WorldWideScience

Sample records for deep chlorophyll maximum

  1. Distribution of phytoplankton groups within the deep chlorophyll maximum

    KAUST Repository

    Latasa, Mikel

    2016-11-01

    The fine vertical distribution of phytoplankton groups within the deep chlorophyll maximum (DCM) was studied in the NE Atlantic during summer stratification. A simple but unconventional sampling strategy allowed examining the vertical structure with ca. 2 m resolution. The distribution of Prochlorococcus, Synechococcus, chlorophytes, pelagophytes, small prymnesiophytes, coccolithophores, diatoms, and dinoflagellates was investigated with a combination of pigment-markers, flow cytometry and optical and FISH microscopy. All groups presented minimum abundances at the surface and a maximum in the DCM layer. The cell distribution was not vertically symmetrical around the DCM peak and cells tended to accumulate in the upper part of the DCM layer. The more symmetrical distribution of chlorophyll than cells around the DCM peak was due to the increase of pigment per cell with depth. We found a vertical alignment of phytoplankton groups within the DCM layer indicating preferences for different ecological niches in a layer with strong gradients of light and nutrients. Prochlorococcus occupied the shallowest and diatoms the deepest layers. Dinoflagellates, Synechococcus and small prymnesiophytes preferred shallow DCM layers, and coccolithophores, chlorophytes and pelagophytes showed a preference for deep layers. Cell size within groups changed with depth in a pattern related to their mean size: the cell volume of the smallest group increased the most with depth while the cell volume of the largest group decreased the most. The vertical alignment of phytoplankton groups confirms that the DCM is not a homogeneous entity and indicates groups’ preferences for different ecological niches within this layer.

  2. Distribution of phytoplankton groups within the deep chlorophyll maximum

    KAUST Repository

    Latasa, Mikel; Cabello, Ana Marí a; Moran, Xose Anxelu G.; Massana, Ramon; Scharek, Renate

    2016-01-01

    and optical and FISH microscopy. All groups presented minimum abundances at the surface and a maximum in the DCM layer. The cell distribution was not vertically symmetrical around the DCM peak and cells tended to accumulate in the upper part of the DCM layer

  3. What if the Diatoms of the Deep Chlorophyll Maximum Can Ascend?

    Science.gov (United States)

    Villareal, T. A.

    2016-02-01

    Buoyancy regulation is an integral part of diatom ecology via its role in sinking rates and is fundamental to understanding their distribution and abundance. Numerous studies have documented the effects of size and nutrition on sinking rates. Many pelagic diatoms have low intrinsic sinking rates when healthy and nutrient-replete (deep chlorophyll maximum. The potential for ascending behavior adds an additional layer of complexity by allowing both active depth regulation similar to that observed in flagellated taxa and upward transport by some fraction of deep euphotic zone diatom blooms supported by nutrient injection. In this talk, I review the data documenting positive buoyancy in small diatoms, offer direct visual evidence of ascending behavior in common diatoms typical of both oceanic and coastal zones, and note the characteristics of sinking rate distributions within a single species. Buoyancy control leads to bidirectional movement at similar rates across a wide size spectrum of diatoms although the frequency of ascending behavior may be only a small portion of the individual species' abundance. While much remains to be learned, the paradigm of unidirectional downward movement by diatoms is both inaccurate and an oversimplification.

  4. How diffusivity, thermocline and incident light intensity modulate the dynamics of deep chlorophyll maximum in Tyrrhenian Sea.

    Directory of Open Access Journals (Sweden)

    Davide Valenti

    Full Text Available During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species.

  5. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    Directory of Open Access Journals (Sweden)

    Q. Liu

    2018-04-01

    Full Text Available Continental shelves and marginal seas are key sites of particulate organic matter (POM production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM collected around deep chlorophyll maximum (DCM layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN contents and their isotopic compositions (δ13CPOC and δ15NPN to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (−25.8 to −18.2 ‰ and δ15NPN (3.8 to 8.0 ‰, but a narrow molar C ∕ N ratio (4.1–6.3 and low POC ∕ Chl a ratio ( <  200 g g−1 in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained  ∼  70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3− in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north

  6. Biogeochemical characteristics of suspended particulate matter in deep chlorophyll maximum layers in the southern East China Sea

    Science.gov (United States)

    Liu, Qianqian; Kandasamy, Selvaraj; Lin, Baozhi; Wang, Huawei; Chen, Chen-Tung Arthur

    2018-04-01

    Continental shelves and marginal seas are key sites of particulate organic matter (POM) production, remineralization and sequestration, playing an important role in the global carbon cycle. Elemental and stable isotopic compositions of organic carbon and nitrogen are thus frequently used to characterize and distinguish POM and its sources in suspended particles and surface sediments in the marginal seas. Here we investigated suspended particulate matter (SPM) collected around deep chlorophyll maximum (DCM) layers in the southern East China Sea for particulate organic carbon and nitrogen (POC and PN) contents and their isotopic compositions (δ13CPOC and δ15NPN) to understand provenance and dynamics of POM. Hydrographic parameters (temperature, salinity and turbidity) indicated that the study area was weakly influenced by freshwater derived from the Yangtze River during summer 2013. Elemental and isotopic results showed a large variation in δ13CPOC (-25.8 to -18.2 ‰) and δ15NPN (3.8 to 8.0 ‰), but a narrow molar C / N ratio (4.1-6.3) and low POC / Chl a ratio ( < 200 g g-1) in POM, and indicated that the POM in DCM layers was newly produced by phytoplankton. In addition to temperature effects, the range and distribution of δ13CPOC were controlled by variations in primary productivity and phytoplankton species composition; the former explained ˜ 70 % of the variability in δ13CPOC. However, the variation in δ15NPN was controlled by the nutrient status and δ15NNO3- in seawater, as indicated by similar spatial distribution between δ15NPN and the current pattern and water masses in the East China Sea; although interpretations of δ15NPN data should be verified with the nutrient data in future studies. Furthermore, the POM investigated was weakly influenced by the terrestrial OM supplied by the Yangtze River during summer 2013 due to the reduced sediment supply by the Yangtze River and north-eastward transport of riverine particles to the northern East China

  7. Microbial diversity from chlorophyll maximum, oxygen minimum and bottom zones in the southwestern Atlantic Ocean

    Science.gov (United States)

    Medina-Silva, Renata; de Oliveira, Rafael R.; Pivel, Maria A. G.; Borges, Luiz G. A.; Simão, Taiz L. L.; Pereira, Leandro M.; Trindade, Fernanda J.; Augustin, Adolpho H.; Valdez, Fernanda P.; Eizirik, Eduardo; Utz, Laura R. P.; Groposo, Claudia; Miller, Dennis J.; Viana, Adriano R.; Ketzer, João M. M.; Giongo, Adriana

    2018-02-01

    Conspicuous physicochemical vertical stratification in the deep sea is one of the main forces driving microbial diversity in the oceans. Oxygen and sunlight availability are key factors promoting microbial diversity throughout the water column. Ocean currents also play a major role in the physicochemical stratification, carrying oxygen down to deeper zones as well as moving deeper water masses up towards shallower depths. Water samples within a 50-km radius in a pockmark location of the southwestern Atlantic Ocean were collected and the prokaryotic communities from different water depths - chlorophyll maximum, oxygen minimum and deep-sea bottom (down to 1355 m) - were described. At phylum level, Proteobacteria were the most frequent in all water depths, Cyanobacteria were statistically more frequent in chlorophyll maximum zone, while Thaumarchaeota were significantly more abundant in both oxygen minimum and bottom waters. The most frequent microorganism in the chlorophyll maximum and oxygen minimum zones was a Pelagibacteraceae operational taxonomic unit (OTU). At the bottom, the most abundant genus was the archaeon Nitrosopumilus. Beta diversity analysis of the 16S rRNA gene sequencing data uncovered in this study shows high spatial heterogeneity among water zones communities. Our data brings important contribution for the characterisation of oceanic microbial diversity, as it consists of the first description of prokaryotic communities occurring in different oceanic water zones in the southwestern Atlantic Ocean.

  8. Spatial extent and dissipation of the deep chlorophyll layer in Lake Ontario during the Lake Ontario lower foodweb assessment, 2003 and 2008

    Science.gov (United States)

    Watkins, J. M.; Weidel, Brian M.; Rudstam, L. G.; Holek, K. T.

    2014-01-01

    Increasing water clarity in Lake Ontario has led to a vertical redistribution of phytoplankton and an increased importance of the deep chlorophyll layer in overall primary productivity. We used in situ fluorometer profiles collected in lakewide surveys of Lake Ontario in 2008 to assess the spatial extent and intensity of the deep chlorophyll layer. In situ fluorometer data were corrected with extracted chlorophyll data using paired samples from Lake Ontario collected in August 2008. The deep chlorophyll layer was present offshore during the stratified conditions of late July 2008 with maximum values from 4-13 μg l-1 corrected chlorophyll a at 10 to 17 m depth within the metalimnion. Deep chlorophyll layer was closely associated with the base of the thermocline and a subsurface maximum of dissolved oxygen, indicating the feature's importance as a growth and productivity maximum. Crucial to the deep chlorophyll layer formation, the photic zone extended deeper than the surface mixed layer in mid-summer. The layer extended through most of the offshore in July 2008, but was not present in the easternmost transect that had a deeper surface mixed layer. By early September 2008, the lakewide deep chlorophyll layer had dissipated. A similar formation and dissipation was observed in the lakewide survey of Lake Ontario in 2003.

  9. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading

    Directory of Open Access Journals (Sweden)

    M. A. García-Sánchez

    2016-07-01

    Full Text Available Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most

  10. Chlorophyll a Covalently Bonded to Organo-Modified Translucent Silica Xerogels: Optimizing Fluorescence and Maximum Loading.

    Science.gov (United States)

    García-Sánchez, M A; Serratos, I N; Sosa, R; Tapia-Esquivel, T; González-García, F; Rojas-González, F; Tello-Solís, S R; Palacios-Enriquez, A Y; Esparza Schulz, J M; Arrieta, A

    2016-07-22

    Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO₂, TiO₂ or ZrO₂ synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical

  11. Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates

    Directory of Open Access Journals (Sweden)

    M. Ardyna

    2013-06-01

    Full Text Available Predicting water-column phytoplankton biomass from near-surface measurements is a common approach in biological oceanography, particularly since the advent of satellite remote sensing of ocean color (OC. In the Arctic Ocean, deep subsurface chlorophyll maxima (SCMs that significantly contribute to primary production (PP are often observed. These are neither detected by ocean color sensors nor accounted for in the primary production models applied to the Arctic Ocean. Here, we assemble a large database of pan-Arctic observations (i.e., 5206 stations and develop an empirical model to estimate vertical chlorophyll a (Chl a according to (1 the shelf–offshore gradient delimited by the 50 m isobath, (2 seasonal variability along pre-bloom, post-bloom, and winter periods, and (3 regional differences across ten sub-Arctic and Arctic seas. Our detailed analysis of the dataset shows that, for the pre-bloom and winter periods, as well as for high surface Chl a concentration (Chl asurf; 0.7–30 mg m−3 throughout the open water period, the Chl a maximum is mainly located at or near the surface. Deep SCMs occur chiefly during the post-bloom period when Chl asurf is low (0–0.5 mg m−3. By applying our empirical model to annual Chl asurf time series, instead of the conventional method assuming vertically homogenous Chl a, we produce novel pan-Arctic PP estimates and associated uncertainties. Our results show that vertical variations in Chl a have a limited impact on annual depth-integrated PP. Small overestimates found when SCMs are shallow (i.e., pre-bloom, post-bloom > 0.7 mg m−3, and the winter period somehow compensate for the underestimates found when SCMs are deep (i.e., post-bloom −3. SCMs are, however, important seasonal features with a substantial impact on depth-integrated PP estimates, especially when surface nitrate is exhausted in the Arctic Ocean and where highly stratified and oligotrophic conditions prevail.

  12. The deep chlorophyll layer in Lake Ontario: Extent, mechanisms of formation, and abiotic predictors

    Science.gov (United States)

    Scofield, Anne E.; Watkins, James M.; Weidel, Brian C.; Luckey, Frederick J.; Rudstam, Lars G.

    2017-01-01

    Epilimnetic production has declined in Lake Ontario, but increased production in metalimnetic deep chlorophyll layers (DCLs) may compensate for these losses. We investigated the spatial and temporal extent of DCLs, the mechanisms driving DCL formation, and the use of physical variables for predicting the depth and concentration of the deep chlorophyll maximum (DCM) during April–September 2013. A DCL with DCM concentrations 2 to 3 times greater than those in the epilimnion was present when the euphotic depth extended below the epilimnion, which occurred primarily from late June through mid-August. In situ growth was important for DCL formation in June and July, but settling and photoadaptation likely also contributed to the later-season DCL. Supporting evidence includes: phytoplankton biovolume was 2.4 × greater in the DCL than in the epilimnion during July, the DCL phytoplankton community of July was different from that of May and the July epilimnion (p = 0.004), and there were concurrences of DCM with maxima in fine particle concentration and dissolved oxygen saturation. Higher nutrient levels in the metalimnion may also be a necessary condition for DCL formation because July metalimnetic concentrations were 1.5 × (nitrate) and 3.5 × (silica) greater than in the epilimnion. Thermal structure variables including epilimnion depth, thermocline depth, and thermocline steepness were useful for predicting DCM depth; the inclusion of euphotic depth only marginally improved these predictions. However, euphotic depth was critical for predicting DCM concentrations. The DCL is a productive and predictable feature of the Lake Ontario ecosystem during the stratified period.

  13. Flood-Induced Surface Blooms Alter Deep Chlorophyll Maxima Community Structure in Lake Michigan.

    Science.gov (United States)

    Aguilar, C.; Cuhel, R. L.; Seline, L.

    2008-12-01

    Watershed-wide floods can bring increased nutrients and phytoplankton to receiving waters. This input can alter physical, chemical and phytoplankton community structure in a major way. Phytoplankton species composition and size distribution are key factors in their use as ecological indicators. Since 2003, phytoplankton communities in Lake Michigan have shifted from diatom and big cell (>10μm)- dominated to small cell picocyanobacteria-dominated phytoplankton (Quagga Mussels, dampened seasonal cycling of silicate indicated a basin-wide reduction of diatom production, and unicellular Cyanobacteria became dominant in deep chlorophyll maximum (DCM) zones. In the DCM, Synechococcus-like cells reached populations of at least 210,000 cells/ml. DCM chlorophyll (chl) remained similar (3-4μg/l) but late summer species composition changed dramatically to mostly 10μm fraction increased from previous years, and over 75% of the particulate Si was also in this size fraction. Because of the rapid sinking of diatoms during calm weather of late June-early July of 2008, particulate Si did not reach high values in surfaces waters (ca. 1.5μM) but remained at a consistently higher level than in 2007. Sinking of diatoms from the surface depleted chl in a progression from inshore to offshore during July 2008. In July surface chl was higher 40-70 km offshore than in the coastal zone. Surface phytoplankton waxed and waned in population density as if a wave or lens moved continuously further offshore, with sinking cells depleting the surface algae following behind the crest. In the wake, strong DCM populations with higher chl and particulate Si accumulated in the 30-45m zone at the bottom of the thermocline. However, in 2008 DCM zones, picocyanobacteria attained only 70,000 cells/mL, one-third of the same dates in 2007. The ratio of chlorophyll per Synechococcus cell in 2008 was about 5-fold higher than in 2007, corroborating microscopic observations of lowered picoplanktonic abundance

  14. Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    Science.gov (United States)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas

    2018-04-01

    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.

  15. Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection

    Directory of Open Access Journals (Sweden)

    Yu Qi

    2014-01-01

    Full Text Available Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work proposes a deep network to jointly learn a feature and a classifier so that they could help each other to make the whole system optimal. To deal with the challenge of the impulsive noises and outliers caused by EMG artifacts in EEG signals, we formulate a robust stacked autoencoder (R-SAE as a part of the network to learn an effective feature. In R-SAE, the maximum correntropy criterion (MCC is proposed to reduce the effect of noise/outliers. Unlike the mean square error (MSE, the output of the new kernel MCC increases more slowly than that of MSE when the input goes away from the center. Thus, the effect of those noises/outliers positioned far away from the center can be suppressed. The proposed method is evaluated on six patients of 33.6 hours of scalp EEG data. Our method achieves a sensitivity of 100% and a specificity of 99%, which is promising for clinical applications.

  16. The dynamics of suspended particulate matter (SPM) and chlorophyll-a from intratidal to annual time scales in a coastal turbidity maximum

    Science.gov (United States)

    van der Hout, C. M.; Witbaard, R.; Bergman, M. J. N.; Duineveld, G. C. A.; Rozemeijer, M. J. C.; Gerkema, T.

    2017-09-01

    The analysis of 1.8 years of data gives an understanding of the response to varying forcing of suspended particulate matter (SPM) and chlorophyll-a (CHL-a) in a coastal turbidity maximum zone (TMZ). Both temporal and vertical concentration variations in the near-bed layer (0-2 m) in the shallow (11 m deep) coastal zone at 1 km off the Dutch coast are shown. Temporal variations in the concentration of both parameters are found on tidal and seasonal scales, and a marked response to episodic events (e.g. storms). The seasonal cycle in the near-bed CHL-a concentration is determined by the spring bloom. The role of the wave climate as the primary forcing in the SPM seasonal cycle is discussed. The tidal current provides a background signal, generated predominantly by local resuspension and settling and a minor role is for advection in the cross-shore and the alongshore direction. We tested the logarithmic Rouse profile to the vertical profiles of both the SPM and the CHL-a data, with respectively 84% and only 2% success. The resulting large percentage of low Rouse numbers for the SPM profiles suggest a mixed suspension is dominant in the TMZ, i.e. surface SPM concentrations are in the same order of magnitude as near-bed concentrations.

  17. The dynamics of suspended particulate matter (SPM) and chlorophyll- a from intratidal to annual time scales in a coastal turbidity maximum

    NARCIS (Netherlands)

    van der Hout, C.M.; Witbaard, R.; Bergman, M.J.N.; Duineveld, G.C.A.; Rozemeijer, M.J.C.; Gerkema, T.

    2017-01-01

    The analysis of 1.8 years of data gives an understanding of the response to varying forcing of suspended particulate matter (SPM) and chlorophyll-a (CHL-a) in a coastal turbidity maximum zone (TMZ). Both temporal and vertical concentration variations in the near-bed layer (0–2 m) in the shallow (11

  18. The dynamics of suspended particulate matter (SPM) and chlorophyll-a from intratidal to annual time scales in a coastal turbidity maximum

    NARCIS (Netherlands)

    Hout, van der C.M.; Witbaard, R.; Bergman, M.J.N.; Duineveld, G.C.A.; Rozemeijer, M.J.C.; Gerkema, T.

    2017-01-01

    The analysis of 1.8. years of data gives an understanding of the response to varying forcing of suspended particulate matter (SPM) and chlorophyll-a (CHL-a) in a coastal turbidity maximum zone (TMZ). Both temporal and vertical concentration variations in the near-bed layer (0-2. m) in the shallow

  19. A consistent high primary production and chlorophyll-a maximum in a narrow strait – effects of hydraulic control

    DEFF Research Database (Denmark)

    Lund-Hansen, Lars Chresten; Nielsen, Morten Holtegaard; Bruhn, Annette

    2008-01-01

    and the North Sea. The time-series were supplemented with Scan Fish transects — a towed CTD, ADCP measurements, and nutrient data. There is a significant maximum in primary production (mg C m− 2 day− 1) in central LB, which is 30% higher than outside the LB region. Chl-a concentrations are 30% higher in central...

  20. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  1. Deep ocean nutrients during the Last Glacial Maximum deduced from sponge silicon isotopic compositions

    Science.gov (United States)

    Hendry, Katharine R.; Georg, R. Bastian; Rickaby, Rosalind E. M.; Robinson, Laura F.; Halliday, Alex N.

    2010-04-01

    The relative importance of biological and physical processes within the Southern Ocean for the storage of carbon and atmospheric pCO 2 on glacial-interglacial timescales remains uncertain. Understanding the impact of surface biological production on carbon export in the past relies on the reconstruction of the nutrient supply from upwelling deep waters. In particular, the upwelling of silicic acid (Si(OH) 4) is tightly coupled to carbon export in the Southern Ocean via diatom productivity. Here, we address how changes in deep water Si(OH) 4 concentrations can be reconstructed using the silicon isotopic composition of deep-sea sponges. We report δ30Si of modern deep-sea sponge spicules and show that they reflect seawater Si(OH) 4 concentration. The fractionation factor of sponge δ30Si compared to seawater δ30Si shows a positive relationship with Si(OH) 4, which may be a growth rate effect. Application of this proxy in two down-core records from the Scotia Sea reveals that Si(OH) 4 concentrations in the deep Southern Ocean during the Last Glacial Maximum (LGM) were no different than today. Our result does not support a coupling of carbon and nutrient build up in an isolated deep ocean reservoir during the LGM. Our data, combined with records of stable isotopes from diatoms, are only consistent with enhanced LGM Southern Ocean nutrient utilization if there was also a concurrent reduction in diatom silicification or a shift from siliceous to organic-walled phytoplankton.

  2. A role of vertical mixing on nutrient supply into the subsurface chlorophyll maximum in the shelf region of the East China Sea

    Science.gov (United States)

    Lee, Keunjong; Matsuno, Takeshi; Endoh, Takahiro; Ishizaka, Joji; Zhu, Yuanli; Takeda, Shigenobu; Sukigara, Chiho

    2017-07-01

    In summer, Changjiang Diluted Water (CDW) expands over the shelf region of the northern East China Sea. Dilution of the low salinity water could be caused by vertical mixing through the halocline. Vertical mixing through the pycnocline can transport not only saline water, but also high nutrient water from deeper layers to the surface euphotic zone. It is therefore very important to quantitatively evaluate the vertical mixing to understand the process of primary production in the CDW region. We conducted extensive measurements in the region during the period 2009-2011. Detailed investigations of the relative relationship between the subsurface chlorophyll maximum (SCM) and the nitracline suggested that there were two patterns relating to the N/P ratio. Comparing the depths of the nitracline and SCM, it was found that the SCM was usually located from 20 to 40 m and just above the nitracline, where the N/P ratio within the nitracline was below 15, whereas it was located from 10 to 30 m and within the nitracline, where the N/P ratio was above 20. The large value of the N/P ratio in the latter case suggests the influence of CDW. Turbulence measurements showed that the vertical flux of nutrients with vertical mixing was large (small) where the N/P ratio was small (large). A comparison with a time series of primary production revealed a consistency with the pattern of snapshot measurements, suggesting that the nutrient supply from the lower layer contributes considerably to the maintenance of SCM.

  3. Maximum entropy methods for extracting the learned features of deep neural networks.

    Science.gov (United States)

    Finnegan, Alex; Song, Jun S

    2017-10-01

    New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpreting deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful features a network is actually learning. We present a general method for interpreting deep neural networks and extracting network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences, anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome maps. Imposing a further constraint on the maximum entropy distribution also allows us to probe whether a network is learning global sequence features, such as the high GC content in nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features from feed-forward neural networks.

  4. Deep two-photon microscopic imaging through brain tissue using the second singlet state from fluorescent agent chlorophyll α in spinach leaf.

    Science.gov (United States)

    Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R

    2014-06-01

    Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.

  5. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    Science.gov (United States)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  6. Origin of a maximum of the astrophysical S factor in heavy-ion fusion reactions at deep subbarrier energies

    Science.gov (United States)

    Hagino, K.; Balantekin, A. B.; Lwin, N. W.; Thein, Ei Shwe Zin

    2018-03-01

    The hindrance phenomenon of heavy-ion fusion cross sections at deep subbarrier energies often accompanies a maximum of an astrophysical S factor at a threshold energy for fusion hindrance. We argue that this phenomenon can naturally be explained when the fusion excitation function is fitted with two potentials, with a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy. This analysis clearly suggests that the astrophysical S factor provides a convenient tool to analyze the deep subbarrier hindrance phenomenon, even though the S factor may have a strong energy dependence for heavy-ion systems unlike that for astrophysical reactions.

  7. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    OpenAIRE

    Eppelbaum L. V.; Kutasov I. M.; Balobaev V. T.

    2009-01-01

    Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method make...

  8. Phytoplankton chlorophyll

    NARCIS (Netherlands)

    van de Poll, W.H.; Kulk, G.; Timmermans, K.R.; Brussaard, C.P.D.; van der Woerd, H.J.; Kehoe, M.J.; Mojica, K.D.A.; Visser, R.J.W.; Rozema, P.D.; Buma, A.G.J.

    2013-01-01

    Relationships between sea surface temperature (SST, > 10 m) and vertical density stratification, nutrient concentrations, and phytoplankton biomass, composition, and chlorophyll a (Chl a) specific absorption were assessed in spring and summer from latitudes 29 to 63 degrees N in the northeast

  9. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world

    Science.gov (United States)

    Thomas, Ellen; D’haenens, Simon; Speijer, Robert P.; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  10. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world.

    Directory of Open Access Journals (Sweden)

    Gabriela J Arreguín-Rodríguez

    Full Text Available The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma, linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian. Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa and/or the ability to calcify in carbonate-corrosive waters (N. truempyi. Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the

  11. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world.

    Science.gov (United States)

    Arreguín-Rodríguez, Gabriela J; Thomas, Ellen; D'haenens, Simon; Speijer, Robert P; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  12. Deep-sea benthic megafaunal habitat suitability modelling: A global-scale maximum entropy model for xenophyophores

    Science.gov (United States)

    Ashford, Oliver S.; Davies, Andrew J.; Jones, Daniel O. B.

    2014-12-01

    Xenophyophores are a group of exclusively deep-sea agglutinating rhizarian protozoans, at least some of which are foraminifera. They are an important constituent of the deep-sea megafauna that are sometimes found in sufficient abundance to act as a significant source of habitat structure for meiofaunal and macrofaunal organisms. This study utilised maximum entropy modelling (Maxent) and a high-resolution environmental database to explore the environmental factors controlling the presence of Xenophyophorea and two frequently sampled xenophyophore species that are taxonomically stable: Syringammina fragilissima and Stannophyllum zonarium. These factors were also used to predict the global distribution of each taxon. Areas of high habitat suitability for xenophyophores were highlighted throughout the world's oceans, including in a large number of areas yet to be suitably sampled, but the Northeast and Southeast Atlantic Ocean, Gulf of Mexico and Caribbean Sea, the Red Sea and deep-water regions of the Malay Archipelago represented particular hotspots. The two species investigated showed more specific habitat requirements when compared to the model encompassing all xenophyophore records, perhaps in part due to the smaller number and relatively more clustered nature of the presence records available for modelling at present. The environmental variables depth, oxygen parameters, nitrate concentration, carbon-chemistry parameters and temperature were of greatest importance in determining xenophyophore distributions, but, somewhat surprisingly, hydrodynamic parameters were consistently shown to have low importance, possibly due to the paucity of well-resolved global hydrodynamic datasets. The results of this study (and others of a similar type) have the potential to guide further sample collection, environmental policy, and spatial planning of marine protected areas and industrial activities that impact the seafloor, particularly those that overlap with aggregations of

  13. The biogeochemistry of nutrients, dissolved oxygen and chlorophyll a in the Catalan Sea (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    Mariona Segura-Noguera

    2016-09-01

    Full Text Available Reference depth profiles of dissolved inorganic nutrients, dissolved oxygen and chlorophyll a are described for the Catalan Sea using quality controlled data. Phosphate, nitrate and silicate show typical nutrient profiles, with nutriclines at different depths. Maximums of nitrite, dissolved oxygen and occasionally ammonium are found within the photic zone, close to the deep chlorophyll maximum. In intermediate waters we found a minimum of dissolved oxygen coincident with maximum concentrations of phosphate and nitrate. Ammonium concentration is unexpectedly high in the mesopelagic zone, where there are still measurable nitrite concentrations. The origin of such high ammonium and nitrite concentrations remains unclear. We also identify and describe anomalous data and profiles resulting from eutrophication, western Mediterranean Deep Water formation and dense shelf water cascading. The N:P ratio in deep waters is 22.4, which indicates P limitation relative to the Redfield ratio. However, the N:P ratio above the deep chlorophyll maximum in stratified surface waters is < 4 (< 8 including ammonium. The depth profiles of key biogeochemical variables described in this study will be a useful reference for future studies in the Catalan Sea (NW Mediterranean Sea in order to validate data sampled in this area, to identify anomalous processes, and to study the evolution of the ecosystem following the undergoing global change.

  14. Maximum flood hazard assessment for OPG's deep geologic repository for low and intermediate level waste

    International Nuclear Information System (INIS)

    Nimmrichter, P.; McClintock, J.; Peng, J.; Leung, H.

    2011-01-01

    Ontario Power Generation (OPG) has entered a process to seek Environmental Assessment and licensing approvals to construct a Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste (L&ILW) near the existing Western Waste Management Facility (WWMF) at the Bruce nuclear site in the Municipality of Kincardine, Ontario. In support of the design of the proposed DGR project, maximum flood stages were estimated for potential flood hazard risks associated with coastal, riverine and direct precipitation flooding. The estimation of lake/coastal flooding for the Bruce nuclear site considered potential extreme water levels in Lake Huron, storm surge and seiche, wind waves, and tsunamis. The riverine flood hazard assessment considered the Probable Maximum Flood (PMF) within the local watersheds, and within local drainage areas that will be directly impacted by the site development. A series of hydraulic models were developed, based on DGR project site grading and ditching, to assess the impact of a Probable Maximum Precipitation (PMP) occurring directly at the DGR site. Overall, this flood assessment concluded there is no potential for lake or riverine based flooding and the DGR area is not affected by tsunamis. However, it was also concluded from the results of this analysis that the PMF in proximity to the critical DGR operational areas and infrastructure would be higher than the proposed elevation of the entrance to the underground works. This paper provides an overview of the assessment of potential flood hazard risks associated with coastal, riverine and direct precipitation flooding that was completed for the DGR development. (author)

  15. Indicators: Chlorophyll a

    Science.gov (United States)

    Chlorophyll allows plants (including algae) to photosynthesize, i.e., use sunlight to convert simple molecules into organic compounds. Chlorophyll a is the predominant type of chlorophyll found in green plants and algae.

  16. Deep circulation changes in the South Atlantic since the Last Glacial Maximum from Nd isotope and multi-proxy records

    Science.gov (United States)

    Wei, R.; Abouchami, W.; Zahn, R.; Masque, P.

    2016-01-01

    We report down-core sedimentary Nd isotope (εNd) records from two South Atlantic sediment cores, MD02-2594 and GeoB3603-2, located on the western South African continental margin. The core sites are positioned downstream of the present-day flow path of North Atlantic Deep Water (NADW) and close to the Southern Ocean, which makes them suitable for reconstructing past variability in NADW circulation over the last glacial cycle. The Fe-Mn leachates εNd records show a coherent decreasing trend from glacial radiogenic values towards less radiogenic values during the Holocene. This trend is confirmed by εNd in fish debris and mixed planktonic foraminifera, albeit with an offset during the Holocene to lower values relative to the leachates, matching the present-day composition of NADW in the Cape Basin. We interpret the εNd changes as reflecting the glacial shoaling of Southern Ocean waters to shallower depths combined with the admixing of southward flowing Northern Component Water (NCW). A compilation of Atlantic εNd records reveals increasing radiogenic isotope signatures towards the south and with increasing depth. This signal is most prominent during the Last Glacial Maximum (LGM) and of similar amplitude across the Atlantic basin, suggesting continuous deep water production in the North Atlantic and export to the South Atlantic and the Southern Ocean. The amplitude of the εNd change from the LGM to Holocene is largest in the southernmost cores, implying a greater sensitivity to the deglacial strengthening of NADW at these sites. This signal impacted most prominently the South Atlantic deep and bottom water layers that were particularly deprived of NCW during the LGM. The εNd variations correlate with changes in 231Pa/230Th ratios and benthic δ13C across the deglacial transition. Together with the contrasting 231Pa/230Th: εNd pattern of the North and South Atlantic, this indicates a progressive reorganization of the AMOC to full strength during the Holocene.

  17. On extreme atmospheric and marine nitrogen fluxes and chlorophyll-a levels in the Kattegat Strait

    Directory of Open Access Journals (Sweden)

    C. B. Hasager

    2003-01-01

    Full Text Available A retrospective analysis is carried out to investigate the importance of the vertical fluxes of nitrogen to the marine sea surface layer in which high chlorophyll a levels may cause blooms of harmful algae and subsequent turn over and oxygen depletion at the bottom of the sea. Typically nitrogen is the limiting factor for phytoplankton in the Kattegat Strait during summer periods (May to August and the major nitrogen inputs come from the atmosphere and deep-water entrainment. The extreme reoccurrence values of nitrogen from atmospheric wet and dry deposition and deep-water flux entrainments are calculated by the periodic maximum method and the results are successfully compared to a map of chlorophyll return periods based on in-situ observations. The one-year return of extreme atmospheric wet deposition is around 60 mg N m-2 day-1 and 30 mg N m-2 day-1 for deep-water entrainment. Atmospheric nitrogen dry deposition is insignificant in the context of algal blooms. At longer time-scales e.g. at 10-year return, the nitrogen deep-water entrainment is larger than the extreme of atmospheric wet deposition. This indicates that the pool of nitrogen released from the sea bottom by deep-water entrainment forced by high winds greatly exceeds the atmospheric pool of nitrogen washed out by precipitation. At the frontal zone of the Kattegat Strait and Skagerrak, the nitrogen deep-water entrainment is very high and this explains the high 10-year return chlorophyll level at 8 mg m-3 in the Kattegat Strait. In the southern part, the extreme chlorophyll level is only 4 mg m-3 according to the statistics of a multi-year time-series of water samples. The chlorophyll level varies greatly in time and space as documented by a series of SeaWiFS satellite maps (OC4v4 algorithm of chlorophyll ScanFish and buoy observations from an experimental period in the Kattegat Strait. It is recommended to sample in-situ chlorophyll observation collocated in time to the satellite

  18. Temporal variability of chlorophyll distribution in the Gulf of Mexico: bio-optical data from profiling floats

    Science.gov (United States)

    Pasqueron de Fommervault, Orens; Perez-Brunius, Paula; Damien, Pierre; Camacho-Ibar, Victor F.; Sheinbaum, Julio

    2017-12-01

    Chlorophyll concentration is a key oceanic biogeochemical variable. In the Gulf of Mexico (GOM), its distribution, which is mainly obtained from satellite surface observations and scarce in situ experiments, is still poorly understood. In 2011-2012, eight profiling floats equipped with biogeochemical sensors were deployed for the first time in the GOM and generated an unprecedented dataset that significantly increased the number of chlorophyll vertical distribution measurements in the region. The analysis of these data, once calibrated, permits us to reconsider the spatial and temporal variability of the chlorophyll concentration in the water column. At a seasonal scale, results confirm the surface signal seen by satellites, presenting maximum concentrations in winter and low values in summer. It is shown that the deepening of the mixed layer is the primary factor triggering the chlorophyll surface increase in winter. In the GOM, a possible interpretation is that this surface increase corresponds to a biomass increase. However, the present dataset suggests that the basin-scale climatological surface increase in chlorophyll content results from a vertical redistribution of subsurface chlorophyll and/or photoacclimation processes, rather than a net increase of biomass. One plausible explanation for this is the decoupling between the mixed-layer depth and the deep nutrient reservoir since mixed-layer depth only reaches the nitracline in sporadic events in the observations. Float measurements also provide evidence that the depth and the magnitude of the deep chlorophyll maximum is strongly controlled by the mesoscale variability, with higher chlorophyll biomass generally observed in cyclones rather than anticyclones.

  19. The light absorption by suspended particles, phytoplankton and dissolved organic matter in deep-and coastal waiters of the Black Sea impact on algorithms for remote sensing of chlorophyll -a-.

    Science.gov (United States)

    Churilova, T.; Suslin, V.; Berseneva, G.; Georgieva, L.

    At present time for the analysis and prediction of marine ecosystem state Chlorophyll and Primary production models based on optical satellite data are widely used. However, the SeaWiFS algorithms providing the transformation of color images to chlorophyll maps give inaccurate estimation of chlorophyll "a" (Chl "a") concentration in the Black Sea - an overestimation approximately two times in summer and an underestimation - ~1,5 times during the large diatom bloom in winter-spring. A development of the regional Chl "a" algorithm requires an estimation of spectral characteristics of all light absorbing components and their relationships with Chl "a" concentration. With this aim bio-optical monitoring was organized in two fixed stations in deep-water central western part of the Black Sea and in shelf waters near the Crimea. The weekly monitoring in deep-waters region allowed to determine phytoplankton community succession: seasonal dynamics of size and taxonomic structure, development of large diatoms blooming in March and coccolithophores - in June. The significant variability in pigment concentration and species content of phytoplankton is accompanied by high variability in shape of the phytoplankton absorption spectra and in values of chl a-specific absorption coefficients. This variability had seasonal character depending mostly on the optical status of phytoplankton cells and partly on taxonomic structure of phytoplankton. The pigment packaging parameter fluctuated from 0.64-0.68 (October-December) to 0.95-0.97 (April-May). The package effect depended on intracellular pigment concentration and the size and geometry of cells, which change significantly over the year, because of extremely different environmental conditions. The relationships between phytoplankton specific absorption coefficients (at 412, 443, 490, 510, 555, 678 nm) and Chl "a" concentration have been described by power functions. The contribution of detritus to total particulate absorption

  20. Chlorophyll: The wonder pigment

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.R.

    Chlorophyll, the green plant pigment, a 'real life force' of living beings, besides synthesizing food, is a great source of vitamins, minerals and other phytochemicals. Adding chlorophyll rich food to our diet fortifies our body against health...

  1. Radiation induced chlorophyll mutations in rice

    International Nuclear Information System (INIS)

    Bari, G.; Mustafa, G.; Soomro, A.M.; Baloch, A.W.

    1985-01-01

    Air dried grains of four local varieties of rice were treated with gamma-rays and fast neutrons for determining their mutagenic effectiveness through the occurence of chlorophyll mutations. Fast neutrons were more effective in inducing chlorophyll mutations and the rice variety Basmati 370 produced maximum number of mutations followed by varieties Sonahri Sugdasi, Jajai 77 and Sada Gulab. The highest frequency of chlorophyll mutations was that of albina types followed by striata types. The xantha, viridis and tigrina types of mutations were less frequent. (authors)

  2. Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre

    Science.gov (United States)

    Donnelly, Matthew; Leach, Harry; Strass, Volker

    2017-07-01

    The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.

  3. Mechanical solution of the maximum point of dynamic abutment pressure under deep long-wall working face

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, F.; Ma, Q. [Shandong University of Science and Technology, Tai' an (China). College of Resource and Environmental Engineering

    2002-06-01

    The paper studies the dynamic relationship between abutment pressure and overburden collapse precess with advancing of working face. The result shows that the abutment pressure reaches its maximum value when the working face dimension is 1.27 times of the mining depth. This result confirms the statistical result from the strata movement surveys that overburden reaches its full movement stage when extracting dimension reaches 1.2 1.4 times of the mining depth. 12 refs., 2 figs.

  4. Chlorophyll-a specific volume scattering function of phytoplankton.

    Science.gov (United States)

    Tan, Hiroyuki; Oishi, Tomohiko; Tanaka, Akihiko; Doerffer, Roland; Tan, Yasuhiro

    2017-06-12

    Chlorophyll-a specific light volume scattering functions (VSFs) by cultured phytoplankton in visible spectrum range is presented. Chlorophyll-a specific VSFs were determined based on the linear least squares method using a measured VSFs with different chlorophyll-a concentrations. We found obvious variability of it in terms of spectral and angular shapes of VSF between cultures. It was also presented that chlorophyll-a specific scattering significantly affected on spectral variation of the remote sensing reflectance, depending on spectral shape of b. This result is useful for developing an advance algorithm of ocean color remote sensing and for deep understanding of light in the sea.

  5. Chlorophyll_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set included chlorophyll for each subregion in the study (Georges Bank, Gulf of Maine, Southern New England, Middle Atlantic Bight) . The data came from...

  6. OSU Chlorophyll Bloom Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This product was developed for the Oregon coast based on the observed change between running 8-day composite chlorophyll-a (CHL) data obtained by the MODerate...

  7. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  8. Subsurface chlorophyll maxima in the north-western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Aswanikumar, V.

    of thermocline suggests that the formation of the subsurface maximum is influencEd. by the presence of seasonal thermocline. Further the subsurface chlorophyll maximum is noticed within the depth ranges of ammonium maximum and nitracline, suggesting...

  9. Intermediate and deep water mass distribution in the Pacific during the Last Glacial Maximum inferred from oxygen and carbon stable isotopes

    Science.gov (United States)

    Herguera, J. C.; Herbert, T.; Kashgarian, M.; Charles, C.

    2010-05-01

    Intermediate ocean circulation changes during the last Glacial Maximum (LGM) in the North Pacific have been linked with Northern Hemisphere climate through air-sea interactions, although the extent and the source of the variability of the processes forcing these changes are still not well resolved. The ventilated volumes and ages in the upper wind driven layer are related to the wind stress curl and surface buoyancy fluxes at mid to high latitudes in the North Pacific. In contrast, the deeper thermohaline layers are more effectively ventilated by direct atmosphere-sea exchange during convective formation of Subantarctic Mode Waters (SAMW) and Antarctic Intermediate Waters (AAIW) in the Southern Ocean, the precursors of Pacific Intermediate Waters (PIW) in the North Pacific. Results reported here show a fundamental change in the carbon isotopic gradient between intermediate and deep waters during the LGM in the eastern North Pacific indicating a deepening of nutrient and carbon rich waters. These observations suggest changes in the source and nature of intermediate waters of Southern Ocean origin that feed PIW and enhanced ventilation processes in the North Pacific, further affecting paleoproductivity and export patters in this basin. Furthermore, oxygen isotopic results indicate these changes may have been accomplished in part by changes in circulation affecting the intermediate depths during the LGM.

  10. Chlorophyll formation and phytochrome

    NARCIS (Netherlands)

    Raven, C.W.

    1973-01-01

    The rôle of phytochrome in the regeneration of protochlorophyll (Pchl) in darkness following short exposures to light, as well as in the accumulation of chlorophyll- a (Chl- a ) in continuous light in previously dark-grown seedlings of pea, bean,

  11. Pulse amplitude modulated chlorophyll fluorometer

    Science.gov (United States)

    Greenbaum, Elias; Wu, Jie

    2015-12-29

    Chlorophyll fluorometry may be used for detecting toxins in a sample because of changes in micro algae. A portable lab on a chip ("LOAC") based chlorophyll fluorometer may be used for toxin detection and environmental monitoring. In particular, the system may include a microfluidic pulse amplitude modulated ("PAM") chlorophyll fluorometer. The LOAC PAM chlorophyll fluorometer may analyze microalgae and cyanobacteria that grow naturally in source drinking water.

  12. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  13. Dissolved inorganic nutrients and chlorophyll on the narrow continental shelf of Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Gilmara Fernandes Eça

    2014-03-01

    Full Text Available The eastern Brazilian continental shelf is narrow and subject to the influence of a western boundary current system, presenting lower biological productivity than other regions. In this study, the distribution of water masses, dissolved inorganic nutrients, chlorophyll-a and total suspended solids (TSS on the inner shelf (< 35 m depth, between Itacaré and Canavieiras, eastern Brazil, is presented. Sampling surveys were carried out in March and August 2006 and March 2007. Tropical water (TW prevailed during March 2006 and August 2007 with the lower salinity waters (< 36 found in most samples taken in March 2007, reflecting the influence of continental outflow and rain in coastal waters. Low concentrations of dissolved inorganic nutrients and Chl-a found were typical of TW and results suggested that the inner shelf waters were depleted in dissolved inorganic nitrogen in August 2006 and March 2007, and in phosphate in March 2006, potentially affecting phytoplankton growth. Stratification of the water column was observed due to differences in dissolved nutrient concentrations, chlorophyll-a and TSS when comparing surface and bottom samples, possibly the result of a colder water intrusion and mixing on the bottom shelf and a deep chlorophyll maximum and/or sediment resuspension effect. Despite this stratification, oceanographic processes such as lateral mixing driven by the Brazil Current as well as a northward alongshore drift driven by winds and tides transporting Coastal Water can lead to an enhanced mixing of these waters promoting some heterogeneity in this oligotrophic environment.

  14. Chlorophyll d: the puzzle resolved

    DEFF Research Database (Denmark)

    Larkum, Anthony W D; Kühl, Michael

    2005-01-01

    Chlorophyll a (Chl a) has always been regarded as the sole chlorophyll with a role in photochemical conversion in oxygen-evolving phototrophs, whereas chlorophyll d (Chl d), discovered in small quantities in red algae in 1943, was often regarded as an artefact of isolation. Now, as a result...... of discoveries over the past year, it has become clear that Chl d is the major chlorophyll of a free-living and widely distributed cyanobacterium that lives in light environments depleted in visible light and enhanced in infrared radiation. Moreover, Chl d not only has a light-harvesting role but might also...... replace Chl a in the special pair of chlorophylls in both reactions centers of photosynthesis. Udgivelsesdato: 2005-Aug...

  15. Evaluation of Chlorophyll Content and Chlorophyll Fluorescence Parameters and Relationships between Chlorophyll a, b and Chlorophyll Content Index under Water Stress in Olea europaea cv. Dezful

    OpenAIRE

    E. Khaleghi; K. Arzani; N. Moallemi; M. Barzegar

    2012-01-01

    This study was conducted to determine effect of water stress on chlorophyll content and chlorophyll fluorescence parameter in young `Dezful- olive trees. Three irrigation regimes (40% ETcrop, 65% ETcrop and 100% ETcrop) were used. After irrigation treatments were applied, some of biochemical parameters including chlorophyll a, b, total chlorophyll, chlorophyll fluorescence and also chlorophyll content index (C.C.I) were measured. Results of Analysis of variance showed that irrigation treatmen...

  16. Identification of the 7-Hydroxymethyl Chlorophyll a Reductase of the Chlorophyll Cycle in Arabidopsis[W

    Science.gov (United States)

    Meguro, Miki; Ito, Hisashi; Takabayashi, Atsushi; Tanaka, Ryouichi; Tanaka, Ayumi

    2011-01-01

    The interconversion of chlorophyll a and chlorophyll b, referred to as the chlorophyll cycle, plays a crucial role in the processes of greening, acclimation to light intensity, and senescence. The chlorophyll cycle consists of three reactions: the conversions of chlorophyll a to chlorophyll b by chlorophyllide a oxygenase, chlorophyll b to 7-hydroxymethyl chlorophyll a by chlorophyll b reductase, and 7-hydroxymethyl chlorophyll a to chlorophyll a by 7-hydroxymethyl chlorophyll a reductase. We identified 7-hydroxymethyl chlorophyll a reductase, which is the last remaining unidentified enzyme of the chlorophyll cycle, from Arabidopsis thaliana by genetic and biochemical methods. Recombinant 7-hydroxymethyl chlorophyll a reductase converted 7-hydroxymethyl chlorophyll a to chlorophyll a using ferredoxin. Both sequence and biochemical analyses showed that 7-hydroxymethyl chlorophyll a reductase contains flavin adenine dinucleotide and an iron-sulfur center. In addition, a phylogenetic analysis elucidated the evolution of 7-hydroxymethyl chlorophyll a reductase from divinyl chlorophyllide vinyl reductase. A mutant lacking 7-hydroxymethyl chlorophyll a reductase was found to accumulate 7-hydroxymethyl chlorophyll a and pheophorbide a. Furthermore, this accumulation of pheophorbide a in the mutant was rescued by the inactivation of the chlorophyll b reductase gene. The downregulation of pheophorbide a oxygenase activity is discussed in relation to 7-hydroxymethyl chlorophyll a accumulation. PMID:21934147

  17. Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features

    KAUST Repository

    Alcaraz, Miquel; Calbet, Albert; Isari, Stamatina; Irigoien, Xabier; Trepat, Isabel; Saiz, Enric

    2016-01-01

    The temporal and spatial changes of zooplankton and chlorophyll a concentration were studied during the warm stratification period (early June) at three stations whose traits corresponded to the coastal, frontal, and offshore-dome water conditions described for the Catalan Sea. We sampled the stations for 12 days at a frequency ranging from less than 10 to 102 h, with a spatial resolution ranging from 10 to 104 m. The objective was to determine the variability of mesozooplankton and phytoplankton (chlorophyll a) biomass, and average individual size (mass) across a coast-offshore transect in relation to the stratification conditions prevailing in the NW Mediterranean during summer. The vertical distribution of phytoplankton biomass displayed a clear deep maximum at 60 m depth except at the coastal station. This maximum exists during most of the year and is especially important during the density stratification period. It was accompanied during daylight hours by a coherent zooplankton maximum. At sunset mesozooplankton ascended and dispersed, with larger organisms from deeper layers joining the migrating community and increasing the average individual mass. The highest variability of mesozooplankton biomass, individual mass and chlorophyll a concentration occurred at the front station due to the coupling between the vertical migration of zooplankton and the particular characteristics of the front. According to the data shown, the highest variability was observed at the lowest scales.

  18. Variability of mesozooplankton biomass and individual size in a coast-offshore transect in the Catalan Sea: relationships with chlorophyll a and hydrographic features

    KAUST Repository

    Alcaraz, Miquel

    2016-10-11

    The temporal and spatial changes of zooplankton and chlorophyll a concentration were studied during the warm stratification period (early June) at three stations whose traits corresponded to the coastal, frontal, and offshore-dome water conditions described for the Catalan Sea. We sampled the stations for 12 days at a frequency ranging from less than 10 to 102 h, with a spatial resolution ranging from 10 to 104 m. The objective was to determine the variability of mesozooplankton and phytoplankton (chlorophyll a) biomass, and average individual size (mass) across a coast-offshore transect in relation to the stratification conditions prevailing in the NW Mediterranean during summer. The vertical distribution of phytoplankton biomass displayed a clear deep maximum at 60 m depth except at the coastal station. This maximum exists during most of the year and is especially important during the density stratification period. It was accompanied during daylight hours by a coherent zooplankton maximum. At sunset mesozooplankton ascended and dispersed, with larger organisms from deeper layers joining the migrating community and increasing the average individual mass. The highest variability of mesozooplankton biomass, individual mass and chlorophyll a concentration occurred at the front station due to the coupling between the vertical migration of zooplankton and the particular characteristics of the front. According to the data shown, the highest variability was observed at the lowest scales.

  19. Thermal dimensioning of the deep repository. Influence of canister spacing, canister power, rock thermal properties and nearfield design on the maximum canister surface temperature

    International Nuclear Information System (INIS)

    Hoekmark, Harald; Faelth, Billy

    2003-12-01

    The report addresses the problem of the minimum spacing required between neighbouring canisters in the deep repository. That spacing is calculated for a number of assumptions regarding the conditions that govern the temperature in the nearfield and at the surfaces of the canisters. The spacing criterion is that the temperature at the canister surfaces must not exceed 100 deg C .The results are given in the form of nomographic charts, such that it is in principle possible to determine the spacing as soon as site data, i.e. the initial undisturbed rock temperature and the host rock heat transport properties, are available. Results of canister spacing calculations are given for the KBS-3V concept as well as for the KBS-3H concept. A combination of numerical and analytical methods is used for the KBS-3H calculations, while the KBS-3V calculations are purely analytical. Both methods are described in detail. Open gaps are assigned equivalent heat conductivities, calculated such that the conduction across the gaps will include also the heat transferred by radiation. The equivalent heat conductivities are based on the emissivities of the different gap surfaces. For the canister copper surface, the emissivity is determined by back-calculation of temperatures measured in the Prototype experiment at Aespoe HRL. The size of the different gaps and the emissivity values are of great importance for the results and will be investigated further in the future

  20. Photosynthetic bark: use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NARCIS (Netherlands)

    Girma, A.; Skidmore, A.K.; Bie, de C.A.J.M.; Bongers, F.; Schlerf, M.

    2013-01-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not

  1. Photosynthetic bark : use of chlorophyll absorption continuum index to estimate Boswellia papyrifera bark chlorophyll content

    NARCIS (Netherlands)

    Girma Gebrekidan, A.; Skidmore, A.K.; de Bie, C.A.J.M.; Bongers, Frans; Schlerf, Martin; Schlerf, M.

    2013-01-01

    Quantification of chlorophyll content provides useful insight into the physiological performance of plants. Several leaf chlorophyll estimation techniques, using hyperspectral instruments, are available. However, to our knowledge, a non-destructive bark chlorophyll estimation technique is not

  2. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast.

  3. Pigment content (chlorophyll and carotenoids) in 37 species of trees and shrubs in northeastern mexico during summer season

    International Nuclear Information System (INIS)

    Rodriguez, H.G.; Avendano, E.; Maiti, R.; Kumari, C.A.

    2017-01-01

    Plant pigments play an important role in plant assimilatory systems and plant growth. A study was undertaken to determine chlorophyll a, chlorophyll b and carotenoids contents of thirty seven species of trees and shrubs in summer season, in Linares, northeastern Mexico. Large variations were observed in the contents of chlorophyll (a, b and total) and also carotenoids among species. Chlorophyll a was minimum (around 0.6 mg) in Leucophyllum frutescens and Acacia berlandieri and maximum (1.8 mg) in Ebenopsis ebano. Chlorophyll b was minimum in Forestiera angustifolia, Acacia berlandieri, and Leucophyllum frutescens (0.1 to 0.2 mg), while Ebenopsis ebano contained maximum (0.4 mg). Carotenoids content was minimum (around 0.2 mg) in Leucophyllum frutescens, Acacia berlandieri and Parkinsonia aculeata and others but maximum value (around 0.6 mg) was observed in Berberis trifoliata. Total chlorophyll (a+b) content minimum values (around 0.6 mg) were recorded in Leucophyllum frutescens, Forestiera angustifolia, Croton suaveolens and Acacia berlandieri, while maximum value (around 2 mg) was obtained in Ebenopsis ebano. Maximum values of chlorophyll (a:b) ratio (around 7) was seen in Forestiera angustifolia, Salix lasiolepis followed by Diospyros texana (around 6). The ratio of total chlorophyll/carotenoids was maximum in Parkinsonia aculeata (nearing 8), while minimum value was obtained in Berberis trifoliata (around 2). (author)

  4. Complexes and aggregates of chlorophylls

    NARCIS (Netherlands)

    Kooyman, R.P.H.

    1980-01-01

    Chlorophyll (Chl) molecules can form complexes in two important ways: by ligation at the magnesium atom and/or by hydrogen bonding at the keto- carbonyl group. Under certain conditions these processes may give rise to dimer formation. This thesis describes some properties of complexes and dimers of

  5. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    Science.gov (United States)

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  6. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    Directory of Open Access Journals (Sweden)

    Galina Smolikova

    2017-09-01

    Full Text Available The embryos of some angiosperms (usually referred to as chloroembryos contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR genes are the principle ones. On the biochemical level, abscisic acid (ABA is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  7. Vertical nutrient fluxes, turbulence and the distribution of chlorophyll a in the north-eastern North Sea

    Science.gov (United States)

    Bendtsen, Jørgen; Richardson, Katherine

    2017-04-01

    During summer the northern North Sea is characterized by nutrient rich bottom water masses and nutrient poor surface layers. This explains the distribution of chlorophyll a in the water column where a subsurface maximum, referred to as the deep chlorophyll maximum (DCM), often is present during the growth season. Vertical transport of nutrients between bottom water masses and the well lit surface layer stimulates phytoplankton growth and this generally explains the location of the DCM. However, a more specific understanding of the interplay between vertical transports, nutrient fluxes and phytoplankton abundance is required for identifying the nature of the vertical transport processes, e.g the role of advection versus vertical turbulent diffusion or the role of localized mixing associated with mesoscale eddies. We present results from the VERMIX study in the north-eastern North Sea where nutrients, chlorophyll a and turbulence profiles were measured along five north-south directed transects in July 2016. A high-resolution sampling program, with horizontal distances of 1-10 km between CTD-stations, resolved the horizontal gradients of chlorophyll a across the steep bottom slope from the relatively shallow central North Sea ( 50-80 m) towards the deep Norwegian Trench (>700 m). Low oxygen concentrations in the bottom water masses above the slope indicated enhanced biological production where vertical mixing would stimulate phytoplankton growth around the DCM. Measurements of variable fluorescence (Fv/Fm) showed elevated values in the DCM which demonstrates a higher potential for electron transport in the Photosystem II in the phytoplankton cells, i.e. an indication of nutrient-rich conditions favorable for phytoplankton production. Profiles of the vertical shear and microstructure of temperature and salinity were measured by a VMP-250 turbulence profiler and the vertical diffusion of nutrients was calculated from the estimated vertical turbulent diffusivity and the

  8. Characterization of chlorophyll binding to LIL3.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Eichacker, Lutz Andreas

    2018-01-01

    The light harvesting like protein 3 (LIL 3) from higher plants, has been linked to functions in chlorophyll and tocopherol biosynthesis, photo-protection and chlorophyll transfer. However, the binding of chlorophyll to LIL3 is unclear. We present a reconstitution protocol for chlorophyll binding to LIL3 in DDM micelles. It is shown in the absence of lipids and carotenoids that reconstitution of chlorophyll binding to in vitro expressed LIL3 requires pre-incubation of reaction partners at room temperature. We show chlorophyll a but not chlorophyll b binding to LIL3 at a molar ratio of 1:1. Neither dynamic light scattering nor native PAGE, enabled a discrimination between binding of chlorophyll a and/or b to LIL3.

  9. Influence of ambient sulphur dioxide on chlorophyll

    International Nuclear Information System (INIS)

    Shahare, C.B.; Varshney, C.K.

    1995-01-01

    For the evaluation of the injury due to SO 2 from Indraprashtha (IP) Thermal Power Plant, eight species of trees were selected. Experiment was divided in two sections. Section one include transplanted tree saplings of Bauhinia variegata, Delonix regia, Flcus benghalensis, Putranjiwa roxburghii, Morus indica, Polyalthia longifolia, Leucaena leucocephala and Tabernaemontana coronaria. Here one set of plants was transplanted to polluted site of IP and other set was maintained at non polluted site of Jawaharlal Nehru University (Ecological Nursery). Second section of the study have naturally growing trees of the same species in the vicinity of the transplanted plants. Findings of the present study show that tree species were not safe at polluted site. Maximum chlorophyll reduction occurred in Bauhinia variegata, that is 32.05% (transplanted saplings). In naturally growing trees up to 35.70% reduction was seen in B. variegata. (author). 11 refs., 2 tabs

  10. The effect of storage temperature of cucumber fruit on chlorophyll fluorescence

    Directory of Open Access Journals (Sweden)

    Ryszard Kosson

    2013-12-01

    Full Text Available The effect of three storage temperature levels: 12,5°C, 20°C, and 1,5°C on basic indexes of chlorophyll fluorescence of cucumber fruits was studied. The greenhouse grown cucumber fruits cv. Wiktor F1 were stored in perforated polyethylene bags or without packages. The minimum chlorophyll fluorescence (Fo, maximum chlorophyll fluorescence (Fm, variable chlorophyll fluorescence (Fv and relative variable fluorescence (Fv/Fm of the cucumber peel were measured. Relative variable fluorescence was decTeasing when cucumbers were stored at temperature lower or higher than optimum level. The chlorophyll fluorescence measurements can be helpful for determination of appropriate temperature parameters of cucumber storage.

  11. Isolation of chlorophyll a from spinach leaves

    Directory of Open Access Journals (Sweden)

    E.D. Dikio

    2008-08-01

    Full Text Available An efficient method for separating chlorophyll a from spinach leaves by column chromatography and solvent extraction techniques has been developed. The purity and identity of the chlorophyll a have been confirmed by UV-Vis, IR and mass spectrometry. Yields from 100 g of freeze-dried spinach were 23 – 24 mg of chlorophyll a.

  12. Relationship between chlorophyll density and SPAD chlorophyll meter reading for Jerusalem artichoke (Helianthus tuberosus L.)

    Science.gov (United States)

    Chlorophyll is an indicator of crop health and productivity. Measuring chlorophyll is usually done directly and requires significant time and resources. Indirect measurement of chlorophyll density using a handheld portable chlorophyll meter can reduce time. However, this information is very limit...

  13. Control of quantum interference of an excitonic wave in a chlorophyll chain with a chlorophyll ring

    International Nuclear Information System (INIS)

    Hong, Suc-Kyoung; Nam, Seog-Woo; Yeon, Kyu-Hwang

    2010-01-01

    The quantum interference of an excitonic wave and its coherent control in a nanochain with a nanoring are studied. The nanochain is comprised of six chlorophylls, where four chlorophylls compose the nanoring and two chlorophylls are attached at two opposite sites on the nanoring. The exciton dynamics and the correlation of the excitation between chlorophylls are analyzed for a given configurational arrangement and dipolar orientation of the chlorophylls. The results of this study show that the excitation at specified chlorophylls is suppressed or enhanced by destructive or constructive interference of the excitonic wave in the chlorophyll nanochain.

  14. Analysis of chlorophyll mutations induced by γ-rays in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-06-01

    Thirty varieties of dormant barley seeds were irradiated with 137 Cs γ-rays. Dose-effect relations of chlorophyll mutation frequency in M 2 seedling and differences resulting from cultured types or radiosensitive types were investigated. Experimental results show that the relations between chlorophyll mutation frequency and doses can be fitted by a linear regression equation Y = A + BX. According to analysis of covariance, there is no considerable difference in various cultured types, but the difference of five different radiosensitive types is remarkable. The sensitive and intermediate types need much lower doses than other types to induce maximum chlorophyll mutation

  15. Evaluation of water quality by chlorophyll and dissolved oxygen

    International Nuclear Information System (INIS)

    Latif, Z.; Tasneem, M.A.; Javed, T.; Butt, S.; Fazil, M.; Ali, M.; Sajjad, M.I.

    2002-01-01

    of Chlorophyll concentrations Dissolved Oxygen ranges 0.3 to 9.1 mg/l with minimum at the morning and maximum at 16.00 hours of the day. These alarming dissolved Oxygen results show that fish can not survive in these conditions. (author)

  16. Mixed layer variability and chlorophyll a biomass in the Bay of Bengal.

    Digital Repository Service at National Institute of Oceanography (India)

    Narvekar, J.; PrasannaKumar, S.

    , the chlorophyll biomass decreases rapidly due to reduction in sunlight by suspended sediment. In the south, advection of high salinity waters from the Arabian Sea and westward propagating Rossby waves from the eastern Bay of Bengal led to the formation of deep...

  17. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    Science.gov (United States)

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  18. Chlorophyll data from the Coastal waters of Hawaii and Northeast Pacific Ocean to study the responses of the ecosystem to the sewage diversion from the the inner bay to an offshore, deep-water location from 24 September 1976 to 15 June 1979 (NODC Accession 0000396)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chlorophyll data were collected at fixed platforms in the Coastal waters of Hawaii and Northeast Pacific Ocean from September 24, 1976 to June 15, 1979. Data were...

  19. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance

    OpenAIRE

    A. Morel; H. Claustre; B. Gentili

    2010-01-01

    The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl]) level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance") account ...

  20. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance

    OpenAIRE

    Morel, A.; Claustre, H.; Gentili, B.

    2010-01-01

    The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl]) level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance") acc...

  1. Distribution of nutrients, chlorophyll and phytoplankton primary ...

    African Journals Online (AJOL)

    Distribution of nutrients, chlorophyll and phytoplankton primary production in ... Two cruises were undertaken in the vicinity of the Cape Frio upwelling cell ... and concentrations of nitrate, phosphate, silicate, oxygen and chlorophyll a. ... Estimates of the annual primary production for each of the water bodies were calculated.

  2. Quantifying mangrove chlorophyll from high spatial resolution imagery

    NARCIS (Netherlands)

    Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bruin, de S.

    2015-01-01

    Lower than expected chlorophyll concentration of a plant can directly limit photosynthetic activity, and resultant primary production. Low chlorophyll concentration may also indicate plant physiological stress. Compared to other terrestrial vegetation, mangrove chlorophyll variations are poorly

  3. Effect of metal ion Fe(III on the performance of chlorophyll as photosensitizers on dye sensitized solar cell

    Directory of Open Access Journals (Sweden)

    Harsasi Setyawati

    Full Text Available The energy crisis is a major problem facing the world today and will need a renewable energy source that is environmentally friendly; one of these is the dye sensitized solar cell (DSSC. DSSC is photochemical electric cell that can convert solar energy into electrical energy. This research aims to study the characteristics of chlorophyll compounds with the addition of metal ions Fe(III and to determine the effect of Fe(III on the performance of chlorophyll as a photosensitizer in the DSSC. The formation of complex compounds of Fe(III-chlorophyll is shown by the phenomenon of metal ligand charge transfer (MLCT at a wavelength of 263.00 nm and absorption transition d-d at 745.00 nm. Fourier transform infrared characterization of the binding of Fe-O complex compounds appears at 486.06 cm−1. The complex compound of Fe(III-chlorophyll has a magnetic moment value of 9.62 Bohr Magneton (BM. The existence of ion Fe(III in chlorophyll can improve the performance of chlorophyll as a dye sensitizer with a maximum current of 4.00 mA/cm2, maximum voltage of 0.18 volts and efficiency values of 1.35%. Keywords: Fe(III-chlorophyll, Dye sensitized solar cell, Metal ligand charge transfer, Photosensitizer

  4. Seasonal Composite Chlorophyll Concentrations - Gulf of Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of chlorophyll concentrations in the Gulf of Maine. These raster images are seasonal composites, and were calculated...

  5. EmpiricalValues_Chlorophyll_GrandComposite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of chlorophyll concentrations in the Gulf of Maine. These raster images are a composite of several years (1997-2005)...

  6. Monthly Composite Chlorophyll Concentrations - Gulf of Maine

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This personal geodatabase contains raster images of chlorophyll concentrations in the Gulf of Maine. These raster images are monthly composites, and were calculated...

  7. Responses of wild husk tomato, Physalis angulata L. to growth regulators and gamma rays on chlorophyll content and fruit yield

    International Nuclear Information System (INIS)

    Raghava, R.P.; Raghava, Nisha

    1994-01-01

    Effect of different growth regulators and gamma rays on the total chlorophyll content and fruit yield were studied in wild species of husk tomato and concluded that indole-3-acetic acid (IAA) 200 and kinetin (KIN) 10 ppm showed remarkable enhancement in both total chlorophyll content and fruit yield, while maleic hydrazide (MH) 100, 200 ppm and coumarin (COU) in all the treatments enhanced total chlorophyll content. Gamma ray treatments significantly enhanced both the parameters. Amongst all the treatments maximum fruit yield was in 20 kR of gamma rays. (author). 31 refs., 1 tab

  8. Effect of road side dust pollution on the growth and total chlorophyll ...

    African Journals Online (AJOL)

    The effect of dust in Vitis vinifera L. on its pigmentation and growth was studied in 2012. Measurements were taken for plants in the Campus University of Balochistan, Quetta. A significant reduction in plant length, cover, number of leaves and total chlorophyll contents for V. vinifera L. was observed. The maximum reduction ...

  9. Phytoplankton production and chlorophyll distribution in the eastarn and central Arabian Sea in 1994-1995

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A; Pant, A; Sawant, S.S.; Gauns, M; Matondkar, S.G.P.; Mahanraju, R.

    (-2) d sup(-1) . Column chlorophyll a values for these seasons were between 8-17, 13-27 and 34-44 mgm sup(2) for near coastal waters. A subsurface chl maximum (SCM) at approx 40-60 m was conspicuous during the intermonsoon period. The seasonal...

  10. Induction of chlorophyll chimeras and chlorophyll mutations in mungbean (Vigna radiata) cv. T44

    International Nuclear Information System (INIS)

    Singh, V.P.; Yadav, R.D.S.

    1993-01-01

    Uniform and healthy seeds of mungbean (Vigna radiata) cv. T44 were exposed to varying doses of gamma rays, ethyl methane sulphonate (EMS) and combination treatment of gamma rays with EMS. The data were recorded for seed germination, plant survival, frequency and spectrum of chlorophyll chimeras in M 1 and chlorophyll mutations in M 2 generation. Among all, the combination treatments were found most effective for inducing chlorophyll chimeras and chlorophyll mutations than the gamma rays or EMS alone. Of the mutants under reference, the albino, xantha and chlorina showed monogenic recessive while viridis exhibited digenic recessive inheritance. (author). 8 refs., 2 tabs

  11. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts.

    Science.gov (United States)

    Wang, Peng; Grimm, Bernhard

    2015-12-01

    Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.

  12. Mediterranean Ocean Colour Chlorophyll Trends.

    Science.gov (United States)

    Colella, Simone; Falcini, Federico; Rinaldi, Eleonora; Sammartino, Michela; Santoleri, Rosalia

    2016-01-01

    In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity). Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication). Monitoring chlorophyll (Chl) concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the "good environmental status" (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020) and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean) algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I) and coastal (i.e., Case II) waters. We apply the Mann-Kendall test and the Sens's method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However, the trends

  13. Mediterranean Ocean Colour Chlorophyll Trends.

    Directory of Open Access Journals (Sweden)

    Simone Colella

    Full Text Available In being at the base of the marine food web, phytoplankton is particularly important for marine ecosystem functioning (e.g., biodiversity. Strong anthropization, over-exploitation of natural resources, and climate change affect the natural amount of phytoplankton and, therefore, represent a continuous threat to the biodiversity in marine waters. In particular, a concerning risks for coastal waters is the increase in nutrient inputs of terrestrial/anthropogenic origin that can lead to undesirable modifications of phytoplankton concentration (i.e., eutrophication. Monitoring chlorophyll (Chl concentration, which is a proxy of phytoplankton biomass, is an efficient tool for recording and understanding the response of the marine ecosystem to human pressures and thus for detecting eutrophication. Here, we compute Chl trends over the Mediterranean Sea by using satellite data, also highlighting the fact that remote sensing may represent an efficient and reliable solution to synoptically control the "good environmental status" (i.e., the Marine Directive to achieve Good Environmental Status of EU marine waters by 2020 and to assess the application of international regulations and environmental directives. Our methodology includes the use of an ad hoc regional (i.e., Mediterranean algorithm for Chl concentration retrieval, also accounting for the difference between offshore (i.e., Case I and coastal (i.e., Case II waters. We apply the Mann-Kendall test and the Sens's method for trend estimation to the Chl concentration de-seasonalized monthly time series, as obtained from the X-11 technique. We also provide a preliminary analysis of some particular trends by evaluating their associated inter-annual variability. The high spatial resolution of our approach allows a clear identification of intense trends in those coastal waters that are affected by river outflows. We do not attempt to attribute the observed trends to specific anthropogenic events. However

  14. Long-term dynamics of chlorophyll concentration in the ocean surface layer (by space data)

    Science.gov (United States)

    Shevyrnogov, A.; Vysotskaya, G.

    To preserve the biosphere and to use it efficiently, it is necessary to gain a deep insight into the dynamics of the primary production process on our planet. Variability of chlorophyll concentration in the ocean is one of the most important components of this process. These investigations are, however, very labor-consuming, because of the difficulties related to the accessibility of the water surface and its large size. In this work long-term changes in chlorophyll concentration in the surface layer of the ocean have been analyzed on the basis of the CZCS data for 7.5 years from 1979 to 1986 and the SeaWiFS data from 1997 to 2004. It has been shown that the average chlorophyll concentration calculated in all investigated areas varies moderately. However, when analyzing spatially local trends, the areas have been detected that have significant rise and fall of chlorophyll concentrations. Some interesting features of the long-term dynamics of chlorophyll concentration have been found. The opposite directions of long-term trends (essential increase or decrease) cannot be explained only by large-scale hydrological phenomena in the ocean (currents, upwellings, etc.). The measured chlorophyll concentration results from the balance between production and destruction processes. Which process dominates is determined by various hydrophysical, hydrobiological, and climatic processes, leading to sharp rises or falls of the concentration. It is important to estimate the scale of the areas in which this or that process dominates. Therefore, the study addresses not only the dynamics of the mean value but also the dynamics of the areas in which the dominance of certain factors has led to a sharp fall or rise in chlorophyll concentration. Thus, the obtained results can be used to estimate long-term changes in the ocean biota.

  15. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Yao, Fengchao

    2015-03-19

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast. © 2015 Yao, Hoteit.

  16. Investigations on gamma ray induced chlorophyll variegated mutants

    International Nuclear Information System (INIS)

    Datta, S.K.; Dwivedi, A.K.; Banerji, B.K.

    1995-01-01

    Considering economic importance of chlorophyll variegation in floriculture trade an attempt was made for cytological, anatomical and biochemical analysis of four Bougainvillea and Lantana depressa chlorophyll variegated mutants for better and clear understanding of origin of chlorophyll variegation. No cytological evidence could be detected for their origin. Anatomical and biochemical examinations revealed that chlorophyll variegation in these mutants were due to changes in biosynthesis pathways and time of chlorophyll synthesis in palisade and spongy mesophyll cells. (author). 7 refs., 3 figs., 3 tabs

  17. Effect of crude oil contamination on the chlorophyll content and morpho-anatomy of Cyperus brevifolius (Rottb.) Hassk.

    Science.gov (United States)

    Baruah, Plabita; Saikia, Rashmi Rekha; Baruah, Partha Pratim; Deka, Suresh

    2014-11-01

    Chlorophyll plays a pivotal role in the plant physiology and its productivity. Cultivation of plants in crude oil contaminated soil has a great impact on the synthesis of chlorophyll pigment. Morpho-anatomy of the experimental plant also shows structural deformation in higher concentrations. Keeping this in mind, a laboratory investigation has been carried out to study the effect of crude oil on chlorophyll content and morpho-anatomy of Cyperus brevifolius plant. Fifteen-day-old seedling of the plant was planted in different concentrations of the crude oil mixed soil (i.e., 10,000, 20,000, 30,000, 40,000, and 50,000 ppm). A control setup was also maintained without adding crude oil. Results were recorded after 6 months of plantation. Investigation revealed that there is a great impact of crude oil contamination on chlorophyll content of the leaves of the experimental plant. It also showed that chlorophyll a, chlorophyll b, and total chlorophyll content of leaves grown in different concentrations of crude oil were found to be lower than those of the control plant. Further, results also demonstrated that chlorophyll content was lowest in the treatment that received maximum dose of crude oil. It also showed that chlorophyll content was decreased with increased concentration of crude oil. Results also demonstrated that there was a reduction in plant shoot and root biomass with the increase of crude oil concentration. Results also revealed that the shoot biomass is higher than root biomass. Morphology and anatomy of the experimental plant also show structural deformation in higher concentrations. Accumulation of crude oil on the cuticle of the transverse section of the leaves and shoot forms a thick dark layer. Estimation of the level of pollution in an environment due to oil spill is possible by the in-depth study of the harmful effects of oil on the morphology and anatomy and chlorophyll content of the plants grown in that particular environment.

  18. Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrients and temperature in the Equatorial Pacific Ocean: a basin-scale model

    Directory of Open Access Journals (Sweden)

    X. J. Wang

    2009-03-01

    Full Text Available The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM is much deeper in the western warm pool (~100 m than in the Eastern Equatorial Pacific (~50 m. The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

  19. Spectrum and frequency of chlorophyll mutations in urdbean (Vigna mungo L. Hepper) induced by EMS and gamma rays

    International Nuclear Information System (INIS)

    Sharma, A.K.; Singh, V.P.; Sarma, M.K.

    2006-01-01

    In mutation breeding experiment, plants with altered characteristics such as chlorophyll changes, sterility, plant lethality etc. could be the marker of the mutability of a variety. In fact, spectrum and frequency of chlorophyll mutations have been studied in the great detail. The chlorophyll mutation is the clear-cut indication of non-directional nature of mutation and possibility of induction of useful mutations. The spectrum and frequency of chlorophyll mutation was estimated by using gamma rays (100, 200, 300 and 400 Gy doses), EMS (0.2, 0.4, 0.6 and 0.8%) and combination of gamma rays (100, 200, 300 400 Gy) with 0.2 % concentration EMS on two cultivars, namely, Pant Urd-19 and Pant Urd-30 of urdbean ( Vigna mungo L. Hepper). Five different types of chlorophyll mutations viz., albina, xantha, viridis, chlorina and maculata were identified in both the cultivars. Almost all the combination treatments produced maximum frequency and wider spectrum of chlorophyll mutations followed by single treatment of gamma rays or EMS. The frequency of chlorophyll mutation increased with higher doses of mutagens but decreased at highest dose. Proc. Nat. Acad. Sci. India. 76(8), I, 2006. 64-68. (author)

  20. Recent Trends in Global Ocean Chlorophyll

    Science.gov (United States)

    Gregg, Watson; Casey, Nancy

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 5% since 1998. The North Pacific ocean basin has increased nearly 19%. To understand the causes of these trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The mode1 utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. Ths enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll.

  1. The spontaneous chlorophyll mutation frequency in barley

    DEFF Research Database (Denmark)

    Jørgensen, Jørgen Helms; Jensen, Hans Peter

    1986-01-01

    A total of 1866 barley plants were progeny tested in the greenhouse. Twenty-five plants segregated for newly arisen, spontaneous chlorophyll mutant genes. Among the total of 470,129 seedlings screened there were 79 mutants (1.7 .+-. 0.6 .times. 10-4). The data are added to data from three similar...... materials and the resulting estimate of the chlorophyll mutant frequency is 1.6 .times. 10-4 in about 1.43 million seedlings. The estimate of the chlorophyll mutation rate per generation is close to 67.3 .times. 10-4 per diploid genome or in the order of 6 .times. 10-7 per locus and haploid genome....

  2. Chlorophyll mutants in Phaseolus vulgaris (L.) Savi

    International Nuclear Information System (INIS)

    Svetleva, D.; Petkova, S.

    1991-01-01

    Three-year investigations were conducted on chlorophyll mutants of three type: viridissima, claroviridis, flavoviridis, viridocostata and xanthomarginata produced post gamma irradiation ( 60 Co, 8 krad, 280 rad/min). Cell division rate in spectrum and in quantity of induced aberrations was found to have no significant differences with the control. Chlorophyll mutations compared to the control are less developed and their productive characters are less manifested. Cell division rate and the quantity of induced aberrations have no relation to the elements of productivity in the mutants investigated. 3 tabs., 12 refs

  3. CHLOROPHYLL a FLUORESCENCE ANALYSIS IN FORESTS

    Directory of Open Access Journals (Sweden)

    M. Pollastrini

    2016-03-01

    Full Text Available A European-wide assessment of chlorophyll a fluorescence (ChlF, prompt fluorescence on dark-adapted samples parameters in forest ecosystems was carried out in the years 2012-2013, within the 7FP FunDivEUROPE project. A total of 1596 trees growing in 209 stands distributed in six countries, from Mediterranean to boreal sites, were sampled. This paper shows the applicability of the ChlF in forest ecology surveys, the protocols adopted for leaf sampling and ChlF measurements, the variability of the ChlF parameters within and between trees, their dependence to environmental factors and the relationships with other functional leaf traits. The most relevant findings were as follows: (i The least variable ChlF parameter within and between the trees was the maximum quantum yield of primary photochemistry (FV/FM, whereas the performance indices (PIABS and PITOT showed the highest variability; (ii for a given tree, the ChlF parameters measured at two heights of the crown (top and bottom leaves were correlated and, in coniferous species, the ChlF parameters were correlated between different needle age classes (from the current year and previous year; (iii the ChlF parameters showed a geographical pattern, and the photochemical performance of the forest trees was higher in central Europe than in the edge sites (northernmost and southernmost; and (iv ChlF parameters showed different sensitivity to specific environmental factors: FV/FM increased with the increase of the leaf area index of stands and soil fertility; ΔVIP was reduced under high temperature and drought. The photochemical responses of forest tree species, analyzed with ChlF parameters, were influenced by the ecology of the trees (i.e. their functional groups, continental distribution, successional status, etc., tree species’ richness and composition of the stands. Our results support the applicability and usefulness of the ChlF in forest monitoring investigations on a large spatial scale and

  4. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis[OPEN

    Science.gov (United States)

    2016-01-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. PMID:27920339

  5. Identification of a Chlorophyll Dephytylase Involved in Chlorophyll Turnover in Arabidopsis.

    Science.gov (United States)

    Lin, Yao-Pin; Wu, Meng-Chen; Charng, Yee-Yung

    2016-12-01

    Chlorophyll turns over in green organs during photosystem repair and is salvaged via de- and rephytylation, but the enzyme involved in dephytylation is unknown. We have identified an Arabidopsis thaliana thylakoid protein with a putative hydrolase domain that can dephytylate chlorophyll in vitro and in vivo. The corresponding locus, CHLOROPHYLL DEPHYTYLASE1 (CLD1), was identified by mapping a semidominant, heat-sensitive, missense allele (cld1-1). CLD1 is conserved in oxygenic photosynthetic organisms, sharing structural similarity with pheophytinase, which functions in chlorophyll breakdown during leaf senescence. Unlike pheophytinase, CLD1 is predominantly expressed in green organs and can dephytylate chlorophyll in vitro. The specific activity is significantly higher for the mutant protein encoded by cld1-1 than the wild-type enzyme, consistent with the semidominant nature of the cld1-1 mutation. Supraoptimal CLD1 activities in cld1-1 mutants and transgenic seedlings led to the proportional accumulation of chlorophyllides derived from chlorophyll dephytylation after heat shock, which resulted in light-dependent cotyledon bleaching. Reducing CLD1 expression diminished thermotolerance and the photochemical efficiency of photosystem II under prolonged moderate heat stress. Taken together, our results suggest that CLD1 is the long-sought enzyme for removing the phytol chain from chlorophyll during its turnover at steady state within the chloroplast. © 2016 American Society of Plant Biologists. All rights reserved.

  6. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals

    Science.gov (United States)

    Ohmiya, Akemi; Hirashima, Masumi; Yagi, Masafumi; Tanase, Koji; Yamamizo, Chihiro

    2014-01-01

    Plants have an ability to prevent chlorophyll accumulation, which would mask the bright flower color, in their petals. In contrast, leaves contain substantial amounts of chlorophyll, as it is essential for photosynthesis. The mechanisms of organ-specific chlorophyll accumulation are unknown. To identify factors that determine the chlorophyll content in petals, we compared the expression of genes related to chlorophyll metabolism in different stages of non-green (red and white) petals (very low chlorophyll content), pale-green petals (low chlorophyll content), and leaves (high chlorophyll content) of carnation (Dianthus caryophyllus L.). The expression of many genes encoding chlorophyll biosynthesis enzymes, in particular Mg-chelatase, was lower in non-green petals than in leaves. Non-green petals also showed higher expression of genes involved in chlorophyll degradation, including STAY-GREEN gene and pheophytinase. These data suggest that the absence of chlorophylls in carnation petals may be caused by the low rate of chlorophyll biosynthesis and high rate of degradation. Similar results were obtained by the analysis of Arabidopsis microarray data. In carnation, most genes related to chlorophyll biosynthesis were expressed at similar levels in pale-green petals and leaves, whereas the expression of chlorophyll catabolic genes was higher in pale-green petals than in leaves. Therefore, we hypothesize that the difference in chlorophyll content between non-green and pale-green petals is due to different levels of chlorophyll biosynthesis. Our study provides a basis for future molecular and genetic studies on organ-specific chlorophyll accumulation. PMID:25470367

  7. Afterglow of chlorophyll in vivo and photosynthesis

    NARCIS (Netherlands)

    Goedheer, J.C.

    1962-01-01

    Two pigment systems are involved in the afterglow of chlorophyll a-containing cells. Absorption in only one of these systems (promoting or “p” system) is effective in producing luminescence. If light is absorbed simultaneously by the other (quenching or “q” system), a decrease in luminescence

  8. SHORT COMMUNICATION ISOLATION OF CHLOROPHYLL A ...

    African Journals Online (AJOL)

    a

    chromatography (CCC) technique has been applied to the separation of chlorophyll a from ... auxiliary gas flow rate, 0.06 L min-1; ion spray voltage, 3.5 kV; capillary .... This work presents a successful application of column chromatography ...

  9. Overview of remote sensing of chlorophyll flourescene in ocean waters

    African Journals Online (AJOL)

    Overview of remote sensing of chlorophyll flourescene in ocean waters. ... Besides empirical algorithms with the blue-green ratio, the algorithms based on ... between fluorescence and chlorophyll concentration and the red shift phenomena.

  10. Comprehensive chlorophyll composition in the main edible seaweeds.

    Science.gov (United States)

    Chen, Kewei; Ríos, José Julián; Pérez-Gálvez, Antonio; Roca, María

    2017-08-01

    Natural chlorophylls present in seaweeds have been studied regarding their biological activities and health benefit effects. However, detailed studies regarding characterization of the complete chlorophyll profile either qualitatively and quantitatively are scarce. This work deals with the comprehensive spectrometric study of the chlorophyll derivatives present in the five main coloured edible seaweeds. The novel complete MS 2 characterization of five chlorophyll derivatives: chlorophyll c 2 , chlorophyll c 1 , purpurin-18 a, pheophytin d and phytyl-purpurin-18 a has allowed to obtain fragmentation patterns associated with their different structural features. New chlorophyll derivatives have been identified and quantified by first time in red, green and brown seaweeds, including some oxidative structures. Quantitative data of the chlorophyll content comes to achieve significant information for food composition databases in bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    In prospects of global climate change, heat stress is a rising constraint for the productivity of wheat (Triticum aestivum L.). It is a heat-susceptible crop beyond 17-23oC temperature throughout its phenological stages, flowering phase being the most sensitive stage. Chlorophyll a fluorescence...... parameter, maximum quantum yield efficiency of PSII (Fv/Fm) is used as a physiological marker for early stress detection in PSII in plants. We established a reproducible protocol to measure response of wheat genotypes to high temperature based on Fv/Fm. The heat treatment of 40°C in 300 µmol m-2s-1 PAR...... enabled the identification of contrasting wheat genotypes that can be used to study the genetic and physiological nature of heat stress tolerance to dissect quantitative traits into simpler and more heritable traits....

  12. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  13. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  14. A review of ocean chlorophyll algorithms and primary production models

    Science.gov (United States)

    Li, Jingwen; Zhou, Song; Lv, Nan

    2015-12-01

    This paper mainly introduces the five ocean chlorophyll concentration inversion algorithm and 3 main models for computing ocean primary production based on ocean chlorophyll concentration. Through the comparison of five ocean chlorophyll inversion algorithm, sums up the advantages and disadvantages of these algorithm,and briefly analyzes the trend of ocean primary production model.

  15. Investigating sediment size distributions and size-specific Sm-Nd isotopes as paleoceanographic proxy in the North Atlantic Ocean: reconstructing past deep-sea current speeds since Last Glacial Maximum

    OpenAIRE

    Li, Yuting

    2017-01-01

    To explore whether the dispersion of sediments in the North Atlantic can be related to modern and past Atlantic Meridional Overturning Circulation (AMOC) flow speed, particle size distributions (weight%, Sortable Silt mean grain size) and grain-size separated (0–4, 4–10, 10–20, 20–30, 30–40 and 40–63 µm) Sm-Nd isotopes and trace element concentrations are measured on 12 cores along the flow-path of Western Boundary Undercurrent and in the central North Atlantic since the Last glacial Maximum ...

  16. Genetic analysis of sunflower chlorophyll mutants

    International Nuclear Information System (INIS)

    Mashkina, E.V.; Guskov, E.P.

    2001-01-01

    The method of getting the chlorophyll mutations in sunflower was developed by Y.D. Beletskii in 1969 with the use of N-nitroso-N-methylurea (NMH). Certain concentrations of NMH are known to induce plastid mutations in growing seeds, and their yield depends on the duration of the exposure. The given work presented studies on the influence of rifampicin (R) and 2,4-dinitrophenol (DNP) on the genetic activity NMH, as an inductor of plastid and nuclear mutations

  17. Wind driven nutrient and subsurface chlorophyll-a enhancement in the Bay of La Paz, Gulf of California

    Science.gov (United States)

    Coria-Monter, Erik; Monreal-Gómez, María Adela; Salas de León, David Alberto; Durán-Campos, Elizabeth; Merino-Ibarra, Martín

    2017-09-01

    Nutrient and chlorophyll-a distributions in the Bay of La Paz, Gulf of California, Mexico were analyzed during the late spring of 2004 to assess their relations to hydrography and circulation patterns. The results show the presence of both Gulf of California Water and Subtropical Subsurface Water. Water circulation was dominated by wind stress driven cyclonic circulation along f / H contours (f is planetary vorticity and H is depth), and upwelling resulting from the divergence shows a vertical velocity of ∼0.4 m d-1. Nutrient concentrations were higher in the center of the cyclonic pattern, where a rise in the nutricline contributed nutrients to the euphotic layer as a result of Ekman pumping. The vertical section showed the presence of a chlorophyll-a maximum at the thermocline shoaling to a depth of only 12 m. Along the surface, two peaks of chlorophyll-a were observed, one at Boca Grande and another off San Juan de la Costa, associated with upwelling and mixing derived from current interactions with abrupt topographies. The chlorophyll-a maximum increased from 0.8 mg m-3 in the external part of the cyclonic pattern to 2.0 mg m-3 in its center. The vertically integrated chlorophyll-a concentrations followed a similar pattern, rising from 10 to 20 mg m-2 and reaching their highest values in the center of the cyclonic circulation pattern. A schematic model was developed to describe processes that occur in late spring: the wind stress driven cyclonic structure promotes upward nutrient flux, which in turn drives an enhancement of chlorophyll-a. Upwelling was found to be the main mechanism of fertilization responsible for the enhancement of productivity levels by means of nutrient transport into the euphotic zone during spring. Other chlorophyll enhancement areas point to the occurrence of additional fertilization processes that may derive from interactions between cyclonic circulation patterns and the topography off of San Juan de la Costa, where phosphate mining

  18. One-electron oxidation of photosynthetic pigments in micelles. Bacteriochlorophyll a, chlorophyll a, chlorophyll b, and pheophytin a

    International Nuclear Information System (INIS)

    Chauvet, J.P.

    1981-01-01

    Chlorophyll a, chlorophyll b, and bacteriochlorophyll a in aqueous micellar solutions of Trition X 100 (2%) are readily oxidized by pulse-radiolytically generated N 3 ., Br 2 - ., and (SCN) 2 - . radicals at nearly diffusion-controlled rates. The kinetic study suggests that pigment molecules occupy multiple sites in the micelle. Pheophytin a is only oxidized by N 3 . and Br 2 - . radicals. The absolute spectra and the molar extinction coefficients of chlorophyll a, bacteriochlorophyll a, chlorophyll b, and pheophytin a cations have been determined. The chlorophyll a cation has been observed in the presence of pigment aggregates

  19. Chlorophyllase in Piper betle L. has a role in chlorophyll homeostasis and senescence dependent chlorophyll breakdown.

    Science.gov (United States)

    Gupta, Supriya; Gupta, Sanjay Mohan; Sane, Aniruddha P; Kumar, Nikhil

    2012-06-01

    Total chlorophyll content and chlorophyllase (chlorophyll-chlorophyllido hydrolase EC 3.1.1.14) activity in fresh leaves of Piper betle L. landrace KS was, respectively, twofold higher and eight fold lower than KV, showing negative correlation between chlorophyll and chlorophyllase activity. Specific chlorophyllase activity was nearly eightfold more in KV than KS. ORF of 918 nt was found in cloned putative chlorophyllase cDNAs from KV and KS. The gene was present as single copy in both the landraces. The encoded polypeptide of 306 amino acids differed only at two positions between the KV and KS; 203 (cysteine to tyrosine) and 301 (glutamine to glycine). Difference in chlorophyllase gene expression between KV and KS was evident in fresh and excised leaves. Up regulation of chlorophyllase gene by ABA and down regulation by BAP was observed in both the landraces; however, there was quantitative difference between KV and KS. Data suggests that chlorophyllase in P. betle is involved in chlorophyll homeostasis and chlorophyll loss during post harvest senescence.

  20. Behavior of Sethoxydim Alone or in Combination with Turnip Oils on Chlorophyll Fluorescence Parameter

    Directory of Open Access Journals (Sweden)

    Hossein HAMMAMI

    2014-03-01

    Full Text Available Sethoxydim is an acetyl-coenzyme A carboxylase (ACCase inhibitor that changed the shape of the chlorophyll fluorescence curve (kautsky curve in wild oat (Avena ludoviciana Durieu. in greenhouse experiment. This experiment was conducted as completely randomized factorial design with three replications at the College of Agriculture, Ferdowsi University of Mashhad, Iran, during 2012. Results of this study revealed that sethoxydim only and plus emulsifiable turnip oil changed the shape of the chlorophyll fluorescence curve (kautsky curve 7 days after spraying. Sethoxydim plus emulsifiable turnip oil changed the shape of the kautsky curve more than for sethoxydim only. We found that in our study the fv/fm (maximum quantum efficiency was closely linked to the fresh and dry weight dose-response. Sethoxydim plus emulsifiable turnip oil proved more rapidly effect on fv/fm in comparison with sethoxydim only. The fresh and dry weight dose-response relationship with fv/fm showed a similar behavior. This study revealed a good relation between fresh and dry weight according with values of 28 DAS and fv/fm 7 DAS. In general, the findings of this study revealed that Fv/Fm is a good parameter for evaluating effect of sethoxydim little time after spraying. Also, this research showed that 4 folds more time for classical screening methods comparing to chlorophyll fluorescence method. Thereupon, classical screening methods may be replaced by chlorophyll fluorescence method in future.

  1. The effects of different salt concentrations on growth and chlorophyll content of some pumpkin rootstocks

    Directory of Open Access Journals (Sweden)

    Köksal AYDİNŞAKİR

    2015-12-01

    Full Text Available This study was conducted to determine the effects of different salinity levels, (0.7, 4.0, 8.0, 12.0, 16.0 dS m-1 on some physiological parameters of Obez F1, Ferro F1, RS841 F1, which are used as rootstocks in watermelon cultivation. Salty irrigation water was obtained through mixing of NaCl and CaCl2 salt into tap water. When the plants were at the 3-4 leaf stage, different salinity levels were applied. Plants were harvested during the phase of florescence. The study was carried out using split plots in randomized complete block design while rootstocks are main plot, salinity levels are sub-plot with three replications. While the salinity level was increasing, the physiological parameters decreased in each three rootstocks. While the plant height changed between 14.4-107.1 cm, the plant leaf area varied between 152.0-2182.7 cm2. Chlorophyll-a, chlorophyll-b and total carotenoid values decreased as the salinity level increased. Excluding the maximum value obtained from control plot, the highest chlorophyll-a, chlorophyll-b, and total carotenoid values were obtained in Obez variety under 4.0 dS m-1 application with 14.8 mg l-1, 12.8 mg l-1 and 0.28 mg g-1 fw, respectively.

  2. Contribution of chlorophyll fluorescence to the apparent vegetation reflectance

    International Nuclear Information System (INIS)

    Campbell, P.K. Entcheva; Middleton, E.M.; Corp, L.A.; Kim, M.S.

    2008-01-01

    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance data, which provide estimates of vigor based primarily on chlorophyll content. Chlorophyll fluorescence (ChlF) measurements offer a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, technology based on ChlF may allow more accurate carbon sequestration estimates and earlier stress detection than is possible when using reflectance data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contributions from both the reflected and fluoresced radiation. The aim of this study is to determine the relative contributions of reflectance and ChlF fractions to Ra in the red to near-infrared region (650-800 nm) of the spectrum. The practical objectives of the study are to: 1) evaluate the relationship between ChlF and reflectance at the foliar level for corn, soybean and maple; and 2) for corn, determine if the relationship established for healthy vegetation changes under nitrogen (N) deficiency. To obtain generally applicable results, experimental measurements were conducted on unrelated crop and tree species (corn, soybean and maple) under controlled conditions and a gradient of inorganic N fertilization levels. Optical reflectance spectra and actively induced ChlF emissions were collected on the same foliar samples, in conjunction with measurements of photosynthetic function, pigment levels, and carbon (C) and N content. The spectral trends were examined for similarities. On average, 10-20% of Ra at 685 nm was actually due to ChlF. The spectral trends in steady state and maximum fluorescence varied significantly, with steady state fluorescence (especially red, 685 nm) showing higher ability for species and treatment separation. The relative contribution of ChlF to Ra varied significantly among species, with maple

  3. From the chlorophyll a in the surface layer to its vertical profile: a Greenland Sea relationship for satellite applications

    Directory of Open Access Journals (Sweden)

    A. Cherkasheva

    2013-04-01

    maximum with its median magnitude reaching up to three times the surface concentration. While the variability of the Greenland Sea season in April, May and June followed the global non-monthly resolved relationship of the chlorophyll profile to surface chlorophyll concentrations described by the model of Morel and Berthon (1989, it deviated significantly from the model in the other months (July–September, when the maxima of the chlorophyll are at quite different depths. The Greenland Sea dimensionless monthly median profiles intersected roughly at one common depth within each category. By applying a Gaussian fit with 0.1 mg C m−3 surface chlorophyll steps to the median monthly resolved chlorophyll profiles of the defined categories, mathematical approximations were determined. They generally reproduce the magnitude and position of the CHL maximum, resulting in an average 4% underestimation in Ctot (and 2% in rough primary production estimates when compared to in situ estimates. These mathematical approximations can be used as the input to the satellite-based primary production models that estimate primary production in the Arctic regions.

  4. The effectiveness of laser diode induction to Carica Papaya L. chlorophyll extract to be ROS generating in the photodynamic inactivation mechanisms for C.albicans biofilms

    International Nuclear Information System (INIS)

    Astuty, S Dewi; Baktir, A

    2017-01-01

    Research on the effectiveness of photo inactivation of C.albicans biofilms led by a-PDT system mediated by chlorophyll-diode-laser-induced was done. This research was done using in vitro technique in order to effectively determine chlorophyll extract of ROS-generated Carica Papaya L. using in situ technique. This technique induced laser diode on different dose and C. albicans with reduced degree. This research is a preliminary study in efforts to find anew sensitizer agent candidate made of chlorophyll extract and antifungal of Carica Papaya L. The effectiveness of eradication has been tested with MDA’s content and OD of biomass biofilms as well as analyzed using ANOVA and Tukey Test (α=0.05). The characteristic of chlorophyll extract of Carica Papaya L. has maximum absorptions on blue areas (λ max = 420 nm) and red areas (λ max = 670 nm). The MIC value of Carica Papaya L. ’s chlorophyll extract against C. albicans planktonic and biofilms cell is 63.8 μM and 31.9 μM respectively. The result shows that treatment using laser which was combined with chlorophyll extract is more effective than that with laser only or chlorophyll extract only. The treatment using laser combined with chlorophyll extract obtained more than 65% (α=0.05) (more than that of negative control) for P 2 L 1 group with OD 595 0.915. The MDA’s content showed that group of laser which was mediated with chlorophyll extract had larger values than group of laser or chlorophyll extract only. (paper)

  5. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  6. Effect of Drought Stress and Methanol on Chlorophyll Parameters, Chlorophyll Content and Relative Water Content of Soybean (Glycine max L., var. L 17

    Directory of Open Access Journals (Sweden)

    M Mirakhori

    2011-01-01

    Full Text Available Abstract In order to investigate the effects of methanol application on some physiological properties of soybean under low water stress, a factorial experiment was conducted at Research Field of Faculty of Agriculture and Natural Resources, Islamic Azad University-Karaj Branch, Karaj, Iran, during 2008, based on a randomized complete block design with three replications. The first factor was consisted of different levels of methanol equal to 0 (control, 7, 14, 21, 28 and 35 volumetric percentage (v/v, which were used as foliar applications at three times during growth season of soybean, with 15 days intervals. The second factor was water stress conditions in two levels, based on depletion of 40 and 70% of available soil moisture. Some traits such as grain yield (GY, relative water content (RWC, chlorophyll fluorescence parameters, and chlorophyll content were measured, one day before and after the third methanol application. Results showed that chlorophyll content (Chl, GY, electrolytes leakage (EL at second sampling, photochemical capacity of PSII (Fv/Fm, maximum and variable fluorescence (Fm and FV, respectively were affected by water stress significantly (p

  7. Salt stress change chlorophyll fluorescence in mango

    Directory of Open Access Journals (Sweden)

    Cicero Cartaxo de Lucena

    2012-12-01

    Full Text Available This study evaluated the tolerance of mango cultivars 'Haden', 'Palmer', 'Tommy Atkins' and 'Uba' grafted on rootstock 'Imbú' to salt stress using chlorophyll fluorescence. Plants were grown in modified Hoagland solution containing 0, 15, 30, and 45 mmol L-1 NaCl. At 97 days the parameters of the chlorophyll fluorescence (F0, Fm, Fv, F0/Fm, Fv/Fm, Fv'/Fm', ΦPSII = [(Fm'-Fs/(Fm'], D = (1- Fv'/Fm' and ETR = (ΦPSII×PPF×0,84×0,5 were determined. At 100 days, the leaf emission and leaf area, toxicity and leaf abscission indexes were determined. In all cultivars evaluated, in different degree, there were decreases in photochemical efficiency of photosystem II, enhanced concentrations from 15 mmol L-1 NaCl. The decreases in the potential quantum yield of photosystem II (Fv/Fm were 27.9, 18.7, 20.5, and 27.4%, for cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba', respectively, when grown in 45 mmol L-1 NaCl. It was found decreases in leaf emission and mean leaf area in all cultivars from 15 mmol L-1 NaCl. There were increases in leaf toxicity of 33.0, 67.5, 41.6 and 80.8% and in leaf abscission of 71.8, 29.2, 32.5, and 67.9% for the cultivars 'Haden', 'Palmer', 'Tommy Atkins', and 'Uba' respectively, when grown in 45 mmol L-1 NaCl. Leaf toxicity and leaf abscission were not observed in 15 mmol L-1 NaCl. The decrease in Fv/Fm ratio were accompanied by decreasing in leaf emission and increased leaf toxicity index, showing, therefore, the potential of chlorophyll fluorescence in the early detection of salt stress in mango tree.

  8. An extended PROSPECT: Advance in the leaf optical properties model separating total chlorophylls into chlorophyll a and b.

    Science.gov (United States)

    Zhang, Yao; Huang, Jingfeng; Wang, Fumin; Blackburn, George Alan; Zhang, Hankui K; Wang, Xiuzhen; Wei, Chuanwen; Zhang, Kangyu; Wei, Chen

    2017-07-25

    The PROSPECT leaf optical model has, to date, well-separated the effects of total chlorophyll and carotenoids on leaf reflectance and transmittance in the 400-800 nm. Considering variations in chlorophyll a:b ratio with leaf age and physiological stress, a further separation of total plant-based chlorophylls into chlorophyll a and chlorophyll b is necessary for advanced monitoring of plant growth. In this study, we present an extended version of PROSPECT model (hereafter referred to as PROSPECT-MP) that can combine the effects of chlorophyll a, chlorophyll b and carotenoids on leaf directional hemispherical reflectance and transmittance (DHR and DHT) in the 400-800 nm. The LOPEX93 dataset was used to evaluate the capabilities of PROSPECT-MP for spectra modelling and pigment retrieval. The results show that PROSPECT-MP can both simultaneously retrieve leaf chlorophyll a and b, and also performs better than PROSPECT-5 in retrieving carotenoids concentrations. As for the simulation of DHR and DHT, the performances of PROSPECT-MP are similar to that of PROSPECT-5. This study demonstrates the potential of PROSPECT-MP for improving capabilities of remote sensing of leaf photosynthetic pigments (chlorophyll a, chlorophyll b and carotenoids) and for providing a framework for future refinements in the modelling of leaf optical properties.

  9. The Use of a Chlorophyll Meter (SPAD-502) for Field Determinations of Red Mangrove (Rhizophora Mangle L.) Leaf Chlorophyll Amount

    Science.gov (United States)

    Connelly, Xana M.

    1997-01-01

    The red mangrove Rhizophora mangle L., is a halophytic woody spermatophyte common to the land-sea interface of tropical and subtropical intertidal zones. It has been reported that 60 to 75% of the coastline of the earth's tropical regions are lined with mangroves. Mangroves help prevent shoreline erosion, provide breeding, nesting and feeding areas for many marine animals and birds. Mangroves are important contributors of primary production in the coastal environment, and this is largely proportional to the standing crop of leaf chlorophylls. Higher intensities of ultraviolet radiation, resulting from stratospheric ozone depletion, can lead to a reduction of chlorophyll in terrestrial plants. Since the most common method for determining chlorophyll concentration is by extraction and this is labor intensive and time consuming, few studies on photosynthetic pigments of mangroves have been reported. Chlorophyll meter readings have been related to leaf chlorophyll content in apples and maples. It has also been correlated to nitrogen status in corn and cotton. Peterson et al., (1993) used a chlorophyll meter to detect nitrogen deficiency in crops and in determining the need for additional nitrogen fertilizer. Efforts to correlate chlorophyll meter measurements to chlorophyll content of mangroves have not been reported. This paper describes the use of a hand-held chlorophyll meter (Minolta SPAD-502) to determine the amount of red mangrove foliar chlorophyll present in the field.

  10. The Magnesium Chelation Step in Chlorophyll Biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gregory L. Dilworth, Ph.D Chemical Sciences, Geosciences and Biosciences Division Office of Basis Energy Sciences, greg.dilworth@science.doe.gov

    2001-01-17

    The progress described in this report encompasses work supported by DOE grant DE-FG09-89ER13989 for the period 2/15/92 to the present 6/14/94. The goals of the project were to continue investigating the enzymology of Mg-chelatase and to investigate the co-regulation of heme and chlorophyll formation in intact plastids. During this period the laboratory had additional support (two years) from USDA to investigate heme metabolism in chloroplasts. This report is arranged so that the progress is described by reference to manuscripts which are published, under review or in preparation.

  11. Lil3 dimerization and chlorophyll binding in Arabidopsis thaliana.

    Science.gov (United States)

    Mork-Jansson, Astrid Elisabeth; Gargano, Daniela; Kmiec, Karol; Furnes, Clemens; Shevela, Dmitriy; Eichacker, Lutz Andreas

    2015-10-07

    The two-helix light harvesting like (Lil) protein Lil3 belongs to the family of chlorophyll binding light harvesting proteins of photosynthetic membranes. A function in tetrapyrrol synthesis and stabilization of geranylgeraniol reductase has been shown. Lil proteins contain the chlorophyll a/b-binding motif; however, binding of chlorophyll has not been demonstrated. We find that Lil3.2 from Arabidopsis thaliana forms heterodimers with Lil3.1 and binds chlorophyll. Lil3.2 heterodimerization (25±7.8 nM) is favored relative to homodimerization (431±59 nM). Interaction of Lil3.2 with chlorophyll a (231±49 nM) suggests that heterodimerization precedes binding of chlorophyll in Arabidopsis thaliana. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    Science.gov (United States)

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.

    2017-12-01

    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence

  13. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  14. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  15. Relationship of intertidal surface sediment chlorophyll concentration to hyper-spectral reflectance and chlorophyll fluorescence

    NARCIS (Netherlands)

    Kromkamp, J.C.; Morris, E.P.; Forster, R.M.; Honeywill, C.; Hagerthey, S.; Paterson, D.M.

    2006-01-01

    Estimating biomass of microphytobenthos (MPB) on intertidal mud flats is extremely difficult due to their patchy occurrence, especially at the scale of an entire mud flat. We tested two optical approaches that can be applied in situ: spectral reflectance and chlorophyll fluorescence. These two

  16. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.D.

    1991-01-01

    The biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins and lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX. Insertion of iron leads to heme, while insertion of magnesium leads to chlorophyll. The Mg-chelatase from intact cucumber chloroplasts has been characterized with regard to substrate specificity, regulation, ATP requirement, and a requirement for intact chloroplasts. Mg-chelatase was isolated from maize, barley and peas and characterized in order to circumvent the intact chloroplast requirement of cucumber Mg-chelatase. Pea Mg-chelatase activity is higher than cucumber Mg-chelatase activity, and lacks the requirement for intact chloroplasts. Studies on isolated pea Mg-chelatase have shown more cofactors are required for the reaction than are seen with ferrochelatase, indicating a greater opportunity for regulatory control of this pathway. Two of the cofactors are proteins, and there appears to be a requirement for a protease-sensitive component which is outside the outer envelope. We are developing a continuous spectrophotometric assay for Mg-chelatase activity, and an assay for free heme which has shown heme efflux from intact chloroplasts. 18 refs. (MHB)

  17. Stereoelectronic properties of aggregated chlorophyll systems

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, R. E.; Maggiora, G. M.

    1979-09-01

    During the first nine months of the current contract, significant progress has occurred in several areas. All SCF CI studies of the singlet and triplet states of the neutral molecules Et-Chl a, Et-Pheo a, Et-BChl a, and Et-BPheo a, and the doublet states of the ..pi..-cation radicals Et-Chl a/sup +/. and Et-BChl a/sup +/. have now been completed. In addition, SCF CI calculations on BPheo a/sup -/. indicate that ..pi..-anion radicals can also be studied using the present approach. Similar work on a number of other ..pi..-cation and ..pi..-anion radicals is currently underway. Preliminary SCF CI studies have also been completed for benzoquinone and dihydroquinone, and studies on benzoquinone/sup -/. should be completed by the end of this year. The development and characterization of an empirical potential function is nearly complete, and data from selected systems is summarized. Implementation of a more efficient, quadratically convergent energy minimization procedure is also being carried out. This procedure should make it possible to study the geometry and properties of dimeric chlorophyll systems as well as various ligand-chlorophyll systems. Developmental work is continuing on the direct calculation of optical rotatory strengths.

  18. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.

    Science.gov (United States)

    Hitchcock, Andrew; Jackson, Philip J; Chidgey, Jack W; Dickman, Mark J; Hunter, C Neil; Canniffe, Daniel P

    2016-09-16

    Improvements to photosynthetic efficiency could be achieved by manipulating pigment biosynthetic pathways of photosynthetic organisms in order to increase the spectral coverage for light absorption. The development of organisms that can produce both bacteriochlorophylls and chlorophylls is one way to achieve this aim, and accordingly we have engineered the bacteriochlorophyll-utilizing anoxygenic phototroph Rhodobacter sphaeroides to make chlorophyll a. Bacteriochlorophyll and chlorophyll share a common biosynthetic pathway up to the precursor chlorophyllide. Deletion of genes responsible for the bacteriochlorophyll-specific modifications of chlorophyllide and replacement of the native bacteriochlorophyll synthase with a cyanobacterial chlorophyll synthase resulted in the production of chlorophyll a. This pigment could be assembled in vivo into the plant water-soluble chlorophyll protein, heterologously produced in Rhodobacter sphaeroides, which represents a proof-of-principle for the engineering of novel antenna complexes that enhance the spectral range of photosynthesis.

  19. Revisiting chlorophyll extraction methods in biological soil crusts - methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Science.gov (United States)

    Caesar, Jennifer; Tamm, Alexandra; Ruckteschler, Nina; Lena Leifke, Anna; Weber, Bettina

    2018-03-01

    Chlorophyll concentrations of biological soil crust (biocrust) samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO) as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual). Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  20. Revisiting chlorophyll extraction methods in biological soil crusts – methodology for determination of chlorophyll a and chlorophyll a + b as compared to previous methods

    Directory of Open Access Journals (Sweden)

    J. Caesar

    2018-03-01

    Full Text Available Chlorophyll concentrations of biological soil crust (biocrust samples are commonly determined to quantify the relevance of photosynthetically active organisms within these surface soil communities. Whereas chlorophyll extraction methods for freshwater algae and leaf tissues of vascular plants are well established, there is still some uncertainty regarding the optimal extraction method for biocrusts, where organism composition is highly variable and samples comprise major amounts of soil. In this study we analyzed the efficiency of two different chlorophyll extraction solvents, the effect of grinding the soil samples prior to the extraction procedure, and the impact of shaking as an intermediate step during extraction. The analyses were conducted on four different types of biocrusts. Our results show that for all biocrust types chlorophyll contents obtained with ethanol were significantly lower than those obtained using dimethyl sulfoxide (DMSO as a solvent. Grinding of biocrust samples prior to analysis caused a highly significant decrease in chlorophyll content for green algal lichen- and cyanolichen-dominated biocrusts, and a tendency towards lower values for moss- and algae-dominated biocrusts. Shaking of the samples after each extraction step had a significant positive effect on the chlorophyll content of green algal lichen- and cyanolichen-dominated biocrusts. Based on our results we confirm a DMSO-based chlorophyll extraction method without grinding pretreatment and suggest the addition of an intermediate shaking step for complete chlorophyll extraction (see Supplement S6 for detailed manual. Determination of a universal chlorophyll extraction method for biocrusts is essential for the inter-comparability of publications conducted across all continents.

  1. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance

    Science.gov (United States)

    Morel, A.; Claustre, H.; Gentili, B.

    2010-10-01

    The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl]) level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance") account for this clarity. The oligotrophic waters of the North and South Pacific gyres, the North and South Atlantic gyres, and the South Indian gyre have been comparatively studied with respect to both [Chl] and CDOM contents, by using 10-year data (1998-2007) of the Sea-viewing Wide field-of-view Sensor (SeaWiFS, NASA). Albeit similar these oligotrophic zones are not identical regarding their [Chl] and CDOM contents, as well as their seasonal cycles. According to the zone, the averaged [Chl] value varies from 0.026 to 0.059 mg m-3, whereas the ay(443) average (the absorption coefficient due to CDOM at 443 nm) is between 0.0033 and 0.0072 m-1. The CDOM-to-[Chl] relative proportions also differ between the zones. The clearest waters, corresponding to the lowest [Chl] and CDOM concentrations, are found near Easter Island and near Mariana Islands in the western part of the North Pacific Ocean. In spite of its low [Chl], the Sargasso Sea presents the highest CDOM content amongst the six zones studied. Except in the North Pacific gyre (near Mariana and south of Hawaii islands), a conspicuous seasonality appears to be the rule in the other 4 gyres and affects both [Chl] and CDOM; both quantities vary in a ratio of about 2 (maximum-to-minimum). Coinciding [Chl] and CDOM peaks occur just after the local winter solstice, which is also the period of the maximal mixed layer depth in these latitudes. It is hypothesized that the vertical transport of unbleached CDOM from the subthermocline layers

  2. Spatio-temporal patterns in the north-western Mediterranean from MERIS derived chlorophyll a concentration

    Directory of Open Access Journals (Sweden)

    Ana Gordoa

    2008-12-01

    Full Text Available We address the major surface signatures of chlorophyll a in the Catalan Sea within the context of the dynamics of the north-western Mediterranean basin. Monthly composites from MERIS measurements and CHL products for Case 1 waters were analysed from June 2002 to June 2005. Composite images of variability were used to identify surface dynamics. The results showed that coastal and open sea waters were separated by a belt of low variability, a permanent oligotrophic belt that is noticeable with respect to the bloom conditions of the surrounding areas. The width of this Catalan Oligotrophic Belt (COB located along the continental slope, varied between 17 and 30 km and became blurred in the southernmost area. The chlorophyll a temporal pattern over the shelf showed an almost steady increase from September to March. A similar behaviour but with lower concentrations was observed in oceanic waters. Both temporal patterns showed a disruption during January and/or February that coincided with the well known deep water formation event in the Gulf of Lions. In 2004, the convection was weaker and the offshore temporal trend was not disrupted; however, the opposite was observed in 2005. The spatial chlorophyll a distribution of oceanic waters presented a clear north-south decreasing trend, while the coastal distribution did not show any latitudinal patterns but rather peaks in the areas enriched by river runoff. The observed seasonality was similar to the one published from SeaWiFS data and slightly different from the seasonality shown by CZCS data. Nevertheless, we did not discard the possibility that some of the observed seasonal differences could be a true temporal shift in chlorophyll a production.

  3. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  4. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  5. An optimal thermal condition for maximal chlorophyll extraction

    Directory of Open Access Journals (Sweden)

    Fu Jia-Jia

    2017-01-01

    Full Text Available This work describes an environmentally friendly process for chlorophyll extraction from bamboo leaves. Shaking water bath and ultrasound cleaner are adopted in this technology, and the influence of temperature of the water bath and ultrasonic cleaner is evaluated. Results indicated that there is an optimal condition for maximal yield of chlorophyll.

  6. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.; Raitsos, Dionysios E.; Dall'Olmo, Giorgio; Zarokanellos, Nikolaos; Jackson, Thomas; Racault, Marie-Fanny; Boss, Emmanuel S.; Sathyendranath, Shubha; Jones, Burton; Hoteit, Ibrahim

    2015-01-01

    an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll

  7. Chlorophyll in tomato seeds: marker for seed performance?

    NARCIS (Netherlands)

    Suhartanto, M.R.

    2002-01-01

    Using Xe-PAM, laser induced fluorometry and high performance liquid chromatography we found that chlorophyll was present in young tomato (cv. Moneymaker) seeds and was degraded during maturation. Fluorescence microscopy and imaging showed that the majority of chlorophyll is located in the

  8. A model for chlorophyll fluorescence and photosynthesis at leaf scale

    NARCIS (Netherlands)

    Tol, van der C.; Verhoef, W.; Rosema, A.

    2009-01-01

    This paper presents a leaf biochemical model for steady-state chlorophyll fluorescence and photosynthesis of C3 and C4 vegetation. The model is a tool to study the relationship between passively measured steady-state chlorophyll fluorescence and actual photosynthesis, and its evolution during the

  9. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    Ana Mascarello

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content ... devices to measure chlorophyll index (SPAD) and N content in the leaf. The nitrogen levels were found ... absorption of other nutrients and the production of carbohydrates. The methods ...

  10. Dinitrogen fixation in a unicellular chlorophyll d-containing cyanobacterium

    NARCIS (Netherlands)

    Pfreundt, U.; Stal, L.J.; Voss, B.; Hess, W.R.

    2012-01-01

    Marine cyanobacteria of the genus Acaryochloris are the only known organisms that use chlorophyll d as a photosynthetic pigment. However, based on chemical sediment analyses, chlorophyll d has been recognized to be widespread in oceanic and lacustrine environments. Therefore it is highly relevant to

  11. Phytohormone and Light Regulation of Chlorophyll Degradation

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zhu

    2017-11-01

    Full Text Available Degreening, due to the net loss of chlorophyll (Chl, is the most prominent symptom during the processes of leaf senescence, fruit ripening, and seed maturation. Over the last decade or so, extensive identifications of Chl catabolic genes (CCGs have led to the revelation of the biochemical pathway of Chl degradation. As such, exploration of the regulatory mechanism of the degreening process is greatly facilitated. During the past few years, substantial progress has been made in elucidating the regulation of Chl degradation, particularly via the mediation of major phytohormones' signaling. Intriguingly, ethylene and abscisic acid's signaling have been demonstrated to interweave with light signaling in mediating the regulation of Chl degradation. In this review, we briefly summarize this progress, with an effort on providing a framework for further investigation of multifaceted and hierarchical regulations of Chl degradation.

  12. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  13. Chlorophyll loss associated with heat-induced senescence in bentgrass.

    Science.gov (United States)

    Jespersen, David; Zhang, Jing; Huang, Bingru

    2016-08-01

    Heat stress-induced leaf senescence is characterized by the loss of chlorophyll from leaf tissues. The objectives of this study were to examine genetic variations in the level of heat-induced leaf senescence in hybrids of colonial (Agrostis capillaris)×creeping bentgrass (Agrostis stolonifera) contrasting in heat tolerance, and determine whether loss of leaf chlorophyll during heat-induced leaf senescence was due to suppressed chlorophyll synthesis and/or accelerated chlorophyll degradation in the cool-season perennial grass species. Plants of two hybrid backcross genotypes ('ColxCB169' and 'ColxCB190') were exposed to heat stress (38/33°C, day/night) for 28 d in growth chambers. The analysis of turf quality, membrane stability, photochemical efficiency, and chlorophyll content demonstrated significant variations in the level of leaf senescence induced by heat stress between the two genotypes, with ColXCB169 exhibiting a lesser degree of decline in chlorophyll content, photochemical efficiency and membrane stability than ColXCB190. The assays of enzymatic activity or gene expression of several major chlorophyll-synthesizing (porphobilinogen deaminase, Mg-chelatase, protochlorophyllide-reductase) and chlorophyll-degrading enzymes (chlorophyllase, pheophytinase, and chlorophyll-degrading peroxidase) indicated heat-induced decline in leaf chlorophyll content was mainly due to accelerated chlorophyll degradation, as manifested by increased gene expression levels of chlorophyllase and pheophytinase, and the activity of pheophytinase (PPH), while chlorophyll-synthesizing genes and enzymatic activities were not differentially altered by heat stress in the two genotypes. The analysis of heat-induced leaf senescence of pph mutants of Arabidopsis further confirmed that PPH could be one enzymes that plays key roles in regulating heat-accelerated chlorophyll degradation. Further research on enzymes responsible in part for the loss of chlorophyll during heat

  14. Calibrations between chlorophyll meter values and chlorophyll contents vary as the result of differences in leaf structure

    Science.gov (United States)

    In order to relate leaf chlorophyll meter values with total leaf chlorophyll contents (µg cm-2), calibration equations are established with measured data on leaves. Many studies have documented differences in calibration equations using different species and using different growing conditions for th...

  15. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  16. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana

    Science.gov (United States)

    Espineda, Cromwell E.; Linford, Alicia S.; Devine, Domenica; Brusslan, Judy A.

    1999-01-01

    Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue from Arabidopsis thaliana. This gene, AtCAO, is mutated in both leaky and null chlorina1 alleles, and DNA sequence changes cosegregate with the mutant phenotype. AtCAO mRNA levels are higher in three different mutants that have reduced levels of chlorophyll b, suggesting that plants that do not have sufficient chlorophyll b up-regulate AtCAO gene expression. Additionally, AtCAO mRNA levels decrease in plants that are grown under dim-light conditions. We have also found that the six major Lhcb proteins do not accumulate in the null ch1-3 allele. PMID:10468639

  17. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves.

    Science.gov (United States)

    Pérez-Patricio, Madaín; Camas-Anzueto, Jorge Luis; Sanchez-Alegría, Avisaí; Aguilar-González, Abiel; Gutiérrez-Miceli, Federico; Escobar-Gómez, Elías; Voisin, Yvon; Rios-Rojas, Carlos; Grajales-Coutiño, Ruben

    2018-02-22

    This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance), a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD) meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica , Canavalia ensiforme , and Lycopersicon esculentum . Experimental results showed that-in terms of accuracy and processing speed-the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica , where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  18. Effects of biocides on chlorophyll contents of detached basil leaves

    Directory of Open Access Journals (Sweden)

    Titima Arunrangsi

    2013-06-01

    Full Text Available Herbicides and insecticides have been widely and intensively used in agricultural areas worldwide to enhance crop yield. However, many biocides cause serious environmental problems. In addition, the biocides may also have some effects on the treated agricultural crops. To study effects of biocides on chlorophyll content in detached basil leaves, 2,4-D dimethylamine salt (2,4 D-Amine, paraquat, carbosulfan, and azadirachtin, were chosen as representatives of biocide. After applying the chemicals to detached basil leaves overnight in darkness, chlorophyll contents were determined. Only treatment with 2,4 D-Amine resulted in reduction of chlorophyll contents significantly compared to treatment with deionized (DI water. In the case of paraquat and carbosulfan, chlorophyll contents were not significantly changed, while slightly higher chlorophyll contents, compared to DI water, after the treatment with azadirachtin, were observed. The results indicated that 2,4 D-Amine shows an ability to accelerate chlorophyll degradation, but azadirachtin helps to retard chlorophyll degradation, when each biocide is used at the concentration recommended by the manufacturer.

  19. Optical Method for Estimating the Chlorophyll Contents in Plant Leaves

    Directory of Open Access Journals (Sweden)

    Madaín Pérez-Patricio

    2018-02-01

    Full Text Available This work introduces a new vision-based approach for estimating chlorophyll contents in a plant leaf using reflectance and transmittance as base parameters. Images of the top and underside of the leaf are captured. To estimate the base parameters (reflectance/transmittance, a novel optical arrangement is proposed. The chlorophyll content is then estimated by using linear regression where the inputs are the reflectance and transmittance of the leaf. Performance of the proposed method for chlorophyll content estimation was compared with a spectrophotometer and a Soil Plant Analysis Development (SPAD meter. Chlorophyll content estimation was realized for Lactuca sativa L., Azadirachta indica, Canavalia ensiforme, and Lycopersicon esculentum. Experimental results showed that—in terms of accuracy and processing speed—the proposed algorithm outperformed many of the previous vision-based approach methods that have used SPAD as a reference device. On the other hand, the accuracy reached is 91% for crops such as Azadirachta indica, where the chlorophyll value was obtained using the spectrophotometer. Additionally, it was possible to achieve an estimation of the chlorophyll content in the leaf every 200 ms with a low-cost camera and a simple optical arrangement. This non-destructive method increased accuracy in the chlorophyll content estimation by using an optical arrangement that yielded both the reflectance and transmittance information, while the required hardware is cheap.

  20. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  1. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].

    Science.gov (United States)

    Li, Jia; Jiang, Hong; Yu, Shu-quan; Jiang, Fu-wei; Yin, Xiu-min; Lu, Mei-juan

    2009-09-01

    Taking the seedlings of Quercus glauca, a dominant evergreen broadleaf tree species in subtropical area, as test materials, this paper studied their photosynthesis, chlorophyll fluorescence, and chlorophyll content under effects of simulated acid rain with pH 2.5, 4.0, and 5.6 (CK). After 2-year acid rain stress, the net photosynthetic rate of Q. glauca increased significantly with decreasing pH of acid rain. The acid rain with pH 2.5 and 4.0 increased the stomatal conductance and transpiration rate, and the effect was more significant under pH 2.5. The intercellular CO2 concentration decreased in the order of pH 2.5 > pH 5.6 > pH 4.0. The maximum photosynthetic rate, light compensation point, light saturation point, and dark respiration rate were significantly higher under pH 2.5 and 4.0 than under pH 5.6, while the apparent quantum yield was not sensitive to acid rain stress. The maximal photochemical efficiency of PS II and the potential activity of PS II under pH 2.5 and 4.0 were significantly higher than those under pH 5.6. The relative chlorophyll content was in the order of pH 2.5 > pH 5.6 > pH 4.0, and there was a significant difference between pH 2.5 and 4.0. All the results suggested that the photosynthesis and chlorophyll fluorescence of Q. glauca increased under the effects of acid rain with pH 2.5 and 4.0, and the acid rain with pH 2.5 had more obvious effects.

  2. The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and fluorescence induction [chlorophyll fluorescence induction, ultraweak luminescence

    International Nuclear Information System (INIS)

    Panagopoulos, I.; Bornman, J.F.; Björn, L.O.

    1989-01-01

    The effects of UV-C (254 nm) and UV-B (280-320 nm) on chlorophyll fluorescence induction and ultraweak luminescence (UL) in detached leaves of Hibiscus rosa-sinensis L. were investigated. UL from leaves exposed to UV-B and UV-C radiation reached a maximum 72 h after irradiation. In both cases most of the light was of a wavelength over 600 nm. An increase in the percentage of long wavelength light with time was detected. UV radiation increased peroxidase activity, which also reached a maximum 72 h after irradiation. UV-B and UV-C both reduced variable chlorophyll fluorescence. No effect on the amount of chlorophyll or UV screening pigments was observed with the short-term irradiation used in this investigation. (author)

  3. Regional ocean-colour chlorophyll algorithms for the Red Sea

    KAUST Repository

    Brewin, Robert J.W.

    2015-05-18

    The Red Sea is a semi-enclosed tropical marine ecosystem that stretches from the Gulf of Suez and Gulf of Aqaba in the north, to the Gulf of Aden in the south. Despite its ecological and economic importance, its biological environment is relatively unexplored. Satellite ocean-colour estimates of chlorophyll concentration (an index of phytoplankton biomass) offer an observational platform to monitor the health of the Red Sea. However, little is known about the optical properties of the region. In this paper, we investigate the optical properties of the Red Sea in the context of satellite ocean-colour estimates of chlorophyll concentration. Making use of a new merged ocean-colour product, from the European Space Agency (ESA) Climate Change Initiative, and in situ data in the region, we test the performance of a series of ocean-colour chlorophyll algorithms. We find that standard algorithms systematically overestimate chlorophyll when compared with the in situ data. To investigate this bias we develop an ocean-colour model for the Red Sea, parameterised to data collected during the Tara Oceans expedition, that estimates remote-sensing reflectance as a function of chlorophyll concentration. We used the Red Sea model to tune the standard chlorophyll algorithms and the overestimation in chlorophyll originally observed was corrected. Results suggest that the overestimation was likely due to an excess of CDOM absorption per unit chlorophyll in the Red Sea when compared with average global conditions. However, we recognise that additional information is required to test the influence of other potential sources of the overestimation, such as aeolian dust, and we discuss uncertainties in the datasets used. We present a series of regional chlorophyll algorithms for the Red Sea, designed for a suite of ocean-colour sensors, that may be used for further testing.

  4. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  5. Chlorophyll derivatives for pest and disease control: Are they safe?

    International Nuclear Information System (INIS)

    Azizullah, Azizullah; Murad, Waheed

    2015-01-01

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable

  6. Gamma ray induced chlorophyll and morphological mutants in grasspea

    International Nuclear Information System (INIS)

    Das, P.K.; Kundagrami, S.

    2000-01-01

    Higher dose of gamma ray treatment such as 30 kR promoted larger chlorophyll as well as morphological mutation frequency and spectrum. In both M 1 and M 2 generation marginata significantly out numbered other types of chlorophyll mutations. On the other hand, along morphological mutations stunted growth types were recovered more frequently. Both the genotypes Nirmal and P-24 differed greatly for their mutagenic specificity. In both M 1 and M 2 generation Nirmal recorded higher chlorophyll and morphological mutation frequency and spectrum indicating differential genotype response to different dosages of gamma ray treatment. (author)

  7. Chlorophyll derivatives for pest and disease control: Are they safe?

    Energy Technology Data Exchange (ETDEWEB)

    Azizullah, Azizullah, E-mail: azizswabi@gmail.com; Murad, Waheed

    2015-01-15

    Chlorophyll derivatives are getting widespread acceptance among the researchers as natural photosensitizers for photodynamic control of pests and disease vectors; however, rare attention has been given to evaluation of their toxicity to non-target organisms in the environment. This perspective article highlights that chlorophyll derivatives may not be as safe as believed and can possibly pose risk to non-target organisms in the environment. We invite the attention of environmental biologists, particularly ecotoxicologists, to contribute their role in making the application of chlorophyll derivatives more environmentally friendly and publicly acceptable.

  8. Beneficial role of spermidine in chlorophyll metabolism and D1 protein content in tomato seedlings under salinity-alkalinity stress.

    Science.gov (United States)

    Hu, Lipan; Xiang, Lixia; Li, Shuting; Zou, Zhirong; Hu, Xiao-Hui

    2016-04-01

    Polyamines are important in protecting plants against various environmental stresses, including protection against photodamage to the photosynthetic apparatus. The molecular mechanism of this latter effect is not completely understood. Here, we have investigated the effects of salinity-alkalinity stress and spermidine (Spd) on tomato seedlings at both physiological and transcriptional levels. Salinity-alkalinity stress decreased leaf area, net photosynthetic rate, maximum net photosynthetic rate, light saturation point, apparent quantum efficiency, total chlorophyll, chlorophyll a and chlorophyll a:chlorophyll b relative to the control. The amount of D1 protein, an important component of photosystem II, was reduced compared with the control, as was the expression of psbA, which codes for D1. Expression of the chlorophyll biosynthesis gene porphobilinogen deaminase (PBGD) was reduced following salinity-alkalinity stress, whereas the expression of Chlase, which codes for chlorophyllase, was increased. These negative physiological effects of salinity-alkalinity stress were alleviated by exogenous Spd. Expression of PBGD and psbA were enhanced, whereas the expression of Chlase was reduced, when exogenous Spd was included in the stress treatment compared with when it was not. The protective effect of Spd on chlorophyll and D1 protein content during stress may maintain the photosynthetic apparatus, permitting continued photosynthesis and growth of tomato seedlings (Solanum lycopersicum cv. Jinpengchaoguan) under salinity-alkalinity stress. © 2015 Scandinavian Plant Physiology Society.

  9. Photogeneration of charges in microcrystalline chlorophyll a

    International Nuclear Information System (INIS)

    Kassi, Hassan; Barazzouk, Said; Brullemans, Marc; Leblanc, Roger M.; Hotchandani, Surat

    2010-01-01

    The electric-field and temperature dependence of hole photogeneration in chlorophyll a (Chla) have been analyzed in terms of electric-field assisted thermal dissociation of charge pairs based on Onsager theory. An excellent agreement between the experimental and theoretical values of the slope-to-intercept ratio, S/I, for the plot of photogeneration efficiency vs. electric field at low field strengths provides a proof for the applicability of the Onsager approach to the photogeneration of charges in Chla. A value of 19 nm has been obtained for Coulomb capture radius, r c , from S/I. From the temperature dependence of photogeneration, the initial separation, r 0 , of photogenerated electron-hole has been evaluated, and has a value of 1.24 nm. This smaller r 0 compared to r c leads to a feeble dissociation probability of electron-hole pairs into free carriers, and may, among other factors, explain the low power conversion efficiencies of Chla photovoltaic cells.

  10. Photogeneration of charges in microcrystalline chlorophyll a

    Energy Technology Data Exchange (ETDEWEB)

    Kassi, Hassan [Scientech R and D, Inc., 2200 Rue Didbec S., Bureau 203, Trois-Rivieres, Trois-Rivieres, QC, G8Z 4H1 (Canada); Barazzouk, Said, E-mail: barazzos@uqtr.c [Groupe de Recherche en Biologie Vegetale, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC, G9A 5H7 (Canada); Brullemans, Marc [Groupe de Recherche en Biologie Vegetale, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC, G9A 5H7 (Canada); Leblanc, Roger M. [Department of Chemistry, University of Miami, P.O. Box 249118, Coral Gables, FL 33124-0431 (United States); Hotchandani, Surat [Groupe de Recherche en Biologie Vegetale, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC, G9A 5H7 (Canada)

    2010-07-01

    The electric-field and temperature dependence of hole photogeneration in chlorophyll a (Chla) have been analyzed in terms of electric-field assisted thermal dissociation of charge pairs based on Onsager theory. An excellent agreement between the experimental and theoretical values of the slope-to-intercept ratio, S/I, for the plot of photogeneration efficiency vs. electric field at low field strengths provides a proof for the applicability of the Onsager approach to the photogeneration of charges in Chla. A value of 19 nm has been obtained for Coulomb capture radius, r{sub c}, from S/I. From the temperature dependence of photogeneration, the initial separation, r{sub 0}, of photogenerated electron-hole has been evaluated, and has a value of 1.24 nm. This smaller r{sub 0} compared to r{sub c} leads to a feeble dissociation probability of electron-hole pairs into free carriers, and may, among other factors, explain the low power conversion efficiencies of Chla photovoltaic cells.

  11. BOREAS TE-9 NSA Leaf Chlorophyll Density

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  12. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  13. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  14. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  15. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  16. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  17. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  18. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  19. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  20. Assessment of water pollution by airborne measurement of chlorophyll

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1972-01-01

    Remote measurement of chlorophyll concentrations to determine extent of water pollution is discussed. Construction and operation of radiometer to provide measurement capability are explained. Diagram of equipment is provided.

  1. A database of chlorophyll a in Australian waters

    Science.gov (United States)

    Davies, Claire H.; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Baird, Mark E.; Beard, Jason; Bonham, Pru; Burford, Michele; Clementson, Lesley; Coad, Peter; Crawford, Christine; Dela-Cruz, Jocelyn; Doblin, Martina A.; Edgar, Steven; Eriksen, Ruth; Everett, Jason D.; Furnas, Miles; Harrison, Daniel P.; Hassler, Christel; Henschke, Natasha; Hoenner, Xavier; Ingleton, Tim; Jameson, Ian; Keesing, John; Leterme, Sophie C.; James McLaughlin, M.; Miller, Margaret; Moffatt, David; Moss, Andrew; Nayar, Sasi; Patten, Nicole L.; Patten, Renee; Pausina, Sarah A.; Proctor, Roger; Raes, Eric; Robb, Malcolm; Rothlisberg, Peter; Saeck, Emily A.; Scanes, Peter; Suthers, Iain M.; Swadling, Kerrie M.; Talbot, Samantha; Thompson, Peter; Thomson, Paul G.; Uribe-Palomino, Julian; van Ruth, Paul; Waite, Anya M.; Wright, Simon; Richardson, Anthony J.

    2018-02-01

    Chlorophyll a is the most commonly used indicator of phytoplankton biomass in the marine environment. It is relatively simple and cost effective to measure when compared to phytoplankton abundance and is thus routinely included in many surveys. Here we collate 173, 333 records of chlorophyll a collected since 1965 from Australian waters gathered from researchers on regular coastal monitoring surveys and ocean voyages into a single repository. This dataset includes the chlorophyll a values as measured from samples analysed using spectrophotometry, fluorometry and high performance liquid chromatography (HPLC). The Australian Chlorophyll a database is freely available through the Australian Ocean Data Network portal (https://portal.aodn.org.au/). These data can be used in isolation as an index of phytoplankton biomass or in combination with other data to provide insight into water quality, ecosystem state, and relationships with other trophic levels such as zooplankton or fish.

  2. Investigation into robust spectral indices for leaf chlorophyll estimation

    CSIR Research Space (South Africa)

    Main, R

    2011-11-01

    Full Text Available remote sensing data, new users are faced with a plethora of options when choosing an optical index to relate to their chosen or canopy parameter. The literature base regarding optical indices (particularly chlorophyll indices) is wide ranging...

  3. Relationship between chlorophyll-a and column primary production

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Bhargava, R.M.S.

    Relationship between surface chlorophyll a and column primary production has been established to help in estimating the latter more quickly and accurately. The equation derived is Primary Production, y = 0.54 Ln Chl a - 0.6. The relationship...

  4. Effects of copper stress on antioxidative enzymes, chlorophyll and ...

    African Journals Online (AJOL)

    Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex ... Journal Home > Vol 10, No 50 (2011) > ... The aim of this work was to investigate some enzymatic systems response of this plant to copper stress.

  5. Chlorophyll modulation of mixed layer thermodynamics in a mixed ...

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    in a mixed-layer isopycnal General Circulation Model – An ... three dimensional ocean circulation theory combined with solar radiation transfer process. 1. .... temperature decrease compared with simulation without chlorophyll (bottom panel).

  6. Endolithic chlorophyll d-containing phototrophs

    DEFF Research Database (Denmark)

    Behrendt, Lars; Larkum, Anthony W D; Norman, Anders

    2011-01-01

    hyperspectral and variable chlorophyll fluorescence imaging, scanning electron microscopy, photopigment analysis and DNA sequencing to show that Acaryochloris-like cyanobacteria thrive underneath crustose coralline algae in a widespread endolithic habitat on coral reefs. This finding suggests an important role...

  7. Satellite remote sensing of chlorophyll a in support of nutrient management in the Neuse and Tar-Pamlico River (North Carolina) estuaries

    Science.gov (United States)

    The North Carolina Environmental Management Commission (EMC) has adopted as a water quality standard that chlorophyll a concentration should not exceed 40 ug/L in sounds, estuaries and other slow-moving waters. Exceedances require regulators to develop a Total Maximum Daily Limit...

  8. Deep frying

    NARCIS (Netherlands)

    Koerten, van K.N.

    2016-01-01

    Deep frying is one of the most used methods in the food processing industry. Though practically any food can be fried, French fries are probably the most well-known deep fried products. The popularity of French fries stems from their unique taste and texture, a crispy outside with a mealy soft

  9. Deep learning

    CERN Document Server

    Goodfellow, Ian; Courville, Aaron

    2016-01-01

    Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language proces...

  10. The Impact of Different Water Regime on Chlorophyll Fluorescence of Pyrus pyraster L. and Sorbus domestica L

    Directory of Open Access Journals (Sweden)

    Viera Šajbidorová

    2015-01-01

    Full Text Available The water deficit is considered to be significant cause of photosynthesis defects. Measuring of chlorophyll fluorescence is one of the methods revealing defects in the photosynthetic apparatus. The experiment was established with two woody plant (Pyrus pyraster L. and Sorbus domestica L. cultivated in two different regimes of the substrate saturation. The measurement of the modulated fluorescence of chlorophyll a was done by FMS1 fluorometer during three-week period between June and September (2012 and 2013. There were analysed selected parameters of chlorophyll fluorescence: Fv/Fm – maximum quantum efficiency of PSII, ΦPSII – effective quantum yield of PSII and RFD – chlorophyll fluorescence decrease ratio. According to the obtained results, Pyrus pyraster has probably higher potential for adaptation to water deficiency. There were recorded the significant decreases mainly in the values of parameter RFD and ΦPSII for Sorbus domestica within duration of experiment with different water regime in both growing seasons 2012 and 2013. The results document a weak sensitivity of the parameter Fv/Fm on changes in the amount of available water in the substrate in both taxa.

  11. Tomato seeds maturity detection system based on chlorophyll fluorescence

    Science.gov (United States)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  12. Estimating chlorophyll content from Eucalyptus dunnii leaves by reflectance values

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2016-06-01

    Full Text Available This study aimed to estimate photosynthetic pigments contents from leaves of Eucalyptus dunni Maiden based on values of reflectance spectra of red, green and blue colors obtained with a digital color analyzer. We collected fifty leaves from the lower third of the crown of twenty trees including young as well as mature leaves. From each leaf an area of 14 cm2 of the leaf blade was cut in which we measured reflectance values on the red, green and blue spectra with a portable digital colorimeter, obtained relative index of chlorophyll with a SPAD – 502 and determined the content of the chlorophyll a, b, and a + b by classic method of solvent extraction. We submitted the data to multiple linear regression and nonlinear analysis at 5% of error probability. It was evaluated the occurrence of multicollinearity. The negative exponential model resulted in good fit when data from red spectrum was used for chlorophyll a, green spectrum for chlorophyll b and a + b, making possible correlation coefficients between the estimated values and the extracted above 0.85. Except for the chlorophyll a content, the accuracy in estimates of photosynthetic pigments were higher than estimated by the chlorophyll meter, even with linearity between methods. Therefore, it is possible to estimate photosynthetic pigments on E. dunni leaves through values of red and green wavelengths from a digital color analyser.

  13. Water-Soluble Chlorophyll Protein (WSCP) Stably Binds Two or Four Chlorophylls.

    Science.gov (United States)

    Palm, Daniel M; Agostini, Alessandro; Tenzer, Stefan; Gloeckle, Barbara M; Werwie, Mara; Carbonera, Donatella; Paulsen, Harald

    2017-03-28

    Water-soluble chlorophyll proteins (WSCPs) of class IIa from Brassicaceae form tetrameric complexes containing one chlorophyll (Chl) per apoprotein but no carotenoids. The complexes are remarkably stable toward dissociation and protein denaturation even at 100 °C and extreme pH values, and the Chls are partially protected against photooxidation. There are several hypotheses that explain the biological role of WSCPs, one of them proposing that they function as a scavenger of Chls set free upon plant senescence or pathogen attack. The biochemical properties of WSCP described in this paper are consistent with the protein acting as an efficient and flexible Chl scavenger. At limiting Chl concentrations, the recombinant WSCP apoprotein binds substoichiometric amounts of Chl (two Chls per tetramer) to form complexes that are as stable toward thermal dissociation, denaturation, and photodamage as the fully pigmented ones. If more Chl is added, these two-Chl complexes can bind another two Chls to reach the fully pigmented state. The protection of WSCP Chls against photodamage has been attributed to the apoprotein serving as a diffusion barrier for oxygen, preventing its access to triplet excited Chls and, thus, the formation of singlet oxygen. By contrast, the sequential binding of Chls by WSCP suggests a partially open or at least flexible structure, raising the question of how WSCP photoprotects its Chls without the help of carotenoids.

  14. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  15. Evaluation of nitrogen status and total chlorophyll in longkong (Aglaia dookkoo Griff. leaves under water stress using a chlorophyll meter

    Directory of Open Access Journals (Sweden)

    Sdoodee, S.

    2005-07-01

    Full Text Available A chlorophyll meter (SPAD-502 was used to assess nitrogen status and total chlorophyll in longkong leaves, leaves from twelve of 10-year-old trees grown in the experimental plot at Prince of Songkla University, Songkhla province. The relationship between SPAD-502 meter reading and nitrogen status and total chlorophyll content analyzed in the laboratory was evaluated during 8 months (May-December 2003. It was found that the trend of the relationships in each month was similar. There was no significant differenceamong regression linears of all months. The data of 8 months showed that SPAD-reading and nitrogen content, and SPAD-reading and total chlorophyll content were related in a positive manner. They were Y = 0.19X+10.10, r = 0.76** (n = 240, and Y = 0.43X-7.89, r = 0.79** (n = 400, respectively. The SPAD-502 was then used to assess total nitrogen and total chlorophyll content during imposed water stress. Fifteen 4-yearold plants were grown in pots (each pot containing 50 kg soil volume. The experiment was arranged in acompletely randomized design with 3 treatments: (1 daily watering (2 once watering on day 7 (3 no watering with 5 replications during 14 days of the experimental period. Measurements showed a continuous decrease of SPAD-reading in the treatment of no watering. On day 14, a significant difference of SPAD- reading values between the treatment of daily watering and no watering was found. Then, the values of nitrogen content and total chlorophyll were assessed by using the linear regression equations. From the result, it is suggested that the measurement by chlorophyll meter is a rapid technique for the evaluation of total chlorophyll and nitrogen status in longkong leaves during water stress.

  16. Chlorophyll-a retrieval in the Philippine waters

    Science.gov (United States)

    Perez, G. J. P.; Leonardo, E. M.; Felix, M. J.

    2017-12-01

    Satellite-based monitoring of chlorophyll-a (Chl-a) concentration has been widely used for estimating plankton biomass, detecting harmful algal blooms, predicting pelagic fish abundance, and water quality assessment. Chl-a concentrations at 1 km spatial resolution can be retrieved from MODIS onboard Aqua and Terra satellites. However, with this resolution, MODIS has scarce Chl-a retrieval in coastal and inland waters, which are relevant for archipelagic countries such as the Philippines. These gaps on Chl-a retrieval can be filled by sensors with higher spatial resolution, such as the OLI of Landsat 8. In this study, assessment of Chl-a concentration derived from MODIS/Aqua and OLI/Landsat 8 imageries across the open, coastal and inland waters of the Philippines was done. Validation activities were conducted at eight different sites around the Philippines for the period October 2016 to April 2017. Water samples filtered on the field were processed in the laboratory for Chl-a extraction. In situ remote sensing reflectance was derived from radiometric measurements and ancillary information, such as bathymetry and turbidity, were also measured. Correlation between in situ and satellite-derived Chl-a concentration using the blue-green ratio yielded relatively high R2 values of 0.51 to 0.90. This is despite an observed overestimation for both MODIS and OLI-derived values, especially in turbid and coastal waters. The overestimation of Chl-a may be attributed to inaccuracies in i) remote sensing reflectance (Rrs) retrieval and/or ii) empirical model used in calculating Chl-a concentration. However, a good 1:1 correspondence between the satellite and in situ maximum Rrs band ratio was established. This implies that the overestimation is largely due to the inaccuracies from the default coefficients used in the empirical model. New coefficients were then derived from the correlation analysis of both in situ-measured Chl-a concentration and maximum Rrs band ratio. This

  17. HPLC Analysis of Chlorophyll a, Chlorophyll b, and Beta-Carotene in Collard Greens: A Project for a Problem-Oriented Laboratory Course.

    Science.gov (United States)

    Silveira, Augustine, Jr.; And Others

    1984-01-01

    High performance liquid chromatography (HPLC) is used to separate and quantitate beta-carotene, chlorophyll a, and chlorophyll b originating from collard greens. Experimental procedures used and typical results obtained are discussed. (JN)

  18. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    Science.gov (United States)

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. APPLICATION OF MODULATED CHLOROPHYLL FLUORESCENCE AND MODULATED CHLOROPHYLL FLUORESCENCE IMAGING IN STUDYING ENVIRONMENTAL STRESSES EFFECT

    Directory of Open Access Journals (Sweden)

    L. Guidi

    2016-03-01

    Full Text Available Chlorophyll (Chl a fluorescence is a widely used tool to monitor the photosynthetic process in plants subjected to environmental stresses.this review reports the theoretical bases of Chl fluorescence, and the significance of the most important Chl fluorescence parameters. it also reportshow these parameters can be utilised to estimate changes in photosystem ii (PSII photochemistry, linear electron flux and energy dissipationmechanisms. the relation between actual PSII photochemistry and CO2 assimilation is discussed, as is the role of photochemical andnon-photochemical quenching in inducing changes in PSII activity. the application of Chl fluorescence imaging to study heterogeneity on leaflamina is also considered. this review summarises only some of the results obtained by this methodology to study the effects of differentenvironmental stresses, namely water and nutrients availability, pollutants, temperature and salinity.

  20. Chlorophyll biosynthesis and assembly into chlorophyll-protein complexes in isolated developing chloroplasts

    International Nuclear Information System (INIS)

    Bhaya, D.; Castelfranco, P.A.

    1985-01-01

    Isolated developing plastids from greening cucumber cotyledons or from photoperiodically grown pea seedlings incorporated 14 C-labeled 5-aminolevulinic acid (ALA) into chlorophyll (Chl). Incorporation was light dependent, enhanced by S-adenosylmethionine, and linear for 1 hr. The in vitro rate of Chl synthesis from ALA was comparable to the in vivo rate of Chl accumulation. Levulinic acid and dioxoheptanoic acid strongly inhibited Chl synthesis but not plastid protein synthesis. Neither chloramphenicol nor spectinomycin affected Chl synthesis, although protein synthesis was strongly inhibited. Components of thylakoid membranes from plastids incubated with [ 14 C]ALA were resolved by electrophoresis and then subjected to autoradiography. This work showed that (i) newly synthesized Chl was assembled into Chl-protein complexes and (ii) the inhibition of protein synthesis during the incubation did not alter the labeling pattern. Thus, there was no observable short-term coregulation between Chl synthesis (from ALA) and the synthesis of membrane proteins in isolated plastids

  1. Impact of the river Liffey discharge on nutrient and chlorophyll concentrations in the Liffey estuary and Dublin Bay (Irish Sea)

    Science.gov (United States)

    O'Higgins, T. G.; Wilson, J. G.

    2005-08-01

    Temperature, salinity, nutrients (total oxidised nitrogen (TON), ammonium (NH 4) and orthophosphate (PO 4)) and chlorophyll a were monitored in the Liffey estuary and Dublin Bay from June 2000 to June 2003. Four groups of sites were defined comprising the upper estuary (Gp. I), the outer estuary (Gp. III) with a small set (Gp. II) of sites between Groups I and III heavily influenced by the sewage treatment works outflow, and the Bay proper (Gp. IV). Riverine inputs of TON and PO 4 were calculated at an average of 826 t N y -1 and 31 t P y -1, respectively, and were largely controlled by flow rate. The sewage treatment works were identified as a major source of PO 4 and NH 4 to the system. Mixing in the upper estuary of nutrient limited saline waters with hypernutrified river water regularly (i.e. annually) produced relatively high concentrations of chlorophyll a (>10 mg chl a m -3), and also sporadic blooms with extremely high chlorophyll a values (max. 121.6 mg chl a m -3). These latter phytoplankton blooms occurred in high salinity waters and were due to mixing of nutrient limited saline waters and nutrient rich river waters. The mean annual flux of phytoplankton carbon from the river Liffey was calculated at 23.5 t C y -1, of which half was accumulated or remineralised in the estuary and did not enter the Bay. In the Bay proper (Gp. IV) summer nutrient concentrations dropped below detection limits, and chlorophyll a concentrations followed the classic pattern with a spring bloom maximum of 5.5 mg chl a m -3. This pattern in nutrients and chlorophyll a came from the advection of waters into the Bay from an offshore source. Overall while there was considerable evidence for eutrophication in the estuary, the bay itself showed little biological response to nutrient loading.

  2. Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)?

    Science.gov (United States)

    Donnelly, Alison; Craigon, Jim; Black, Colin R.; Colls, Jeremy J.; Landon, Geoff

    2001-04-01

    This study examined the impact of season-long exposure to elevated carbon dioxide (CO2) and ozone (O3), individually and in combination, on leaf chlorophyll content and gas exchange characteristics in potato (Solanum tuberosum L. cv. Bintje). Plants grown in open-top chambers were exposed to three CO2 (ambient, 550 and 680 µmol mol-1) and two O3 treatments (ambient and elevated; 25 and 65 nmol mol-1, 8 h day-1 means, respectively) between crop emergence and maturity; plants were also grown in unchambered field plots. Non-destructive measurements of chlorophyll content and visible foliar injury were made for all treatments at 2-week intervals between 43 and 95 days after emergence. Gas exchange measurements were made for all except the intermediate 550 µmol mol-1 CO2 treatment. Season-long exposure to elevated O3 under ambient CO2 reduced chlorophyll content and induced extensive visible foliar damage, but had little effect on net assimilation rate or stomatal conductance. Elevated CO2 had no significant effect on chlorophyll content, but greatly reduced the damaging impact of O3 on chlorophyll content and visible foliar damage. Light-saturated assimilation rates for leaves grown under elevated CO2 were consistently lower when measured under either elevated or ambient CO2 than in equivalent leaves grown under ambient CO2. Analysis of CO2 response curves revealed that CO2-saturated assimilation rate, maximum rates of carboxylation and electron transport and respiration decreased with time. CO2-saturated assimilation rate was reduced by elevated O3 during the early stages of the season, while respiration was significantly greater under elevated CO2 as the crop approached maturity. The physiological origins of these responses and their implications for the performance of potato in a changing climate are discussed.

  3. An overview of remote sensing of chlorophyll fluorescence

    Science.gov (United States)

    Xing, Xiao-Gang; Zhao, Dong-Zhi; Liu, Yu-Guang; Yang, Jian-Hong; Xiu, Peng; Wang, Lin

    2007-03-01

    Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyl l - a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

  4. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Directory of Open Access Journals (Sweden)

    Jesus R. Millan-Almaraz

    2012-08-01

    Full Text Available Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images.

  5. Instrumentation in Developing Chlorophyll Fluorescence Biosensing: A Review

    Science.gov (United States)

    Fernandez-Jaramillo, Arturo A.; Duarte-Galvan, Carlos; Contreras-Medina, Luis M.; Torres-Pacheco, Irineo; de J. Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon G.; Millan-Almaraz, Jesus R.

    2012-01-01

    Chlorophyll fluorescence can be defined as the red and far-red light emitted by photosynthetic tissue when it is excited by a light source. This is an important phenomenon which permits investigators to obtain important information about the state of health of a photosynthetic sample. This article reviews the current state of the art knowledge regarding the design of new chlorophyll fluorescence sensing systems, providing appropriate information about processes, instrumentation and electronic devices. These types of systems and applications can be created to determine both comfort conditions and current problems within a given subject. The procedure to measure chlorophyll fluorescence is commonly split into two main parts; the first involves chlorophyll excitation, for which there are passive or active methods. The second part of the procedure is to closely measure the chlorophyll fluorescence response with specialized instrumentation systems. Such systems utilize several methods, each with different characteristics regarding to cost, resolution, ease of processing or portability. These methods for the most part include cameras, photodiodes and satellite images. PMID:23112686

  6. Chlorophyll as a biomarker for early disease diagnosis

    Science.gov (United States)

    Manzoor Atta, Babar; Saleem, M.; Ali, Hina; Arshad, Hafiz Muhammad Imran; Ahmed, M.

    2018-06-01

    The current study was designed to identify the stage for the diagnosis of disease before visible symptoms appeared. Fluorescence spectroscopy has been employed to identify disease signatures for its early diagnosis in rice plant leaves. Bacterial leaf blight (BLB) diseased and healthy leaf samples were collected from the rice fields in September, 2017 which were then used to record spectra using an excitation wavelength at 410 nm. The spectral range of emission was set from 420 to 800 nm which covers the blue–green and the chlorophyll bands. It was found that diseased leaves have a narrower ‘chlorophyll a’ band than healthy ones, and furthermore, that the emission band at 730 nm was either declined or depleted in the sample with high infection symptoms. In contrast, the blue–green region was observed to increase due to the emergence of disease. As the band intensity of chlorophyll decreases during infection, this decrease in chlorophyll content and increase in the blue–green spectral region could provide a new approach for predicting BLB at an early stage. The important finding was that the chlorophyll degradation and rise in the blue–green region take place in leaves with BLB or during BLB infection. Principal component analysis has been applied to spectral data which successfully separated diseased samples from healthy ones even with very small spectral variations.

  7. Assessing the Skill of Chlorophyll Forecasts: Latest Development and Challenges Ahead Using the Case of the Equatorial Pacific

    Science.gov (United States)

    Rousseaux, Cecile S.; Gregg, Watson W.

    2018-01-01

    Using a global ocean biogeochemical model combined with a forecast of physical oceanic and atmospheric variables from the NASA Global Modeling and Assimilation Office, we assess the skill of a chlorophyll concentrations forecast in the Equatorial Pacific for the period 2012-2015 with a focus on the forecast of the onset of the 2015 El Nino event. Using a series of retrospective 9-month hindcasts, we assess the uncertainties of the forecasted chlorophyll by comparing the monthly total chlorophyll concentration from the forecast with the corresponding monthly ocean chlorophyll data from the Suomi-National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (S-NPP VIIRS) satellite. The forecast was able to reproduce the phasing of the variability in chlorophyll concentration in the Equatorial Pacific, including the beginning of the 2015-2016 El Nino. The anomaly correlation coefficient (ACC) was significant (p less than 0.05) for forecast at 1-month (R=0.33), 8-month (R=0.42) and 9-month (R=0.41) lead times. The root mean square error (RMSE) increased from 0.0399 microgram chl L(exp -1) for the 1-month lead forecast to a maximum of 0.0472 microgram chl L(exp -1) for the 9-month lead forecast indicating that the forecast of the amplitude of chlorophyll concentration variability was getting worse. Forecasts with a 3-month lead time were on average the closest to the S-NPP VIIRS data (23% or 0.033 microgram chl L(exp -1)) while the forecast with a 9-month lead time were the furthest (31% or 0.042 microgram chl L(exp -1)). These results indicate the potential for forecasting chlorophyll concentration in this region but also highlights various deficiencies and suggestions for improvements to the current biogeochemical forecasting system. This system provides an initial basis for future applications including the effects of El Nino events on fisheries and other ocean resources given improvements identified in the analysis of these results.

  8. Vertical distribution of chlorophyll a concentration and phytoplankton community composition from in situ fluorescence profiles: a first database for the global ocean

    Science.gov (United States)

    Sauzède, R.; Lavigne, H.; Claustre, H.; Uitz, J.; Schmechtig, C.; D'Ortenzio, F.; Guinet, C.; Pesant, S.

    2015-10-01

    In vivo chlorophyll a fluorescence is a proxy of chlorophyll a concentration, and is one of the most frequently measured biogeochemical properties in the ocean. Thousands of profiles are available from historical databases and the integration of fluorescence sensors to autonomous platforms has led to a significant increase of chlorophyll fluorescence profile acquisition. To our knowledge, this important source of environmental data has not yet been included in global analyses. A total of 268 127 chlorophyll fluorescence profiles from several databases as well as published and unpublished individual sources were compiled. Following a robust quality control procedure detailed in the present paper, about 49 000 chlorophyll fluorescence profiles were converted into phytoplankton biomass (i.e., chlorophyll a concentration) and size-based community composition (i.e., microphytoplankton, nanophytoplankton and picophytoplankton), using a method specifically developed to harmonize fluorescence profiles from diverse sources. The data span over 5 decades from 1958 to 2015, including observations from all major oceanic basins and all seasons, and depths ranging from the surface to a median maximum sampling depth of around 700 m. Global maps of chlorophyll a concentration and phytoplankton community composition are presented here for the first time. Monthly climatologies were computed for three of Longhurst's ecological provinces in order to exemplify the potential use of the data product. Original data sets (raw fluorescence profiles) as well as calibrated profiles of phytoplankton biomass and community composition are available on open access at PANGAEA, Data Publisher for Earth and Environmental Science. Raw fluorescence profiles: http://doi.pangaea.de/10.1594/PANGAEA.844212 and Phytoplankton biomass and community composition: http://doi.pangaea.de/10.1594/PANGAEA.844485

  9. Measuring of the Chlorophyll a Fluorescence in Calcium Alginate-Encapsulated Algae

    Directory of Open Access Journals (Sweden)

    Ibeth Paola Delgadillo Rodríguez

    2017-05-01

    Full Text Available Immobilization of algae has many applications, such as water bioremediation and production of metabolites. One of the variables that can be determined in the immobilized algae is chlorophyll a fluorescence, because this parameter is related to the physiological response of these organisms. Therefore, the objective of this study was to explore a method for measuring the chlorophyll a fluorescence in calcium alginate-encapsulated algae. To do this, two species of microalgae (Scenedesmus ovalternus LAUN 001 and Parachlorella kessleri LAUN 002 were grown in monocultures in both free culture conditions (10 mL of algae preparation in 250 mL of Basal Bold Medium and encapsulated (250 spheres in 250 mL of Basal Bold Medium. Different measurement protocols of chlorophyll a fluorescence of photosystem II (PSII were performed by varying a the preadaptation time to darkness (10, 15 and 30 min, b the light intensity of the non-modulated fluorometer (between 1000 and 3500 μmoles m-2s-1, and c the time of exposure to actinic light (1, 2 and 5 s. The optimal conditions for the measurement of the maximum quantum yield of PSII (Fv/Fm in encapsulated algae were established as follow: a 30 min of preadaptation time; b 3000 μmoles m-2s-1 of the fluorometer light intensity; and c 1 to 2 s of exposure to actinic light. The following values in the photochemical activity of algae in non-stressful conditions were found: 0.760 – 0.764 for S. ovalternus, and 0.732 – 0.748 for P. kessleri. This methodology allows to observe some changes in the photochemical activity related with variations in the factors under which are the immobilized algae.

  10. Hyperspectral and multispectral satellite sensors for mapping chlorophyll content in a Mediterranean Pinus sylvestris L. plantation

    Science.gov (United States)

    Navarro-Cerrillo, Rafael Mª; Trujillo, Jesus; de la Orden, Manuel Sánchez; Hernández-Clemente, Rocío

    2014-02-01

    A new generation of narrow-band hyperspectral remote sensing data offers an alternative to broad-band multispectral data for the estimation of vegetation chlorophyll content. This paper examines the potential of some of these sensors comparing red-edge and simple ratio indices to develop a rapid and cost-effective system for monitoring Mediterranean pine plantations in Spain. Chlorophyll content retrieval was analyzed with the red-edge R750/R710 index and the simple ratio R800/R560 index using the PROSPECT-5 leaf model and the Discrete Anisotropic Radiative Transfer (DART) and experimental approach. Five sensors were used: AHS, CHRIS/Proba, Hyperion, Landsat and QuickBird. The model simulation results obtained with synthetic spectra demonstrated the feasibility of estimating Ca + b content in conifers using the simple ratio R800/R560 index formulated with different full widths at half maximum (FWHM) at the leaf level. This index yielded a r2 = 0.69 for a FWHM of 30 nm and r2 = 0.55 for a FWHM of 70 nm. Experimental results compared the regression coefficients obtained with various multispectral and hyperspectral images with different spatial resolutions at the stand level. The strongest relationships where obtained using high-resolution hyperspectral images acquired with the AHS sensor (r2 = 0.65) while coarser spatial and spectral resolution images yielded a lower root mean square error (QuickBird r2 = 0.42; Landsat r2 = 0.48; Hyperion r2 = 0.56; CHRIS/Proba r2 = 0.57). This study shows the need to estimate chlorophyll content in forest plantations at the stand level with high spatial and spectral resolution sensors. Nevertheless, these results also show the accuracy obtained with medium-resolution sensors when monitoring physiological processes. Generating biochemical maps at the stand level could play a critical rule in the early detection of forest decline processes enabling their use in precision forestry.

  11. The C21-formyl group in chlorophyll f originates from molecular oxygen.

    Science.gov (United States)

    Garg, Harsh; Loughlin, Patrick C; Willows, Robert D; Chen, Min

    2017-11-24

    Chlorophylls (Chls) are the most important cofactors for capturing solar energy to drive photosynthetic reactions. Five spectral types of Chls have been identified to date, with Chl f having the most red-shifted absorption maximum because of a C2 1 -formyl group substitution of Chl f However, the biochemical provenance of this formyl group is unknown. Here, we used a stable isotope labeling technique ( 18 O and 2 H) to determine the origin of the C2 1 -formyl group of Chl f and to verify whether Chl f is synthesized from Chl a in the cyanobacterial species Halomicronema hongdechloris. In the presence of either H 2 18 O or 18 O 2 , the origin of oxygen atoms in the newly synthesized chlorophylls was investigated. The pigments were isolated with HPLC, followed by MS analysis. We found that the oxygen atom of the C2 1 -formyl group originates from molecular oxygen and not from H 2 O. Moreover, we examined the kinetics of the labeling of Chl a and Chl f from H. hongdechloris grown in 50% D 2 O-seawater medium under different light conditions. When cells were shifted from white light D 2 O-seawater medium to far-red light H 2 O-seawater medium, the observed deuteration in Chl f indicated that Chl(ide) a is the precursor of Chl f Taken together, our results advance our understanding of the biosynthesis pathway of the chlorophylls and the formation of the formyl group in Chl f . © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Detecting crop population growth using chlorophyll fluorescence imaging.

    Science.gov (United States)

    Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu

    2017-12-10

    For both field and greenhouse crops, it is challenging to evaluate their growth information on a large area over a long time. In this work, we developed a chlorophyll fluorescence imaging-based system for crop population growth information detection. Modular design was used to make the system provide high-intensity uniform illumination. This system can perform modulated chlorophyll fluorescence induction kinetics measurement and chlorophyll fluorescence parameter imaging over a large area of up to 45  cm×34  cm. The system can provide different lighting intensity by modulating the duty cycle of its control signal. Results of continuous monitoring of cucumbers in nitrogen deficiency show the system can reduce the judge error of crop physiological status and improve monitoring efficiency. Meanwhile, the system is promising in high throughput application scenarios.

  13. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  14. Investigating the Control of Chlorophyll Degradation by Genomic Correlation Mining.

    Science.gov (United States)

    Ghandchi, Frederick P; Caetano-Anolles, Gustavo; Clough, Steven J; Ort, Donald R

    2016-01-01

    Chlorophyll degradation is an intricate process that is critical in a variety of plant tissues at different times during the plant life cycle. Many of the photoactive chlorophyll degradation intermediates are exceptionally cytotoxic necessitating that the pathway be carefully coordinated and regulated. The primary regulatory step in the chlorophyll degradation pathway involves the enzyme pheophorbide a oxygenase (PAO), which oxidizes the chlorophyll intermediate pheophorbide a, that is eventually converted to non-fluorescent chlorophyll catabolites. There is evidence that PAO is differentially regulated across different environmental and developmental conditions with both transcriptional and post-transcriptional components, but the involved regulatory elements are uncertain or unknown. We hypothesized that transcription factors modulate PAO expression across different environmental conditions, such as cold and drought, as well as during developmental transitions to leaf senescence and maturation of green seeds. To test these hypotheses, several sets of Arabidopsis genomic and bioinformatic experiments were investigated and re-analyzed using computational approaches. PAO expression was compared across varied environmental conditions in the three separate datasets using regression modeling and correlation mining to identify gene elements co-expressed with PAO. Their functions were investigated as candidate upstream transcription factors or other regulatory elements that may regulate PAO expression. PAO transcript expression was found to be significantly up-regulated in warm conditions, during leaf senescence, and in drought conditions, and in all three conditions significantly positively correlated with expression of transcription factor Arabidopsis thaliana activating factor 1 (ATAF1), suggesting that ATAF1 is triggered in the plant response to these processes or abiotic stresses and in result up-regulates PAO expression. The proposed regulatory network includes the

  15. Continuous excitation chlorophyll fluorescence parameters: a review for practitioners.

    Science.gov (United States)

    Banks, Jonathan M

    2017-08-01

    This review introduces, defines and critically reviews a number of chlorophyll fluorescence parameters with specific reference to those derived from continuous excitation chlorophyll fluorescence. A number of common issues and criticisms are addressed. The parameters fluorescence origin (F0) and the performance indices (PI) are discussed as examples. This review attempts to unify definitions for the wide range of parameters available for measuring plant vitality, facilitating their calculation and use. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Error in interpreting field chlorophyll fluorescence measurements: heat gain from solar radiation

    International Nuclear Information System (INIS)

    Marler, T.E.; Lawton, P.D.

    1994-01-01

    Temperature and chlorophyll fluorescence characteristics were determined on leaves of various horticultural species following a dark adaptation period where dark adaptation cuvettes were shielded from or exposed to solar radiation. In one study, temperature of Swietenia mahagoni (L.) Jacq. leaflets within cuvettes increased from approximately 36C to approximately 50C during a 30-minute exposure to solar radiation. Alternatively, when the leaflets and cuvettes were shielded from solar radiation, leaflet temperature declined to 33C in 10 to 15 minutes. In a second study, 16 horticultural species exhibited a lower variable: maximum fluorescence (F v :F m ) when cuvettes were exposed to solar radiation during the 30-minute dark adaptation than when cuvettes were shielded. In a third study with S. mahagoni, the influence of self-shielding the cuvettes by wrapping them with white tape, white paper, or aluminum foil on temperature and fluorescence was compared to exposing or shielding the entire leaflet and cuvette. All of the shielding methods reduced leaflet temperature and increased the F v :F m ratio compared to leaving cuvettes exposed. These results indicate that heat stress from direct exposure to solar radiation is a potential source of error when interpreting chlorophyll fluorescence measurements on intact leaves. Methods for moderating or minimizing radiation interception during dark adaptation are recommended. (author)

  17. Biomonitoring chromium III or VI soluble pollution by moss chlorophyll fluorescence.

    Science.gov (United States)

    Chen, Yang-Er; Mao, Hao-Tian; Ma, Jie; Wu, Nan; Zhang, Chao-Ming; Su, Yan-Qiu; Zhang, Zhong-Wei; Yuan, Ming; Zhang, Huai-Yu; Zeng, Xian-Yin; Yuan, Shu

    2018-03-01

    We systematically compared the impacts of four Cr salts (chromic chloride, chromic nitrate, potassium chromate and potassium bichromate) on physiological parameters and chlorophyll fluorescence in indigenous moss Taxiphyllum taxirameum. Among the four Cr salts, K 2 Cr 2 O 7 treatment resulted in the most significant decrease in photosynthetic efficiency and antioxidant enzymes, increase in reactive oxygen species (ROS), and obvious cell death. Different form the higher plants, although hexavalent Cr(VI) salt treatments resulted in higher accumulation levels of Cr and were more toxic than Cr(III) salts, Cr(III) also induced significant changes in moss physiological parameters and chlorophyll fluorescence. Our results showed that Cr(III) and Cr(VI) could be monitored distinguishably according to the non-photochemical quenching (NPQ) fluorescence of sporadic purple and sporadic lavender images respectively. Then, the valence states and concentrations of Cr contaminations could be evaluated according to the image of maximum efficiency of PSII photochemistry (Fv/Fm) and the quantum yield of PSII electron transport (ΦPSII). Therefore, this study provides new ideas of moss's sensibility to Cr(III) and a new method to monitor Chromium contaminations rapidly and non-invasively in water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The distribution feature of size-fractionated chlorophyll a and primary productivity in Prydz Bay and its north sea area during the austral summer

    Institute of Scientific and Technical Information of China (English)

    刘子琳; 陈忠元

    2003-01-01

    The investigation of size-fractionated chlorophyll a and primary productivity were carried out in three longitudinal sections (63°-69°12′S, 70°30′E, 73°E and 75(30′E) at December 18 -26, 1998 and January 12 -18, 1999 in Prydz Bay and its north sea area, Antarctica. The results showed that surface chlorophyll a concentration were 0.16 - 3.99 μg dm -3. The high values of chlorophyll a concentration ( more than 3.5 μg dm -3 ) were in Prydz Bay and in the west Ladies Bank. The average chlorophyll a concentration at sub-surface layer was higher than that at surface layer; its concentration at the deeper layers of 50 m decreased with increasing depth and that at 200 m depth was only 0.01 -0.95 μg dm-3. The results of size-fractionated chlorophyll a showed that the contribution of the netplanktion to total chlorophyll a was 56% , those of the nanoplankton and the picoplankton were 24% and 20% respectively in the surveyed area. The potential primary productivity at the euphotic zone in the surveyed area was 0. 11 - 11.67 mgC m-3 h -1 and average value was 2.00 ±2.80 mgC m-3h-1. The in-situ productivity in the bay and the continental shelf was higher and that in the deep-sea area was lower. The assimilation number of ted primary productivity show that the contribution of the netplanktion to total productivity was 58% , those of the nanoplankton and the picoplankton were 26% and 16% respectively. The cell abundance of phytoplankton was 1. 6 + 103 - 164. 8 + 103 cell dm-3 in the surface water.

  19. Atlantic Meridional Overturning Circulation During the Last Glacial Maximum.

    NARCIS (Netherlands)

    Lynch-Stieglitz, J.; Adkins, J.F.; Curry, W.B.; Dokken, T.; Hall, I.R.; Herguera, J.C.; Hirschi, J.J.-M.; Ivanova, E.V.; Kissel, C.; Marchal, O.; Marchitto, T.M.; McCave, I.N.; McManus, J.F.; Mulitza, S.; Ninnemann, U.; Peeters, F.J.C.; Yu, E.-F.; Zahn, R.

    2007-01-01

    The circulation of the deep Atlantic Ocean during the height of the last ice age appears to have been quite different from today. We review observations implying that Atlantic meridional overturning circulation during the Last Glacial Maximum was neither extremely sluggish nor an enhanced version of

  20. The most oligotrophic subtropical zones of the global ocean: similarities and differences in terms of chlorophyll and yellow substance

    Directory of Open Access Journals (Sweden)

    A. Morel

    2010-10-01

    Full Text Available The cores of the subtropical anticyclonic gyres are characterized by their oligotrophic status and minimal chlorophyll concentration, compared to that of the whole ocean. These zones are unambiguously detected by space borne ocean color sensors thanks to their typical spectral reflectance, which is that of extremely clear and deep blue waters. Not only the low chlorophyll (denoted [Chl] level, but also a reduced amount of colored dissolved organic matter (CDOM or "yellow substance" account for this clarity. The oligotrophic waters of the North and South Pacific gyres, the North and South Atlantic gyres, and the South Indian gyre have been comparatively studied with respect to both [Chl] and CDOM contents, by using 10-year data (1998–2007 of the Sea-viewing Wide field-of-view Sensor (SeaWiFS, NASA. Albeit similar these oligotrophic zones are not identical regarding their [Chl] and CDOM contents, as well as their seasonal cycles. According to the zone, the averaged [Chl] value varies from 0.026 to 0.059 mg m−3, whereas the ay(443 average (the absorption coefficient due to CDOM at 443 nm is between 0.0033 and 0.0072 m−1. The CDOM-to-[Chl] relative proportions also differ between the zones. The clearest waters, corresponding to the lowest [Chl] and CDOM concentrations, are found near Easter Island and near Mariana Islands in the western part of the North Pacific Ocean. In spite of its low [Chl], the Sargasso Sea presents the highest CDOM content amongst the six zones studied. Except in the North Pacific gyre (near Mariana and south of Hawaii islands, a conspicuous seasonality appears to be the rule in the other 4 gyres and affects both [Chl] and CDOM; both quantities vary in a ratio of about 2 (maximum-to-minimum. Coinciding [Chl] and CDOM peaks occur just after the local winter solstice, which is also the period of the maximal mixed layer depth in these latitudes. It is hypothesized that the vertical

  1. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  2. Assessment of salt tolerance of some newly developed and candidate wheat (triticum aestivum l.) cultivars using gas exchange and chlorophyll fluorescence attributes

    International Nuclear Information System (INIS)

    Kanwal, H.; Shahbaz, M.; Ashraf, M.

    2011-01-01

    The present study was aimed to assess salt tolerance of some newly developed and candidate cultivars of wheat using gas exchange and chlorophyll fluorescence parameters. Ten wheat cultivars including five newly developed (S-24, Saher-2006, Fsd-2008, Lasani and Inqlab-91) and five candidate (P .B-18, M.P-65, S.H-20, AARI-10 and G.A-20) were grown in sand culture. Salt stress (150 mM NaCl in Hoagland's nutrient solution) was applied at the seedling stage. A significant reduction in plant biomass production was recorded in all wheat cultivars. Cultivars S-24, Saher-2006 and Fsd-2008 showed less reduction in biomass production as compared with the other cultivars. Different gas exchange attributes such as leaf net photosynthetic rate (A), transpiration rate ( E), and stomatal conductance (gs) were also adversely affected due to salt stress and were positively associated with the plant biomass production of the genotypes under saline stress. More negative effects in relation to these gas exchange attributes were recorded in cvs. Lasani, G.A-20 and ARRI-10 than those in the other cultivars. Leaf maximum chlorophyll fluorescence (Fm), maximum fluorescence at steady state (Fms ), and photochemical fluorescence quenching (Qp) increased while maximum quantum yield (Fv/Fm), quantum yield of electron transport (Qp), electron transport rate ( ETR ) and non-photochemical quenching (Qn) decreased due to imposition of salt stress. The adverse effects of salt stress on these chlorophyll fluorescence attributes were minimum in cultivars S-24, Saher-2006 and Fsd-2008. A significant positive correlation was recorded between biomass production, different gas exchange attributes and chlorophyll fluorescence parameters. Overall, cvs. S-24, Saher-2006 and Fsd-2008 were ranked as salt tolerant on the basis of their performance in biomass production, gas exchange attributes and chlorophyll fluorescence parameters. (author)

  3. The magnesium chelation step in chlorophyll biosynthesis. Progress report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.D.

    1993-12-31

    Progress is reported on the identification and fractionation of Magnesium chealatase, an enzyme involved in addition of Mg to chlorophyll during the later`s biosynthesis. Progress is documented as a series of synopsis of published and unpublished papers by the author.

  4. Influence of vermicompost humic acid on chlorophyll content and ...

    African Journals Online (AJOL)

    Influence of vermicompost humic acid on chlorophyll content and acclimatization in banana clone, Enano Guantanamero. Marcia Beatriz Moya Fernández, Esteban Sánchez Chávez, Daniel Cabezas Montero, Andrés Calderín García, Dany Marrero López, Eduardo F. Héctor Ardisana, Sandra Pérez Álvarez ...

  5. Improved ocean chlorophyll estimate from remote sensed data: The ...

    African Journals Online (AJOL)

    Gregg and Conkright (2001) who pioneered the use of the blending technique in an attempt to calibrate ocean chlorophyll, expressed the need for further work to be done in order to obtain improved results. One problem faced when using this technique with spatially sparse data, is distortion of the resulting blended field ...

  6. Identification and classification of vertical chlorophyll patterns in the ...

    African Journals Online (AJOL)

    A type of artificial neural network called a self-organizing map (SOM) was then used on these four parameters to identify characteristic profiles. The analysis identified a continuum of chlorophyll patterns, from those with large surface peaks (>10 mg m-3) to those with smaller near-surface peaks (<2 mg m-3). The frequency of ...

  7. Chlorophyll as a measure of plant health: Agroecological aspects

    Directory of Open Access Journals (Sweden)

    Danijela Pavlović

    2014-03-01

    Full Text Available As photosynthesis is the basic process during which light energy is absorbed and converted into organic matter, the importance of the plant pigment chlorophyll (a and b forms as an intermediary in transformation of the absorbed solar energy and its activity in the process of photosynthesis and synthesis of organic substances in plants are crucial. Therefore, this paper provides an overview of methods for monitoring the optical activity of chlorophyll molecules and methods (non-destructive and destructive for quantification of chlorophyll in plants. These methods are used to estimate the effects of different stress factors (abiotic, biotic and xenobiotic on the efficiency of photosynthesis and bioproductivity, aiming to assess the impact that these limiting factors have on the yield of various cultivars. Also, those methods for analysis of chlorophyll optical activity and/or content are appropriate for assessing the reaction of weed species to different agricultural practices (mineral nutrition, treatment by herbicides, etc. and studies of different aspects of weed ecophysiology and their influence on crop harvest.

  8. Enzyme-assisted extraction of stabilized chlorophyll from spinach.

    Science.gov (United States)

    Özkan, Gülay; Ersus Bilek, Seda

    2015-06-01

    Zinc complex formation with chlorophyll derivatives in spinach pulp was studied by adding 300ppm Zn(2+) for production of stable food colorant, followed by the heating at 110°C for 15min. Zinc complex formation increased at pH values of 7.0 or greater. Pectinex Ultra SP-L was selected for enzyme-assisted release of zinc-chlorophyll derivatives from spinach pulp. Effect of enzyme concentration (1-9%), treatment temperature (30-60°C), and time (30-210min) on total chlorophyll content (TCC) were optimized using response surface methodology. A quadratic regression model (R(2)=0.9486) was obtained from the experimental design. Optimum treatment conditions were 8% enzyme concentration, 45°C, and 30min, which yielded a 50.747mgTCC/100g spinach pulp. Enzymatic treatment was followed by solvent extraction with ethanol at a solvent-to-sample ratio of 2.5:1 at 60°C for 45min for the highest TCC recovery. Pretreatment with enzyme and extraction in ethanol resulted in 39% increase in Zn-chlorophyll derivative yield. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Validation of OCM-2 sensor performance in retrieving chlorophyll ...

    Indian Academy of Sciences (India)

    Ocean colour; chlorophyll a; total suspended matter; validation; Bay of Bengal; OCM-2. J. Earth Syst. Sci. 122 ... two basins, the Arabian Sea and Bay of Bengal. (BoB). Arabian ... The capability of visible bands of multi-spectral satellite data has ...

  10. Application of a chlorophyll index derived from satellite data to ...

    African Journals Online (AJOL)

    Application of a chlorophyll index derived from satellite data to investigate the variability of phytoplankton in the Benguela ecosystem. H Demarcq, R Barlow, L Hutchings. Abstract. No Abstract. African Journal of Marine Science Vol.29(2) 2007: pp. 271-282. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  11. Effect of temperature on accumulation of chlorophylls and leaf ...

    African Journals Online (AJOL)

    White young shoots from albino tea cultivars have high level of amino acids and are rare and valuable materials for processing green tea. The effects of temperature on leaf colour, accumulation of chlorophylls and leaf ultrastructures of an albino tea cultivar 'Xiaxueya' were investigated. The study showed that the shoot ...

  12. Chlorophyll, nitrogen and antioxidant activities in Cumaru ( Dipteryx ...

    African Journals Online (AJOL)

    ... by traditional populations and industries using timber and non-timber forest products. This study aimed to analyze the levels of chlorophyll A, B, total ammonia levels, nitrate, proline, electrolyte leakage and activity of oxidative enzymes in evaluation to tolerance of cumaru plants subjected to drought for 21 days of stress.

  13. Using chlorophyll fluorescence to determine stress in Eucalyptus ...

    African Journals Online (AJOL)

    Using chlorophyll fluorescence to determine stress in Eucalyptus grandis seedlings: scientific paper. ... Southern Forests: a Journal of Forest Science ... factors affect the functioning of the photosynthetic system, the status of the photosynthetic apparatus is a good indicator of the plant in terms of stress and stress adaptation.

  14. Chlorophyll Fluorescence Imaging Uncovers Photosynthetic Fingerprint of Citrus Huanglongbing

    Directory of Open Access Journals (Sweden)

    Haiyan Cen

    2017-08-01

    Full Text Available Huanglongbing (HLB is one of the most destructive diseases of citrus, which has posed a serious threat to the global citrus production. This research was aimed to explore the use of chlorophyll fluorescence imaging combined with feature selection to characterize and detect the HLB disease. Chlorophyll fluorescence images of citrus leaf samples were measured by an in-house chlorophyll fluorescence imaging system. The commonly used chlorophyll fluorescence parameters provided the first screening of HLB disease. To further explore the photosynthetic fingerprint of HLB infected leaves, three feature selection methods combined with the supervised classifiers were employed to identify the unique fluorescence signature of HLB and perform the three-class classification (i.e., healthy, HLB infected, and nutrient deficient leaves. Unlike the commonly used fluorescence parameters, this novel data-driven approach by using the combination of the mean fluorescence parameters and image features gave the best classification performance with the accuracy of 97%, and presented a better interpretation for the spatial heterogeneity of photochemical and non-photochemical components in HLB infected citrus leaves. These results imply the potential of the proposed approach for the citrus HLB disease diagnosis, and also provide a valuable insight for the photosynthetic response to the HLB disease.

  15. Mahalanobis distance screening of Arabidopsis mutants with chlorophyll fluorescence

    Czech Academy of Sciences Publication Activity Database

    Codrea, C. C.; Hakala-Yatkin, M.; Karlund-Marttila, A.; Nedbal, Ladislav; Aittokallio, T.; Nevalainen, O. S.; Tyystjärvi, E.

    2010-01-01

    Roč. 105, č. 3 (2010), s. 273-283 ISSN 0166-8595 Institutional research plan: CEZ:AV0Z60870520 Keywords : arabidopsis thaliana * chlorophyll fluorescence * fluorescence imaging * mutant detection * outlier detection Subject RIV: EH - Ecology, Behaviour Impact factor: 2.410, year: 2010 http://www.springerlink.com/content/x3586512462pn006/

  16. Effect of organic and inorganic fertilizer on yield and chlorophyll ...

    African Journals Online (AJOL)

    The effects of amending soil with organic (poultry manure) and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays L.) and sorghum (Sorghum bicolour (L.) Moench) was carried out at the Teaching and Research (T&R) Farm of the Obafemi Awolowo University, (O.A.U.) Ile - Ife, Nigeria. The experiment ...

  17. Chlorophyll meter reading and total nitrogen content applied as ...

    African Journals Online (AJOL)

    The present study was aimed to assess the relationship between the reading of the chlorophyll meter and the total nitrogen (N) content in the leaf in different parts of the crambe plant, depending on the doses of nitrogen applied to the canopy. Randomized block design in a split plot experimental design was used. The plots ...

  18. Global NOAA CoastWatch Chlorophyll Frontal Product from MODIS/Aqua (NCEI Accession 0110333)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS/Aqua chlorophyll frontal products: the NOAA Okeanos operational production system produces near real-time chlorophyll frontal products (magnitude and...

  19. Ocean Chlorophyll as a Precursor of ENSO: An Earth System Modeling Study

    Science.gov (United States)

    Park, Jong-Yeon; Dunne, John P.; Stock, Charles A.

    2018-02-01

    Ocean chlorophyll concentration, a proxy for phytoplankton, is strongly influenced by internal ocean dynamics such as those associated with El Niño-Southern Oscillation (ENSO). Observations show that ocean chlorophyll responses to ENSO generally lead sea surface temperature (SST) responses in the equatorial Pacific. A long-term global Earth system model simulation incorporating marine biogeochemical processes also exhibits a preceding chlorophyll response. In contrast to simulated SST anomalies, which significantly lag the wind-driven subsurface heat response to ENSO, chlorophyll anomalies respond rapidly. Iron was found to be the key factor connecting the simulated surface chlorophyll anomalies to the subsurface ocean response. Westerly wind bursts decrease central Pacific chlorophyll by reducing iron supply through wind-driven thermocline deepening but increase western Pacific chlorophyll by enhancing the influx of coastal iron from the maritime continent. Our results mechanistically support the potential for chlorophyll-based indices to inform seasonal ENSO forecasts beyond previously identified SST-based indices.

  20. The effect of acid rain stress on chlorophyll, peroxidase of the conservation of rare earth elements

    International Nuclear Information System (INIS)

    Chongling, Y.; Yetang, H.; Xianke, Y.; Shunzhen, F.; Shanql, W.

    1998-01-01

    Full text: Based on pot experiment, the effect of acid rain stress on chlorophyll, peroxidase of wheat, the relationship of them and the conservation of rare earth elements has been studied. The result showed: stress of acid rain resulted in decrease of chlorophyll content and a/b values, chlorophyll a/b value and chlorophyll content is positive correlation with pH value of acid rain: peroxidase activity was gradually rise with pH value decrease, which indirectly increased decomposition intensity of chlorophyll. Decreased content and a/b value of chlorophyll further speeded blade decay affected the transport and transformation of light energy and metabolism of carbohydrates. After being treated by rare earth elements content and pH value of chlorophyll and peroxidase activity could be relatively stable. Therefore, under lower acidity condition, rare earth elements can influence the effect of acid rain on chlorophyll and peroxidase activity of wheat

  1. Lead pollution: effects on chlorophyll. [Phalaris canariensis, Lemna minor, graminaceae

    Energy Technology Data Exchange (ETDEWEB)

    Fiussello, N

    1973-01-01

    The emissions of motors are responsible for the high concentrations of lead in soil and plants near roads. In man, when the concentration of lead in blood exceeds the value of 30 ..mu..g/100 ml, is shown a decrease of haemaglobin and an increase of ALA urinary content. Since the early stages of chlorophyll biosynthetic pathway are similar if not identical with those leading to haem as far as protoporphyrin IX, it is interesting to ascertain if lead can specifically interfere in chlorophyll biosynthesis. In sand cultures with 200 p.p.m. of lead (the conc. in roadside soils), after 2 weeks, wheat shows a diminution of 16,5% in fresh weight 7,5% in dry weight and 6,5% in chlorophyll; Phalaris canariensis shows a diminution of 68% f.w., 41% d.w. and 39% chl. in comparison with the controls. A water-plant, Lemna minor, is more sensitive: the chlorophyll content, referred to dry weight, shows after a week a diminution of 32% and 55% with 10/sup -4/M and 10/sup -3/M lead nitrate. Lead in 200 p.p.m. conc. is surely poisonous against the tested plants but a specific action on chlorophyll synthesis could be accepted, at present, only for Lemna minor. It is possible that in wheat and in Phalaris a part of lead is bound in root-system, the more damaged, while in Lemna it can reach more easily the chloroplasts. At present a detectable increase of ALA, in plants treated with lead, has not been proved both in Graminaceae and in Lemna minor.

  2. Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material.

    Directory of Open Access Journals (Sweden)

    John Hamblin

    Full Text Available Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed.

  3. Deep Learning

    DEFF Research Database (Denmark)

    Jensen, Morten Bornø; Bahnsen, Chris Holmberg; Nasrollahi, Kamal

    2018-01-01

    I løbet af de sidste 10 år er kunstige neurale netværk gået fra at være en støvet, udstødt tekno-logi til at spille en hovedrolle i udviklingen af kunstig intelligens. Dette fænomen kaldes deep learning og er inspireret af hjernens opbygning.......I løbet af de sidste 10 år er kunstige neurale netværk gået fra at være en støvet, udstødt tekno-logi til at spille en hovedrolle i udviklingen af kunstig intelligens. Dette fænomen kaldes deep learning og er inspireret af hjernens opbygning....

  4. Portable chlorophyll meter (PCM-502) values are related to total chlorophyll concentration and photosynthetic capacity in papaya (Carica papaya L.)

    Science.gov (United States)

    This study was carried out to verify the practical use of the portable chlorophyll meter-PCM502 (PCM) in two papaya cultivars with contrasting green coloring of the leaf blade (‘Golden’: yellowish-green; ‘Solo’: dark green). The relationship was studied between the photosynthetic process and leaf n...

  5. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  6. Effect of automobile pollution on chlorophyll content of roadside urban trees

    Directory of Open Access Journals (Sweden)

    M. Iqbal

    2015-09-01

    Full Text Available The effect of automobile pollution was determined on chlorophyll content of four different tree species viz. Azadirachta indica L., Conocarpus erectus L., Guiacum officinale L.and Eucalyptus sp. growing along the roads of the city.  Significant changes in the level of chlorophyll “a”, chlorophyll “b” and total chlorophyll “a+b” were found in the leaves of four tree species (A. indica, C. erectus, G.officinale and Eucalyptus sp. collected from polluted sites (Airport, Malir Halt, Quaidabad as compared to control site (Karachi University Campus. Lowest concentration of chlorophyll “a”, chlorophyll “b” and chlorophyll “a+b” was recorded in the leaf samples of all tree species collected from Quaidabad site when compared with the leaf samples collected from control site. The highest levels of chlorophyll pigment were recorded in all tree species leave samples collected from Karachi University Campus.  Similarly, better levels of chlorophyll “a”, chlorophyll “b” and total chlorophyll “a+b” was observed in all tree species growing at Airport site as compared to plants growing at Malir Halt and Quaidabad sites.  This study clearly indicated that the vehicular activities induced air pollution problem and affected on the level of chlorophyll pigments in trees which were exposed to road side pollution.

  7. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  8. Qtl mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage

    International Nuclear Information System (INIS)

    Ilyas, M.; Ilyas, N.; Arshad, M.; Kazi, A.G.

    2014-01-01

    Drought stress is one of the major environmental constraints to crop plants including wheat worldwide. Synthetic hexaploid can act as a vehicle for improving crop tolerance against biotic and abiotic stresses. Doubled haploid population consisting of one hundred and forty individuals derived from cross of Opata and SH223 was used in the present study to identify genomic regions associated with various quantitative attributes of physiological nature. Doubled haploid mapping population was phenotyped for chlorophyll content and chlorophyll fluorescence kinetics under control and drought stress imposed at anthesis stage. Genotyping of population was accomplished by utilizing two hundred and sixty one polymorphic Gaterslaben wheat microsatellites and Beltsville agriculture research center simple sequence repeats. Linkage map of doubled haploid population comprising of 19 linkage groups and covering map length of two thousands six hundred and twenty six (2626) cM was constructed using map maker software. Major and minor QTLs associated with quantitative traits were identified using QGene software. Major QTL for chlorophyll content (QTc.wwc-1B-S11) of doubled haploid mapping population under anthesis drought stress was mapped on chromosome 1B and explained 10.09 percent of phenotypic variation at LOD score of 5.5. Seven major and minor QTLs for PCFK of doubled haploids were identified on chromosome 1B, 7A and 7D under control and drought stress at anthesis stage. The identified QTLs are of prime importance for high resolution mapping in synthetic hexaploid wheat. Genomic synteny of doubled haploids was observed with rice chromosome 2, 4, 7 and maize chromosome 7 owing to occurrence of orthologous QTLs for chlorophyll content and chlorophyll fluorescence respectively. (author)

  9. Two-photon excited fluorescence from higher electronic states of chlorophylls in photosynthetic antenna complexes a new approach to detect strong excitonic chlorophyll a/b coupling

    CERN Document Server

    Leupold, D; Ehlert, J; Irrgang, K D; Renger, G; Lokstein, H

    2002-01-01

    Stepwise two-photon excitation of chlorophyll a and b in the higher plant main light-harvesting complex (LHC II) and the minor complex CP29 (as well as in organic solution) with 100-fs pulses in the Q/sub y/ region results in a weak blue fluorescence. The dependence of the spectral shape of the blue fluorescence on excitation wavelength offers a new approach to elucidate the long-standing problem of the origin of spectral "chlorophyll forms" in pigment-protein complexes, in particular the characterization of chlorophyll a/b-heterodimers. As a first result we present evidence for the existence of strong chlorophyll a/b-interactions (excitonically coupled transitions at 650 and 680 nm) in LHC II at ambient temperature. In comparison with LHC II, the experiments with CP29 provide further evidence that the lowest energy chlorophyll a transition (at ~680 nm) is not excitonically coupled to chlorophyll b. (22 refs).

  10. Hydrography and chlorophyll a in a transect from the coast to the shelf-break in the Argentinian Sea

    Science.gov (United States)

    Carreto, JoséI.; Lutz, Vivian A.; Carignan, Marco O.; Cucchi Colleoni, Angel D.; De Marco, Silvia G.

    1995-03-01

    On the basis of data obtained during eight research cruises from a section of the Buenos Aires province shelf, three systems are characterized: (1) coastal system; (2) subantarctic shelf waters system; and (3) Malvinas system. These domains are frequently separated by two quasipermanent fronts: (1) the coastal front; and (2) the shelf-break front. The patterns of seasonal variation of phytoplankton biomass in these systems are strongly related to changes in vertical stability, that controls the availability of nutrients and light energy. In the coastal system, the mixing produced by winds and tides gives homogenenous waters all year round, having the lowest nitrate concentration and the lowest N:P ratio. The amplitude of the seasonal variation of chlorophyll was relatively small, although the highest concetrations were detected in spring and autumn. The subantarctic shelf waters system is characterized by the typical development and breakdown cycle of the seasonal thermocline. Two well defined chlorophyll a maxima are observed: the main peak during spring and the secondary one during autumn. Geographical differences occur in the timing of the development and breakdown of the thermocline. Another factor of variability is the advection of low salinity waters from the coastal region of the Rio de la Plata during spring. During winter, when nutrient concentration is the highest, an increasing nitrate gradient from the coastal front to the shelf-break region is observed. During summer, surface nitrate concentration is low over the whole continental shelf, and the highest chlorophyll a concentrations are associated with the depth of the pycnocline. However, associated with the surface nitrate maximum, chlorophyll a values higher than 2 mg m -3 are recorded at the shelf-break front. The observed surface maxima are thought to be related to physical processes associated with the slope, where the enhanced mixing results in nutrient renewal and subsequent phytoplankton growth

  11. Effects of Dihydroartemisinin and Artemether on the Growth, Chlorophyll Fluorescence, and Extracellular Alkaline Phosphatase Activity of the Cyanobacterium Microcystis aeruginosa.

    Science.gov (United States)

    Wang, Shoubing; Xu, Ziran

    2016-01-01

    Increased eutrophication in the recent years has resulted in considerable research focus on identification of methods for preventing cyanobacterial blooms that are rapid and efficient. The objectives of this study were to investigate the effects of dihydroartemisinin and artemether on the growth of Microcystis aeruginosa and to elucidate its mode of action. Variations in cell density, chlorophyll a, soluble protein, malondialdehyde, extracellular alkaline phosphatase activity (APA), and chlorophyll fluorescence parameters (Fv/Fm, ΦPSII, ETR, rapid light curves, fast chlorophyll fluorescence curves on fluorescence intensity, and relative variable fluorescence) were evaluated by lab-cultured experiments. Our results demonstrated that both dihydroartemisinin and artemether inhibited the growth of M.aeruginosa by impairing the photosynthetic center in photosystem II and reducing extracellular APA, with a higher sensitivity exhibited toward artemether. The inhibitory effects of dihydroartemisinin on M.aeruginosa increased with concentration, and the maximum growth inhibitory rate was 42.17% at 24 mg·L-1 after 120h exposure, whereas it was 55.72% at 6 mg·L-1 artemetherafter 120h exposure. Moreover, the chlorophyll fluorescence was significantly inhibited (p<0.05) after 120h exposure to 12 and 24 mg·L-1 dihydroartemisinin. Furthermore, after 120h exposure to 6 mg·L-1 artemether, Fv/Fm, ΦPSII, ETR and rETRmax showed a significant decrease (p<0.01) from initial values of 0.490, 0.516, 17.333, and 104.800, respectively, to 0. One-way analysis of variance showed that 6 mg·L-1 artemether and 24 mg·L-1 dihydroartemisinin had significant inhibitory effects on extracellular APA (p<0.01). The results of this study would be useful to further studies to validate the feasibility of dihydroartemisinin and artemether treatment to inhibit overall cyanobacterial growth in water bodies, before this can be put into practice.

  12. Chlorophyll induced fluorescence retrieved from GOME2 for improving gross primary productivity estimates of vegetation

    Science.gov (United States)

    van Leth, Thomas C.; Verstraeten, Willem W.; Sanders, Abram F. J.

    2014-05-01

    Mapping terrestrial chlorophyll fluorescence is a crucial activity to obtain information on the functional status of vegetation and to improve estimates of light-use efficiency (LUE) and global primary productivity (GPP). GPP quantifies carbon fixation by plant ecosystems and is therefore an important parameter for budgeting terrestrial carbon cycles. Satellite remote sensing offers an excellent tool for investigating GPP in a spatially explicit fashion across different scales of observation. The GPP estimates, however, still remain largely uncertain due to biotic and abiotic factors that influence plant production. Sun-induced fluorescence has the ability to enhance our knowledge on how environmentally induced changes affect the LUE. This can be linked to optical derived remote sensing parameters thereby reducing the uncertainty in GPP estimates. Satellite measurements provide a relatively new perspective on global sun-induced fluorescence, enabling us to quantify spatial distributions and changes over time. Techniques have recently been developed to retrieve fluorescence emissions from hyperspectral satellite measurements. We use data from the Global Ozone Monitoring Instrument 2 (GOME2) to infer terrestrial fluorescence. The spectral signatures of three basic components atmospheric: absorption, surface reflectance, and fluorescence radiance are separated using reference measurements of non-fluorescent surfaces (desserts, deep oceans and ice) to solve for the atmospheric absorption. An empirically based principal component analysis (PCA) approach is applied similar to that of Joiner et al. (2013, ACP). Here we show our first global maps of the GOME2 retrievals of chlorophyll fluorescence. First results indicate fluorescence distributions that are similar with that obtained by GOSAT and GOME2 as reported by Joiner et al. (2013, ACP), although we find slightly higher values. In view of optimizing the fluorescence retrieval, we will show the effect of the references

  13. Improving the knowledge about dissolved oxygen and chlorophyll variability at ESTOC by using autonomous vehicles.

    Science.gov (United States)

    Cianca, A.; Caudet, E.; Vega, D.; Barrera, C.; Hernandez Brito, J.

    2016-02-01

    The European Station for Time Series in the Ocean, Canary Islands "ESTOC" is located in the Eastern Subtropical North Atlantic Gyre (29'10ºN, 15'30ºW). ESTOC started operations in 1994 based on a monthly ship-based sampling, in addition to hydrographic and sediment trap moorings. Since 2002, ESTOC is part of the European network for deep sea ocean observatories through several projects, among others ANIMATE (Atlantic Network of Interdisciplinary Moorings and Time-series for Europe), EuroSITES (European Ocean Observatory Network) and Fixed point Open Ocean Observatory network (FixO3). The main purpose of these projects was to improve the time-resolution of the biogeochemical measurements through moored biogeochemical sensors. Additionally, ESTOC is included in the Marine-Maritime observational network of the Macaronesian region, which is supported by the European overseas territories programs since 2009. This network aims to increase the quantity and quality of marine environmental observations. The goal is to understand phenomena which impact in the environment, and consequently at the socio-economy of the region to attempt their prediction. With this purpose, ESTOC has included the use of autonomous vehicles "glider" in order to increase the observational resolution and, by comparison with the parallel observational programs, to study the biogeochemical processes at different time scale resolutions. This study investigates the time variability of the dissolved oxygen and chlorophyll distributions in the water column focusing on the diel cycle, looking at the relevance of this variability in the already known seasonal distributions. Our interest is assessing net community production and remineralization rates through the use of oxygen variations, establishing the relationship between the DO anomalies values and those from the chlorophyll distribution in the water column.

  14. Cylindrical aggregates of chlorophylls studied by small-angle neutron scatter

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L. [Univ. of Missouri, Columbus, MO (United States); Katz, J.J. [Argonne National Laboratory, IL (United States)

    1994-12-31

    Neutron small-angle scattering has demonstrated tubular chlorophyll aggregates formed by self-assembly of a variety of chlorophyll types in nonpolar solvents. The size and other properties of the tubular aggregates can be accounted for by stereochemical properties of the chlorophyll molecules. Features of some of the structures are remarkably similar to light harvesting chlorophyll complexes in vivo, particularly for photosynthetic bacteria. These nanotube chlorophyll structures may have applications as light harvesting biomaterials where efficient energy transfer occurs from an excited state which is highly delocalized.

  15. Synthesis of chlorophyll-c derivatives by modifying natural chlorophyll-a.

    Science.gov (United States)

    Xu, Meiyun; Kinoshita, Yusuke; Matsubara, Shogo; Tamiaki, Hitoshi

    2016-03-01

    Chlorophyll-a (Chl-a) was extracted from cyanobacterial cells and modified to methyl pyropheophorbide-a. The 3-vinyl-chlorin was transformed to zinc complex of the corresponding 3-acetyl-porphyrin. The zinc porphyrin was oxidized to give cis-7,8- and 17,18-dihydroxy-chlorins as well cis-7,8-cis-17,18-tetrahydroxybacteriochlorin. After zinc-demetallation, the isolated cis-7,8- and 17,18-diols were reduced at the 3-acetyl group and triply dehydrated under acidic conditions to afford two regioisomeric 3-vinyl-porphyrins, methyl divinyl-pyroprotopheophorbide-a possessing the 8-vinyl group and 17-propionate residue (one of the divinyl-protoChl-a derivatives) and methyl pyropheophorbide-c 1 possessing the 8-ethyl group and 17-acrylate residue (one of the Chl-c 1 derivatives), respectively. The resulting 7,8,17,18-tetrol was reduced and then acidically treated, giving five-fold dehydrated free base porphyrin, methyl pyropheophorbide-c 2 possessing the 3,8-divinyl groups and 17-acrylate residue (one of the Chl-c 2 derivatives). The visible absorption and fluorescence emission spectra of the three semi-synthetic 3-vinyl-porphyrins in dichloromethane were compared with those of the corresponding 8-ethyl-porphyrin bearing the 17-propionate residue, methyl pyroprotopheophorbide-a (one of the protoChl-a derivatives). The Soret and Qy absorption maxima were shifted to longer wavelengths with an increase of π-conjugation in a molecule: protoChl-a (8-CH2CH3/17-CH2CH2COOCH3) < divinyl-protoChl-a (8-CH=CH2/17-CH2CH2COOCH3) < Chl-c 1 (8-CH2CH3/17-CH=CHCOOCH3) < Chl-c 2 derivatives (8-CH=CH2/17-CH=CHCOOCH3). The 17(1),17(2)-dehydrogenation broadened the absorption bands. The emission maxima were bathochromically shifted in the same order. The reaction mechanism of the present dehydration indicates that the biosynthetic pathway of Chls-c would include the hydroxylation of the 17-propionate reside at the 17(1)-position and successive dehydration to the 17-acrylate residue.

  16. Deep smarts.

    Science.gov (United States)

    Leonard, Dorothy; Swap, Walter

    2004-09-01

    When a person sizes up a complex situation and rapidly comes to a decision that proves to be not just good but brilliant, you think, "That was smart." After you watch him do this a few times, you realize you're in the presence of something special. It's not raw brainpower, though that helps. It's not emotional intelligence, either, though that, too, is often involved. It's deep smarts. Deep smarts are not philosophical--they're not"wisdom" in that sense, but they're as close to wisdom as business gets. You see them in the manager who understands when and how to move into a new international market, in the executive who knows just what kind of talk to give when her organization is in crisis, in the technician who can track a product failure back to an interaction between independently produced elements. These are people whose knowledge would be hard to purchase on the open market. Their insight is based on know-how more than on know-what; it comprises a system view as well as expertise in individual areas. Because deep smarts are experienced based and often context specific, they can't be produced overnight or readily imported into an organization. It takes years for an individual to develop them--and no time at all for an organization to lose them when a valued veteran walks out the door. They can be taught, however, with the right techniques. Drawing on their forthcoming book Deep Smarts, Dorothy Leonard and Walter Swap say the best way to transfer such expertise to novices--and, on a larger scale, to make individual knowledge institutional--isn't through PowerPoint slides, a Web site of best practices, online training, project reports, or lectures. Rather, the sage needs to teach the neophyte individually how to draw wisdom from experience. Companies have to be willing to dedicate time and effort to such extensive training, but the investment more than pays for itself.

  17. Multifractal analysis of oceanic chlorophyll maps remotely sensed from space

    Directory of Open Access Journals (Sweden)

    L. de Montera

    2011-03-01

    Full Text Available Phytoplankton patchiness has been investigated with multifractal analysis techniques. We analyzed oceanic chlorophyll maps, measured by the SeaWiFS orbiting sensor, which are considered to be good proxies for phytoplankton. The study area is the Senegalo-Mauritanian upwelling region, because it has a low cloud cover and high chlorophyll concentrations. Multifractal properties are observed, from the sub-mesoscale up to the mesoscale, and are found to be consistent with the Corssin-Obukhov scale law of passive scalars. This result indicates that, in this specific region and within this scale range, turbulent mixing would be the dominant effect leading to the observed variability of phytoplankton fields. Finally, it is shown that multifractal patchiness can be responsible for significant biases in the nonlinear source and sink terms involved in biogeochemical numerical models.

  18. [Vegetation index estimation by chlorophyll content of grassland based on spectral analysis].

    Science.gov (United States)

    Xiao, Han; Chen, Xiu-Wan; Yang, Zhen-Yu; Li, Huai-Yu; Zhu, Han

    2014-11-01

    Comparing the methods of existing remote sensing research on the estimation of chlorophyll content, the present paper confirms that the vegetation index is one of the most practical and popular research methods. In recent years, the increasingly serious problem of grassland degradation. This paper, firstly, analyzes the measured reflectance spectral curve and its first derivative curve in the grasslands of Songpan, Sichuan and Gongger, Inner Mongolia, conducts correlation analysis between these two spectral curves and chlorophyll content, and finds out the regulation between REP (red edge position) and grassland chlorophyll content, that is, the higher the chlorophyll content is, the higher the REIP (red-edge inflection point) value would be. Then, this paper constructs GCI (grassland chlorophyll index) and selects the most suitable band for retrieval. Finally, this paper calculates the GCI by the use of satellite hyperspectral image, conducts the verification and accuracy analysis of the calculation results compared with chlorophyll content data collected from field of twice experiments. The result shows that for grassland chlorophyll content, GCI has stronger sensitivity than other indices of chlorophyll, and has higher estimation accuracy. GCI is the first proposed to estimate the grassland chlorophyll content, and has wide application potential for the remote sensing retrieval of grassland chlorophyll content. In addition, the grassland chlorophyll content estimation method based on remote sensing retrieval in this paper provides new research ideas for other vegetation biochemical parameters' estimation, vegetation growth status' evaluation and grassland ecological environment change's monitoring.

  19. Estimate of Leaf Chlorophyll and Nitrogen Content in Asian Pear (Pyrus serotina Rehd. by CCM-200

    Directory of Open Access Journals (Sweden)

    Mostafa GHASEMI

    2011-03-01

    Full Text Available In many cases evaluation of chlorophyll and nitrogen content in plants need to destructive methods, more time and organic solvents. Application of chlorophyll meters save time and resources. The aim of this study was estimating of chlorophyll and nitrogen content in Asian pear leaves using non-destructive method and rapid quantification of chlorophyll by chlorophyll content meter (CCM-200. This study was conducted on 8 years old Asian pear trees during June 2008 in Tehran, Iran. To develop our regression model, the chlorophyll meter data were correlated with extracted chlorophyll and nitrogen content data obtained from DMSO and Kejeldal methods, respectively. The results showed that, there was positive and linear correlation between CCM-200 data and chlorophyll a (R�=0.7183, chlorophyll b (R�=0.8523, total chlorophyll (R�=0.90, and total nitrogen content (R�=0.76 in Asian pear leaves. Thus, it can be concluded that, CCM-200 can be used in order to predict both chlorophyll and nitrogen content in Asian pear leaves.

  20. Notes on the instability of extracted chlorophyll and a reported effect of ozone on lichen algae

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D H

    1980-01-01

    Recently Rosentreter and Ahmadjian reported on the effects of ozone on the chlorophyll content of Cladonia arbuscula and isolated Trebouxia cells. However, the chlorophyll data they presented, even for the control, unozone-treated material, appears to be unusual. They reported values of the chlorophyll a/b ratio of 0.308-0.463 from Cladonia arbuscula and 0.345-0.476 for Trebouxia which are substantially lower than other published values. Because chlorophyll b is normally present in green plants as a minor accessory photosynthetic pigment, the suggestion that it was the major chlorophyll component requires some explanation. The purpose of this study is to show that chlorophyll is unstable when extracted into methanol and to suggest that the extraction and storage conditions used by Rosentreter and Ahmadjian may have allowed pigment degradation to occur which thereby accounted for the low chlorophyll a/b ratios they obtained.

  1. Preliminary study of internal wave effects to chlorophyll distribution in the Lombok Strait and adjacent areas

    Science.gov (United States)

    Arvelyna, Yessy; Oshima, Masaki

    2005-01-01

    This paper studies the effect of internal wave in the Lombok Strait to chlorophyll distribution in the surrounded areas using ERS SAR, ASTER, SeaWiFS and AVHRR-NOAA images data during 1996-2004 periods. The observation results shows that the internal waves were propagated to the south and the north of strait and mostly occurred during transitional season from dry to wet and wet season (rainy season) between September to December when the layers are strongly stratified. Wavelet transform of image using Meyer wavelet analysis is applied for internal wave detection in ERS SAR and ASTER images, for symmetric extension of data at the image boundaries, to prevent discontinuities by a periodic wrapping of data in fast algorithm and space-saving code. Internal wave created elongated pattern in detail and approximation of image from level 2 to 5 and retained value between 2-4.59 times compared to sea surface, provided accuracy in classification over than 80%. In segmentation process, the Canny edge detector is applied on the approximation image at level two to derive internal wave signature in image. The proposed method can extract the internal wave signature, maintain the continuity of crest line while reduce small strikes from noise. The segmentation result, i.e. the length between crest and trough, is used to compute the internal wave induced current using Korteweg-de Vries (KdV) equation. On ERS SAR data contains surface signature of internal wave (2001/8/20), we calculated that internal wave propagation speed was 1.2 m/s and internal wave induced current was 0.56 m/s, respectively. From the observation of ERS SAR and SeaWiFS images data, we found out that the distribution of maximum chlorophyll area at southern coastline off Bali Island when strong internal wave induced current occurred in south of the Lombok Strait was distributed further to westward, i.e. from 9.25°-10.25°LS, 115°-116.25°SE to 8.8°-10.7°LS, 114.5°-116°SE, and surface chlorophyll concentration

  2. Gas exchange and chlorophyll a fluorescence parameters of ornamental bromeliads

    Directory of Open Access Journals (Sweden)

    Karina Gonçalves da Silva

    2017-10-01

    Full Text Available Gas exchange and chlorophyll a fluorescence are widely used in physiological and ecological studies; however, few studies have used these techniques with ornamental plants. This study tested the potential contribution of gas exchange and chlorophyll a fluorescence to evaluate the water and nutrients uptake by the tank and root system of epiphyte bromeliad Guzmania lingulata. For this purpose, we conducted an experiment with different water regime and another with different concentrations of nitrogen. The experiments were: 1 - Watering: Control (application of water into Tank and Root, Tank (watering into Tank, Root (watering Root and Drought (water suspension during the 90 days of experimentation and 2 - Nitrogen: Plants fertilized with Hoagland and Arnon nutrient solution exclusively into Tank or Root with nitrogen concentrations of control and 2.62 or 5.34 mM N applied as urea. The Fv /Fm ratio allowed comparing the treatments between experiments, demonstrating that Root and Tank both have the capacity to maintain G. lingulata photosynthetic activity and growth, while Drought treatment (water suspension was the limiting factor for energy conversion efficiency of PSII. However, gas exchange was more permissive as a parameter for comparing treatments in the nitrogen experiment, providing important information about the general aspects of the photosynthetic process in the watering experiment. Both gas exchange and chlorophyll a fluorescence can support the evaluation of G. lingulata physiological status and can be useful tools in ornamental horticultural studies.

  3. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  4. Linking mesopelagic prey abundance and distribution to the foraging behavior of a deep-diving predator, the northern elephant seal

    Science.gov (United States)

    Saijo, Daisuke; Mitani, Yoko; Abe, Takuzo; Sasaki, Hiroko; Goetsch, Chandra; Costa, Daniel P.; Miyashita, Kazushi

    2017-06-01

    The Transition Zone in the eastern North Pacific is important foraging habitat for many marine predators. Further, the mesopelagic depths (200-1000 m) host an abundant prey resource known as the deep scattering layer that supports deep diving predators, such as northern elephant seals, beaked whales, and sperm whales. Female northern elephant seals (Mirounga angustirostris) undertake biannual foraging migrations to this region where they feed on mesopelagic fish and squid; however, in situ measurements of prey distribution and abundance, as well as the subsurface oceanographic features in the mesopelagic Transition Zone are limited. While concurrently tracking female elephant seals during their post-molt migration, we conducted a ship-based oceanographic and hydroacoustic survey and used mesopelagic mid-water trawls to sample the deep scattering layer. We found that the abundance of mesopelagic fish at 400-600 m depth zone was the highest in the 43 °N zone, the primary foraging area of female seals. We identified twenty-nine families of fishes from the mid-water trawls, with energy-rich myctophid fishes dominating by species number, individual number, and wet weight. Biomass of mesopelagic fishes is positively correlated to annual net primary productivity; however, at the temporal and spatial scale of our study, we found no relationship between satellite derived surface primary production and prey density. Instead, we found that the subsurface chlorophyll maximum correlated with the primary elephant seal foraging regions, indicating a stronger linkage between mesopelagic ecosystem dynamics and subsurface features rather than the surface features measured with satellites. Our study not only provides insights on prey distribution in a little-studied deep ocean ecosystem, but shows that northern elephant seals are targeting the dense, species-diverse mesopelagic ecosystem at the gyre-gyre boundary that was previously inferred from their diving behavior.

  5. Growth and content of Spirulina platensis biomass chlorophyll cultivated at different values of light intensity and temperature using different nitrogen sources

    Directory of Open Access Journals (Sweden)

    Eliane Dalva Godoy Danesi

    2011-03-01

    Full Text Available The effects of light intensity and temperature in S. platensis cultivation with potassium nitrate or urea as nitrogen source were investigated, as well as the biomass chlorophyll contents of this cyanobacteria, through the Response Surface Methodology. Experiments were performed at temperatures from 25 to 34.5ºC and light intensities from 15 to 69 µmol photons m-2 s-1, in mineral medium. In cultivations with both sources of nitrogen, KNO3 and urea, statistic evaluation through multiple regression, no interactions of such independent variables were detected in the results of the dependent variables maximum cell concentration, chlorophyll biomass contents, cell and chlorophyll productivities, as well as in the nitrogen-cell conversion factor. In cultivation performed with both sources of nitrogen, it was possible to obtain satisfactory adjustments to relate the dependent variables to the independent variables. The best results were achieved at temperature of 30ºC, at light intensity of 60 µmol photons m-2s-1, for cell growth, with cell productivity of approximately 95 mg L-1 d-1 in cultivations with urea. For the chlorophyll biomass content, the most adequate light intensity was 24 µmol photons m-2 s-1.

  6. The Effect of Irrigation and Nitrogen on Growth Attributes and Chlorophyll Content of Garlic in Line Source Sprinkler Irrigation System

    Directory of Open Access Journals (Sweden)

    rahim motalebifard

    2017-02-01

    in fresh leaf samples using spectrophotometer at 645 and 663 nm. Data were subjected to analysis of variance using MSTATC and SPSS softwares. Duncan’s multiple range test at p≤0.05 probability level was applied to compare the mean values of measured attributes. The Excel software (Excel software 2007, Microsoft Inc., WA, USA was used to draw Figures. Results and Discussion: The results showed that, the application of nitrogen significantly affected most of measured attributes. The application of 150 kg N per ha showed highest stem height (40.5 cm, dry weight of stem (5.34 g,wet weight of stem (69.5 g, chlorophyll index (49.7,chlorophyll a (9.8 mg.g-1dw and chlorophyll b (4.04 mg.g-1dw and increased stem height, dry and wet weight of stem, chlorophyll index and chlorophyll a and b around 7, 6, 7, 12, 22 and 36 percent, respectively. The irrigation levels significantly affected most of measured attributes similar to the nitrogen levels. The application of 409 mm irrigation water per growing season resulted to maximum stem height (41.9 cm, leaf number (7.5, dry weight of stem (5.39 g and wet weight of stem (70.1 g, chlorophyll index (50.5 and chlorophyll a (10.2 mg.g-1dw and chlorophyll b (4.04 mg.g-1dw. The severe water deficit (application of 138 mm irrigation water per growing season decreased stem height, leaf numbers, dry and wet weight of stem, chlorophyll index and chlorophyll a and b about 13, 36, 12, 12, 19, 42 and 44 percent, respectively. The two way interaction of nitrogen and irrigation was significant and mostly synergistic on wet and dry weight of stem. The highest amounts of stem wet weight (73.2 g and stem dry weight (5.63 g were resulted from application of 150 kg nitrogen per ha under full irrigated condition that increased dry and wet weight of stem 17 and 25 percent respectively comparing with without nitrogen application under sever water deficit condition. Application of 409 mm irrigation and 100 kg N per ha is suitable for condition that

  7. STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis[C][W

    Science.gov (United States)

    Sakuraba, Yasuhito; Schelbert, Silvia; Park, So-Yon; Han, Su-Hyun; Lee, Byoung-Doo; Andrès, Céline Besagni; Kessler, Felix; Hörtensteiner, Stefan; Paek, Nam-Chon

    2012-01-01

    During leaf senescence, plants degrade chlorophyll to colorless linear tetrapyrroles that are stored in the vacuole of senescing cells. The early steps of chlorophyll breakdown occur in plastids. To date, five chlorophyll catabolic enzymes (CCEs), NONYELLOW COLORING1 (NYC1), NYC1-LIKE, pheophytinase, pheophorbide a oxygenase (PAO), and red chlorophyll catabolite reductase, have been identified; these enzymes catalyze the stepwise degradation of chlorophyll to a fluorescent intermediate, pFCC, which is then exported from the plastid. In addition, STAY-GREEN (SGR), Mendel’s green cotyledon gene encoding a chloroplast protein, is required for the initiation of chlorophyll breakdown in plastids. Senescence-induced SGR binds to light-harvesting complex II (LHCII), but its exact role remains elusive. Here, we show that all five CCEs also specifically interact with LHCII. In addition, SGR and CCEs interact directly or indirectly with each other at LHCII, and SGR is essential for recruiting CCEs in senescing chloroplasts. PAO, which had been attributed to the inner envelope, is found to localize in the thylakoid membrane. These data indicate a predominant role for the SGR-CCE-LHCII protein interaction in the breakdown of LHCII-located chlorophyll, likely to allow metabolic channeling of phototoxic chlorophyll breakdown intermediates upstream of nontoxic pFCC. PMID:22366162

  8. [Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca Quercus glauca].

    Science.gov (United States)

    Wang, Sai; Yi, Li-Ta; Yu, Shu-Quan; Zhang, Chao; Shi, Jing-Jing

    2014-08-01

    At three levels of simulated acid rainfall intensities with pH values of 2.5 (severe), 40 (medium) and 5.6 (light) respectively, the responses of chlorophyll fluorescence and photosynthetic parameters of Quercus glauca seedlings were studied in three acid rainfall treatments, i. e. only the aboveground of seedlings exposed to acid rain (T1), both of the seedlings and soil exposed to acid rain (T2), only the soil exposed to acid rain (T3) compared with blank control (CK). Under the severe acid rainfall, T1 significantly inhibited chlorophyll synthesis, and thus reduced the primary photochemical efficiency of PS II ( F(v)/F(m)), potential activity of PS II (F(v)/F(o)) , apparent quantum (Y), net photosynthetic rate (P(n)), and transpiration rate (T(r)), but increased the light compensation point (LCP) and dark respiration rate (R(d)) of Q. glauca seedlings. T2 inhibited, but T3 played a little enhancement on the aforementioned parameters of Q. glauca seedlings. Under the conditions of medium and light acid rainfall intensities, the above parameters in the three treatments were higher than that of CK, except with lower R(d). The chlorophyll fluorescence and photosynthetic parameters showed a similar tendency in the three treatments, i. e. T2>T3 >T1. It indicated that T1 had the strongest inhibition on seedlings in condition of the severe acid rainfall, while T2 had the most dramatic facilitating effect on seedlings under the medium and light acid rainfall. Intensity of acid rainfall had significant influences on SPAD, F(v)/F(m), F(v)/F(o), Y, P(n), T(r), and maximum photosynthetic rate (A(max)), whereas treatments of acid rainfall affected SPAD, F(v)/F(m), Y, P(n), T(r), A(max) and light saturation point (LSP). The interaction of acid rainfall intensities and treatments played significant effects on SPAD, F(v)/F(m), Y, P(n) and A(max).

  9. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  10. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  11. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  12. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  13. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  14. [Estimation of forest canopy chlorophyll content based on PROSPECT and SAIL models].

    Science.gov (United States)

    Yang, Xi-guang; Fan, Wen-yi; Yu, Ying

    2010-11-01

    The forest canopy chlorophyll content directly reflects the health and stress of forest. The accurate estimation of the forest canopy chlorophyll content is a significant foundation for researching forest ecosystem cycle models. In the present paper, the inversion of the forest canopy chlorophyll content was based on PROSPECT and SAIL models from the physical mechanism angle. First, leaf spectrum and canopy spectrum were simulated by PROSPECT and SAIL models respectively. And leaf chlorophyll content look-up-table was established for leaf chlorophyll content retrieval. Then leaf chlorophyll content was converted into canopy chlorophyll content by Leaf Area Index (LAD). Finally, canopy chlorophyll content was estimated from Hyperion image. The results indicated that the main effect bands of chlorophyll content were 400-900 nm, the simulation of leaf and canopy spectrum by PROSPECT and SAIL models fit better with the measured spectrum with 7.06% and 16.49% relative error respectively, the RMSE of LAI inversion was 0. 542 6 and the forest canopy chlorophyll content was estimated better by PROSPECT and SAIL models with precision = 77.02%.

  15. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  16. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  17. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  18. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  19. Oceanic turbidity and chlorophyll as inferred from ERTS-1 observations

    Science.gov (United States)

    Curran, R. J.

    1973-01-01

    Spectral signatures of phytoplankton and other obscuring effects are considered in order to determine how to best use satellite data. The results of this study were then used to analyze the spectral data obtained from the ERTS-1 multispectral scanner (MSS). The analyzed satellite data were finally compared with surface ship measurements of chlorophyll concentration. It was found that the effects of water turbidity on the multispectral imagery can be discriminated by rationing the two shortest wavelength channels so that the effect of phytoplankton is enhanced.

  20. Influence of water-based ferrofluid upon chlorophylls in cereals

    Energy Technology Data Exchange (ETDEWEB)

    Racuciu, Mihaela [Lucian Blaga University, Faculty of Science, 10 Blvd. Victoriei, Sibiu, 550012 (Romania)]. E-mail: mracuciu@yahoo.com; Creanga, Dorina-Emilia [Al. I. Cuza University, Faculty of Physics, 11A Blvd.Copou, Iasi, 700506 (Romania)

    2007-04-15

    The present experimental investigation was focused on the study of the simultaneous influence of the water-based ferrofluid and static magnetic field exposure on young cereal plants. Water-based ferrofluid, stabilized with citric acid was added daily in various concentrations, ranging between 10 and 250 {mu}L/L, in the culture medium of maize (Zea mays) plants in their early ontogenetic stages. The used static magnetic field was about 50 mT. In order to investigate the biochemical changes of chlorophylls and total carotenoids, spectrophotometric measurements were carried out, that revealed stimulatory effects of ferrofluid and magnetic exposure upon the studied plant species.

  1. Influence of water-based ferrofluid upon chlorophylls in cereals

    International Nuclear Information System (INIS)

    Racuciu, Mihaela; Creanga, Dorina-Emilia

    2007-01-01

    The present experimental investigation was focused on the study of the simultaneous influence of the water-based ferrofluid and static magnetic field exposure on young cereal plants. Water-based ferrofluid, stabilized with citric acid was added daily in various concentrations, ranging between 10 and 250 μL/L, in the culture medium of maize (Zea mays) plants in their early ontogenetic stages. The used static magnetic field was about 50 mT. In order to investigate the biochemical changes of chlorophylls and total carotenoids, spectrophotometric measurements were carried out, that revealed stimulatory effects of ferrofluid and magnetic exposure upon the studied plant species

  2. Simple heterogeneity parametrization for sea surface temperature and chlorophyll

    Science.gov (United States)

    Skákala, Jozef; Smyth, Timothy J.

    2016-06-01

    Using satellite maps this paper offers a complex analysis of chlorophyll & SST heterogeneity in the shelf seas around the southwest of the UK. The heterogeneity scaling follows a simple power law and is consequently parametrized by two parameters. It is shown that in most cases these two parameters vary only relatively little with time. The paper offers a detailed comparison of field heterogeneity between different regions. How much heterogeneity is in each region preserved in the annual median data is also determined. The paper explicitly demonstrates how one can use these results to calculate representative measurement area for in situ networks.

  3. Role of chlorophylls, amino acids and sugars in tea

    International Nuclear Information System (INIS)

    Dev Choudhury, M.N.

    1980-01-01

    Plucked tea shoots from clones of different varieties of tea were withered, rolled, fermented and fired by CTC and orthodox methods of manufacture. Quantitative changes in the levels of chlorophylls, amino acids and water soluble sugars during different stages of processing of tea and also changes in the contents of their degradation products were studied by feeding 14 C-labelled phenylalanine, glucose, sodium carbonate and sodium propionate to the excised shoots and subsequently analysing the products. Results are discussed and suggestions have been made about adjusting the conditions of manufacture so that the teas with desired chemical constituents are produced. (M.G.B.)

  4. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-09-01

    Full Text Available Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  5. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-01-01

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel. PMID:27618070

  6. A Saponification Method for Chlorophyll Removal from Microalgae Biomass as Oil Feedstock.

    Science.gov (United States)

    Li, Tao; Xu, Jin; Wu, Hualian; Wang, Guanghua; Dai, Shikun; Fan, Jiewei; He, Hui; Xiang, Wenzhou

    2016-09-07

    Microalgae oil is an optimal feedstock for nutraceutical, pharmaceutical and biodiesel production, but its high levels of chlorophyll limit its large-scale application. To date, few effective approaches have been developed to remove chlorophyll from microalgae oil. The main purpose of this study was to present a preprocessing method of algae oil feedstock (Scenedesmus) to remove chlorophyll by saponification. The results showed that 96% of chlorophyll in biomass was removed. High quality orange transparent oil could be extracted from the chlorophyll reduced biomass. Specifically, the proportion of neutral lipids and saturation levels of fatty acids increased, and the pigments composition became carotenoids-based. The critical parameters of chlorophyll reduced biodiesel conformed to the standards of the USA, China and EU. Sodium copper chlorophyllin could be prepared from the bleaching effluent. The results presented herein offer a useful pathway to improve the quality of microalgae oil and reduce the cost of microalgae biodiesel.

  7. Identification and genetic assay of a high-chlorophyll-content mutant in Rice

    International Nuclear Information System (INIS)

    Liu Baofu; Chen Xifeng; Jin Yang; Gu Zhimin; Ma Bojun; Zhu Xudong

    2011-01-01

    A deep rice mutant ZM1120 was screened from the γ-rays irradiation mutation library of Zhonghua 11. Compared to the wild-type control, this mutant were darker (greener) in shoots and leaves, and after sowing 60 and 90 d, the content of chlorophyll were increased by 16.0% and 7.2%, respectively, and the content of carotenoid also increased by 23.1% and 24.2%, respectively. After sowing 90 d the net photosynthetic rate and transpiration rate were increased by 16.3% and 11.4%, respectively. The agronomical traits of this mutant significantly changed, and the traits of plant height, flag-leaf length, flag-leaf width, tiller number per plant, panicle length and setting rate decreased, but the grain length and 1000-grain weight increased by 7.9% and 2.6%. Genetic analysis revealed that the mutation phenotype was controlled by a single recessive nuclear gene, and further cloning and function assay will be useful for understanding the mechanism of photosynthesis and for rice breeding in future. (authors)

  8. Time-resolved interaction investigations of carbocyanine dyes and chlorophyll a in solution

    International Nuclear Information System (INIS)

    Feller, K.H.; Fassler, D.

    1983-01-01

    Using a Nd:YAG laser/streak camera system of 30 ps time resolution the quenching of the fluorescence of the carbocyanine dye ICC by chlorophyll a in methanolic solution was investigated. The fluorescence lifetime of ICC decreased within the chlorophyll concentration range 0 - 9x10 - 5 mol/l from 170 ps to 135 ps. The observed very effective fluorescence quenching process suggests that the formation of heteroaggregates from ICC and chlorophyll is responsible for the rapid energy transfer. (author)

  9. Chlorophyll metabolism in pollinated vs. parthenocarpic fig fruits throughout development and ripening.

    Science.gov (United States)

    Rosianskey, Yogev; Dahan, Yardena; Yadav, Sharawan; Freiman, Zohar E; Milo-Cochavi, Shira; Kerem, Zohar; Eyal, Yoram; Flaishman, Moshe A

    2016-08-01

    Expression of 13 genes encoding chlorophyll biosynthesis and degradation was evaluated. Chlorophyll degradation was differentially regulated in pollinated and parthenocarpic fig fruits, leading to earlier chlorophyll degradation in parthenocarpic fruits. Varieties of the common fig typically yield a commercial summer crop that requires no pollination, although it can be pollinated. Fig fruit pollination results in larger fruit size, greener skin and darker interior inflorescence color, and slows the ripening process compared to non-pollinated fruits. We evaluated the effect of pollination on chlorophyll content and levels of transcripts encoding enzymes of the chlorophyll metabolism in fruits of the common fig 'Brown Turkey'. We cloned and evaluated the expression of 13 different genes. All 13 genes showed high expression in the fruit skin, inflorescences and leaves, but extremely low expression in roots. Pollination delayed chlorophyll breakdown in the ripening fruit skin and inflorescences. This was correlated with the expression of genes encoding enzymes in the chlorophyll biosynthesis and degradation pathways. Expression of pheophorbide a oxygenase (PAO) was strongly negatively correlated with chlorophyll levels during ripening in pollinated fruits; along with its high expression levels in yellow leaves, this supports a pivotal role for PAO in chlorophyll degradation in figs. Normalizing expression levels of all chlorophyll metabolism genes in the pollinated and parthenocarpic fruit skin and inflorescences showed three synthesis (FcGluTR1, FcGluTR2 and FcCLS1) and three degradation (FcCLH1, FcCLH2 and FcRCCR1) genes with different temporal expression in the pollinated vs. parthenocarpic fruit skin and inflorescences. FcCAO also showed different expressions in the parthenocarpic fruit skin. Thus, chlorophyll degradation is differentially regulated in the pollinated and parthenocarpic fruit skin and inflorescences, leading to earlier and more sustained

  10. Rapid assessment of water pollution by airborne measurement of chlorophyll content.

    Science.gov (United States)

    Arvesen, J. C.; Weaver, E. C.; Millard, J. P.

    1971-01-01

    Present techniques of airborne chlorophyll measurement are discussed as an approach to water pollution assessment. The differential radiometer, the chlorophyll correlation radiometer, and an infrared radiometer for water temperature measurements are described as the key components of the equipment. Also covered are flight missions carried out to evaluate the capability of the chlorophyll correlation radiometer in measuring the chlorophyll content in water bodies with widely different levels of nutrients, such as fresh-water lakes of high and low eutrophic levels, marine waters of high and low productivity, and an estuary with a high sediment content. The feasibility and usefulness of these techniques are indicated.

  11. Effect of gamma radiation on chlorophylls contents, net photosynthesis and respiration of chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Martin Moreno, C.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first 'b' chlorophyll affected to a greater extent than 'a' chlorophyll. Net photosynthesis and respiration decline throughout the time of the observations after irradiation, this depressing effect being much more remarkable for the first one. Net photosynthesis inhibition levels of about 30% have got only five hours post irradiation at a dose of 5000 Gy. (author)

  12. Chlorophyll bleaching by UV-irradiation in vitro and in situ: Absorption and fluorescence studies

    International Nuclear Information System (INIS)

    Zvezdanovic, Jelena; Cvetic, Tijana; Veljovic-Jovanovic, Sonja; Markovic, Dejan

    2009-01-01

    Chlorophyll bleaching by UV-irradiation has been studied by absorbance and fluorescence spectroscopy in extracts containing mixtures of photosynthetic pigments, in acetone and n-hexane solutions, and in aqueous thylakoid suspensions. Chlorophyll undergoes destruction (bleaching) accompanied by fluorescent transient formation obeying first-order kinetics. The bleaching is governed by UV-photon energy input, as well as by different chlorophyll molecular organizations in solvents of different polarities (in vitro), and in thylakoids (in situ). UV-C-induced bleaching of chlorophylls in thylakoids is probably caused by different mechanisms compared to UV-A- and UV-B-induced bleaching

  13. The effects of heavy metal ions on the chlorophyll content and cell membrane permeability of charophytes

    International Nuclear Information System (INIS)

    Fu Hualong; Chen Hao; Dong Bin; Qing Renwei

    2001-01-01

    The authors studied the effects of several heavy metal ions in different concentrations (Cd 2+ , Hg 2+ , Pb 2+ , Cr 6+ ) on the chlorophyll content and cell membrane permeability of Chara vulgaris L. It was discovered that the effects of heavy metal ions on the chlorophyll content and cell membrane permeability of Chara vulgaris L. changed with their different concentration. The trend was that the chlorophyll content and cell membrane permeability were decreased with the increase of the heavy metal ions. The degree of chlorophyll content affected was Cr 6+ , Cd 2+ , Hg 2+ , Pb 2+ , and that of cell membrane permeability affected was Cd 2+ , Cr 6+ , Hg 2+ , Pb 2+

  14. Instability of chlorophyll in yellow lupin seedlings grown in soil contaminated with ciprofloxacin and tetracycline.

    Science.gov (United States)

    Rydzyński, Dariusz; Piotrowicz-Cieślak, Agnieszka I; Grajek, Hanna; Michalczyk, Dariusz J

    2017-10-01

    With increasing soil concentrations of ciprofloxacin and tetracycline a decrease of leaf chlorophyll content was observed. Tetracycline was more detrimental than ciprofloxacin. The chlorophyll content in plants growing for ten days on a tetracycline containing soil decreased by 68%. The decrease of chlorophyll concentration was even sharper in new leaves that formed after application of the antibiotic (up to 81% drop). The comparison of absorption spectra of commercial, reagent grade chlorophyll, alone and incubated with antibiotics, has shown that ciprofloxacin and tetracycline can react directly with chlorophyll and decrease its concentration by 47.7% and 48.5%, respectively. The changes in fluorescence spectra confirmed the formation of chlorophyll degradation product. The chlorophyll decay was a second order reaction and depended on antibiotic concentration and duration of exposure. Reaction rate constants differed with antibiotics and their soil concentrations. With increasing contents of antibiotics in soil the constant of chlorophyll degradation rate in lupin plants increased from k = 870 M -1 day -1 for 3 mg ciprofloxacin to k = 2490 M -1 day -1 for 90 mg ciprofloxacin, and in the case of tetracycline the reaction rate constant increased from k = 1330 M -1 day -1 to k = 2910 M -1 day -1 . The sensitivity of chlorophyll to ciprofloxacin and tetracycline was confirmed by determining EC and TU indices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Efficiency of portable chlorophyll meters in assessing the nutritional status of wheat plants

    Directory of Open Access Journals (Sweden)

    Alessana F. Schlichting

    2015-12-01

    Full Text Available ABSTRACT The objective of this study was to verify the efficiency of two portable chlorophyll meters (Minolta SPAD® 502 and Falker ClorofiLOG® 1030 in assessing the nutritional status of wheat plants, correlating the indices from the devices and the direct determination of chlorophyll content with the concentration of nitrogen (N in the plant. The experiment was conducted in a greenhouse, in pots with 5 dm3 of Oxisol, in a completely randomized design, with six N doses (0, 80, 160, 240, 320 and 400 mg dm-3 and five replicates. At 47 days after emergence, the readings of SPAD and Falker indices and the quantification of chlorophyll content and N concentration in wheat plants were performed, as well as analysis of variance and correlation test, both at 0.05 probability level. The chlorophyll meters Minolta SPAD® 502 and Falker ClorofiLOG® 1030 do not differ with respect to the indirect determination of chlorophyll in wheat plants. The Falker chlorophyll index was statistically equal to the chlorophyll content. Indirect chlorophyll indices and chlorophyll content showed a high correlation with the N concentration in the plant.

  16. DeepPy: Pythonic deep learning

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This technical report introduces DeepPy – a deep learning framework built on top of NumPy with GPU acceleration. DeepPy bridges the gap between highperformance neural networks and the ease of development from Python/NumPy. Users with a background in scientific computing in Python will quickly...... be able to understand and change the DeepPy codebase as it is mainly implemented using high-level NumPy primitives. Moreover, DeepPy supports complex network architectures by letting the user compose mathematical expressions as directed graphs. The latest version is available at http...

  17. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  18. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  19. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  20. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  1. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  2. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  3. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  4. Quality evaluation of the edible blue-green alga Nostoc flagelliforme using a chlorophyll fluorescence parameter and several biochemical markers.

    Science.gov (United States)

    Gao, Xiang; Yang, Yiwen; Ai, Yufeng; Luo, Hongyi; Qiu, Baosheng

    2014-01-15

    Nostoc flagelliforme is an edible blue-green alga with herbal and dietary values. Due to the diminishing supply of natural N. flagelliforme and the large investment on the development of its cultivation technology, it is anticipated that artificially cultured N. flagelliforme will soon sustain the market supply. Once this change occurs, the storage-associated quality problem will become the focus of attention for future trade. In this paper, we used a chlorophyll fluorescence parameter, maximum quantum efficiency of Photosystem II (Fv/Fm), and several biomarkers to evaluate the quality of several N. flagelliforme samples. It was found that longer storage times resulted in darker coloured solutions (released pigments) and decreased amounts of chlorophyll a (Chl a) and water-soluble sugars (WSS). Additionally, a higher Fv/Fm value suggests better physiological recovery and quality. In actual application, determination of Fv/Fm would be the first step for evaluating the quality of N. flagelliforme, and the biochemical indexes would serve as good secondary markers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Greedy Deep Dictionary Learning

    OpenAIRE

    Tariyal, Snigdha; Majumdar, Angshul; Singh, Richa; Vatsa, Mayank

    2016-01-01

    In this work we propose a new deep learning tool called deep dictionary learning. Multi-level dictionaries are learnt in a greedy fashion, one layer at a time. This requires solving a simple (shallow) dictionary learning problem, the solution to this is well known. We apply the proposed technique on some benchmark deep learning datasets. We compare our results with other deep learning tools like stacked autoencoder and deep belief network; and state of the art supervised dictionary learning t...

  6. Presence of a chlorophyll d-like pigment in Chlorella extracts

    NARCIS (Netherlands)

    Michel-Wolwertz, M.R.; Sironval, C.; Goedheer, J.C.

    1965-01-01

    Three chlorophyll a isomers (a₁, a₂ and a₃) were separated by the chromatography of Chlorella extracts on paper 1. One of these, chlorophyll (a₃) showed additional absorption bands at 688 and 455 mμ in diethyl ether. Chromatographic analysis could not decide whether these bands were due to a₃ or

  7. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements

    NARCIS (Netherlands)

    Darvishzadeh, R.; Skidmore, A.K.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M.A.

    2008-01-01

    The study shows that leaf area index (LAI), leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) can be mapped in a heterogeneous Mediterranean grassland from canopy spectral reflectance measurements. Canopy spectral measurements were made in the field using a GER 3700

  8. Influence of sulphur dioxide on chlorophyll content and catalase activity in some chosen lichen species

    Energy Technology Data Exchange (ETDEWEB)

    Kuziel, S

    1974-01-01

    The influence of SO/sub 2/ on changes in catalase activity and in chlorophyll content were investigated under laboratory conditions in several lichen species and in maize. In all the plants examined the chlorophyll content and catalase activity decreased after treatment with SO/sub 2/ as compared with that in the control plants.

  9. Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus.

    Science.gov (United States)

    Ferreira, V S; Pinto, R F; Sant'Anna, C

    2016-03-01

    Chlorophyll is a photosynthetic pigment found in plants and algal organisms and is a bioproduct with human health benefits and a great potential for use in the food industry. The chlorophyll content in microalgae strains varies in response to environmental factors. In this work, we assessed the effect of nitrogen depletion and low light intensity on the chlorophyll content of the Scenedesmus dimorphus microalga. The growth of S. dimorphus under low light intensity led to a reduction in cell growth and volume as well as increased cellular chlorophyll content. Nitrogen starvation led to a reduction in cell growth and the chlorophyll content, changes in the yield and productivity of chlorophylls a and b. Transmission electron microscopy was used to investigate the ultrastructural changes in the S. dimorphus exposed to nitrogen and light deficiency. In contrast to nitrogen depletion, low light availability was an effective mean for increasing the total chlorophyll content of green microalga S. dimorphus. The findings acquired in this work are of great biotechnological importance to extend knowledge of choosing the right culture condition to stimulate the effectiveness of microalgae strains for chlorophyll production purposes. © 2015 The Society for Applied Microbiology.

  10. Study of 660 nm laser-induced photoluminescence of chlorophyll-a and its applications

    International Nuclear Information System (INIS)

    Song, Y; Zhang, D X; Zhang, H J

    2007-01-01

    Based on the phenomenon of chlorophyll a photoluminescence, this paper introduces a new method to measure the chlorophyll a content, using 660nm laser diode as a new kind of light source to stimulate fluorescence as well as combining a fiber and spectrum technique. We analyze the characteristics of laser-induced fluorescence spectrum of chlorophyll a and then put forward the new method using two parameters, the relative fluorescence intensity and fluorescence intensity ratio F685/F735, to measure the chlorophyll a content in the water and green leaves respectively. The experimental results indicate that it is completely feasible to give a visual judgment for chlorophyll a content, according to the fluorescence emission spectrum of chlorophyll a. Subsequently, it is verified by three kinds of typical applications. All of these provide a new kind of light source to develop the chlorophyll a fluorometry and further give a technical foundation of on-spot monitoring the chlorophyll a content in the ocean or in green leaves

  11. Nondestructive and intuitive determination of circadian chlorophyll rhythms in soybean leaves using multispectral imaging

    Science.gov (United States)

    Pan, Wen-Juan; Wang, Xia; Deng, Yong-Ren; Li, Jia-Hang; Chen, Wei; Chiang, John Y.; Yang, Jian-Bo; Zheng, Lei

    2015-01-01

    The circadian clock, synchronized by daily cyclic environmental cues, regulates diverse aspects of plant growth and development and increases plant fitness. Even though much is known regarding the molecular mechanism of circadian clock, it remains challenging to quantify the temporal variation of major photosynthesis products as well as their metabolic output in higher plants in a real-time, nondestructive and intuitive manner. In order to reveal the spatial-temporal scenarios of photosynthesis and yield formation regulated by circadian clock, multispectral imaging technique has been employed for nondestructive determination of circadian chlorophyll rhythms in soybean leaves. By utilizing partial least square regression analysis, the determination coefficients R2, 0.9483 for chlorophyll a and 0.8906 for chlorophyll b, were reached, respectively. The predicted chlorophyll contents extracted from multispectral data showed an approximately 24-h rhythm which could be entrained by external light conditions, consistent with the chlorophyll contents measured by chemical analyses. Visualization of chlorophyll map in each pixel offers an effective way to analyse spatial-temporal distribution of chlorophyll. Our results revealed the potentiality of multispectral imaging as a feasible nondestructive universal assay for examining clock function and robustness, as well as monitoring chlorophyll a and b and other biochemical components in plants. PMID:26059057

  12. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content

    NARCIS (Netherlands)

    Clevers, J.G.P.W.; Kooistra, L.

    2012-01-01

    Plant stress is often expressed as a reduction in amount of biomass or leaf area index (LAI). In addition, stress may affect the plant pigment system, influencing the photosynthetic capacity of plants. Chlorophyll content is the main driver for this primary production. The chlorophyll content is

  13. TOXICITY OF INDUSTRIAL EFFLUENT ON TOTAL CHLOROPHYLL CONTENT OF CERTAIN AQUATIC MACROPHYTES

    OpenAIRE

    Singh Priti; Vishen Ashish; Wadhwani R; Pandey Y.N

    2012-01-01

    To assess the toxicity of industrial effluents on certain macrophytes, the total chlorophyll content of free floating, submerged and emergent macrophytes were estimated in concentrations of industrial effluents at varying exposure duration. The result revealed reduction in total chlorophyll content of exposed macrophytes at higher concentrations of industrial effluents on prolonged duration.

  14. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes

    DEFF Research Database (Denmark)

    Vadeboncoeur, Y.; Kalff, J.; Christoffersen, Kirsten Seestern

    2006-01-01

    content of periphyton on hard substrata (rocks and wood) was positively related to water-column total P (TP), whereas chlorophyll content of algae on sediment (epipelon) and TP were not significantly related. Chlorophyll content was up to 100× higher on sediments than on hard substrata. Within regions...... of the littoral zones in nutrient and energy cycles in lakes....

  15. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim

    2015-01-01

    , the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province

  16. The effect of shade on chlorophyll and anthocyanin content of upland red rice

    Science.gov (United States)

    Muhidin; Syam'un, E.; Kaimuddin; Musa, Y.; Sadimantara, G. R.; Usman; Leomo, S.; Rakian, T. C.

    2018-02-01

    Upland red rice (Oryza sativa) is a staple food and contains anthocyanin, which can act as antioxidants, plays an important role both for the plant itself and for human health. Levels of antioxidants in rice can be affected by the availability of light. The results showed that the difference of shade, cultivar, and interaction both significantly affect the content of chlorophyll a, chlorophyll b and total chlorophyll. The results also showed that shade could increase chlorophyll in all cultivars tested. The highest levels of chlorophyll a were present in the moderate shade level (n2), then decreased at the shelter level (n3) and increased again at high levels (n4). While on chlorophyll content b, it appears that shade increased chlorophyll b in all cultivars tested and this increase was linear to the increase of shade. The shade treatment may increase the anthocyanin content and the increase depending on the type of cultivar. Increased levels of anthocyanin highest due to shade occurred on Jangkobembe cultivar. The original level of anthocyanin on Jangkobembe cultivar averaged 0.096 mg g-1 increased to 2.487 mg g-1 or increased 26 fold. It is concluded that the shade had a significant effect on the chlorophyll and anthocyanin content.

  17. Chlorophyll meter for estimating nitrogen status of irrigated wheat

    International Nuclear Information System (INIS)

    Schepers, J.S.

    2000-01-01

    Chlorophyll-meter readings, generated from the leaves of irrigated wheat at particular growth stages, were normalized to the data obtained with locally recommended rates of fertilizer N, in Chile China, India and Mexico. Normalizing permitted comparisons of crop-N status across growth stages, locations, cultivars, and years. Relative yields and meter readings at growth-stage Z-50 are presented; they revealed similar trends for India, China, and Chile, however, for Mexico, the combination of soil, wheat cultivar, and climate resulted in much less response to N fertilization in the meter data. The implications are discussed. The SPAD meter proved to be a good tool to monitor and evaluate the N status of irrigated wheat. (author)

  18. Chlorophyll mediated photodynamic inactivation of blue laser on Streptococcus mutans

    Science.gov (United States)

    Astuti, Suryani Dyah; Zaidan, A.; Setiawati, Ernie Maduratna; Suhariningsih

    2016-03-01

    Photodynamic inactivation is an inactivation method in microbial pathogens that utilize light and photosensitizer. This study was conducted to investigate photodynamic inactivation effects of low intensity laser exposure with various dose energy on Streptococcus mutans bacteria. The photodynamic inactivation was achieved with the addition of chlorophyll as photosensitizers. To determine the survival percentage of Streptococcus mutans bacteria after laser exposure, the total plate count method was used. For this study, the wavelength of the laser is 405 nm and variables of energy doses are 1.44, 2.87, 4.31, 5.74, 7.18, and 8.61 in J/cm2. The results show that exposure to laser with energy dose of 7.18 J/cm2 has the best photodynamic inactivation with a decrease of 78% in Streptococcus

  19. Canopy Level Chlorophyll Fluorescence and the PRI in a Cornfield

    Science.gov (United States)

    Middleton, Elizabeth M.; Cheng, Yen-Ben; Corp, Lawrence A.; Campbell, Petya K. E.; Huemmrich, K. Fred; Zhang, Qingyuan; Kustas, William P.

    2012-01-01

    Two bio-indicators, the Photochemical Reflectance Index (PRI) and solar-induced red and far-red Chlorophyll Fluorescence (SIF), were derived from directional hyperspectral observations and studied in a cornfield on two contrasting days in the growing season. Both red and far-red SIF exhibited higher values on the day when the canopy in the early senescent stage, but only the far-red SIF showed sensitivity to viewing geometry. Consequently, the red/far-red SIF ratio varied greatly among azimuth positions while the largest values were obtained for the "hotspot" at both growth stages. This ratio was lower (approx.0.88 +/- 0.4) in early July than in August when the ratio approached equivalence (near approx.1). In concert, the PRI exhibited stronger responses to both zenith and azimuth angles and different values on the two growth stages. The potential of using these indices to monitor photosynthetic activities needs further investigation

  20. Chlorophyll a with a farnesyl tail in thermophilic cyanobacteria.

    Science.gov (United States)

    Wiwczar, Jessica M; LaFountain, Amy M; Wang, Jimin; Frank, Harry A; Brudvig, Gary W

    2017-11-01

    Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.

  1. Temporal variability in chlorophyll fluorescence of back-reef corals in Ofu, American Samoa

    Science.gov (United States)

    Piniak, G.A.; Brown, E.K.

    2009-01-01

    Change in the yield of chlorophyll a fluorescence is a common indicator of thermal stress in corals. The present study reports temporal variability in quantum yield measurements for 10 coral species in Ofu, American Samoa - a place known to experience elevated and variable seawater temperatures. In winter, the zooxanthellae generally had higher dark-adapted maximum quantum yield (F v/Fm), higher light- adapted effective quantum yield (??F/F'm), and lower relative electron transport rates (rETR) than in the summer. Temporal changes appeared unrelated to the expected bleaching sensitivity of corals. All species surveyed, with the exception of Montipora grisea, demonstrated significant temporal changes in the three fluorescence parameters. Fluorescence responses were influenced by the microhabitat - temporal differences in fluorescence parameters were usually observed in the habitat with a more variable temperature regime (pool 300), while differences in Fv/Fm between species were observed only in the more environmentally stable habitat (pool 400). Such species-specific responses and microhabitat variability should be considered when attempting to determine whether observed in situ changes are normal seasonal changes or early signs of bleaching. ?? 2009 Marine Biological Laboratory.

  2. Data assimilation of depth-distributed satellite chlorophyll-α in two Mediterranean contrasting sites

    KAUST Repository

    Kalaroni, S.

    2016-04-12

    A new approach for processing the remote sensing chlorophyll-α (Chl-α) before assimilating into an ecosystem model is applied in two contrasting, regarding productivity and nutrients availability, Mediterranean sites: the DYFAMED and POSEIDON E1-M3A fixed point open ocean observatories. The new approach derives optically weighted depth-distributed Chl-α profiles from satellite data based on the model simulated Chl-α vertical distribution and light attenuation coefficient. We use the 1D version of the operational ecological 3D POSEIDON model, based on the European Regional Seas Ecosystem Model (ERSEM). The required hydrodynamic properties are obtained (off-line) from the POSEIDON operational 3D hydrodynamic Mediterranean basin scale model. The data assimilation scheme is the Singular Evolutive Interpolated Kalman (SEIK) filter, the ensemble variant of the Singular Evolutive Extended Kalman (SEEK) filter. The performance of the proposed assimilation approach was evaluated against the Chl-α satellite data and the seasonal averages of available in-situ data for nitrate, phosphate and Chl-α. An improvement of the model simulated near-surface and subsurface maximum Chl-α concentrations is obtained, especially at the DYFAMED site. Model nitrate is improved with assimilation, particularly with the new approach assimilating depth-distributed Chl-α, while model phosphate is slightly worse after assimilation. Additional sensitivity experiments were performed, showing a better performance of the new approach under different scenarios of model Chl-α deviation from pseudo-observations of surface Chl-α.

  3. Data assimilation of depth-distributed satellite chlorophyll-α in two Mediterranean contrasting sites

    KAUST Repository

    Kalaroni, S.; Tsiaras, K.; Petihakis, G.; Hoteit, Ibrahim; Economou-Amilli, A.; G.Triantafyllou

    2016-01-01

    A new approach for processing the remote sensing chlorophyll-α (Chl-α) before assimilating into an ecosystem model is applied in two contrasting, regarding productivity and nutrients availability, Mediterranean sites: the DYFAMED and POSEIDON E1-M3A fixed point open ocean observatories. The new approach derives optically weighted depth-distributed Chl-α profiles from satellite data based on the model simulated Chl-α vertical distribution and light attenuation coefficient. We use the 1D version of the operational ecological 3D POSEIDON model, based on the European Regional Seas Ecosystem Model (ERSEM). The required hydrodynamic properties are obtained (off-line) from the POSEIDON operational 3D hydrodynamic Mediterranean basin scale model. The data assimilation scheme is the Singular Evolutive Interpolated Kalman (SEIK) filter, the ensemble variant of the Singular Evolutive Extended Kalman (SEEK) filter. The performance of the proposed assimilation approach was evaluated against the Chl-α satellite data and the seasonal averages of available in-situ data for nitrate, phosphate and Chl-α. An improvement of the model simulated near-surface and subsurface maximum Chl-α concentrations is obtained, especially at the DYFAMED site. Model nitrate is improved with assimilation, particularly with the new approach assimilating depth-distributed Chl-α, while model phosphate is slightly worse after assimilation. Additional sensitivity experiments were performed, showing a better performance of the new approach under different scenarios of model Chl-α deviation from pseudo-observations of surface Chl-α.

  4. SEASONAL DIFFERENCES IN SPATIAL SCALES OF CHLOROPHYLL-A CONCENTRATION IN LAKE TAIHU,CHINA

    Directory of Open Access Journals (Sweden)

    Y. Bao

    2012-08-01

    Full Text Available Spatial distribution of chlorophyll-a (chla concentration in Lake Taihu is non-uniform and seasonal variability. Chla concentration retrieval algorithms were separately established using measured data and remote sensing images (HJ-1 CCD and MODIS data in October 2010, March 2011, and September 2011. Then parameters of semi- variance were calculated on the scale of 30m, 250m and 500m for analyzing spatial heterogeneity in different seasons. Finally, based on the definitions of Lumped chla (chlaL and Distributed chla (chlaD, seasonal model of chla concentration scale error was built. The results indicated that: spatial distribution of chla concentration in spring was more uniform. In summer and autumn, chla concentration in the north of the lake such as Meiliang Bay and Zhushan Bay was higher than that in the south of Lake Taihu. Chla concentration on different scales showed the similar structure in the same season, while it had different structure in different seasons. And inversion chla concentration from MODIS 500m had a greater scale error. The spatial scale error changed with seasons. It was higher in summer and autumn than that in spring. The maximum relative error can achieve 23%.

  5. Lettuce flavonoids screening and phenotyping by chlorophyll fluorescence excitation ratio.

    Science.gov (United States)

    Zivcak, Marek; Brückova, Klaudia; Sytar, Oksana; Brestic, Marian; Olsovska, Katarina; Allakhverdiev, Suleyman I

    2017-06-01

    Environmentally induced variation and the genotypic differences in flavonoid and phenolic content in lettuce can be reliably detected using the appropriate parameters derived from the records of rapid non-invasive fluorescence technique. The chlorophyll fluorescence excitation ratio method was designed as a rapid and non-invasive tool to estimate the content of UV-absorbing phenolic compounds in plants. Using this technique, we have assessed the dynamics of accumulation of flavonoids related to developmental changes and environmental effects. Moreover, we have tested appropriateness of the method to identify the genotypic differences and fluctuations in total phenolics and flavonoid content in lettuce. Six green and two red genotypes of lettuce (Lactuca sativa L.) grown in pots were exposed to two different environments for 50 days: direct sunlight (UV-exposed) and greenhouse conditions (low UV). The indices based on the measurements of chlorophyll fluorescence after red, green and UV excitation indicated increase of the content of UV-absorbing compounds and anthocyanins in the epidermis of lettuce leaves. In similar, the biochemical analyses performed at the end of the experiment confirmed significantly higher total phenolic and flavonoid content in lettuce plants exposed to direct sun compared to greenhouse conditions and in red compared to green genotypes. As the correlation between the standard fluorescence indices and the biochemical records was negatively influenced by the presence of red genotypes, we proposed the use of a new parameter named Modified Flavonoid Index (MFI) taking into an account both absorbance changes due to flavonol and anthocyanin content, for which the correlation with flavonoid and phenolic content was relatively good. Thus, our results confirmed that the fluorescence excitation ratio method is useful for identifying the major differences in phenolic and flavonoid content in lettuce plants and it can be used for high-throughput pre

  6. The power of pigments, calibrating chemoclines with chlorophylls and carotenoids.

    Science.gov (United States)

    Junium, C. K.; Uveges, B. T.

    2017-12-01

    Phototrophic organisms produce a diversity of pigments that serve a broad range of specific biochemical functions. Pigments are either directly associated with the photosynthetic apparatus, the most notable being chlorophyll a, or are accessory pigments such as the carotenoid lutein. Their functions can also be categorized into roles that are related to light harvesting (e.g. fucoxanthin) or for photoprotection (e.g. scytonemin). The abundances of these two classes of pigments from environmental samples can provide specific information about photointensity and how it relates to environmental changes. For example, a deepening of the chemo/nutricline can result in the increased production of light gathering relative to photoprotective pigments. Here we apply a relatively simple approach that utilizes the abundance of photosynthetic relative to photoprotective pigments to help constrain changes in the water column position of the chemocline. To test the efficacy of this approach we have utilized the sedimentary record of the anoxic Lake Kivu in the East African Rift. Recent Lake Kivu sediments are punctuated by a series of sapropels that may be associated with overturn of the lake, and release of carbon dioxide and sulfide during potential limnic eruptions. Carbon and nitrogen isotopes decrease significantly at the onset of sapropel deposition and suggest that 13C-depleted dissolved inorganic carbon was upwelled into surface waters and was accompanied by high concentrations of ammonium, that allowed for 15N-depletion during incomplete nitrogen utilization. The pigment record, specifically the ratio of the photoprotective carotenoids lutein and zeaxanthin to chlorophyll a increases significantly at the onset of sapropel deposition. This suggests that the chemocline shallowed, displacing phototrophic communities toward the surface of the lake where light intensities required production of photoprotective pigments. This approach can easily be applied to a wide variety of

  7. Researches Regarding the Influence of Cold Storage on the Chlorophyll Content in Lettuce

    Directory of Open Access Journals (Sweden)

    Iuliana Cretescu

    2014-05-01

    Full Text Available The aim of the present investigations was to determine the effect of the cold storage period on the content of chlorophylls in the leaves of lettuce and arugula (rucola. The research material consisted in two types of lettuce (Lactuca sativa L. var. capitata; Lactuca sativa L. var. crispa and arugula (Eruca sativa purchased from supermarkets in Timisoara. The quantitative determination of chlorophyll pigments in leaves (SPAD was made by chlorophyll meter (SPAD 502 Konica-Minolta. During the few days cold storage at a temperature of 4ºC, the content of chlorophyll in the leaf significantly decreased, compared with that in the control group. After 3 days of cold storage arugula and lettuce (Lactuca sativa var. capitata values of chlorophyll content differ statistically very significantly (p<0.001 from the values found in the control group which for lettuce (Lactuca sativa L. var. crispa differs statistically significant (p < 0.05.

  8. Stomata character and chlorophyll content of tomato in response to Zn application under drought condition

    Science.gov (United States)

    Sakya, A. T.; Sulistyaningsih, E.; Indradewa, D.; Purwanto, B. H.

    2018-03-01

    This experiment was performed in order to evaluate the effects of Zn application under drought condition on tomato, especially its chlorophyll content and stomata character. This experiment was arranged in factorial using randomized complete block design with three replications. The treatment consisted of the Zn application method, namely: soil and foliar, the Zn dosage, namely: 0, 40 and 60 mg ZnSO4 kg-1 soil and two cultivars of tomato, namely: ‘Tyrana’ F1 and ‘Permata’ F1. The stress condition was induced by watering every 12 days of 3 weeks after transplanting until harvesting. The results showed that the soil with a Zn application under drought conditions increased the aperture stomata, chlorophyll b and chlorophyll a/b ratio. The response of stomata character, chlorophyll a and total chlorophyll in both cultivars was similar.

  9. Hyperspectral imaging detection of decayed honey peaches based on their chlorophyll content.

    Science.gov (United States)

    Sun, Ye; Wang, Yihang; Xiao, Hui; Gu, Xinzhe; Pan, Leiqing; Tu, Kang

    2017-11-15

    Honey peach is a very common but highly perishable market fruit. When pathogens infect fruit, chlorophyll as one of the important components related to fruit quality, decreased significantly. Here, the feasibility of hyperspectral imaging to determine the chlorophyll content thus distinguishing diseased peaches was investigated. Three optimal wavelengths (617nm, 675nm, and 818nm) were selected according to chlorophyll content via successive projections algorithm. Partial least square regression models were established to determine chlorophyll content. Three band ratios were obtained using these optimal wavelengths, which improved spatial details, but also integrates the information of chemical composition from spectral characteristics. The band ratio values were suitable to classify the diseased peaches with 98.75% accuracy and clearly show the spatial distribution of diseased parts. This study provides a new perspective for the selection of optimal wavelengths of hyperspectral imaging via chlorophyll content, thus enabling the detection of fungal diseases in peaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects

    Directory of Open Access Journals (Sweden)

    Aris Hosikian

    2010-01-01

    Full Text Available Chlorophyll is an essential compound in many everyday products. It is used not only as an additive in pharmaceutical and cosmetic products but also as a natural food colouring agent. Additionally, it has antioxidant and antimutagenic properties. This review discusses the process engineering of chlorophyll extraction from microalgae. Different chlorophyll extraction methods and chlorophyll purification techniques are evaluated. Our preliminary analysis suggests supercritical fluid extraction to be superior to organic solvent extraction. When compared to spectroscopic technique, high performance liquid chromatography was shown to be more accurate and sensitive for chlorophyll analysis. Finally, through CO2 capture and wastewater treatment, microalgae cultivation process was shown to have strong potential for mitigation of environmental impacts.

  11. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  12. Evolutionary Scheduler for the Deep Space Network

    Science.gov (United States)

    Guillaume, Alexandre; Lee, Seungwon; Wang, Yeou-Fang; Zheng, Hua; Chau, Savio; Tung, Yu-Wen; Terrile, Richard J.; Hovden, Robert

    2010-01-01

    A computer program assists human schedulers in satisfying, to the maximum extent possible, competing demands from multiple spacecraft missions for utilization of the transmitting/receiving Earth stations of NASA s Deep Space Network. The program embodies a concept of optimal scheduling to attain multiple objectives in the presence of multiple constraints.

  13. A quantitative lubricant test for deep drawing

    DEFF Research Database (Denmark)

    Olsson, David Dam; Bay, Niels; Andreasen, Jan L.

    2010-01-01

    A tribological test for deep drawing has been developed by which the performance of lubricants may be evaluated quantitatively measuring the maximum backstroke force on the punch owing to friction between tool and workpiece surface. The forming force is found not to give useful information...

  14. Growth and chlorophyll fluorescence under salinity stress in sugar beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    Fadi Abbas

    2014-02-01

    Full Text Available This study was carried out in the General Commission for Scientific Agricultural Research (GCSAR, Syria, at Der EzZour Agricultural Research Center, from 2008-2010, to examine the effect of salt conditions on some growth attributes and chlorophyll fluorescence in 10 Sugar Beet (Beta vulgaris L. genotypes under salinity stress. Sugar beet plants were irrigated with saline water, having electrical conductivity ranged from 8.6-10 dS.m-1during first year and 8.4-10.4 dS.m-1 during second year. A randomized completely block design with three replicates was used. The results showed that all studied growth attributes, leaf area, leaf number, relative growth rate, and net assimilation rate were decreased in salinity stress conditions compared to the controlled state. The findings indicated that salinity caused a decrement of light utilizing through increased values of fluorescence origin (fo, decreased values of fluorescence maximum (fm, and maximum yield of quantum in photosystem-II (fv/fm. Genotypes differed significantly in all studied attributes except in leaf number. Under salt conditions, Brigitta (monogerm achieved an increase in net assimilation rate, while Kawimera (multigerm achieved the lowest decrement in quantum yield in photosystem-II. Further studies are necessary to correlate the yield with yield components under similar conditions to determine the most tolerant genotype.International Journal of Environment Vol.3(1 2014: 1-9 DOI: http://dx.doi.org/10.3126/ije.v3i1.9937

  15. Primary evaluation of a nickel-chlorophyll derivative as a multimodality agent for tumor imaging and photodynamic therapy

    International Nuclear Information System (INIS)

    Ozge Er; Fatma Yurt Lambrecht; Kasim Ocakoglu; Cagla Kayabasi; Cumhur Gunduz

    2015-01-01

    In this study, the biological potential of a nickel chlorophyll derivative (Ni-PH-A) as a multimodal agent for tumor imaging and photodynamic therapy (PDT) was investigated. Optimum conditions of labeling with 131 I were investigated and determined as pH 10 and 1 mg amount of iodogen. Biodistribution results of 131 I labeled Ni-PH-A in female rats indicated that radiolabeled Ni-PH-A maximum uptake in the liver, spleen and ovary was observed at 30 min. Intercellular uptake and PDT efficacy of Ni-PH-A were better in MDAH-2774 (human ovarian endometrioid adenocarcinoma) than in MCF-7 (human breast adenocarcinoma) cells. Ni-PH-A might be a promising multimodal agent for lung, ovary and liver tumor imaging and PDT. (author)

  16. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  17. Elemental composition of cosmic rays using a maximum likelihood method

    International Nuclear Information System (INIS)

    Ruddick, K.

    1996-01-01

    We present a progress report on our attempts to determine the composition of cosmic rays in the knee region of the energy spectrum. We have used three different devices to measure properties of the extensive air showers produced by primary cosmic rays: the Soudan 2 underground detector measures the muon flux deep underground, a proportional tube array samples shower density at the surface of the earth, and a Cherenkov array observes light produced high in the atmosphere. We have begun maximum likelihood fits to these measurements with the hope of determining the nuclear mass number A on an event by event basis. (orig.)

  18. The Effect of Irrigation Intervals and Arbuscular Mycorrhizal Fungi on Chlorophyll Index, Yield and Yield Components of Grain Sorghum

    Directory of Open Access Journals (Sweden)

    J. Hamzei

    2014-08-01

    Full Text Available This experiment was carried out to study the effect of irrigation intervals and arbuscular mycorrhizal fungi on chlorophyll index, yield and yield components of grain sorghum. A factorial experiment was done based on randomized complete block design (RCBD with three replications at the Agriculture Research Station faculty of Agriculture, Bu- Ali Sina University in growing season of 2011. Irrigation intervals (7, 14 and 21 days with three levels of seed inoculation (control without inoculation, inoculation with Glomus mossea and inoculation with G. intraradices were the experimental treatments. Results indicated that the effect of irrigation intervals and mycorrhizal fungi were significant for traits of chlorophyll index, percentage of root symbiosis (PRS, number of grain per panicle, 1000 seed weight, grain yield and harvest index (HI. Maximum value for each trait was observed at G. mossea treatment. G. mossea treatment in comparison with G. intraradices and control treatment can increase the grain yield of sorghum up to 6.80 and 23.10%, respectively. Also, with increasing irrigation interval from 7 to 21 days, PRS increased up to 27.9%. Maximum value for grain yield (755 g m-2 was achieved at irrigation every 14 days and application of G. mossea treatment. But, there was no significant difference between irrigation sorghum plants every 14 days and application of G. mossea and irrigation every 7 days and application of either G. mossea or G. intraradices. In general, irrigation of sorghum plants every 14 days and supplying of G. mossea can produce the highest grain yield, while decreasing water consumption for sorghum production.

  19. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    Energy Technology Data Exchange (ETDEWEB)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B [Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo (Russian Federation)

    2004-02-28

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  20. Chemical transformations of chlorophyll and its application in the design of a new generation of environmentally safe dyes

    International Nuclear Information System (INIS)

    Berezin, Boris D; Rumyantseva, Svetlana V; Moryganov, Andrey P; Berezin, Mikhail B

    2004-01-01

    Chemical transformations of chlorophyll and physicochemical properties of its derivatives are considered. These compounds can be used in the design of a new generation of chlorophyll- and porphyrin-based dyes environmentally more safe than currently used arene dyes and possessing renewable sources of raw materials. The first results on the use of chlorophyll derivatives for dyeing wool, acetate fibres and cotton are reported.

  1. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  2. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  3. Taoism and Deep Ecology.

    Science.gov (United States)

    Sylvan, Richard; Bennett, David

    1988-01-01

    Contrasted are the philosophies of Deep Ecology and ancient Chinese. Discusses the cosmology, morality, lifestyle, views of power, politics, and environmental philosophies of each. Concludes that Deep Ecology could gain much from Taoism. (CW)

  4. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Science.gov (United States)

    Fan, Lina; Wu, Qiang; Chu, Maoquan

    2012-01-01

    Background Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping. Methods and results To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701) and macrophage cells (Ana-1) for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone. Conclusion Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter. PMID:22787402

  5. Completing the Feedback Loop: The Impact of Chlorophyll Data Assimilation on the Ocean State

    Science.gov (United States)

    Borovikov, Anna; Keppenne, Christian; Kovach, Robin

    2015-01-01

    In anticipation of the integration of a full biochemical model into the next generation GMAO coupled system, an intermediate solution has been implemented to estimate the penetration depth (1Kd_PAR) of ocean radiation based on the chlorophyll concentration. The chlorophyll is modeled as a tracer with sources-sinks coming from the assimilation of MODIS chlorophyll data. Two experiments were conducted with the coupled ocean-atmosphere model. In the first, climatological values of Kpar were used. In the second, retrieved daily chlorophyll concentrations were assimilated and Kd_PAR was derived according to Morel et al (2007). No other data was assimilated to isolate the effects of the time-evolving chlorophyll field. The daily MODIS Kd_PAR product was used to validate the skill of the penetration depth estimation and the MERRA-OCEAN re-analysis was used as a benchmark to study the sensitivity of the upper ocean heat content and vertical temperature distribution to the chlorophyll input. In the experiment with daily chlorophyll data assimilation, the penetration depth was estimated more accurately, especially in the tropics. As a result, the temperature bias of the model was reduced. A notably robust albeit small (2-5 percent) improvement was found across the equatorial Pacific ocean, which is a critical region for seasonal to inter-annual prediction.

  6. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    Science.gov (United States)

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Deep Incremental Boosting

    OpenAIRE

    Mosca, Alan; Magoulas, George D

    2017-01-01

    This paper introduces Deep Incremental Boosting, a new technique derived from AdaBoost, specifically adapted to work with Deep Learning methods, that reduces the required training time and improves generalisation. We draw inspiration from Transfer of Learning approaches to reduce the start-up time to training each incremental Ensemble member. We show a set of experiments that outlines some preliminary results on some common Deep Learning datasets and discuss the potential improvements Deep In...

  9. Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants

    International Nuclear Information System (INIS)

    Liao, Pen-Nan; Bode, Stefan; Wilk, Laura; Hafi, Nour; Walla, Peter J.

    2010-01-01

    The aggregation dependent correlation between fluorescence quenching and the electronic carotenoid-chlorophyll interactions, φ Coupling Car S 1 -Chl , as measured by comparing chlorophyll fluorescence observed after two- and one-photon excitation, has been investigated using native LHC II samples as well as mutants lacking Chl 2 and Chl 13. For native LHC II the same linear correlation between φ Coupling Car S 1 -Chl and the fluorescence quenching was observed as previously reported for the pH and Zea-dependent quenching of LHC II . In order to elucidate which carotenoid-chlorophyll pair might dominate this correlation we also investigated the mutants lacking Chl 2 and Chl 13. However, also with these mutants the same linear correlation as for native LHC II was observed. This provides indication that these two chlorophylls play only a minor role for the observed effects. Nevertheless, we also conclude that this does not exclude that their neighboured carotenoids, lutein 1 and neoxanthin, might interact electronically with other chlorophylls close by.

  10. Deep Space Telecommunications

    Science.gov (United States)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  11. Spatiotemporal variation of vertical particle fluxes and modelled chlorophyll a standing stocks in the Benguela Upwelling System

    Science.gov (United States)

    Vorrath, Maria-Elena; Lahajnar, Niko; Fischer, Gerhard; Libuku, Viktor Miti; Schmidt, Martin; Emeis, Kay-Christian

    2018-04-01

    Marine particle fluxes from high productive coastal upwelling systems return upwelled CO2 and nutrients to the deep ocean and sediments and have a substantial impact on the global carbon cycle. This study examines relations between production regimes on the shelf and over the continental margin of the Benguela Upwelling System (BUS) in the SE Atlantic Ocean. Data of composition and timing of vertical particle flux come from sediment trap time series (deployed intermittently between 1988 and 2014) in the regions Walvis Ridge, Walvis Bay, Luederitz and Orange River. We compare their seasonal variability to modelled patterns of chlorophyll concentrations in a 3-D ecosystem model. Both modelled seasonal chlorophyll a standing stocks and sampled particle flux patterns are highly correspondent with a bimodal seasonal cycle offshore the BUS. The material in the particle flux in offshore traps is dominantly carbonate (40-70%), and flux peaks in offshore particle flux originate from two independent events: in austral autumn thermocline shoaling and vertical mixing are decoupled from coastal upwelling, while fluxes in spring coincide with the upwelling season, indicated by slightly elevated biogenic opal values at some locations. Coastal particle fluxes are characterized by a trimodal pattern and are dominated by biogenic opal (22-35%) and organic matter (30-60%). The distinct seasonality in observed fluxes on the shelf is caused by high variability in production, sinking behaviour, wind stress, and hydrodynamic processes. We speculate that global warming will increase ocean stratification and alter coastal upwelling, so that consequences for primary production and particle flux in the BUS are inevitable.

  12. Impact of petrochemicals on the photosynthesis of Halophila ovalis using chlorophyll fluorescence

    International Nuclear Information System (INIS)

    Ralph, P.J.; Burchett, M.D.

    1998-01-01

    Laboratory-cultured Halophila ovalis showed tolerance to petrochemical exposure up to 1% (w/v) solution of Bass Strait crude oil, an oil dispersant (Corexit 9527) and a mixture of crude oil and dispersant. Quantum yield, as measured by chlorophyll fluorescence, was the most sensitive measure of the photosynthetic processes affected by petrochemical. The results indicated clearly that chlorophyll fluorescence was effective at monitoring the onset and development of stress and recovery of H. ovalis when exposed to crude oil, dispersant and a mixture of the two compounds. Photosynthetic pigment content generally confirmed the chlorophyll fluorescence response; however, several anomalies occurred. (author)

  13. Magnetic field dependence of the current flowing in the spin-coated chlorophyll thin films

    Science.gov (United States)

    Aji, J. R. P.; Kusumandari; Purnama, B.

    2018-03-01

    The magnetic dependence of the current flowing in the spin coated chlorophyll films on a patterned Cu PCB substrate has been presented. Chlorophyll was isolated from Spirulina sp and deposited by spin coated methods. The reducing of current by the change of magnetic field (magneto conductance effect) was performed by inducing the magnetic field parallel to the inplane of film at room temp. The magnetoconductance ratio decreases as the increase of voltage. It was indicated that the origin of carrier charge in chlorophyll films should be different with the carrier charge injection (electron).

  14. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants

    International Nuclear Information System (INIS)

    Rochalska, M.

    2005-01-01

    Chlorophyll content in plant leaves is correlated with the yield and nitrogen content in plants. Non-destructive investigations of chlorophyll content in leaves of 3 varieties of sugar beet grown from seeds revealed that a low frequent magnetic field, acting independently or in combination with other methods of seed improvement, increased chlorophyll content in leaves of the investigated plants. The treatment with the magnetic field increased nitrogen content in the examined plants. The effect was not connected with environmental conditions during vegetation seasons. (author)

  15. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  16. Electron transfer reactions involving porphyrins and chlorophyll a

    International Nuclear Information System (INIS)

    Neta, P.; Scherz, A.; Levanon, H.

    1979-01-01

    Electron transfer reactions involving porphyrins (P) and quinones (Q) have been studied by pulse radiolysis. The porphyrins used were tetraphenylporphyrin (H 2 TPP), its tetracarboxy derivative (H 2 TCPP), the sodium and zinc compounds (Na 2 TPP and ZnTPP), and chlorophyll a (Chl a). These compounds were found to be rapidly reduced by electron transfer from (CH 3 ) 2 CO - . Reduction by (CH 3 ) 2 COH was rapid in aqueous solutions but relatively slow in i-PrOH solutions. Transient spectra of the anion radicals were determined and, in the case of H 2 TCPP - ., a pK = 9.7 was derived for its protonation. Electron-transfer reactions from the anion radical of H 2 TCPP to benzoquinone, duroquinone, 9,10-anthraquinone 2-sulfonate, and methylviologen occur in aqueous solutions with rate constants approx. 10 7 -10 9 M -1 s -1 which depend on the pH and the quinone reduction potential. Reactions of Na 2 TPP - ., ZnTPP - ., and Chl a - . with anthraquinone in basic i-PrOH solutions occur with rate constants approx. 10 9 M -1 s -1 . The spectral changes associated with these electron-transfer reactions as observed over a period of approx. 1 ms indicated, in some cases, the formation of an intermediate complex [P...Q - .]. 8 figures, 2 tables

  17. Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant.

    Science.gov (United States)

    Sakowska, Karolina; Alberti, Giorgio; Genesio, Lorenzo; Peressotti, Alessandro; Delle Vedove, Gemini; Gianelle, Damiano; Colombo, Roberto; Rodeghiero, Mirco; Panigada, Cinzia; Juszczak, Radosław; Celesti, Marco; Rossini, Micol; Haworth, Matthew; Campbell, Benjamin W; Mevy, Jean-Philippe; Vescovo, Loris; Cendrero-Mateo, M Pilar; Rascher, Uwe; Miglietta, Franco

    2018-03-02

    The photosynthetic, optical, and morphological characteristics of a chlorophyll-deficient (Chl-deficient) "yellow" soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl-deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non-photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy-scale gross primary production and ecosystem respiration were comparable between the Chl-deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non-photochemical quenching relaxation and gas exchange in Chl-deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl-deficient mutant under field conditions. © 2018 John Wiley & Sons Ltd.

  18. Deep learning with Python

    CERN Document Server

    Chollet, Francois

    2018-01-01

    DESCRIPTION Deep learning is applicable to a widening range of artificial intelligence problems, such as image classification, speech recognition, text classification, question answering, text-to-speech, and optical character recognition. Deep Learning with Python is structured around a series of practical code examples that illustrate each new concept introduced and demonstrate best practices. By the time you reach the end of this book, you will have become a Keras expert and will be able to apply deep learning in your own projects. KEY FEATURES • Practical code examples • In-depth introduction to Keras • Teaches the difference between Deep Learning and AI ABOUT THE TECHNOLOGY Deep learning is the technology behind photo tagging systems at Facebook and Google, self-driving cars, speech recognition systems on your smartphone, and much more. AUTHOR BIO Francois Chollet is the author of Keras, one of the most widely used libraries for deep learning in Python. He has been working with deep neural ...

  19. Deep learning evaluation using deep linguistic processing

    OpenAIRE

    Kuhnle, Alexander; Copestake, Ann

    2017-01-01

    We discuss problems with the standard approaches to evaluation for tasks like visual question answering, and argue that artificial data can be used to address these as a complement to current practice. We demonstrate that with the help of existing 'deep' linguistic processing technology we are able to create challenging abstract datasets, which enable us to investigate the language understanding abilities of multimodal deep learning models in detail, as compared to a single performance value ...

  20. An evaluation of the problems of chlorophyll retrieval from ocean colour, for case 2 waters

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Prieur, L.; Morel, A.

    A reflectance model is presented that takes into account the spectral signatures of phytoplankton, dissolved organic matter and non-chlorophyllous particles. The model is validated by comparison with observed reflectance spectra. It is then used...

  1. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Indonesia

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  2. Chlorophyll-a, Aqua MODIS, OSU DB, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua satellite. Measurements are gathered by the Moderate Resolution Imaging...

  3. Chlorophyll-a, Aqua MODIS, NPP, 0.025 degrees, Pacific Ocean, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  4. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, Gulf of Mexico, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  5. Chlorophyll-a, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  6. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, East US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  7. Chlorophyll-a, Aqua MODIS, NPP, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Aqua Spacecraft. Measurements are gathered by the Moderate Resolution Imaging...

  8. TRACKING CHANGES IN CHLOROPHYLL AND CAROTENOIDS IN THE PRODUCTION PROCESS OF FROZEN SPINACH PURÉE

    Directory of Open Access Journals (Sweden)

    Andrea Mendelová

    2014-02-01

    Full Text Available Spinach is in the professional and general public considered highly nutritious vegetable with many beneficial effects on human health. It is a rich source of antioxidant active substances, especially chlorophyll, carotenoids, flavonoids and minerals especially zinc and copper. This work studies the changes of chlorophyll and carotenoids that occur after mass production technology of freezing at -37 °C. Before freezing was used blanching operation. In this work we used a variety Boeing, Boa, Beaver, Hudson and Chica. The highest content of all monitored parameters are found in fresh leaves of sampled Hudson. We found that within the processing decreases chlorophyll in 16.6%, 13.8% of chlorophyll b and carotenoids of 6.15%. This decrease was in all cases statistically significant.

  9. Seasonal variability of sea surface chlorophyll-a of waters around ...

    Indian Academy of Sciences (India)

    days during 1978--1986 are processed to produce sea surface chlorophyll maps ... shallow water areas, in particular waters in Palk Bay and Gulf of Mannar, should be carried out in order .... The circulation penetrates deeper, affecting the.

  10. Chlorophyll 'a' particulate organic carbon and suspended load from the mangrove areas of Cochin backwaters

    Digital Repository Service at National Institute of Oceanography (India)

    Sheeba, P.; Devi, K.S.; Balasubramanian, T.; Sankaranarayanan, V.N.

    Chlorophyll 'a' Particulate Organic Carbon and suspended load were estimated for one year from two distinct mangrove areas of Cochin backwaters, viz. Puthuvypeen and Nettoor. Environmental parameters like tau degrees C, S ppt and pH were also...

  11. HAAR TRANSFORM BASED ESTIMATION OF CHLOROPHYLL AND STRUCTURE OF THE LEAF

    OpenAIRE

    Abhinav Arora; R. Menaka; Shivangi Gupta; Archit Mishra

    2013-01-01

    In this paper, the health of a plant is estimated using various non-destructive Image Processing Techniques. Chlorophyll content was detected based on colour Image Processing. The Haar transform is applied to get size of leaf and the parameters.

  12. Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence

    KAUST Repository

    Brewin, Robert J W; Raitsos, Dionysios E.; Pradhan, Yaswant; Hoteit, Ibrahim

    2013-01-01

    The Red Sea is a unique marine environment but relatively unexplored. The only available long-term biological dataset at large spatial and temporal scales is remotely-sensed chlorophyll observations (an index of phytoplankton biomass) derived using

  13. Effect of gamma radiation on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa

    International Nuclear Information System (INIS)

    Martin Moreno, C.; Fernandez Gonzalez, J.

    1983-01-01

    The effect of five doses of gamma radiation: 10, 100, 500, 1000 and 5000 Gy on chlorophylls content, net photosynthesis and respiration of Chlorella pyrenoidosa has been studied. A decrease in chlorophylls levels is produced after irradiation at 500, 1000 and 5000 Gy, being, at first b chlorophyll affected to a greater extent than a chlorophyll. Net photosynthesis and respiration decline throughout the time of the observation after irradiation, this depressing effect being much more remarkable for the first one. Met photosynthesis inhibition levels of about 30% are got only five hours post irradiation at a dose of 5000 Gy. Radio estimation by low doses, although obtained in some cases for tho 10 Gy dose, has not been statistically confirmed. (Author) 23 refs

  14. Chlorophyll Detection and Mapping of Shallow Water Impoundments Using Image Spectrometry

    International Nuclear Information System (INIS)

    Artigas, F.; Pechmann, I.; Marti, A.; Yao, N.; Pechmann, I.

    2008-01-01

    There exists a common perception that chlorophyll a concentrations in tidal coastal waters are unsuitable to be captured by remote sensing techniques because of high water turbidity. In this study, we use band index measurements to separate active chlorophyll pigments from other constituents in the water. Published single- and multiband spectral indices are used to establish a relationship between algal chlorophyll concentration and reflectance data. We find an index which is suitable to map chlorophyll gradients in the impoundments, ditches, and associated waterways of the Hackensack Meadow lands (NJ, USA). The resulting images clearly depict the spatial distribution of plant pigments and their relationship with the biological conditions of the waters in the estuary. Since these biological conditions are often determined by land usage, the methods in this paper provide a simple tool to address water quality management issues in fragmented urban estuaries.

  15. Are the Satellite-Observed Narrow, Streaky Chlorophyll Filaments Locally Intensified by the Submesoscale Processes?

    Science.gov (United States)

    2015-11-05

    HIS I’OR’A CANCELS AND SUPERSEOFS Al l PRFV•OUS VERSIONS ARE THE SATELLITE-OBSERVED NARROW, STREAKY CHLOROPHYLL FILAMENTS LOCALLY INTENSIFIED BY...AUGUST 2003 cold, dense jeto C 17 16 15 14 13 122.4W 122W 122.4W 122W warm, anticyclonic eddy CHLOROPHYLL 122.4W 122W 122.4W 122W 122.4W 122W filament...122.4W 122W mg/m 3 10 4 2 1 0.4 0.2 Figure 1. MODIS-Aqua SST and Chlorophyll a images for August 2003. Black lines on MODIS SST and Chlorophyll a

  16. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water

    Science.gov (United States)

    Luo, Lijuan; Lai, Xueying; Chen, Baowei; Lin, Li; Fang, Ling; Tam, Nora F. Y.; Luan, Tiangang

    2015-01-01

    Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment. PMID:26239357

  17. Mutagentic effects of aerospace on Poa pratensis L.. Pt.2: Photosynthesis characters and chlorophyll contents

    International Nuclear Information System (INIS)

    Han Lei; Sun Zhenyuan; Ju Guansheng; Qian Yongqiang; Li Yinfeng; Peng Zhenhua

    2005-01-01

    The dry seeds of Poa pratensis L. 'Nassau' were carried by 'Shenzhou No.3' and three mutants were screened based on presentational characters from the treated plants and asexual reproduced them as PM 1 , PM 2 and PM 3 . The effects of the space environment on the photosynthesis characters and the contents of chlorophyll of the plants were investigated. Compared to CK, the contents of the chlorophyll a and b were reduced both in PM 1 and PM 3 , and the photosynthetic ability also decreased. The content of the chlorophyll in PM 2 increased greatly, but the ratio of the chlorophyll a/b was reduced, and the apparent quantum efficiency and the photosynthetic ability also decreased. The approximately CO 2 saturation point of the three mutants were higher than CK, but the CO 2 compensation points showed no difference between the mutants and CK. The carboxylation efficiency was PM 2 3 1 . (authors)

  18. An FTIR study on the chlorophyll and apoprotein aggregation states in LHCII due to solvent effects

    CSIR Research Space (South Africa)

    Smit, Jacoba E

    2012-07-01

    Full Text Available Photosynthesis provides us with the most abundant and efficient light-harvesting systems found in nature. The photosynthetic process is very much dependent on the aggregation state of the chlorophylls and secondary conformational structure...

  19. Relationships between Concentrations of Phytoplankton Chlorophyll a and Total Nitrogen in Ten U.S. Estuaries

    Science.gov (United States)

    This presentation focuses on the summertime response of phytoplankton chlorophyll to nitrogen concentrations in the upper water columns of ten U.S. estuaries. Using publicly available data from monitoring programs, regression relationships have been developed between summer surfa...

  20. VIIRSN Level-3 Standard Mapped Image, Chlorophyll a, Daily, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from the NPP -Suonomi Spacecraft. Measurements are gathered by the VIIRS instrument carried aboard the...

  1. Five Year Mean Surface Chlorophyll Estimates in the Northern Gulf of Mexico for 2005 through 2009

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These images were created by combining the mean surface chlorophyll estimates to produce seasonal representations for winter, spring, summer and fall. Winter...

  2. Chlorophyll-a, Terra MODIS, OSU DB, 0.0125 degrees, West US, EXPERIMENTAL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration data from NASA's Terra satellite. Measurements are gathered by the Moderate Resolution Imaging...

  3. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Hoteit, Ibrahim; Yao, Fengchao

    2015-01-01

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However

  4. Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study

    Directory of Open Access Journals (Sweden)

    Putra Meilana Dharma

    2017-01-01

    Full Text Available Green pigments are used in many industrial branches including food, drinks, soap and cosmetics. Chlorophyll can substitute synthetic dyes which may affect health. Chlorophyll can be extracted from pandan leaves; the pandan crop grows in many tropical areas. The effects of temperature, 30–70°C and agitation speed, 100–400 rpm on chlorophyll extraction from pandan leaves, using ethanol and the evaluation of mass transfer coefficient, using dimensionless analysis were investigated. The optimal conditions of extraction was obtained at 60°C and 300 rpm; the chlorophyll concentration was 107.1 mg L-1. The volumetric mass transfer coefficient increased with the temperature and agitation speed. Determination of volumetric mass transfer coefficient and dimensionless correlations are useful for further process development or industrial applications.

  5. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  6. Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model

    Science.gov (United States)

    Hilker, Thomas; Galvão, Lênio Soares; Aragão, Luiz E. O. C.; de Moura, Yhasmin M.; do Amaral, Cibele H.; Lyapustin, Alexei I.; Wu, Jin; Albert, Loren P.; Ferreira, Marciel José; Anderson, Liana O.; dos Santos, Victor A. H. F.; Prohaska, Neill; Tribuzy, Edgard; Barbosa Ceron, João Vitor; Saleska, Scott R.; Wang, Yujie; de Carvalho Gonçalves, José Francisco; de Oliveira Junior, Raimundo Cosme; Cardoso Rodrigues, João Victor Figueiredo; Garcia, Maquelle Neves

    2017-06-01

    As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm-2 (Tapajós tower) to 0.470 μg cm-2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59 ≤ r2 ≤ 0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61 ≤ r2 ≤ 0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future

  7. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  8. DAYTIME VARIATIONS OF CHLOROPHYLL A FLUORESCENCE IN PAU D'ALHO SEEDLINGS

    OpenAIRE

    Bacarin, Marcos Antonio; Martinazzo, Emanuela Garbin; Cassol, Daniela; Falqueto, Antelmo Ralph; Silva, Diolina Moura

    2016-01-01

    ABSTRACT Analysis of transient and modulated fluorescence of chlorophyll a were made at one-hour intervals during an eight-hour period starting at 07:30h aiming to study mechanisms of photoprotection against high radiation and temperature in Gallesia integrifolia plants. Seeds were germinated inside plastic pots containing soil as substrate. At 120 days after emergence, chlorophyll fluorescence measurements were performed using Handy-PEA and FMS2 fluorometers. During the course of a day, an i...

  9. Impact of measurement uncertainties on determination of chlorophyll-specific absorption coefficient for marine phytoplankton

    OpenAIRE

    McKee, D.; Röttgers, R.; Neukermans, G.; Calzado, V.S.; Trees, C.; Ampolo-Rella, M.; Neil, C.; Cunningham, A.

    2014-01-01

    Understanding variability in the chlorophyll-specific absorption of marine phytoplankton, aph*Chl (λ), is essential for primary production modelling, calculation of underwater light field characteristics, and development of algorithms for remote sensing of chlorophyll concentrations. Previous field and laboratory studies have demonstrated significant apparent variability in aph*Chl (λ) for natural samples and algal cultures. However, the potential impact of measurement uncertain...

  10. Characterization of [8-ethyl]-chlorophyll c3 from Emiliania huxleyi.

    Science.gov (United States)

    Álvarez, Susana; Zapata, Manuel; Garrido, José L; Vaz, Belén

    2012-06-04

    We report herein the isolation and complete characterization of a member of the chlorophyll c family, designated as [8-ethyl]-chlorophyll c(3) ([8-ethyl]-chl c(3)). Structural elucidation of this pigment rested on the analysis of mono- and bidimensional NMR, UV-VIS spectroscopy and ESI-MS data, and the configuration at the 13(2) position on chiral HPLC analysis.

  11. PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk

    International Nuclear Information System (INIS)

    Saha, Priyanka; Sen Raychaudhuri, Sarmistha; Chakraborty, Anindita; Sudarshan, Mathummal

    2010-01-01

    Plantago ovata Forsk - an economically important medicinal plant - was analyzed for trace elements and chlorophyll in a study of the effects of gamma radiation on physiological responses of the seedlings. Proton-induced X-ray emission (PIXE) technique was used to quantify trace elements in unirradiated and gamma-irradiated plants at the seedling stage. The experiments revealed radiation-induced changes in the trace element and chlorophyll concentrations.

  12. Trends in Ocean Colour and Chlorophyll Concentration from 1889 to 2000, Worldwide

    Science.gov (United States)

    Wernand, Marcel R.; van der Woerd, Hendrik J.; Gieskes, Winfried W. C.

    2013-01-01

    Marine primary productivity is an important agent in the global cycling of carbon dioxide, a major ‘greenhouse gas’, and variations in the concentration of the ocean's phytoplankton biomass can therefore explain trends in the global carbon budget. Since the launch of satellite-mounted sensors globe-wide monitoring of chlorophyll, a phytoplankton biomass proxy, became feasible. Just as satellites, the Forel-Ule (FU) scale record (a hardly explored database of ocean colour) has covered all seas and oceans – but already since 1889. We provide evidence that changes of ocean surface chlorophyll can be reconstructed with confidence from this record. The EcoLight radiative transfer numerical model indicates that the FU index is closely related to chlorophyll concentrations in open ocean regions. The most complete FU record is that of the North Atlantic in terms of coverage over space and in time; this dataset has been used to test the validity of colour changes that can be translated to chlorophyll. The FU and FU-derived chlorophyll data were analysed for monotonously increasing or decreasing trends with the non-parametric Mann-Kendall test, a method to establish the presence of a consistent trend. Our analysis has not revealed a globe-wide trend of increase or decrease in chlorophyll concentration during the past century; ocean regions have apparently responded differentially to changes in meteorological, hydrological and biological conditions at the surface, including potential long-term trends related to global warming. Since 1889, chlorophyll concentrations have decreased in the Indian Ocean and in the Pacific; increased in the Atlantic Ocean, the Mediterranean, the Chinese Sea, and in the seas west and north-west of Japan. This suggests that explanations of chlorophyll changes over long periods should focus on hydrographical and biological characteristics typical of single ocean regions, not on those of ‘the’ ocean. PMID:23776435

  13. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds1[W

    Science.gov (United States)

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-01-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds. PMID:22751379

  14. Non-invasive method for in vivo detection of chlorophyll precursors

    DEFF Research Database (Denmark)

    Kristiansen, Kim Anker; Khrouchtchova, Anastassia; Stenbæk, Anne

    2009-01-01

    Traditionally chlorophyll (Chl) and Chl precursors have been studied in vitro or in leaf tissue at low temperature. These methods are destructive and make it impossible to work with the same individual plant later on. In this paper we present a method for in vivo detection of Chl and its precursors...... is compared to current methods. Furthermore, we report on optimization of the spectral scanning method with the aim to minimize the excitation light-evoked photo-conversion of the chlorophyll precursors....

  15. Influence of Typhoon Matsa on Phytoplankton Chlorophyll-a off East China.

    Science.gov (United States)

    Zhao, Hui; Shao, Jinchao; Han, Guoqi; Yang, Dezhou; Lv, Jianhai

    2015-01-01

    Typhoons can cause strong disturbance, mixing, and upwelling in the upper layer of the oceans. Rich nutrients from the subsurface layer can be brought to the euphotic layer, which will induce the phytoplankton to breed and grow rapidly. In this paper, we investigate the impact of an intense and fast moving tropical storm, Typhoon Matsa, on phytoplankton chlorophyll-a (Chl-a) concentration off East China. By using satellite remote sensing data, we analyze the changes of Chl-a concentration, Sea Surface Temperature (SST) and wind speed in the pre- and post-typhoon periods. We also give a preliminary discussion on the different responses of the Chl-a concentration between nearshore and offshore waters. In nearshore/coastal regions where nutrients are generally rich, the Chl-a maximum occurs usually at the surface or at the layer close to the surface. And, in offshore tropical oligotrophic oceans, the subsurface maxima of Chl-a exist usually in the stratified water column. In an offshore area east of Taiwan, the Chl-a concentration rose gradually in about two weeks after the typhoon. However, in a coastal area north of Taiwan high Chl-a concentration decreased sharply before landfall, rebounded quickly to some degree after landfall, and restored gradually to the pre-typhoon level in about two weeks. The Chl-a concentration presented a negative correlation with the wind speed in the nearshore area during the typhoon, which is opposite to the response in the offshore waters. The phenomena may be attributable to onshore advection of low Chl-a water, coastal downwelling and intensified mixing, which together bring pre-typhoon surface Chl-a downward in the coastal area. In the offshore area, the typhoon may trigger increase of Chl-a concentration through uptake of nutrients by typhoon-induced upwelling and entrainment mixing.

  16. Genetic Analysis and Molecular Mapping of a Novel Chlorophyll-Deficit Mutant Gene in Rice

    Directory of Open Access Journals (Sweden)

    Xiao-qun HUANG

    2008-03-01

    Full Text Available A rice etiolation mutant 824ys featured with chlorophyll deficiency was identified from a normal green rice variety 824B. It showed whole green-yellow plant from the seedling stage, reduced number of tillers and longer growth duration. The contents of chlorophyll, chlorophyll a, chlorophyll b and net photosynthetic rate in leaves of the mutant obviously decreased, as well as the number of spikelets per panicle, seed setting rate and 1000-grain weight compared with its wild-type parent. Genetic analyses on F1 and F2 generations of 824ys crossed with three normal green varieties showed that the chlorophyll-deficit mutant character was controlled by a pair of recessive nuclear gene. Genetic mapping of the mutant gene was conducted by using microsatellite markers and F2 mapping population of 495R/824ys, and the mutant gene of 824ys was mapped on the short arm of rice chromosome 3. The genetic distances from the target gene to the markers RM218, RM282 and RM6959 were 25.6 cM, 5.2 cM and 21.8 cM, respectively. It was considered to be a new chlorophyll-deficit mutant gene and tentatively named as chl11(t.

  17. Contribution of Co2+ in increasing chlorophyll a concentration of Nannochloropsis salina in controlled Conwy medium

    Science.gov (United States)

    Hala, Y.; Taba, P.; Suryati, E.; Kasih, P.; Firman, N. F.

    2018-03-01

    A research in determining the contribution of Co2+ on the increase of chlorophyll a concentration of Nannochloropsis salina has been caried out. The cultivation of N. salina was conducted in the Conwy medium with a salinity of 5%o and 25%o and various Co2+ concentration (2, 4, and 8 ppm). In this research, Co2+ was exposed early in the cultivation of N. salina. The growth of N. salina was observed daily by counting the number of populations using a haemocytometer while the chlorophyll a concentration was determined by a Uv-Vis spectrophotometer. The results showed that the growth of N. salina in the control was higher than that in the medium containing Co2+. The optimum growth time was achieved on 15th days (5%) and 8th days (25%). In the cultivation medium with a salinity of 5%, Co2+ with a concentration of 2 ppm increased the chlorophyll a level while Co2+ with concentrations of 4 and 8 ppm decreased it. In the medium of cultivation with a salinity of 25%, the increase in chlorophyll a level was observed at Co2+ concentrations of 2 and 4 ppm whereas the decrease in chlorophyl a level was given at a concentration of 8 ppm. It can be concluded that at low concentrations, Co2+ increased the concentration of chlorophyll a in N. salina.

  18. Spatial-temporal variability of leaf chlorophyll and its relationship with cocoa yield

    Directory of Open Access Journals (Sweden)

    Caique C. Medauar

    Full Text Available ABSTRACT The objective of this study was to evaluate the spatial-temporal variability of leaf chlorophyll index and its relationship with cocoa yield. The experiment was carried out in an experimental area of cocoa production located in Ilhéus, Bahia State, Brazil. Leaf chlorophyll content was measured in September, October, January, February, March and April in the 2014/2015 season, at each sampling point of a regular grid by using a portable chlorophyll meter. Under the same conditions, yield was evaluated and the data were submitted to descriptive statistics and a linear correlation study. Geostatistical analysis was used to determine and quantify the spatial and temporal variability of leaf chlorophyll index and yield. Leaf chlorophyll index varied over the period evaluated, but the months of February, March and April showed no spatial dependence in the study area, indicating absence of temporal stability. Cocoa monthly yield, except in January, presented high spatial variability. Under the conditions of this study, it was not possible to establish a relationship between leaf chlorophyll index and cocoa yield.

  19. Estimating chlorophyll content of spartina alterniflora at leaf level using hyper-spectral data

    Science.gov (United States)

    Wang, Jiapeng; Shi, Runhe; Liu, Pudong; Zhang, Chao; Chen, Maosi

    2017-09-01

    Spartina alterniflora, one of most successful invasive species in the world, was firstly introduced to China in 1979 to accelerate sedimentation and land formation via so-called "ecological engineering", and it is now widely distributed in coastal saltmarshes in China. A key question is how to retrieve chlorophyll content to reflect growth status, which has important implication of potential invasiveness. In this work, an estimation model of chlorophyll content of S. alterniflora was developed based on hyper-spectral data in the Dongtan Wetland, Yangtze Estuary, China. The spectral reflectance of S. alterniflora leaves and their corresponding chlorophyll contents were measured, and then the correlation analysis and regression (i.e., linear, logarithmic, quadratic, power and exponential regression) method were established. The spectral reflectance was transformed and the feature parameters (i.e., "san bian", "lv feng" and "hong gu") were extracted to retrieve the chlorophyll content of S. alterniflora . The results showed that these parameters had a large correlation coefficient with chlorophyll content. On the basis of the correlation coefficient, mathematical models were established, and the models of power and exponential based on SDb had the least RMSE and larger R2 , which had a good performance regarding the inversion of chlorophyll content of S. alterniflora.

  20. Dustfall Effect on Hyperspectral Inversion of Chlorophyll Content - a Laboratory Experiment

    Science.gov (United States)

    Chen, Yuteng; Ma, Baodong; Li, Xuexin; Zhang, Song; Wu, Lixin

    2018-04-01

    Dust pollution is serious in many areas of China. It is of great significance to estimate chlorophyll content of vegetation accurately by hyperspectral remote sensing for assessing the vegetation growth status and monitoring the ecological environment in dusty areas. By using selected vegetation indices including Medium Resolution Imaging Spectrometer Terrestrial Chlorophyll Index (MTCI) Double Difference Index (DD) and Red Edge Position Index (REP), chlorophyll inversion models were built to study the accuracy of hyperspectral inversion of chlorophyll content based on a laboratory experiment. The results show that: (1) REP exponential model has the most stable accuracy for inversion of chlorophyll content in dusty environment. When dustfall amount is less than 80 g/m2, the inversion accuracy based on REP is stable with the variation of dustfall amount. When dustfall amount is greater than 80 g/m2, the inversion accuracy is slightly fluctuation. (2) Inversion accuracy of DD is worst among three models. (3) MTCI logarithm model has high inversion accuracy when dustfall amount is less than 80 g/m2; When dustfall amount is greater than 80 g/m2, inversion accuracy decreases regularly and inversion accuracy of modified MTCI (mMTCI) increases significantly. The results provide experimental basis and theoretical reference for hyperspectral remote sensing inversion of chlorophyll content.

  1. Effect of PEG-6000 Imposed Water Deficit on Chlorophyll Metabolism in Maize Leaves

    Directory of Open Access Journals (Sweden)

    Rekha Gadre

    2013-08-01

    Full Text Available Drought stress is one of the major abiotic constraint limiting plant growth and productivity world wide. The current study was undertaken with the aim to investigate the effect of water deficit imposed by PEG-6000, on chlorophyll metabolism in maize leaves to work out the mechanistic details. Leaf segments prepared from primary leaves of etiolated maize seedlings were treated with varying concentrations of polyethylene glycol-6000 (PEG-6000; w/v- 5%, 10%, 20%, 30% in continuous light of intensity 40 Wm-2 at 26±2 °C for 24 h in light chamber. The results demonstrate a concentration dependent decline in chlorophyll content with increasing concentration of polyethylene glycol-6000 (PEG-6000. Reduction in chlorophyll ‘a’ level was to a greater extent than the chlorophyll ‘b’. The RNA content decreased in a concentration dependent manner with PEG, however, proline content increased significantly. Relative water content decreased significantly with the supply of 30% PEG only. A substantial decrease in chlorophyll synthesis due to significant reduction in ALA content and ALAD activity, with no change in chlorophyllase activity with the supply of PEG suggests that water deficit affects chlorophyll formation rather than its degradation.

  2. Chlorophyll and carbohydrates in Arachis pintoi plants under influence of water regimes and nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Rita Manuele Porto Sales

    2013-06-01

    Full Text Available In this experiment the chlorophyll and carbohydrate contents of Arachis pintoi were evaluated to verify if the presence of nitrogen in the soil could contribute to the effectiveness of the establishment of this legume. The design was completely randomized, in a 4 × 4 factorial arrangement, with four N rates (0, 40, 80 and 120 kg ha-1 and four irrigation levels (25, 50, 75 and 100% of field capacity, with four replications. The biochemical evaluations of chlorophylls a and b and total chlorophyll and total soluble sugars, sucrose and starch were performed. The highest contents of chlorophyll a and b and total chlorophyll in leaves were found at the dose of 120 kg ha-1. The water regime of 25% of field capacity was responsible for the lowest content of reducing sugars and total soluble sugars in leaves, stolons and roots. In the roots, the sucrose contents were higher in these conditions, which can be associated with a slight tolerance of the plant to water stress. The water deficiency was responsible for the decrease of reducing sugars and total N in the whole plant and positively influenced the levels of chlorophyll and sugars in the stolon, promoting growth, especially of shoots, at the beginning of establishment.

  3. Spatiotemporal Variation in Mangrove Chlorophyll Concentration Using Landsat 8

    Directory of Open Access Journals (Sweden)

    Julio Pastor-Guzman

    2015-11-01

    Full Text Available There is a need to develop indicators of mangrove condition using remotely sensed data. However, remote estimation of leaf and canopy biochemical properties and vegetation condition remains challenging. In this paper, we (i tested the performance of selected hyperspectral and broad band indices to predict chlorophyll concentration (CC on mangrove leaves and (ii showed the potential of Landsat 8 for estimation of mangrove CC at the landscape level. Relative leaf CC and leaf spectral response were measured at 12 Elementary Sampling Units (ESU distributed along the northwest coast of the Yucatan Peninsula, Mexico. Linear regression models and coefficients of determination were computed to measure the association between CC and spectral response. At leaf level, the narrow band indices with the largest correlation with CC were Vogelmann indices and the MTCI (R2 > 0.5. Indices with spectral bands around the red edge (705–753 nm were more sensitive to mangrove leaf CC. At the ESU level Landsat 8 NDVI green, which uses the green band in its formulation explained most of the variation in CC (R2 > 0.8. Accuracy assessment between estimated CC and observed CC using the leave-one-out cross-validation (LOOCV method yielded a root mean squared error (RMSE = 15 mg·cm−2, and R2 = 0.703. CC maps showing the spatiotemporal variation of CC at landscape scale were created using the linear model. Our results indicate that Landsat 8 NDVI green can be employed to estimate CC in large mangrove areas where ground networks cannot be applied, and mapping techniques based on satellite data, are necessary. Furthermore, using upcoming technologies that will include two bands around the red edge such as Sentinel 2 will improve mangrove monitoring at higher spatial and temporal resolutions.

  4. Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms.

    Science.gov (United States)

    Trampe, Erik; Kühl, Michael

    2016-12-01

    Chlorophyll (Chl) f, the most far-red (720-740 nm) absorbing Chl species, was discovered in cyanobacterial isolates from stromatolites and subsequently in other habitats as well. However, the spatial distribution and temporal dynamics of Chl f in a natural habitat have so far not been documented. Here, we report the presence of Chl f in cyanobacterial beachrock biofilms. Hyperspectral imaging on cross-sections of beachrock from Heron Island (Great Barrier Reef, Australia), showed a strong and widely distributed signature of Chl f absorption in an endolithic layer below the dense cyanobacterial surface biofilm that could be localized to aggregates of Chroococcidiopsis-like unicellular cyanobacteria packed within a thick common sheath. High-pressure liquid chromatography-based pigment analyses showed in situ ratios of Chl f to Chl a of 5% in brown-pigmented zones of the beachrock, with lower ratios of ~0.5% in the black- and pink-pigmented biofilm zones. Enrichment experiments with black beachrock biofilm showed stimulated synthesis of Chl f and Chl d when grown under near-infrared radiation (NIR; 740 nm), with a Chl f to Chl a ratio increasing 4-fold to 2%, whereas the Chl d to Chl a ratio went from 0% to 0.8%. Enrichments grown under white light (400-700 nm) produced no detectable amounts of either Chl d or Chl f. Beachrock cyanobacteria thus exhibited characteristics of far-red light photoacclimation, enabling Chl f -containing cyanobacteria to thrive in optical niches deprived of visible light when sufficient NIR is prevalent. © 2016 Phycological Society of America.

  5. Seasonality in sub-surface chlorophyll maxima in the Arabian Sea: Detection by IRS-P4/OCM and implication of it to primary productivity

    Digital Repository Service at National Institute of Oceanography (India)

    Matondkar, S.G.P.; Parab, S.G.; Dwivedi, R.M.

    various seasons. During November at St. 1 surface chlorophyll a was 1.503 mgm-3and subsurface chlorophyll maxima was 12.692 mgm-3. Similarly, at St. 13 surface chlorophyll a was 0.584 mgm-3and surface chlorophyll maxima was 8.517 mgm-3. During upwelling...

  6. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L.

    Science.gov (United States)

    Hazrati, Saeid; Tahmasebi-Sarvestani, Zeinolabedin; Modarres-Sanavy, Seyed Ali Mohammad; Mokhtassi-Bidgoli, Ali; Nicola, Silvana

    2016-09-01

    Aloe vera L. is one of the most important medicinal plants in the world. In order to determine the effects of light intensity and water deficit stress on chlorophyll (Chl) fluorescence and pigments of A. vera, a split-plot in time experiment was laid out in a randomized complete block design with four replications in a research greenhouse. The factorial combination of three light intensities (50, 75 and 100% of sunlight) and four irrigation regimes (irrigation after depleting 20, 40, 60 and 80% of soil water content) were considered as main factors. Sampling time was considered as sub factor. The first, second and third samplings were performed 90, 180 and 270 days after imposing the treatments, respectively. The results demonstrated that the highest light intensity and the severe water stress decreased maximum fluorescence (Fm), variable fluorescence (Fv)/Fm, quantum yield of PSII photochemistry (ФPSII), Chl and photochemical quenching (qP) but increased non-photochemical quenching (NPQ), minimum fluorescence (F0) and Anthocyanin (Anth). Additionally, the highest Fm, Fv/Fm, ФPSII and qP and the lowest NPQ and F0 were observed when 50% of sunlight was blocked and irrigation was done after 40% soil water depletion. Irradiance of full sunlight and water deficit stress let to the photoinhibition of photosynthesis, as indicated by a reduced quantum yield of PSII, ФPSII, and qP, as well as higher NPQ. Thus, chlorophyll florescence measurements provide valuable physiological data. Close to half of total solar radiation and irrigation after depleting 40% of soil water content were selected as the most efficient treatments. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Deep learning relevance

    DEFF Research Database (Denmark)

    Lioma, Christina; Larsen, Birger; Petersen, Casper

    2016-01-01

    train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared...... to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all....

  8. Seasonal and nonseasonal variability of satellite-derived chlorophyll and colored dissolved organic matter concentration in the California Current

    Science.gov (United States)

    Kahru, Mati; Mitchell, B. Greg

    2001-02-01

    Time series of surface chlorophyll a concentration (Chl) and colored dissolved organic matter (CDOM) derived from the Ocean Color and Temperature Sensor and Sea-Viewing Wide Field-of-View Sensor were evaluated for the California Current area using regional algorithms. Satellite data composited for 8-day periods provide the ability to describe large-scale changes in surface parameters. These changes are difficult to detect based on in situ observations alone that suffer from undersampling the large temporal and spatial variability, especially in Chl. We detected no significant bias in satellite Chl estimates compared with ship-based measurements. The variability in CDOM concentration was significantly smaller than that in Chl, both spatially and temporally. While being subject to large interannual and short-term variations, offshore waters (100-1000 km from the shore) have an annual cycle of Chl and CDOM with a maximum in winter-spring (December-March) and a minimum in late summer. For inshore waters the maximum is more likely in spring (April-May). We detect significant increase in both Chl and CDOM off central and southern California during the La Niña year of 1999. The trend of increasing Chl and CDOM from October 1996 to June 2000 is statistically significant in many areas.

  9. Erich Regener and the ionisation maximum of the atmosphere

    Science.gov (United States)

    Carlson, P.; Watson, A. A.

    2014-12-01

    In the 1930s the German physicist Erich Regener (1881-1955) did important work on the measurement of the rate of production of ionisation deep under water and in the atmosphere. Along with one of his students, Georg Pfotzer, he discovered the altitude at which the production of ionisation in the atmosphere reaches a maximum, often, but misleadingly, called the Pfotzer maximum. Regener was one of the first to estimate the energy density of cosmic rays, an estimate that was used by Baade and Zwicky to bolster their postulate that supernovae might be their source. Yet Regener's name is less recognised by present-day cosmic ray physicists than it should be, largely because in 1937 he was forced to take early retirement by the National Socialists as his wife had Jewish ancestors. In this paper we briefly review his work on cosmic rays and recommend an alternative naming of the ionisation maximum. The influence that Regener had on the field through his son, his son-in-law, his grandsons and his students, and through his links with Rutherford's group in Cambridge, is discussed in an appendix. Regener was nominated for the Nobel Prize in Physics by Schrödinger in 1938. He died in 1955 at the age of 73.

  10. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  11. Measuring solar induced chlorophyll fluorescence (SIF) in the Amazon rainforest

    Science.gov (United States)

    Kornfeld, A.; Stutz, J.; Berry, J. A.

    2016-12-01

    Measurement of solar induced chlorophyll fluorescence (SIF) has, in our hands, been fraught with missteps and puzzling problems. Here we describe lessons we have learned and the resulting novel system recently installed in the Amazon rainforest near Manaus, Brazil. The system is designed to measure light from 740 - 780 nm, enabling us to compare SIF computed from Fraunhofer lines in an optically transparent band of the atmosphere (745 - 759 nm) with SIF computed using the telluric O2A band (760 - 770 nm). Fraunhofer line analysis requires high optical resolution (better than 0.2 nm) to detect the relatively narrow lines, but we discovered that fiber-optic diffraction-grating spectrometers are sensitive to very small inhomogeneities in the lighting. Errors resulting from this autocorrelated but random noise were similar in magnitude to the SIF signal itself. Optical diffusers reduce this problem, leading to our final design: a sealed cylinder, dubbed Rotaprism, in which a rotatable prism selects whether light from upward- or downward-looking windows enters an axially-placed optical fiber. Cosine-correcting opal glass covering the windows not only solves the noise issue but also makes the measurements correspond to photon flux. Rotaprism also maximizes the amount of light reaching the spectrometer - maximizing the signal:noise ratio - by avoiding the need for lossy optical switches and fiber splitters. Rotaprism is driven by a pneumatic actuator that is controlled by electronic valves attached to a pressurized N2 source. The gas exhausts into the temperature-controlled spectrometer enclosure to help purge the optics. Finally, custom software provides fault-tolerant control and data acquisition, ensuring that measurements continue with little or no intervention at the remote field site despite unreliable power. Analysis of initial data demonstrates the advantage of Fraunhofer line SIF analysis: due to the atmosphere transparency in this band, the results are more

  12. Chlorophyll fluorescence response to water and nitrogen deficit

    Science.gov (United States)

    Cendrero Mateo, Maria del Pilar

    The increasing food demand as well as the need to predict the impact of warming climate on vegetation makes it critical to find the best tools to assess crop production and carbon dioxide (CO2) exchange between the land and atmosphere. Photosynthesis is a good indicator of crop production and CO2 exchange. Chlorophyll fluorescence (ChF) is directly related to photosynthesis. ChF can be measured at leaf-scale using active techniques and at field-scales using passive techniques. The measurement principles of both techniques are different. In this study, three overarching questions about ChF were addressed: Q1) How water, nutrient and ambient light conditions determine the relationships between photosynthesis and ChF? Which is the optimum irradiance level for detecting water and nutrient deficit conditions with ChF? ; Q2) which are the limits within which active and passive techniques are comparable?; and Q3) What is the seasonal relationship between photosynthesis and ChF when nitrogen is the limiting factor? To address these questions, two main experiments were conducted: Exp1) Concurrent photosynthesis and ChF light-response curves were measured in camelina and wheat plants growing under (i) intermediate-light and (ii) high-light conditions respectively. Plant stress was induced by (i) withdrawing water, and (ii) applying different nitrogen levels; and Exp2) coincident active and passive ChF measurements were made in a wheat field under different nitrogen treatments. The results indicated ChF has a direct relationship with photosynthesis when water or nitrogen drives the relationship. This study demonstrates that the light level at which plants were grown was optimum for detecting water and nutrient deficit with ChF. Also, the results showed that for leaf-average-values, active measurements can be used to better understand the daily and seasonal behavior of passive ChF. Further, the seasonal relation between photosynthesis and ChF with nitrogen stress was not a

  13. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    Science.gov (United States)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming

  14. Photosynthesis and chlorophyll fluorescence reaction to different shade stresses of weak light sensitive maize

    International Nuclear Information System (INIS)

    Wang, J.; Li, F.; Shi, Z.; Huang, H.; Jia, S.

    2017-01-01

    A split-plot experimental study was conducted to evaluate the effect of different shade stresses on photosynthesis and chlorophyll fluorescence of maize leaves.The experiment was designed on the south farm of Special Corn Institute, Shenyang Agricultural University, China.Data was collected from the day maize tasseled (Jul. 21) to the beginning of grouting (Aug.12 ) under 18%, 28%, 38%, 60%, and 75% shade stress to determine indexes such as photosynthesis and chlorophyll fluorescence after 15 days of shade treatment. Pairs of near-isogenic lines (NILs) of Shennong 98A (a barren stalk inbred line) and Shennong 98B (an un-barren stalk inbred line) were used as experimental materials to further reveal photosynthetic mechanisms of weak light sensitive maize when exposed to weak light conditions. Thus, a foundation was established for high density-resistant (shade resistant) corn breeding,while identifying weak light sensitive varieties. After shading treatment, chlorophyll a and total chlorophyll content of both varieties increased, chlorophyll b content first increased, followed by a decrease, while the net photosynthetic rate and stomatal conductance showed a gradually decreasing trend. The changing trends of photochemical quenching coefficient(qp) and effective quantum yield of PSII photochemistry (FPSII)were similar, FPSII and qP increased significantly as shading stress increased from 18% to 38%;however, FPSII and qP declined significantly under 60% and 75% shading stresses. The changing trend of NPQ was opposite to FPSII and qP. A comparison of both inbred lines showed that photosynthesis and chlorophyll fluorescence characteristics of Shennong 98B were superior to Shennong 98A. This study revealed the relationships between weak light sensitive lines and shade intensities by comparing differences in photosynthesis and chlorophyll fluorescence parameters. (author)

  15. Microdroplet fusion mass spectrometry: accelerated kinetics of acid-induced chlorophyll demetallation.

    Science.gov (United States)

    Lee, Jae Kyoo; Nam, Hong Gil; Zare, Richard N

    2017-01-01

    Kinetics of acid-induced chlorophyll demetallation was recorded in microdroplets by fusing a stream of microdroplets containing 40 µM chlorophyll a or b dissolved in methanol with a stream of aqueous microdroplets containing 35 mM hydrochloric acid (pH = 1·46). The kinetics of the demetallation of chlorophyll in the fused microdroplets (14 ± 6 µm diameter; 84 ± 18 m s-1 velocity) was recorded by controlling the traveling distance of the fused microdroplets between the fusion region and the inlet of a mass spectrometer. The rate of acid-induced chlorophyll demetallation was about 960 ± 120 times faster in the charged microdroplets compared with that reported in bulk solution. If no voltage was applied to the sprayed microdroplets, then the acceleration factor was about 580 ± 90, suggesting that the applied voltage is not a major factor determining the acceleration. Chlorophyll a was more rapidly demetallated than chlorophyll b by a factor of ~26 in bulk solution and ~5 in charged microdroplets. The demetallation kinetics was second order in the H+ concentration, but the acceleration factor of microdroplets compared with bulk solution appeared to be unchanged in going from pH = 1·3 to 7·0. The water:methanol ratio of the fused microdroplets was varied from 7:3 to 3:7 causing an increase in the reaction rate of chlorophyll a demetallation by 20%. This observation demonstrates that the solvent composition, which has different evaporation rates, does not significantly affect the acceleration. We believe that a major portion of the acceleration can be attributed to confinement effects involving surface reactions rather than either to evaporation of solvents or to the introduction of charges to the microdroplets.

  16. How is the chlorophyll count affected by burned and unburned marsh areas?

    Science.gov (United States)

    Kendrick, C.

    2017-12-01

    Does marsh burnings, either man made or natural, hinder or help Louisiana's vitally important coastal plant life? Does the carbon produced from the fires have a negative effect on the chlorophyll count of these precious living protective barriers? Or does it help contribute to raising the plants chlorophyll count? Along Louisiana's Gulf Coast, marsh burnings are conducted every 2-4 years to destroy some of the Spartina patens. Fires and smoke may have an effect on the chlorophyll count of the plants found in Louisiana's marshes. Peat burns, root burns, and cover burns are the three types of marsh fires. These burns can be either man made or started by natural causes. Peat burns occur when the soil is dry due to a drained marsh. Root burns occur when plant roots are burned without the soil being consumed. Cover burns occur when several centimeters of water covers the soil. Cover burns are often used by Wildlife and Fisheries personnel to promote preferred plant food growth like Scirpus olneyi rather than the dominant Spartina patens. Our project was conducted by testing marsh plants and obtaining chlorophyll count of both a burned (cover burn) and an unburned area. Approximately one year after the burn, in August 2015, we tested the burned area's site. We retested the same site in December 2016. The results from our testing showed that there was a slightly higher chlorophyll count in the burned area. The chlorophyll count average from the two testing days was 33.5 in the burned area and 30.15 in the unburned area. Our hypothesis was that the chlorophyll content of "controlled" burned wetland areas will have a higher amount than the "no" burn area. The experiment results supported this hypothesis by showing an increase of 3.35 average in the burned area.

  17. Global relationships between phosphorus and chlorophyll-a in oxbow lakes

    Science.gov (United States)

    Belcon, A. U.; Bernhardt, E. S.; Fritz, S. C.; Baker, P. A.

    2011-12-01

    Traditional limnological studies have focused on extant, large and deep bodies of fresh water. For over 70 years a strong positive relationship between sestonic chlorophyll-a (Chl-a) and total phosphorus (TP) has been established in temperate lakes with phosphorus generally viewed as the most limiting factor to productivity (Deevey 1940, Schindler 1977). Over the last few decades however, investigations have expanded to include the examination of shallow lakes, particularly in terms of water quality, nutrient content and regime shifts between stable alternate states. Most of these studies, however, have focused on northern, high latitude regions where the lakes are typically postglacial, isolated and fed by small streams. Relatively little work has been done on oxbow lakes which are floodplain lakes and are semi or permanently connected to the river. Oxbow lakes have been shown to serve several important ecologic and economic functions including nurseries for young fish, feeding grounds for top aquatic predators and increasing the biodiversity of the landscape particularly in tropical regions of the world where high precipitation and large rivers have produced thousands of oxbow lakes. In many developing countries oxbow lakes are an important source of revenue through fishing. This study examined the relationship between nutrients and productivity in oxbow lakes globally through a wide-spread literature synthesis. Four hundred and twenty nine oxbow lakes were represented by 205 data points while 285 data points represented 156 non-floodplain lakes. Despite differences in latitude, lake size and climate we find that oxbow lakes globally have a significantly less steep slope in their TP/Chl relationship than non-floodplain lakes do indicating that the same amount of sestonic phosphorus results in lower productivity. Oxbow lakes (TP/Chl): r = 0.7676, slope = 0.7257, Non-floodplain lakes (TP/Chl): r = 0.8096, slope = 1.1309. We theorize that their connection to the

  18. Revealing the Maximum Strength in Nanotwinned Copper

    DEFF Research Database (Denmark)

    Lu, L.; Chen, X.; Huang, Xiaoxu

    2009-01-01

    boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  19. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  20. Deep Vein Thrombosis

    African Journals Online (AJOL)

    OWNER

    Deep Vein Thrombosis: Risk Factors and Prevention in Surgical Patients. Deep Vein ... preventable morbidity and mortality in hospitalized surgical patients. ... the elderly.3,4 It is very rare before the age ... depends on the risk level; therefore an .... but also in the post-operative period. ... is continuing uncertainty regarding.

  1. A study of the low-lying singlet and triplet electronic states of chlorophyll A and B

    Directory of Open Access Journals (Sweden)

    Etinski Mihajlo

    2013-01-01

    Full Text Available Chlorophylls have been extensively investigated both experimentally and theoretically owing to the fact that they are essential for photosynthesis. We have studied two forms of chlorophyll, chlorophyll a and chlorophyll b, by means of density functional theory. Optimization of S0, S1 and T1 states was performed with the B3-LYP functional. The computed fluorescence lifetimes show good agreement with the available experimental data. The electronic adiabatic energies of S1 and T1 states are 2.09/2.12 and 1.19/1.29 eV for chlorophyll a and chlorophyll b respectively. We discussed the implications of this results on the triplet formation. Also, the calculated vertical ionization potentials shows good agreement with the experimental results. [Projekat Ministarstva nauke Reoublike Srbije, br. 172040

  2. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables.

    Science.gov (United States)

    Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo

    2014-11-15

    The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    J. C. Currie

    2013-10-01

    Full Text Available The Indian Ocean Dipole (IOD and the El Niño/Southern Oscillation (ENSO are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries

  4. Expanded separation technique for chlorophyll metabolites in Oriental tobacco leaf using non aqueous reversed phase chromatography.

    Science.gov (United States)

    Ishida, Naoyuki

    2011-08-26

    An improved separation method for chlorophyll metabolites in Oriental tobacco leaf was developed. While Oriental leaf still gives the green color even after the curing process, little attention has been paid to the detailed composition of the remaining green pigments. This study aimed to identify the green pigments using non aqueous reversed phase chromatography (NARPC). To this end, liquid chromatograph (LC) equipped with a photo diode array detector (DAD) and an atmospheric pressure chemical ionization/mass spectrometer (APCI/MSD) was selected, because it is useful for detecting low polar non-volatile compounds giving green color such as pheophytin a. Identification was based on the wavelength spectrum, mass spectrum and retention time, comparing the analytes in Oriental leaf with the commercially available and synthesized components. Consequently, several chlorophyll metabolites such as hydroxypheophytin a, solanesyl pheophorbide a and solanesyl hydroxypheophorbide a were newly identified, in addition to typical green pigments such as chlorophyll a and pheophytin a. Chlorophyll metabolites bound to solanesol were considered the tobacco specific components. NARPC expanded the number of detectable low polar chlorophyll metabolites in Oriental tobacco leaf. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Culture of a high-chlorophyll-producing and halotolerant Chlorella vulgaris.

    Science.gov (United States)

    Nakanishi, Koichi; Deuchi, Keiji

    2014-05-01

    In order to increase the value of freshwater algae as raw ingredients for health foods and feed for seawater-based farmed fish, we sought to breed high-chlorophyll halotolerant Chlorella with the objective of generating strains with both high chlorophyll concentrations (≥ 5%) and halotolerance (up to 1% NaCl). We used the Chlorella vulgaris K strain in our research institute culture collection and induced mutations with UV irradiation and acriflavine which is known to effect mutations of mitochondrial DNA that are associated with chlorophyll production. Screenings were conducted on seawater-based "For Chlorella spp." (FC) agar medium, and dark-green-colored colonies were visually selected by macroscopic inspection. We obtained a high-chlorophyll halotolerant strain (designated C. vulgaris M-207A7) that had a chlorophyll concentration of 6.7% (d.m.), a level at least three-fold higher than that of K strain. This isolate also exhibited a greater survival rate in seawater that of K strain. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  6. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Science.gov (United States)

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  7. Chlorophyll fluorescence lifetime imaging provides new insight into the chlorosis induced by plant virus infection.

    Science.gov (United States)

    Lei, Rong; Jiang, Hongshan; Hu, Fan; Yan, Jin; Zhu, Shuifang

    2017-02-01

    Leaf chlorosis induced by plant virus infection has a short fluorescence lifetime, which reflects damaged photosynthetic complexes and degraded chloroplasts. Plant viruses often induce chlorosis and necrosis, which are intimately related to photosynthetic functions. Chlorophyll fluorescence lifetime measurement is a valuable noninvasive tool for analyzing photosynthetic processes and is a sensitive indicator of the environment surrounding the fluorescent molecules. In this study, our central goal was to explore the effect of viral infection on photosynthesis by employing chlorophyll fluorescence lifetime imaging (FLIM), steady-state fluorescence, non-photochemical quenching (NPQ), transmission electron microscopy (TEM), and pigment analysis. The data indicated that the chlorophyll fluorescence lifetime of chlorotic leaves was significantly shorter than that of healthy control leaves, and the fitted short lifetime component of chlorophyll fluorescence of chlorotic leaves was dominant. This dominant short lifetime component may result from damage to the structure of thylakoid, which was confirmed by TEM. The NPQ value of chlorotic leaves was slightly higher than that of healthy green leaves, which can be explained by increased neoxanthin, lutein and violaxanthin content relative to chlorophyll a. The difference in NPQ is slight, but FLIM can provide simple and direct characterization of PSII structure and photosynthetic function. Therefore, this technique shows great potential as a simple and rapid method for studying mechanisms of plant virus infection.

  8. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways.

    Science.gov (United States)

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-12-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.

  9. Relationships between nutrients and chlorophyll a concentration in the international Alma Gol Wetland, Iran

    Directory of Open Access Journals (Sweden)

    Saeed Balali

    2013-05-01

    Full Text Available This study investigated the relationships between nutrients and chlorophyll, a concentration in the International Alma Gol Wetland. Chlorophyll a is the major photosynthetic pigment in lots of phytoplanktons and has been used as a trophy index in aquatic ecosystems. Water samples were collected fortnightly from five stations in the wetland during summer and autumn. Chlorophyll-a ranged between 4.38 to 156.55 mg/m3, sulfate ranged between 138 to 190 mg/l, total alkalinity ranged between 80 to 280 mg/l, silica ranged between 3.80 to 35.00 mg/l, phosphate ranged between 0.02 to 3.70 mg/l, ammonia ranged between 0.10 to 11.90 mg/l, nitrate ranged between 0.01 to 2.75 mg/l and nitrite ranged between 0.01 to 0.39 mg/l. There was a significant correlation between chlorophyll a and nitrate, nitrite and ammonia but there was no significant correlation between chlorophyll a and silica, total alkalinity, sulfate and phosphorus.

  10. Coherence and population dynamics of chlorophyll excitations in FCP complex: Two-dimensional spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Butkus, Vytautas; Gelzinis, Andrius; Valkunas, Leonas [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania); Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Augulis, Ramūnas [Center for Physical Sciences and Technology, Savanoriu Ave. 231, 02300 Vilnius (Lithuania); Gall, Andrew; Robert, Bruno [Institut de Biologie et Technologies de Saclay, Bât 532, Commissariat à l’Energie Atomique Saclay, 91191 Gif sur Yvette (France); Büchel, Claudia [Institut für Molekulare Biowissenschaften, Universität Frankfurt, Max-von-Laue-Straße 9, Frankfurt (Germany); Zigmantas, Donatas [Department of Chemical Physics, Lund University, P.O. Box 124, 22100 Lund (Sweden); Abramavicius, Darius, E-mail: darius.abramavicius@ff.vu.lt [Department of Theoretical Physics, Faculty of Physics, Vilnius University, Sauletekio Ave. 9-III, 10222 Vilnius (Lithuania)

    2015-06-07

    Energy transfer processes and coherent phenomena in the fucoxanthin–chlorophyll protein complex, which is responsible for the light harvesting function in marine algae diatoms, were investigated at 77 K by using two-dimensional electronic spectroscopy. Experiments performed on femtosecond and picosecond timescales led to separation of spectral dynamics, witnessing evolutions of coherence and population states of the system in the spectral region of Q{sub y} transitions of chlorophylls a and c. Analysis of the coherence dynamics allowed us to identify chlorophyll (Chl) a and fucoxanthin intramolecular vibrations dominating over the first few picoseconds. Closer inspection of the spectral region of the Q{sub y} transition of Chl c revealed previously not identified, mutually non-interacting chlorophyll c states participating in femtosecond or picosecond energy transfer to the Chl a molecules. Consideration of separated coherent and incoherent dynamics allowed us to hypothesize the vibrations-assisted coherent energy transfer between Chl c and Chl a and the overall spatial arrangement of chlorophyll molecules.

  11. Using visible reflectance spectroscopy to reconstruct historical changes in chlorophyll a concentration in East Antarctic ponds

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2013-12-01

    Full Text Available The visible reflectance spectroscopy (VRS and chlorophyll a concentration were determined in three sediment profiles collected from East Antarctica to investigate the potential application of VRS in reconstructing historical changes in Antarctic lake primary productivity. The results showed that the appearance of a trough at 650–700 nm is an important marker for chlorophyll a concentration and can therefore be used to distinguish the sedimentary organic matter source from guano and algae. The measured chlorophyll a content had significant positive correlations with the trough area between 650 and 700 nm, and no distinct trough was found in the sediments with organic matter completely derived from guano. Modelling results showed that the spectra spectrally inferred chlorophyll a content, and the measured data exhibit consistent trends with depth, showing that the dimensionless trough area can serve as an independent proxy for reconstructing historical fluctuations in the primary production of Antarctic ponds. The correlation of phosphorus (P with measured and inferred chlorophyll a contents in ornithogenic sediments near penguin colonies indicates that the change in primary productivity in the Antarctic ponds investigated was closely related to the amount of guano input from these birds.

  12. Why is the Ratio of Reflectivity Effective for Chlorophyll Estimation in the Lake Water?

    Directory of Open Access Journals (Sweden)

    Kazuo Oki

    2010-07-01

    Full Text Available The reasons why it is effective to estimate the chlorophyll-a concentration with the ratio of spectral radiance reflectance at the red light region and near infrared regions were shown in theory using a two-flow model. It was found that all of the backscattering coefficients can consequently be ignored by using the ratio of spectral radiance reflectance, which is the ratio of the upward radiance to the downward irradiance, at the red light and near infrared regions. In other words, the ratio can be expressed by using only absorption coefficients, which are more stable for measurement than backscattering coefficients. In addition, the band selection is crucial for producing the band ratio when the chlorophyll-a concentration is estimated without the effects of backscattering. I conclude that the two wavelengths selected must be close, but one must be within the absorption range of chlorophyll-a, and the other must be outside of the absorption range of chlorophyll-a, in order to accurately estimate the chlorophyll-a concentration.

  13. Impact of chlorophyll bias on the tropical Pacific mean climate in an earth system model

    Science.gov (United States)

    Lim, Hyung-Gyu; Park, Jong-Yeon; Kug, Jong-Seong

    2017-12-01

    Climate modeling groups nowadays develop earth system models (ESMs) by incorporating biogeochemical processes in their climate models. The ESMs, however, often show substantial bias in simulated marine biogeochemistry which can potentially introduce an undesirable bias in physical ocean fields through biogeophysical interactions. This study examines how and how much the chlorophyll bias in a state-of-the-art ESM affects the mean and seasonal cycle of tropical Pacific sea-surface temperature (SST). The ESM used in the present study shows a sizeable positive bias in the simulated tropical chlorophyll. We found that the correction of the chlorophyll bias can reduce the ESM's intrinsic cold SST mean bias in the equatorial Pacific. The biologically-induced cold SST bias is strongly affected by seasonally-dependent air-sea coupling strength. In addition, the correction of chlorophyll bias can improve the annual cycle of SST by up to 25%. This result suggests a possible modeling approach in understanding the two-way interactions between physical and chlorophyll biases by biogeophysical effects.

  14. Deep Echo State Network (DeepESN): A Brief Survey

    OpenAIRE

    Gallicchio, Claudio; Micheli, Alessio

    2017-01-01

    The study of deep recurrent neural networks (RNNs) and, in particular, of deep Reservoir Computing (RC) is gaining an increasing research attention in the neural networks community. The recently introduced deep Echo State Network (deepESN) model opened the way to an extremely efficient approach for designing deep neural networks for temporal data. At the same time, the study of deepESNs allowed to shed light on the intrinsic properties of state dynamics developed by hierarchical compositions ...

  15. Principal Component Analysis of Chlorophyll Content in Tobacco, Bean and Petunia Plants Exposed to Different Tropospheric Ozone Concentrations

    Science.gov (United States)

    Borowiak, Klaudia; Zbierska, Janina; Budka, Anna; Kayzer, Dariusz

    2014-06-01

    Three plant species were assessed in this study - ozone-sensitive and -resistant tobacco, ozone-sensitive petunia and bean. Plants were exposed to ambient air conditions for several weeks in two sites differing in tropospheric ozone concentrations in the growing season of 2009. Every week chlorophyll contents were analysed. Cumulative ozone effects on the chlorophyll content in relation to other meteorological parameters were evaluated using principal component analysis, while the relation between certain days of measurements of the plants were analysed using multivariate analysis of variance. Results revealed variability between plant species response. However, some similarities were noted. Positive relations of all chlorophyll forms to cumulative ozone concentration (AOT 40) were found for all the plant species that were examined. The chlorophyll b/a ratio revealed an opposite position to ozone concentration only in the ozone-resistant tobacco cultivar. In all the plant species the highest average chlorophyll content was noted after the 7th day of the experiment. Afterwards, the plants usually revealed various responses. Ozone-sensitive tobacco revealed decrease of chlorophyll content, and after few weeks of decline again an increase was observed. Probably, due to the accommodation for the stress factor. While during first three weeks relatively high levels of chlorophyll contents were noted in ozone-resistant tobacco. Petunia revealed a slow decrease of chlorophyll content and the lowest values at the end of the experiment. A comparison between the plant species revealed the highest level of chlorophyll contents in ozone-resistant tobacco.

  16. Breakup of last glacial deep stratification in the South Pacific

    Science.gov (United States)

    Basak, Chandranath; Fröllje, Henning; Lamy, Frank; Gersonde, Rainer; Benz, Verena; Anderson, Robert F.; Molina-Kescher, Mario; Pahnke, Katharina

    2018-02-01

    Stratification of the deep Southern Ocean during the Last Glacial Maximum is thought to have facilitated carbon storage and subsequent release during the deglaciation as stratification broke down, contributing to atmospheric CO2 rise. Here, we present neodymium isotope evidence from deep to abyssal waters in the South Pacific that confirms stratification of the deepwater column during the Last Glacial Maximum. The results indicate a glacial northward expansion of Ross Sea Bottom Water and a Southern Hemisphere climate trigger for the deglacial breakup of deep stratification. It highlights the important role of abyssal waters in sustaining a deep glacial carbon reservoir and Southern Hemisphere climate change as a prerequisite for the destabilization of the water column and hence the deglacial release of sequestered CO2 through upwelling.

  17. Modelling ocean-colour-derived chlorophyll a

    Directory of Open Access Journals (Sweden)

    S. Dutkiewicz

    2018-01-01

    Full Text Available This article provides a proof of concept for using a biogeochemical/ecosystem/optical model with a radiative transfer component as a laboratory to explore aspects of ocean colour. We focus here on the satellite ocean colour chlorophyll a (Chl a product provided by the often-used blue/green reflectance ratio algorithm. The model produces output that can be compared directly to the real-world ocean colour remotely sensed reflectance. This model output can then be used to produce an ocean colour satellite-like Chl a product using an algorithm linking the blue versus green reflectance similar to that used for the real world. Given that the model includes complete knowledge of the (model water constituents, optics and reflectance, we can explore uncertainties and their causes in this proxy for Chl a (called derived Chl a in this paper. We compare the derived Chl a to the actual model Chl a field. In the model we find that the mean absolute bias due to the algorithm is 22 % between derived and actual Chl a. The real-world algorithm is found using concurrent in situ measurement of Chl a and radiometry. We ask whether increased in situ measurements to train the algorithm would improve the algorithm, and find a mixed result. There is a global overall improvement, but at the expense of some regions, especially in lower latitudes where the biases increase. Not surprisingly, we find that region-specific algorithms provide a significant improvement, at least in the annual mean. However, in the model, we find that no matter how the algorithm coefficients are found there can be a temporal mismatch between the derived Chl a and the actual Chl a. These mismatches stem from temporal decoupling between Chl a and other optically important water constituents (such as coloured dissolved organic matter and detrital matter. The degree of decoupling differs regionally and over time. For example, in many highly seasonal regions, the timing of initiation

  18. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  19. Deep learning in bioinformatics.

    Science.gov (United States)

    Min, Seonwoo; Lee, Byunghan; Yoon, Sungroh

    2017-09-01

    In the era of big data, transformation of biomedical big data into valuable knowledge has been one of the most important challenges in bioinformatics. Deep learning has advanced rapidly since the early 2000s and now demonstrates state-of-the-art performance in various fields. Accordingly, application of deep learning in bioinformatics to gain insight from data has been emphasized in both academia and industry. Here, we review deep learning in bioinformatics, presenting examples of current research. To provide a useful and comprehensive perspective, we categorize research both by the bioinformatics domain (i.e. omics, biomedical imaging, biomedical signal processing) and deep learning architecture (i.e. deep neural networks, convolutional neural networks, recurrent neural networks, emergent architectures) and present brief descriptions of each study. Additionally, we discuss theoretical and practical issues of deep learning in bioinformatics and suggest future research directions. We believe that this review will provide valuable insights and serve as a starting point for researchers to apply deep learning approaches in their bioinformatics studies. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  1. Relationship between color (instrumental and visual) and chlorophyll contents in soybean seeds during ripening.

    Science.gov (United States)

    Sinnecker, Patrícia; Gomes, M Salete O; Arêas, José A G; Lanfer-Marquez, Ursula M

    2002-07-03

    The correlation between chlorophyll content and quantitative color parameters was investigated in order to find an indirect method for predicting green pigment in ripening soybean seeds. Five Brazilian soybean varieties harvested at different maturity stages (R(6) to R(8) according to the scale of Fehr & Caviness) and dried under two conditions (in oven at 40 degrees C with circulating air and at ambient temperature around 25 degrees C) were analyzed in two consecutive years. The slow-dried seeds at 25 degrees C lost chlorophyll faster, whereas drying at 40 degrees C did not result in yellowing of seeds. High and significant linear correlations between a value and total chlorophyll were obtained over the whole maturation period and on both conditions of drying. From an industrial point of view it appears that a value, obtained by the CIE-L*a*b* method, seems to be a good tool to be applied for quality control and classifying soybean seeds for different purposes.

  2. Chlorophyll fluorescence, Orbital and Photosynthesis: practical activities integrating concepts of Chemistry, Physics and Biology

    Directory of Open Access Journals (Sweden)

    Elgion Lucio da Silva Loreto

    2013-11-01

    Full Text Available These laboratory activities explore the relationship between the reserve of energy that occur during photosynthesis and the chlorophyll fluorescence emission when in solution as opposed to absence of fluorescence when the chlorophyll are in intact chloroplasts. This proposal can be used as short demo or as  activities with longer duration, to show chlorophyll's properties associated with the photosynthesis. The materials proposed for the implementation of the activities are simple, and possible to building it by the students, enabling the development of various skills and experimental proposals. The protocols are based on observations and record key questions to continue the execution. During the activities, questions promotes pauses for moments of reflection and review of concepts. At the end are presented and discussed proposals for development of interdisciplinary projects.

  3. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions.

    Science.gov (United States)

    Ogawa, Takako; Misumi, Masahiro; Sonoike, Kintake

    2017-09-01

    Cyanobacteria are photosynthetic prokaryotes and widely used for photosynthetic research as model organisms. Partly due to their prokaryotic nature, however, estimation of photosynthesis by chlorophyll fluorescence measurements is sometimes problematic in cyanobacteria. For example, plastoquinone pool is reduced in the dark-acclimated samples in many cyanobacterial species so that conventional protocol developed for land plants cannot be directly applied for cyanobacteria. Even for the estimation of the simplest chlorophyll fluorescence parameter, F v /F m , some additional protocol such as addition of DCMU or illumination of weak blue light is necessary. In this review, those problems in the measurements of chlorophyll fluorescence in cyanobacteria are introduced, and solutions to those problems are given.

  4. Kinetics and mechanism of the dissociation of chlorophyll and its metalloanalogues in proton-donating media

    International Nuclear Information System (INIS)

    Berezin, B.D.; Drobysheva, A.N.; Karmanova, L.P.

    1976-01-01

    The kinetics of the dissociation of chlorophyll a and its metalloanalogues (Zn 2+ and Cd 2+ complexes of chlorophyllic acid) have been investigated in t-butyl alcohol-trichloracetic acid mixtures. The dissociation reaction is kinetically firts-order with respect to the complex. The rate constants and the activation energies and entropies for the dissociation reaction have been calculated. In order to determine the order of the reaction with respect to the protogenic species, a study was made of the ionisation of m-nitroaniline in t-butyl alcohol at 25 0 C in the trichloroacetic acid concentration range from 0.15 to 4.75 M. The dissociation reaction of chlorophyll and its zinc-containing metalloanalogue has been shown to be of second order with respect to the solvated proton. The cadmium complex dissociates by a second-order reaction with respect to trichloroacetic acid

  5. A schematic model for energy and charge transfer in the chlorophyll complex

    DEFF Research Database (Denmark)

    Bohr, Henrik; Malik, F.B.

    2011-01-01

    A theory for simultaneous charge and energy transfer in the carotenoid-chlorophyll-a complex is presented here and discussed. The observed charge transfer process in these chloroplast complexes is reasonably explained in terms of this theory. In addition, the process leads to a mechanism to drive...... an electron in a lower to a higher-energy state, thus providing a mechanism for the ejection of the electron to a nearby molecule (chlorophyll) or into the environment. The observed lifetimes of the electronically excited states are in accord/agreement with the investigations of Sundström et al....... and are in the range of pico-seconds and less. The change in electronic charge distribution in internuclear space as the system undergoes an electronic transition to a higher-energy state could, under appropriate physical conditions, lead to oscillating dipoles capable of transmitting energy from the carotenoid-chlorophylls...

  6. Maximum neutron flux in thermal reactors

    International Nuclear Information System (INIS)

    Strugar, P.V.

    1968-12-01

    Direct approach to the problem is to calculate spatial distribution of fuel concentration if the reactor core directly using the condition of maximum neutron flux and comply with thermal limitations. This paper proved that the problem can be solved by applying the variational calculus, i.e. by using the maximum principle of Pontryagin. Mathematical model of reactor core is based on the two-group neutron diffusion theory with some simplifications which make it appropriate from maximum principle point of view. Here applied theory of maximum principle are suitable for application. The solution of optimum distribution of fuel concentration in the reactor core is obtained in explicit analytical form. The reactor critical dimensions are roots of a system of nonlinear equations and verification of optimum conditions can be done only for specific examples

  7. Maximum allowable load on wheeled mobile manipulators

    International Nuclear Information System (INIS)

    Habibnejad Korayem, M.; Ghariblu, H.

    2003-01-01

    This paper develops a computational technique for finding the maximum allowable load of mobile manipulator during a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints applied to resolving the redundancy are the most important factors. To resolve extra D.O.F introduced by the base mobility, additional constraint functions are proposed directly in the task space of mobile manipulator. Finally, in two numerical examples involving a two-link planar manipulator mounted on a differentially driven mobile base, application of the method to determining maximum allowable load is verified. The simulation results demonstrates the maximum allowable load on a desired trajectory has not a unique value and directly depends on the additional constraint functions which applies to resolve the motion redundancy

  8. Maximum phytoplankton concentrations in the sea

    DEFF Research Database (Denmark)

    Jackson, G.A.; Kiørboe, Thomas

    2008-01-01

    A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collect...

  9. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China.

    Science.gov (United States)

    Du, Enzai; Dong, Dan; Zeng, Xuetong; Sun, Zhengzhong; Jiang, Xiaofei; de Vries, Wim

    2017-12-15

    Anthropogenic emissions of acid precursors in China have resulted in widespread acid rain since the 1980s. Although efforts have been made to assess the indirect, soil mediated ecological effects of acid rain, a systematic assessment of the direct foliage injury by acid rain across terrestrial plants is lacking. Leaf chlorophyll content is an important indicator of direct foliage damage and strongly related to plant productivity. We synthesized data from published literature on experiments of simulated acid rain, by directly exposing plants to acid solutions with varying pH levels, to assess the direct effect of acid rain on leaf chlorophyll content across 67 terrestrial plants in China. Our results indicate that acid rain substantially reduces leaf chlorophyll content by 6.71% per pH unit across the recorded plant species. The direct reduction of leaf chlorophyll content due to acid rain exposure showed no significant difference across calcicole, ubiquist or calcifuge species, implying that soil acidity preference does not influence the sensitivity to leaf injury by acid rain. On average, the direct effects of acid rain on leaf chlorophyll on trees, shrubs and herbs were comparable. The effects, however varied across functional groups and economic use types. Specifically, leaf chlorophyll content of deciduous species was more sensitive to acid rain in comparison to evergreen species. Moreover, vegetables and fruit trees were more sensitive to acid rain than other economically used plants. Our findings imply a potential production reduction and economic loss due to the direct foliage damage by acid rain. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Plant leaf chlorophyll content retrieval based on a field imaging spectroscopy system.

    Science.gov (United States)

    Liu, Bo; Yue, Yue-Min; Li, Ru; Shen, Wen-Jing; Wang, Ke-Lin

    2014-10-23

    A field imaging spectrometer system (FISS; 380-870 nm and 344 bands) was designed for agriculture applications. In this study, FISS was used to gather spectral information from soybean leaves. The chlorophyll content was retrieved using a multiple linear regression (MLR), partial least squares (PLS) regression and support vector machine (SVM) regression. Our objective was to verify the performance of FISS in a quantitative spectral analysis through the estimation of chlorophyll content and to determine a proper quantitative spectral analysis method for processing FISS data. The results revealed that the derivative reflectance was a more sensitive indicator of chlorophyll content and could extract content information more efficiently than the spectral reflectance, which is more significant for FISS data compared to ASD (analytical spectral devices) data, reducing the corresponding RMSE (root mean squared error) by 3.3%-35.6%. Compared with the spectral features, the regression methods had smaller effects on the retrieval accuracy. A multivariate linear model could be the ideal model to retrieve chlorophyll information with a small number of significant wavelengths used. The smallest RMSE of the chlorophyll content retrieved using FISS data was 0.201 mg/g, a relative reduction of more than 30% compared with the RMSE based on a non-imaging ASD spectrometer, which represents a high estimation accuracy compared with the mean chlorophyll content of the sampled leaves (4.05 mg/g). Our study indicates that FISS could obtain both spectral and spatial detailed information of high quality. Its image-spectrum-in-one merit promotes the good performance of FISS in quantitative spectral analyses, and it can potentially be widely used in the agricultural sector.

  11. Maximum-Likelihood Detection Of Noncoherent CPM

    Science.gov (United States)

    Divsalar, Dariush; Simon, Marvin K.

    1993-01-01

    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.

  12. Effect of vertical stability and circulation on the depth of the chlorophyll maximum in the Bay of Bengal during May-June, 1996

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Gupta, G.V.M.; Sarma, V.V.; Rao, B.P.; Jyothi, D.; Shastri, P.N.M.; Supraveena, Y.

    A two-gyre circulation system consisting of an anticyclonic gyre (ACG) in the northwestern Bay of Bengal and a cyclonic gyre (CG) west of the Andaman Islands is shown by the hydrographic data collected during May-June, prior to the southwest monsoon...

  13. Spectral and physiological information from chlorophyll fluorescence signals in the detection of pine damage

    Energy Technology Data Exchange (ETDEWEB)

    Meinander, O. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.; Somersalo, S. [Helsinki Univ., Helsinki (Finland). Dept. of Plant Biology

    1995-12-31

    Photosynthesis is often among the first targets of the air pollution stress of plants. As chlorophyll fluorescence is a process competing with photosynthetic electron transport it can be employed to study the potential photosynthetic capacity and to detect damage to the photosynthetic apparatus. Many previous studies have shown that chlorophyll fluorescence can be a powerful tool in the detection of forest damage. In this preliminary study, singular value analysis of the fluorescence induction curves was used together with the traditional way of analyzing fluorescence measurements. The experimental data were collected from ozone and carbon dioxide fumigated Scots pine saplings. (author)

  14. Spinach seed quality - potential for combining seed size grading and chlorophyll flourescence sorting

    DEFF Research Database (Denmark)

    Deleuran, Lise Christina; Olesen, Merete Halkjær; Boelt, Birte

    2013-01-01

    might therefore improve the establishment of spinach for producers. Spinach seeds were harvested at five different times (H1, H2, H3, H4 and H5) starting 3 weeks before estimated optimum harvest time. The harvested seeds were sorted according to chlorophyll fluorescence (CF) and seed size. Two harvest.......5–3.25 mm size seeds had germinated on day 3 than both their larger and smaller counterparts at the later time of harvest (H4). Seeds with a diameter below 2.5 mm displayed the lowest MGT. Commercially, the use of chlorophyll fluorescence (CF)-sorted seeds, in combination with seed size sorting, may provide...

  15. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  16. Spectral and physiological information from chlorophyll fluorescence signals in the detection of pine damage

    Energy Technology Data Exchange (ETDEWEB)

    Meinander, O [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.; Somersalo, S [Helsinki Univ., Helsinki (Finland). Dept. of Plant Biology

    1996-12-31

    Photosynthesis is often among the first targets of the air pollution stress of plants. As chlorophyll fluorescence is a process competing with photosynthetic electron transport it can be employed to study the potential photosynthetic capacity and to detect damage to the photosynthetic apparatus. Many previous studies have shown that chlorophyll fluorescence can be a powerful tool in the detection of forest damage. In this preliminary study, singular value analysis of the fluorescence induction curves was used together with the traditional way of analyzing fluorescence measurements. The experimental data were collected from ozone and carbon dioxide fumigated Scots pine saplings. (author)

  17. Use of induced chlorophyll deficient mutants to identify 'heterotic blocks' in pearl millet chromosomes

    International Nuclear Information System (INIS)

    Burton, G.W.

    1989-01-01

    Full text: Chlorophyll deficient mutant stocks induced in 'Tift 23' of pearl millet (Pennisetum americanum L. Leeke) were crossed with 'Tift 23' and 5 other normal inbreds to study the effect of these deleterious recessive genes on yield. The difference between near-isogenic S 1 (F 2 ) populations homozygous or heterozygous for the chlorophyll deficiency was not significant. However among 69 S 1 progenies from crosses with other inbreds the heterozygotes were higher yielding than the homozygotes in 53 cases, 15 of which were significant. A mutant like 'M5' identified a high yield 'heterotic block' in 'Inbred 104' and a very low yield 'heterotic block' in 'Inbred 186'. (author)

  18. Chlorophyll Synthase under Epigenetic Surveillance Is Critical for Vitamin E Synthesis, and Altered Expression Affects Tocopherol Levels in Arabidopsis.

    Science.gov (United States)

    Zhang, Chunyu; Zhang, Wei; Ren, Guodong; Li, Delin; Cahoon, Rebecca E; Chen, Ming; Zhou, Yongming; Yu, Bin; Cahoon, Edgar B

    2015-08-01

    Chlorophyll synthase catalyzes the final step in chlorophyll biosynthesis: the esterification of chlorophyllide with either geranylgeranyl diphosphate or phytyl diphosphate (PDP). Recent studies have pointed to the involvement of chlorophyll-linked reduction of geranylgeranyl by geranylgeranyl reductase as a major pathway for the synthesis of the PDP precursor of tocopherols. This indirect pathway of PDP synthesis suggests a key role of chlorophyll synthase in tocopherol production to generate the geranylgeranyl-chlorophyll substrate for geranylgeranyl reductase. In this study, contributions of chlorophyll synthase to tocopherol formation in Arabidopsis (Arabidopsis thaliana) were explored by disrupting and altering expression of the corresponding gene CHLOROPHYLL SYNTHASE (CHLSYN; At3g51820). Leaves from the homozygous chlysyn1-1 null mutant were nearly devoid of tocopherols, whereas seeds contained only approximately 25% of wild-type tocopherol levels. Leaves of RNA interference lines with partial suppression of CHLSYN displayed marked reductions in chlorophyll but up to a 2-fold increase in tocopherol concentrations. Cauliflower mosaic virus35S-mediated overexpression of CHLSYN unexpectedly caused a cosuppression phenotype at high frequencies accompanied by strongly reduced chlorophyll content and increased tocopherol levels. This phenotype and the associated detection of CHLSYN-derived small interfering RNAs were reversed with CHLSYN overexpression in rna-directed rna polymerase6 (rdr6), which is defective in RNA-dependent RNA polymerase6, a key enzyme in sense transgene-induced small interfering RNA production. CHLSYN overexpression in rdr6 had little effect on chlorophyll content but resulted in up to a 30% reduction in tocopherol levels in leaves. These findings show that altered CHLSYN expression impacts tocopherol levels and also, show a strong epigenetic surveillance of CHLSYN to control chlorophyll and tocopherol synthesis. © 2015 American Society of

  19. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP

    KAUST Repository

    Houborg, Rasmus; Cescatti, Alessandro; Migliavacca, Mirco; Kustas, W.P.

    2013-01-01

    This study investigates the utility of in situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (V-max) represents a key control on leaf photosynthesis within the widely employed C-3 and C-4 photosynthesis models proposed by Farquhar et al. (1980) and Collatz et al. (1992), respectively. A semi-mechanistic relationship between V-max(5) (V-max normalized to 25 degrees C) and Chl is derived based on interlinkages between V-max(25), Rubisco enzyme kinetics, leaf nitrogen, and Chl reported in the experimental literature. The resulting linear V-max(25) - Chl relationship is embedded within the photosynthesis scheme of the Community Land Model (CLM), thereby bypassing the use of fixed plant functional type (PFT) specific V-max(25) values. The effect of the updated parameterization on simulated carbon fluxes is tested over a corn field growing season using: (1) a detailed Chl time-series established on the basis of intensive field measurements and (2) Chl estimates derived from Landsat imagery using the REGularized canopy reFLECtance (REGFLEC) tool. Validations against flux tower observations demonstrate benefit of using Chl to parameterize V-max(25) to account for variations in nitrogen availability imposed by severe environmental conditions. The use of V-max(25) that varied seasonally as a function of satellite-based Chl, rather than a fixed PFT-specific value, significantly improved the agreement with observed tower fluxes with Pearson's correlation coefficient (r) increasing from 0.88 to 0.93 and the root-mean-square-deviation decreasing from 4.77 to 3.48 mu mol m(-2) s(-1). The results support the use of Chl as a proxy for photosynthetic capacity using generalized relationships between V-max(25) and Chl, and advocate the potential of satellite retrieved Chl for constraining

  20. A temperature-sensitive winter wheat chlorophyll mutant derived from space mutagenesis

    International Nuclear Information System (INIS)

    Zhao Hongbin; Guo Huijun; Zhao Linshu; Gu Jiayu; Zhao Shirong; Li Junhui; Liu Luxiang

    2010-01-01

    A temperature-sensitive winter wheat (Triticum aestivum L.) chlorophyll mutant Mt18, induced by spaceflight mutagenesis, was studied on agronomic traits, ultrastructure of chloroplast and photosynthesis characteristics. The leaf color of the mutant Mt18 showed changes from green to albino and back to green during the whole growth period. Plant height, productive tillers, spike length, grains and grain weight per plant, and 1000-grain weight of the mutant were lower than those of the wild type. The ultrastructural observation showed that no significant difference was found between the mutant and the wild type during prior albino stage, however, at the albino stage the number of granum-thylakoids and grana lamellae became fewer or completely disappeared, but the strom-thylakoid was obviously visible. After turning green,the structure of most chloroplasts recovered to normal, but number of chloroplast was still lower than that of the wild type. When exposed to photosynthetic active radiation (PAR) of 110 μmol·m -2 ·s -1 , the non-photochemical quenching (NPQ) of mutant was significantly lower than that of the wild type, and the non-regulated energy dissipation (Y NO ) was significantly higher than that of the wild type, while the change of the maximum photosystem II quantum yield (F v /F m ), potential activity of photosystem II (F v /F o ), photochemical quenching (q P ), effective quantum yield (Y PSI I) and regulated non-photochemical energy dissipation (Y NPQ ) were different at various stages. In addition, the differences of the electron transport rate (ETR), photochemical quenching (q P ), and effective quantum yield (Y PSI I) between mutant and wild type varied under different PAR conditions. It was concluded that with the change of chloroplast ultrastructure, the leaf color and photosynthesis of the wheat mutant Mt18 change correspondingly. The chloroplast ultrastructure was obviously different from that of wild type, and the photosynthetic efficiency

  1. Synoptic relationships between surface Chlorophyll-a and diagnostic pigments specific to phytoplankton functional types

    Directory of Open Access Journals (Sweden)

    M. Noguchi-Aita

    2011-02-01

    Full Text Available Error-quantified, synoptic-scale relationships between chlorophyll-a (Chl-a and phytoplankton pigment groups at the sea surface are presented. A total of ten pigment groups were considered to represent three Phytoplankton Size Classes (PSCs, micro-, nano- and picoplankton and seven Phytoplankton Functional Types (PFTs, i.e. diatoms, dinoflagellates, green algae, prymnesiophytes (haptophytes, pico-eukaryotes, prokaryotes and Prochlorococcus sp.. The observed relationships between Chl-a and PSCs/PFTs were well-defined at the global scale to show that a community shift of phytoplankton at the basin and global scales is reflected by a change in Chl-a of the total community. Thus, Chl-a of the total community can be used as an index of not only phytoplankton biomass but also of their community structure. Within these relationships, we also found non-monotonic variations with Chl-a for certain pico-sized phytoplankton (pico-eukaryotes, Prokaryotes and Prochlorococcus sp. and nano-sized phytoplankton (Green algae, prymnesiophytes. The relationships were quantified with a least-square fitting approach in order to enable an estimation of the PFTs from Chl-a where PFTs are expressed as a percentage of the total Chl-a. The estimated uncertainty of the relationships depends on both PFT and Chl-a concentration. Maximum uncertainty of 31.8% was found for diatoms at Chl-a = 0.49 mg m−3. However, the mean uncertainty of the relationships over all PFTs was 5.9% over the entire Chl-a range observed in situ (0.02 < Chl-a < 4.26 mg m−3. The relationships were applied to SeaWiFS satellite Chl-a data from 1998 to 2009 to show the global climatological fields of the surface distribution of PFTs. Results show that microplankton are present in the mid and high latitudes, constituting only ~10.9% of the entire phytoplankton community in the mean field for 1998–2009, in which diatoms explain ~7.5%. Nanoplankton are ubiquitous throughout the global surface oceans

  2. Leaf chlorophyll constraint on model simulated gross primary productivity in agricultural systems

    KAUST Repository

    Houborg, Rasmus

    2015-05-05

    Leaf chlorophyll content (Chll) may serve as an observational proxy for the maximum rate of carboxylation (Vmax), which describes leaf photosynthetic capacity and represents the single most important control on modeled leaf photosynthesis within most Terrestrial Biosphere Models (TBMs). The parameterization of Vmax is associated with great uncertainty as it can vary significantly between plants and in response to changes in leaf nitrogen (N) availability, plant phenology and environmental conditions. Houborg et al. (2013) outlined a semi-mechanistic relationship between V max 25 (Vmax normalized to 25 °C) and Chll based on inter-linkages between V max 25 , Rubisco enzyme kinetics, N and Chll. Here, these relationships are parameterized for a wider range of important agricultural crops and embedded within the leaf photosynthesis-conductance scheme of the Community Land Model (CLM), bypassing the questionable use of temporally invariant and broadly defined plant functional type (PFT) specific V max 25 values. In this study, the new Chll constrained version of CLM is refined with an updated parameterization scheme for specific application to soybean and maize. The benefit of using in-situ measured and satellite retrieved Chll for constraining model simulations of Gross Primary Productivity (GPP) is evaluated over fields in central Nebraska, U.S.A between 2001 and 2005. Landsat-based Chll time-series records derived from the Regularized Canopy Reflectance model (REGFLEC) are used as forcing to the CLM. Validation of simulated GPP against 15 site-years of flux tower observations demonstrate the utility of Chll as a model constraint, with the coefficient of efficiency increasing from 0.91 to 0.94 and from 0.87 to 0.91 for maize and soybean, respectively. Model performances particularly improve during the late reproductive and senescence stage, where the largest temporal variations in Chll (averaging 35–55 μg cm−2 for maize and 20–35 μg cm−2 for soybean) are

  3. Satellite retrievals of leaf chlorophyll and photosynthetic capacity for improved modeling of GPP

    KAUST Repository

    Houborg, Rasmus

    2013-08-01

    This study investigates the utility of in situ and satellite-based leaf chlorophyll (Chl) estimates for quantifying leaf photosynthetic capacity and for constraining model simulations of Gross Primary Productivity (GPP) over a corn field in Maryland, U.S.A. The maximum rate of carboxylation (V-max) represents a key control on leaf photosynthesis within the widely employed C-3 and C-4 photosynthesis models proposed by Farquhar et al. (1980) and Collatz et al. (1992), respectively. A semi-mechanistic relationship between V-max(5) (V-max normalized to 25 degrees C) and Chl is derived based on interlinkages between V-max(25), Rubisco enzyme kinetics, leaf nitrogen, and Chl reported in the experimental literature. The resulting linear V-max(25) - Chl relationship is embedded within the photosynthesis scheme of the Community Land Model (CLM), thereby bypassing the use of fixed plant functional type (PFT) specific V-max(25) values. The effect of the updated parameterization on simulated carbon fluxes is tested over a corn field growing season using: (1) a detailed Chl time-series established on the basis of intensive field measurements and (2) Chl estimates derived from Landsat imagery using the REGularized canopy reFLECtance (REGFLEC) tool. Validations against flux tower observations demonstrate benefit of using Chl to parameterize V-max(25) to account for variations in nitrogen availability imposed by severe environmental conditions. The use of V-max(25) that varied seasonally as a function of satellite-based Chl, rather than a fixed PFT-specific value, significantly improved the agreement with observed tower fluxes with Pearson\\'s correlation coefficient (r) increasing from 0.88 to 0.93 and the root-mean-square-deviation decreasing from 4.77 to 3.48 mu mol m(-2) s(-1). The results support the use of Chl as a proxy for photosynthetic capacity using generalized relationships between V-max(25) and Chl, and advocate the potential of satellite retrieved Chl for

  4. Deep Water Survey Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The deep water biodiversity surveys explore and describe the biodiversity of the bathy- and bentho-pelagic nekton using Midwater and bottom trawls centered in the...

  5. Deep Space Habitat Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Deep Space Habitat was closed out at the end of Fiscal Year 2013 (September 30, 2013). Results and select content have been incorporated into the new Exploration...

  6. Deep Learning in Neuroradiology.

    Science.gov (United States)

    Zaharchuk, G; Gong, E; Wintermark, M; Rubin, D; Langlotz, C P

    2018-02-01

    Deep learning is a form of machine learning using a convolutional neural network architecture that shows tremendous promise for imaging applications. It is increasingly being adapted from its original demonstration in computer vision applications to medical imaging. Because of the high volume and wealth of multimodal imaging information acquired in typical studies, neuroradiology is poised to be an early adopter of deep learning. Compelling deep learning research applications have been demonstrated, and their use is likely to grow rapidly. This review article describes the reasons, outlines the basic methods used to train and test deep learning models, and presents a brief overview of current and potential clinical applications with an emphasis on how they are likely to change future neuroradiology practice. Facility with these methods among neuroimaging researchers and clinicians will be important to channel and harness the vast potential of this new method. © 2018 by American Journal of Neuroradiology.

  7. Deep inelastic lepton scattering

    International Nuclear Information System (INIS)

    Nachtmann, O.

    1977-01-01

    Deep inelastic electron (muon) nucleon and neutrino nucleon scattering as well as electron positron annihilation into hadrons are reviewed from a theoretical point of view. The emphasis is placed on comparisons of quantum chromodynamics with the data. (orig.) [de

  8. Development of the spectrometric imaging apparatus of laser induced fluorescence from plants and estimation of chlorophyll contents of rice leaves; Laser reiki keiko sokutei sochi no kaihatsu to inehanai no chlorophyll ganryo no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, K.; Shoji, K.; Hanyu, H.

    1999-05-01

    Photosynthetic activity of plants is an important factor to assess the micrometeorological effect of plant canopy or to estimate the influence of circumstances such as water stress. Light illumination induces fluorescence from a leaf or suspension of chloroplasts. The red chlorophyll fluorescence had been used to determine the process of the electron transportation in photosynthetic reaction. The fluorescence source other than chlorophyll is not announced sufficiently, but is supposed to be useful to determine the contents of the substance corresponding to physiological response of plants. We developed a fluorescence imaging apparatus to observe spectrum and distribution of laser induced fluorescence from a leaf. Pulsed UV-laser (Nd:YAG) induced blue-green fluorescence and red chlorophyll fluorescence from a green leaf. The pulse modulated measuring light and CCD with image-intensifier (ICCD) enable to detect the fluorescence from plants under illumination. The laser induced fluorescence (LIF) spectra were investigated to estimate the chlorophyll contents in leaves of rice. During the greening course of dark grown etiolated rice leaves, chlorophyll contents were determined using the extraction of leaves and steady state LIF spectra were measured. As a result, the ratio of fluorescent intensity between blue-green and red peaks (F460/F740 and F510/F740) decreased in proportion to alteration of chlorophyll contents respectively. These fluorescence intensity ratios perform more precise estimation of higher chlorophyll contents of leaves than reported red chlorophyll fluorescence intensity ratio (F690/E740). (author)

  9. Assessing boreal forest photosynthetic dynamics through space-borne measurements of greenness, chlorophyll fluorescence and model GPP

    Science.gov (United States)

    Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna

    2015-04-01

    activity, maturity, senescence and end of season) from all 3 data streams. Maps of the transition dates (most of all the start of season) of EVI, SIF and GPP are derived and compared. Further, local comparisons of the annual cycle over several large scale regions and forest types are done. Among other results, we find that in the boreal evergreen needleleaf forests both model GPP and SIF indicate much earlier onset of activity than EVI. This confirms - on a larger scale - findings from tower observations. Moreover, the end of activity occurs later in the case of SIF and GPP, which results in an overall longer growing season. Summer peak values of chlorophyll fluorescence, model GPP and greenness are reached approximately at the time of the annual temperature maximum one month after the illumination peak. In deciduous forests the length of the growing season indicated by the three proxies is very similar, however, SIF and GPP show large intraseasonal variability that cannot be identified using EVI. Also a slight decline in all three proxies can be observed from the end of June until August indicating that greenness and photosynthesis are already reduced to a small extent before autumn senescence starts and before the annual temperature maximum is reached. This might be due to higher sensitivity to illumination than to temperature at that time of year. These and other results show that satellite measurements of chlorophyll fluorescence reliably indicate plant activity and that they might be useful for benchmarking dynamic global vegetation and carbon cycle models.

  10. Neuromorphic Deep Learning Machines

    OpenAIRE

    Neftci, E; Augustine, C; Paul, S; Detorakis, G

    2017-01-01

    An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Back Propagation (BP) rule, often relies on the immediate availability of network-wide...

  11. Pathogenesis of deep endometriosis.

    Science.gov (United States)

    Gordts, Stephan; Koninckx, Philippe; Brosens, Ivo

    2017-12-01

    The pathophysiology of (deep) endometriosis is still unclear. As originally suggested by Cullen, change the definition "deeper than 5 mm" to "adenomyosis externa." With the discovery of the old European literature on uterine bleeding in 5%-10% of the neonates and histologic evidence that the bleeding represents decidual shedding, it is postulated/hypothesized that endometrial stem/progenitor cells, implanted in the pelvic cavity after birth, may be at the origin of adolescent and even the occasionally premenarcheal pelvic endometriosis. Endometriosis in the adolescent is characterized by angiogenic and hemorrhagic peritoneal and ovarian lesions. The development of deep endometriosis at a later age suggests that deep infiltrating endometriosis is a delayed stage of endometriosis. Another hypothesis is that the endometriotic cell has undergone genetic or epigenetic changes and those specific changes determine the development into deep endometriosis. This is compatible with the hereditary aspects, and with the clonality of deep and cystic ovarian endometriosis. It explains the predisposition and an eventual causal effect by dioxin or radiation. Specific genetic/epigenetic changes could explain the various expressions and thus typical, cystic, and deep endometriosis become three different diseases. Subtle lesions are not a disease until epi(genetic) changes occur. A classification should reflect that deep endometriosis is a specific disease. In conclusion the pathophysiology of deep endometriosis remains debated and the mechanisms of disease progression, as well as the role of genetics and epigenetics in the process, still needs to be unraveled. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Imaging of fast chlorophyll fluorescence induction curve (OJIP) parameters, applied in a screening study with wild barley (Hordeum spontaneum) genotypes under heat stress.

    Science.gov (United States)

    Jedmowski, Christoph; Brüggemann, Wolfgang

    2015-10-01

    We quantified the influence of heat stress (HS) on PSII by imaging of parameters of the fast chlorophyll fluorescence (CF) induction (OJIP) kinetic of 20 genotypes of wild barley (Hordeum spontaneum) covering a broad geographical spectrum. We developed a standardised screening procedure, allowing a repetitive fluorescence measurement of leaf segments. The impact of HS was quantified by calculating a Heat Resistance Index (HRI), derived from the decrease of the Performance Index (PI) caused by HS treatment and following recovery. For the genotype showing the lowest HRI, reduced maximum quantum yield (φP0) and increased relative variable fluorescence of the O-J phase (K-Peak) were detected after HS, whereas the basal fluorescence (F0) remained stable. An additional feature was a lowered fraction of active (QA-reducing) reaction centres (RCs). The disturbances disappeared after one day of recovery. Spatial heterogeneities of fluorescence parameters were detected, as the negative effect of HS was stronger in the leaf areas close to the leaf tip. The results of this study prove that chlorophyll fluorescence imaging (CFI) is suitable for the detection of HS symptoms and that imaging of JIP-Test parameters should be considered in future screening and phenotyping studies aiming for the characterisation of plant genotypes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Relationship of fouling diatom number and chlorophyll-a value from Zuari estuary, Goa (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Redekar, P.D.; Wagh, A.B.

    The diatom cell biomass is expressed in terms of diatom number and chlorophyll -a value on panel of glass slide. The Chlorophyll value in a water body is indicative of the productivity. The present study was conducted to find out the relationship...

  14. The effect of salt stress on growth, chlorophyll content, proline and nutrient accumulation, and k/na ratio in walnut

    International Nuclear Information System (INIS)

    Akca, Y.; Samsunlu, E

    2012-01-01

    The effects of irrigation water salinity on growth, chlorophyll contents, proline and nutrients accumulation and K/Na ratio in three walnut cultivars was investigated. Three irrigation water salinity levels with electrical conductivities of 1,5, 3, and 5.0 dS/m and tap water as a control treatment were used in a randomized design with four replications. Irrigation practices were realized by considering the weight of each pot. Sodium, clor, proline, K/Na and Ca/Na ratio of leaf were increased under salinity conditions. But growth of plant and chlorophyll a, chlorophyll b content were decreased under saline condition. There were significant differences between in irrigation water salinity levels in proline and chlorophyll a, chlorophyll b, Na content. But there were not any significant differences in LRWC (%). Results showed that, regarding fresh shoot weight, dry shoot and root weight, there were significant differences between cultivars, but chlorophyll a, chlorophyll b, total chlorophyll, proline accumulation and leaf relative water content (LRWC) there weren't any significant differences between cultivars. Kaman 1 and Bilecik walnut cultivars showed higher accumulation of proline than Kaman 5 but was not observed significant difference between them. (author)

  15. Relationship between photosynthetic pigments and chlorophyll fluorescence in soybean under varying phosphorus nutrition at ambient and elevated CO2

    Science.gov (United States)

    Photosynthetic pigments such as chlorophyll (Chl) a, Chl b and carotenoids concentration, and chlorophyll fluorescence (CF) have widely been used as indicators of stress and photosynthetic performance in plants. Although photosynthetic pigments and CF are partly interdependent due to absorption and ...

  16. Why & When Deep Learning Works: Looking Inside Deep Learnings

    OpenAIRE

    Ronen, Ronny

    2017-01-01

    The Intel Collaborative Research Institute for Computational Intelligence (ICRI-CI) has been heavily supporting Machine Learning and Deep Learning research from its foundation in 2012. We have asked six leading ICRI-CI Deep Learning researchers to address the challenge of "Why & When Deep Learning works", with the goal of looking inside Deep Learning, providing insights on how deep networks function, and uncovering key observations on their expressiveness, limitations, and potential. The outp...

  17. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity

    Directory of Open Access Journals (Sweden)

    Ramin Lotfi

    2015-10-01

    Full Text Available The ameliorative effect of fulvic acid (0, 300, and 600 mg L− 1 on photosystem II and antioxidant enzyme activity of the rapeseed (Brassica napus L. plant under water stress (60, 100, and 140 mm evaporation from class A pan was studied using split plots in a randomized complete block design with three replications. Results indicated that application of fulvic acid (FA improved the maximum quantum efficiency of PSII (Fv/Fm and performance index (PI of plants under both well-watered and limited-water conditions. The time span from Fo to Fm and the energy necessary for the closure of all reaction centers was significantly increased, but the size of the plastoquinone pool was reduced with increasing water stress levels. Plants treated with FA had higher peroxidase and catalase activities under all irrigation conditions. Activities of ascorbate peroxidase and superoxide dismutase in plants increased with increasing water stress. Malondialdehyde increased under severe water stress, but application of FA significantly decreased lipid peroxidation. Production of reactive oxygen species (ROS is a common phenomenon in plants under stress. Under this condition, the balance between the production of ROS and the quenching activity of antioxidants is upset, often resulting in oxidative damage. In this study, application of FA significantly increased fluorescence of chlorophyll a, inhibiting ROS production and enhancing antioxidant enzymes activity that destroyed ROS. Thus, ROS in plant cells was reduced under water stress by application of FA and consequently lipid peroxidation was reduced.

  18. Evaluation of Chlorophyll Fluorescence and Biochemical Traits of Lettuce under Drought Stress and Super Absorbent or Bentonite Application

    Directory of Open Access Journals (Sweden)

    Akram Valizadeh Ghale Beig

    2014-03-01

    Full Text Available The effects of two superabsorbents (natural-bentonite and (synthetic-A 200 on the chlorophyll fluorescence index, proline accumulation, phenolic compounds, antioxidant activity and total carbohydrate in lettuce (Lactuca sativa L. was evaluated. For this purpose, a factorial experiment using completely randomized design with superabsorbents at 3 levels (0, 0.15, 0.30 w/w%, drought stress at 2 levels (60 and 100% of field capacity and 4 replicates was conducted. Results showed that photosystem photochemical efficiency (Fv/Fm II under drought stress (60% FC as well as lower levels of bentonite superabsorbent polymer reduced. The minimum and maximum proline content were obtained in 0.3% bentonite, 100% FC and 0 benetonite, 60% FC, respectively. The lowest and highest phenolic compounds was corresponded to the highest levels in both super absorbents and control respectively, so that the super absorbent and bentonite, reduced phenolic compounds by 62.65 and 66.21% compared to control. 0 and 0.15 wt % bentonite in high drought stress (60% FC showed the highest and 0.3 wt % bentonite and 100% FC attained the lowest level of antioxidant activity. Control bentonite treatment beds at 60% FC and beds containing 0.3 wt. % bentonite in 100% FC, showed the lowest and the highest total carbohydrate content respectively. Results of this study indicate that bentonite can reduce the negative effects of drought stress similar to artificial super absorbent.

  19. Testing the Role of Microbial Ecology, Redox-Mediated Deep Water Production and Hypersalinity on TEX86: Lipids and 16s Sequences from Archaea and Bacteria in the Water Column and Sediments of Orca Basin

    Science.gov (United States)

    Warren, C.; Romero, I.; Ellis, G.; Goddard, E.; Krishnan, S.; Nigro, L. M.; Super, J. R.; Zhang, Y.; Zhuang, G.; Hollander, D. J.; Pagani, M.

    2014-12-01

    Mesophilic marine archaea and bacteria are known to substantially contribute to the oceanic microbial biomass and play critical roles in global carbon, nitrogen and nutrient cycles. The Orca Basin, a 2400 meter deep bathymetric depression on the continental slope of the north-central Gulf of Mexico, is an ideal environment to examine how redox-dependent biochemical processes control the input and cycling of bacterial and archaea-derived lipid compounds from formation in near-surface water, through secondary recycling processes operating at the redox-transition in the water column, to sedimentary diagenetic processes operating in oxic to anoxic zones within the basin. The lowermost 180 meters of the Orca Basin is characterized by an anoxic, hypersaline brine that is separated from the overlying oxic seawater by a well-defined redox sequence associated with a systematic increasing in salinity from 35 - 250‰. While surface water conditions are viewed as normal marine with a seasonally productive water column, the sub-oxic to anoxic transition zones within the deep-water column and the sediment spans over 200 m allowing the unique opportunity for discrete sampling of resident organisms and lipids. Here we present 16s rRNA sequence data of Bacteria and Archaea collected parallel to GDGT lipid profiles and in situ environmental measurements from the sediment and overlying water column in the intermediate zone of the basin, where movements of chemical transition zones are preserved. We evaluated GDGTs and corresponding taxa across the surface water, chlorophyll maximum, thermocline, and the deep redox boundary, including oxygenation, denitrification, manganese, iron and sulfate reduction zones, to determine if GDGTs are being produced under these conditions and how surface-derived GDGT lipids and the TEX86 signal may be altered. The results have implications for the application of the TEX86 paleotemperature proxy.

  20. Maximum gravitational redshift of white dwarfs

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Teukolsky, S.A.

    1976-01-01

    The stability of uniformly rotating, cold white dwarfs is examined in the framework of the Parametrized Post-Newtonian (PPN) formalism of Will and Nordtvedt. The maximum central density and gravitational redshift of a white dwarf are determined as functions of five of the nine PPN parameters (γ, β, zeta 2 , zeta 3 , and zeta 4 ), the total angular momentum J, and the composition of the star. General relativity predicts that the maximum redshifts is 571 km s -1 for nonrotating carbon and helium dwarfs, but is lower for stars composed of heavier nuclei. Uniform rotation can increase the maximum redshift to 647 km s -1 for carbon stars (the neutronization limit) and to 893 km s -1 for helium stars (the uniform rotation limit). The redshift distribution of a larger sample of white dwarfs may help determine the composition of their cores

  1. A GIS Approach to Wind,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea

    Science.gov (United States)

    Mirkhalili, Seyedhamzeh

    2016-07-01

    Chlorophyll is an extremely important bio-molecule, critical in photosynthesis, which allows plants to absorb energy from light. At the base of the ocean food web are single-celled algae and other plant-like organisms known as Phytoplankton. Like plants on land, Phytoplankton use chlorophyll and other light-harvesting pigments to carry out photosynthesis. Where Phytoplankton grow depends on available sunlight, temperature, and nutrient levels. In this research a GIS Approach using ARCGIS software and QuikSCAT satellite data was applied to visualize WIND,SST(Sea Surface Temperature) and CHL(Chlorophyll) variations in the Caspian Sea.Results indicate that increase in chlorophyll concentration in coastal areas is primarily driven by terrestrial nutrients and does not imply that warmer SST will lead to an increase in chlorophyll concentration and consequently Phytoplankton abundance.

  2. Remobilization of Phytol from Chlorophyll Degradation Is Essential for Tocopherol Synthesis and Growth of Arabidopsis

    Science.gov (United States)

    vom Dorp, Katharina; Hölzl, Georg; Plohmann, Christian; Eisenhut, Marion; Abraham, Marion

    2015-01-01

    Phytol from chlorophyll degradation can be phosphorylated to phytyl-phosphate and phytyl-diphosphate, the substrate for tocopherol (vitamin E) synthesis. A candidate for the phytyl-phosphate kinase from Arabidopsis thaliana (At1g78620) was identified via a phylogeny-based approach. This gene was designated VITAMIN E DEFICIENT6 (VTE6) because the leaves of the Arabidopsis vte6 mutants are tocopherol deficient. The vte6 mutant plants are incapable of photoautotrophic growth. Phytol and phytyl-phosphate accumulate, and the phytyl-diphosphate content is strongly decreased in vte6 leaves. Phytol feeding and enzyme assays with Arabidopsis and recombinant Escherichia coli cells demonstrated that VTE6 has phytyl-P kinase activity. Overexpression of VTE6 resulted in increased phytyl-diphosphate and tocopherol contents in seeds, indicating that VTE6 encodes phytyl-phosphate kinase. The severe growth retardation of vte6 mutants was partially rescued by introducing the phytol kinase mutation vte5. Double mutant plants (vte5 vte6) are tocopherol deficient and contain more chlorophyll, but reduced amounts of phytol and phytyl-phosphate compared with vte6 mutants, suggesting that phytol or phytyl-phosphate are detrimental to plant growth. Therefore, VTE6 represents the missing phytyl-phosphate kinase, linking phytol release from chlorophyll with tocopherol synthesis. Moreover, tocopherol synthesis in leaves depends on phytol derived from chlorophyll, not on de novo synthesis of phytyl-diphosphate from geranylgeranyl-diphosphate. PMID:26452599

  3. SmartFluo: A Method and Affordable Adapter to Measure Chlorophyll a Fluorescence with Smartphones

    NARCIS (Netherlands)

    Friedrichs, Anna; Busch, Julia; van der Woerd, H.J.; Zielinski, Oliver

    2017-01-01

    In order to increase the monitoring capabilities of inland and coastal waters, there is a need for new, affordable, sensitive and mobile instruments that could be operated semi-automatically in the field. This paper presents a prototype device to measure chlorophyll a fluorescence: the SmartFluo.

  4. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Science.gov (United States)

    Gu, Fenglin; Huang, Feifei; Wu, Guiping; Zhu, Hongying

    2018-02-09

    Black pepper ( Piper nigrum L.) is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC) degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC) and ultraviolet-visible and visible (UV-Vis) spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  5. Contribution of Polyphenol Oxidation, Chlorophyll and Vitamin C Degradation to the Blackening of Piper nigrum L.

    Directory of Open Access Journals (Sweden)

    Fenglin Gu

    2018-02-01

    Full Text Available Black pepper (Piper nigrum L. is the most widely used spice in the world. Blackening is considered to be beneficial and important in the processing of black pepper because it contributes to its color and flavor. The purpose of this paper is to investigate polyphenol oxidation as well as the chlorophyll and vitamin C (VC degradation in the blackening of Piper nigrum L. Black pepper was produced by four methods, and changes in polyphenols, chlorophyll and VC were studied by high performance liquid chromatography (HPLC and ultraviolet-visible and visible (UV-Vis spectrophotometry. The results show that polyphenol oxidase activity significantly decreased during the preparation of black pepper, and the concentrations of phenolic compounds, VC, and chlorophyll a and b also significantly decreased. Polyphenol oxidation and chlorophyll and VC degradation contribute to the blackening. A crude extract of phenolic compounds from black pepper was prepared by the system solvent method. The greater the polarity of the extraction solvent, the higher the extraction rates of the phenolic compounds and the total phenol content. Pepper phenolic compounds were analyzed by HPLC analysis.

  6. Effects of woody elements on simulated canopy reflectance: implications for forest chlorophyll content retrieval

    NARCIS (Netherlands)

    Verrelst, J.; Schaepman, M.E.; Malenovsky, Z.; Clevers, J.G.P.W.

    2010-01-01

    An important bio-indicator of actual plant health status, the foliar content of chlorophyll a and b (Cab), can be estimated using imaging spectroscopy. For forest canopies, however, the relationship between the spectral response and leaf chemistry is confounded by factors such as background (e.g.

  7. Rapid algal toxicity assay using variable chlorophyll fluorescence for Chlorella kessleri (Chlorophyta)

    Czech Academy of Sciences Publication Activity Database

    Kvíderová, Jana

    2010-01-01

    Roč. 25, č. 6 (2010), s. 554-562 ISSN 1520-4081 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : bioassay * variable chlorophyll fluorescence * Chlorella kessleri Subject RIV: EF - Botanics Impact factor: 1.932, year: 2010

  8. Experiments on the extraction and photoconversion of chenopodium chlorophyll protein CP 668

    NARCIS (Netherlands)

    Terpstra, Willemke

    1966-01-01

    1. 1. The amount of extractable, photoconvertible, protein-chlorophyll complex CP 668 from Chenopodium album leaves was found to be very variable, depending on site and day of leaf collection. 2. 2. Photoconversion of CP 668 into a 740-nm absorbing form probably does not occur in intact leaves;

  9. Chlorophyll-a, Orbview-2 SeaWiFS, 0.04167 degrees, Alaska, Science Quality

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NASA GSFC Ocean Color Web distributes science-quality chlorophyll-a concentration data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2...

  10. Chlorophyll-a, Orbview-2 SeaWiFS, 0.0125 degrees, West US

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes chlorophyll-a concentration images from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the Orbview-2 satellite. Because data is...

  11. Studies on the red absorption band of chlorophyll a in vivo

    NARCIS (Netherlands)

    Thomas, J.B.; Kleinen Hammans, J.W.; Arnolds, W.J.

    1965-01-01

    It was studied whether certain earlier observed weak shoulders on the red absorption band of chlorophyll a in vivo might represent anomalies due to overlap of absorption bands. The results are suggested of the fact that no such anomalies occur. It is therefore concluded that the present study

  12. Involvement of an ethylene response factor in chlorophyll degradation during citrus fruit degreening

    Science.gov (United States)

    Chlorophyll degradation naturally occurs during plant senescence. However, in fruit such as citrus, it is a positive characteristic, as degreening is an important colour development contributing to fruit quality. In the present work, Citrus sinensis Osbeck, cv. Newhall fruit was used as a model for ...

  13. Chlorophyll and sediment distribution study of the Gulf of Kutch using remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Takahiro Osawa; Yasuhiro Sugimori

    This study is largely based on the resulting series of SeaWiFS images and OCM images of Gulf of Kutch, which shows chlorophyll distribution on about 160 (cloud-free) dates between October 1998 and August 2001 period and sediment distribution pattern...

  14. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars

    NARCIS (Netherlands)

    Mafakheri, A.; Siosemardeh, A.; Bahramnejad, B.; Struik, P.C.; Sohrabi, Y.

    2010-01-01

    Drought stress is one of the major abiotic stresses in agriculture worldwide. This study was carried out to investigate the effect of drought stress on proline content, chlorophyll content, photosynthesis and transpiration, stomatal conductance and yield characteristics in three varieties of

  15. Effects of sodium pentaborate pentahydrate exposure on Chlorella vulgaris growth, chlorophyll content, and enzyme activities.

    Science.gov (United States)

    Chen, Xueqing; Pei, Yuansheng

    2016-10-01

    Sodium pentaborate pentahydrate (SPP) is a rare mineral. In this study, SPP was synthesized from boric acid and borax through low-temperature crystallization, and its effects on the growth of the alga, Chlorella vulgaris (C. vulgaris) were assessed. The newly synthesized SPP was characterized by chemical analysis, X-ray diffraction, Fourier-transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and differential thermal analysis. The changes in C. vulgaris growth, chlorophyll content, and enzyme activities upon exposure to SPP for 168h were evaluated. Results showed that SPP treatment was detrimental to C. vulgaris growth during the first 24-120h of exposure. The harmful effects, however, diminished over time (168h), even at an effective medium concentration of 226.37mg BL(-1) (the concentration of boron applied per liter of culture medium). A similar trend was observed for chlorophyll content (chlorophyll a and b) and indicated that the photosynthesis of C. vulgaris was not affected and that high levels of SPP may even promote chlorophyll synthesis. Superoxide dismutase and catalase activities of C. vulgaris increased during 24-120h exposure to SPP, but these activities gradually decreased as culture time progressed. In other words, the initial detrimental effects of synthetic SPP on C. vulgaris were temporary and reversible. This research provides a scientific basis for applications of SPP in the environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Data and Dynamics Driven Approaches for Modelling and Forecasting the Red Sea Chlorophyll

    KAUST Repository

    Dreano, Denis

    2017-05-31

    Phytoplankton is at the basis of the marine food chain and therefore play a fundamental role in the ocean ecosystem. However, the large-scale phytoplankton dynamics of the Red Sea are not well understood yet, mainly due to the lack of historical in situ measurements. As a result, our knowledge in this area relies mostly on remotely-sensed observations and large-scale numerical marine ecosystem models. Models are very useful to identify the mechanisms driving the variations in chlorophyll concentration and have practical applications for fisheries operation and harmful algae blooms monitoring. Modelling approaches can be divided between physics- driven (dynamical) approaches, and data-driven (statistical) approaches. Dynamical models are based on a set of differential equations representing the transfer of energy and matter between different subsets of the biota, whereas statistical models identify relationships between variables based on statistical relations within the available data. The goal of this thesis is to develop, implement and test novel dynamical and statistical modelling approaches for studying and forecasting the variability of chlorophyll concentration in the Red Sea. These new models are evaluated in term of their ability to efficiently forecast and explain the regional chlorophyll variability. We also propose innovative synergistic strategies to combine data- and physics-driven approaches to further enhance chlorophyll forecasting capabilities and efficiency.

  17. Induction of the 'in vivo' chlorophyll fluorescence excited by CW and pulse-periodical laser radiation

    International Nuclear Information System (INIS)

    Zakhidov, Eh.A.; Zakhidov, M.A.; Kasymdzhanov, M.A.; Khabibullaev, P.K.

    1996-01-01

    Inductional changes of fluorescence of the native chlorophyll molecules in plant leaves excited by CW and pulse-periodical laser radiation are studied. The opportunity of controlling of the photosynthesis efficiency through fluorescence response at different rates of the electron flow in charge transfer chain of the photosynthetic apparatus of plant is shown. (author). 13 refs.; 4 refs

  18. Patterns and Variability in Global Ocean Chlorophyll: Satellite Observations and Modeling

    Science.gov (United States)

    Gregg, Watson

    2004-01-01

    Recent analyses of SeaWiFS data have shown that global ocean chlorophyll has increased more than 4% since 1998. The North Pacific ocean basin has increased nearly 19%. These trend analyses follow earlier results showing decadal declines in global ocean chlorophyll and primary production. To understand the causes of these changes and trends we have applied the newly developed NASA Ocean Biogeochemical Assimilation Model (OBAM), which is driven in mechanistic fashion by surface winds, sea surface temperature, atmospheric iron deposition, sea ice, and surface irradiance. The model utilizes chlorophyll from SeaWiFS in a daily assimilation. The model has in place many of the climatic variables that can be expected to produce the changes observed in SeaWiFS data. This enables us to diagnose the model performance, the assimilation performance, and possible causes for the increase in chlorophyll. A full discussion of the changes and trends, possible causes, modeling approaches, and data assimilation will be the focus of the seminar.

  19. Detection of vegetation LUE based on chlorophyll fluorescence separation algorithm from Fraunhofer line

    Science.gov (United States)

    Liu, Liangyun; Zhang, Bing

    2009-09-01

    Photosynthetic efficiency is very important, and not yet generally assessable by remote sensing. Much research has proved the possibility of the separation of solar-induced chlorophyll fluorescence (ChlF) from the reflected hyperspectral data. As the 'probe' of plant photosynthesis, it is possible to detect photosynthetic light use efficiency (LUE) by the separated solar-induced ChlF. A diurnal experiment was carried out on winter wheat on Apr. 18, 2008, and the canopy radiance spectra and leaf LUE data were measured synchronously. The solar-induced chlorophyll fluorescence signals at 760nm and 688nm were separated from the reflected radiance spectral based on Fraunhofer lines in two oxygen absorption bands. The result showed that LUE was negatively correlated to the separated chlorophyll signals. The statistical models for LUE based on the solar-induced chlorophyll fluorescence values at 688 nm and 760 nm bands had correlation coefficients (R2) of 0.64 and 0.78, respectively. In addition, photochemical reflectance index (PRI) was also linked to LUE, and a statistical model for LUE based on PRI has a correlation coefficient (R2) of 0.66. The presented method provides a novel solution for monitoring LUE from remote sensing data.

  20. Interactions between iron and titanium metabolism in spinach: A chlorophyll fluorescence study in hydropony

    Czech Academy of Sciences Publication Activity Database

    Cígler, Petr; Olejníčková, Julie; Hrubý, Martin; Cséfalvay, Ladislav; Peterka, J.; Kužel, S.

    2010-01-01

    Roč. 167, č. 18 (2010), s. 1592-1597 ISSN 0176-1617 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40500505; CEZ:AV0Z60870520 Keywords : chlorophyll fluorescence * iron * photosynthetic apparatus * spinach * titanium Subject RIV: CC - Organic Chemistry Impact factor: 2.677, year: 2010