the last decade. Many countries, including the United States, wrestle with balancing economic development and meeting critical near-term environmental goals while minimizing long-term environmental risks. One promising solution to the buildup of GHGs in the atmosphere, being pursued by the U.S. Department of Energy's (DOE National Energy Technology Laboratory (NETL and its industrial and academic partners, is carbon sequestration—a process of permanent storage of CO2 emissions in underground geologic formations, thus avoiding CO2 release to the atmosphere. This option looks particularly attractive for point source emissions of GHGs, such as fossil fuel fired power plants. CO2 would be captured, transported to a sequestration site, and injected into an appropriate geologic formation. However, sequestration in geologic formations cannot achieve a significant role in reducing GHG emissions unless it is acceptable to stakeholders, regulators, and the general public, i.e., unless the risks involved are judged to be acceptable. One tool that can be used to achieve acceptance of geologic sequestration of CO2 is risk assessment, which is a proven method to objectively manage hazards in facilities such as oil and natural gas fields, pipelines, refineries, and chemical plants. Although probabilistic risk assessment (PRA has been applied in many areas, its application to geologic CO2 sequestration is still in its infancy. The most significant risk from geologic carbon sequestration is leakage of CO2. Two types of CO2 releases are possible—atmospheric and subsurface. High concentrations of CO2 caused by a release to the atmosphere would pose health risks to humans and animals, and any leakage of CO2 back into the atmosphere negates the effort expended to sequester the CO2

  16. The influence of biopreparations on the reduction of energy consumption and CO2 emissions in shallow and deep soil tillage.

    Science.gov (United States)

    Naujokienė, Vilma; Šarauskis, Egidijus; Lekavičienė, Kristina; Adamavičienė, Aida; Buragienė, Sidona; Kriaučiūnienė, Zita

    2018-06-01

    The application of innovation in agriculture technologies is very important for increasing the efficiency of agricultural production, ensuring the high productivity of plants, production quality, farm profitability, the positive balance of used energy, and the requirements of environmental protection. Therefore, it is a scientific problem that solid and soil surfaces covered with plant residue have a negative impact on the work, traction resistance, energy consumption, and environmental pollution of tillage machines. The objective of this work was to determine the dependence of the reduction of energy consumption and CO 2 gas emissions on different biopreparations. Experimental research was carried out in a control (SC1) and seven different biopreparations using scenarios (SC2-SC8) using bacterial and non-bacterial biopreparations in different consistencies (with essential and mineral oils, extracts of various grasses and sea algae, phosphorus, potassium, humic and gibberellic acids, copper, zinc, manganese, iron, and calcium), estimating discing and plowing as the energy consumption parameters of shallow and deep soil tillage machines, respectively. CO 2 emissions were determined by evaluating soil characteristics (such as hardness, total porosity and density). Meteorological conditions such average daily temperatures (2015-20.3 °C; 2016-16.90 °C) and precipitations (2015-6.9 mm; 2016-114.9 mm) during the month strongly influenced different results in 2015 and 2016. Substantial differences between the averages of energy consumption identified in approximately 62% of biological preparation combinations created usage scenarios. Experimental research established that crop field treatments with biological preparations at the beginning of vegetation could reduce the energy consumption of shallow tillage machines by up to approximately 23%, whereas the energy consumption of deep tillage could be reduced by up to approximately 19.2% compared with the control

  17. Radioactive waste disposal in deep geologic deposits. Associated research problems

    International Nuclear Information System (INIS)

    Rousset, G.

    1992-01-01

    This paper describes the research associated problems for radioactive waste disposal in deep geologic deposits such granites, clays or salt deposits. After a brief description of the underground disposal, the author studies the rheology of sedimentary media and proposes rheological models applied to radioactive wastes repositories. Waste-rock interactions, particularly thermal effects and temperature distribution versus time. 17 refs., 14 figs

  18. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  19. Reduction of the greenhouse effect by geological mineral in-situ sequestration of CO2 in basic rocks: bibliographic synthesis and possibilities in France. Final report

    International Nuclear Information System (INIS)

    Marechal, J.C.; Lachassagne, P.

    2004-01-01

    The report constitutes a first bibliographic study defining the environments the most adapted to the geological mineral in-situ sequestration of CO 2 . For each environment the lithology and the rocks permeability and porosity are analyzed. Thus the possible rocks and deposits in France are presented. (A.L.B.)

  20. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre

  1. Human intruder dose assessment for deep geological disposal

    International Nuclear Information System (INIS)

    Smith, G. M.; Molinero, J.; Delos, A.; Valls, A.; Conesa, A.; Smith, K.; Hjerpe, T.

    2013-07-01

    For near-surface disposal, approaches to assessment of inadvertent human intrusion have been developed through international cooperation within the IAEA's ISAM programme. Other assessments have considered intrusion into deep geological disposal facilities, but comparable international cooperation to develop an approach for deep disposal has not taken place. Accordingly, the BIOPROTA collaboration project presented here (1) examined the technical aspects of why and how deep geological intrusion might occur; (2) considered how and to what degree radiation exposure would arise to the people involved in such intrusion; (3) identified the processes which constrain the uncertainties; and hence (4) developed and documented an approach for evaluation of human intruder doses which addresses the criteria adopted by the IAEA and takes account of other international guidance and human intrusion assessment experience. Models for radiation exposure of the drilling workers and geologists were developed and described together with compilation of relevant input data, taking into account relevant combinations of drilling technique, geological formation and repository material. Consideration has been given also to others who might be exposed to contaminated material left at the site after drilling work has ceased. The models have been designed to be simple and stylised, in accordance with international recommendations. The set of combinations comprises 58 different scenarios which cover a very wide range of human intrusion possibilities via deep drilling. (orig.)

  2. Nuclear waste and a deep geological disposal facility

    International Nuclear Information System (INIS)

    Vokal, A.; Laciok, A.; Vasa, I.

    2005-01-01

    The paper presents a systematic analysis of the individual areas of research into nuclear waste and deep geological disposal with emphasis on the contribution of Nuclear Research Institute Rez plc to such efforts within international projects, specifically the EURATOM 6th Framework Programme. Research in the area of new advanced fuel cycles with focus on waste minimisation is based on EU's REDIMPACT project. The individual fuel cycles, which are currently studied within the EU, are briefly described. Special attention is paid to fast breeders and accelerator-driven reactor concepts associated with new spent fuel reprocessing technologies. Results obtained so far show that none even of the most advanced fuel cycles, currently under consideration, would eliminate the necessity to have a deep geological repository for a safe storage of residual radioactive waste. As regards deep geological repository barriers, the fact is highlighted that the safety of a repository is assured by complementary engineered and natural barriers. In order to demonstrate the safety of a repository, a deep insight must be gained into any and all of the individual processes that occur inside the repository and thus may affect radioactivity releases beyond the repository boundaries. The final section of the paper describes methods of radioactive waste conditioning for its disposal in a repository. Research into waste matrices used for radionuclide immobilisation is also highlighted. (author)

  3. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    Science.gov (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  4. Using a laser-based CO2 carbon isotope analyser to investigate gas transfer in geological media

    International Nuclear Information System (INIS)

    Guillon, S.; Pili, E.; Agrinier, P.

    2012-01-01

    CO 2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based CO 2 carbon isotope analysis provides continuous measurement at high temporal resolution and is a promising alternative to isotope ratio mass spectrometry (IRMS). We performed a thorough assessment of a commercially available CO 2 Carbon Isotope Analyser (CCIA DLT-100, Los Gatos Research) that allows in situ measurement of C-13 in CO 2 . Using a set of reference gases of known CO 2 concentration and carbon isotopic composition, we evaluated the precision, long-term stability, temperature sensitivity and concentration dependence of the analyser. Despite good precision calculated from Allan variance (5.0 ppm for CO 2 concentration, and 0.05 per thousand for δC-13 at 60 s averaging), real performances are altered by two main sources of error: temperature sensitivity and dependence of C-13 on CO 2 concentration. Data processing is required to correct for these errors. Following application of these corrections, we achieve an accuracy of 8.7 ppm for CO 2 concentration and 1.3 per thousand for δC-13, which is worse compared to mass spectrometry performance, but still allowing field applications. With this portable analyser we measured CO 2 flux degassed from rock in an underground tunnel. The obtained carbon isotopic composition agrees with IRMS measurement, and can be used to identify the carbon source. (authors)

  5. Deep geological repository: Starting communication at potentially suitable sites

    International Nuclear Information System (INIS)

    Sumberova, Vera

    2001-01-01

    The siting of a deep geological repository in the Czech Republic is and will be a complicated process, since it is the first siting process of a nuclear facility designed from the start to be located at non-nuclear sites and to be organised under democratic conditions. This presentation describes the concept of radioactive waste and spent nuclear management in the Czech Republic, Communication activities of Radioactive Waste Repository Authority (RAWRA) with local representatives and lessons learned

  6. Interfacial Interactions and Wettability Evaluation of Rock Surfaces for CO2 Storage

    NARCIS (Netherlands)

    Shojai Kaveh, N.

    2014-01-01

    To reduce CO2 emissions into the atmosphere, different scenarios are proposed to capture and store carbon dioxide (CO2) in geological formations (CCS). Storage strategies include CO2 injection into deep saline aquifers, depleted gas and oil reservoirs, and unmineable coal seams. To identify a secure

  7. Experimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers

    Science.gov (United States)

    Rathnaweera, T. D.; Ranjith, P. G.; Perera, M. S. A.

    2016-01-01

    Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock’s flow characteristics. Sandstone samples were first exposed for 1.5 years to a mixture of brine and super-critical CO2 (scCO2), then tested to determine their altered geochemical and mineralogical properties. Changes caused uniquely by CO2 were identified by comparison with samples exposed over a similar period to either plain brine or brine saturated with N2. The results show that long-term reaction with CO2 causes a significant pH drop in the saline pore fluid, clearly due to carbonic acid (as dissolved CO2) in the brine. Free H+ ions released into the pore fluid alter the mineralogical structure of the rock formation, through the dissolution of minerals such as calcite, siderite, barite, and quartz. Long-term CO2 injection also creates a significant CO2 drying-out effect and crystals of salt (NaCl) precipitate in the system, further changing the pore structure. Such mineralogical alterations significantly affect the saline aquifer’s permeability, with important practical consequences for the sequestration process. PMID:26785912

  8. Modeling the Deep Impact Near-nucleus Observations of H2O and CO2 in Comet 9P/Tempel 1 Using Asymmetric Spherical Coupled Escape Probability

    Science.gov (United States)

    Gersch, Alan M.; A’Hearn, Michael F.; Feaga, Lori M.

    2018-04-01

    We have applied our asymmetric spherical adaptation of Coupled Escape Probability to the modeling of optically thick cometary comae. Expanding on our previously published work, here we present models including asymmetric comae. Near-nucleus observations from the Deep Impact mission have been modeled, including observed coma morphology features. We present results for two primary volatile species of interest, H2O and CO2, for comet 9P/Tempel 1. Production rates calculated using our best-fit models are notably greater than those derived from the Deep Impact data based on the assumption of optically thin conditions, both for H2O and CO2 but more so for CO2, and fall between the Deep Impact values and the global pre-impact production rates measured at other observatories and published by Schleicher et al. (2006), Mumma et al. (2005), and Mäkinen et al. (2007).

  9. Monitoring of injected CO2 at two commercial geologic storage sites with significant pressure depletion and/or re-pressurization histories: A case study

    Directory of Open Access Journals (Sweden)

    Dayanand Saini

    2017-03-01

    The monitoring technologies that have been used/deployed/tested at both the normally pressured West Hastings and the subnormally pressured Bell Creek storage sites appear to adequately address any of the potential “out of zone migration” of injected CO2 at these sites. It would be interesting to see if any of the collected monitoring data at the West Hastings and the Bell Creek storage sites could also be used in future to better understand the viability of initially subnormally pressured and subsequently depleted and re-pressurized oil fields as secure geologic CO2 storage sites with relatively large storage CO2 capacities compared to the depleted and re-pressurized oil fields that were initially discovered as normally pressured.

  10. Relationship between water quality of deep-groundwater and geology in non-volcanic areas in Japan

    International Nuclear Information System (INIS)

    Oyama, Yoichi; Takahashi, Masaaki; Tsukamoto, Hitoshi; Kazahaya, Kohei; Yasuhara, Masaya; Takahashi, Hiroshi; Morikawa, Noritoshi; Ohwada, Michiko; Shibahara, Akihiko; Inamura, Akihiko

    2011-01-01

    Geochemical characteristics in groundwater such as groundwater chemistry and physicochemical parameters are affected by their source and the interaction with rocks and minerals. We observed the relationships between groundwater chemistry of the deep-groundwater and the geology in non-volcanic areas in Japan using about 9300 of deep-groundwater data. A Geographical Information System (GIS) was used to extract data in non-volcanic areas and numbers of water data are about 5200. The data were further classified into four types of geology (sedimentary rock, accretionary complex, volcanic rock and plutonic rock). The pH, temperature and major ion concentrations among deep-groundwaters in each geology have been statistically analysed. Result shows that the total cation concentration of deep-groundwaters are significantly different between geology, and the average values are decreased in the order of the sedimentary rock (66.7 meq l -1 ), volcanic rock (43.0 meq l -1 ), accretionary complex (24.6 meq l -1 ), and plutonic rock (11.0 meq l -1 ). The average pH does not show the major difference between geology whereas the highest average temperature is found in volcanic rock. In addition, the all four major cations (Na, K, Mg, and Ca) show the highest average concentrations in sedimentary rock, within the highest average concentrations of major anions for Cl, SO 4 , and HCO 3 are found in sedimentary rock, volcanic rock and accretionary complex, respectively, indicating the difference of the influence on the anions varied with geology. The distribution of deep-groundwater that are dominated by each major anions implied that SO 4 -type groundwater in volcanic rocks are formed by the influence of Neogene volcanic rock (Green tuff). In addition, HCO 3 -type groundwater in accretionary complex found from Kinki to Shikoku regions are formed by the addition of CO 2 gases supplying not only from surface soil and carbonate minerals but from deep underground. (author)

  11. Regional and site geological frameworks : proposed Deep Geologic Repository, Bruce County, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Raven, K.; Sterling, S.; Gaines, S.; Wigston, A. [Intera Engineering Ltd., Ottawa, ON (Canada); Frizzell, R. [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2009-07-01

    The Nuclear Waste Management Organization is conducting geoscientific studies on behalf of Ontario Power Generation into the proposed development of a Deep Geologic Repository (DGR) for low and intermediate level radioactive waste (L and ILW) at the Bruce site, near Tiverton, Ontario. This paper presented a regional geological framework for the site that was based on a review of regional drilling; structural geology; paleozoic stratigraphy and sedimentology; a 3D geological framework model; a DGR geological site characterization model; bedrock stratigraphy and marker beds; natural fracture frequency data; and formation predictability. The studies have shown that the depth, thickness, orientation and rock quality of the 34 rock formations, members or units that comprise the 840 m thick Paleozoic bedrock sequence at the Bruce site are very uniform and predictable over distances of several kilometres. The proposed DGR will be constructed as an engineered facility comprising a series of underground emplacement rooms at a depth of 680 metres below ground within argillaceous limestones. The geoscientific studies are meant to provide a basis for the development of descriptive geological, hydrogeological and geomechanical models of the DGR site that will facilitate environmental and safety assessments. 11 refs., 3 tabs., 9 figs.

  12. Geological investigations for geological model of deep underground geoenvironment at the Mizunami Underground Research Laboratory (MIU)

    International Nuclear Information System (INIS)

    Tsuruta, Tadahiko; Tagami, Masahiko; Amano, Kenji; Matsuoka, Toshiyuki; Kurihara, Arata; Yamada, Yasuhiro; Koike, Katsuaki

    2013-01-01

    Japan Atomic Energy Agency (JAEA) is performing a geoscientific research project, the Mizunami Underground Research Laboratory (MIU) project, in order to establish scientific and technological basis for geological disposal of high-level radioactive wastes. The MIU is located in crystalline rock environment, in Mizunami City, central Japan. Field investigations include geological mapping, reflection seismic surveys, several borehole investigations and geological investigations in the research galleries to identify the distribution and heterogeneity of fractures and faults that are potential major flowpaths for groundwater. The results of these field investigations are synthesized and compiled for the purpose of geological modeling. The field investigations indicate that the Main Shaft at the MIU intersected low permeability NNW oriented faults. A high permeability fracture zone in the granite, a significant water inflow point, was observed in the Ventilation Shaft. Development of the geological model focusing 3D spatial relationships at different scales and evolution of the geoenvironment are underway. This paper describes geological investigations applied in the MIU project, focusing on the evaluation of their effectiveness to understand for deep underground geoenvironment. (author)

  13. Kincardine deep geologic repository proposal and the public

    International Nuclear Information System (INIS)

    Squire, T.

    2005-01-01

    'Full text:' In 2002, the Municipality of Kincardine and OPG signed a Memorandum of Understanding (MOU) regarding the long-term management of low and intermediate level radioactive wastes. The purpose of the MOU was for OPG, in consultation with Kincardine, to develop a plan for the long-term management of low and intermediate level waste at OPG's Western Waste Management Facility (WWMF) located on the Bruce site. An independent assessment, which included geotechnical feasibility and safety analyses, a community attitude survey and interviews with local residents, businesses and tourists, and economic modeling to determine the potential benefits and impacts, was completed in February 2004. Ultimately, Kincardine Council endorsed a resolution (Kincardine Council no. 2004-232) to: 'endorse the opinion of the Nuclear Waste Steering Committee and select the 'Deep Rock Vault' option as the preferred course of study in regards to the management of low and intermediate level radioactive waste'. The surrounding municipalities of Saugeen Shores, Brockton, Arran-Elderslie, and Huron-Kinloss expressed their support for the Deep Geologic Repository proposal. This presentation discusses the history, major steps and public processes surrounding the Kincardine Deep Geologic Repository proposal. (author)

  14. Experimental study of chemical-mechanical coupling during percolation of reactive fluid through rocks under stress, in the context of the CO2 geological sequestration

    International Nuclear Information System (INIS)

    Le Guen, Y.

    2006-10-01

    CO 2 injection into geological repositories will induce chemical and mechanical instabilities. The study of these instabilities is based on experimental deformation of natural rock samples under stress, in the presence of fluids containing, or not, dissolved CO 2 . Triaxial cells used for the experiments permitted an independent control and measurement of stress, temperature, fluid pressure and composition. Vertical strains were measured during several months, with a resolution of 1.10 -12 s -1 on the strain rate. Simultaneously, fluids were analysed in order to quantify fluid-rock interactions. For limestone samples, percolation of CO 2 -rich fluids increases strain rate by a factor 1.7 up to 5; on the other hand, sandstone deformation remained almost the same. Increase in strain rate with limestone samples was explained by injected water acidification by the CO 2 which increases rock solubility and reaction kinetics. On the opposite, small effect of CO 2 on quartz explains the absence of deformation. X-ray observations confirmed the importance of rock composition and structure on the porosity evolution. Numerical simulations of rock elastic properties showed increasing shear stress into the sample. Measured deformation showed an evolution of reservoir rocks mechanical properties. It was interpreted as the consequence of pressure solution mechanisms both at grains contacts and on grain free surfaces. (author)

  15. Geological-geochemical evidence for deep fluid action in Daqiaowu uranium deposit, Zhejiang province

    International Nuclear Information System (INIS)

    Qiu Linfei; Ou Guangxi; Zhang Jianfeng; Zhang Min; Jin Miaozhang; Wang Binghua

    2009-01-01

    Through the contrast study of petrography, micro thermometry and laser Raman ingredient analysis of fluid inclusion, this paper has verified the basic nature of ore-forming fluid (temperature, salinity and ingredient) in daqiaowu uranium deposit, discussed the origin of the ore-forming fluid with its structure character and geology-geochemistry character. The testing results indicats that ore-forming temperature of this deposit is between 200 degree C and 250 degree C in main metallogenetic period, which belongs to middle temperature hydrothermal. The ore-forming fluids are of middle-high salinity and rich in valatility suchas CO 2 , H 2 , CH 4 . To sum up, the deposit mineralization process should be affected by the deep fluid primarily, and the ore-forming fluid is mainly the mantle fluid.(authors)

  16. Capillary pressure - saturation relations for supercritical CO2 and brine: Implications for capillary/residual trapping in carbonate reservoirs during geologic carbon sequestration

    Science.gov (United States)

    Wang, S.; Tokunaga, T. K.

    2014-12-01

    In geologic carbon sequestration (GCS), data on capillary pressure (Pc) - saturation (Sw) relations are routinely needed to appraise reservoir processes. Capillarity and its hysteresis have been often experimentally studied in oil-water, gas-water and three phase gas-oil-water systems, but fewer works have been reported on scCO2-water under in-situ reservoir conditions. Here, Pc-Sw relations of supercritical (sc) CO2 displacing brine, and brine rewetting the porous medium to trap scCO2 were studied to understand CO2 transport and trapping behavior in carbonate reservoirs under representative reservoir conditions. High-quality drainage and imbibition (and associated capillary pressure hysteresis) curves were measured under elevated temperature and pressure (45 ºC, 8.5 and 12 MPa) for scCO2-brine as well as at room temperature and pressure (23 ºC, 0.1 MPa) for air-brine in unconsolidated limestone and dolomite sand columns using newly developed semi-automated multistep outflow-inflow porous plate apparatus. Drainage and imbibition curves for scCO2-brine deviated from the universal scaling curves for hydrophilic interactions (with greater deviation under higher pressure) and shifted to lower Pc than predicted based on interfacial tension (IFT) changes. Augmented scaling incorporating differences in IFT and contact angle improved the scaling results but the scaled curves still did not converge onto the universal curves. Equilibrium residual trapping of the nonwetting phase was determined at Pc =0 during imbibition. The capillary-trapped amounts of scCO2 were significantly larger than for air. It is concluded that the deviations from the universal capillary scaling curves are caused by scCO2-induced wettability alteration, given the fact that pore geometry remained constant and IFT is well constrained. In-situ wettability alteration by reactive scCO2 is of critical importance and must be accounted for to achieve reliable predictions of CO2 behavior in GCS reservoirs.

  17. Stress history influence on sedimentary rock porosity estimates: Implications for geological CO2 storage in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wen-Jie Wu

    2017-01-01

    Full Text Available We established a stress-history-dependent porosity model of potential target rocks for CO2 geosequestration based on rock sample porosity measurements under various effective stresses (5 - 120 MPa. The measured samples were collected from shallow boreholes (< 300 m depth drilled at the frontal fold in northern Taiwan. The lithology, density, and the stress-history-dependent porosity derived from shallow boreholes enabled us to predict the porosity-depth relationship of given rock formations at (burial depths of approximately 3170 - 3470 m potential sites for CO2 geosequestration located near the Taoyuan Tableland coastline. Our results indicate that the porosity of samples derived from laboratory tests under atmospheric pressure is significantly greater than the porosity measured under stress caused by sediment burial. It is therefore strongly recommended that CO2 storage capacity assessment not be estimated from the porosity measured under atmospheric pressure. Neglecting the stress history effect on the porosity of compacted and uplifted rocks may induce a percentage error of 7.7% at a depth of approximately 1000 m, where the thickness of the eroded, formerly overlying formation is 2.5 km in a synthetic case. The CO2 injection pressure effect on the porosity was also evaluated using the stress-history-dependent porosity model. As expected, the pore pressure buildup during CO2 injection will induce an increase in the rock porosity. For example, a large injection pressure of 13 MPa at a depth of approximately 1000 m will increase the rock porosity by a percentage error of 6.7%. Our results have implications for CO2 storage capacity injection pressure estimates.

  18. Geological aspects of the deep disposal of radioactive waste

    International Nuclear Information System (INIS)

    McEwen, T.J.

    1998-01-01

    Various environments have been selected throughout the world for the potential deep disposal of long-lived radioactive waste. The selection of these environments has been carried out using a variety of methods, some of them more logical and defensible than others. The 'raison d'etre' for their selection also varies from country to country. Important lessons have been learnt from the site selection programmes, the site characterisation activities and the accompanying performance assessments that have been carried out concerning the suitability of geological environments for the disposal of long-lived waste. These lessons are the subject of this paper. 24 refs

  19. Deep geologic disposal. Lessons learnt from recent performance assessment studies

    International Nuclear Information System (INIS)

    Pescatore, C.; Andersson, J.

    1998-01-01

    Performance assessment (PA) studies are part of the decision basis for the siting, operation, and closure of deep repositories of long-lived nuclear wastes. In 1995 the NEA set up the Working Group on Integrated Performance Assessments of Deep Repositories (IPAG) with the goals to analyse existing PA studies, learn about what has been produced to date, and shed light on what could be done in future studies. Ten organisations submitted their most recent PA study for analysis and discussion, including written answers to over 70 questions. Waste management programmes, disposal concepts, geologies, and different types and amounts of waste offered a unique opportunity for exchanging information, assessing progress in PA since 1990, and identifying recent trends. A report was completed whose main lessons are overviewed. (author)

  20. 1.5 My benthic foraminiferal B/Ca record of carbonate chemistry in the deep Atlantic: Implications for ocean alkalinity and atmospheric CO2

    Science.gov (United States)

    Rosenthal, Y.; Sosdian, S. M.; Toggweiler, J. R.

    2017-12-01

    Most hypotheses to explain glacial-interglacial changes in atmospheric CO2 invoke shifts in ocean alkalinity explain roughly half the reduction in glacial CO2 via CaCO3 compensatory mechanism. It follows that changes in CaCO3 burial occur in response to an increase in deep ocean respired carbon content. To date our understanding of this process comes from benthic carbon isotope and %CaCO3 records. However, to understand the nature of the ocean's buffering capacity and its role in modulating pCO2, orbitally resolved reconstructions of the deep ocean carbonate system parameters are necessary. Here we present a 1.5 Myr orbitally resolved deep ocean calcite saturation record (ΔCO32-) derived from benthic foraminiferal B/Ca ratios in the North Atlantic. Glacial B/Ca values decline across the mid-Pleistocene transition (MPT) suggesting increased sequestration of carbon in the deep Atlantic. The magnitude, timing, and structure of deep Atlantic Ocean ΔCO32- and %CaCO3 cycles contrast with the small amplitude, anti-phased swings in IndoPacific ΔCO32- and %CaCO3 during the mid-to-late Pleistocene. Increasing corrosivity of the deep Atlantic causes the locus of CaCO3 burial to shift into the equatorial Pacific where the flux of CaCO3 to the seafloor is high enough to establish and maintain a new "hot spot". We propose that the CO32- in the deep IndoPacific rises in response to the same mechanism that keeps the CO32- in the deep Atlantic low and the atmospheric CO2 low. The increase in interglacial atmospheric pCO2 levels following the Mid-Brunhes event ( 400ka) are associated with increased G/IG ΔCO3 amplitude, expressed by a decrease in the glacial ΔCO32- values. We propose the low persistent ΔCO32- levels at Marine Isotope Stage (MIS) 12 set the stage for the high pCO2 levels at MIS 11 via an increase in whole ocean alkalinity followed by enhanced CaCO3 preservation. Based on this, we suggest that the development of classic (`anticorrelated') CaCO3 patterns was

  1. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    International Nuclear Information System (INIS)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu

    2016-01-01

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea

  2. Deep Borehole Disposal as an Alternative Concept to Deep Geological Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongyoul; Lee, Minsoo; Choi, Heuijoo; Kim, Kyungsu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the general concept and key technologies for deep borehole disposal of spent fuels or HLW, as an alternative method to the mined geological disposal method, were reviewed. After then an analysis on the distance between boreholes for the disposal of HLW was carried out. Based on the results, a disposal area were calculated approximately and compared with that of mined geological disposal. These results will be used as an input for the analyses of applicability for DBD in Korea. The disposal safety of this system has been demonstrated with underground research laboratory and some advanced countries such as Finland and Sweden are implementing their disposal project on commercial stage. However, if the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3-5 km and more stable rock formation, it has several advantages. Therefore, as an alternative disposal concept to the mined deep geological disposal concept (DGD), very deep borehole disposal (DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, the general concept of deep borehole disposal for spent fuels or high level radioactive wastes was reviewed. And the key technologies, such as drilling technology of large diameter borehole, packaging and emplacement technology, sealing technology and performance/safety analyses technologies, and their challenges in development of deep borehole disposal system were analyzed. Also, very preliminary deep borehole disposal concept including disposal canister concept was developed according to the nuclear environment in Korea.

  3. Status and development of deep geological repository in Slovak republic from geological point of view

    Directory of Open Access Journals (Sweden)

    Jozef Franzen

    2007-01-01

    Full Text Available During the operation of Slovak NPPs, production of approximately 2,300 metric tons of spent fuel expressed as heavy metal (18,654 spent fuel assemblies is expected. In addition, about 5000 metric tons of radioactive waste unfit for near surface repository at Mochovce and destined for a deep geological disposal. The safe and long-term solution of back-end fuel cycle is so highly required.One of the most favorable solutions is Deep Geological Repository (DGR. The site for a DGR, along with repository design and the engineered barrier system must ensure long-term safety of the disposal system.A preliminary set of site-selection criteria for a DGR was proposed in Slovakia, based on worldwide experience and consistent with IAEA recommendations. Main groups of criteria are: 1 geological and tectonic stability of prospective sites; 2 appropriate characteristics of host rock (lithological homogeneity, suitable hydrogeological and geochemical conditions, favourable geotechnical setting, absence of mineral resources, etc.; 3 conflict of interests (natural resources, natural and cultural heritage, protected resources of thermal waters, etc..Based on the previous geological investigations, three distinct areas (five localities were determined as the most prospective sites for construction of a DGR so far. Three of them are built by granitoids rock (Tribeč Mts., Veporske vrchy Mts. and Stolicke vrchy Mts., other consist of sedimentary rock formations (Cerova vrchovina Upland and Rimavska kotlina Basin. Objective for the next investigation stage is to perform more detailed geological characterization of the prospective sites.

  4. Behavior of colloids in radionuclide migration in deep geologic formation

    International Nuclear Information System (INIS)

    Kanno, Takuji

    1994-01-01

    In case high level waste is isolated in deep strata, it is important to elucidate the behavior of movement that radionuclides take in the strata. Recently, it has been recognized that the participation of colloids is very important, and it has been studied actively. In this study, as to the mechanism of the adsorption of colloids to geological media or buffers, analysis was carried out for a number of systems, and it was clarified in what case they are caught or they move without being caught. Also it is considered what research is necessary hereafter. First, the kinds of colloids are shown. As the properties of colloids that control the movement of colloids in groundwater in deep strata, the surface potential, shape, size and so on of colloids are conceivable. These properties are briefly discussed. As the interaction of colloids and geological media, the interaction by electrostatic attraction, the fast and slow movement of colloids through rock crevices, and the filtration of colloids in buffers and porous media are described. The experimental results on the movement of colloids are reported. (K.I.)

  5. Supercritical CO2 uptake by nonswelling phyllosilicates.

    Science.gov (United States)

    Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J

    2018-01-30

    Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.

  6. Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers

    International Nuclear Information System (INIS)

    Wigand, M.; Carey, J.W.; Schuett, H.; Spangenberg, E.; Erzinger, J.

    2008-01-01

    The geochemical effects of brine and supercritical CO 2 (SCCO 2 ) on reservoir rocks from deep (1500-2000 m) saline aquifers were examined via experimental simulation at in situ conditions. Dry sandstone samples were mounted in a triaxial cell and autoclave system, evacuated, and saturated with 1 M NaCl solution. The brine-rock system was allowed to react at 30 MPa confining pressure, 15 MPa pore fluid pressure, and 60 deg. C while SCCO 2 was injected at a pressure gradient of 1-2 MPa. The experiment was conducted for a period of 1496 h, during which fluids were periodically sampled and analyzed. The pH measured in partially degassed fluid samples at 25 deg. C decreased from a starting value of 7.0-4.3 (9 days) and finally 5.1 after saturation with SCCO 2 . Fluid analyses indicate that most of the major (e.g. Ca, Mg, Fe, Mn) and trace elements (e.g. Sr, Ba, Pb) of the sandstone increase in concentration during the reaction with brine and SCCO 2 . These results are supported by scanning electron microscopy which indicates dissolution of dolomite cement, K-feldspar, and albite. In addition to dissolution reactions the formation of montmorillonite was observed. By adjusting surface area and reaction rates of dissolution and precipitation, geochemical modeling of the experiments could reproduce long-term trends in solution chemistry and indicated limited rates of dissolution as the system remained strongly undersaturated with most minerals, including carbonates. The geochemical models could not account for decreases in concentration of some elements, changes in solution composition resulting from changes in imposed pressure gradient, and the observed Ca/Mg and Si/Al ratios in solution

  7. Characteristics of Chinese petroleum geology. Geological features and exploration cases of stratigraphic, foreland and deep formation traps

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Chengzao [PetroChina Company Limited, Beijing (China)

    2012-07-01

    The first book of this subject in the recent 10 years. ''Characteristics of Chinese Petroleum Geology: Geological Features and Exploration Cases of Stratigraphic, Foreland and Deep Formation Traps'' systematically presents the progress made in petroleum geology in China and highlights the latest advances and achievements in oil/gas exploration and research, especially in stratigraphic, foreland and deep formation traps. The book is intended for researchers, practitioners and students working in petroleum geology, and is also an authoritative reference work for foreign petroleum exploration experts who want to learn more about this field in China.

  8. Coupled Large Scale Hydro-mechanical Modelling for cap-rock Failure Risk Assessment of CO2 Storage in Deep Saline Aquifers

    International Nuclear Information System (INIS)

    Rohmer, J.; Seyedi, D.M.

    2010-01-01

    This work presents a numerical strategy of large scale hydro-mechanical simulations to assess the risk of damage in cap-rock formations during a CO 2 injection process. The proposed methodology is based on the development of a sequential coupling between a multiphase fluid flow (TOUGH2) and a hydro-mechanical calculation code (Code-Aster) that enables us to perform coupled hydro-mechanical simulation at a regional scale. The likelihood of different cap-rock damage mechanisms can then be evaluated based on the results of the coupled simulations. A scenario based approach is proposed to take into account the effect of the uncertainty of model parameters on damage likelihood. The developed methodology is applied for the cap-rock failure analysis of deep aquifer of the Dogger formation in the context of the Paris basin multilayered geological system as a demonstration example. The simulation is carried out at a regional scale (100 km) considering an industrial mass injection rate of CO 2 of 10 Mt/y. The assessment of the stress state after 10 years of injection is conducted through the developed sequential coupling. Two failure mechanisms have been taken into account, namely the tensile fracturing and the shear slip reactivation of pre-existing fractures. To deal with the large uncertainties due to sparse data on the layer formations, a scenario based strategy is undertaken. It consists in defining a first reference modelling scenario considering the mean values of the hydro-mechanical properties for each layer. A sensitivity analysis is then carried out and shows the importance of both the initial stress state and the reservoir hydraulic properties on the cap-rock failure tendency. On this basis, a second scenario denoted 'critical' is defined so that the most influential model parameters are taken in their worst configuration. None of these failure criteria is activated for the considered conditions. At a phenomenological level, this study points out three key

  9. Study of microorganisms present in deep geologic formations

    International Nuclear Information System (INIS)

    Camus, H.; Lion, R.; Bianchi, A.; Garcin, J.

    1987-01-01

    This work has been executed in the scope of the studies on high activity radioactive wastes storage in deep geological environments. The authors make reference to an as complete as possible literature on the existence of microorganisms in those environments or under similar conditions. Then they describe the equipment and methods they have implemented to perform their study of the populations present in three deep-reaching drill-holes in Auriat (France), Mol (Belgique) and Troon (Great Britain). The results of the study exhibit the presence of a certain biological activity, well adapted to that particular life environment. Strains appear to be very varied from the taxonomic point of view and seemingly show an important potential of mineral alteration when provided with an adequate source of energy. Complementary studies, using advanced techniques such as those employed during the work forming the basis of this paper, seem necessary for a more accurate evaluation of long-term risks of perturbation of a deep storage site [fr

  10. Proceedings of the 1996 international conference on deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    1996-01-01

    The 1996 September International Conference on Deep Geological Disposal of Radioactive Waste was held in Winnipeg, Canada. Speakers from many countries that have or are developing geological disposal technologies presented the current research and implementation strategies for the deep geological disposal of radioactive wastes. Special sessions focused on International Trends in Geological Disposal and Views on Confidence Building in Radioactive Waste Management; Excavation Disturbed Zone (EDZ) Workshop; Educator's Program and Workshop and a Roundtable on Social Issues in Siting

  11. Reactive transport at the pore-scale: Geological Labs on Chip studies (GLoCs) for CO2 storage in saline aquifers

    Science.gov (United States)

    Azaroual, M. M.; Lassin, A., Sr.; André, L., Sr.; Devau, N., Sr.; Leroy, P., Sr.

    2017-12-01

    The near well bore of CO2 injection in saline aquifer is the main sensitive part of the targeted carbone storage reservoirs. The recent development of microfluidics tools mimicking porous media of geological reservoirs allowed studying physical, physico-chemical and thermodynamic mechanisms. We used the GLoCs "Geological Labs on Chip" to study dynamic and reactive transport processes at the pore scale induced by the CO2 geological storage. The present work is a first attempt to reproduce, by reactive transport modeling, an experiment of calcium carbonate precipitation during the co-injection of two aqueous solutions in a GLoC device. For that purpose, a new kinetics model, based on the transition-state-theory and on surface complexation modeling, was developed to describe the co-precipitation of amorphous calcium carbonate (ACC) and calcite. ACC precipitates and creates surface complexation sites from which calcite can nucleate and create new surface complexation sites. When the kinetics of calcite precipitation are fast enough, the consumption of matter leads to the dissolution of ACC. The modeling results were first compared to batch experiments (from the literature) and then applied with success to dynamic experiment observations carried out on a GLoC device (from the literature). On the other hand, we evaluated the solubility of CO2 in capillary waters that increases between 5 to 10 folds for reservoir conditions (200 bar and 100°C) compared to the bulk water. The GLoCs tools started to address an excellent and much finer degree of processes control (reactive transport processes, mixing effects, minerals precipitation and dissolution kinetics, etc.) thanks to in situ analysis and characterization techniques, allowing access in real time to relevant properties. Current investigations focus on key parameters influencing the flowing dynamics and trapping mechanisms (relative permeability, capillary conditions, kinetics of dissolution and precipitation of minerals).

  12. Atmospheric CO2 variations over the last three glacial-interglacial climatic cycles deduced from the Dome Fuji deep ice core, Antarctica using a wet extraction technique

    International Nuclear Information System (INIS)

    Kawamura, Kenji; Nakazawa, Takakiyo; Aoki, Shuji

    2003-01-01

    A deep ice core drilled at Dome Fuji, East Antarctica was analyzed for the CO 2 concentration using a wet extraction method in order to reconstruct its atmospheric variations over the past 320 kyr, which includes three full glacial-interglacial climatic cycles, with a mean time resolution of about 1.1 kyr. The CO 2 concentration values derived for the past 65 kyr are very close to those obtained from other Antarctic ice cores using dry extraction methods, although the wet extraction method is generally thought to be inappropriate for the determination of the CO 2 concentration. The comparison between the CO 2 and Ca 2+ concentrations deduced from the Dome Fuji core suggests that calcium carbonate emitted from lands was mostly neutralized in the atmosphere before reaching the central part of Antarctica, or that only a small part of calcium carbonate was involved in CO 2 production during the wet extraction process. The CO 2 concentration for the past 320 kyr deduced from the Dome Fuji core varies between 190 and 300 ppmv, showing clear glacial-interglacial variations similar to the result of the Vostok ice core. However, for some periods, the concentration values of the Dome Fuji core are higher by up to 20 ppmv than those of the Vostok core. There is no clear indication that such differences are related to variations of chemical components of Ca 2+ , microparticle and acidity of the Dome Fuji core

  13. Up-scaling of a two-phase flow model including gravity effect in geological heterogeneous media: application to CO2 sequestration

    International Nuclear Information System (INIS)

    Ngo, Tri-Dat

    2016-01-01

    This work deals with the mathematical modeling and the numerical simulation of the migration under gravity and capillarity effects of the supercritical CO 2 injected into a geological heterogeneous sequestration site. The simulations are performed with the code DuMux. Particularly, we consider the up-scaling, from the cell scale to the reservoir scale, of a two-phase (CO 2 -brine) flow model within a periodic stratified medium made up of horizontal low permeability barriers, continuous or discontinuous. The up-scaling is done by the two-scale asymptotic method. First, we consider perfectly layered media. An homogenized model is developed and validated by numerical simulation for different values of capillary number and the incident flux of CO 2 . The homogenization method is then applied to the case of a two-dimensional medium made up of discontinuous layers. Due to the gravity effect, the CO 2 accumulates under the low permeability layers, which leads to a non-standard local mathematical problem. This stratification is modeled using the gravity current approach. This approach is then extended to the case of semi-permeable strata taking into account the capillarity. The up-scaled model is compared with numerical simulations for different types of layers, with or without capillary pressure, and its limit of validity is discussed in each of these cases. The final part of this thesis is devoted to the study of the parallel computing performances of the code DuMux to simulate the injection and migration of CO 2 in three-dimensional heterogeneous media (layered periodic media, fluvial media and reservoir model SPE 10). (author) [fr

  14. Communication on the Safety Case for a Deep Geological Repository

    International Nuclear Information System (INIS)

    Bailey, Lucy; Bernier, Frederik; Bollingerfehr, Wilhelm; Cunado, Miguel; Ilett, Doug; Kwong, Gloria; ); Noseck, Ulrich; Roehlig, Klaus; Van Luik, Abe; Weber, Jan; Weetjens, Eef

    2017-01-01

    Communication has a specific role to play in the development of deep geological repositories. Building trust with the stakeholders involved in this process, particularly within the local community, is key for effective communication between the authorities and the public. There are also clear benefits to having technical experts hone their communication skills and having communication experts integrated into the development process. This report has compiled lessons from both failures and successes in communicating technical information to non-technical audiences. It addresses two key questions in particular: what is the experience base concerning the effectiveness or non-effectiveness of different tools for communicating safety case results to a non-technical audience and how can communication based on this experience be improved and included into a safety case development effort from the beginning? (authors)

  15. Study on the Geological Structure around KURT Using a Deep Borehole Investigation

    International Nuclear Information System (INIS)

    Park, Kyung Woo; Kim, Kyung Su; Koh, Yong Kwon; Choi, Jong Won

    2010-01-01

    To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area

  16. Risk assessment-led characterisation of the SiteChar UK north sea site for the geological storage of CO2

    International Nuclear Information System (INIS)

    Akhurst, Maxine; Hannis, Sarah D.; Quinn, Martyn F.; Long, David; Shi, Ji-Quan; Koenen, Marielle; Pluymaekers, Maarten; Delprat-Jannaud, Florence; Lecomte, Jean-Claude; Bossie-Codreanu, Daniel; Nagy, Stanislaw; Klimkowski, Lukas; Gei, Davide

    2015-01-01

    Risk assessment-led characterisation of a site for the geological storage of CO 2 in the UK northern North Sea was performed for the EU SiteChar research project as one of a portfolio of sites. Implementation and testing of the SiteChar project site characterisation work-flow has produced a 'dry-run' storage permit application that is compliant with regulatory requirements. A site suitable for commercial-scale storage was characterised, compatible with current and future industrial carbon dioxide (CO 2 ) sources in the northern UK. Pre-characterisation of the site, based on existing information acquired during hydrocarbon exploration and production, has been achieved from publicly available data. The project concept is to store captured CO 2 at a rate of 5 Mt per year for 20 years in the Blake Oil Field and surrounding Captain Sandstone saline aquifer. This commercial-scale storage of 100 Mt CO 2 can be achieved through a storage scenario combining injection of CO 2 into the oil field and concurrent water production down-dip of the field. There would be no encroachment of supercritical phase CO 2 for more than two kilometres beyond the field boundary and no adverse influence on operating hydrocarbon fields provided there is pressure management. Components of a storage permit application for the site are presented, developed as far as possible within a research project. Characterisation and technical investigations were guided by an initial assessment of perceived risks to the prospective site and a need to provide the information required for the storage permit application. The emphasis throughout was to reduce risks and uncertainty on the subsurface containment of stored CO 2 , particularly with respect to site technical performance, monitoring and regulatory issues, and effects on other resources. The results of selected risk assessment-led site characterisation investigations and the subsequent risk reassessments are described together with their

  17. Retrievability in the Deep Geological Disposal motivation and implications

    International Nuclear Information System (INIS)

    Fernandez Polo, J. J.; Aneiros, J. M.; Alonso, J.

    2000-01-01

    The final disposal of High Level Wastes (HLW) in a repository without the intention of retrieval has been the conceptual basis used by most countries to define their deep geological disposal concepts. As a result, current disposal concepts allow, but do not facilitate, the retrieval of the waste. The concept of retrievability has been introduced in the stepwise development process of the deep geological disposal for a series of ethical, socio-political, and technological reasons, which have structured a great deal of attention in the international community. At present, although no clear definition has been given to the term retrievability there seems to be a general consensus in respect of its interpretation as the capacity to retrieve waste from the underground facilities of the repository up to several years after its closure. The retrieval of the HLW packages from the disposal cells entails tackling a series of technological and operational constraints stemming, on the one hand, from the configuration and state of the repository at the time of retrieval and, on the other, from the environmental conditions of temperature and radiation in which such operations have to be carried out. Most countries, Spain included, are assessing the technical feasibility of retrieving waste during the different stages of the repository lifetime, exploring at the same time the possibility of implementing some changes in the repository's design, construction and operation without affecting its long-term safety. The purpose of this paper is three-fold (1) to identify the motivations that have led the international community to consider retrievability in the repository's stepwise development process, (2) to analyse, qualitatively, the different implications this has on current repository concepts, and (3) to state the current Spanish position. (Author)

  18. Safety assessments for deep geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lyon, R.B.

    1984-01-01

    The objective of safety assessment for deep geological disposal of radioactive wastes is to evaluate how well the engineered barriers and geological setting inhibit radionuclide migration and prevent radiation dose to man. Safety assessment is influenced through interaction with the regulatory agencies, research groups, the public and the various levels of government. Under the auspices of the IAEA, a generic disposal system description has been developed to facilitate international exchange and comparison of data and results, and to enable development and comparison of performance for all components of the disposal system. It is generally accepted that a systems modelling approach is required and that safety assessment can be considered on two levels. At the systems level, all components of the system are taken into account to evaluate the risk to man. At the systems level, critical review and quality assurance on software provide the major validation techniques. Risk is a combination of dose estimate and probability of that dose. For analysis of the total system to be practical, the components are usually represented by simplified models. Recently, assessments have been taking uncertainties in the input data into account. At the detailed level, large-scale, complex computer programs model components of the system in sufficient detail that validation by comparison with field and laboratory measurements is possible. For example, three-dimensional fluid-flow, heat-transport and solute-transport computer programs have been used. Approaches to safety assessment are described, with illustrations from safety assessments performed in a number of countries. (author)

  19. Problems of solidificated radioactive wastes burial into deep geological structures

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Leonov, E.A.; Romadin, N.M.; Shishcits, I.Yu.

    1981-01-01

    Perspectives are noted of the radioactive wastes burial into deep geopogical structures. For these purposes it has been proposed to investigate severap types of rocks, which do not have intensive gas-generation when beeng heated; salt deposits and clays. Basing on the results of calculations it has been shown that the dimentions of zones of substantial deformations in the case of the high-level radioactive wastes burial to not exceed several hundreds of meters. Conclusion is made that in the case of choosing the proper geotogicat structure for burial and ir the case of inclusion in the structure of the burial site a zone of sanitary alienation, it is possible to isolate wastes safely for all the period of preservation. Preliminary demands have been formulated to geological structures and underground burial sites. As main tasks for optimizatiop of burial sited are considered: determination of necessary types, number and reliability of barriers which ensure isolation of wastes; to make prognoses of the stressed and deformed state of a geological massif on the influence of thermal field; investigation in changes of chemical and physical properties of rocks under heat, radiative and chemical influence; estimation of possible diffusion of radioactivity in a mountin massif; development of a rational mining-thechnological schemes of the burual of wastes of different types. A row of tasks in the farmeworks of this probtem are sotved successfutty. Some resutts are given of the theoretical investigations in determination of zones of distructions of rocks because of heat-load [ru

  20. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Xu, T.; Li, Y.

    2010-12-15

    The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} mineral trapping, the presence of Fe-bearing siliciclastic and/or carbonate is more favorable to the H{sub 2}S mineral trapping.

  1. Search for and characterization of microorganisms in deep geological compartments

    International Nuclear Information System (INIS)

    Barsotti, Vanessa

    2011-01-01

    Over the past 50 years, the scientific community has shown a growing interest for deep geological compartments. However, these ecosystems remain largely unknown due to their inaccessibility. The aim of the present thesis was double; the first aim was to characterize, from a microbiological perspective, four terrestrial Triassic sedimentary formations located between 1700 and 2000 m depth in the Parisian Basin and collected by the ANDRA during a deep drilling campaign in 2008, and the second aim was to study the combined effects of temperature, pressure and salinity on the metabolic activity of anaerobic prokaryotes in order to predict their reaction to geological burial. Incubations in a large variety of media were carried out in order to stimulate the growth of the main trophic types found in such environments such as methanogens, fermenters and bacteria reducing sulphur compounds, however, no viable and cultivable microorganisms could be isolated. In parallel, a molecular approach was used to i) compare the efficacy of several DNA extractions methods and ii) analyse the bacterial diversity, using DGGE (Denaturing Gel Gradient Electrophoresis) and cloning, present in rock inner cores conserved either at atmospheric pressure or under pressure, in their initial states and following incubations in various media. The genetic exploration of these samples revealed a very low biomass and a poor diversity composed mainly of aerobic and mesophilic members of the Bacteria domain, a priori unadapted to such a deep, hot, saline and anoxic environment. This unexpected microbial community also found in many subsurface ecosystems as well as in extreme ecosystems could have partially originated from a paleo-recharge of the Trias aquifer with cold waters coming from the melting of ice formed during the last Pleistocene glaciation. The second objective was to study the combined effects of temperature (40, 55 and 70 C), pressure (1, 90 and 180 bars) and salinity (13, 50, 110, 180

  2. CO2 storage in Sweden

    International Nuclear Information System (INIS)

    Ekstroem, Clas; Andersson, Annika; Kling, Aasa; Bernstone, Christian; Carlsson, Anders; Liljemark, Stefan; Wall, Caroline; Erstedt, Thomas; Lindroth, Maria; Tengborg, Per; Edstroem, Mikael

    2004-07-01

    This study considers options, that could be feasible for Sweden, to transport and geologically store CO 2 , providing that technology for electricity production with CO 2 capture will be available in the future and also acceptable from cost- and reliability point of view. As a starting point, it is assumed that a new 600-1000 MW power plant, fired with coal or natural gas, will be constructed with CO 2 capture and localised to the Stockholm, Malmoe or Goeteborg areas. Of vital importance for storage of carbon dioxide in a reservoir is the possibility to monitor its distribution, i.e. its migration within the reservoir. It has been shown in the SACS-project that the distribution of carbon dioxide within the reservoir can be monitored successfully, mainly by seismic methods. Suitable geologic conditions and a large storage potential seems to exist mainly in South West Scania, where additional knowledge on geology/hydrogeology has been obtained since the year 2000 in connection to geothermal energy projects, and in the Eastern part of Denmark, bordering on South West Scania. Storage of carbon dioxide from the Stockholm area should not be excluded, but more studies are needed to clarify the storage options within this area. The possibilities to use CO 2 for enhanced oil recovery, EOR, in i.a. the North Sea should be investigated, in order to receive incomes from the CO 2 and shared costs for infrastructure, and by this also make the CO 2 regarded as a trading commodity, and thereby achieving a more favourable position concerning acceptance, legal issues and regulations. The dimensions of CO 2 -pipelines should be similar to those for natural natural gas, although regarding some aspects they have different design and construction prerequisites. To obtain cost efficiency, the transport distances should be kept short, and possibilities for co-ordinated networks with short distribution pipelines connected to common main pipelines, should be searched for. Also, synergies

  3. Southwest Pacific deep water carbonate chemistry linked to high southern latitude climate and atmospheric CO2 during the Last Glacial Termination

    Science.gov (United States)

    Allen, Katherine A.; Sikes, Elisabeth L.; Hönisch, Bärbel; Elmore, Aurora C.; Guilderson, Thomas P.; Rosenthal, Yair; Anderson, Robert F.

    2015-08-01

    A greater amount of CO2 was stored in the deep sea during glacial periods, likely via greater efficiency of the biologic pump and increased uptake by a more alkaline ocean. Reconstructing past variations in seawater carbonate ion concentration (a major component of alkalinity) enables quantification of the relative roles of different oceanic CO2 storage mechanisms and also places constraints on the timing, magnitude, and location of subsequent deep ocean ventilation. Here, we present a record of deep-water inorganic carbon chemistry since the Last Glacial Maximum (LGM; ∼19-23 ka BP), derived from sediment core RR0503-83 raised from 1627 m in New Zealand's Bay of Plenty. The core site lies within the upper limit of southern-sourced Circumpolar Deep Water (CDW), just below the lower boundary of Antarctic Intermediate Water (AAIW). We reconstruct past changes in bottom water inorganic carbon chemistry from the trace element and stable isotopic composition of calcite shells of the epibenthic foraminifer Cibicidoides wuellerstorfi. A record of ΔCO32-(ΔCO32- = [COCO32-] in situ - [CO32-] saturation) derived from the foraminiferal boron to calcium ratio (B/Ca) provides evidence for greater ice-age storage of respired CO2 and reveals abrupt deglacial shifts in [CO32-] in situ of up to 30 μmol/kg (5 times larger than the difference between average LGM and Holocene values). The rapidity of these changes suggests the influence of changing water mass structure and atmospheric circulation in addition to a decrease in CO2 content of interior waters.

  4. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Russel, A.W. [Bedrock Geosciences, Auenstein (Switzerland); Reijonen, H.M. [Saanio and Rickkola Oy, Helsinki (Finland); McKinley, I.G. [MCM Consulting, Baden-Daettwil (Switzerland)

    2015-06-15

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  5. Natural analogues: studies of geological processes relevant to radioactive waste disposal in deep geological repositories

    International Nuclear Information System (INIS)

    Russel, A.W.; Reijonen, H.M.; McKinley, I.G.

    2015-01-01

    The geological disposal of radioactive wastes is generally accepted to be the most practicable approach to handling the waste inventory built up from over 70 years accumulation of power production, research-medical-industrial and military wastes. Here, a brief overview of the approach to geological disposal is presented along with some information on repository design and the assessment of repository post-closure safety. One of the significant challenges for repository safety assessment is how to extrapolate the likely long-term (i.e. ten thousand to a million years) behaviour of the repository from the necessarily short term data from analytical laboratories and underground rock laboratories currently available. One approach, common to all fields of the geosciences, but also in such diverse fields as philosophy, biology, linguistics, law, etc., is to utilise the analogue argumentation methodology. For the specific case of radioactive waste management, the term 'natural analogue' has taken on a particular meaning associated with providing supporting arguments for a repository safety assessment. This approach is discussed here with a brief overview of how the study of natural (and, in particular, geological) systems can provide supporting information on the likely long-term evolution of a deep geological waste repository. The overall approach is discussed and some relevant examples are presented, including the use of uranium ore bodies to assess waste form stability, the investigation of native metals to define the longevity of waste containers and how natural clays can provide information on the stability of waste tunnel backfill material. (authors)

  6. Final disposal in deep boreholes using multiple geological barriers. Digging deeper for safety. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bracke, Guido; Hurst, Stephanie; Merkel, Broder; Mueller, Birgit; Schilling, Frank

    2016-03-15

    The proceedings of the workshop on final disposal in deep boreholes using multiple geological barriers - digging deeper for safety include contributions on the following topics: international status and safety requirements; geological and physical barriers; deep drilling - shaft building; technical barriers and emplacement technology for high P/T conditions; recovery (waste retrieval); geochemistry and monitoring.

  7. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia.

    Science.gov (United States)

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO 2 . Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the " assimilation of bicarbonate in the dark " (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m -3 d -1 , were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m -2 d -1 . This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO 2 -fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype

  8. Reversible deep storage: reversibility options for storage in deep geological formations

    International Nuclear Information System (INIS)

    2009-01-01

    This report describes the definition approach to reversibility conditions, presents the main characteristics of high-activity and intermediate-activity long-lived wastes, describes the storage in deep geological formations (safety functions, general description of the storage centre), discusses the design options for the different types of wastes (container, storage module, handling processes, phenomenological analysis, monitoring arrangements) and the decision process in support reversibility (steering of the storage process, progressive development and step-by-step closing), and reports and discusses the researches concerning the memory of the storage site

  9. Removal of CO2 by storage in the deep underground, chemical utilization and biofixation. Options for the Netherlands

    International Nuclear Information System (INIS)

    Over, J.A.; De Vries, J.E.; Stork, J.

    1999-07-01

    The Utrecht University in Utrecht, Netherlands, initially put the subject of CO2-storage on the agenda as a possible necessary policy element. During 1990/1991 a number of research institutes and engineering consultants carried out several studies. Also in 1991 the lEA Greenhouse Gas Group (IEA GHG) was initiated, including participation from The Netherlands. The Netherlands Agency for Energy and the Environment (Novem) and the Dutch Ministry of Economic Affairs both attended the meetings of the Executive Committee (ExCo) from the start. This Group started paying attention to the subject of CO2-capturing at large point sources (electricity stations). They then went subsequently from capturing from other (smaller and/or more diffuse) sources, ranking relative to other large scale options to combat or reduce CO2-emissions (i.e. vast areas of forest) to influence and controlling other 'greenhouse gases' such as methane. During 1992/1993 Novem prepared - on request of the Ministry of Economic Affairs - research proposals for investigations and demonstration projects, having a 10 to 15 year horizon, with regard to CO2-capturing technologies. In the beginning of 1994, the Dutch Ministry of Environment (VROM) put more emphasis on demonstration of the feasibility of CO2-storage. When the first 'Kok-government' (the so-called 'Purple Cabinet') came into being, attention shifted to studies on CO2-storage; the central question being whether there would be sufficient potential capacity if the necessity to store CO2 would ever occur. Within this framework Novem was authorized by the Ministry of Economic Affairs to carry out an investigation program on possibilities of CO2-storage. The present publication deals with the results of these studies. The main subject of investigation were: Storage in underground formations (depleted gas fields and aquifers) and the conditions under which this is feasible; Possibilities for enhanced gas recovery by carbon dioxide injection and its

  10. Magma-derived CO2 emissions in the Tengchong volcanic field, SE Tibet: Implications for deep carbon cycle at intra-continent subduction zone

    Science.gov (United States)

    Zhang, Maoliang; Guo, Zhengfu; Sano, Yuji; Zhang, Lihong; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2016-09-01

    Active volcanoes at oceanic subduction zone have long been regard as important pathways for deep carbon degassed from Earth's interior, whereas those at continental subduction zone remain poorly constrained. Large-scale active volcanoes, together with significant modern hydrothermal activities, are widely distributed in the Tengchong volcanic field (TVF) on convergent boundary between the Indian and Eurasian plates. They provide an important opportunity for studying deep carbon cycle at the ongoing intra-continent subduction zone. Soil microseepage survey based on accumulation chamber method reveals an average soil CO2 flux of ca. 280 g m-2 d-1 in wet season for the Rehai geothermal park (RGP). Combined with average soil CO2 flux in dry season (ca. 875 g m-2 d-1), total soil CO2 output of the RGP and adjacent region (ca. 3 km2) would be about 6.30 × 105 t a-1. Additionally, we conclude that total flux of outgassing CO2 from the TVF would range in (4.48-7.05) × 106 t a-1, if CO2 fluxes from hot springs and soil in literature are taken into account. Both hot spring and soil gases from the TVF exhibit enrichment in CO2 (>85%) and remarkable contribution from mantle components, as indicated by their elevated 3He/4He ratios (1.85-5.30 RA) and δ13C-CO2 values (-9.00‰ to -2.07‰). He-C isotope coupling model suggests involvement of recycled organic metasediments and limestones from subducted Indian continental lithosphere in formation of the enriched mantle wedge (EMW), which has been recognized as source region of the TVF parental magmas. Contamination by crustal limestone is the first-order control on variations in He-CO2 systematics of volatiles released by the EMW-derived melts. Depleted mantle and recycled crustal materials from subducted Indian continental lithosphere contribute about 45-85% of the total carbon inventory, while the rest carbon (about 15-55%) is accounted by limestones in continental crust. As indicated by origin and evolution of the TVF

  11. CO2-Water-Rock Wettability: Variability, Influencing Factors, and Implications for CO2 Geostorage.

    Science.gov (United States)

    Iglauer, Stefan

    2017-05-16

    Carbon geosequestration (CGS) has been identified as a key technology to reduce anthropogenic greenhouse gas emissions and thus significantly mitigate climate change. In CGS, CO 2 is captured from large point-source emitters (e.g., coal fired power stations), purified, and injected deep underground into geological formations for disposal. However, the CO 2 has a lower density than the resident formation brine and thus migrates upward due to buoyancy forces. To prevent the CO 2 from leaking back to the surface, four trapping mechanisms are used: (1) structural trapping (where a tight caprock acts as a seal barrier through which the CO 2 cannot percolate), (2) residual trapping (where the CO 2 plume is split into many micrometer-sized bubbles, which are immobilized by capillary forces in the pore network of the rock), (3) dissolution trapping (where CO 2 dissolves in the formation brine and sinks deep into the reservoir due to a slight increase in brine density), and (4) mineral trapping (where the CO 2 introduced into the subsurface chemically reacts with the formation brine or reservoir rock or both to form solid precipitates). The efficiency of these trapping mechanisms and the movement of CO 2 through the rock are strongly influenced by the CO 2 -brine-rock wettability (mainly due to the small capillary-like pores in the rock which form a complex network), and it is thus of key importance to rigorously understand CO 2 -wettability. In this context, a substantial number of experiments have been conducted from which several conclusions can be drawn: of prime importance is the rock surface chemistry, and hydrophilic surfaces are water-wet while hydrophobic surfaces are CO 2 -wet. Note that CO 2 -wet surfaces dramatically reduce CO 2 storage capacities. Furthermore, increasing pressure, salinity, or dissolved ion valency increases CO 2 -wettability, while the effect of temperature is not well understood. Indeed theoretical understanding of CO 2 -wettability and the

  12. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and

  13. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    Energy Technology Data Exchange (ETDEWEB)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  14. From Injectivity to Integrity Studies of CO2 Geological Storage Caractérisation de l’injectivité et de l’intégrité d’un stockage géologique de CO2

    Directory of Open Access Journals (Sweden)

    Bemer E.

    2009-07-01

    Full Text Available The technical and economical success of a CO2 geological storage project requires the preservation of the site injectivity and integrity properties over its lifetime. Unlike conventional hydrocarbon gas injection, CO2 injection implies geochemical reactions between the reactive brine and the in situ formations (reservoir and cap rock leading to modifications of their petrophysical and geomechanical properties. This paper underlines the experimental difficulties raised by the low permeability of samples representative either of the cap rock itself or at least of transition zones between the reservoir and the effective cap rock. Acidification effects induced by CO2 injection have been studied using an experimental procedure of chemical alteration, which ensures a homogeneous dissolution pattern throughout the rock sample and especially avoids any wormholing process that would lead to erroneous measurements at the core scale. Porosity, permeability and geomechanical properties of outcrop and field carbonate samples of various permeability levels have been measured under their native state and different levels of alteration. The present work has been conducted within the framework of ANR GeoCarbone-INJECTIVITY and GeoCarbone-INTEGRITY projects. Each experimental step: chemical alteration, petrophysical measurements and geomechanical testing, is considered from the point of view of injectivity and integrity issues. The obtained experimental data show clear trends of chemically induced mechanical weakening. La réussite technique et économique d’un projet de stockage géologique de CO2 repose sur le maintien des propriétés d’injectivité et d’intégrité du site pendant sa durée de vie. Contrairement à l’injection d’un gaz d’hydrocarbure standard, l’injection de CO2 implique des réactions géochimiques entre la saumure réactive mobile et les roches en place (réservoir et couverture conduisant à des modifications de leurs propri

  15. Plume Migration of Different Carbon Dioxide Phases During Geological Storage in Deep Saline Aquifers

    Directory of Open Access Journals (Sweden)

    Chien-Hao Shen

    2015-01-01

    Full Text Available This study estimates the plume migration of mobile supercritical phase (flowing, aqueous phase (dissolved, and ionic phase CO2 (bicarbonate, and evaluates the spatial distribution of immobile supercritical phase (residual and mineral phase CO2 (carbonates when CO2 was sequestered. This utilized a simulation, in an anticline structure of a deep saline aquifer in the Tiechenshan (TCS field, Taiwan. All of the trapping mechanisms and different CO2 phases were studied using the fully coupled geochemical equation-of-state GEM compositional simulator. The mobile supercritical phase CO2 moved upward and then accumulated in the up-dip of the structure because of buoyancy. A large amount of immobile supercritical phase CO2 was formed at the rear of the moving plume where the imbibition process prevailed. Both the aqueous and ionic phase CO2 finally accumulated in the down-dip of the structure because of convection. The plume volume of aqueous phase CO2 was larger than that of the supercritical phase CO2, because the convection process increased vertical sweep efficiency. The up-dip of the structure was not the major location for mineralization, which is different from mobile supercritical phase CO2 accumulation.

  16. Effect of Flow Direction on Relative Permeability Curves in Water/Gas Reservoir System: Implications in Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Abdulrauf Rasheed Adebayo

    2017-01-01

    Full Text Available The effect of gravity on vertical flow and fluids saturation, especially when flow is against gravity, is not often a subject of interest to researchers. This is because of the notion that flow in subsurface formations is usually in horizontal direction and that vertical flow is impossible or marginal because of the impermeable shales or silts overlying them. The density difference between two fluids (usually oil and water flowing in the porous media is also normally negligible; hence gravity influence is neglected. Capillarity is also often avoided in relative permeability measurements in order to satisfy some flow equations. These notions have guided most laboratory core flooding experiments to be conducted in horizontal flow orientation, and the data obtained are as good as what the experiments tend to mimic. However, gravity effect plays a major role in gas liquid systems such as CO2 sequestration and some types of enhanced oil recovery techniques, particularly those involving gases, where large density difference exists between the fluid pair. In such cases, laboratory experiments conducted to derive relative permeability curves should take into consideration gravity effects and capillarity. Previous studies attribute directional dependence of relative permeability and residual saturations to rock anisotropy. It is shown in this study that rock permeability, residual saturation, and relative permeability depend on the interplay between gravity, capillarity, and viscous forces and also the direction of fluid flow even when the rock is isotropic. Rock samples representing different lithology and wide range of permeabilities were investigated through unsteady-state experiments covering drainage and imbibition in both vertical and horizontal flow directions. The experiments were performed at very low flow rates to capture capillarity. The results obtained showed that, for each homogeneous rock and for the same flow path along the core length

  17. Potential environmental issues of CO2 storage in deep saline aquifers: Geochemical results from the Frio-I Brine Pilot test, Texas, USA

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Hovorka, Susan D.; Nance, H. Seay; Cole, David R.; Phelps, Tommy J.; Knauss, Kevin G.

    2009-01-01

    Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio “B”, composed of a 4-m-thick sandstone and separated from the “C” by ∼15 m of shale and siltstone beds. Results obtained from the Frio “B” 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the “B” sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the “B” sandstone

  18. Status of knowledge on risks related to CO2 geological storage. Report nr 1: risks during the injection phase. Investigation report

    International Nuclear Information System (INIS)

    Gombert, Philippe; Thoraval, Alain

    2010-01-01

    Carbon capture and storage (CCS) is considered as a possibility to struggle against greenhouse effect and therefore against climate change. This process is here presented as comprising three main periods: exploitation during 40 to 50 years which itself comprises three phases (design, injection and closure), memory during about 300 years, and a long term period (700 to 800 years during which the existence of the storage and its associated risks will be forgotten). This study concerns the injection phase of the first period and some of its associated risks: leakages, thermal-hydro-mechanical-chemical disturbances at the vicinity of the storage. The report gives an overview of CO 2 geological capture and storage (capture, transport, injection, storage, foreseen storage media, nature of the injected fluid, regulations, returns on experience), identifies the associated risks, discusses issues of assessment of risks related to well leakages and to disturbances at the vicinity of the well (mechanical, physical and chemical, bacteriological risks)

  19. Petrophysical Characterization of Arroyal Antiform Geological Formations (Aguilar de Campoo, Palencia) as a Storage and Seal Rocks in the Technology Development Plant for Geological CO2 Storage (Hontomin, Burgos)

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.; Pelayo, M.; Saldana, R.

    2011-01-01

    The geological storage program of Energy City Foundation is focusing its research effort in the Technological Development and Research Plant in Hontomin (Burgos) start off. The present report shows the petrophysical characterization of of the Arroyal antiform geological formations since they are representatives, surface like, of the storage and seal formations that will be found in the CO 2 injection plant in Hontomin. In this petrophysics characterization has taken place the study of matrix porosity, specific surface and density of the storage and seal formations. Mercury intrusion porosimetry, N 2 adsorption and He pycnometry techniques have been used for the characterization. Furthermore, it has carried out a mineralogical analysis of the seal materials by RX diffraction. (Author) 26 refs.

  20. Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469

    Energy Technology Data Exchange (ETDEWEB)

    Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

    2012-07-01

    formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application

  1. Modelling of gas generation in deep geological repositories after closure

    International Nuclear Information System (INIS)

    Poller, A.; Mayer, G.; Darcis M; Smith, P.

    2016-12-01

    In deep geological repositories for radioactive waste, significant quantities of gases will be generated in the long term as a result of various processes, notably the anaerobic corrosion of metals and the degradation of organic materials. Therefore, the impact of gas production on post-closure safety of the repositories needs to be assessed as part of a safety case. The present report provides a comprehensive description of the quantitative modelling of gas generation and associated water consumption during the post-closure phase of deep geological repositories in Opalinus Clay based on current scientific knowledge and on current preliminary repository designs. This includes a presentation of the modelling basis, namely the conceptual and mathematical models, the input data used, the computer tools developed, the relevant uncertainties and principal programme / design options, as well as the derivation, analysis and discussion of specific assessment cases. The modelling is carried out separately for the two main sources of gas, which are the emplaced waste including the disposal containers; and the construction materials. The contribution of construction materials to gas generation rates in emplacement tunnels for spent fuel (SF) and vitrified high-level waste (HLW) is significant during several thousand years after closure. In the long term, however, the corrosion of the disposal canisters, which are in the reference case assumed to be fabricated of carbon steel, accounts for the vast majority of the total gas produced in these tunnels. The contribution of construction materials in emplacement caverns for long lived intermediate-level waste (ILW) and low- and intermediate-level waste (L/ILW) to gas generation is generally small. In ILW emplacement caverns, gas generation is generally dominated by hydrogen generation from the corrosion of cast iron Mosaik-II waste containers for PWR internals and from the corrosion of aluminium in operational waste from the

  2. Modelling of gas generation in deep geological repositories after closure

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Mayer, G.; Darcis M [AF-Consult Switzerland Ltd, Baden-Dättwil, (Switzerland); Smith, P. [Safety Assessment Management Ltd, Henley-On-Thames, Oxfordshire (United Kingdom)

    2016-12-15

    In deep geological repositories for radioactive waste, significant quantities of gases will be generated in the long term as a result of various processes, notably the anaerobic corrosion of metals and the degradation of organic materials. Therefore, the impact of gas production on post-closure safety of the repositories needs to be assessed as part of a safety case. The present report provides a comprehensive description of the quantitative modelling of gas generation and associated water consumption during the post-closure phase of deep geological repositories in Opalinus Clay based on current scientific knowledge and on current preliminary repository designs. This includes a presentation of the modelling basis, namely the conceptual and mathematical models, the input data used, the computer tools developed, the relevant uncertainties and principal programme / design options, as well as the derivation, analysis and discussion of specific assessment cases. The modelling is carried out separately for the two main sources of gas, which are the emplaced waste including the disposal containers; and the construction materials. The contribution of construction materials to gas generation rates in emplacement tunnels for spent fuel (SF) and vitrified high-level waste (HLW) is significant during several thousand years after closure. In the long term, however, the corrosion of the disposal canisters, which are in the reference case assumed to be fabricated of carbon steel, accounts for the vast majority of the total gas produced in these tunnels. The contribution of construction materials in emplacement caverns for long lived intermediate-level waste (ILW) and low- and intermediate-level waste (L/ILW) to gas generation is generally small. In ILW emplacement caverns, gas generation is generally dominated by hydrogen generation from the corrosion of cast iron Mosaik-II waste containers for PWR internals and from the corrosion of aluminium in operational waste from the

  3. Scientific basis for a safety case of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas [and others

    2012-11-15

    Within this project strategies and methods to build a safety case for deep geological repositories are further developed. This includes also the scientific fundamentals as a basis of the safety case. In the international framework the methodology of the Safety Case is frequently applied and continuously improved. According to definitions from IAEA and NEA the Safety Case is a compilation of arguments and facts, which describe, quantify and support the safety and the degree of confidence in the safety of the geological repository. The safety of the geological repository should be demonstrated by the safety case. The safety case is the basis for essential decisions during a repository programme. It comprises the results of safety assessments in combination with additional information like multiple lines of evidence and a discussion of robustness and quality of the repository, its design and the quality of all safety assessments including the basic assumptions. A crucial element of the Safety Case is the long-term safety analysis, i.e. the systematic analysis of the hazards connected with the facility and the capability of site and repository design to ensure the required safety functions and to fulfill the technical claims. Long-term safety analysis requires a powerful and qualified programme package, which contains appropriate hardware and software as well as well trained and experienced modellers performing the model calculations. The calculation tools used within safety cases need to be checked and verified and continuously adapted to the state-of-the-art science and technology. Especially it needs to be applicable to a real repository system. For the assessment of safety a deep process understanding is necessary. The R and D work performed within this project will contribute to the improvement of process and system understanding as well as to the further development of methods and strategies applied in the safety case. Emphasis was put on the following aspects

  4. Scientific basis for a safety case of deep geological repositories

    International Nuclear Information System (INIS)

    Noseck, Ulrich; Becker, Dirk-Alexander; Brasser, Thomas

    2012-11-01

    Within this project strategies and methods to build a safety case for deep geological repositories are further developed. This includes also the scientific fundamentals as a basis of the safety case. In the international framework the methodology of the Safety Case is frequently applied and continuously improved. According to definitions from IAEA and NEA the Safety Case is a compilation of arguments and facts, which describe, quantify and support the safety and the degree of confidence in the safety of the geological repository. The safety of the geological repository should be demonstrated by the safety case. The safety case is the basis for essential decisions during a repository programme. It comprises the results of safety assessments in combination with additional information like multiple lines of evidence and a discussion of robustness and quality of the repository, its design and the quality of all safety assessments including the basic assumptions. A crucial element of the Safety Case is the long-term safety analysis, i.e. the systematic analysis of the hazards connected with the facility and the capability of site and repository design to ensure the required safety functions and to fulfill the technical claims. Long-term safety analysis requires a powerful and qualified programme package, which contains appropriate hardware and software as well as well trained and experienced modellers performing the model calculations. The calculation tools used within safety cases need to be checked and verified and continuously adapted to the state-of-the-art science and technology. Especially it needs to be applicable to a real repository system. For the assessment of safety a deep process understanding is necessary. The R and D work performed within this project will contribute to the improvement of process and system understanding as well as to the further development of methods and strategies applied in the safety case. Emphasis was put on the following aspects

  5. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia

    Science.gov (United States)

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S.; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M.

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the “assimilation of bicarbonate in the dark” (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m−3 d−1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13–14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m−2 d−1. This quantity of produced de novo organic carbon amounts to about 85–424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota “low-ammonia-concentration” deep

  6. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  7. Geochemical and hydrological characterization of shallow aquifer water following a nearby deep CO2 injection in Wellington, Kansas

    Science.gov (United States)

    Datta, S.; Andree, I.; Johannesson, K. H.; Kempton, P. D.; Barker, R.; Birdie, T. R.; Watney, W. L.

    2017-12-01

    Salinization or CO2 leakage from local Enhanced Oil Recovery (EOR) projects has become a possible source for contamination and water quality degradation for local irrigation or potable well users in Wellington, Kansas. Shallow domestic and monitoring wells, as well as surface water samples collected from the site, were analyzed for a wide array of geochemical proxies including major and trace ions, rare earth elements (REE), stable isotopes, dissolved organic carbon and dissolved hydrocarbons; these analytes were employed as geotracers to understand the extent of hydrologic continuity throughout the Paleozoic stratigraphic section. Previous research by Barker et al. (2012) laid the foundation through a mineralogical and geochemical investigation of the Arbuckle injection zone and assessment of overlying caprock integrity, which led to the conclusion that the 4,910-5,050' interval will safely sequester CO2 with high confidence of a low leakage potential. EOR operations using CO2 as the injectant into the Mississippian 3,677-3,706' interval was initiated in Jan 2016. Two groundwater sampling events were conducted to investigate any temporal changes in the surface and subsurface waters. Dissolved (Ca+Mg)/Na and Na/Cl mass ratio values of two domestic wells and one monitoring well ranged from 0.67 to 2.01 and 0.19 to 0.39, respectively, whereas a nearby Mississippian oil well had values of 0.20 and 0.62, respectively . δ18O and δ2H ranged from -4.74 to -5.41 ‰VSMOW and -31.4 to -34.3 ‰VSMOW, respectively, among the domestic wells and shallowest monitoring well. Conservative ion relationships in drill-stem-test waters from Arbuckle and Mississippian injection zones displayed significant variability, indicating limited vertical hydrologic communication. Total aquifer connectivity is inconclusive based on the provided data; however, a paleoterrace and incised valley within the study site are thought to be connected through a Mississippian salt plume migration

  8. Selection and Characterization of Geological Sites able to Host a Pilot-Scale CO2 Storage in the Paris Basin (GéoCarbone-PICOREF Choix et caractérisation de sites géologiques propices à l’installation d’un pilote pour le stockage de CO2 dans le bassin de Paris (GéoCarbone-PICOREF

    Directory of Open Access Journals (Sweden)

    Brosse É.

    2010-06-01

    Full Text Available The objective of the GéoCarbone-PICOREF project was to select and characterize geological sites where CO2 storage in permeable reservoir could be tested at the pilot scale. Both options of storage in deep saline aquifer and in depleted hydrocarbon field were considered. The typical size envisioned for the pilot was 100 kt CO2 per year. GéoCarbone-PICOREF initially focused on a “Regional Domain”, ca. 200 × 150 km, in the Paris Basin. It was attractive for the following reasons: detailed geological data is available, due to 50 years of petroleum exploration; basin-scale deep saline aquifers are present, with a preliminary estimate of storage capacity which is at the Gt CO2 level, namely the carbonate Oolithe Blanche Formation, of Middle Jurassic age, generally located between 1500 and 1800 m depths in the studied area, and several sandstone formations of Triassic age, located between 2000 and 3000 m; several depleted oil fields exist: although offering storage capacities at a much lower level, they do represent very well constrained geological environments, with proven sealing properties; several sources of pure CO2 were identified in the area, at a flow rate compatible with the pilot size, that would avoid capture costs. 750 km of seismic lines were reprocessed and organized in six sections fitted on well logs. This first dataset provided improved representations of: the gross features of the considered aquifers in the Regional Domain; the structural scheme; lateral continuity of the sealing cap rocks. An inventory of the environmental characteristics was also made, including human occupancy, protected areas, water resource, natural hazards, potential conflicts of use with other resources of the subsurface, etc. From all these criteria, a more restricted geographical domain named the “Sector”, ca. 70 × 70 km, was chosen, the most appropriate for further selection of storage site(s. The geological characterization of the Sector has

  9. "Carbon in Underland": A multidisciplinary approach to producing an informative animated video for the Center for Nanoscale Control of Geological CO2

    Science.gov (United States)

    Molins, S.; Cappuccio, J. A.; Berry, I.; Miller, J.; Bourg, I. C.; Kelly, L. M.

    2011-12-01

    As part of the 'Science for Our Nation's Energy Future, Summit and Forum', each of the 46 Energy Frontier Research Centers (EFRCs) created in 2009 by the US Department of Energy was invited to design a short, engaging film with the central goal to educate, inspire, and entertain an intelligent but not expert audience about the extraordinary science, innovation and people in their center. The Center for Nanoscale Control of Geological CO2 (NCGC) is an EFRC that is building a next generation understanding of molecular-to-pore-scale processes critical to controlling the flow,transport, and ultimate mineralization in porous rock media, in particular as applied to geologic sequestration of CO2. In response to the invitation, the NCGC assembled a team that included several young scientists, the Center project manager, and members from the Public Affairs and Creative Services Office of the Lawrence Berkeley National Laboratory with the objective of preparing a submission. A videographer from the Creative Services Office was responsible for overall management including production, art direction, and editing, while scientists from the Center were responsible for scientific content and original storyline concept. The Center project manager facilitated the communication between team members. A group of scientists together with the project manager developed the original idea, which was refined and given shape as a script in dialogue form by a science writer from Public Affairs. The objective was to communicate scientific content in an entertaining manner with a simple storyline. In a second phase, the script was revised further by scientists for content. Clips from experiments and modeling simulations were requested from the Center's scientists to illustrate the scientific content. Video production and animation were done by the videographer and an animator in an iterative process that involve feedback from the Center team. The final cut was edited to meet the maximum length

  10. The influence of deep-seabed CO2 sequestration on small metazoan (meiofaunal) viability and community structure: final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Thistle, D

    2008-09-30

    Since the industrial revolution, the burning of fossil fuel has produced carbon dioxide at an increasing rate. Present atmospheric concentration is about ~1.5 times the preindustrial level and is rising. Because carbon dioxide is a greenhouse gas, its increased concentration in the atmosphere is thought to be a cause of global warming. If so, the rate of global warming could be slowed if industrial carbon dioxide were not released into the atmosphere. One suggestion has been to sequester it in the deep ocean, but theory predicts that deep-sea species will be intolerant of the increased concentrations of carbon dioxide and the increased acidity it would cause. The aim of our research was to test for consequences of carbon dioxide sequestration on deep-sea, sediment-dwelling meiofauna. Recent technical advances allowed us to test for effects in situ at depths proposed for sequestration. The basic experimental unit was an open-topped container into which we pumped ~20 L of liquid carbon dioxide. The liquid carbon dioxide mixed with near-bottom sea water, which produced carbon dioxide-rich sea water that flowed out over the near-by seabed. We did 30-day experiments at several locations and with different numbers of carbon dioxide-filled containers. Harpacticoid copepods (Crustacea) were our test taxon. In an experiment we did during a previous grant period, we found that large numbers of individuals exposed to carbon dioxide-rich sea water had been killed (Thistle et al. 2004). During the present grant period, we analyzed the species-level data in greater detail and discovered that, although individuals of many species had been killed by exposure to carbon dioxide-rich sea water, individuals of some species had not (Thistle et al. 2005). This result suggests that seabed sequestration of carbon dioxide will not just reduce the abundance of the meiofauna but will change the composition of the community. In another experiment, we found that some harpacticoid species swim

  11. Installation of borehole seismometer for earthquake characteristics in deep geological environment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Hee; Choi, Weon Hack; Cho, Sung Il; Chang, Chun Joong [KHNP CRI, Seoul (Korea, Republic of)

    2014-10-15

    Deep geological disposal is currently accepted as the most appropriate method for permanently removing spent nuclear fuel from the living sphere of humans. For implementation of deep geological disposal, we need to understand the geological changes that have taken place over the past 100,000 years, encompassing active faults, volcanic activity, elevation, ubsidence, which as yet have not been considered in assessing the site characteristics for general facilities, as well as to investigate and analyze the geological structures, fracture systems and seismic responses regarding deep geological environment about 500 meters or more underground. In regions with high seismic activity, such as Japan, the Western United States and Taiwan, borehole seismometers installed deep underground are used to monitor seismic activity during the course of seismic wave propagation at various depths and to study the stress changes due to earthquakes and analyze the connection to fault movements. Korea Hydro and Nuclear Power Co., Ltd. (KHNP) have installed the deep borehole earthquake observatory at depths of about 300 to 600 meters in order to study the seismic response characteristics in deep geological environment on June, 2014 in Andong area. This paper will show the status of deep borehole earthquake observatory and the results of background noise response characteristics of these deep borehole seismic data as a basic data analysis. We present here the status of deep borehole seismometer installation by KHNP. In order to basic data analysis for the borehole seismic observation data, this study shows the results of the orientation of seismometer and background noise characteristics by using a probability density function. Together with the ground motion data recorded by the borehole seismometers can be utilized as basic data for seismic response characteristics studies with regard to spent nuclear fuel disposal depth and as the input data for seismic hazard assessment that

  12. Application of AMT in detecting deep geological structures in Lejia district of Xiangshan uranium ore field

    International Nuclear Information System (INIS)

    Duan Shuxin; Liu Hu

    2014-01-01

    In recent years, exploration in Xiangshan uranium ore field shows that the intersection of faults and the interface of different rock formation and the basement is an important sign of deep ore- prospecting. In order to evaluate deep uranium resource in Lejia district, audio magnetotelluric method (AMT) was undertaken to carry out profile investigation. With that method, we discerned the interface of different rock formation and the basement successfully, and faults in the deep, which provides a good basis for the prediction of deep uranium resource. Drilling results show that AMT method has an obvious advantage in detecting deep geological structures in Xiangshan. (authors)

  13. The sequestration of CO2

    International Nuclear Information System (INIS)

    Le Thiez, P.

    2004-01-01

    The reduction of greenhouse gas emissions, especially CO 2 , represents a major technological and societal challenge in the fight against climate change. Among the measures likely to reduce anthropic CO 2 emissions, capture and geological storage holds out promise for the future. (author)

  14. A study on site characterization of the deep geological environment around KURT

    International Nuclear Information System (INIS)

    Park, Kw; Kim, Gy; Koh, Yk; Kim, Ks; Choi, Jw

    2009-01-01

    KURT (KAERI Underground Research Tunnel) is a small scale research tunnel which was constructed from 2005 to 2006 at Korea Atomic Energy Research Institute (KAERI). To understand the deep geological environment around KURT area, the surface geological surveys such as lineaments analysis and geophysical survey and borehole investigation were performed. For this study, a 3 dimensional geological model has been constructed using the surface and borehole geological data. The regional lineaments were determined using a topographical map and the surface geophysical survey data were collected for the geological model. In addition, statistical methods were applied to fracture data from borehole televiewer loggings to identify fracture zones in boreholes. For a hydro geological modeling, fixed interval hydraulic tests were carried out for all boreholes. The results of the hydraulic tests were analyzed and classified by the fracture zone data of geological model. At result, the hydrogeological elements were decided and the properties of each element were assessed around the KURT area

  15. Impact of CO_2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO_2 Leakage

    International Nuclear Information System (INIS)

    Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.

    2016-01-01

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO_2) emissions to the atmosphere. During this process, CO_2 is injected as super critical carbon dioxide (SC-CO_2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO_2 in subsurface geologic formations could unintentionally lead to CO_2 leakage into overlying freshwater aquifers. Introduction of CO_2 into these subsurface environments will greatly increase the CO_2 concentration and will create CO_2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO_2 gradients will impact these communities. The overarching goal of this project is to understand how CO_2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO_2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO_2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO_2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO_2 injection/leakage plume where CO_2 concentrations are highest. At CO_2 exposures expected downgradient from the CO_2 plume, selected microorganisms emerged as dominant in the CO_2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site

  16. What safety indicators for a storage in deep geologic deposit?

    International Nuclear Information System (INIS)

    Crouail, P.; Schneider, T.; Mure, J.M.; Voinis, S.

    1999-01-01

    Indicators must allow to discriminate and compare different options of facility conception and help the decision-makers in their choices. In the case of a deep storage, these indicators can also allow a comparison in terms of impact with other existing industrial systems (thermal or nuclear power plants, uranium ores) or even the natural radioactivity. Through Swedish and Canadian examples, the presentation makes an inventory of indicators that could be kept in a safety analysis of a deep storage. (N.C.)

  17. A combined methodology using electrical resistivity tomography, ordinary kriging and porosimetry for quantifying total C trapped in carbonate formations associated with natural analogues for CO2 leakage

    Science.gov (United States)

    Prado-Pérez, A. J.; Aracil, E.; Pérez del Villar, L.

    2014-06-01

    Currently, carbon deep geological storage is one of the most accepted methods for CO2 sequestration, being the long-term behaviour assessment of these artificial systems absolutely essential to guarantee the safety of the CO2 storage. In this sense, hydrogeochemical modelling is being used for evaluating any artificial CO2 deep geological storage as a potential CO2 sinkhole and to assess the leakage processes that are usually associated with these engineered systems. Carbonate precipitation, as travertines or speleothems, is a common feature in the CO2 leakage scenarios and, therefore, is of the utmost importance to quantify the total C content trapped as a stable mineral phase in these carbonate formations. A methodology combining three classical techniques such as: electrical resistivity tomography, geostatistical analysis and mercury porosimetry is described in this work, which was developed for calculating the total amount of C trapped as CaCO3 associated with the CO2 leakages in Alicún de las Torres natural analogue (Granada, Spain). The proposed methodology has allowed estimating the amount of C trapped as calcite, as more than 1.7 Mt. This last parameter, focussed on an artificial CO2 deep geological storage, is essential for hydrogeochemical modellers when evaluating whether CO2 storages constitute or not CO2 sinkholes. This finding is extremely important when assessing the long-term behaviour and safety of any artificial CO2 deep geological storage.

  18. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  19. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  20. CO2-rich and CO2-poor ore-forming fluids of porphyry molybdenum systems in two contrasting geologic setting: evidence from Shapinggou and Zhilingtou Mo deposits, South China

    Science.gov (United States)

    Ni, P.

    2017-12-01

    Porphyry deposits are the world most important source of Mo, accounting for more than 95% of world Mo production. Porphyry Mo deposits have been classified into Climax type and Endako type. The Climax type was generally formed in an intra-continental setting, and contain high contents of Mo (0.15-0.45 wt.%) and F (0.5-5 wt.%). In contrast, the Endako type was generated in a continental arc setting and featured by low concentrations of Mo (0.05-0.15 wt.%) and F (0.05-0.15 wt.%). The systematic comparison of ore fluids in two contrasting tectonic environments is still poorly constrained. In this study, the Shapinggou and Zhilingtou Mo deposits in South China were selected to present the contrasting ore-forming fluid features. The fluid inclusion study of Shapinggou Mo deposit suggest: Early barren quartz veins contain fluid inclusions with salinities of 7.9-16.9 wt% NaCl equiv . CO2 contents are high enough to be detected by Raman. Later molybdenite-quartz veins contain vapor-type fluid inclusions with lower salinities (0.1-7.4 wt% NaCl equiv) but higher CO2-contents, coexisting with brine inclusions with 32.9-50.9 wt% NaCl equiv. The fluid inclusion study on Zhilintou Mo deposit suggest : Early barren quartz veins contain mostly intermediate density fluid inclusions with salinities of 5.3-14.1 wt% NaCl equiv, whereas main-stage quartz-molybdenite veins contain vapor-rich fluid inclusions of 0.5-6.2 wt% NaClequiv coexisting with brine inclusions of 38.6-44.8 wt% NaCl equiv. In contrast to the Shapinggou Mo deposit, the fluid inclusions at Shizitou contain only minor amounts of CO2. This study suggests the two porphyry molybdenum deposits experienced a similar fluid evolution trend, from single-phase fluids at the premineralization stage to two-phase fluids at the mineralization stage. Fluid boiling occurred during the ore stage and probably promoted a rapid precipitation of molybdenite. Intensive phyllic alteration, CO2-poor ore-forming fluids, and continental arc

  1. Feasibility of CO2 storage in geothermal reservoirs example of the Paris Basin - France. Final report

    International Nuclear Information System (INIS)

    Barbier, J.; Robelin, C.; Kervevan, C.; Thiery, D.; Menjoz, A.; Matray, J.M.; Cotiche, C.; Herbrich, B.

    2003-01-01

    This study is realized in the framework of GESCO project, which aims to provide the first documentation that, for emission sources within selected key areas, sufficient geological storage capacity is available. Then the BRGM/ANTEA/CFG took care to provide: an inventory of the CO 2 emitters in France, an inventory of the main deep aquifers present in the Paris basin, an evaluation of the storage capacities of CO 2 in one of the four principal case-study, technical solutions for CO 2 injection in geothermal aquifers and an evaluation of the cost of CO 2 storage in such an aquifer. (A.L.B.)

  2. Deep geological disposal of radioactive waste - An international perspective

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland)

    2015-07-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted.

  3. Deep geological disposal of radioactive waste - An international perspective

    International Nuclear Information System (INIS)

    Gautschi, A.

    2015-01-01

    This article provides a condensed summary of a presentation given by the author in June 2015. Various types of disposal facilities are reviewed, ranging from very limited natural barriers through to sophisticated, multi-barrier systems. Advantages, disadvantages and costs of the various disposal options are discussed. In particular, solutions used worldwide are listed in a comprehensive table. The simpler solutions range from open, non-engineered barriers through to simple geological barriers on the surface and underground. Multi-barrier systems in Sweden, Finland, France, Switzerland and Canada are listed and discussed. These include geological barriers through to engineered confinements in crystalline and sedimentary rocks. Links to relevant internet web sites are quoted

  4. Siting regions for deep geological repositories. Why just here?

    International Nuclear Information System (INIS)

    Rieser, A.

    2009-09-01

    This report helps to the popularization of the Nagra works accomplished for the management and disposal of the radioactive wastes in Switzerland. The programme for management and disposal of the radioactive wastes are extensively determined by regulations. Protection of mankind and environment is the primary objective. The basic storage process is considered as having been solved. The question addressed in the report is where the facility has to be built; the site selection procedure includes five steps: 1) according to their type the wastes have to be allocated to two different repositories: for low- and intermediate-level wastes (L/ILW), and for high-level and alpha-toxic wastes (HLW); 2) the safety concept for both repositories and the requirements on the geology have to be determined; 3) large suitable geological-tectonic zones must be found where repositories could be built; 4) in these geological zones a suitable host rock has to be identified; 5) the most important spatial geological conditions of the host rock (minimum depth with respect to surface erosion, maximum depth in terms of engineering requirements, lateral extent) have to be identified. Based on these criteria, three suitable siting regions for a HLW repository were found in the North of Switzerland. The preferred host rock is Opalinus clay because of its very low permeability; it is therefore an excellent barrier against nuclide transport. In the three proposed siting regions, Opalinus clay is present in sufficient volumes at a suitable depth. For a L/ILW repository six different possible siting regions were identified, five in Northern Switzerland and one in Central Switzerland. In the three siting regions found for a possible HLW repository, it would also be possible to built a combined repository for both HLW and L/ILW wastes

  5. CO2 chemical valorization

    International Nuclear Information System (INIS)

    Kerlero De Rosbo, Guillaume; Rakotojaona, Loic; Bucy, Jacques de; Clodic, Denis; Roger, Anne-Cecile; El Khamlichi, Aicha; Thybaud, Nathalie; Oeser, Christian; Forti, Laurent; Gimenez, Michel; Savary, David; Amouroux, Jacques

    2014-07-01

    Facing global warming, different technological solutions exist to tackle carbon dioxide (CO 2 ) emissions. Some inevitable short term emissions can be captured so as to avoid direct emissions into the atmosphere. This CO 2 must then be managed and geological storage seems to currently be the only way of dealing with the large volumes involved. However, this solution faces major economic profitability and societal acceptance challenges. In this context, alternative pathways consisting in using CO 2 instead of storing it do exist and are generating growing interest. This study ordered by the French Environment and Energy Management Agency (ADEME), aims at taking stock of the different technologies used for the chemical conversion of CO 2 in order to have a better understanding of their development potential by 2030, of the conditions in which they could be competitive and of the main actions to be implemented in France to foster their emergence. To do this, the study was broken down into two main areas of focus: The review and characterization of the main CO 2 chemical conversion routes for the synthesis of basic chemical products, energy products and inert materials. This review includes a presentation of the main principles underpinning the studied routes, a preliminary assessment of their performances, advantages and drawbacks, a list of the main R and D projects underway, a focus on emblematic projects as well as a brief analysis of the markets for the main products produced. Based on these elements, 3 routes were selected from among the most promising by 2030 for an in-depth modelling and assessment of their energy, environmental and economic performances. The study shows that the processes modelled do have favorable CO 2 balances (from 1 to 4 t-CO 2 /t-product) and effectively constitute solutions to reduce CO 2 emissions, despite limited volumes of CO 2 in question. Moreover, the profitability of certain solutions will remain difficult to reach, even with an

  6. Deep geologic repository for low and intermediate radioactive level waste in Canada

    International Nuclear Information System (INIS)

    Liu Jianqin; Li Honghui; Sun Qinghong; Yang Zhongtian

    2012-01-01

    Ontario Power Generation (OPG) is undergoing a project for the long-term management of low and intermediate level waste (LILW)-a deep geologic repository (DGR) project for low and intermediate level waste. The waste source term disposed, geologic setting, repository layout and operation, and safety assessment are discussed. It is expected to provide reference for disposal of low and intermediate level waste that contain the higher concentration of long-lived radionuclides in China. (authors)

  7. Microbes in deep geological systems and their possible influence on radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    West, J M; McKinley, I G; Chapman, N A [Institute of Geological Sciences, Harwell (UK). Environmental Protection Unit

    1982-09-01

    Although the fact is often overlooked, proposed nuclear waste repositories in geological formations would exist in an environment quite capable of sustaining microbial life which could considerably affect containment of radionuclides. In this paper a brief review of biological tolerance of extreme environments is presented with particular reference to studies of the microbiology of deep geological formations. The possible influence of such organisms on the integrity of a waste repository and subsequent transport of radionuclides to the surface is discussed.

  8. Drilling a deep geologic test well at Hilton Head Island, South Carolina

    Science.gov (United States)

    Schultz, Arthur P.; Seefelt, Ellen L.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the South Carolina Department of Health and Environmental Control (SCDHEC), is drilling a deep geologic test well at Hilton Head Island, S.C. The test well is scheduled to run between mid-March and early May 2011. When completed, the well will be about 1,000 feet deep. The purpose of this test well is to gain knowledge about the regional-scale Floridan aquifer, an important source of groundwater in the Hilton Head area. Also, cores obtained during drilling will enable geologists to study the last 60 million years of Earth history in this area.

  9. Safety assessment methodology for waste repositories in deep geological formations

    International Nuclear Information System (INIS)

    Chapuis, A.M.; Lewi, J.; Pradel, J.; Queniart, D.; Raimbault, P.; Assouline, M.

    1986-06-01

    The long term safety of a nuclear waste repository relies on the evaluation of the doses which could be transferred to man in the future. This implies a detailed knowledge of the medium where the waste will be confined, the identification of the basic phenomena which govern the migration of the radionuclides and the investigation of all possible scenarios that may affect the integrity of the barriers between the waste and the biosphere. Inside the Institute of protection and nuclear safety of the French Atomic Energy Commission (CEA/IPSN), the Department of the Safety Analysis (DAS) is currently developing a methodology for assessing the safety of future geological waste repositories, and is in charge of the modelling development, while the Department of Technical Protection (DPT) is in charge of the geological experimental studies. Both aspects of this program are presented. The methodology for risk assessment stresses the needs for coordination between data acquisition and model development which should result in the obtention of an efficient tool for safety evaluation. Progress needs to be made in source and geosphere modelling. Much more sophisticated models could be used than the ones which is described; however sensitivity analysis will determine the level of sophistication which is necessary to implement. Participation to international validation programs are also very important for gaining confidence in the approaches which have been chosen

  10. Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Vahdat, Nader

    2013-09-30

    The project provided hands-on training and networking opportunities to undergraduate students in the area of carbon dioxide (CO2) capture and transport, through fundamental research study focused on advanced separation methods that can be applied to the capture of CO2 resulting from the combustion of fossil-fuels for power generation . The project team’s approach to achieve its objectives was to leverage existing Carbon Capture and Storage (CCS) course materials and teaching methods to create and implement an annual CCS short course for the Tuskegee University community; conduct a survey of CO2 separation and capture methods; utilize data to verify and develop computer models for CO2 capture and build CCS networks and hands-on training experiences. The objectives accomplished as a result of this project were: (1) A comprehensive survey of CO2 capture methods was conducted and mathematical models were developed to compare the potential economics of the different methods based on the total cost per year per unit of CO2 avoidance; and (2) Training was provided to introduce the latest CO2 capture technologies and deployment issues to the university community.

  11. Potential hazards of CO2 leakage in storage systems : learning from natural systems

    International Nuclear Information System (INIS)

    Beaubien, S.E.; Lombardi, S.; Ciotoli, G.; Annunziatellis, A.; Hatziyannis, G.; Metaxas, A.; Pearce, J.M.

    2005-01-01

    The Natural Analogues for the Storage of CO2 in the Geological Environment (NASCENT) Project has examined several naturally occurring carbon dioxide (CO 2 ) deposits throughout Europe to better understand the possible long term geological effects of a man-made CO 2 storage reservoir. Natural geological accumulations of CO 2 also occur widely throughout the world, some of which leak CO 2 to the surface, while others are effectively sealed. It is important to understanding the characteristics of both types of deposits in order to select and design underground storage sites for CO 2 storage. Four naturally occurring CO 2 sites were reviewed in this paper with reference to issues related to risk assessment, such as migration pathways; the speed of migration and mass flux rates; changes in groundwater chemistry; and, the effects these emissions may have on local populations and ecosystems. One site was located in northern Greece, near the Florina CO 2 gas field. The other three sites were in central Italy, including a selected area of the Latera geothermal complex, where natural deep CO 2 migrates upwards along faults and is emitted to the atmosphere; the San Vittorino intermontane basin where CO 2 -charged groundwaters cause the dissolution of limestone to form large sinkholes; and, the Ciampino area southeast of Rome, where CO 2 from deep-seated volcanism migrates along faults in a residential area. Work performed on these sites included soil gas, CO 2 flux and aqueous geochemical surveys. A GIS based model was also developed for the Latera site to assesses the risk of deep gas migration to surface. It was emphasized that these 4 sites are extreme cases compared to a man-made CO 2 geological storage site. For example all sites have an essentially infinite supply of deep CO 2 as the result of the thermo-metamorphic reactions forming this gas, whereas a man-made storage site would have a finite volume of gas which would be limited in its mass transfer out of the

  12. Faults as Windows to Monitor Gas Seepage: Application to CO2 Sequestration and CO2-EOR

    Directory of Open Access Journals (Sweden)

    Ronald W. Klusman

    2018-03-01

    Full Text Available Monitoring of potential gas seepage for CO2 sequestration and CO2-EOR (Enhanced Oil Recovery in geologic storage will involve geophysical and geochemical measurements of parameters at depth and at, or near the surface. The appropriate methods for MVA (Monitoring, Verification, Accounting are needed for both cost and technical effectiveness. This work provides an overview of some of the geochemical methods that have been demonstrated to be effective for an existing CO2-EOR (Rangely, CA, USA and a proposed project at Teapot Dome, WY, USA. Carbon dioxide and CH4 fluxes and shallow soil gas concentrations were measured, followed by nested completions of 10-m deep holes to obtain concentration gradients. The focus at Teapot Dome was the evaluation of faults as pathways for gas seepage in an under-pressured reservoir system. The measurements were supplemented by stable carbon and oxygen isotopic measurements, carbon-14, and limited use of inert gases. The work clearly demonstrates the superiority of CH4 over measurements of CO2 in early detection and quantification of gas seepage. Stable carbon isotopes, carbon-14, and inert gas measurements add to the verification of the deep source. A preliminary accounting at Rangely confirms the importance of CH4 measurements in the MVA application.

  13. Siting of the Swedish deep geological repository - experiences and plans

    International Nuclear Information System (INIS)

    Eng, T.; Backblom, G.; Thegerstrom, C.; Ahlbom, K.; Leijon, B.

    1996-01-01

    The paper provides a brief overview of the Swedish siting programme for a deep repository. A stepwise process is a key element in the planning and implementation of deep disposal of long-lived waste in Sweden. The local siting work is made in cooperation with the affected and concerned municipalities. The programs, decisions and results that so far have been reported and ongoing feasibility studies is a solid platform for the continuing siting work. It can be noted that the siting work in some cases has caused heavy opposition and negative opinions. Careful considerations on how to proceed to develop the necessary background material must therefore be made. The Environmental Impact Assessment (EIA) process that has started in conjunction with feasibility studies are judged to play an important role in the future. In this process, with extensive local involvement, critical issues can be detected at an early stage and sound ideas on both the process itself and on technical issues can be incorporated. To facilitate information exchange and cooperation between the municipalities involved and to coordinate liaison between the municipalities and county administrative boards affected by the studies, the Swedish government has appointed a National Coordinator for nuclear waste disposal. The government also has decided to provide the concerned municipalities with funding for their participation in the process. (author)

  14. Deep geologic storage of high level radioactive wastes: conceptual generic designs

    International Nuclear Information System (INIS)

    1995-01-01

    This report summarizes the studies on deep geologic storage of radioactive wastes and specially for the high-level radioactive wastes. The study is focussed to the geotechnical assessment and generic-conceptual designs. Methodology analysis, geotechnical feasibility, costs and operation are studied

  15. Numerical investigation of high level nuclear waste disposal in deep anisotropic geologic repositories

    KAUST Repository

    Salama, Amgad; El Amin, Mohamed F.; Sun, Shuyu

    2015-01-01

    One of the techniques that have been proposed to dispose high level nuclear waste (HLW) has been to bury them in deep geologic formations, which offer relatively enough space to accommodate the large volume of HLW accumulated over the years since

  16. Data to Support Development of Geologic Framework Models for the Deep Borehole Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Frank Vinton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Richard E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    This report summarizes work conducted in FY2017 to identify and document publically available data for developing a Geologic Framework Model (GFM) for the Deep Borehole Field Test (DBFT). Data was collected for all four of the sites being considered in 2017 for a DBFT site.

  17. Albedo Neutron Dosimetry in a Deep Geological Disposal Repository for High-Level Nuclear Waste.

    Science.gov (United States)

    Pang, Bo; Becker, Frank

    2017-04-28

    Albedo neutron dosemeter is the German official personal neutron dosemeter in mixed radiation fields where neutrons contribute to personal dose. In deep geological repositories for high-level nuclear waste, where neutrons can dominate the radiation field, it is of interest to investigate the performance of albedo neutron dosemeter in such facilities. In this study, the deep geological repository is represented by a shielding cask loaded with spent nuclear fuel placed inside a rock salt emplacement drift. Due to the backscattering of neutrons in the drift, issues concerning calibration of the dosemeter arise. Field-specific calibration of the albedo neutron dosemeter was hence performed with Monte Carlo simulations. In order to assess the applicability of the albedo neutron dosemeter in a deep geological repository over a long time scale, spent nuclear fuel with different ages of 50, 100 and 500 years were investigated. It was found out, that the neutron radiation field in a deep geological repository can be assigned to the application area 'N1' of the albedo neutron dosemeter, which is typical in reactors and accelerators with heavy shielding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Geological aspects of a deep underground disposal facility in the Czech Republic

    International Nuclear Information System (INIS)

    Skopovy, J.; Woller, F.

    1997-01-01

    The basic requirements for the geological situation at a deep underground radioactive waste disposal site are highlighted, a survey of candidate host sites worldwide is presented, and the situation in the Czech Republic is analyzed. A 'General Project of Geological Activities Related to the Development of a Deep Underground Disposal Site for Radioactive Wastes and Spent Fuel in the Czech Republic' has been developed by the Nuclear Research Institute and approved and financed by the authorities. The Project encompasses the following stages: (i) preliminary study and research; (ii) examination of the seismicity, neotectonics, and geodynamics; (iii) search and critical assessment of archived geological information; (iv) non-destructive survey; and (v) destructive survey. The Project should take about 30 years and its scope will be updated from time to time. (P.A.)

  19. Confinement and migration of radionuclides in deep geological disposal

    International Nuclear Information System (INIS)

    Poinssot, Ch.

    2007-07-01

    Disposing high level nuclear waste in deep disposal repository requires to understand and to model the evolution of the different repository components as well as radionuclides migration on time-frame which are well beyond the time accessible to experiments. In particular, robust and predictive models are a key element to assess the long term safety and their reliability must rely on a accurate description of the actual processes. Within this framework, this report synthesizes the work performed by Ch. Poinssot and has been prepared for the defense of his HDR (French university degree to Manage Research). These works are focused on two main areas which are (i) the long term evolution of spent nuclear fuel and the development of radionuclide source terms models, and (ii) the migration of radionuclides in natural environment. (author)

  20. Exploring the Relationship between Students' Understanding of Conventional Time and Deep (Geologic) Time

    Science.gov (United States)

    Cheek, Kim A.

    2013-07-01

    Many geologic processes occur in the context of geologic or deep time. Students of all ages demonstrate difficulty grasping this fundamental concept which impacts their ability to acquire other geoscience concepts. A concept of deep time requires the ability to sequence events on an immense temporal scale (succession) and to judge the durations of geologic processes based on the rates at which they occur. The twin concepts of succession and duration are the same ideas that underlie a concept of conventional time. If deep time is an extension of conventional time and not qualitatively different from it, students should display similar reasoning patterns when dealing with analogous tasks over disparate temporal periods. Thirty-five US students aged 13-24 years participated in individual task-based interviews to ascertain how they thought about succession and duration in conventional and deep time. This is the first attempt to explore this relationship in the same study in over 30 years. Most students successfully completed temporal succession tasks, but there was greater variability in responses on duration tasks. Conventional time concepts appear to impact how students reason about deep time. The application of spatial reasoning to temporal tasks sometimes leads to correct responses but in other instances does not. Implications for future research and teaching strategies are discussed.

  1. Prediction of CO2 leakage during sequestration into marine sedimentary strata

    International Nuclear Information System (INIS)

    Li, Qi; Wu Zhishen; Li Xiaochun

    2009-01-01

    Deep ocean storage of CO 2 could help reduce the atmospheric level of greenhouse gas as part of a climate change mitigation strategy. In this paper, a multiphase flow model of CO 2 sequestration into deep ocean sediments was designed associated with the formation of CO 2 hydrates. A simplified assumption was proposed to predict the critical time of CO 2 leakage from marine sedimentary strata into seawater. Moreover, some principal parameters, which include the permeability, anisotropy, total injection amount, and length of the injection part of wellbores, were investigated by numerical simulations. The numerical estimates are used to assess the feasibility and effectiveness of CO 2 storage in deep ocean sediments. Accurately predicting the actual fate of liquid CO 2 sequestered into the marine sedimentary strata at depths greater than 500 m is complicated by uncertainties associated with not only the chemical-physical behavior of CO 2 under such conditions but also the geo-environment of disposal sites. Modeling results have shown some implications that the effectiveness of CO 2 ocean sequestration depends mainly on the injection conditions (such as injection rate, total injection amount, and the depth of injection), the site geology (such as permeability and anisotropy of disposal formations), and the chemical-physical behavior of CO 2 in marine environment

  2. Study of delayed behaviour of clays in deep geologic formations

    International Nuclear Information System (INIS)

    Rousset, G.; Bazargan, B.; Ouvry, J.F.; Bouilleau, M.

    1993-01-01

    This study is a cost-sharing contract with the European Atomic Energy Community within the framework of Research and Development Program on Management, Storage and Radioactive Waste Disposal. The aim of the work presented in this report is to study the time-dependent behaviour of deep clays in Laboratory or in situ, by means of tests of similar geometry, in order to get easy comparisons and to study scale effect. The cylindrical geometry has been chosen as it resembles in situ works (tunnels, galleries) more closely. The first part of the study concerns a new test on hollow-cylinder. The experimental system, set up specially for this study, has allowed to conduct experiments in which 3 loading parameters may be controlled independently. Different types of experiments can therefore be conducted to study various aspects of mechanical behavior of rocks. A comprehensive experimental program was conducted in the particular case of Boom clay. In the second part of the report devoted to in situ creep or relaxation dilatometer tests, by using new techniques or loading paths, it was shown that time-dependent convergence of boreholes can reach significant values, and is dependent on the direction of the borehole. The anisotropy of the initial state of stress was also put in evidence. The proposed constitutive model (part III) appears to be very suitable to explain the behavior of the Boom clay, in view of the experimental results. In particular, the scale effect is low for Boom clay. 15 refs., 58 figs., 10 tabs

  3. Assessment of Deep Geological Environmental Condition for HLW Disposal in Korea

    International Nuclear Information System (INIS)

    Koh, Yong Kweon; Bae, Dae Seok; Kim, Kyung Su

    2010-04-01

    The research developed methods to study and evaluate geological factors and items to select radioactive waste disposal site, which should meet the safety requirements for radioactive waste disposal repositories according to the guidelines recommended by IAEA. A basic concept of site evaluation and selection for high level radioactive waste disposal and develop systematic geological data management with geological data system which will be used for site selection in future are provided. We selected 36 volcanic rock sites and 26 gneissic sites as the alternative host rocks for high level radioactive waste disposal and the geochemical characteristics of groundwaters of the four representative sites were statistically analyzed. From the hydrogeological and geochemical investigation, the spatial distribution characteristics were provided for the disposal system development and preliminary safety assessment. Finally, the technology and scientific methods were developed to obtain accurate data on the hydrogeological and geochemical characteristics of the deep geological environments

  4. Opportunities for low-cost CO2 storage demonstration projects in China

    International Nuclear Information System (INIS)

    Meng, Kyle C.; Williams, Robert H.; Celia, Michael A.

    2007-01-01

    Several CO 2 storage demonstration projects are needed in a variety of geological formations worldwide to prove the viability of CO 2 capture and storage as a major option for climate change mitigation. China has several low-cost CO 2 sources at sites that produce NH 3 from coal via gasification. At these plants, CO 2 generated in excess of the amount needed for other purposes (e.g., urea synthesis) is vented as a relatively pure stream. These CO 2 sources would potentially be economically interesting candidates for storage demonstration projects if there are suitable storage sites nearby. In this study a survey was conducted to estimate CO 2 availability at modern Chinese coal-fed ammonia plants. Results indicate that annual quantities of available, relatively pure CO 2 per site range from 0.6 to 1.1 million tonnes. The CO 2 source assessment was complemented by analysis of possible nearby opportunities for CO 2 storage. CO 2 sources were mapped in relation to China's petroliferous sedimentary basins where prospective CO 2 storage reservoirs possibly exist. Four promising pairs of sources and sinks were identified. Project costs for storage in deep saline aquifers were estimated for each pairing ranging from $15-21/t of CO 2 . Potential enhanced oil recovery and enhanced coal bed methane recovery opportunities near each prospective source were also considered

  5. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    International Nuclear Information System (INIS)

    McEvoy, F.M.; Schofield, D.I.; Shaw, R.P.; Norris, S.

    2016-01-01

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  6. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective

    Energy Technology Data Exchange (ETDEWEB)

    McEvoy, F.M., E-mail: fmcevoy@bgs.ac.uk [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Schofield, D.I. [British Geological Survey, Tongwynlais, CF15 7NE (United Kingdom); Shaw, R.P. [British Geological Survey, Keyworth, Nottingham NG12 5GG (United Kingdom); Norris, S. [Radioactive Waste Management Limited, B587, Curie Avenue, Harwell, Didcot OX11 0RH (United Kingdom)

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1 million years into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200 ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. - Highlights: • Natural processes are key to developing a safety case for geological disposal. • Key factors include plate tectonic and climate-mediated processes. • Process variability is a challenge to predicting the natural environment. • We highlight the challenges for geological disposal programs using

  7. The Mizunami underground research laboratory in Japan - programme for study of the deep geological environment

    International Nuclear Information System (INIS)

    Sakuma, Hideki; Sugihara, Kozo; Koide, Kaoru; Mikake, Shinichiro

    1998-01-01

    This paper is an overview of the PNC's Mizunami Underground Research Laboratory project in Mizunami City, central Japan. The Mizunami Underground Research Laboratory now will succeed the Kamaishi Mine as the main facility for the geoscientific study of the crystalline environment. The site will never be considered as a site for a repository. The surface-based investigations, planned to continue for some 5 years commenced in the autumn 1997. The construction of the facility to the depth of 1000 m is currently planned to: Develop comprehensive investigation techniques for geological environment; Acquire data on the deep geological environment and to; Develop a range of engineering techniques for deep underground application. Besides PNC research, the facility will also be used to promote deeper understanding of earthquakes, to perform experiments under micro-gravity conditions etc. The geology of the site is shortly as follows: The sedimentary overburden some 20 - 100 m in thickness is of age 2 - 20 million years. The basement granite is approx. 70 million years. A reverse fault is crosscutting the site. The identified fault offers interesting possibilities for important research. Part of the work during the surface-based investigations, is to drill and test deep boreholes to a planned depth up to 2000 m. Based on the investigations, predictions will be made what geological environment will be encountered during the Construction Phase. Also the effect of construction will be predicted. Methodology for evaluation of predictions will be established

  8. Siting regions for deep geological repositories. Nagra’s proposals for stage 3

    International Nuclear Information System (INIS)

    2014-01-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the selection of sites for deep geological repositories for nuclear wastes in Switzerland. The procedure proposed for the selection process is explained. The four sites for possible repositories of high-level radioactive waste as well as for low and intermediate-level wastes are described and rated with respect to the various safety factors involved. The reasons for the long-term safety measures proposed and the geological barriers involved are discussed. The four proposals for depository sites are looked at in more detail. The paper is well illustrated with several diagrams and tables

  9. Identification of scenarios in the safety assessment of a deep geological site for radioactive waste disposal

    International Nuclear Information System (INIS)

    Escalier des Orres, P.; Devillers, C.; Cernes, A.

    1990-01-01

    The selection and qualification procedure of a site for radioactive wastes disposal in a deep geologic formation, has begun in France in the early eighties. The public authorities, on ANDRA's proposal, has preselected in 1987 four sites, each of them corresponding to a type of geologic formations (granite, clay, salt and shale). Within two years, one of these sites will be chosen for the location of an underground laboratory. The safety analysis for the site's qualification uses evolution scenarios of the repository and its environment, chosen according to a deterministic method. With an appropriate detail level, are defined a reference scenario and scenario with random events. 4 refs., 1 tab [fr

  10. Considering economic and geological uncertainty in the simulation of realistic investment decisions for CO2-EOR projects in the North Sea

    NARCIS (Netherlands)

    Welkenhuysen, Kris; Rupert, Jort; Compernolle, Tine; Ramirez, Andrea|info:eu-repo/dai/nl/284852414; Swennen, Rudy; Piessens, Kris

    2017-01-01

    The use of anthropogenic CO2 for enhancing oil recovery from mature oil fields in the North Sea has several potential benefits, and a number of assessments have been conducted. It remains, however, difficult to realistically simulate the economic circumstances and decisions, while including the

  11. Swiss plans for deep geological repositories for radioactive wastes - Basics for communication at the localities affected

    International Nuclear Information System (INIS)

    Gallego Carrera, D.; Renn, O.; Dreyer, M.

    2009-06-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the concept of how information concerning deep geological repositories for radioactive wastes should be presented and communicated to those in the areas which have been designated as potential sites for the repositories. Communication basics based on scientific knowledge in this area are discussed. The importance of a concept for general communication and risk-communication as a particular challenge are discussed. Trust and transparency are quoted as being indispensable in this connection. Ways of dealing with various target audiences and the media are examined. The report is concluded with a check-list that deals with important questions arising from the process of communicating information on deep geological repositories for radioactive wastes

  12. Site selection of a deep repository of HLRW in relation to geological conditions of Slovak Republic

    International Nuclear Information System (INIS)

    Kovacik, M.; Kovacikova, M.; Madaras, J.; Vandlikova, M.

    1996-01-01

    All countries which use nuclear energy to generate electricity face the problem of high level radioactive waste (HLRW) and spent fuel. Until 1987, this problem was addressed in Czechoslovakia by transferring the material to the former USSR. After the political changes in Central and Eastern Europe in 1989 and the division of Czechoslovakia into two states in 1993, Slovakia independently faced the complex problem of creating its own deep repository. Although Slovakia has begun to solve the problem of HLRW and spent fuel only recently, it can take advantage of the theoretical and practical knowledge of other countries in this field. The geological aspects of the setting of the deep repository of HLRW have been studied within the project R epositories of radioactive and hazardous wastes in geological environment. The assessment of the Slovak Republic for creating a repository of HLRW was based on the application of internationally determined and applied criteria

  13. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    International Nuclear Information System (INIS)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs

  14. Reference spent fuel and its characteristics for the concept development of a deep geological disposal system

    Energy Technology Data Exchange (ETDEWEB)

    Kang, C. H.; Choi, J. W.; Ko, W. I.; Lee, Y. M.; Park, J. H.; Hwang, Y. S.; Kim, S. K.

    1997-09-01

    The total amount of spent fuel arisen from the nuclear power plant to be planned by 2010 at the basis of the long-term power development plan announced by MOTIE (Ministry of Trade, Industry and Energy Resource) in 1995 is estimated to derive the disposal capacity of a deep geological repository is derived. The reference spent fuel whose characteristics could be planned is selected by analysing the characteristic data such as initial enrichment, discharge burnup, geometry, dimension, gross weight, etc. Also isotopic concentration, radioactivity, decay heat, hazard index and radiation intensity of a reference spent fuel are quantitatively identified and summarized in order to apply in the concept developing works of a deep geological disposal system. (author). 12 refs., 24 tabs., 14 figs.

  15. Radioactive waste disposal programme and siting regions for geological deep repositories. Executive summary. November 2008

    International Nuclear Information System (INIS)

    2008-11-01

    There are radioactive wastes in Switzerland. Since many decades they are produced by the operation of the five nuclear power plants, by medicine, industry and research. Important steps towards the disposal of these wastes are already realized; the corresponding activities are practised. This particularly concerns handling and packaging of the radioactive wastes, their characterization and inventory, as well as the interim storage and the inferred transportations. Preparatory works in the field of scientific research on deep geological repositories have allowed to acquire high level of technical and scientific expertise in that domain. The feasibility of building long-term safe geological repositories in Switzerland was demonstrated for all types of radioactive wastes; the demonstration was accepted by the Federal Council. There is enough knowledge to propose geological siting regions for further works. The financial funds already accumulated guaranty the financing of the dismantling of the power plants as well as building deep geological repositories for the radioactive wastes. The regulations already exist and the organisational arrangements necessary for the fruitful continuation of the works already done have been taken. The programme of the disposal of radioactive wastes also describes the next stages towards the timely realization of the deep repositories as well as the level of the financial needs. The programme is updated every five years, checked by the regulatory bodies and accepted by the Federal Council who reports to the parliament. The process of choosing a site, which will be completed in the next years, is detailed in the conceptual part of the programme for deep geological repositories. The NAGRA proposals are based exclusively on technical and scientific considerations; the global evaluation taking into account also political considerations has to be performed by the authorities and the Federal Council. The programme states that at the beginning of

  16. Effects of heat from high-level waste on performance of deep geological repository components

    International Nuclear Information System (INIS)

    1984-11-01

    This report discusses the effects of heat on the deep geological repository systems and its different components. The report is focussed specifically on effects due to thermal energy release solely from high-level waste or spent fuel. It reviews the experimental data and theoretical models of the effects of heat both on the behaviour of engineered and natural barriers. A summary of the current status of research and repository development including underground test facilities is presented

  17. Assessing European capacity for geological storage of carbon dioxide-the EU GeoCapacity project

    NARCIS (Netherlands)

    Vangkilde-Pedersen, T.; Anthonsen, K.L.; Smith, N.; Kirk, K.; Neele, F.; Meer, B. van der; Le Gallo, Y. le; Bossie-Codreanu, D.; Wojcicki, A.; Nindre, Y.-M. le; Hendriks, C.; Dalhoff, F.; Peter Christensen, N.

    2009-01-01

    The focus of the GeoCapacity project is GIS mapping of CO2 point sources, infrastructure and geological storage in Europe. The main objective is to assess the European capacity for geological storage of CO2 in deep saline aquifers, oil and gas structures and coal beds. Other priorities are further

  18. In situ experiments for disposal of radioactive wastes in deep geological formations

    International Nuclear Information System (INIS)

    1987-12-01

    This report reviews the current status of in-situ experiments undertaken to assess various concepts for disposal of spent fuel and reprocessed high-level waste in deep geological formations. Specifically it describes in-situ experiments in three geological formations - clay, granite and domed salt. The emphasis in this report is on the in-situ experiments which deal with the various issues related to the near-field effects in a repository and the geological environment immediately surrounding the repository. These near-field effects are due to the disturbance caused by both the construction of the repository and the waste itself. The descriptions are drawn primarily from four underground research facilities: the Underground Experimental Facility, Belgium (clay), the Stripa Project, Sweden and the Underground Research Laboratory, Canada (granite) and the Asse Mine, Federal Republic of Germany (salt). 54 refs, figs and tab

  19. Deep storage of radioactive waste from a geological point of view

    Energy Technology Data Exchange (ETDEWEB)

    Venzlaff, Helmut [Federal Institute for Geo-Sciences and Raw Materials, Hannover (Germany)

    2015-08-15

    For a deep storage of radioactive waste geologists gave their preference to salt prior to other rock complexes such as clay or granite. Major deposits from pure rock salt are particularly suitable to safely seal radioactive wastes from the biosphere because due to their plasticity they are free from fissures in which liquids and gases could circulate and because their thermal conductivity is higher than of other rocks. The geological stability of salt domes can be shown by their geological evolution. Thus the salt dome in Gorleben was formed 100 million years ago and is older than the Atlantic, the Alps or the ascent of the low mountain range. During this long period it survived ocean floods, mountain formations, earthquakes, volcanism and ice ages without considerably changing its shape. There are no geological reasons, why it should not remain stable during the next million years.

  20. Deep storage of radioactive waste from a geological point of view

    International Nuclear Information System (INIS)

    Venzlaff, Helmut

    2015-01-01

    For a deep storage of radioactive waste geologists gave their preference to salt prior to other rock complexes such as clay or granite. Major deposits from pure rock salt are particularly suitable to safely seal radioactive wastes from the biosphere because due to their plasticity they are free from fissures in which liquids and gases could circulate and because their thermal conductivity is higher than of other rocks. The geological stability of salt domes can be shown by their geological evolution. Thus the salt dome in Gorleben was formed 100 million years ago and is older than the Atlantic, the Alps or the ascent of the low mountain range. During this long period it survived ocean floods, mountain formations, earthquakes, volcanism and ice ages without considerably changing its shape. There are no geological reasons, why it should not remain stable during the next million years.

  1. Hydrogen transfer experiments and modelization in clay rocks for radioactive waste deep geological repository

    International Nuclear Information System (INIS)

    Boulin, P.

    2008-10-01

    Gases will be generated by corrosion of high radioactive waste containers in deep geological repositories. A gas phase will be generated. Gas pressure will build up and penetrated the geological formation. If gases do not penetrate the geological barrier efficiently, the pressure build up may create a risk of fracturing and of creation of preferential pathways for radionuclide migration. The present work focuses on Callovo-Oxfordian argillites characterisation. An experiment, designed to measure very low permeabilities, was used with hydrogen/helium and analysed using the Dusty Gas Model. Argillites close to saturation have an accessible porosity to gas transfer that is lower than 0,1% to 1% of the porosity. Analysis of the Knudsen effect suggests that this accessible network should be made of 50 nm to 200 nm diameter pores. The permeabilities values were integrated to an ANDRA operating model. The model showed that the maximum pressure expected near the repository would be 83 bar. (author)

  2. Technical support for an enabling policy framework for carbon dioxide capture and geological storage. Task 3. Incentivising CO2 capture and storage in the EU

    International Nuclear Information System (INIS)

    De Coninck, H.; Groenenberg, H.

    2007-03-01

    To date CO2 capture and storage (CCS) is not deployed at a commercial scale, and a range of policy instruments could be used to provide adequate incentives for large scale deployment of CCS in the European Union. Five groups of incentives are discussed: (1) the EU Emissions Trading Scheme (weak and strong version); (2) Member-State-based public financial support through investment support, feed-in subsidies or a CO2 price guarantee; (3) an EU-level low-carbon portfolio standard with tradable certificates; (4) an EU-wide CCS obligation for all new fossil-fuel-based power capacity, and (5) public-private partnerships for realizing a CO2 pipeline infrastructure. The nature of the policy, mainly in case the scale of the instrument matters and much public financial is involved, determines whether it will be implemented by the EU or at the Member-State level. Support for CCS projects at the Member-State level, however, will require amendment of the Community Guidelines for State Aid for Environmental Protection

  3. Analysis of the processes defining radionuclide migration from deep geological repositories in porous medium

    International Nuclear Information System (INIS)

    Brazauskaite, A.; Poskas, P.

    2004-01-01

    Due to the danger of exposure arising from long-lived radionuclides to humans and environment, spent nuclear fuel (SNF) and high level waste (HLW) are not allowed to be disposed of in near surface repositories. There exists an international consensus that such high level and long-lived radioactive wastes are best disposed of in geological repositories using a system of engineered and natural barriers. At present, the geological repository of SNF and HLW has not been realized yet in any country but there is a lot of experience in the assessment of radionuclide migration from deep repositories, investigations of different processes related to the safety of a disposal system. The aim of this study was to analyze the processes related to the radionuclide migration from deep geological repositories in porous medium such as SNF matrix dissolution, release mechanism of radionuclides from SNF matrix, radionuclide solubility, sorption, diffusive, advective transport of radionuclides from the canister and through the engineered and natural barriers. It has been indicated that SNF matrix dissolution, radionuclide solubility and sorption are sensitive to ambient conditions prevailing in the repository. The approaches that could be used for modeling the radionuclide migration from deep repositories in porous medium are also presented. (author)

  4. The deep geologic repository technology programme: toward a geoscience basis for understanding repository safety

    International Nuclear Information System (INIS)

    Jensen, M.R.

    2007-01-01

    Within the Deep Geologic Repository Technology Programme (DGRTP) several Geoscience activities are focused on advancing the understanding of groundwater flow system evolution and geochemical stability in a Canadian Shield setting as affected by long-term climate change. A key aspect is developing confidence in predictions of groundwater flow patterns and residence times as they relate to the safety of a deep geologic repository for used nuclear fuel waste. This is being achieved through a coordinated multi-disciplinary approach intent on: i) demonstrating coincidence between independent geo-scientific data; ii) improving the traceability of geo-scientific data and its interpretation within a conceptual descriptive model(s); iii) improving upon methods to assess and demonstrate robustness in flow domain prediction(s) given inherent flow domain uncertainties (i.e. spatial chemical/physical property distributions, boundary conditions) in time and space; and iv) improving awareness amongst geo-scientists as to the utility of various geo-scientific data in supporting a safety case for a deep geologic repository. This multi-disciplinary DGRTP approach is yielding an improved understanding of groundwater flow system evolution and stability in Canadian Shield settings that is further contributing to the geo-scientific basis for understanding and communicating aspects of DGR safety. (author)

  5. Time evolution of the Clay Barrier Chemistry in a HLW deep geological disposal in granite

    International Nuclear Information System (INIS)

    Font, I.; Miguel, M. J.; Juncosa, R.

    2000-01-01

    The main goal of a high level waste geological disposal is to guarantee the waste isolation from the biosphere, locking them away into very deep geological formations. The best way to assure the isolation is by means of a multiple barrier system. These barriers, in a serial disposition, should assure the confinement function of the disposal system. Two kinds of barriers are considered: natural barriers (geological formations) and engineered barriers (waste form, container and backfilling and sealing materials). Bentonite is selected as backfilling and sealing materials for HLW disposal into granite formations, due to its very low permeability and its ability to fill the remaining spaces. bentonite has also other interesting properties, such as, the radionuclide retention capacity by sorption processes. Once the clay barrier has been placed, the saturation process starts. The granite groundwater fills up the voids of the bentonite and because of the chemical interactions, the groundwater chemical composition varies. Near field processes, such as canister corrosion, waste leaching and radionuclide release, strongly depends on the water chemical composition. Bentonite pore water composition is such a very important feature of the disposal system and its determination and its evolution have great relevance in the HLW deep geological disposal performance assessment. The process used for the determination of the clay barrier pore water chemistry temporal evolution, and its influence on the performance assessment, are presented in this paper. (Author)

  6. Tectonic and climatic considerations for deep geological disposal of radioactive waste: A UK perspective.

    Science.gov (United States)

    McEvoy, F M; Schofield, D I; Shaw, R P; Norris, S

    2016-11-15

    Identifying and evaluating the factors that might impact on the long-term integrity of a deep Geological Disposal Facility (GDF) and its surrounding geological and surface environment is central to developing a safety case for underground disposal of radioactive waste. The geological environment should be relatively stable and its behaviour adequately predictable so that scientifically sound evaluations of the long-term radiological safety of a GDF can be made. In considering this, it is necessary to take into account natural processes that could affect a GDF or modify its geological environment up to 1millionyears into the future. Key processes considered in this paper include those which result from plate tectonics, such as seismicity and volcanism, as well as climate-related processes, such as erosion, uplift and the effects of glaciation. Understanding the inherent variability of process rates, critical thresholds and likely potential influence of unpredictable perturbations represent significant challenges to predicting the natural environment. From a plate-tectonic perspective, a one million year time frame represents a very short segment of geological time and is largely below the current resolution of observation of past processes. Similarly, predicting climate system evolution on such time-scales, particularly beyond 200ka AP is highly uncertain, relying on estimating the extremes within which climate and related processes may vary with reasonable confidence. The paper highlights some of the challenges facing a deep geological disposal program in the UK to review understanding of the natural changes that may affect siting and design of a GDF. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  7. Modeling and Simulation of Nanoparticle Transport in Multiphase Flows in Porous Media: CO2 Sequestration

    KAUST Repository

    El-Amin, Mohamed

    2012-09-03

    Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected CO2 plume buoyantly accumulates at the top part of the deep aquifer under a sealing cap rock, and some concern that the high-pressure CO2 could breach the seal rock. However, CO2 will diffuse into the brine underneath and generate a slightly denser fluid that may induce instability and convective mixing. Onset times of instability and convective mixing performance depend on the physical properties of the rock and fluids, such as permeability and density contrast. The novel idea is to adding nanoparticles to the injected CO2 to increase density contrast between the CO2-rich brine and the underlying resident brine and, consequently, decrease onset time of instability and increase convective mixing. As far as it goes, only few works address the issues related to mathematical and numerical modeling aspects of the nanoparticles transport phenomena in CO2 storages. In the current work, we will present mathematical models to describe the nanoparticles transport carried by injected CO2 in porous media. Buoyancy and capillary forces as well as Brownian diffusion are important to be considered in the model. IMplicit Pressure Explicit Saturation-Concentration (IMPESC) scheme is used and a numerical simulator is developed to simulate the nanoparticles transport in CO2 storages.

  8. Microbes in crystalline bedrock. Assimilation of CO2 and introduced organic compounds by bacterial populations in groundwater from deep crystalline bedrock at Laxemar and Stripa

    International Nuclear Information System (INIS)

    Pedersen, K.; Ekendahl, S.; Arlinger, J.

    1991-12-01

    The assimilation of CO 2 and of introduced organic compounds by bacterial populations in deep groundwater from fractured crystalline bedrock has been studied. Three depth horizons of the subvertical boreholes KLZ01 at Laxemar in southeastern Sweden, 830-841 m, 910-921 m and 999-1078 m, and V2 in the Stripa mine, 799-807m 812-820 m and 970-1240 m were sampled. The salinity profile of the KLX01 borehole is homogeneous and the groundwater had the following physico-chemical characteristics: pH values of 8.2, 8.4 and 8.5; Eh values of 270, no data and -220 mV; sulphide: 2.3, 11.0 and 5.6 μM; CO 3 2- : 104, 98 and 190 μM; CH 4 : 26, 27 and 31 μl/l and N 2 : 47, 25 and 18 ml/l, respectively. The groundwater in V2 in Stripa were obtained from fracture systems without close hydraulic connections and had the following physico-chemical characteristics: pH values of 9.5, 9.4 and 10.2; Eh values of +205, +199 and -3 mV; sulphide: 0, 106 and 233 μM; CO 3 2- : 50, 57 and 158 μM; CH 4 : 245, 170 and 290 μl/l and N 2 : 25, 31 and 25 ml/l, respectively. Biofilm reactors with hydrophilic glass surfaces were connected to the flowing groundwaters from each of the 3 depths with flow rates of approximately 3x10 -3 m sec -1 over 19 days in Laxemar and 27 to 161 days in Stripa. There were between 0.15 to 0.68 x 10 5 unattached bacteria ml -1 groundwater and 0.94 to 1.2 x 10 5 attached bacteria cm -2 on the surface in Laxemar and from 1.6 x 10 3 up to 3.2 x 10 5 bacteria ml -1 groundwater and from 2.4 x 10 5 up to 1.1 x 10 7 bacteria cm -2 of colonized test surfaces in Stripa. Assuming a mean channel width of 0.1 mm, our results imply that there would be from 10 3 up to 10 6 more attached than unattached bacteria in a water conducting channel in crystalline bedrock. (54 refs., 23 figs., 10 tabs.) (au)

  9. Qualitative acceptance criteria for radioactive wastes to be disposed of in deep geological formations

    International Nuclear Information System (INIS)

    1990-05-01

    The present Safety Guide has to be seen as a companion document to the IAEA Safety Series No. 99. It is concerned with the waste form which is an important component of the overall disposal system. Because of the broad range of waste types and conditioned forms and variations in the sites, designs and constructional approaches being considered for deep geological repositories, this report necessarily approaches the waste acceptance criteria in a general way, recognizing that the assignment of quantitative limits to these criteria has to be the responsibility of national authorities. The main objective of this Safety Guide is to set out qualitative waste acceptance criteria as a basis for specifying quantitative limits for the waste forms and packages which are intended to be disposed of in deep geological repositories. It should serve as guidance for assigning such parameter values which would fully comply with the safety assessment and performance of a waste disposal system as a whole. This document is intended to serve both national authorities and regulatory bodies involved in the development of deep underground disposal systems. The qualitative waste acceptance criteria dealt with in the present Safety Guide are primarily concerned with the disposal of high level, intermediate level and long-lived alpha bearing wastes in deep geological repositories. Although some criteria are also applicable in other waste disposal concepts, it has to be borne in mind that the set of criteria presented here shall ensure the isolation capability of a waste disposal system for periods of time much longer than for other waste streams with shorter lifetimes. 51 refs, 1 tab

  10. Should the U.S. proceed to consider licensing deep geological disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Curtiss, J.R.

    1993-01-01

    The United States, as well as other countries facing the question of how to handle high-level nuclear waste, has decided that the most appropriate means of disposal is in a deep geologic repository. In recent years, the Radioactive Waste Management Committee of the Nuclear Energy Agency has developed several position papers on the technical achievability of deep geologic disposal, thus demonstrating the serious consideration of deep geologic disposal in the international community. The Committee has not, as yet, formally endorsed disposal in a deep geologic repository as the preferred method of handling high-level nuclear waste. The United States, on the other hand, has studied the various methods of disposing of high-level nuclear waste, and has determined that deep geologic disposal is the method that should be developed. The purpose of this paper is to present a review of the United States' decision on selecting deep geologic disposal as the preferred method of addressing the high-level waste problem. It presents a short history of the steps taken by the U.S. in determining what method to use, discusses the NRC's waste Confidence Decision, and provides information on other issues in the U.S. program such as reconsideration of the final disposal standard and the growing inventory of spent fuel in storage

  11. Deep earth fluids and huge metallogenetic belt and fatal geological disaster: 60th anniversary of Professor Du Le-tian engaging in geology

    International Nuclear Information System (INIS)

    Ou Guangxi; Tao Shizhen; Liu Yinhe

    2012-01-01

    Professor Du Le-tian has been researching for a long time on scientific relationship between deep earth fluids and hydrocarbon accumulation and metallogenesis, as well as gestation and prediction of disasters. He has contributed greatly to the development of that scientific field. From 6 to 8, July, 2012, 'Workshop on Deep Earth Fluids and Huge Metallogenetic Belt, Fatal Geological Disaster, as well as 60 th Anniversary of Professor Du Le-tian Engaging in Geology' was successfully convened in Beijing, totally with 76 delegates present who were experts, scholars or students from USA, Hong Kong, or various institutes, colleges or universities of China. In the workshop, the scientific presentations discussed were counted up to 49, on aspects of geological processes of deep earth fluids, relationship between earth degassing and hydrocarbon accumulation or metallogenesis, gestating mechanism of volcanic eruptions and strong earthquakes as well as their relations with mine gas outburst, high-temperature and high-pressure experimental earth science, etc.. (authors)

  12. System to provide 3D information on geological anomaly zone in deep subsea

    Science.gov (United States)

    Kim, W.; Kwon, O.; Kim, D.

    2017-12-01

    The study on building the ultra long and deep subsea tunnel of which length is 50km and depth is 200m at least, respectively, is underway in Korea. To analyze the geotechnical information required for designing and building subsea tunnel, topographic/geologiccal information analysis using 2D seabed geophysical prospecting and topographic, geologic, exploration and boring data were analyzed comprehensively and as a result, automation method to identify the geological structure zone under seabed which is needed to design the deep and long seabed tunnel was developed using geostatistical analysis. In addition, software using 3D visualized ground information to provide the information includes Gocad, MVS, Vulcan and DIMINE. This study is intended to analyze the geological anomaly zone for ultra deep seabed l and visualize the geological investigation result so as to develop the exclusive system for processing the ground investigation information which is convenient for the users. Particularly it's compatible depending on file of geophysical prospecting result and is realizable in Layer form and for 3D view as well. The data to be processed by 3D seabed information system includes (1) deep seabed topographic information, (2) geological anomaly zone, (3) geophysical prospecting, (4) boring investigation result and (5) 3D visualization of the section on seabed tunnel route. Each data has own characteristics depending on data and interface to allow interlocking with other data is granted. In each detail function, input data is displayed in a single space and each element is selectable to identify the further information as a project. Program creates the project when initially implemented and all output from detail information is stored by project unit. Each element representing detail information is stored in image file and is supported to store in text file as well. It also has the function to transfer, expand/reduce and rotate the model. To represent the all elements in

  13. Nuclear Waste Facing the Test of Time: The Case of the French Deep Geological Repository Project.

    Science.gov (United States)

    Poirot-Delpech, Sophie; Raineau, Laurence

    2016-12-01

    The purpose of this article is to consider the socio-anthropological issues raised by the deep geological repository project for high-level, long-lived nuclear waste. It is based on fieldwork at a candidate site for a deep storage project in eastern France, where an underground laboratory has been studying the feasibility of the project since 1999. A project of this nature, based on the possibility of very long containment (hundreds of thousands of years, if not longer), involves a singular form of time. By linking project performance to geology's very long timescale, the project attempts "jump" in time, focusing on a far distant future, without understanding it in terms of generations. But these future generations remain measurements of time on the surface, where the issue of remembering or forgetting the repository comes to the fore. The nuclear waste geological storage project raises questions that neither politicians nor scientists, nor civil society, have ever confronted before. This project attempts to address a problem that exists on a very long timescale, which involves our responsibility toward generations in the far future.

  14. Canadian CO2 Capture and Storage Technology Network : promoting zero emissions technologies

    International Nuclear Information System (INIS)

    2004-11-01

    This brochure provided information on some Canadian initiatives in carbon dioxide (CO 2 ) capture and storage. There has been growing interest in the implementation of components of CO 2 capture, storage and utilization technologies in Canada. Technology developments by the CANMET Energy Technology Centre concerning CO 2 capture using oxy-fuel combustion and amine separation were examined. Techniques concerning gasification of coal for electricity production and CO 2 capture were reviewed. Details of a study of acid gas underground injection were presented. A review of monitoring technologies in CO 2 storage in enhanced oil recovery was provided. Issues concerning the enhancement of methane recovery through the monitoring of CO 2 injected into deep coal beds were discussed. Storage capacity assessment of Canadian sedimentary basins, coal seams and oil and gas reservoirs were reviewed, in relation to their suitability for CO 2 sequestration. Details of the International Test Centre for Carbon Dioxide Capture in Regina, Saskatchewan were presented, as well as issues concerning the sequestration of CO 2 in oil sands tailings streams. A research project concerning the geologic sequestration of CO 2 and simultaneous CO 2 and methane production from natural gs hydrate reservoirs was also discussed. 12 figs.

  15. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. Annexes

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The general report and the present annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful

  16. Sectoral Plan 'Deep Geological Disposal', Stage 2. Proposed site areas for the surface facilities of the deep geological repositories as well as for their access infrastructure. General report

    International Nuclear Information System (INIS)

    2011-12-01

    In line with the provisions of the nuclear energy legislation, the sites for deep geological disposal of Swiss radioactive waste are selected in a three-stage Sectoral Plan process (Sectoral Plan for Deep Geological Disposal). The disposal sites are specified in Stage 3 of the selection process with the granting of a general licence in accordance with the Nuclear Energy Act. The first stage of the process was completed on 30 th November 2011, with the decision of the Federal Council to incorporate the six geological siting regions proposed by the National Cooperative for the Disposal of Radioactive Waste (NAGRA) into the Sectoral Plan for Deep Geological Disposal, for further evaluation in Stage 2. The decision also specifies the planning perimeters within which the surface facilities and shaft locations for the repositories will be constructed. In the second stage of the process, at least two geological siting regions each will be specified for the repository for low- and intermediate-level waste (L/ILW) and for the high-level waste (HLW) repository and these will undergo detailed geological investigation in Stage 3. For each of these potential siting regions, at least one location for the surface facility and a corridor for the access infrastructure will also be specified. NAGRA is responsible, at the beginning of Stage 2, for submitting proposals for potential locations for the surface facilities and their access infrastructure to the Federal Office of Energy (SFOE); these are then considered by the regional participation bodies in the siting regions. The present report and its annexes volume document these proposals. In Stage 2, under the lead of the SFOE, socio-economic-ecological studies will also be carried out to investigate the impact of a repository project on the environment, economy and society. The present reports also contain the input data to be provided by NAGRA for the generic (site-independent) part of these impact studies. A meaningful discussion

  17. CO2 blood test

    Science.gov (United States)

    Bicarbonate test; HCO3-; Carbon dioxide test; TCO2; Total CO2; CO2 test - serum; Acidosis - CO2; Alkalosis - CO2 ... Many medicines can interfere with blood test results. Your health ... need to stop taking any medicines before you have this test. DO ...

  18. Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties

    Energy Technology Data Exchange (ETDEWEB)

    Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

    2014-03-31

    Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by

  19. Strategic use of the underground for an energy mix plan, synergies among CO2 and CH4 Geological Storage and Geothermal Energy: Italian Energy review and Latium case study

    Science.gov (United States)

    Procesi, M.; Cantucci, B.; Buttinelli, M.; Armezzani, G.; Quattrocchi, F.

    2012-04-01

    Since the world-wide energy demand has been growing so much in the last years, it is necessary to develop a strategic mix-energy plan to supply low GHG (GreenHouseGas) emissions energy and solve the problem of CO2 emission increasing. A recent study published by European Commission shows that, if existing trends continue, by 2050 CO2 emissions will be unsustainably high: 900-1000 parts per million by volume. The European Commission in 2007 underline the necessity to elaborate, at European level, a Strategic Energy Technology Plan focused on non-carbon or reduced-carbon sources of energy, as renewable energies, CO2 capture and storage technologies, smart energy networks and energy efficiency and savings. Future scenarios for 2030 elaborated by the International Energy Agency (IEA) shows as a mix energy plan could reduce the global CO2 emissions from 27Gt to 23 Gt (about 15%). A strategic use of the underground in terms of: - development of CCS (Carbon dioxide Capture and Storage) associated to fossil fuel combustion; - increase of CH4 geological storage sites; - use of renewable energies as geothermic for power generation; could open a new energy scenario, according to the climate models published by IPCC. Nowadays CCS market is mainly developed in USA and Canada, but still not much accounted in Europe. In Italy there aren't active CCS projects, even if potential areas have been already identified. Many CH4 storage sites are located in Northern America, while other are present in Europe and Italy, but the number of sites is limited despite the huge underground potentiality. In Italy the power generation from geothermal energy comes exclusively from Tuscany (Larderello-Travale and Mt. Amiata geothermal fields) despite the huge potentiality of other regions as Latium, Campania and Sicily (Central and South Italy). The energy deficit and the relevant CO2 emissions represent a common status for many Italian regions, especially for the Latium Region. This suggests that a

  20. Foraminiferal calcification and CO2

    Science.gov (United States)

    Nooijer, L. D.; Toyofuku, T.; Reichart, G. J.

    2017-12-01

    Ongoing burning of fossil fuels increases atmospheric CO2, elevates marine dissolved CO2 and decreases pH and the saturation state with respect to calcium carbonate. Intuitively this should decrease the ability of CaCO3-producing organisms to build their skeletons and shells. Whereas on geological time scales weathering and carbonate deposition removes carbon from the geo-biosphere, on time scales up to thousands of years, carbonate precipitation increases pCO2 because of the associated shift in seawater carbon speciation. Hence reduced calcification provides a potentially important negative feedback on increased pCO2 levels. Here we show that foraminifera form their calcium carbonate by active proton pumping. This elevates the internal pH and acidifies the direct foraminiferal surrounding. This also creates a strong pCO2 gradient and facilitates the uptake of DIC in the form of carbon dioxide. This finding uncouples saturation state from calcification and predicts that the added carbon due to ocean acidification will promote calcification by these organisms. This unknown effect could add substantially to atmospheric pCO2 levels, and might need to be accounted for in future mitigation strategies.

  1. An overview on the national strategy to implement a deep geological repository in Romania

    International Nuclear Information System (INIS)

    Negut, G.; Ghitescu, P.; Dupleac, D.; Prisecaru, I.

    2010-01-01

    Since 1996 in Romania was started operation Candu 700 MW Unit 1 Cernavoda Nuclear Power Station and in 2007 begun operation of the Candu 700 MW Unit 2. The energy produced by nuclear units is accompanied by radioactive waste production. According with European Union requirements in Romania was created National Agency for Radioactive Waste (ANDRAD) in 2003. ANDRAD business is radioactive waste management. ANDRAD, together with the stakeholders, worked the law of great radioactive waste generators contribution for radioactive waste management, which was approved by Governmental Ordinance in September 2007. ANDRAD is responsible manager of this fund. ANDRAD is responsible, also, with the National Strategy for radioactive waste management. Romania's National Strategy for Energy approved in 2007 by Government Ordinance says that a deep geological repository for spent fuel (SF) and High Level Waste (HLW) is to be put in operation around 2055. IAEA supported ANDRAD in a Technical Cooperation Project for a concept of a geological repository of radioactive waste. A strategy to implement o geological repository in Romania was drafted. There are problems with potential rocks and sites to host a geological repository. There are problems for funding this project and also sensitive and serious problems connected with social and political issues. Paper presents this strategy and all the problems arisen by implantation of this strategy. (authors)

  2. Mathematical modelling of heat production in deep geological repository of high-level nuclear waste

    International Nuclear Information System (INIS)

    Kovanda, O.

    2017-01-01

    Waste produced by nuclear industry requires special handling. Currently, there is a research taking place, focused at possibilities of nuclear waste storage in deep geological repositories, hosted in stable geological environment. The high-level nuclear waste produces significant amount of heat for a long time, which can affect either environment outside of or within the repository in a negative way. Therefore to reduce risks, it is desirable to know the principles of such heat production, which can be achieved using mathematical modeling. This thesis comes up with a general model of heat production-time dependency, dependable on initial composition of the waste. To be able to model real situations, output of this thesis needs to be utilized in an IT solution. (authors)

  3. Important processes affecting the release and migration of radionuclides from a deep geological repository

    International Nuclear Information System (INIS)

    Barátová, Dana; Nečas, Vladimír

    2017-01-01

    The processes that affect significantly the transport of contaminants through the near field and far field of a deep geological repository of spent nuclear fuel were studied. The processes can be generally divided into (i) processes related to the release of radionuclides from the spent nuclear fuel; (ii) processes related to the radionuclide transport mechanisms (such as advection and diffusion); and (iii) processes affecting the rate of radionuclide migration through the multi-barrier repository system. A near-field and geosphere model of an unspecified geological repository sited in a crystalline rock is also described. Focus of the treatment is on the effects of the different processes on the activity flow of the major safety-relevant radionuclides. The activity flow was simulated for one spent fuel cask by using the GoldSim simulation tool. (orig.)

  4. Deep geological radioactive waste disposal in Germany: Lessons learned and future perspectives

    International Nuclear Information System (INIS)

    Lempert, J.P.; Biurrun, E.

    2001-01-01

    As far back as in the seventies a fully developed, integrated concept for closing the nuclear fuel cycle was agreed upon in Germany between the Federal Government of that time and the electricity utilities. In the twenty years elapsed since then it was further developed as necessary to permanently fit the state of the art of science and technology. For management of spent fuel, the concept currently considers two equivalent alternatives: direct disposal of the spent fuel or reprocessing the fuel and recycling in thermal reactors. Interim storage of spent fuel and vitrified high level waste (HLW) to allow for decay heat generation to decrease to a convenient level is carried out in centralized installations. Radioactive waste disposal in pursuant to German regulations for all kinds of waste is to be carried out exclusively in deep geologic repositories. At present in the country, there are three centralized interim storage facilities for spent fuel, one of them can also accept vitrified HLW. Several facilities are in use for low level waste (LLW) and intermediate level waste (ILW) storage at power plants and other locations. A pilot conditioning facility for encapsulating spent fuel and/or HLW for final disposal is now ready to be commissioned. Substantial progress has been achieved in realization of HLW disposal, including demonstration of all the needed technology and fabrication of a significant part of the equipment. With regard to deep geologic disposal of LLW and ILW, Germany has worldwide unique experience. The Asse salt mine was used as an experimental repository for some 10 years in the late sixties and seventies. After serving since then as an underground research facility, it is now being backfilled and sealed. The Morsleben deep geologic repository was in operation for more than 25 years until September 1998. (author)

  5. Report preceding the public debate on the Cigeo project of deep geological storage of radioactive wastes

    International Nuclear Information System (INIS)

    2013-01-01

    This report first presents and comments the inventory made by the ANDRA of materials and wastes which are to be stored in the Cigeo deep geological storage. It highlights the transparency of the decision process related to this project (public debate, investigations and expertise), and also outlines the opinions of some local representatives and associations committed in environment protection regarding the project preparation. Five recommendations are then made by the High Committee for transparency and information on nuclear safety (HCTISN). Additional information is provided in appendix about the material inventory, about the history of the decision process, and also about meetings and hearings held by the High Committee

  6. Canada's deep geological repository for used nuclear fuel - site selection process update

    International Nuclear Information System (INIS)

    Facella, J.

    2014-01-01

    In 2007, the Government of Canada selected Adaptive Phased Management as Canada's plan for the long-term management of Canada's used nuclear fuel in a deep geological repository, located in an informed and willing host. The process of site selection is an important milestone in this program. The NWMO describes its approach to working collaboratively with communities which expressed interest in exploring the project, as well as Aboriginal communities in the area and other surrounding communities. The project is designed to be implemented through a long-term partnership involving the interested community, Aboriginal communities and surrounding communities working with the NWMO. (author)

  7. Considerations on pressure build-up in deep geological repositories for radioactive waste

    International Nuclear Information System (INIS)

    Beer, Hans-Frieder

    2015-01-01

    Gas formation caused by corrosion of metals is a pivotal point with respect to the safety analysis of deep geological repositories. Solid corrosion products are formed unavoidably during the gas formation. The volumes of these solid corrosion products are multiples of the original waste volume. These solid corrosion products are chemically extremely stable and result in a pressure increase inside the repository. This pressure is considerably higher than that of the overlaying rock. The question that arises is, why this aspect is not considered in the consulted documents.

  8. Establishing and communicating confidence in the safety of deep geologic disposal. Approaches and arguments

    International Nuclear Information System (INIS)

    2002-01-01

    Confidence among both technical experts and the public in the safety of deep geologic repositories for radioactive waste is a key element in the successful development of the repositories. This report presents the approaches and arguments that are currently used in OECD countries to establish and communicate confidence in their safety. It evaluates the state of the art for obtaining, presenting and demonstrating confidence in long-term safety, and makes recommendations on future directions and initiatives to be taken for improving confidence. (author)

  9. Annular air space effects on nuclear waste canister temperatures in a deep geologic waste repository

    International Nuclear Information System (INIS)

    Lowry, W.E.; Cheung, H.; Davis, B.W.

    1980-01-01

    Air spaces in a deep geologic repository for nuclear high level waste will have an important effect on the long-term performance of the waste package. The important temperature effects of an annular air gap surrounding a high level waste canister are determined through 3-D numerical modeling. Air gap properties and parameters specifically analyzed and presented are the air gap size, surfaces emissivity, presence of a sleeve, and initial thermal power generation rate; particular emphasis was placed on determining the effect of these variables have on the canister surface temperature. Finally a discussion based on modeling results is presented which specifically relates the results to NRC regulatory considerations

  10. Underground storage. Study of radwaste storage in deep geological formations: environmental protection

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.

    1993-01-01

    The purpose of the Agence nationale pour la gestion des dechets radioactifs (Andra) is to monitor the management methods and storage of radioactive waste produced in France. The agency has this undertaken a vast study program for the evaluation of the management conditions of long-life radwaste, which cannot be stored indefinitely in shallow-ground repositories. Underground laboratories are investigating the feasibility of a possible solution which is to store radwaste in a deep geological layer. However, there will be no decision on this type of storage before the year 2006. 7 figs

  11. Paleocorrosion studies in deep sea sediments and the geological disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fehrenbach, L.; Maurette, M.; Guichard, F.; Havette, A.; Monaco, A.

    1984-01-01

    Uncertainties still surround assessment of the safety of disposal of nuclear wastes incorporated into 'radwaste' matrices. This is mostly due to the long time required for radioactive decay of 237 Np. The present work explores the usefulness of an experimental approach in 'paleocorrosion', which should help in minimizing such uncertainties. In this approach, polished sections of sediments containing high concentrations of natural analogues of radwaste matrices are subjected to element micromapping. Thus it is possible to characterize the long-term interactions of such analogues in their geological repositories, and to identify which generate reaction aureoles and protective and/or unprotective coatings. These analogues include grains incorporated in deep sea sediments (uraninite and quartz from the Oklo uranium ore deposit; volcanic ash particles; magnetic cosmic spherules). The present results indicate that uraninite should be a much more durable radwaste matrix than any type of glass in deep sea sediments. (orig./TWO)

  12. Site selection for deep geologic repositories - Consequences for society, economy and environment

    International Nuclear Information System (INIS)

    2010-03-01

    In a few years, Switzerland will make the decision regarding site selection for geological underground repositories for the storage of radioactive wastes. Besides the safety issue, many citizens are interested in how such a repository will affect environment, economy and society in the selected site's region. This brochure summarizes the results of many studies on the socio-economic impacts of nuclear waste repositories. Radioactive wastes must be stored in such a way that mankind and environment are safely protected for a long period of time. How this goal may be achieved, is already known: geologic deep repositories warrant long-term safety. For the oncoming years in Switzerland the question is where the repository will be built. The search for an appropriate site for a repository in the proposed regions will launch discussions. Within the participative framework the regions may bring their requests. The demonstration of the safety of potential repository sites has the highest priority in the selection process. In the third procedural step additional rock investigations will be made. The socio-economic studies and the experience with existing plants show that radioactive waste management plants can be built and operated in good agreement with environmental requirements. The radioactive wastes in a deep underground repository are stored many hundred meters below the Earth's surface. There, they are isolated from our vital space. Technical barriers and the surrounding dense rock confinement prevent the release of radioactive materials into the environment. A deep repository has positive consequences for the regional economy. It increases trade and value creation and creates work places. The socio-economic impacts practically extend over one century, but strongly vary with time; they are the largest during the building period. High life quality and a positive population development in the selected site region are compatible with a deep repository. A fair and

  13. Bacterial Diversity in Bentonites, Engineered Barrier for Deep Geological Disposal of Radioactive Wastes.

    Science.gov (United States)

    Lopez-Fernandez, Margarita; Cherkouk, Andrea; Vilchez-Vargas, Ramiro; Jauregui, Ruy; Pieper, Dietmar; Boon, Nico; Sanchez-Castro, Ivan; Merroun, Mohamed L

    2015-11-01

    The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.

  14. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  15. Deep Time Data Infrastructure: Integrating Our Current Geologic and Biologic Databases

    Science.gov (United States)

    Kolankowski, S. M.; Fox, P. A.; Ma, X.; Prabhu, A.

    2016-12-01

    As our knowledge of Earth's geologic and mineralogical history grows, we require more efficient methods of sharing immense amounts of data. Databases across numerous disciplines have been utilized to offer extensive information on very specific Epochs of Earth's history up to its current state, i.e. Fossil record, rock composition, proteins, etc. These databases could be a powerful force in identifying previously unseen correlations such as relationships between minerals and proteins. Creating a unifying site that provides a portal to these databases will aid in our ability as a collaborative scientific community to utilize our findings more effectively. The Deep-Time Data Infrastructure (DTDI) is currently being defined as part of a larger effort to accomplish this goal. DTDI will not be a new database, but an integration of existing resources. Current geologic and related databases were identified, documentation of their schema was established and will be presented as a stage by stage progression. Through conceptual modeling focused around variables from their combined records, we will determine the best way to integrate these databases using common factors. The Deep-Time Data Infrastructure will allow geoscientists to bridge gaps in data and further our understanding of our Earth's history.

  16. Canada's Deep Geological Repository for Used Nuclear Fuel - Geo-scientific Site Evaluation Process - 13117

    International Nuclear Information System (INIS)

    Blyth, Alec; Ben Belfadhel, Mahrez; Hirschorn, Sarah; Hamilton, Duncan; McKelvie, Jennifer

    2013-01-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable rock formation at a depth of approximately 500 meters (m) (1,640 feet [ft]). In May 2010, the NWMO published a nine-step site selection process that serves as the road map to decision-making on the location for the deep geological repository. The safety and appropriateness of any potential site will be assessed against a number of factors, both technical and social in nature. The selected site will be one that can be demonstrated to be able to safely contain and isolate used nuclear fuel, protecting humans and the environment over the very long term. The geo-scientific suitability of potential candidate sites will be assessed in a stepwise manner following a progressive and thorough site evaluation process that addresses a series of geo-scientific factors revolving around five safety functions. The geo-scientific site evaluation process includes: Initial Screenings; Preliminary Assessments; and Detailed Site Evaluations. As of November 2012, 22 communities have entered the site selection process (three in northern Saskatchewan and 18 in northwestern and southwestern Ontario). (authors)

  17. Alteration of R7T7-type nuclear glass in deep geological storage conditions

    International Nuclear Information System (INIS)

    Combarieu, G. de

    2007-02-01

    This PhD thesis is aimed to study the alteration of SON68 glass, French inactive glass of R7T7-type, in contact with near field materials of a deep geological storage (French concept from ANDRA) which are mainly metallic iron and Callovo-Oxfordian clay. Therefore, experiments involving a 'glass-iron-clay' system at lab-scale have been carried out. Interactions between glass, iron and clay have been characterised from submicron to millimeter scale by means of SEM, TEM, XRD and XAS and Raman spectroscopies in terms of chemistry and crystal-chemistry. In the mean time, a conceptual model of glass alteration has been developed to account for most of the experimental observations and known mechanisms of alteration. The model has been then transposed within the transport-chemistry code HYTEC, together with developed models of clay and iron corrosion, to simulate the experiments described above. This work is thus a contribution to the understanding of iron corrosion in Callovo-Oxfordian clay and subsequent glass alteration in the newly formed corrosion products, the whole process being considered as a lab-scale model of a deep geological storage of radioactive wastes. (author)

  18. Vertically averaged approaches for CO 2 migration with solubility trapping

    KAUST Repository

    Gasda, S. E.; Nordbotten, J. M.; Celia, M. A.

    2011-01-01

    The long-term storage security of injected carbon dioxide (CO2) is an essential component of geological carbon sequestration operations. In the postinjection phase, the mobile CO2 plume migrates in large part because of buoyancy forces, following

  19. The Swedish approach to siting of a deep geological repository and interaction with the public

    International Nuclear Information System (INIS)

    Thegerstroem, C.

    1993-01-01

    The planned process for siting of a deep geological repository for encapsulated spent nuclear fuel in Sweden was presented in the 1992 SKB R and D programme. A first phase of the repository operation will be limited to disposal of a small amount of encapsulated spent nuclear fuel (approximately 800 tons). This phase will be followed by an evaluation of experiences as well as alternative options before deciding if, when and how to proceed with disposal of the remaining amounts of spent fuel. During the first phase it will be possible to retrieve the waste. Siting is planned to be done in stages. The field studies and safety assessments performed strongly indicate that it is possible to find geological suitable sites within many regions of Sweden. The potential for fulfilling safety requirements will be a crucial factor in site-selection. Local interest in, and attitude to a repository siting will play an important role in the siting process. It is important that an atmosphere of trust and openness can be established. Extensive geological site characterization work will be carried out at the sites selected and studies of other technical, social, economical or political matters will be equally important. Public communication and local participation will form an essential part of the siting programme from the outset. 3 refs., 3 figs

  20. Safety- and performance indicators for a generic deep geological repository in clay

    International Nuclear Information System (INIS)

    Resele, G.; Niemeyer, M.; Wilhelm, St.; Heimer, St.; Mohlfeld, M.; Eilers, G.; Preuss, J.; Wollrath, J.

    2010-01-01

    Document available in extended abstract form only. As a first step of an impartial survey for an optimal site selection for a deep geological repository in Germany, potentially suitable regions shall be identified and localised according to their suitability. During the early phases of such a site selection procedure the information about the properties of the host rock and the geological situation at the potential sites is not very precise. As site investigation procedures are both expensive and time-consuming, it is essential to identify those properties of the geological barrier system that are most relevant for long-term safety. Furthermore, adequate indicators have to be chosen that allow a simple but efficient assessment of the suitability of the potential regions. Definition and application of 'exclusion criteria' based on single parameter values, e.g. the hydraulic conductivity of the host rock, is inadequate because the long-term safety depends on the interaction of many features and properties of the barrier system. In a research project, indicators have been developed which depend on the most relevant properties of the geological barriers and estimate the overall performance of a repository system. The application of these indicators on the barrier properties which have been found during the investigations of potential repository sites in clay located in Germany, Switzerland and France demonstrates how, for instance, an unfavourably high hydraulic permeability of the clay can be compensated by a large vertical extension of the clay layer and small hydraulic gradients. Other indicators evaluate the importance of hydraulic discontinuities and define the minimal requirements on technical barriers like seals and backfill of emplacement tunnels. When the information of the radionuclide inventory and the biosphere, especially the diluting aquifer is included, the indicators allow the estimation of the resulting dose which matches the result of a

  1. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, S. [National Nuclear Laboratory (United Kingdom); Jivkov, A.P. [Research Centre for Radwaste and Decommissioning and Modelling and Simulation Centre, University of Manchester (United Kingdom)

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the

  2. CO2 capture and geological storage: The BRGM, sixteen years of involvement in major research projects. The contribution of technical abilities and expertise in Earth Sciences to the work of national and international authorities

    International Nuclear Information System (INIS)

    2009-01-01

    This press document presents the abilities and the activities of the French BRGM (Bureau de Recherches Geologiques et Minieres, Office for geological and mining researches) in developing knowledge on storage capacities and on the behaviour of deep aquifers, in contributing to the main national and European research programs, in actively participating to European and international networks, in being an expert for the MEEDDM (the French ministry of energy, ecology, sustainable development and sea) and the ADEME (the French agency for energy conservation), and as the French representative in several international authorities

  3. Generic description of facilities at the shaft head (auxiliary entrance installations) of deep geological repositories

    International Nuclear Information System (INIS)

    2016-10-01

    In a deep geological repository, the access structures function as the link between the surface and the installations and structures at the disposal level. In the planned implementation scenarios, at least two access structures will be in operation up to the time of closure of the repository. The radioactive waste will be transported via the main access from the surface to the disposal level during emplacement operations. For the construction and operation of a deep geological repository, additional access structures are required. These auxiliary accesses and the associated surface infrastructure (e.g. shaft head installations) form the subject of this report. To provide as broad and comprehensive a description as possible, seven types of auxiliary access facilities are defined; these are characterised in line with the current status of planning and their functions and impacts are described. During construction, operation and dismantling of auxiliary access facilities, the usual conventional safety measures (inter alia) have to be observed (e.g. groundwater protection, fire prevention, facility security, accident prevention). Regarding the 'Ordinance on Protection against Major Accidents' no large quantities of hazardous materials, i.e. above the corresponding threshold quantities, are to be expected in the auxiliary access facilities. Proper handling and compliance with applicable regulations in all phases will ensure no hazard to humans and the environment. As no handling of radioactive materials is foreseen in the auxiliary access facilities, and because exhaust air and waste water from the controlled zones of a repository will, in principle, be removed via the main access and not the auxiliary accesses, a safety-relevant emission of radioactive substances and transport of contaminated material can be ruled out for the auxiliary access facilities during both normal operation and also in the case of an accident. Based on the information presented in

  4. Signals in water - the deep originated CO2 in the Peschiera-Capone acqueduct in relation to monitoring of seismic activity in central Italy

    Directory of Open Access Journals (Sweden)

    Claudio Martini

    2017-01-01

    Full Text Available Valuation of the analysis performed on groundwater of Central Lazio by ACEA ATO2 SpA from 2001 to 2016, according to the model proposed by Chiodini et al. in 2004 that identifies in the Tyrrhenian coast of central and southern Italy, two notable releasing areas of the CO2 produced by the sub-crustal magma activity, or two areas of natural degassing of the planet: the TRDS area (Tuscan Roman degassing structure and the CDS area (Campanian degassing structure. Reconstruction of the CO2 produced by degassing through the analysis of the components of inorganic carbon measured in groundwater of Central Lazio (Rome and Rieti districts between 2001 and 2016. Causal relationship of the activity of mantle degassing in the TRDS area with the disastrous earthquake occurred at L’Aquila in April 6, 2009. Current use of the dissolved inorganic carbon measurement in the Peschiera and Capore spring waters to monitor the activity of mantle degassing in the TRDS area, in order to have an early warning signal of possible seismic activity in the Central Apennines. Revision and data updating after the earthquake in August 24, 2016 at Amatrice.

  5. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    International Nuclear Information System (INIS)

    Mao, N.; Ramirez, A.L.

    1980-01-01

    This report presents new developments in measurement technology relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis has been placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment

  6. Deep geological disposal of radioactive waste in Switzerland - Overview and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Schnellmann, M.; Zuidema, P.; Gautschi, A.

    2015-07-01

    This article reviews the situation in Switzerland regarding the disposal of radioactive wastes. The development of the Swiss concept for wastes with high, medium and low levels of activity is reviewed, as detailed in the Sectorial Plan for Deep Geological Repositories published in 2008. The three stages involved are described in detail. Further investigations carried out in the Grimsel and Mont Terri underground laboratories are reported on. The state of current work is reviewed. A map is provided of the areas in northern Switzerland which have been selected for further, more intensive research, along with a review of the possible rock formations to be investigated. Data already obtained are reviewed and proposals for further investigations are discussed. In the upcoming stage 3 of the plan, the selection of one site per repository type will be made, leading to the submission of a general licence application.

  7. Obtaining reasonable assurance on geochemical aspects of performance assessment of deep geologic repositories

    International Nuclear Information System (INIS)

    Van Luik, A.E.; Serne, R.J.

    1986-01-01

    Providing reasonable assurance that a deep geologic disposal system will perform as required by regulation involves, in part, the building of confidence by providing a sound scientific basis for the site characterization, engineered system design, and system performance modeling efforts. Geochemistry plays a role in each of these activities. Site characterization must result in a description of the in situ geochemical environment that will support the design of the engineered system and the modeling of the transport of specific radionuclides to the accessible environment. Judging the adequacy of this site characterization effort is a major aspect of providing reasonable assurance. Within site characterization, there are a number of geochemical issues that need to be addressed such as the usefulness of natural analog studies, and assessing the very long-term stability of the site geochemistry, given expected temperature and radiation conditions

  8. OPG's deep geologic repository for low and intermediate level waste - recent progress

    International Nuclear Information System (INIS)

    King, F.K.

    2006-01-01

    This paper provides a status report on Canada's first project to build a permanent repository for the long-term management of radioactive waste. Ontario Power Generation has initiated a project to construct a deep geologic repository for low- and intermediate-level waste at the Bruce Nuclear Site, at a depth in the range of 600 to 800 m in an Ordovician-age argillaceous limestone formation. The project is currently undergoing an Environmental Assessment and consulting companies in the areas of environmental assessment, geoscientific site characterization, engineering and safety assessment have been hired and technical studies are underway. Seismic surveys and borehole drilling will be initiated in the fall of 2006. The next major milestone for the project is the submission of the Environmental Assessment report, currently scheduled for December 2008. (author)

  9. Surface facilities for geological deep repositories - Measures against dangers during construction and operation

    International Nuclear Information System (INIS)

    2013-09-01

    This brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the measures that are to be taken to address the dangers encountered during the construction and operation of deep geological repositories for nuclear wastes. Firstly, the operation of such repositories during the emplacement of nuclear wastes is discussed and examples of possible repositories for fuel rods and highly-radioactive waste are presented. Various emission-protection issues and safety measures to be taken during construction of such repositories are looked at as is the protection of ground water. Safety considerations during the operational phase are discussed, including inclusion methods used for the wastes and radiation protection. The handling of radioactive wastes, the recognition of dangers and measures to be taken to counteract them are discussed. Various possible accidents are looked at

  10. Proposal for the classification of scenarios for deep geological repositories in probability classes

    International Nuclear Information System (INIS)

    Beuth, Thomas

    2013-03-01

    The provided report was elaborated in the framework of the project 3609R03210 ''Research and Development for Proof of the long-term Safety of Deep Geological Repositories''. It contains a proposal for a methodology that enables the assignment of developed scenarios in the frame of Safety Cases to defined probability classes. The assignment takes place indirectly through the categorization of the defining relevant factors (so-called FEP: Features, Events and Processes) of the respective scenarios also in probability classes. Therefore, decision trees and criteria were developed for the categorization of relevant factors in classes. Besides the description of the methodology another focal point of the work was the application of the method taking into account a defined scenario. By means of the scenario the different steps of the method and the decision criteria were documented, respectively. In addition, potential subjective influences along the path of decisions regarding the assignment of scenarios in probability classes were identified.

  11. Why every national deep-geological-isolation program needs a long-term science & technology component

    International Nuclear Information System (INIS)

    Budnitz, R J

    2006-01-01

    The objective of this paper is to set down the rationale for a separate Science & Technology (S&T) Program within every national deep-geological-isolation program. The fundamental rationale for such a Program is to provide a dedicated focus for longer-term science and technology activities that ultimately will benefit the whole repository mission. Such a Program, separately funded and with a dedicated staff (separate from the ''mainline'' activities to develop the repository, the surface facilities, and the transportation system), can devote itself exclusively to the development and management of a long-term science and technology program. Broad experience in governments worldwide has demonstrated that line offices are unlikely to be able to develop and sustain both the appropriate longer-term philosophy and the specialized skills associated with managing longer-term science and technology projects. Accomplishing both of these requires a separate dedicated program office with its own staff

  12. Canada's deep geological repository for used nuclear fuel - the geoscientific site evaluation process

    Energy Technology Data Exchange (ETDEWEB)

    Belfadhel, M.B.; Blyth, A.; Desroches, A.; Hirschorn, S.; Mckelvie, J.; Sanchez-Rico Castejon, M.; Parmenter, A.; Urrutia-Bustos, A.; Vorauer, A., E-mail: mbenbelfadhel@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada)

    2014-07-01

    The Nuclear Waste Management Organization (NWMO) is responsible for implementing Adaptive Phased Management (APM), the approach selected by the Government of Canada for the long-term management of used nuclear fuel generated by Canadian nuclear reactors. The ultimate objective of APM is the centralized containment and isolation of Canada's used nuclear fuel in a Deep Geological Repository in a suitable crystalline or sedimentary rock formation. In May 2010, the NWMO initiated a nine-step site selection process to find an informed and willing community to host the project. This paper describes the approach, methods and criteria being used to assess the geoscientific suitability of communities currently involved in the site selection process. The social, cultural and economic aspects of the assessment are discussed in a companion paper. (author)

  13. Postclosure safety assessment of a deep geological repository for Canada's used nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, N.G.; Kremer, E.P.; Garisto, F.; Gierszewski, P.; Gobien, M.; Medri, C.L.D. [Nuclear Waste Management Organization, Toronto, ON (Canada); Avis, J.D. [Geofirma Engineering Ltd., Ottawa, ON (Canada); Chshyolkova, T.; Kitson, C.I.; Melnyk, W.; Wojciechowski, L.C. [Atomic Energy of Canada Limited, Pinawa, MB (Canada)

    2011-07-01

    This paper reports on elements of a postclosure safety assessment performed for a conceptual design and hypothetical site for a deep geological repository for Canada's used nuclear fuel. Key features are the assumption of a copper used fuel container with a steel inner vessel, container placement in vertical in-floor boreholes, a repository depth of 500 m, and a sparsely fractured crystalline rock geosphere. The study considers a Normal Evolution Scenario together with a series of Disruptive Event Scenarios. The Normal Evolution Scenario is a reasonable extrapolation of present day site features and receptor lifestyles, while the Disruptive Event Scenarios examine abnormal and unlikely failures of the containment and isolation systems. Both deterministic and probabilistic simulations were performed. The results show the peak dose consequences occur far in the future and are well below the applicable regulatory acceptance criteria and the natural background levels. (author)

  14. New developments in measurements technology relevant to the studies of deep geological repositories in bedded salt

    Science.gov (United States)

    Mao, N. H.; Ramirez, A. L.

    1980-10-01

    Developments in measurement technology are presented which are relevant to the studies of deep geological repositories for nuclear waste disposal during all phases of development, i.e., site selection, site characterization, construction, operation, and decommission. Emphasis was placed on geophysics and geotechnics with special attention to those techniques applicable to bedded salt. The techniques are grouped into sections as follows: tectonic environment, state of stress, subsurface structures, fractures, stress changes, deformation, thermal properties, fluid transport properties, and other approaches. Several areas that merit further research and developments are identified. These areas are: in situ thermal measurement techniques, fracture detection and characterization, in situ stress measurements, and creep behavior. The available instrumentations should generally be improved to have better resolution and accuracy, enhanced instrument survivability, and reliability for extended time periods in a hostile environment.

  15. Regional-scale brine migration along vertical pathways due to CO2 injection - Part 1: The participatory modeling approach

    Science.gov (United States)

    Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera

    2017-06-01

    Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.

  16. Seismic stability of the survey areas of potential sites for the deep geological repository of the spent nuclear fuel

    Czech Academy of Sciences Publication Activity Database

    Kaláb, Zdeněk; Šílený, Jan; Lednická, Markéta

    2017-01-01

    Roč. 15, č. 1 (2017), s. 486-493 E-ISSN 2391-5471 R&D Projects: GA MŠk LM2010008; GA MŠk(CZ) LM2015079 Institutional support: RVO:68145535 ; RVO:67985530 Keywords : deep geological repository * earthquake * seismicity * neo-deterministic analysis * probabilistic seismic hazard assessment Subject RIV: DC - Siesmology, Volcanology, Earth Structure; DC - Siesmology, Volcanology, Earth Structure (GFU-E) OBOR OECD: Environmental and geological engineering, geotechnics; Environmental and geological engineering, geotechnics (GFU-E) Impact factor: 0.745, year: 2016 https://www.degruyter.com/downloadpdf/j/phys.2017.15.issue-1/phys-2017-0055/phys-2017-0055.pdf

  17. CO2 Capture and Reuse

    International Nuclear Information System (INIS)

    Thambimuthu, K.; Gupta, M.; Davison, J.

    2003-01-01

    CO2 capture and storage including its utilization or reuse presents an opportunity to achieve deep reductions in greenhouse gas emissions from fossil energy use. The development and deployment of this option could significantly assist in meeting a future goal of achieving stabilization of the presently rising atmospheric concentration of greenhouse gases. CO2 capture from process streams is an established concept that has achieved industrial practice. Examples of current applications include the use of primarily, solvent based capture technologies for the recovery of pure CO2 streams for chemical synthesis, for utilization as a food additive, for use as a miscible agent in enhanced oil recovery operations and removal of CO2 as an undesired contaminant from gaseous process streams for the production of fuel gases such as hydrogen and methane. In these applications, the technologies deployed for CO2 capture have focused on gas separation from high purity, high pressure streams and in reducing (or oxygen deficient) environments, where the energy penalties and cost for capture are moderately low. However, application of the same capture technologies for large scale abatement of greenhouse gas emissions from fossil fuel use poses significant challenges in achieving (at comparably low energy penalty and cost) gas separation in large volume, dilute concentration and/or low pressure flue gas streams. This paper will focus on a review of existing commercial methods of CO2 capture and the technology stretch, process integration and energy system pathways needed for their large scale deployment in fossil fueled processes. The assessment of potential capture technologies for the latter purpose will also be based on published literature data that are both 'transparent' and 'systematic' in their evaluation of the overall cost and energy penalties of CO2 capture. In view of the of the fact that many of the existing commercial processes for CO2 capture have seen applications in

  18. 3D numerical modelling of the thermal state of deep geological nuclear waste repositories

    Science.gov (United States)

    Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, Yu. N.

    2017-09-01

    One of the important aspects of the high-level radioactive waste (HLW) disposal in deep geological repositories is ensuring the integrity of the engineered barriers which is, among other phenomena, considerably influenced by the thermal loads. As the HLW produce significant amount of heat, the design of the repository should maintain the balance between the cost-effectiveness of the construction and the sufficiency of the safety margins, including those imposed on the thermal conditions of the barriers. The 3D finite-element computer code FENIA was developed as a tool for simulation of thermal processes in deep geological repositories. Further the models for mechanical phenomena and groundwater hydraulics will be added resulting in a fully coupled thermo-hydro-mechanical (THM) solution. The long-term simulations of the thermal state were performed for two possible layouts of the repository. One was based on the proposed project of Russian repository, and another features larger HLW amount within the same space. The obtained results describe the spatial and temporal evolution of the temperature filed inside the repository and in the surrounding rock for 3500 years. These results show that practically all generated heat was ultimately absorbed by the host rock without any significant temperature increase. Still in the short time span even in case of smaller amount of the HLW the temperature maximum exceeds 100 °C, and for larger amount of the HLW the local temperature remains above 100 °C for considerable time. Thus, the substantiation of the long-term stability of the repository would require an extensive study of the materials properties and behaviour in order to remove the excessive conservatism from the simulations and to reduce the uncertainty of the input data.

  19. A method of identifying social structures in siting regions for deep geological repositories in Switzerland

    International Nuclear Information System (INIS)

    Brander, Simone

    2010-09-01

    Acceptance is a key element in the site selection process for deep geological repositories for high-level and low and intermediate-level radioactive waste in Switzerland. Participation requirements such as comprehensive negotiation issues and adequate resources have thus been defined by the Swiss Federal Office of Energy (SFOE). In 2008, on the basis of technical criteria Nagra (National Cooperative for the Disposal of Radioactive Waste) proposed several potential areas for deep geological repositories. The number of potential areas will be narrowed down within the next few years. All municipalities within the planning perimeter (the area in which surface facilities can be realised) are affected and form the siting region. In order to ensure that the local population have their say in the forthcoming discussions, regional participation bodies including all municipalities within a siting region are being set up by the SFOE. Regional participation ensures that local interests, needs and values are taken into account in the site selection process. Assembling the regional participation bodies is therefore of great importance. Before such bodies can be formed, however, the various interests, needs and values have to be identified, and special attention has to be paid to long-term interests of future generations, as well as to non-organised and under-represented interests. According to the concept of proportional representation, the interests, needs and values that are identified and weighted by the local population are to be represented in the regional participation procedure. The aim of this study is to share a method of mapping existing social structures in a defined geographical area. This involves a combination of an analysis of socio-economic statistical data and qualitative and quantitative social research methods

  20. A CO2-storage supply curve for North America and its implications for the deployment of carbon dioxide capture and storage systems

    International Nuclear Information System (INIS)

    Dooley, J.J.; Bachu, S.; Gupta, N.; Gale, J.

    2005-01-01

    This paper presented a highly disaggregated estimate of carbon dioxide (CO 2 )-storage capacity of more than 330 onshore geological reservoirs across the United States and Canada. The demand placed upon these reservoirs by thousands of existing large anthropogenic CO 2 point sources was also reviewed based on a newly developed methodology for estimating the effective storage capacities of deep saline formations, depleted oil and gas reservoirs, and deep unmineable coal seams. This analysis was based on matching the identified point sources with candidate storage reservoirs. By incorporating the updated source and reservoir data into the Battelle CO 2 -GIS, a series of pairwise costs for transporting CO 2 from sites of anthropogenic CO 2 sources was calculated along with the net cost of storing it in each of the candidate reservoirs within a specified distance of the point source. Results indicate a large and variably distributed North American storage capacity of at least 3,800 gigatonnes of CO 2 , with deep saline formations accounting for most of this capacity. A geospatial and techno-economic database of 2,082 anthropogenic CO 2 point sources in North America, each with annual emissions greater than 100,000 tonnes of CO 2 , was also refined. Sensitivities examined for the CO 2 -storage cost curve focused on high/low oil and gas prices; the maximum allowed distance between source and reservoir; and, the infrastructure costs associated with CO 2 -driven hydrocarbon recovery. 20 refs., 5 figs

  1. The study of fracture mineralization and relationship with high level radioactive waste of deep geological repository

    International Nuclear Information System (INIS)

    Reyes, Cristina N.

    2003-01-01

    Extensive investigations of the Ordovician, Dinantian and Permo-Triassic rocks of the Sellafield area of northwest England were undertaken by United Kingdom Nirex Ltd. as a possible national site for geological disposal of intermediate and low-level radioactive waste. Very detailed studies of fracture mineralisation at Sellafield were thus put in hand by Nirex Ltd. and the results summarised by the British Geological Survey. Deep (up to 2 km) boreholes were put down with excellent core recovery. It is generally agreed that the most significant pathway for the escape of all but a very few radionuclides is by solution in and advection of groundwater. In this context, rock fracture systems are particularly important because they offer a potentially rapid pathway to the surface and the biosphere. One striking aspect of this work is that the fracture mineralisation seemingly records major and rapid fluctuations in redox conditions -sometimes during apparently continuous precipitation of cements (ferroan and non-ferroan calcites, dolomite). Carbonate cements record variations in Fe 2+ availability. Fe(III) precipitates also as oxide (hematite) and Fe(II) as sulphide (pyrite). This study focuses on these elements and valence states and also on Mn; another element susceptible to redox controls but known to respond differently from Fe. Shallow sub-surface stores or repositories would be more likely to have oxidising or fluctuating redox conditions. The mineralisation sequences documented at Sellafield are potentially promising in this context. Ferroan carbonate cements are sensitive indicators of later movement of oxidising ground waters. (author)

  2. Considerations of human inturison in U.S. programs for deep geologic disposal of radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Peter N.

    2013-01-01

    Regulations in the United States that govern the permanent disposal of spent nuclear fuel and high-level radioactive waste in deep geologic repositories require the explicit consideration of hypothetical future human intrusions that disrupt the waste. Specific regulatory requirements regarding the consideration of human intrusion differ in the two sets of regulations currently in effect in the United States; one defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 197, applied only to the formerly proposed geologic repository at Yucca Mountain, Nevada, and the other defined by the Environmental Protection Agencys 40 Code of Federal Regulations part 191, applied to the Waste Isolation Pilot Plant in New Mexico and potentially applicable to any repository for spent nuclear fuel and high-level radioactive waste in the United States other than the proposed repository at Yucca Mountain. This report reviews the regulatory requirements relevant to human intrusion and the approaches taken by the Department of Energy to demonstrating compliance with those requirements.

  3. CO2NNIE

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2015-01-01

    We propose a system for calculating the personalized annual fuel consumption and CO2 emissions from transportation. The system, named CO2NNIE, estimates the fuel consumption on the fastest route between the frequent destinations of the user. The travel time and fuel consumption estimated are based......% of the actual fuel consumption (4.6% deviation on average). We conclude, that the system provides new detailed information on CO2 emissions and fuel consumption for any make and model....

  4. Use of Groundwater Lifetime Expectancy for the Performance Assessment of Deep Geologic Radioactive Waste Repositories.

    Science.gov (United States)

    Cornaton, F.; Park, Y.; Normani, S.; Sudicky, E.; Sykes, J.

    2005-12-01

    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, the safety of the host repository depends on two main barriers: the engineered barrier and the natural geological barrier. If radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from the repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. In a second step, the risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The proposed methodology is applied in the context of a typical Canadian Shield environment. Based on a statistically-generated three-dimension network of fracture zones embedded in the granitic host rock, the sensitivity and the uncertainty of lifetime expectancy to the hydraulic and dispersive properties of the fracture network, including the impact of conditioning via their surface expressions, is computed in order to demonstrate the utility of the methodology.

  5. CO2 flux from Javanese mud volcanism.

    Science.gov (United States)

    Queißer, M; Burton, M R; Arzilli, F; Chiarugi, A; Marliyani, G I; Anggara, F; Harijoko, A

    2017-06-01

    Studying the quantity and origin of CO 2 emitted by back-arc mud volcanoes is critical to correctly model fluid-dynamical, thermodynamical, and geochemical processes that drive their activity and to constrain their role in the global geochemical carbon cycle. We measured CO 2 fluxes of the Bledug Kuwu mud volcano on the Kendeng Fold and thrust belt in the back arc of Central Java, Indonesia, using scanning remote sensing absorption spectroscopy. The data show that the expelled gas is rich in CO 2 with a volume fraction of at least 16 vol %. A lower limit CO 2 flux of 1.4 kg s -1 (117 t d -1 ) was determined, in line with the CO 2 flux from the Javanese mud volcano LUSI. Extrapolating these results to mud volcanism from the whole of Java suggests an order of magnitude total CO 2 flux of 3 kt d -1 , comparable with the expected back-arc efflux of magmatic CO 2 . After discussing geochemical, geological, and geophysical evidence we conclude that the source of CO 2 observed at Bledug Kuwu is likely a mixture of thermogenic, biogenic, and magmatic CO 2 , with faulting controlling potential pathways for magmatic fluids. This study further demonstrates the merit of man-portable active remote sensing instruments for probing natural gas releases, enabling bottom-up quantification of CO 2 fluxes.

  6. Modeling of CO2 storage in aquifers

    International Nuclear Information System (INIS)

    Savioli, Gabriela B; Santos, Juan E

    2011-01-01

    Storage of CO 2 in geological formations is a means of mitigating the greenhouse effect. Saline aquifers are a good alternative as storage sites due to their large volume and their common occurrence in nature. The first commercial CO 2 injection project is that of the Sleipner field in the Utsira Sand aquifer (North Sea). Nevertheless, very little was known about the effectiveness of CO 2 sequestration over very long periods of time. In this way, numerical modeling of CO 2 injection and seismic monitoring is an important tool to understand the behavior of CO 2 after injection and to make long term predictions in order to prevent CO 2 leaks from the storage into the atmosphere. The description of CO 2 injection into subsurface formations requires an accurate fluid-flow model. To simulate the simultaneous flow of brine and CO 2 we apply the Black-Oil formulation for two phase flow in porous media, which uses the PVT data as a simplified thermodynamic model. Seismic monitoring is modeled using Biot's equations of motion describing wave propagation in fluid-saturated poroviscoelastic solids. Numerical examples of CO 2 injection and time-lapse seismics using data of the Utsira formation show the capability of this methodology to monitor the migration and dispersal of CO 2 after injection.

  7. Shaft sealing issue in CO2 storage sites

    Science.gov (United States)

    Dieudonné, A.-C.; Charlier, R.; Collin, F.

    2012-04-01

    Carbon capture and storage is an innovating approach to tackle climate changes through the reduction of greenhouse gas emissions. Deep saline aquifers, depleted oil and gas reservoirs and unmineable coal seams are among the most studied reservoirs. However other types of reservoir, such as abandonned coal mines, could also be used for the storage of carbon dioxide. In this case, the problem of shaft sealing appears to be particularly critical regarding to the economic, ecologic and health aspects of geological storage. The purpose of the work is to study shaft sealing in the framework of CO2 storage projects in abandoned coal mines. The problem of gas transfers around a sealing system is studied numerically using the finite elements code LAGAMINE, which has been developped for 30 years at the University of Liege. A coupled hydro-mechanical model of unsaturated geomaterials is used for the analyses. The response of the two-phase flow model is first studied through a simple synthetic problem consisting in the injection of gas in a concrete-made column. It stands out of this first modeling that the advection of the gas phase represents the main transfer mechanism of CO2 in highly unsaturated materials. Furthermore the setting of a bentonite barrier seal limits considerably the gas influx into the biosphere. A 2D axisymetric hydromechanical modeling of the Anderlues natural gas storage site is then performed. The geological and hydrogeological contexts of the site are used to define the problem, for the initial and boundary conditions, as well as the material properties. In order to reproduce stress and water saturation states in the shale before CO2 injection in the mine, different phases corresponding to the shaft sinking, the mining and the set up of the sealing system are simulated. The system efficiency is then evaluated by simulating the CO2 injection with the imposed pressure at the shaft wall. According to the modeling, the low water saturation of concrete and

  8. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    International Nuclear Information System (INIS)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository

  9. Site investigations for repositories for solid radioactive wastes in deep continental geological formations

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This report reviews the earth-science investigations and associated scientific studies that may be needed to select a repository site and confirm that its characteristics are such that it will provide a safe confinement for solidified high-level and alpha-bearing and certain other solid radioactive wastes. Site investigations, as used in this report, cover earth sciences and associated safety analyses. Other site-investigation activities are identified but not otherwise considered here. The repositories under consideration are those consisting of mined cavities in deep continental rocks for accepting wastes in the solid and packaged form. The term deep as used in this report is used solely to emphasize the distinction between the repositories discussed in this report and those for shallow-ground disposal. In general, depths under consideration here are greater than 200 metres. The term continental refers to those geological formations that occur either beneath present-day land masses and adjoining islands or beneath the shallow seas. One of the objectives of site investigations is to collect the site-specific data necessary for the different evaluations, such as modelling required to assess the long-term safety of an underground repository.

  10. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone

    Science.gov (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2017-11-01

    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  11. From the repository to the deep geological repository - and back to the Terrain surface?

    International Nuclear Information System (INIS)

    Lahodynsky, R.

    2011-01-01

    How deep is 'safe'? How long is long-term? How and for how long will something be isolated? Which rock, which formation and which location are suitable? A repository constructed for the safekeeping of radioactive or highly toxic wastes can be erected either on the surface, near the surface or underground. Radioactive waste is currently often stored at near-surface locations. The storage usually takes place nearby of a nuclear power plant in pits or concrete tombs (vaults). However, repositories can also be found in restricted areas, e.g. near nuclear weapon production or reprocessing plants (WAA) or nuclear weapons test sites (including Tomsk, Russia, Hanford and Nevada desert, USA), or in extremely low rainfall regions (South Africa). In addition there are disused mines which are now used as underground repositories. Low-level and medium-active (SMA) but also high-level waste (HAA) are stored at these types of sites (NPP, WAA, test areas, former mines). In Russia (Tomsk, Siberia) liquid radioactive waste has been injected into deep geological formations for some time (Minatom, 2001). However, all these locations are not the result of a systematic, scientific search or a holistic process for finding a location, but the result of political decisions, sometimes ignoring scientific findings. Why underground storage is given preference over high-security landfill sites (HSD) often has economic reasons. While a low safety standard can significantly reduce the cost of an above-ground high-security landfill as a waste disposal depot, spending remains high, especially due to the need for capital formation to cover operating expenses after filling the HSD. In the case of underground storage, on the other hand, no additional expenses are required for the period after backfilling. The assumption of lower costs for a deep repository runs through the past decades and coincides with the assumption that the desired ideal underground conditions actually exist and will

  12. Drilling of deep boreholes and associated geological investigations. Final disposal of spent fuel

    International Nuclear Information System (INIS)

    Anttila, P.

    1983-12-01

    Teollisuuden Voima Oy (Industrial Power Company Ltd.) will take precautions for the final disposal of spent fuel in the Finnish bedrock. The first stage of the site selection studies includes drilling of a deep borehole down to approximately 1000 metres in the winter of 1984. The choice of drilling method and equipment depends on the geological circumstances and the target of the investigation. The most common drilling methods used with the investigations of nuclear waste disposal are diamond core drilling and percussion drilling. The Precambrian bedrock outcropping in Finland exists also in Sweden and Canada, where deep boreholes have been done down to more than 1000 metres using diamond core drilling. This method can be also used in Finland and equipment for the drilling are available. One of the main targets of the investigation is to clarify the true strike and dip of fractures and other discontinuities. The methods used abroad are taking of oriented cores, borehole television survey and geophysical measurements. TV-survey and geophysical methods seem to be most favourable in deep boreholes. Also the accurate position (inclination, bearing) of the borehole is essential to know and many techniques are used for measuring of it. Investigations performed on the core samples include core logging and laboratory tests. For the core logging there is no uniform practice concerning the nuclear waste investigations. Different counries use their own classifications. All of these, however, are based on the petrography and fracture properties of the rock samples. Laboratory tests (petrographical and rock mechanical tests) are generally performed according to the recommendations of international standards. The large volumes of data obtained during investigations require computer techniques which allow more comprehensive collection, storage and processing of data. This kind of systems are already used in Sweden and Canada, for instance, and they could be utilize in Finland

  13. Modelling of radionuclide transport along the underground access structures of deep geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Poller, A. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Smith, P. [SAM Switzerland GmbH, Zuerich (Switzerland); Mayer, G.; Hayek, M. [AF-Consult Switzerland AG, Baden (Switzerland)

    2014-08-15

    The arrangement and sealing of the access routes to a deep geological repository for radioactive waste should ensure that any radionuclide release from the emplacement rooms during the post closure phase does not by-pass the geological barriers of the repository system to a significant extent. The base case of the present study, where realistic values for the hydraulic properties of the seals and the associated excavation damage zones were assumed, assesses to what extent this is actually the case for different layout variants (ramp and shaft access and shaft access only). Furthermore, as a test of robustness of system performance against uncertainties related to such seals and the associated excavation damage zones, the present study also considers a broad spectrum of calculation cases including the hypothetical possibility that the seals perform much more poorly than expected and to check whether, consequently, the repository tunnel system and the access structures may provide significant release pathways. The study considers a generic repository system for high-level waste (HLW repository) and for low- and intermediate-level waste (L/ILW repository), both with Opalinus Clay as the host rock. It also considers the alternative possibilities of a ramp or a shaft as the access route for material transport (waste packages, etc.) to the underground facilities. Additional shafts, e.g. for the transport of persons and for ventilation, are included in both cases. The overall modelling approach consists of three broad steps: (a) the network of tunnels and access structures is implemented in a flow model, which serves to calculate water flow rates along the tunnels and through the host rock; (b) all relevant transport paths are implemented in a radionuclide release and transport model, the water flow rates being obtained from the preceding flow model calculations; (c) individual effective dose rates arising from the radionuclides released from the considered repository

  14. Development of an Integrated Natural Barrier Database System for Site Evaluation of a Deep Geologic Repository in Korea - 13527

    International Nuclear Information System (INIS)

    Jung, Haeryong; Lee, Eunyong; Jeong, YiYeong; Lee, Jeong-Hwan

    2013-01-01

    Korea Radioactive-waste Management Corporation (KRMC) established in 2009 has started a new project to collect information on long-term stability of deep geological environments on the Korean Peninsula. The information has been built up in the integrated natural barrier database system available on web (www.deepgeodisposal.kr). The database system also includes socially and economically important information, such as land use, mining area, natural conservation area, population density, and industrial complex, because some of this information is used as exclusionary criteria during the site selection process for a deep geological repository for safe and secure containment and isolation of spent nuclear fuel and other long-lived radioactive waste in Korea. Although the official site selection process has not been started yet in Korea, current integrated natural barrier database system and socio-economic database is believed that the database system will be effectively utilized to narrow down the number of sites where future investigation is most promising in the site selection process for a deep geological repository and to enhance public acceptance by providing readily-available relevant scientific information on deep geological environments in Korea. (authors)

  15. Characterizing fractured plutonic rocks of the Canadian shield for deep geological disposal of Canada's radioactive wastes

    International Nuclear Information System (INIS)

    Lodha, G.S.; Davison, C.C.; Gascoyne, M.

    1998-01-01

    Since 1978 AECL has been investigating plutonic rocks of the Canadian Shield as a potential medium for the disposal of Canada's nuclear fuel waste. During the last two years this study has been continued as part of Ontario Hydro's used fuel disposal program. Methods have been developed for characterizing the geotechnical conditions at the regional scale of the Canadian Shield as well as for characterizing conditions at the site scale and the very near-field scale needed for locating and designing disposal vault rooms and waste emplacement areas. The Whiteshell Research Area (WRA) and the Underground Research Laboratory (URL) in southeastern Manitoba have been extensively used to develop and demonstrate the different scales of characterization methods. At the regional scale, airborne magnetic and electromagnetic surveys combined with LANDSAT 5 and surface gravity survey data have been helpful in identifying boundaries of the plutonic rocks , overburden thicknesses, major lineaments that might be geological structures, lithological contacts and depths of the batholiths. Surface geological mapping of exposed rock outcrops, combined with surface VLF/EM, radar and seismic reflection surveys were useful in identifying the orientation and depth continuity of low-dipping fracture zones beneath rock outcrops to a depth of 500 to 1000 m. The surface time-domain EM method has provided encouraging results for identifying the depth of highly saline pore waters. The regional site scale investigations at the WRA included the drilling of twenty deep boreholes (> 500 m) at seven separate study areas. Geological core logging combined with borehole geophysical logging, TV/ATV logging, flowmeter logging and full waveform sonic logging in these boreholes helped to confirm the location of hydro geologically important fractures, orient cores and infer the relative permeability of some fracture zones. Single-hole radar and crosshole seismic tomography surveys were useful to establish the

  16. CO2-laser fusion

    International Nuclear Information System (INIS)

    Stark, E.E. Jr.

    1978-01-01

    The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO 2 laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO 2 laser systems for fusion applications are discussed

  17. How much CO2 is trapped in carbonate minerals of a natural CO2 occurrence?

    Science.gov (United States)

    Király, Csilla; Szabó, Zsuzsanna; Szamosfalvi, Ágnes; Cseresznyés, Dóra; Király, Edit; Szabó, Csaba; Falus, György

    2017-04-01

    Carbon Capture and Storage (CCS) is a transitional technology to decrease CO2 emissions from human fossil fuel usage and, therefore, to m