WorldWideScience

Sample records for decreasing ocean ph

  1. Glacial--interglacial stability of ocean pH inferred from foraminifer dissolution rates.

    Science.gov (United States)

    Anderson, David M; Archer, David

    2002-03-07

    The pH of the ocean is controlled by the chemistry of calcium carbonate. This system in turn plays a large role in regulating the CO2 concentration of the atmosphere on timescales of thousands of years and longer. Reconstructions of ocean pH and carbonate-ion concentration are therefore needed to understand the ocean's role in the global carbon cycle. During the Last Glacial Maximum (LGM), the pH of the whole ocean is thought to have been significantly more basic, as inferred from the isotopic composition of boron incorporated into calcium carbonate shells, which would partially explain the lower atmospheric CO2 concentration at that time. Here we reconstruct carbonate-ion concentration--and hence pH--of the glacial oceans, using the extent of calcium carbonate dissolution observed in foraminifer faunal assemblages as compiled in the extensive global CLIMAP data set. We observe decreased carbonate-ion concentrations in the glacial Atlantic Ocean, by roughly 20 micromolkg-1, while little change occurred in the Indian and Pacific oceans relative to today. In the Pacific Ocean, a small (5 micromolkg-1) increase occurred below 3,000m. This rearrangement of ocean pH may be due to changing ocean circulation from glacial to present times, but overall we see no evidence for a shift in the whole-ocean pH as previously inferred from boron isotopes.

  2. Changing noise levels in a high CO2/lower pH ocean

    Science.gov (United States)

    Brewer, P. G.; Hester, K. C.; Peltzer, E. T.; Kirkwood, W. J.

    2008-12-01

    We show that ocean acidification from fossil fuel CO2 invasion and from increased respiration/reduced ventilation, has significantly reduced ocean sound absorption and thus increased ocean noise levels in the kHz frequency range. Below 10 kHz, sound absorption occurs due to well known chemical relaxations in the B(OH)3/B(OH)4- and HCO3-/CO32- systems. The pH dependence of these chemical relaxations results in decreased sound absorption (α = dB/km) as the ocean becomes more acidic from increased CO2 levels. The scale of surface ocean pH change today from the +105 ppmv change in atmospheric CO2 is about - 0.12 pH, resulting in frequency dependent decreases in sound absorption that now exceed 12% over pre- industrial. Under reasonable projections of future fossil fuel CO2 emissions and other sources a pH change of 0.3 units or more can be anticipated by mid-century, resulting in a decrease in α by almost 40%. Increases in water temperature have a smaller effect but also contribute to decreased sound absorption. Combining a lowering of 0.3 pH units with an increase of 3°C, α will decrease further to almost 45%. Ambient noise levels in the ocean within the auditory range critical for environmental, military, and economic interests are set to increase significantly due to the combined effects of decreased absorption and increasing sources from mankind's activities. Incorporation of sound absorption in modeling future ocean scenarios (R. Zeebe, personal communication) and long-term monitoring possibly with the aid of modern cabled observatories can give insights in how ocean noise will continue to change and its effect on groups such as marine mammals which communicate in the affected frequency range.

  3. Natural and anthropogenic decadal pH decrease in the North Atlantic and Mediterranean Sea waters

    Science.gov (United States)

    Huertas, E.; Flecha, S.; Murata, A.; Garcia Lafuente, J.; Pérez, F. F.

    2017-12-01

    Seawater pH is undergoing a decreasing trend due to atmospheric CO2 absorption, a phenomenon known as Ocean Acidification (OA) that has been documented in different ocean regions. Certain marine basins are more vulnerable to OA, such as the Mediterranean Sea (MS), which is attributed to particular water circulation processes and biogeochemical features. Considering previous studies on OA in Mediterranean and Atlantic water masses, the main aim of this work was to identify for the first time the natural and anthropogenic contribution to decadal pH variations. Therefore, an archetypal analysis was applied to pH measurements and other biogeochemical variables collected in the Strait of Gibraltar during 10 years. Our results reveal that the biological component of the pH change in the Western Mediterranean Deep Water (WMDW) (ΔpHWMDW) represents around 56% of the total decadal pH decrease observed, highlighting the relevance of the remineralization occurring in the Alboran basin, where the WMDW resides before leaving the MS. On the other hand, neither natural nor anthropogenic forcing on the pH change in the Levantine Intermediate Water (ΔpHLIW) was detected, as pH variation was negligible. As for the North Atlantic Central Water (NACW), atmospheric CO2 uptake was responsible of 58% of the ΔpHNACW, likely related to permanent contact with the atmosphere. Additionally, estimations of the approximated ages of the NACW, LIW and WMDW in the SG of about 8, 34 and 32 years respectively have been obtained. Our results show that Mediterranean waters undergo changes in their biogeochemical characteristics during transit through the SG and gives insights on the main mechanisms affecting pH variations occurring from their formation sites to the SG.

  4. Decrease in Daphnia egg viability at elevated pH

    NARCIS (Netherlands)

    Vijverberg, J.; Kalf, D.F.; Boersma, M.

    1996-01-01

    The effect of high pH on the reproduction of two Daphnia galeata clones was experimentally investigated in the laboratory. We observed that the mortality of juveniles and adults did not increase with increasing pH in the range pH 9.0- 10.5, which agrees with what is generally reported in the

  5. Decreasing pH trend estimated from 25-yr time series of carbonate parameters in the western North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Midorikawa, Takashi; Ishii, Masao; Sasano, Daisuke; Kosugi, Naohiro (Geochemical Research Dept., Meteorological Research Institute Tsukuba (Japan)), e-mail: midorika@mri-jma.go.jp; Saito, Shu (Geochemical Research Dept., Meteorological Research Institute, Tsukuba (Japan); Institute of Observational Research for Global Change (IORGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka (Japan)); Motoi, Tatsuo (Oceanographic Research Dept., Meteorological Research Institute, Tsukuba (Japan)); Kamiya, Hitomi; Nakadate, Akira; Nemoto, Kazuhiro (Global Environment and Marine Dept., Japan Meteorological Agency, Tokyo (Japan)); Inoue, Hisayuki Y. (Graduate School of Environmental Earth Science, Hokkaido Univ., Sapporo (Japan))

    2010-11-15

    We estimated long-term trends of ocean acidification in surface waters in latitudinal zones from 3 deg N to 33 deg N along the repeat hydrographic line at 137 deg E in the western North Pacific Ocean. Estimates were based on the observational records of oceanic CO{sub 2} partial pressure and related surface properties over the last two decades. The computed pH time series both for 25 yr in winter (late January to early February) and for 21 yr in summer (June-July) exhibited significant decreasing trends in the extensive subtropical to equatorial zones, with interannual variations that were larger in summer. The calculated rates of pH decrease ranged from 0.0015 to 0.0021 yr-1 (average, 0.0018 +- 0.0002 yr-1) in winter and from 0.0008 to 0.0019 yr-1 (average, 0.0013 +- 0.0005 yr-1 ) in summer. The thermodynamic effects of rising sea surface temperature (SST) accounted for up to 44% (average, 15%) of the trend of pH decrease in the subtropical region in winter, whereas a trend of decreasing SST slowed the pH decrease in the northern subtropical region (around 25 deg N) in summer. We used the results from recent trends to evaluate future possible thermodynamic changes in the upper ocean carbonate system

  6. Coralline algae elevate pH at the site of calcification under ocean acidification.

    Science.gov (United States)

    Cornwall, Christopher E; Comeau, Steeve; McCulloch, Malcolm T

    2017-10-01

    Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species-specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pH cf ) using δ 11 B as a proxy. Declines in δ 11 B for all three species are consistent with shifts in δ 11 B expected if B(OH) 4 - was incorporated during precipitation. In particular, the δ 11 B ratio in Amphiroa anceps was too low to allow for reasonable pH cf values if B(OH) 3 rather than B(OH) 4 - was directly incorporated from the calcifying fluid. This points towards δ 11 B being a reliable proxy for pH cf for coralline algal calcite and that if B(OH) 3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH) 4 - . We thus show that pH cf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO 2 , as did their pH cf . Neogoniolithon sp. had the highest pH cf , and most constant calcification rates, with the decrease in pH cf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pH cf under ocean acidification is physiologically important and should be included in future models involving calcification. © 2017 John Wiley & Sons Ltd.

  7. Low pH Springs - A Natural Laboratory for Ocean Acidification

    Science.gov (United States)

    Derse, E.; Rebolledo-Vieyra, M.; Potts, D. C.; Paytan, A.

    2009-12-01

    Recent increases in atmospheric carbon dioxide of 40% above pre-industrial levels has resulted in rising aqueous CO2 concentrations that lower the pH of the oceans. Currently, the surface ocean has an average pH between 8.1 and 8.2: it is estimated that over the next 100 years this value will decrease by ~0.4 pH units. Previous studies have highlighted the negative impacts that changes in pH (and the resulting CaCO3 saturation state) have on marine organisms; however, to date, very little is known about the long-term impacts of ocean acidification on ecosystems as a whole. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.25-8.07) has been discharging offshore at highly localized points (called ojos) since the last deglaciation. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. We address the potential long-term implications of low pH waters on marine ecosystems.

  8. Generalised expressions for the response of pH to changes in ocean chemistry

    Science.gov (United States)

    Hagens, Mathilde; Middelburg, Jack J.

    2016-08-01

    The extent to which oceans are capable of buffering chemical changes resulting from the uptake of carbon dioxide (CO2) or other acidifying processes can be quantified using buffer factors. Here, we present general expressions describing the sensitivity of pH and concentrations of CO2 and other acid-base species to a change in ocean chemistry. These expressions can include as many acid-base systems as desirable, making them suitable for application to, e.g., upwelling regions or nutrient-rich coastal waters. We show that these expressions are fully consistent with previously derived expressions for the Revelle factor and other buffer factors, which only included the carbonate and borate acid-base systems, and provide more accurate values. We apply our general expressions to contemporary global ocean surface water and possible changes therein by the end of the 21st century. These results show that most sensitivities describing a change in pH are of greater magnitude in a warmer, high-CO2 ocean, indicating a decreased seawater buffering capacity. This trend is driven by the increase in CO2 and slightly moderated by the warming. Respiration-derived carbon dioxide may amplify or attenuate ocean acidification due to rising atmospheric CO2, depending on their relative importance. Our work highlights that, to gain further insight into current and future pH dynamics, it is crucial to properly quantify the various concurrently acting buffering mechanisms.

  9. Variability in larval gut pH regulation defines sensitivity to ocean acidification in six species of the Ambulacraria superphylum.

    Science.gov (United States)

    Hu, Marian; Tseng, Yung-Che; Su, Yi-Hsien; Lein, Etienne; Lee, Hae-Gyeong; Lee, Jay-Ron; Dupont, Sam; Stumpp, Meike

    2017-10-11

    The unusual rate and extent of environmental changes due to human activities may exceed the capacity of marine organisms to deal with this phenomenon. The identification of physiological systems that set the tolerance limits and their potential for phenotypic buffering in the most vulnerable ontogenetic stages become increasingly important to make large-scale projections. Here, we demonstrate that the differential sensitivity of non-calcifying Ambulacraria (echinoderms and hemichordates) larvae towards simulated ocean acidification is dictated by the physiology of their digestive systems. Gastric pH regulation upon experimental ocean acidification was compared in six species of the superphylum Ambulacraria. We observed a strong correlation between sensitivity to ocean acidification and the ability to regulate gut pH. Surprisingly, species with tightly regulated gastric pH were more sensitive to ocean acidification. This study provides evidence that strict maintenance of highly alkaline conditions in the larval gut of Ambulacraria early life stages may dictate their sensitivity to decreases in seawater pH. These findings highlight the importance of identifying and understanding pH regulatory systems in marine larval stages that may contribute to substantial energetic challenges under near-future ocean acidification scenarios. © 2017 The Author(s).

  10. Characterisation and deployment of an immobilised pH sensor spot towards surface ocean pH measurements.

    Science.gov (United States)

    Clarke, Jennifer S; Achterberg, Eric P; Rérolle, Victoire M C; Abi Kaed Bey, Samer; Floquet, Cedric F A; Mowlem, Matthew C

    2015-10-15

    The oceans are a major sink for anthropogenic atmospheric carbon dioxide, and the uptake causes changes to the marine carbonate system and has wide ranging effects on flora and fauna. It is crucial to develop analytical systems that allow us to follow the increase in oceanic pCO2 and corresponding reduction in pH. Miniaturised sensor systems using immobilised fluorescence indicator spots are attractive for this purpose because of their simple design and low power requirements. The technology is increasingly used for oceanic dissolved oxygen measurements. We present a detailed method on the use of immobilised fluorescence indicator spots to determine pH in ocean waters across the pH range 7.6-8.2. We characterised temperature (-0.046 pH/°C from 5 to 25 °C) and salinity dependences (-0.01 pH/psu over 5-35), and performed a preliminary investigation into the influence of chlorophyll on the pH measurement. The apparent pKa of the sensor spots was 6.93 at 20 °C. A drift of 0.00014 R (ca. 0.0004 pH, at 25 °C, salinity 35) was observed over a 3 day period in a laboratory based drift experiment. We achieved a precision of 0.0074 pH units, and observed a drift of 0.06 pH units during a test deployment of 5 week duration in the Southern Ocean as an underway surface ocean sensor, which was corrected for using certified reference materials. The temperature and salinity dependences were accounted for with the algorithm, R=0.00034-0.17·pH+0.15·S(2)+0.0067·T-0.0084·S·1.075. This study provides a first step towards a pH optode system suitable for autonomous deployment. The use of a short duration low power illumination (LED current 0.2 mA, 5 μs illumination time) improved the lifetime and precision of the spot. Further improvements to the pH indicator spot operations include regular application of certified reference materials for drift correction and cross-calibration against a spectrophotometric pH system. Desirable future developments should involve novel

  11. Improvement of the respiration efficiency of Lactococcus lactis by decreasing the culture pH.

    Science.gov (United States)

    Shi, Weijia; Li, Yu; Gao, Xueling; Fu, Ruiyan

    2016-03-01

    The growth characteristics and intracellular hemin concentrations of Lactococcus lactis grown under different culture pH and aeration conditions were examined to investigate the effect of culture pH on the respiration efficiency of L. lactis NZ9000 (pZN8148). Cell biomass and biomass yield of L. lactis grown with 4 μg hemin/ml and O2 were higher than those without aeration when the culture pH was controlled at 5-6.5. The culture pH affected the respiratory efficiency in the following order of pH: 5 > 5.5 > 6 > 6.5; the lag phase increased as the culture pH decreased. Hemin accumulation was sensitive to culture pH. Among the four pH conditions, pH 5.5 was optimal for hemin accumulation in the cells. The highest intracellular hemin level in L. lactis resting cells incubated at different pH saline levels (5-6.5) was at pH 5.5. The respiration efficiency of L. lactis under respiration-permissive conditions increases markedly as the culture pH decreases. These results may help develop high cell-density L. lactis cultures. Thus, this microorganism may be used for industrial applications.

  12. Decrease in oceanic crustal thickness since the breakup of Pangaea

    Science.gov (United States)

    van Avendonk, Harm J. A.; Davis, Joshua K.; Harding, Jennifer L.; Lawver, Lawrence A.

    2017-01-01

    Earth's mantle has cooled by 6-11 °C every 100 million years since the Archaean, 2.5 billion years ago. In more recent times, the surface heat loss that led to this temperature drop may have been enhanced by plate-tectonic processes, such as continental breakup, the continuous creation of oceanic lithosphere at mid-ocean ridges and subduction at deep-sea trenches. Here we use a compilation of marine seismic refraction data from ocean basins globally to analyse changes in the thickness of oceanic crust over time. We find that oceanic crust formed in the mid-Jurassic, about 170 million years ago, is 1.7 km thicker on average than crust produced along the present-day mid-ocean ridge system. If a higher mantle temperature is the cause of thicker Jurassic ocean crust, the upper mantle may have cooled by 15-20 °C per 100 million years over this time period. The difference between this and the long-term mantle cooling rate indeed suggests that modern plate tectonics coincide with greater mantle heat loss. We also find that the increase of ocean crustal thickness with plate age is stronger in the Indian and Atlantic oceans compared with the Pacific Ocean. This observation supports the idea that upper mantle temperature in the Jurassic was higher in the wake of the fragmented supercontinent Pangaea due to the effect of continental insulation.

  13. Dynamic patterns and ecological impacts of declining ocean pH in a high-resolution multi-year dataset.

    Science.gov (United States)

    Wootton, J Timothy; Pfister, Catherine A; Forester, James D

    2008-12-02

    Increasing global concentrations of atmospheric CO(2) are predicted to decrease ocean pH, with potentially severe impacts on marine food webs, but empirical data documenting ocean pH over time are limited. In a high-resolution dataset spanning 8 years, pH at a north-temperate coastal site declined with increasing atmospheric CO(2) levels and varied substantially in response to biological processes and physical conditions that fluctuate over multiple time scales. Applying a method to link environmental change to species dynamics via multispecies Markov chain models reveals strong links between in situ benthic species dynamics and variation in ocean pH, with calcareous species generally performing more poorly than noncalcareous species in years with low pH. The models project the long-term consequences of these dynamic changes, which predict substantial shifts in the species dominating the habitat as a consequence of both direct effects of reduced calcification and indirect effects arising from the web of species interactions. Our results indicate that pH decline is proceeding at a more rapid rate than previously predicted in some areas, and that this decline has ecological consequences for near shore benthic ecosystems.

  14. Field Performance of ISFET based Deep Ocean pH Sensors

    Science.gov (United States)

    Branham, C. W.; Murphy, D. J.

    2017-12-01

    Historically, ocean pH time series data was acquired from infrequent shipboard grab samples and measured using labor intensive spectrophotometry methods. However, with the introduction of robust and stable ISFET pH sensors for use in ocean applications a paradigm shift in the methods used to acquire long-term pH time series data has occurred. Sea-Bird Scientific played a critical role in the adoption this new technology by commercializing the SeaFET pH sensor and float pH Sensor developed by the MBARI chemical sensor group. Sea-Bird Scientific continues to advance this technology through a concerted effort to improve pH sensor accuracy and reliability by characterizing their performance in the laboratory and field. This presentation will focus on calibration of the ISFET pH sensor, evaluate its analytical performance, and validate performance using recent field data.

  15. Relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions.

    Science.gov (United States)

    Miyawaki, Shouichi; Tanimoto, Yuko; Araki, Yoshiko; Katayama, Akira; Imai, Mikako; Takano-Yamamoto, Teruko

    2004-11-01

    The purpose of this study was to examine the relationships among nocturnal jaw muscle activities, decreased esophageal pH, and sleep positions. Twelve adult volunteers, including 4 bruxism patients, participated in this study. Portable pH monitoring, electromyography of the temporal muscle, and audio-video recordings were conducted during the night in the subjects' homes. Rhythmic masticatory muscle activity (RMMA) episodes were observed most frequently, with single short-burst episodes the second most frequent. The frequencies of RMMA, single short-burst, and clenching episodes were significantly higher during decreased esophageal pH episodes than those during other times. Both the electromyography and the decreased esophageal pH episodes were most frequently observed in the supine position. These results suggest that most jaw muscle activities, ie, RMMA, single short-burst, and clenching episodes, occur in relation to gastroesophageal reflux mainly in the supine position.

  16. Decreased abundance of crustose coralline algae due to ocean acidification

    Science.gov (United States)

    Kuffner, Ilsa B.; Andersson, Andreas J; Jokiel, Paul L.; Rodgers, Ku'ulei S.; Mackenzie, Fred T.

    2008-01-01

    Owing to anthropogenic emissions, atmospheric concentrations of carbon dioxide could almost double between 2006 and 2100 according to business-as-usual carbon dioxide emission scenarios1. Because the ocean absorbs carbon dioxide from the atmosphere2, 3, 4, increasing atmospheric carbon dioxide concentrations will lead to increasing dissolved inorganic carbon and carbon dioxide in surface ocean waters, and hence acidification and lower carbonate saturation states2, 5. As a consequence, it has been suggested that marine calcifying organisms, for example corals, coralline algae, molluscs and foraminifera, will have difficulties producing their skeletons and shells at current rates6, 7, with potentially severe implications for marine ecosystems, including coral reefs6, 8, 9, 10, 11. Here we report a seven-week experiment exploring the effects of ocean acidification on crustose coralline algae, a cosmopolitan group of calcifying algae that is ecologically important in most shallow-water habitats12, 13, 14. Six outdoor mesocosms were continuously supplied with sea water from the adjacent reef and manipulated to simulate conditions of either ambient or elevated seawater carbon dioxide concentrations. The recruitment rate and growth of crustose coralline algae were severely inhibited in the elevated carbon dioxide mesocosms. Our findings suggest that ocean acidification due to human activities could cause significant change to benthic community structure in shallow-warm-water carbonate ecosystems.

  17. Empirical algorithms to estimate water column pH in the Southern Ocean

    Science.gov (United States)

    Williams, N. L.; Juranek, L. W.; Johnson, K. S.; Feely, R. A.; Riser, S. C.; Talley, L. D.; Russell, J. L.; Sarmiento, J. L.; Wanninkhof, R.

    2016-04-01

    Empirical algorithms are developed using high-quality GO-SHIP hydrographic measurements of commonly measured parameters (temperature, salinity, pressure, nitrate, and oxygen) that estimate pH in the Pacific sector of the Southern Ocean. The coefficients of determination, R2, are 0.98 for pH from nitrate (pHN) and 0.97 for pH from oxygen (pHOx) with RMS errors of 0.010 and 0.008, respectively. These algorithms are applied to Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) biogeochemical profiling floats, which include novel sensors (pH, nitrate, oxygen, fluorescence, and backscatter). These algorithms are used to estimate pH on floats with no pH sensors and to validate and adjust pH sensor data from floats with pH sensors. The adjusted float data provide, for the first time, seasonal cycles in surface pH on weekly resolution that range from 0.05 to 0.08 on weekly resolution for the Pacific sector of the Southern Ocean.

  18. A New Desalination Pump Helps Define the pH of Ocean Worlds

    Science.gov (United States)

    Levi, A.; Sasselov, D.

    2018-04-01

    We study ocean exoplanets, for which the global surface ocean is separated from the rocky interior by a high-pressure ice mantle. We describe a mechanism that can pump salts out of the ocean, resulting in oceans of very low salinity. Here we focus on the H2O–NaCl system, though we discuss the application of this pump to other salts as well. We find our ocean worlds to be acidic, with a pH in the range of 2–4. We discuss and compare between the conditions found within our studied oceans and the conditions in which polyextremophiles were discovered. This work focuses on exoplanets in the super-Earth mass range (∼2 M ⊕), with water composing at least a few percent of their mass. However, the principle of the desalination pump might extend beyond this mass range.

  19. Short-Term Exposure of Mytilus coruscus to Decreased pH and Salinity Change Impacts Immune Parameters of Their Haemocytes.

    Science.gov (United States)

    Wu, Fangli; Xie, Zhe; Lan, Yawen; Dupont, Sam; Sun, Meng; Cui, Shuaikang; Huang, Xizhi; Huang, Wei; Liu, Liping; Hu, Menghong; Lu, Weiqun; Wang, Youji

    2018-01-01

    With the release of large amounts of CO 2 , ocean acidification is intensifying and affecting aquatic organisms. In addition, salinity also plays an important role for marine organisms and fluctuates greatly in estuarine and coastal ecosystem, where ocean acidification frequently occurs. In present study, flow cytometry was used to investigate immune parameters of haemocytes in the thick shell mussel Mytilus coruscus exposed to different salinities (15, 25, and 35‰) and two pH levels (7.3 and 8.1). A 7-day in vivo and a 5-h in vitro experiments were performed. In both experiments, low pH had significant effects on all tested immune parameters. When exposed to decreased pH, total haemocyte count (THC), phagocytosis (Pha), esterase (Est), and lysosomal content (Lyso) were significantly decreased, whereas haemocyte mortality (HM) and reactive oxygen species (ROS) were increased. High salinity had no significant effects on the immune parameters of haemocytes as compared with low salinity. However, an interaction between pH and salinity was observed in both experiments for most tested haemocyte parameters. This study showed that high salinity, low salinity and low pH have negative and interactive effects on haemocytes of mussels. As a consequence, it can be expected that the combined effect of low pH and changed salinity will have more severe effects on mussel health than predicted by single exposure.

  20. High-frequency dynamics of ocean pH: a multi-ecosystem comparison.

    Directory of Open Access Journals (Sweden)

    Gretchen E Hofmann

    Full Text Available The effect of Ocean Acidification (OA on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO(2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO(2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO(2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

  1. Generalised expressions for the response of pH to changes in ocean chemistry

    NARCIS (Netherlands)

    Hagens, M.; Middelburg, J.B.M.

    2016-01-01

    The extent to which oceans are capable of buffering chemical changes resulting from the uptake of carbon dioxide (CO2) or other acidifying processes can be quantified using buffer factors. Here, we present general expressions describing the sensitivity of pH and concentrations of CO2 and other

  2. Ocean Health X-Prize testing of a Simplified Spectrophotometric pH Sensor

    Science.gov (United States)

    Darlington, R. C.; DeGrandpre, M. D.; Spaulding, R. S.; Beck, J. C.

    2016-02-01

    Since the Industrial Revolution, the world's oceans have absorbed increasing amounts of CO2, resulting in a >0.1 reduction in the pH of surface waters. This acidification of the oceans has many far reaching impacts on marine life. There is, therefore, great need of quality instrumentation to assess and follow the changing carbonate system. To address this need, we have developed a simplified spectrophotometric pH sensor with accuracy and precision suitable for sea surface measurements with special emphasis on reduced size and cost. The reduced size will allow deployment of sensors on a much wider variety of platforms than are currently possible, and the reduced cost will make the instruments available to a broader research community. This prototype pH instrument was entered into the Wendy Schmidt Ocean Health X-Prize, an incentivized global competition to spur innovation in sensors to monitor ocean acidification's impact on marine ecosystems. Results from the three phases of competition which explored accuracy, precision, and stability culminating in a one month field trial are detailed. The prototype proved to be highly accurate (+/-0.009), with good precision (+/-0.004) and stability showing drift indistinguishable from that of the validation measurements. The innovations that enabled this sensor to succeed in the competition could allow for deployment of spectrophotometric sensors on new platforms such as NOAAs Global Drifter Program, a network of non-recovered surface drifting buoys, which would greatly extend the spatial and temporal resolution of ocean acidification measurements.

  3. Advancing Ocean Acidification Biology Using Durafet® pH Electrodes

    Directory of Open Access Journals (Sweden)

    Lydia Kapsenberg

    2017-10-01

    Full Text Available Research assessing the biological impacts of global ocean change often requires a burdensome characterization of seawater carbonate chemistry. For laboratory-based ocean acidification research, this impedes the scope of experimental design. Honeywell Durafet® III pH electrodes provide precise and continuous seawater pH measurements. In addition to use in oceanographic sensor packages, Durafets can also be used in the laboratory to track and control seawater treatments via Honeywell Universal Dual Analyzers (UDAs. Here we provide performance data, instructions, and step-by-step recommendations for use of multiple UDA-Durafets. Durafet pH measurements were within ±0.005 units pHT of spectrophotometric measurements and agreement among eight Durafets was better than ±0.005 units pHT. These results indicate equal performance to Durafets in oceanographic sensor packages, but methods for calibration and quality control differ. Use of UDA-Durafets vastly improves time-course documentation of experimental conditions and reduces person-hours dedicated to this activity. Due to the versatility of integrating Durafets in laboratory seawater systems, this technology opens the door to advance the scale of questions that the ocean acidification research community aims to address.

  4. Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration

    Directory of Open Access Journals (Sweden)

    N. Keul

    2013-10-01

    Full Text Available About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA. Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic calcium carbonate in the open oceans. We have compiled the state of the art literature on OA effects on foraminifera, because the majority of OA research on this group was published within the last three years. Disparate responses of this important group of marine calcifiers to OA were reported, highlighting the importance of a process-based understanding of OA effects on foraminifera. We cultured the benthic foraminifer Ammonia sp. under a range of carbonate chemistry manipulation treatments to identify the parameter of the carbonate system causing the observed effects. This parameter identification is the first step towards a process-based understanding. We argue that [CO32−] is the parameter affecting foraminiferal size-normalized weights (SNWs and growth rates. Based on the presented data, we can confirm the strong potential of Ammonia sp. foraminiferal SNW as a [CO32−] proxy.

  5. Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.

    Science.gov (United States)

    Gong, Yehong; Zhu, Yuzhen; Zou, Yu; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen

    2017-01-26

    pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102H p and S83H p ). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102H p mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83H p mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.

  6. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments

    Science.gov (United States)

    Kapsenberg, Lydia; Kelley, Amanda L.; Shaw, Emily C.; Martz, Todd R.; Hofmann, Gretchen E.

    2015-01-01

    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

  7. Deletion of the pH sensor GPR4 decreases renal acid excretion.

    Science.gov (United States)

    Sun, Xuming; Yang, Li V; Tiegs, Brian C; Arend, Lois J; McGraw, Dennis W; Penn, Raymond B; Petrovic, Snezana

    2010-10-01

    Proton receptors are G protein-coupled receptors that accept protons as ligands and function as pH sensors. One of the proton receptors, GPR4, is relatively abundant in the kidney, but its potential role in acid-base homeostasis is unknown. In this study, we examined the distribution of GPR4 in the kidney, its function in kidney epithelial cells, and the effects of its deletion on acid-base homeostasis. We observed GPR4 expression in the kidney cortex, in the outer and inner medulla, in isolated kidney collecting ducts, and in cultured outer and inner medullary collecting duct cells (mOMCD1 and mIMCD3). Cultured mOMCD1 cells exhibited pH-dependent accumulation of intracellular cAMP, characteristic of GPR4 activation; GPR4 knockdown attenuated this accumulation. In vivo, deletion of GPR4 decreased net acid secretion by the kidney and resulted in a nongap metabolic acidosis, indicating that GPR4 is required to maintain acid-base homeostasis. Collectively, these findings suggest that GPR4 is a pH sensor with an important role in regulating acid secretion in the kidney collecting duct.

  8. Response of Syntrophic Propionate Degradation to pH Decrease and Microbial Community Shifts in an UASB Reactor.

    Science.gov (United States)

    Zhang, Liguo; Ban, Qiaoying; Li, Jianzheng; Jha, Ajay Kumar

    2016-08-28

    The effect of pH on propionate degradation in an upflow anaerobic sludge blanket (UASB) reactor containing propionate as a sole carbon source was studied. Under influent propionate of 2,000 mg/l and 35ºC, propionate removal at pH 7.5-6.8 was above 93.6%. Propionate conversion was significantly inhibited with stepwise pH decrease from pH 6.8 to 6.5, 6.0, 5.5, 5.0, 4.5, and then to 4.0. After long-term operation, the propionate removal at pH 6.5-4.5 maintained an efficiency of 88.5%-70.1%, whereas propionate was hardly decomposed at pH 4.0. Microbial composition analysis showed that propionate-oxidizing bacteria from the genera Pelotomaculum and Smithella likely existed in this system. They were significantly reduced at pH ≤5.5. The methanogens in this UASB reactor belonged to four genera: Methanobacterium, Methanospirillum, Methanofollis, and Methanosaeta. Most detectable hydrogenotrophic methanogens were able to grow at low pH conditions (pH 6.0-4.0), but the acetotrophic methanogens were reduced as pH decreased. These results indicated that propionate-oxidizing bacteria and acetotrophic methanogens were more sensitive to low pH (5.5-4.0) than hydrogenotrophic methanogens.

  9. Coral calcifying fluid pH dictates response to ocean acidification.

    Science.gov (United States)

    Holcomb, M; Venn, A A; Tambutté, E; Tambutté, S; Allemand, D; Trotter, J; McCulloch, M

    2014-06-06

    Ocean acidification driven by rising levels of CO2 impairs calcification, threatening coral reef growth. Predicting how corals respond to CO2 requires a better understanding of how calcification is controlled. Here we show how spatial variations in the pH of the internal calcifying fluid (pHcf) in coral (Stylophora pistillata) colonies correlates with differential sensitivity of calcification to acidification. Coral apexes had the highest pHcf and experienced the smallest changes in pHcf in response to acidification. Lateral growth was associated with lower pHcf and greater changes with acidification. Calcification showed a pattern similar to pHcf, with lateral growth being more strongly affected by acidification than apical. Regulation of pHcf is therefore spatially variable within a coral and critical to determining the sensitivity of calcification to ocean acidification.

  10. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.

    Science.gov (United States)

    Evans, Tyler G; Chan, Francis; Menge, Bruce A; Hofmann, Gretchen E

    2013-03-01

    Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2 . The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2 -acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans. © 2013 Blackwell Publishing Ltd.

  11. Calcification persists with CO2-induced ocean acidification but decreases with warming for the Caribbean coral Siderastrea siderea

    Science.gov (United States)

    Castillo, K. D.; Ries, J. B.; Westfield, I. T.; Weiss, J. M.; Bruno, J. F.

    2012-12-01

    Atmospheric carbon dioxide (pCO2) induced ocean acidification and rising seawater temperatures are identified as two of the greatest threats to modern coral reefs. Within this century, surface seawater pH is expected to decrease by at least 0.3 units, and sea surface temperature is predicted to rise by 1 to 3 °C. However, uncertainty remains as to whether ocean acidification or ocean warming will have a more deleterious impact on coral reefs by the end of the century. Here, we present results of 95-day laboratory experiments in which we investigated the impact of CO2-induced ocean acidification and temperature on the calcification rate of the tropical reef-building zooxanthellate scleractinian coral Siderastrea siderea. We found that calcification rates for S. siderea, estimated from buoyant weighing, increased as pCO2 increased from a pre-industrial value of 324 ppm to a near-present-day value of 477 ppm, remained unchanged as pCO2 increased from 477 ppm to the predicted end-of-century value of 604 ppm, and only declined at 6-times the modern pCO2 value of 2553 ppm. Corals reared at average pCO2 of 488 ppm and at temperatures of 25 and 32 °C, approximately the lower and upper temperature extremes for this species, calcified at lower rates relative to corals reared at 28 °C under equivalent pCO2. These results support the existing evidence that scleractinian corals such as S. siderea are able to manipulate the carbonate chemistry at their calcification site, enabling them to maintain their calcification rates under elevated pCO2 levels predicted for the end of this century. However, exposure of S. siderea corals to sea surface temperatures predicted for tropical waters for the end of this century grossly impaired their rate of calcification. These findings suggest that ocean warming poses a more immediate threat to the coral S. siderea than does ocean acidification, at least under scenarios (B1, A1T, and B2) predicted by the Intergovernmental Panel on Climate

  12. Ocean acidification affects parameters of immune response and extracellular pH in tropical sea urchins Lytechinus variegatus and Echinometra luccunter.

    Science.gov (United States)

    Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto

    2016-11-01

    The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values ​​are re-established. Thus, the effects of

  13. Dural afferents express acid-sensing ion channels: a role for decreased meningeal pH in migraine headache.

    Science.gov (United States)

    Yan, Jin; Edelmayer, Rebecca M; Wei, Xiaomei; De Felice, Milena; Porreca, Frank; Dussor, Gregory

    2011-01-01

    Migraine headache is one of the most common neurological disorders. The pathological conditions that directly initiate afferent pain signaling are poorly understood. In trigeminal neurons retrogradely labeled from the cranial meninges, we have recorded pH-evoked currents using whole-cell patch-clamp electrophysiology. Approximately 80% of dural-afferent neurons responded to a pH 6.0 application with a rapidly activating and rapidly desensitizing ASIC-like current that often exceeded 20nA in amplitude. Inward currents were observed in response to a wide range of pH values and 30% of the neurons exhibited inward currents at pH 7.1. These currents led to action potentials in 53%, 30% and 7% of the dural afferents at pH 6.8, 6.9 and 7.0, respectively. Small decreases in extracellular pH were also able to generate sustained window currents and sustained membrane depolarizations. Amiloride, a non-specific blocker of ASIC channels, inhibited the peak currents evoked upon application of decreased pH while no inhibition was observed upon application of TRPV1 antagonists. The desensitization time constant of pH 6.0-evoked currents in the majority of dural afferents was less than 500ms which is consistent with that reported for ASIC3 homomeric or heteromeric channels. Finally, application of pH 5.0 synthetic-interstitial fluid to the dura produced significant decreases in facial and hind-paw withdrawal threshold, an effect blocked by amiloride but not TRPV1 antagonists, suggesting that ASIC activation produces migraine-related behavior in vivo. These data provide a cellular mechanism by which decreased pH in the meninges following ischemic or inflammatory events directly excites afferent pain-sensing neurons potentially contributing to migraine headache. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  14. Turf algal epiphytes metabolically induce local pH increase, with implications for underlying coralline algae under ocean acidification

    DEFF Research Database (Denmark)

    Short, J.A.; Pedersen, Ole; Kendrick, G.A.

    2015-01-01

    The presence of epiphytic turf algae may modify the effects of ocean acidification on coralline algal calcification rates by altering seawater chemistry within the diffusive boundary layer (DBL) above coralline algal crusts. We used microelectrodes to measure the effects of turf algal epiphytes...... on seawater pH and the partial pressure of oxygen (pO2) within the DBL at the surface of Hydrolithoideae coralline algal crusts under ambient (36 Pa) CO2 and an ocean acidification scenario with elevated CO2 (200 Pa). Turf algae significantly increased the mean diel amplitude of pH and pO2, and this effect...... was more pronounced under elevated CO2. We suggest that increases in seawater CO2 under ocean acidification conditions may drive an increase in the abundance of epiphytic turf algae, consequently modifying the chemistry within the DBL. Thus, the effect of epiphytic turf algae on microscale pH is striking...

  15. On the Decrease of the Oceanic Drag Coefficient in High Winds

    Science.gov (United States)

    Donelan, Mark A.

    2018-02-01

    The sheltering coefficient - prefixing Jeffreys' concept of the exponential wave growth rate at a gas-liquid interface - is shown to be Reynolds number dependent from laboratory measurements of waves and Reynolds stresses. There are two turbulent flow regimes: wind speed range of 2.5 to 30 m/s where the drag coefficients increase with wind speed, and wind speed range of 30 to 50 m/s where sheltering/drag coefficients decrease/saturate with wind speed. By comparing model calculations of drag coefficients - using a fixed sheltering coefficient - with ocean observations over a wind speed range of 1 to 50 m/s a similar Reynolds number dependence of the oceanic sheltering coefficient is revealed. In consequence the drag coefficient is a function of Reynolds number and wave age, and not just wind speed as frequently assumed. The resulting decreasing drag coefficient above 30 m/s is shown to be critical in explaining the rapid intensification so prominent in the climatology of Atlantic hurricanes. The Reynolds number dependence of the sheltering coefficient, when employed in coupled models, should lead to significant improvements in the prediction of intensification and decay of tropical cyclones. A calculation of curvature at the wave crest suggests that at wind speeds above 56.15 m/s all waves-breaking or not-induce steady flow separation leading to a minimum in the drag coefficient. This is further evidence of the veracity of the observations of the oceanic drag coefficient at high winds.

  16. Decreased extracellular pH inhibits osteogenesis through proton-sensing GPR4-mediated suppression of yes-associated protein.

    Science.gov (United States)

    Tao, Shi-Cong; Gao, You-Shui; Zhu, Hong-Yi; Yin, Jun-Hui; Chen, Yi-Xuan; Zhang, Yue-Lei; Guo, Shang-Chun; Zhang, Chang-Qing

    2016-06-03

    The pH of extracellular fluids is a basic property of the tissue microenvironment and is normally maintained at 7.40 ± 0.05 in humans. Many pathological circumstances, such as ischemia, inflammation, and tumorigenesis, result in the reduction of extracellular pH in the affected tissues. In this study, we reported that the osteogenic differentiation of BMSCs was significantly inhibited by decreases in the extracellular pH. Moreover, we demonstrated that proton-sensing GPR4 signaling mediated the proton-induced inhibitory effects on the osteogenesis of BMSCs. Additionally, we found that YAP was the downstream effector of GPR4 signaling. Our findings revealed that the extracellular pH modulates the osteogenic responses of BMSCs by regulating the proton-sensing GPR4-YAP pathway.

  17. Why Southern Ocean uptake of anthropogenic CO2 may be decreasing

    CSIR Research Space (South Africa)

    Mongwe, P

    2012-10-01

    Full Text Available to the warm surface water and its influence on CO2 solubility (Figures 2 and 3). The decline is DIC with depth correlates with the decrease in temperature (Figures 2 and 3), as colder water holds more CO2. The Southern Ocean has particularly high DIC... southwards, upwelling is also expected move more southwards, which may result in more intense CO2 outgassing. The emitted CO2 contributes to green house gases, which alter the heat balance and result in increased average temperatures. REFERENCES Le...

  18. Decrease of intracellular pH as possible mechanism of embryotoxicity of glycol ether alkoxyacetic acid metabolites

    International Nuclear Information System (INIS)

    Louisse, Jochem; Bai Yanqing; Verwei, Miriam; Sandt, Johannes J.M. van de; Blaauboer, Bas J.; Rietjens, Ivonne M.C.M.

    2010-01-01

    Embryotoxicity of glycol ethers is caused by their alkoxyacetic acid metabolites, but the mechanism underlying the embryotoxicity of these acid metabolites is so far not known. The present study investigates a possible mechanism underlying the embryotoxicity of glycol ether alkoxyacetic acid metabolites using the methoxyacetic acid (MAA) metabolite of ethylene glycol monomethyl ether as the model compound. The results obtained demonstrate an MAA-induced decrease of the intracellular pH (pH i ) of embryonic BALB/c-3T3 cells as well as of embryonic stem (ES)-D3 cells, at concentrations that affect ES-D3 cell differentiation. These results suggest a mechanism for MAA-mediated embryotoxicity similar to the mechanism of embryotoxicity of the drugs valproic acid and acetazolamide (ACZ), known to decrease the pH i in vivo, and therefore used as positive controls. The embryotoxic alkoxyacetic acid metabolites ethoxyacetic acid, butoxyacetic acid and phenoxyacetic acid also caused an intracellular acidification of BALB/c-3T3 cells at concentrations that are known to inhibit ES-D3 cell differentiation. Two other embryotoxic compounds, all-trans-retinoic acid and 5-fluorouracil, did not decrease the pH i of embryonic cells at concentrations that affect ES-D3 cell differentiation, pointing at a different mechanism of embryotoxicity of these compounds. MAA and ACZ induced a concentration-dependent inhibition of ES-D3 cell differentiation, which was enhanced by amiloride, an inhibitor of the Na + /H + -antiporter, corroborating an important role of the pH i in the embryotoxic mechanism of both compounds. Together, the results presented indicate that a decrease of the pH i may be the mechanism of embryotoxicity of the alkoxyacetic acid metabolites of the glycol ethers.

  19. Response of ocean acidification to a gradual increase and decrease of atmospheric CO2

    International Nuclear Information System (INIS)

    Cao, Long; Zhang, Han; Zheng, Meidi; Wang, Shuangjing

    2014-01-01

    We perform coupled climate–carbon cycle model simulations to examine changes in ocean acidity in response to idealized change of atmospheric CO 2 . Atmospheric CO 2 increases at a rate of 1% per year to four times its pre-industrial level of 280 ppm and then decreases at the same rate to the pre-industrial level. Our simulations show that changes in surface ocean chemistry largely follow changes in atmospheric CO 2 . However, changes in deep ocean chemistry in general lag behind the change in atmospheric CO 2 because of the long time scale associated with the penetration of excess CO 2 into the deep ocean. In our simulations with the effect of climate change, when atmospheric CO 2 reaches four times its pre-industrial level, global mean aragonite saturation horizon (ASH) shoals from the pre-industrial value of 1288 to 143 m. When atmospheric CO 2 returns from the peak value of 1120 ppm to pre-industrial level, ASH is 630 m, which is approximately the value of ASH when atmospheric CO 2 first increases to 719 ppm. At pre-industrial CO 2 9% deep-sea cold-water corals are surrounded by seawater that is undersaturated with aragonite. When atmospheric CO 2 reaches 1120 ppm, 73% cold-water coral locations are surrounded by seawater with aragonite undersaturation, and when atmospheric CO 2 returns to the pre-industrial level, 18% cold-water coral locations are surrounded by seawater with aragonite undersaturation. Our analysis indicates the difficulty for some marine ecosystems to recover to their natural chemical habitats even if atmospheric CO 2 content can be lowered in the future. (paper)

  20. The impact of low pH, low aragonite saturation state on calcifying corals: an in-situ study of ocean acidification from the "ojos" of Puerto Morelos, Mexico

    Science.gov (United States)

    Crook, E. D.; Paytan, A.; Potts, D. C.; Hernandez Terrones, L.; Rebolledo-Vieyra, M.

    2010-12-01

    Recent increases in atmospheric carbon dioxide have resulted in rising aqueous CO2 concentrations that lower the pH of the oceans (Caldeira and Wickett 2003, 2005, Doney et al., 2009). It is estimated that over the next 100 years, the pH of the surface oceans will decrease by ~0.4 pH units (Orr et al., 2005), which is expected to hinder the calcifying capabilities of numerous marine organisms. Previous field work (Hall-Spencer et al., 2008) indicates that ocean acidification will negatively impact calcifying species; however, to date, very little is known about the long-term impacts of ocean acidification from the in-situ study of coral reef ecosystems. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.14-8.07) has been discharging offshore at highly localized points (called ojos) for millennia. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. Our findings indicate a decrease in species richness and size with proximity to the low pH waters. We address the potential long-term implications of low pH, low aragonite saturation state on coral reef ecosystems.

  1. Radiolarians decreased silicification as an evolutionary response to reduced Cenozoic ocean silica availability.

    Science.gov (United States)

    Lazarus, David B; Kotrc, Benjamin; Wulf, Gerwin; Schmidt, Daniela N

    2009-06-09

    It has been hypothesized that increased water column stratification has been an abiotic "universal driver" affecting average cell size in Cenozoic marine plankton. Gradually decreasing Cenozoic radiolarian shell weight, by contrast, suggests that competition for dissolved silica, a shared nutrient, resulted in biologic coevolution between radiolaria and marine diatoms, which expanded dramatically in the Cenozoic. We present data on the 2 components of shell weight change--size and silicification--of Cenozoic radiolarians. In low latitudes, increasing Cenozoic export of silica to deep waters by diatoms and decreasing nutrient upwelling from increased water column stratification have created modern silica-poor surface waters. Here, radiolarian silicification decreases significantly (r = 0.91, P stratification and abundance of diatoms. In high southern latitudes, Southern Ocean circulation, present since the late Eocene, maintains significant surface water silica availability. Here, radiolarian silicification decreased insignificantly (r = 0.58, P = 0.1), from approximately 0.13 at 35 Ma to 0.11 today. Trends in shell size in both time series are statistically insignificant and are not correlated with each other. We conclude that there is no universal driver changing cell size in Cenozoic marine plankton. Furthermore, biologic and physical factors have, in concert, by reducing silica availability in surface waters, forced macroevolutionary changes in Cenozoic low-latitude radiolarians.

  2. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology

    International Nuclear Information System (INIS)

    Köhler, Peter; Abrams, Jesse F; Völker, Christoph; Hauck, Judith; Wolf-Gladrow, Dieter A

    2013-01-01

    Ongoing global warming induced by anthropogenic emissions has opened the debate as to whether geoengineering is a ‘quick fix’ option. Here we analyse the intended and unintended effects of one specific geoengineering approach, which is enhanced weathering via the open ocean dissolution of the silicate-containing mineral olivine. This approach would not only reduce atmospheric CO 2 and oppose surface ocean acidification, but would also impact on marine biology. If dissolved in the surface ocean, olivine sequesters 0.28 g carbon per g of olivine dissolved, similar to land-based enhanced weathering. Silicic acid input, a byproduct of the olivine dissolution, alters marine biology because silicate is in certain areas the limiting nutrient for diatoms. As a consequence, our model predicts a shift in phytoplankton species composition towards diatoms, altering the biological carbon pumps. Enhanced olivine dissolution, both on land and in the ocean, therefore needs to be considered as ocean fertilization. From dissolution kinetics we calculate that only olivine particles with a grain size of the order of 1 μm sink slowly enough to enable a nearly complete dissolution. The energy consumption for grinding to this small size might reduce the carbon sequestration efficiency by ∼30%. (letter)

  3. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N.; Catling, David C.

    2018-04-01

    The early Earth’s environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0–50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from 6.6‑0.4+0.6 (2σ) at 4.0 Ga to 7.0‑0.5+0.7 (2σ) at the Archean–Proterozoic boundary, and to 7.9‑0.2+0.1 (2σ) at the Proterozoic–Phanerozoic boundary. This evolution is driven by the secular decline of pCO2, which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering.

  4. Constraining the climate and ocean pH of the early Earth with a geological carbon cycle model.

    Science.gov (United States)

    Krissansen-Totton, Joshua; Arney, Giada N; Catling, David C

    2018-04-17

    The early Earth's environment is controversial. Climatic estimates range from hot to glacial, and inferred marine pH spans strongly alkaline to acidic. Better understanding of early climate and ocean chemistry would improve our knowledge of the origin of life and its coevolution with the environment. Here, we use a geological carbon cycle model with ocean chemistry to calculate self-consistent histories of climate and ocean pH. Our carbon cycle model includes an empirically justified temperature and pH dependence of seafloor weathering, allowing the relative importance of continental and seafloor weathering to be evaluated. We find that the Archean climate was likely temperate (0-50 °C) due to the combined negative feedbacks of continental and seafloor weathering. Ocean pH evolves monotonically from [Formula: see text] (2σ) at 4.0 Ga to [Formula: see text] (2σ) at the Archean-Proterozoic boundary, and to [Formula: see text] (2σ) at the Proterozoic-Phanerozoic boundary. This evolution is driven by the secular decline of pCO 2 , which in turn is a consequence of increasing solar luminosity, but is moderated by carbonate alkalinity delivered from continental and seafloor weathering. Archean seafloor weathering may have been a comparable carbon sink to continental weathering, but is less dominant than previously assumed, and would not have induced global glaciation. We show how these conclusions are robust to a wide range of scenarios for continental growth, internal heat flow evolution and outgassing history, greenhouse gas abundances, and changes in the biotic enhancement of weathering. Copyright © 2018 the Author(s). Published by PNAS.

  5. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations

    KAUST Repository

    Wahl, M.; Schneider Covachã , S.; Saderne, Vincent; Hiebenthal, C.; Mü ller, J. D.; Pansch, C.; Sawall, Y.

    2017-01-01

    Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.

  6. Macroalgae may mitigate ocean acidification effects on mussel calcification by increasing pH and its fluctuations

    KAUST Repository

    Wahl, M.

    2017-06-26

    Ocean acidification (OA) is generally assumed to negatively impact calcification rates of marine organisms. At a local scale however, biological activity of macrophytes may generate pH fluctuations with rates of change that are orders of magnitude larger than the long-term trend predicted for the open ocean. These fluctuations may in turn impact benthic calcifiers in the vicinity. Combining laboratory, mesocosm and field studies, such interactions between OA, the brown alga Fucus vesiculosus, the sea grass Zostera marina and the blue mussel Mytilus edulis were investigated at spatial scales from decimetres to 100s of meters in the western Baltic. Macrophytes increased the overall mean pH of the habitat by up to 0.3 units relative to macrophyte-free, but otherwise similar, habitats and imposed diurnal pH fluctuations with amplitudes ranging from 0.3 to more than 1 pH unit. These amplitudes and their impact on mussel calcification tended to increase with increasing macrophyte biomass to bulk water ratio. At the laboratory and mesocosm scales, biogenic pH fluctuations allowed mussels to maintain calcification even under acidified conditions by shifting most of their calcification activity into the daytime when biogenic fluctuations caused by macrophyte activity offered temporal refuge from OA stress. In natural habitats with a low biomass to water body ratio, the impact of biogenic pH fluctuations on mean calcification rates of M. edulis was less pronounced. Thus, in dense algae or seagrass habitats, macrophytes may mitigate OA impact on mussel calcification by raising mean pH and providing temporal refuge from acidification stress.

  7. Community production modulates coral reef pH and the sensitivity of ecosystem calcification to ocean acidification

    Science.gov (United States)

    DeCarlo, Thomas M.; Cohen, Anne L.; Wong, George T. F.; Shiah, Fuh-Kwo; Lentz, Steven J.; Davis, Kristen A.; Shamberger, Kathryn E. F.; Lohmann, Pat

    2017-01-01

    Coral reefs are built of calcium carbonate (CaCO3) produced biogenically by a diversity of calcifying plants, animals, and microbes. As the ocean warms and acidifies, there is mounting concern that declining calcification rates could shift coral reef CaCO3 budgets from net accretion to net dissolution. We quantified net ecosystem calcification (NEC) and production (NEP) on Dongsha Atoll, northern South China Sea, over a 2 week period that included a transient bleaching event. Peak daytime pH on the wide, shallow reef flat during the nonbleaching period was ˜8.5, significantly elevated above that of the surrounding open ocean (˜8.0-8.1) as a consequence of daytime NEP (up to 112 mmol C m-2 h-1). Diurnal-averaged NEC was 390 ± 90 mmol CaCO3 m-2 d-1, higher than any other coral reef studied to date despite comparable calcifier cover (25%) and relatively high fleshy algal cover (19%). Coral bleaching linked to elevated temperatures significantly reduced daytime NEP by 29 mmol C m-2 h-1. pH on the reef flat declined by 0.2 units, causing a 40% reduction in NEC in the absence of pH changes in the surrounding open ocean. Our findings highlight the interactive relationship between carbonate chemistry of coral reef ecosystems and ecosystem production and calcification rates, which are in turn impacted by ocean warming. As open-ocean waters bathing coral reefs warm and acidify over the 21st century, the health and composition of reef benthic communities will play a major role in determining on-reef conditions that will in turn dictate the ecosystem response to climate change.

  8. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Science.gov (United States)

    Matson, Paul G; Washburn, Libe; Martz, Todd R; Hofmann, Gretchen E

    2014-01-01

    Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula) and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor). Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only), tide (Cape Evans and New Harbor), and water mass properties (temperature and salinity) during spring and early summer 2011. These collective observations showed that (1) pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007) and range of pH (Cape Evans: 0.090; Hut Point: 0.036), and (2) pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities) to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  9. Abiotic versus biotic drivers of ocean pH variation under fast sea ice in McMurdo Sound, Antarctica.

    Directory of Open Access Journals (Sweden)

    Paul G Matson

    Full Text Available Ocean acidification is expected to have a major effect on the marine carbonate system over the next century, particularly in high latitude seas. Less appreciated is natural environmental variation within these systems, particularly in terms of pH, and how this natural variation may inform laboratory experiments. In this study, we deployed sensor-equipped moorings at 20 m depths at three locations in McMurdo Sound, comprising deep (bottom depth>200 m: Hut Point Peninsula and shallow environments (bottom depth ∼25 m: Cape Evans and New Harbor. Our sensors recorded high-frequency variation in pH (Hut Point and Cape Evans only, tide (Cape Evans and New Harbor, and water mass properties (temperature and salinity during spring and early summer 2011. These collective observations showed that (1 pH differed spatially both in terms of mean pH (Cape Evans: 8.009±0.015; Hut Point: 8.020±0.007 and range of pH (Cape Evans: 0.090; Hut Point: 0.036, and (2 pH was not related to the mixing of two water masses, suggesting that the observed pH variation is likely not driven by this abiotic process. Given the large daily fluctuation in pH at Cape Evans, we developed a simple mechanistic model to explore the potential for biotic processes--in this case algal photosynthesis--to increase pH by fixing carbon from the water column. For this model, we incorporated published photosynthetic parameters for the three dominant algal functional groups found at Cape Evans (benthic fleshy red macroalgae, crustose coralline algae, and sea ice algal communities to estimate oxygen produced/carbon fixed from the water column underneath fast sea ice and the resulting pH change. These results suggest that biotic processes may be a primary driver of pH variation observed under fast sea ice at Cape Evans and potentially at other shallow sites in McMurdo Sound.

  10. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata.

    Science.gov (United States)

    Britton, Damon; Cornwall, Christopher E; Revill, Andrew T; Hurd, Catriona L; Johnson, Craig R

    2016-05-27

    Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world's oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.

  11. On-line monitoring of CO2 production in Lactococcus lactis during physiological pH decrease using membrane inlet mass spectrometry with dynamic pH calibration.

    Science.gov (United States)

    Andersen, Ann Zahle; Lauritsen, Frants Roager; Olsen, Lars Folke

    2005-12-20

    Monitoring CO2 production in systems, where pH is changing with time is hampered by the chemical behavior and pH-dependent volatility of this compound. In this article, we present the first method where the concentration and production rate of dissolved CO2 can be monitored directly, continuously, and quantitatively under conditions where pH changes rapidly ( approximately 2 units in 15 min). The method corrects membrane inlet mass spectrometry (MIMS) measurements of CO2 for pH dependency using on-line pH analysis and an experimentally established calibration model. It is valid within the pH range of 3.5 to 7, despite pH-dependent calibration constants that vary in a non-linear fashion with more than a factor of 3 in this interval. The method made it possible to determine the carbon dioxide production during Lactococcus lactis fermentations, where pH drops up to 3 units during the fermentation. The accuracy was approximately 5%. We used the method to investigate the effect of initial extracellular pH on carbon dioxide production during anarobic glucose fermentation by non-growing Lactocoocus lactis and demonstrated that the carbon dioxide production rate increases considerably, when the initial pH was increased from 6 to 6.8. (c) 2005 Wiley Periodicals, Inc.

  12. Microencapsulation of butyl stearate with melamine-formaldehyde resin: Effect of decreasing the pH value on the composition and thermal stability of microcapsules

    Directory of Open Access Journals (Sweden)

    M. Krajnc

    2012-10-01

    Full Text Available The object of this study was to investigate how different decreasing of pH regimes during microencapsulation process with melamine-formaldehyde (MF resin affects the composition, morphology and thermal stability of microcapsules containing a phase-change material (PCM. Technical butyl stearate was used as PCM. Microencapsulation was carried out at 70°C. For all experiments the starting pH value was 6.0. After one hour of microencapsulation at the starting pH value, the pH value was lowered to final pH value (5.5; 5.0; 4.5 in a stepwise or linear way. The properties of microcapsules were monitored during and after the microencapsulation process. The results showed that pH value decreasing regime was critical for the morphology and stability of microcapsules. During microencapsulations with a stepwise decrease of pH value we observed faster increase of the amount of MF resin in the microencapsulation product compared to the microencapsulations with a linear pH value decrease. However, faster deposition in the case of microencapsulations with stepwise decrease of pH value did not result in thicker MF shells. The shell thickness increased much faster when the pH value was decreased in a linear way or in several smaller steps. It was shown that for the best thermal stability of microcapsules, the pH value during microencapsulation had to be lowered in a linear way or in smaller steps to 5.0 or lower.

  13. Analysis of the relationship between the decrease in pH and accumulation of 3-phosphoglyceric acid in developing forespores of Bacillus species.

    OpenAIRE

    Magill, N G; Cowan, A E; Leyva-Vazquez, M A; Brown, M; Koppel, D E; Setlow, P

    1996-01-01

    Analysis of the pH decrease and 3-phosphoglyceric acid (3PGA) accumulation in the forespore compartment of sporulating cells of Bacillus subtilis showed that the pH decrease of 1 to 1.2 units at approximately 4 h of sporulation preceded 3PGA accumulation, as observed previously in B. megaterium. These data, as well as analysis of the forespore pH decrease in asporogenous mutants of B. subtilis, indicated that sigma G-dependent forespore transcription, but not sigma K-dependent mother cell tra...

  14. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  15. Design and introduction of a disulfide bridge in firefly luciferase: increase of thermostability and decrease of pH sensitivity.

    Science.gov (United States)

    Imani, Mehdi; Hosseinkhani, Saman; Ahmadian, Shahin; Nazari, Mahboobeh

    2010-08-01

    The thermal sensitivity and pH-sensitive spectral properties of firefly luciferase have hampered its application in a variety of fields. It is proposed that the stability of a protein can be increased by introduction of disulfide bridge that decreases the configurational entropy of unfolding. A disulfide bridge is introduced into Photinus pyralis firefly luciferase to make two separate mutant enzymes with a single bridge. Even though the A103C/S121C mutant showed remarkable thermal stability, its specific activity decreased, whereas the A296C/A326C mutant showed tremendous thermal stability, relative pH insensitivity and 7.3-fold increase of specific activity. Moreover, the bioluminescence emission spectrum of A296C/A326C was resistant against higher temperatures (37 degrees C). Far-UV CD analysis showed slight secondary structure changes for both mutants. Thermal denaturation analysis showed that conformational stabilities of A103C/S121C and A296C/A326C are more than native firefly luciferase. It is proposed that since A296 and A326 are situated in the vicinity of the enzyme active site microenvironment in comparison with A103 and S121, the formation of a disulfide bridge in this region has more impact on enzyme kinetic characteristics.

  16. Metrological challenges for measurements of key climatological observables: oceanic salinity and pH, and atmospheric humidity. Part 1: overview

    Science.gov (United States)

    Feistel, R.; Wielgosz, R.; Bell, S. A.; Camões, M. F.; Cooper, J. R.; Dexter, P.; Dickson, A. G.; Fisicaro, P.; Harvey, A. H.; Heinonen, M.; Hellmuth, O.; Kretzschmar, H.-J.; Lovell-Smith, J. W.; McDougall, T. J.; Pawlowicz, R.; Ridout, P.; Seitz, S.; Spitzer, P.; Stoica, D.; Wolf, H.

    2016-02-01

    Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together with three companion articles, we examine the climatologically relevant quantities ocean salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the definitions of those key observables, and their lack of secure foundation on the International System of Units, the SI. The metrological histories of those three quantities are reviewed, problems with their current definitions and measurement practices are analysed, and options for future improvements are discussed in conjunction with the recent seawater standard TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, in cooperation with the International Association for the Properties of Water and Steam, IAPWS, along with other international organizations and institutions, can make significant contributions by developing and recommending state-of-the-art solutions for these long standing metrological problems in climatology.

  17. Activation of immunity, immune response, antioxidant ability, and resistance against Vibrio alginolyticus in white shrimp Litopenaeus vannamei decrease under long-term culture at low pH.

    Science.gov (United States)

    Chen, Yu-Yuan; Chen, Jiann-Chu; Tseng, Kuei-Chi; Lin, Yong-Chin; Huang, Chien-Lun

    2015-10-01

    The growth, activation of immunity, immune parameters, and transcript levels of cytMnSOD, mtMnSOD, ecCuZnSOD, glutathione peroxidase (GPx), catalase, lysozyme, and penaeidin 3a were examined in white shrimp Litopenaeus vannamei reared at pH 6.8 and 8.1 after 24 weeks. No significant difference in growth was observed between the two groups. An in vitro study indicated that phenoloxidase activity and respiratory bursts (RB, release of the superoxide anion) were significantly higher in the haemocytes of pH 8.1 shrimp (shrimp reared at pH 8.1) than in pH 6.8 shrimp (shrimp reared at pH 6.8). An in vivo study indicated that the levels of immune parameters of pH 8.1 shrimp were significantly higher than in pH 6.8 shrimp, and the transcript levels of cytMnSOD, ecCuZnSOD, glutathione peroxidase, lysozyme, and penaeidin 3a were down-regulated in pH 6.8 shrimp. In another experiment, shrimp reared at pH 6.8 and 8.1 for 24 weeks were challenged with Vibrio alginolyticus. The mortality rate of pH 6.8 shrimp was significantly higher than in pH 8.1 shrimp over 12-168 h. Phagocytic activity, phagocytic index, and clearance efficiency to V. alginolyticus were significantly lower in pH 6.8 shrimp. We concluded that shrimp under long-term culture at pH 6.8 exhibited decreased resistance against V. alginolyticus as evidenced by reductions in the activation of immunity and immune parameters together with decreased transcript levels of cytMnSOD, ecCuZnSOD, GPx, lysozyme, and penaeidin 3a. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Climate change feedbacks on future oceanic acidification

    International Nuclear Information System (INIS)

    McNeil, Ben I.; Matear, Richard J.

    2007-01-01

    Oceanic anthropogenic CO 2 uptake will decrease both the pH and the aragonite saturation state (Oarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Oarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO 2 -related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean warming feedback was found to dominate the climate change responses in the surface ocean. Although surface pH is projected to decrease relatively uniformly by about 0.3 by the year 2100, we find pH to be insensitive to climate change feedbacks, whereas Oarag is buffered by ∼15%. Ocean carbonate chemistry creates a situation whereby the direct pH changes due to ocean warming are almost cancelled by the pH changes associated with dissolved inorganic carbon concentrations changes via a reduction in CO 2 solubility from ocean warming. We show that the small climate change feedback on future surface ocean pH is independent to the amount of ocean warming. Our analysis therefore implies that future projections of surface ocean acidification only need to consider future atmospheric CO 2 levels, not climate change induced modifications in the ocean

  19. Empirical Algorithms to Predict pH and Aragonite Saturation State on SOCCOM Biogeochemical Argo Floats in the Pacific Sector of the Southern Ocean

    Science.gov (United States)

    Williams, N. L.; Juranek, L. W.; Feely, R. A.; Johnson, K. S.; Russell, J. L.

    2016-02-01

    The Southern Ocean plays a major role in the global uptake, transport, and storage of both heat and carbon, yet it remains one of the least-sampled regions of the ocean. The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project aims to fill the observational gaps by deploying over 200 autonomous profiling floats in the Southern Ocean over the next several years. Initial float deployments have greatly expanded our observational capability to include wintertime measurements as well as under-ice measurements, and many of these floats include novel biogeochemical sensors (pH, nitrate, oxygen). Here we present empirical algorithms that can be used to predict pH and ΩAragonite from other float-measured parameters (temperature, salinity, pressure, nitrate, oxygen). These algorithms were trained using bottle measurements from high-quality repeat hydrographic GO-SHIP cruises. We obtained R2 values of 0.98 (pH) and 0.99 (ΩAragonite) and RMS errors of 0.007 (pH) and 0.052 (ΩAragonite) for data between 100-1500 m. These algorithms will allow us to both validate pH data from these sensors, as well as predict ΩAragonite and pH on floats that do not have pH sensors. Here we present estimated pH and ΩAragonite over 20 months of deployment for several SOCCOM floats in the Pacific Sector of the Southern Ocean. The results show seasonal ranges in surface pH and ΩAragonite of 0.05 and 0.1, respectively.

  20. Ocean acidification and kelp development: Reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida.

    Science.gov (United States)

    Leal, Pablo P; Hurd, Catriona L; Fernández, Pamela A; Roleda, Michael Y

    2017-06-01

    The absorption of anthropogenic CO 2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non-calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south-eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pH T 7.20, extreme OA predicted for 2300; pH T 7.65, OA predicted for 2100; pH T 8.01, ambient pH; and pH T 8.40, pre-industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pH T (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pH T (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pH T treatments, except for U. pinnatifida at pH T 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pH T treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA. © 2017 Phycological Society of America.

  1. From Urey To The Ocean's Glacial Ph: News From The Boron-11 Paleo-acidimetry.

    Science.gov (United States)

    Zeebe, R. E.; Wolf-Gladrow, D. A.; Bijma, J.

    Boron paleo-acidimetry is based on the stable boron isotope composition of foraminiferal shells which has been shown to be a function of seawater pH. It is cur- rently one of the most promising paleo-carbonate chemistry proxies. One important parameter of the proxy is the equilibrium fractionation between the dissolved boron species B(OH)3 and B(OH)- which was calculated to be 19 per mil at 25C by Kak- 4 ihana and Kotaka (1977), based on Urey's theory. The calculated equilibrium frac- tionation, however, depends on the vibrational frequencies of the molecules for which different values have been reported in the literature. We have recalculated the equilib- rium fractionation and find that it may be distinctly different from 19 per mil (this is the bad news). The good news is that - theoretically - the use of 11B as a paleo-pH indicator is not compromised through vital effects in planktonic foraminifera. We de- rive this conclusion by the use of a diffusion-reaction model that calculates pH profiles and 11B values in the vicinity of a foraminifer.

  2. How life history influences the responses of the clam Scrobicularia plana to the combined impacts of carbamazepine and pH decrease

    International Nuclear Information System (INIS)

    Freitas, Rosa; Almeida, Ângela; Calisto, Vânia; Velez, Cátia; Moreira, Anthony; Schneider, Rudolf J.; Esteves, Valdemar I.; Wrona, Frederick J.; Soares, Amadeu M.V. M.; Figueira, Etelvina

    2015-01-01

    In the present study, the bivalve Scrobicularia plana, collected from two contrasting areas (pristine location and mercury contaminated area), was selected to assess the biochemical alterations imposed by pH decrease, carbamazepine (an antiepileptic) and the combined effect of both stressors. The effects on oxidative stress related biomarkers after 96 h exposure revealed that pH decrease and carbamazepine induced alterations on clams, with greater impacts on individuals from the contaminated area which presented higher mortality, higher lipid peroxidation and higher glutathione S-transferase activity. These results emphasize the risk of extrapolating results from one area to another, since the same species inhabiting different areas may be affected differently when exposed to the same stressors. Furthermore, the results obtained showed that, when combined, the impact of pH decrease and carbamazepine was lower than each stressor acting alone, which could be related to the defence mechanism of valves closure when bivalves are under higher stressful conditions. - Highlights: • Environmentally relevant concentrations of CBZ and pH 7.1 impacted the performance of Scrobicularia plana. • The combination of CBZ and pH 7.1 did not induce higher impacts compared with stressors acting alone. • Clams from a polluted area showed greater alterations than clams collected from an unpolluted area. - pH decrease and carbamazepine induced biochemical alterations on clams (Scrobicularia plana), with greater impacts on individuals from the contaminated area

  3. Simulating ocean acidification and CO2 leakages from carbon capture and storage to assess the effects of pH reduction on cladoceran Moina mongolica Daday and its progeny.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Youshao; Yan, Changzhou

    2016-07-01

    In order to evaluate the effects of pH reduction in seawater as a result of increasing levels of atmospheric CO2, laboratory-scale experiments simulating the scenarios of ocean acidification (OA) and CO2 leakages of carbon capture and storage (CCS) were performed using the model organism Moina mongolica Daday. The LpH50s calculated in cladoceran toxicity tests showed that M. mongolica exhibited intermediate sensitivity to OA, which varied among species and with ontogeny, when compared with different phyla or classes of marine biota. Survival, reproduction and fecundity of parthenogenetic females were evaluated after 21-day exposures. Results showed that increased acidity significantly reduced the rate of reproduction of M. mongolica resulting in a decreased intrinsic rate of natural increase (rm) across the gradients of pH reduction. The analysis of macromolecule contents in neonates suggested that nutritional status in progeny from all broods were significantly reduced as seawater pH decreased, with increasing magnitude in latter broods, except the contents of protein from two former broods and lipids from the first brood. Our findings clearly showed that for this ecologically and economically important fish species, the negative effects of pH reduction on both "quantity" and "quality" of progeny may have far-reaching implications, providing direct evidence that OA could influence the energetic transfer of marine food web and ecosystem functions in acidified oceans in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    NARCIS (Netherlands)

    Nisumaa, A.-M.; Pesant, S.; Bellerby, R.G.J.; Delille, B.; Middelburg, J.J.; Orr, J.C.; Riebesell, U.; Tyrrell, T.; Wolf-Gladrow, D.; Gattuso, J.P.

    2010-01-01

    The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean

  6. Visible-infrared remote-sensing model and applications for ocean waters. Ph.D. Thesis

    Science.gov (United States)

    Lee, Zhongping

    1994-01-01

    Remote sensing has become important in the ocean sciences, especially for research involving large spatial scales. To estimate the in-water constituents through remote sensing, whether carried out by satellite or airplane, the signal emitted from beneath the sea surface, the so called water-leaving radiance (L(w)), is of prime importance. The magnitude of L(w) depends on two terms: one is the intensity of the solar input, and the other is the reflectance of the in-water constituents. The ratio of the water-leaving radiance to the downwelling irradiance (E(d)) above the sear surface (remote-sensing reflectance, R(sub rs)) is independent of the intensity of the irradiance input, and is largely a function of the optical properties of the in-water constituents. In this work, a model is developed to interpret r(sub rs) for ocean water in the visible-infrared range. In addition to terms for the radiance scattered from molecules and particles, the model includes terms that describe contributions from bottom reflectance, fluorescence of gelbstoff or colored dissolved organic matter (CDOM), and water Raman scattering. By using this model, the measured R(sub rs) of waters from the West Florida Shelf to the Mississippi River plume, which covered a (concentration of chlorophyll a) range of 0.07 - 50 mg/cu m, were well interpreted. The average percentage difference (a.p.d.) between the measured and modeled R(sub rs) is 3.4%, and, for the shallow waters, the model-required water depth is within 10% of the chart depth. Simple mathematical simulations for the phytoplankton pigment absorption coefficient (a(sub theta)) are suggested for using the R(sub rs) model. The inverse problem of R(sub rs), which is to analytically derive the in-water constituents from R(sub rs) data alone, can be solved using the a(sub theta) functions without prior knowledge of the in-water optical properties. More importantly, this method avoids problems associated with a need for knowledge of the shape

  7. Transgenerational exposure of North Atlantic bivalves to ocean acidification renders offspring more vulnerable to low pH and additional stressors.

    Science.gov (United States)

    Griffith, Andrew W; Gobler, Christopher J

    2017-09-12

    While early life-stage marine bivalves are vulnerable to ocean acidification, effects over successive generations are poorly characterized. The objective of this work was to assess the transgenerational effects of ocean acidification on two species of North Atlantic bivalve shellfish, Mercenaria mercenaria and Argopecten irradians. Adults of both species were subjected to high and low pCO 2 conditions during gametogenesis. Resultant larvae were exposed to low and ambient pH conditions in addition to multiple, additional stressors including thermal stress, food-limitation, and exposure to a harmful alga. There were no indications of transgenerational acclimation to ocean acidification during experiments. Offspring of elevated pCO 2 -treatment adults were significantly more vulnerable to acidification as well as the additional stressors. Our results suggest that clams and scallops are unlikely to acclimate to ocean acidification over short time scales and that as coastal oceans continue to acidify, negative effects on these populations may become compounded and more severe.

  8. Driving forces and their contribution to the recent decrease in sediment flux to ocean of major rivers in China.

    Science.gov (United States)

    Li, Tong; Wang, Shuai; Liu, Yanxu; Fu, Bojie; Zhao, Wenwu

    2018-09-01

    Understanding the mechanisms behind land-ocean sediment transport processes is crucial, due to the resulting impacts on the sustainable management of water and soil resources. This study investigated temporal trends and historical phases of sediment flux delivered to the sea by nine major rivers in China, while also quantifying the contribution of key anthropogenic and natural driving forces. During the past six decades, sediment flux from these nine major rivers exhibited a statistically significant negative trend, decreasing from 1.92Gtyr -1 during 1954-1968 to 1.39Gtyr -1 , 0.861Gtyr -1 and 0.335Gtyr -1 during 1969-1985, 1986-1999 and 2000-2016, respectively. We used a recently developed Sediment Identity approach and found that the sharp decrease in sediment load observed across China was mainly (~95%) caused by a reduction in sediment concentration. Reservoir construction exerted the strongest influence on land-ocean sediment fluxes, while soil conservation measures represented a secondary driver. Before 1999, soil erosion was not controlled effectively in China and reservoirs, especially large ones, played a dominant role in reducing riverine sediments. After 1999, soil erosion has gradually been brought under control across China, so that conservation measures directly accounted for ~40% of the observed decrease in riverine sediments. With intensifying human activities, it is predicted that the total sediment flux delivered to the sea by the nine major rivers will continue to decrease in the coming decades, although at a slower rate, resulting in severe challenges for the sustainable management of drainage basins and river deltas. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Geochemistry of the Congo and Amazon river systems. Boron isotopic geochemistry in corals. Continental erosion and ocean pH

    International Nuclear Information System (INIS)

    Gaillardet, J.

    1995-01-01

    Two main geological processes control the CO 2 concentration in the atmosphere at a geological time scale: CO 2 outgasing from the interior of the Earth and CO 2 consumption by continental weathering. In the thesis, we initiate two different directions that can be useful to constraint the past climate evolution models. The first one is the extensive study of the largest rivers of the world using the classical geochemical analyses (major and trace elements, Sr-Nd-Pb isotopes) and modelling approaches. The study case of this thesis are the Congo and Amazon Basin. In particular, the coupling between chemical and physical erosion is examined and related to the hydrologic and tectonic parameters. Relief, thus tectonics appear to best control CO 2 consumption by rock weathering. The second part of the work is devoted to the measurement of boron isotopic ratio in corals because it may be used as a proxy for paleo-ocean pH. It could thus bring important pieces of information on the global C cycle and climate evolution. The technical part is extensively described and the method applied to the corals from the last interglacial period. Our conclusion is that corals are likely to be influence by early diagenetic changes that modify the boron isotopic composition of corals. We thus propose a test to select the samples. (author)

  10. Climate change feedbacks on future oceanic acidification

    OpenAIRE

    McNeil, Ben I.; Matear, Richard J.

    2011-01-01

    Oceanic anthropogenic CO2 uptake will decrease both the pH and the aragonite saturation state (Ωarag) of seawater leading to an oceanic acidification. However, the factors controlling future changes in pH and Ωarag are independent and will respond differently to oceanic climate change feedbacks such as ocean warming, circulation and biological changes. We examine the sensitivity of these two CO2-related parameters to climate change feedbacks within a coupled atmosphere-ocean model. The ocean ...

  11. PH sensor

    OpenAIRE

    Artero, C.; Nogueras Cervera, Marc; Manuel Lázaro, Antonio

    2012-01-01

    This paper presents a design of a marine instrument for the measurement of pH in seawater. The measurement system consists of a pH electrode connected to the underwater observatory OBSEA. The extracted data are useful for scientists researching ocean acidification. Peer Reviewed

  12. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage.

    Directory of Open Access Journals (Sweden)

    Michael Y Roleda

    Full Text Available Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA. However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily [Formula: see text] (daytime pH = 8.45, night-time pH = 7.65 and daily [Formula: see text] (daytime pH = 8.05, night-time pH = 7.25. Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults' response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat.

  13. Effect of Ocean Acidification and pH Fluctuations on the Growth and Development of Coralline Algal Recruits, and an Associated Benthic Algal Assemblage

    Science.gov (United States)

    Roleda, Michael Y.; Cornwall, Christopher E.; Feng, Yuanyuan; McGraw, Christina M.; Smith, Abigail M.; Hurd, Catriona L.

    2015-01-01

    Coralline algae are susceptible to the changes in the seawater carbonate system associated with ocean acidification (OA). However, the coastal environments in which corallines grow are subject to large daily pH fluctuations which may affect their responses to OA. Here, we followed the growth and development of the juvenile coralline alga Arthrocardia corymbosa, which had recruited into experimental conditions during a prior experiment, using a novel OA laboratory culture system to simulate the pH fluctuations observed within a kelp forest. Microscopic life history stages are considered more susceptible to environmental stress than adult stages; we compared the responses of newly recruited A. corymbosa to static and fluctuating seawater pH with those of their field-collected parents. Recruits were cultivated for 16 weeks under static pH 8.05 and 7.65, representing ambient and 4× preindustrial pCO2 concentrations, respectively, and two fluctuating pH treatments of daily x~ = 8.05 (daytime pH = 8.45, night-time pH = 7.65) and daily x~ = 7.65 (daytime pH = 8.05, night-time pH = 7.25). Positive growth rates of new recruits were recorded in all treatments, and were highest under static pH 8.05 and lowest under fluctuating pH 7.65. This pattern was similar to the adults’ response, except that adults had zero growth under fluctuating pH 7.65. The % dry weight of MgCO3 in calcite of the juveniles was reduced from 10% at pH 8.05 to 8% at pH 7.65, but there was no effect of pH fluctuation. A wide range of fleshy macroalgae and at least 6 species of benthic diatoms recruited across all experimental treatments, from cryptic spores associated with the adult A. corymbosa. There was no effect of experimental treatment on the growth of the benthic diatoms. On the community level, pH-sensitive species may survive lower pH in the presence of diatoms and fleshy macroalgae, whose high metabolic activity may raise the pH of the local microhabitat. PMID:26469945

  14. Trans-life cycle acclimation to experimental ocean acidification affects gastric pH homeostasis and larval recruitment in the sea star Asterias rubens.

    Science.gov (United States)

    Hu, Marian Y; Lein, Etienne; Bleich, Markus; Melzner, Frank; Stumpp, Meike

    2018-04-16

    Experimental simulation of near-future ocean acidification (OA) has been demonstrated to affect growth and development of echinoderm larval stages through energy allocation towards ion and pH compensatory processes. To date, it remains largely unknown how major pH regulatory systems and their energetics are affected by trans-generational exposure to near-future acidification levels. Here we used the common sea star Asterias rubens in a reciprocal transplant experiment comprising different combinations of OA scenarios, in order to study trans-generational plasticity using morphological and physiological endpoints. Acclimation of adults to pH T 7.2 (pCO 2 3500μatm) led to reductions in feeding rates, gonad weight, and fecundity. No effects were evident at moderate acidification levels (pH T 7.4; pCO 2 2000μatm). Parental pre-acclimation to pH T 7.2 for 85 days reduced developmental rates even when larvae were raised under moderate and high pH conditions, whereas pre-acclimation to pH T 7.4 did not alter offspring performance. Microelectrode measurements and pharmacological inhibitor studies carried out on larval stages demonstrated that maintenance of alkaline gastric pH represents a substantial energy sink under acidified conditions that may contribute up to 30% to the total energy budget. Parental pre-acclimation to acidification levels that are beyond the pH that is encountered by this population in its natural habitat (e.g. pH T 7.2) negatively affected larval size and development, potentially through reduced energy transfer. Maintenance of alkaline gastric pH and reductions in maternal energy reserves probably constitute the main factors for a reduced juvenile recruitment of this marine keystone species under simulated OA. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Decreased absorption of midazolam in the stomach due to low pH induced by co-administration of Banha-sasim-tang

    Directory of Open Access Journals (Sweden)

    Jun Hyeon Jo

    2016-08-01

    Full Text Available Objectives Banha-sasim-tang (BST, which consists of seven different herbs, is one of the most popular herbal formulae for treating gastrointestinal disorders in Eastern Asia. The commonly used herbal medicine is often co-administered with other therapeutic drugs, which raises the possibility of herb–drug interactions and may modify the clinical safety profile of therapeutic drugs. Methods We investigated the potential herb–drug interactions between BST extract and midazolam (MDZ in mice. The area under the plasma concentration-time curve (AUC of MDZ and 1ʹ-hydroxymidazolam (1ʹ-OH-MDZ was evaluated for both oral and intraperitoneal administration of MDZ, following oral administration of BST (0.5 and 1 g/kg. Results It was found that the AUC of MDZ and 1ʹ-OH-MDZ was lower in case of oral administration of MDZ. Administration of BST extract was not associated with hepatic cytochrome P450 activity. BST extract induced a strong reduction in pH and it has been reported that oral mucosal absorption of MDZ is lower at low pH. The decreased absorption rate of MDZ might be caused by the ingredients of BST and may not be related to other factors such as increased excretion of MDZ by P-glycoprotein. Conclusions The altered pharmacokinetics of midazolam caused by co-administration with BST in vivo could be attributed to a decrease in pH and subsequent reduction of MDZ absorption rate.

  16. Weak Organic Acids Decrease Borrelia burgdorferi Cytoplasmic pH, Eliciting an Acid Stress Response and Impacting RpoN- and RpoS-Dependent Gene Expression

    Directory of Open Access Journals (Sweden)

    Daniel P. Dulebohn

    2017-09-01

    Full Text Available The spirochete Borrelia burgdorferi survives in its tick vector, Ixodes scapularis, or within various hosts. To transition between and survive in these distinct niches, B. burgdorferi changes its gene expression in response to environmental cues, both biochemical and physiological. Exposure of B. burgdorferi to weak monocarboxylic organic acids, including those detected in the blood meal of fed ticks, decreased the cytoplasmic pH of B. burgdorferi in vitro. A decrease in the cytoplasmic pH induced the expression of genes encoding enzymes that have been shown to restore pH homeostasis in other bacteria. These include putative coupled proton/cation exchangers, a putative Na+/H+ antiporter, a neutralizing buffer transporter, an amino acid deaminase and a proton exporting vacuolar-type VoV1 ATPase. Data presented in this report suggested that the acid stress response triggered the expression of RpoN- and RpoS-dependent genes including important virulence factors such as outer surface protein C (OspC, BBA66, and some BosR (Borreliaoxidative stress regulator-dependent genes. Because the expression of virulence factors, like OspC, are so tightly connected by RpoS to general cellular stress responses and cell physiology, it is difficult to separate transmission-promoting conditions in what is clearly a multifactorial and complex regulatory web.

  17. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    OpenAIRE

    Nisumaa Anne-Marin; Pesant Stephane; Bellerby Richard G J; Delille Bruno; Middelburg Jack J; Orr James C; Riebesell Ulf; Tyrrell Toby; Wolf-Gladrow Dieter A; Gattuso Jean-Pierre

    2010-01-01

    The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additional...

  18. Effect of ocean acidification on the benthic foraminifera

    NARCIS (Netherlands)

    Keul, N.; Langer, G.; de Nooijer, L.J.; Bijma, J.

    2013-01-01

    About 30% of the anthropogenically released CO2 is taken up by the oceans; such uptake causes surface ocean pH to decrease and is commonly referred to as ocean acidification (OA). Foraminifera are one of the most abundant groups of marine calcifiers, estimated to precipitate ca. 50 % of biogenic

  19. Mitigating Local Causes of Ocean Acidification with Existing Laws

    Science.gov (United States)

    The oceans continue to absorb CO2 in step with the increasing atmospheric concentration of CO2. The dissolved CO2 reacts with seawater to form carbonic acid (H2CO3) and liberate hydrogen ions, causing the pH of the oceans to decrease. Ocean acidification is thus an inevitable a...

  20. pH (on total scale) and other variables collected from surface undewray observations using Durafet pH electrode and Chloride Ion Selective Electrode and other instruments from NOAA Ship Ronald H. Brown in the North Atlantic Ocean and South Atnaltic Ocean from during the CLIVAR/GO-SHIP Repeat Section A13.5_2010 (EXPOCODE 33RO20100308) from 2010-03-08 to 2010-04-17 (NCEI Accession 0162231)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An automated underway pH system was operated in the hydro lab of NOAA Ship Ronald H. Brown during the CLIVAR/GO-SHIP Repeat Section A13.5 cruise in 2010. pH was...

  1. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using flow through pump and other instruments from Explorer of the Seas (ID: 33KF) in the Caribbean Sea and North Atlantic ocean during the Ocean Acidification Cruise EX1507 from 2015-02-14 to 2015-02-15 (NCEI Accession 0154385)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, pH in the Caribbean Sea. Increasing amounts of...

  2. Reduced energy density of close-up diets decrease ruminal pH and increase concentration of volatile fatty acids postpartum in Holstein cows.

    Science.gov (United States)

    Huang, Wenming; Tian, Yujia; Li, Shengli; Wu, Zhaohai; Cao, Zhijun

    2017-11-01

    The objective of this study was to determine the effect of reduced energy density of close-up diets on ruminal fermentation parameters in transition cows. Fourteen Holstein dry cows were blocked and assigned randomly to three groups fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation (NE L )/kg dry matter (DM)), or a middle energy density diet (MD, 1.47 Mcal NE L /kg DM), or a low energy density diet (LD, 1.30 Mcal NE L /kg DM) prepartum, and were fed the same diet postpartum. The reduced energy density diets decreased the average dry matter intake (DMI) prepartum and tended to increase the DMI postpartum. The ruminal pH of the LD group was significantly higher prepartum and lower during the first week of lactation compared with the other two groups. The reduced energy density diet depressed the average ruminal concentration of propionate and butyrate prepartum, and increased the average concentration of total volatile fatty acids (VFA) postpartum. The LD group had higher populations of Butyrivibrio fibrisolvens and Ruminococcus flavefaciens relative to HD and MD groups on 7 days in milk. In conclusion, the cows fed reduced energy density diet prepartum had higher VFA concentration, but were more susceptible to subacute ruminal acidosis postpartum. © 2017 Japanese Society of Animal Science.

  3. Formation and maintenance of high-nitrate, low pH layers in the eastern Indian Ocean and the role of nitrogen fixation

    Directory of Open Access Journals (Sweden)

    A. M. Waite

    2013-08-01

    Full Text Available We investigated the biogeochemistry of low dissolved oxygen high-nitrate (LDOHN layers forming against the backdrop of several interleaving regional water masses in the eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LDOHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC; the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification. We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O of dissolved nitrate, we determine that ~ 40–100% of the nitrate found in LDOHN layers is likely to originate from nitrogen fixation, and that, regionally, the importance of N-fixation in contributing to LDOHN layers is likely to be highest at the surface and offshore.

  4. Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian Sea and White Sea from R/Vs Artemovsk, Atlantida, Okeanograf, Professor Rudovits, and ice observations, 1957 - 1995 (NODC Accession 0073674)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, Salinity, Oxygen, Phosphate, pH and Alkalinity data collected in the North Atlantic Ocean, Baltic Sea, Barents Sea, Greenland Sea, North Sea, Norwegian...

  5. Monitoring and assessment of ocean acidification in the Arctic Ocean-A scoping paper

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Feely, Richard; Fabry, Victoria

    2010-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the ocean surface by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution. Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats. The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  6. Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI accession 01645680) (NCEI Accession 0164568)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climatological mean monthly distributions of pH in the total H+ scale, total CO2 concentration (TCO2), and the degree of CaCO3 saturation for the global surface...

  7. Leucocins 4010 from Leuconostoc carnosum cause a matrix related decrease in intracellular pH of Listeria monocytogenes

    DEFF Research Database (Denmark)

    Fang, Weihuan; Budde, Birgitte Bjørn; Siegumfeldt, Henrik

    2006-01-01

    A mixed culture of single cells of Listeria monocytogenes and the bacteriocin producing Leuconostoc carnosum 4010 showed growth inhibition of L. monocytogenes, although the intracellular pH (pHi) of L. monocytogenes followed by fluorescence ratio imaging microscopy was not affected. Furthermore, L...

  8. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta.

    Science.gov (United States)

    Myllynen, Päivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysä, Jaana; Pirilä, Rauna; Lastumäki, Anni; Vähäkangas, Kirsi H

    2008-10-15

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of (14)C-PhIP (2 microM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72+/-0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of (14)C-PhIP from maternal to fetal circulation (FM ratio 0.90+/-0.08 at 6 h, p<0.05) while the ABCC1/ABCC2 inhibitor probenecid had no effect (FM ratio at 6 h 0.75+/-0.10, p=0.84). There was a negative correlation between the expression of ABCG2 protein in perfused tissue and the FM ratio of (14)C-PhIP (R=-0.81, p<0.01) at the end of the perfusion. The expression of ABCC2 protein did not correlate with FM ratio of PhIP (R: -0.11, p=0.76). In addition, PhIP induced the expression of ABC transporters in BeWo cells at mRNA level. In conclusion, our data indicates that ABCG2 decreases placental transfer of (14)C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarcinoma cells.

  9. Ocean acidification in a geoengineering context

    Science.gov (United States)

    Williamson, Phillip; Turley, Carol

    2012-01-01

    Fundamental changes to marine chemistry are occurring because of increasing carbon dioxide (CO2) in the atmosphere. Ocean acidity (H+ concentration) and bicarbonate ion concentrations are increasing, whereas carbonate ion concentrations are decreasing. There has already been an average pH decrease of 0.1 in the upper ocean, and continued unconstrained carbon emissions would further reduce average upper ocean pH by approximately 0.3 by 2100. Laboratory experiments, observations and projections indicate that such ocean acidification may have ecological and biogeochemical impacts that last for many thousands of years. The future magnitude of such effects will be very closely linked to atmospheric CO2; they will, therefore, depend on the success of emission reduction, and could also be constrained by geoengineering based on most carbon dioxide removal (CDR) techniques. However, some ocean-based CDR approaches would (if deployed on a climatically significant scale) re-locate acidification from the upper ocean to the seafloor or elsewhere in the ocean interior. If solar radiation management were to be the main policy response to counteract global warming, ocean acidification would continue to be driven by increases in atmospheric CO2, although with additional temperature-related effects on CO2 and CaCO3 solubility and terrestrial carbon sequestration. PMID:22869801

  10. Monitoring of ocean storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2003-02-01

    It has been proposed that atmospheric CO2 accumulation could be slowed by capture of CO2 from point sources and subsequent storage of that CO2 in the ocean. If applied, such sequestration efforts would need to be monitored for compliance, effectiveness, and unintended consequences. Aboveground inspection and monitoring of facilities and practices, combined with ocean observations, could assure compliance with ocean sequestration guidelines and regulations. Ocean observations could be made using a variety of sensors mounted on moorings or underwater gliders. Long-term effectiveness and leakage to the atmosphere must be estimated from models, since on large spatial scales it will be impossible to observationally distinguish carbon stored by a project from variable concentrations of background carbon. Furthermore, the ocean naturally would absorb roughly 80% of fossil fuel CO2 released to the atmosphere within a millennium. This means that most of the CO2 sequestered in the ocean that leaks out to the atmosphere will be reabsorbed by the ocean. However, there is no observational way to distinguish remaining carbon from reabsorbed carbon. The science of monitoring unintended consequences in the deep ocean interior is at a primitive state. Little is understood about ecosystems of the deep ocean interior; and even less is understood about how those ecosystems would respond to added CO2. High priority research objectives should be (1) to improve our understanding of the natural ecosystems of the deep ocean, and (2) to improve our understanding of the response of these ecosystems to increased oceanic CO2 concentrations and decreased ocean pH.

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans from 2012-11-28 to 2013-01-04 (NCEI Accession 0143950)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143950 includes discrete sample and profile data collected from MIRAI in the Indian Ocean, South Pacific Ocean and Southern Oceans (> 60 degrees...

  12. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface and discrete observations using flow-through pump and other instruments from M/V Equinox in the North Atlantic ocean (east coast of Miami, FL, Bahamas, and Turks and Caicos Islands) from 2015-03-07 to 2015-03-09 (NCEI Accession 0154382)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface discrete measurements of dissolved inorganic carbon, total alkalinity, and pH from the east coast of Florida to Puerto Rico....

  13. Historical temperature, salinity, oxygen, pH, and meteorological data collected from Former Soviet Union platforms Lomonosov, Murmanets, and Akademik Shokalsky in 1933 - 1962 years from Arctic Ocean, Barents Sea, Bering Sea, Chukchi Sea, East Siberian Sea, Kara Sea, and Laptev Sea (NODC Accession 0108117)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Historical temperature, salinity, oxygen, pH, and meteorological data collected from Former Soviet Union platforms Lomonosov,Murmanets, and Akademik Shokalsky in...

  14. Dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations using flow-through pump from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (ECOA) Cruise from 2015-06-19 to 2015-07-24 (NCEI Accession 0157485)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, pH, oxygen, and other variables collected from surface discrete and surface underway observations during...

  15. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample observations using CTD, Niskin bottle, and other instruments from NOAA Ship Gordon Gunter off the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0159428)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from profile and discrete sample...

  16. Dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow through pump and other instruments from NOAA Ship Gordon Gunter in the U.S. East Coast during the East Coast Ocean Acidification (GU-15-04 ECOA1) from 2015-06-20 to 2015-07-23 (NCEI Accession 0157389)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains dissolved inorganic carbon, total alkalinity, pH, nutrients and other variables collected from surface discrete sampling using flow...

  17. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2015-12-17 to 2016-01-13 (NCEI Accession 0157011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157011 includes chemical, discrete sample, physical and profile data collected from JAMES CLARK ROSS in the South Atlantic Ocean, South Pacific Ocean...

  18. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 2007-12-15 to 2008-02-23 (NODC Accession 0109903)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109903 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the North Pacific Ocean, South Pacific Ocean and...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2011-02-19 to 2011-04-23 (NODC Accession 0109933)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109933 includes discrete sample and profile data collected from NATHANIEL B. PALMER in the South Atlantic Ocean, South Pacific Ocean and Southern...

  20. Ocean acidification impacts bacteria – phytoplankton coupling at low-nutrient conditions

    NARCIS (Netherlands)

    Hornick, T.; Bach, L.T.; Crawfurd, K.J.; Spilling, K.; Achterberg, E.P.; Woodhouse, J.N.; Schulz, K.G.; Brussaard, C.P.D.; Riebesell, U.; Grossart, H.-P.

    2017-01-01

    The oceans absorb about a quarter of the annuallyproduced anthropogenic atmospheric carbon dioxide(CO2/, resulting in a decrease in surface water pH, aprocess termed ocean acidification (OA). Surprisingly littleis known about how OA affects the physiology of heterotrophicbacteria or the coupling of

  1. Effects of Ocean Acidification on Phytoplankton Physiology and Nutrition for Fishery-based Food Webs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Rising atmospheric concentrations of CO2 are predicted to decrease the pH of high-latitude oceans by 0.3–0.5 units by 2100. Because of their limited capacity for ion...

  2. Increase in acidifying water in the western Arctic Ocean

    Science.gov (United States)

    Qi, Di; Chen, Liqi; Chen, Baoshan; Gao, Zhongyong; Zhong, Wenli; Feely, Richard A.; Anderson, Leif G.; Sun, Heng; Chen, Jianfang; Chen, Min; Zhan, Liyang; Zhang, Yuanhui; Cai, Wei-Jun

    2017-02-01

    The uptake of anthropogenic CO2 by the ocean decreases seawater pH and carbonate mineral aragonite saturation state (Ωarag), a process known as Ocean Acidification (OA). This can be detrimental to marine organisms and ecosystems. The Arctic Ocean is particularly sensitive to climate change and aragonite is expected to become undersaturated (Ωarag Pacific Winter Water transport, driven by an anomalous circulation pattern and sea-ice retreat, is primarily responsible for the expansion, although local carbon recycling and anthropogenic CO2 uptake have also contributed. These results indicate more rapid acidification is occurring in the Arctic Ocean than the Pacific and Atlantic oceans, with the western Arctic Ocean the first open-ocean region with large-scale expansion of `acidified’ water directly observed in the upper water column.

  3. Digestion in sea urchin larvae impaired under ocean acidification

    Science.gov (United States)

    Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam

    2013-12-01

    Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.

  4. The 10B(n,α)7Li reaction in PWR coolants: calculations of the effect on coolant pH and on decreases in 10B isotopic fractions

    International Nuclear Information System (INIS)

    Polley, M.V.

    1988-07-01

    Boron is used as a chemical shim in PWRs for reactivity control and is added in the form of boric acid to the primary coolant. The 10 B(n,α) 7 Li reaction leads to a continuous increase in 7 Li in the primary coolant and to a continuous decrease in 10 B the isotope of boron responsible for control of reactivity. The rate of increase in coolant pH due to 7 Li production is calculated for the Sizewell 'B' PWR to enable judgements to be made on the frequency of sampling and removal of lithium required to maintain the pH of the primary coolant within the desired limits. Calculations are contrasted for the cases of natural boron and 100% 10 B chemical shims, for both a normal cycle and an extended 18 month cycle. Calculations of 10 B depletion over 30 years of operation as a function of the quantity of boron discharged to waste are also presented. 10 B isotopic fractions are calculated for the reactor coolant (RC), boric acid tanks (BATs) and refuelling water storage tank (RWST) assuming rapid mixing of BAT and RC boron for tritium control and other reasons. Such predictions enable assessments of the reactor physics implications of 10 B consumption to be made. (author)

  5. A Simple Method for Decreasing the Liquid Junction Potential in a Flow-through-Type Differential pH Sensor Probe Consisting of pH-FETs by Exerting Spatiotemporal Control of the Liquid Junction

    Science.gov (United States)

    Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji

    2015-01-01

    The liquid junction potential (LJP), the phenomenon that occurs when two electrolyte solutions of different composition come into contact, prevents accurate measurements in potentiometry. The effect of the LJP is usually remarkable in measurements of diluted solutions with low buffering capacities or low ion concentrations. Our group has constructed a simple method to eliminate the LJP by exerting spatiotemporal control of a liquid junction (LJ) formed between two solutions, a sample solution and a baseline solution (BLS), in a flow-through-type differential pH sensor probe. The method was contrived based on microfluidics. The sensor probe is a differential measurement system composed of two ion-sensitive field-effect transistors (ISFETs) and one Ag/AgCl electrode. With our new method, the border region of the sample solution and BLS is vibrated in order to mix solutions and suppress the overshoot after the sample solution is suctioned into the sensor probe. Compared to the conventional method without vibration, our method shortened the settling time from over two min to 15 s and reduced the measurement error by 86% to within 0.060 pH. This new method will be useful for improving the response characteristics and decreasing the measurement error of many apparatuses that use LJs. PMID:25835300

  6. Lateral variation in upper mantle temperature and composition beneath mid-ocean ridges inferred from shear-wave propagation, geoid, and bathymetry. Ph.D. Thesis

    Science.gov (United States)

    Sheehan, Anne Francis

    1991-01-01

    Resolution of both the extent and mechanism of lateral heterogeneity in the upper mantle constraints the nature and scales of mantle convection. Oceanic regions are of particular interest as they are likely to provide the closest glimpse at the patterns of temperature anomalies and convective flow in the upper mantle because of their young age and simple crustal structure relative to continental regions. Lateral variations were determined in the seismic velocity and attenuation structure of the lithosphere and astenosphere beneath the oceans, and these seismological observations were combined with the data and theory of geoid and bathymetry anomalies in order to test and improve current models for seafloor spreading and mantle convection. Variations were determined in mantle properties on a scale of about 1000 km, comparable to the thickness of the upper mantle. Seismic velocity, geoid, and bathymetry anomalies are all sensitive to variations in upper mantle density, and inversions were formulated to combine quantitatively these different data and to search for a common origin. Variations in mantle density can be either of thermal or compositional origin and are related to mantle convection or differentiation.

  7. Deep-Sea DuraFET: A Pressure Tolerant pH Sensor Designed for Global Sensor Networks.

    Science.gov (United States)

    Johnson, Kenneth S; Jannasch, Hans W; Coletti, Luke J; Elrod, Virginia A; Martz, Todd R; Takeshita, Yuichiro; Carlson, Robert J; Connery, James G

    2016-03-15

    Increasing atmospheric carbon dioxide is driving a long-term decrease in ocean pH which is superimposed on daily to seasonal variability. These changes impact ecosystem processes, and they serve as a record of ecosystem metabolism. However, the temporal variability in pH is observed at only a few locations in the ocean because a ship is required to support pH observations of sufficient precision and accuracy. This paper describes a pressure tolerant Ion Sensitive Field Effect Transistor pH sensor that is based on the Honeywell Durafet ISFET die. When combined with a AgCl pseudoreference sensor that is immersed directly in seawater, the system is capable of operating for years at a time on platforms that cycle from depths of several km to the surface. The paper also describes the calibration scheme developed to allow calibrated pH measurements to be derived from the activity of HCl reported by the sensor system over the range of ocean pressure and temperature. Deployments on vertical profiling platforms enable self-calibration in deep waters where pH values are stable. Measurements with the sensor indicate that it is capable of reporting pH with an accuracy of 0.01 or better on the total proton scale and a precision over multiyear periods of 0.005. This system enables a global ocean observing system for ocean pH.

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship DISCOVERER in the North Pacific Ocean, South Pacific Ocean and Southern Oceans from 1994-01-26 to 1994-04-27 (NODC Accession 0115152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115152 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the North Pacific Ocean, South Pacific...

  9. Deep Ocean Mineral Supplementation Enhances the Cerebral Hemodynamic Response during Exercise and Decreases Inflammation Postexercise in Men at Two Age Levels

    Directory of Open Access Journals (Sweden)

    Ching-Yin Wei

    2017-12-01

    Full Text Available Background: Previous studies have consistently shown that oral supplementation of deep ocean minerals (DOM improves vascular function in animals and enhances muscle power output in exercising humans.Purpose: To examine the effects of DOM supplementation on the cerebral hemodynamic response during physical exertion in young and middle-aged men.Design: Double-blind placebo-controlled crossover studies were conducted in young (N = 12, aged 21.2 ± 0.4 years and middle-aged men (N = 9, aged 46.8 ± 1.4 years. The counter-balanced trials of DOM and Placebo were separated by a 2-week washout period. DOM and Placebo were orally supplemented in drinks before, during, and after cycling exercise. DOM comprises desalinated minerals and trace elements from seawater collected ~618 m below the earth's surface.Methods: Cerebral hemodynamic response (tissue hemoglobin was measured during cycling at 75% VO2max using near infrared spectroscopy (NIRS.Results: Cycling time to exhaustion at 75% VO2max and the associated plasma lactate response were similar between the Placebo and DOM trials for both age groups. In contrast, DOM significantly elevated cerebral hemoglobin levels in young men and, to a greater extent, in middle-aged men compared with Placebo. An increased neutrophil to lymphocyte ratio (NLR was observed in middle-aged men, 2 h after exhaustive cycling, but was attenuated by DOM.Conclusion: Our data suggest that minerals and trace elements from deep oceans possess great promise in developing supplements to increase the cerebral hemodynamic response against a physical challenge and during post-exercise recovery for middle-aged men.

  10. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-06-03

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  11. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  12. Dissolved inorganic carbon, total alkalinity, pH, and other variables collected from surface discrete observations using Flow through pump and other instruments from M/V Skogafoss in the Northeastern U.S. continental shelf and off the southern coast of Greenland during the ocean acidification cruise SKO0313, SKO0406, SKO0410, SKO0414, SKO0510, SKO0604, SKO0611, SKO0721, SKO_1406, SKO_1501, SKO_1506, SKO_1509, SKO_1604 from 2003-12-06 to 2016-04-01 (NCEI Accession 0154380)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains surface measurements of dissolved inorganic carbon, total alkalinity, pH in the North Atlantic Ocean. Increasing amounts of...

  13. Ocean Physicochemistry versus Climate Change

    OpenAIRE

    Góralski, Bogdan

    2014-01-01

    It is the dwindling ocean productivity which leaves dissolved carbon dioxide in the seawater. Its solubility is diminished by the rise in ocean water temperature (by one degree Celsius since 1910, according to IPCC). Excess carbon dioxide is emitted into the atmosphere, while its growing concentration in seawater leads to ocean acidification. Ocean acidification leading to lowering pH of surface ocean water remains an unsolved problem of science. My today’s lecture will mark an attempt at ...

  14. ABCG2/BCRP decreases the transfer of a food-born chemical carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in perfused term human placenta

    International Nuclear Information System (INIS)

    Myllynen, Paeivi; Kummu, Maria; Kangas, Tiina; Ilves, Mika; Immonen, Elina; Rysae, Jaana; Pirilae, Rauna; Lastumaeki, Anni; Vaehaekangas, Kirsi H.

    2008-01-01

    We have studied the role of ATP binding cassette (ABC) transporters in fetal exposure to carcinogens using 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) a known substrate for ABC transporters as a model compound. In perfusion of human term placenta, transfer of 14 C-PhIP (2 μM) through the placenta resulted in fetal-to-maternal concentration ratio (FM ratio) of 0.72 ± 0.09 at 6 h. The specific ABCG2 inhibitor KO143 increased the transfer of 14 C-PhIP from maternal to fetal circulation (FM ratio 0.90 ± 0.08 at 6 h, p 14 C-PhIP (R = - 0.81, p 14 C-PhIP in perfused human placenta. Also, PhIP may modify ABC transporter expression in choriocarinoma cells

  15. Growth of juvenile hard clams in Narragansett Bay after laboratory exposure to low pH

    Science.gov (United States)

    Ocean uptake of carbon dioxide is causing decreases in pH and the concentration of carbonate ions used by marine organisms during shell and skeletal formation. When these conditions are reproduced in laboratory environments and field enclosures, effects on biological rates such ...

  16. Effect of Low ph on Carbohydrate Production by a Marine Planktonic Diatom (Chaetoceros muelleri)

    International Nuclear Information System (INIS)

    Thornton, D.C.O.

    2009-01-01

    Rising carbon dioxide (CO 2 ) concentrations in the atmosphere due to human activity are causing the surface ocean to become more acidic. Diatoms play a pivotal role in biogeochemical cycling and ecosystem function in the ocean. ph affected the quantum efficiency of photosystem II and carbohydrate metabolism in a planktonic diatom (Chaetoceros muelleri), representative of a widely distributed genus. In batch cultures grown at low ph, the proportion of total carbohydrate stored within the cells decreased and more dissolved carbohydrates were exuded from the cells into the surrounding medium. Changes in productivity and the way in which diatoms allocate carbon into carbohydrates may affect ecosystem function and the efficiency of the biological carbon pump in a low ph ocean.

  17. The Phenomenom of Ocean Acidification

    Science.gov (United States)

    Weiss, S.

    2017-12-01

    The earth is 70% and is protected by its atmosphere. The atmosphere is made up of several layers. The sunlight penetrates through the atmosphere and warms the earth surface. The earth's surface then in turn emits invisible infrared radiation back. As this radiation moves back up each layer absorbs some of it. Each layer then sends some of this energy back to earth again. When the layer becomes so thin the energy then escapes back into space. When we are adding more carbon dioxide to these layers we are causing the layers to absorb more of the energy and the radiation. This in turn causes the layers to become warmer since fewer radiation moves up through the layers and this energy bounces back to earth increasing the temperatures. The entire planet is taking on more of this energy and hence the temperatures are rising. The ocean plays a big rule in this change. It has prevented some of the CO2 from entering the earth's atmosphere. Oceans absorb about one third of the anthropogenic CO2 causing the phenomenon of ocean acidification and this comes at a huge cost to our marine environments. The CO2 is absorbed on the surface and then transferred into the deeper waters. Which causes it to be stuck for centuries before making its way back into the atmosphere. As the CO2 dissolves in seawater it causes the PH to lower. With a lowered PH water becomes more acidic. The Hydrogen ions decrease and become less active. With this process carbonic acid is formed. The ocean now is more acidic then it has ever been in the past 650,000 years. The increase in acidic levels has caused our marine life to adjust. Acidosis caused by the increase of carbonic acid in the body fluids means a lower pH in the blood. This changes is just the start to many health issues for these organism's.

  18. Effects of Reduced pH on Macoma balthica Larvae from a System with Naturally Fluctuating pH-Dynamics.

    Directory of Open Access Journals (Sweden)

    Anna Jansson

    Full Text Available Ocean acidification is causing severe changes in the inorganic carbon balance of the oceans. The pH conditions predicted for the future oceans are, however, already regularly occurring in the Baltic Sea, and the system might thus work as an analogue for future ocean acidification scenarios. The characteristics of the Baltic Sea with low buffering capacity and large natural pH fluctuations, in combination with multiple other stressors, suggest that OA effects may be severe, but remain largely unexplored. A calcifying species potentially affected by low pH conditions is the bivalve Macoma balthica (L.. We investigated larval survival and development of M. balthica by exposing the larvae to a range of pH levels: 7.2, 7.4, 7.7 and 8.1 during 20 days in order to learn what the effects of reduced pH are on the larval biology and thus also potentially for the population dynamics of this key species. We found that even a slight pH decrease causes significant negative changes during the larval phase, both by slowing growth and by decreasing survival. The growth was slower in all reduced pH treatments compared to the control treatment. The size of 250 µm that is considered indicative to imminent settling in our system was reached by 22% of the larvae grown in control conditions after 20 days, whereas in all reduced pH treatments the size of 250 µm was reached by only 7-14%. The strong impact of ocean acidification on larvae is alarming as slowly growing individuals are exposed to higher predation risk in response to the longer time they are required to spend in the plankton, further decreasing the ecological competence of the species.

  19. Trans-generational responses to low pH depend on parental gender in a calcifying tubeworm

    OpenAIRE

    Lane, Ackley; Campanati, Camilla; Dupont, Sam; Thiyagarajan, Vengatesen

    2015-01-01

    The uptake of anthropogenic CO2 emissions by oceans has started decreasing pH and carbonate ion concentrations of seawater, a process called ocean acidification (OA). Occurring over centuries and many generations, evolutionary adaptation and epigenetic transfer will change species responses to OA over time. Trans-generational responses, via genetic selection or trans-generational phenotypic plasticity, differ depending on species and exposure time as well as differences between individuals su...

  20. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    International Nuclear Information System (INIS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-01-01

    Due to increasing atmospheric CO 2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO 2 and those which involve CO 2 -induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO 2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO 2 -induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO 2 -induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change. (letters)

  1. Dissolved inorganic carbon, total alkalinity, dissolved oxygen, and pH monitored from benthic Free Ocean Carbon Enrichment (FOCE) -type study in Heron Island reef flat (NODC Accession 0113856)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean acidification poses multiple challenges for coral reefs on molecular to ecological scales, yet previous experimental studies of the impact of projected CO2...

  2. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from DISCOVERY in the North Atlantic Ocean from 1998-04-23 to 1998-06-01 (NODC Accession 0113536)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113536 includes biological, chemical, discrete sample, physical and profile data collected from DISCOVERY in the North Atlantic Ocean from 1998-04-23...

  3. Dissolved oxygen, nutrients, pH, salinity, and temperature collected by several instruments from CHOFU MARU in the Northwest Pacific Ocean from 16 January 1993 to 11 June 1995 (NODC Accession 0000040)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profile, nutrients, and other data were collected using bottle, CTD, and XBT casts from the CHOFU MARU in the Northwest Pacific Ocean. Data were...

  4. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THALASSA in the North Atlantic Ocean from 2004-06-04 to 2004-07-06 (NODC Accession 0113918)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113918 includes chemical, discrete sample, physical and profile data collected from THALASSA in the North Atlantic Ocean from 2004-06-04 to...

  5. USGS Arctic Ocean carbon cruise 2010: field activity H-03-10-AR to collect carbon data in the Arctic Ocean, August - September 2010

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Gove, Matthew D.; Knorr, Paul O.; Wynn, Jonathan; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form carbonic acid, a weak, naturally occurring acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  6. USGS Arctic Ocean carbon cruise 2011: field activity H-01-11-AR to collect carbon data in the Arctic Ocean, August - September 2011

    Science.gov (United States)

    Robbins, Lisa L.; Yates, Kimberly K.; Knorr, Paul O.; Wynn, Jonathan; Lisle, John; Buczkowski, Brian J.; Moore, Barbara; Mayer, Larry; Armstrong, Andrew; Byrne, Robert H.; Liu, Xuewu

    2013-01-01

    Carbon dioxide (CO2) in the atmosphere is absorbed at the surface of the ocean by reacting with seawater to form a weak, naturally occurring acid called carbonic acid. As atmospheric carbon dioxide increases, the concentration of carbonic acid in seawater also increases, causing a decrease in ocean pH and carbonate mineral saturation states, a process known as ocean acidification. The oceans have absorbed approximately 525 billion tons of carbon dioxide from the atmosphere, or about one-quarter to one-third of the anthropogenic carbon emissions released since the beginning of the Industrial Revolution (Sabine and others, 2004). Global surveys of ocean chemistry have revealed that seawater pH has decreased by about 0.1 units (from a pH of 8.2 to 8.1) since the 1700s due to absorption of carbon dioxide (Caldeira and Wickett, 2003; Orr and others, 2005; Raven and others, 2005). Modeling studies, based on Intergovernmental Panel on Climate Change (IPCC) CO2 emission scenarios, predict that atmospheric carbon dioxide levels could reach more than 500 parts per million (ppm) by the middle of this century and 800 ppm by the year 2100, causing an additional decrease in surface water pH of 0.3 pH units. Ocean acidification is a global threat and is already having profound and deleterious effects on the geology, biology, chemistry, and socioeconomic resources of coastal and marine habitats (Raven and others, 2005; Ruttiman, 2006). The polar and sub-polar seas have been identified as the bellwethers for global ocean acidification.

  7. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.

    Science.gov (United States)

    Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H

    2014-07-07

    Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2001-03-05 to 2001-04-17 (NODC Accession 0108096)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108096 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2010-04-05 to 2010-05-16 (NODC Accession 0109927)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109927 includes discrete sample and profile data collected from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2010-04-05 to...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the EDWIN LINK in the North Atlantic Ocean and South Atlantic Ocean from 1996-04-15 to 1996-05-16 (NODC Accession 0113539)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113539 includes chemical, discrete sample, physical and profile data collected from EDWIN LINK in the North Atlantic Ocean and South Atlantic Ocean...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2003-06-04 to 2003-08-11 (NODC Accession 0108061)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108061 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, Barometric pressure sensor and other instruments from ROGER REVELLE in the Indian Ocean and Southern Oceans from 2008-02-04 to 2008-03-17 (NODC Accession 0108118)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108118 includes discrete sample and profile data collected from ROGER REVELLE in the Indian Ocean and Southern Oceans (> 60 degrees South) from...

  13. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2002-12-17 to 2003-02-14 (NODC Accession 0113608)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113608 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2004-11-17 to 2004-12-09 (NODC Accession 0112263)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112263 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  15. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship DISCOVERER in the South Pacific Ocean, Southern Oceans and Tasman Sea from 1996-01-05 to 1996-03-10 (NODC Accession 0115155)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115155 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the South Pacific Ocean, Southern Oceans...

  16. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean from 2002-03-04 to 2002-04-09 (NODC Accession 0108097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108097 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean and South Atlantic Ocean...

  17. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the SHIRASE in the Indian Ocean, South Pacific Ocean and Tasman Sea from 1992-12-03 to 1993-03-19 (NODC Accession 0113597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113597 includes biological, chemical, discrete sample, physical and profile data collected from SHIRASE in the Indian Ocean, South Pacific Ocean and...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the THALASSA in the North Atlantic Ocean and South Atlantic Ocean from 1999-07-12 to 1999-09-22 (NODC Accession 0113601)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113601 includes chemical, discrete sample, physical and profile data collected from THALASSA in the North Atlantic Ocean and South Atlantic Ocean...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2007-02-16 to 2007-03-26 (NODC Accession 0112269)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112269 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific Ocean from...

  20. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean from 1994-01-04 to 1994-03-21 (NODC Accession 0115157)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115157 includes Surface underway, discrete sample and profile data collected from MAURICE EWING in the North Atlantic Ocean and South Atlantic Ocean...

  1. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the HESPERIDES in the North Atlantic Ocean, South Atlantic Ocean and Strait of Gibraltar from 2013-03-20 to 2013-05-22 (NODC Accession 0114434)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114434 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean, South Atlantic Ocean and...

  2. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean from 1993-01-02 to 1993-02-10 (NODC Accession 0115753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115753 includes discrete sample and profile data collected from L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean from 1993-01-02 to...

  3. EPOCA/EUR-OCEANS data compilation on the biological and biogeochemical responses to ocean acidification

    Directory of Open Access Journals (Sweden)

    A.-M. Nisumaa

    2010-07-01

    Full Text Available The uptake of anthropogenic CO2 by the oceans has led to a rise in the oceanic partial pressure of CO2, and to a decrease in pH and carbonate ion concentration. This modification of the marine carbonate system is referred to as ocean acidification. Numerous papers report the effects of ocean acidification on marine organisms and communities but few have provided details concerning full carbonate chemistry and complementary observations. Additionally, carbonate system variables are often reported in different units, calculated using different sets of dissociation constants and on different pH scales. Hence the direct comparison of experimental results has been problematic and often misleading. The need was identified to (1 gather data on carbonate chemistry, biological and biogeochemical properties, and other ancillary data from published experimental data, (2 transform the information into common framework, and (3 make data freely available. The present paper is the outcome of an effort to integrate ocean carbonate chemistry data from the literature which has been supported by the European Network of Excellence for Ocean Ecosystems Analysis (EUR-OCEANS and the European Project on Ocean Acidification (EPOCA. A total of 185 papers were identified, 100 contained enough information to readily compute carbonate chemistry variables, and 81 data sets were archived at PANGAEA – The Publishing Network for Geoscientific & Environmental Data. This data compilation is regularly updated as an ongoing mission of EPOCA.

    Data access: http://doi.pangaea.de/10.1594/PANGAEA.735138

  4. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and SEA SURFACE TEMPERATURE collected from Surface underway observations using automated Multi-parameter Inorganic Carbon Analyzer (MICA) for autonomous measurement of pH, carbon dioxide (CO2) and dissolved inorganic carbon (DIC) and other instruments from THOMAS G. THOMPSON in the Gulf of Alaska, North Pacific Ocean and South Pacific Ocean from 2006-02-13 to 2006-03-30 (NCEI Accession 0157411)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157411 includes Surface underway, chemical and physical data collected from THOMAS G. THOMPSON in the Gulf of Alaska, North Pacific Ocean and South...

  5. Effects of lowered pH on marine phytoplankton growth rates

    DEFF Research Database (Denmark)

    Berge, Terje; Daugbjerg, Niels; Andersen, Betinna Balling

    2010-01-01

    concentration of seawater. Ocean acidification may potentially both stimulate and reduce primary production by marine phytoplankton. Data are scarce on the response of marine phytoplankton growth rates to lowered pH/increased CO2. Using the acid addition method to lower the seawater pH and manipulate...... the carbonate system, we determined in detail the lower pH limit for growth rates of 2 model species of common marine phytoplankton. We also tested whether growth and production rates of 6 other common species of phytoplankton were affected by ocean acidification (lowered to pH 7.0). The lower pH limits...... statistically similar in the pH range of ~7.0 to 8.5. Our results and literature reports on growth at lowered pH indicate that marine phytoplankton in general are resistant to climate change in terms of ocean acidification, and do not increase or decrease their growth rates according to ecological relevant...

  6. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Spectrophotometer for pH measurement and other instruments from the HESPERIDES in the North Atlantic Ocean from 2003-04-08 to 2003-04-24 (NODC Accession 0108098)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108098 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean from 2003-04-08 to...

  7. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH?

    Directory of Open Access Journals (Sweden)

    Bernhardt Harold S

    2012-01-01

    Full Text Available Abstract Background The RNA world concept has wide, though certainly not unanimous, support within the origin-of-life scientific community. One view is that life may have emerged as early as the Hadean Eon 4.3-3.8 billion years ago with an atmosphere of high CO2 producing an acidic ocean of the order of pH 3.5-6. Compatible with this scenario is the intriguing proposal that life arose within alkaline (pH 9-11 deep-sea hydrothermal vents like those of the 'Lost City', with the interface with the acidic ocean creating a proton gradient sufficient to drive the first metabolism. However, RNA is most stable at pH 4-5 and is unstable at alkaline pH, raising the possibility that RNA may have first arisen in the acidic ocean itself (possibly near an acidic hydrothermal vent, acidic volcanic lake or comet pond. As the Hadean Eon progressed, the ocean pH is inferred to have gradually risen to near neutral as atmospheric CO2 levels decreased. Presentation of the hypothesis We propose that RNA is well suited for a world evolving at acidic pH. This is supported by the enhanced stability at acidic pH of not only the RNA phosphodiester bond but also of the aminoacyl-(tRNA and peptide bonds. Examples of in vitro-selected ribozymes with activities at acid pH have recently been documented. The subsequent transition to a DNA genome could have been partly driven by the gradual rise in ocean pH, since DNA has greater stability than RNA at alkaline pH, but not at acidic pH. Testing the hypothesis We have proposed mechanisms for two key RNA world activities that are compatible with an acidic milieu: (i non-enzymatic RNA replication of a hemi-protonated cytosine-rich oligonucleotide, and (ii specific aminoacylation of tRNA/hairpins through triple helix interactions between the helical aminoacyl stem and a single-stranded aminoacylating ribozyme. Implications of the hypothesis Our hypothesis casts doubt on the hypothesis that RNA evolved in the vicinity of alkaline

  8. Impact of biogeochemical processes on pH dynamics in marine systems

    NARCIS (Netherlands)

    Hagens, Mathilde

    2015-01-01

    Uptake of anthropogenic carbon dioxide (CO2) from the atmosphere has resulted in a range of changes in ocean chemistry, including the lowering of pH, collectively referred to as ocean acidification. Rates of coastal-zone acidification exceed those of the open ocean since coastal-ocean pH is

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, Barometric pressure sensor and other instruments from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean, South Pacific Ocean and Southern Oceans from 2005-01-11 to 2005-02-24 (NODC Accession 0108153)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108153 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean, South Pacific Ocean and...

  10. Spatial competition dynamics between reef corals under ocean acidification

    Science.gov (United States)

    Horwitz, Rael; Hoogenboom, Mia O.; Fine, Maoz

    2017-01-01

    Climate change, including ocean acidification (OA), represents a major threat to coral-reef ecosystems. Although previous experiments have shown that OA can negatively affect the fitness of reef corals, these have not included the long-term effects of competition for space on coral growth rates. Our multispecies year-long study subjected reef-building corals from the Gulf of Aqaba (Red Sea) to competitive interactions under present-day ocean pH (pH 8.1) and predicted end-of-century ocean pH (pH 7.6). Results showed coral growth is significantly impeded by OA under intraspecific competition for five out of six study species. Reduced growth from OA, however, is negligible when growth is already suppressed in the presence of interspecific competition. Using a spatial competition model, our analysis indicates shifts in the competitive hierarchy and a decrease in overall coral cover under lowered pH. Collectively, our case study demonstrates how modified competitive performance under increasing OA will in all likelihood change the composition, structure and functionality of reef coral communities.

  11. Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment

    NARCIS (Netherlands)

    Spilling, K.; Schulz, K.G.; Paul, A.J.; Boxhammer, T.; Achterberg, E.P.; Hornick, T.; Lischka, S.; Stuhr, A.; Bermúdez, R.; Czerny, J.; Crawfurd, K.; Brussaard, C.P.D.; Grossart, H.-P.; Riebesell, U.

    2016-01-01

    About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging

  12. U.S. ocean acidification researchers: First national meeting

    Science.gov (United States)

    Cooley, Sarah R.; Kleypas, Joan; Benway, Heather

    2011-09-01

    Ocean Carbon and Biogeochemistry Program Ocean Acidification Principal Investigators' Meeting; Woods Hole, Massachusetts, 22-24 March 2011 ; Ocean acidification (OA) is the progressive decrease in seawater pH and change in inorganic carbon chemistry caused by uptake of anthropogenic carbon dioxide (CO2). Marine species respond to OA in multiple ways that could profoundly alter ocean ecosystems and the goods and services they provide to human communities. With major support from the National Oceanic and Atmospheric Administration (NOAA) and the U.S. National Science Foundation (NSF) and additional support from the U.S. Environmental Protection Agency (EPA), the Naval Postgraduate School, and the U.S. Geological Survey (USGS), the Ocean Carbon and Biogeochemistry (OCB) Project Office and Ocean Acidification Subcommittee (http://www.us-ocb.org/about/subcommittees.html) held the first multidisciplinary workshop for U.S. OA researchers at the Woods Hole Oceanographic Institution. The 112 attendees included ecologists, paleoceanographers, instrumentation specialists, chemists, biologists, economists, ocean and ecosystem modelers, and communications specialists.

  13. Divergent ecosystem responses within a benthic marine community to ocean acidification.

    Science.gov (United States)

    Kroeker, Kristy J; Micheli, Fiorenza; Gambi, Maria Cristina; Martz, Todd R

    2011-08-30

    Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO(2) vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

  14. Effects of natural current pH variability on the sea urchin Paracentrotus lividus larvae development and settlement.

    Science.gov (United States)

    García, Eliseba; Clemente, Sabrina; Hernández, José Carlos

    2018-08-01

    One of the most important environmental factors controlling the distribution, physiology, morphology and behaviour of marine invertebrates is ocean pH. In the last decade, the effects of decreasing ocean pH as a result of climate change processes (i.e. ocean acidification) on marine organisms have been target of much research. However, the effects of natural pH variability in the species' niche have been largely neglected. Marine coastal habitats are characterized by a high environmental variability and, in some cases, organisms are already coping with pH values predicted by the end of the century. It is thought that because of adaptation or acclimation to natural environmental variability, intertidal species may have some resilience to future changes. In this study, we explored the sensitivities of the sea urchin Paracentrotus lividus during its larvae development and settlement undergoing two different daily pH frequencies (12 h fluctuation from 7.7 to 8.1 units of pH, and constant pH treatment of 8.1 units of pH) that have been currently recorded in the sampling region (Canary Islands). Results showed that, despite larvae development was slightly enhanced by moderated fluctuating pH regimes, P. lividus larva was able to develop normally in both, fluctuating and constant, pH environments. Results of the settlement experiment showed very clear patterns since postlarvae settlement was only successful when a covering of algae was added, regardless of the pH fluctuation applied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Appetite - decreased

    Science.gov (United States)

    Loss of appetite; Decreased appetite; Anorexia ... Any illness can reduce appetite. If the illness is treatable, the appetite should return when the condition is cured. Loss of appetite can cause weight ...

  16. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the LE NOROIT in the North Atlantic Ocean and South Atlantic Ocean from 1995-09-09 to 1995-10-11 (NODC Accession 0115686)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115686 includes biological, chemical, discrete sample, physical and profile data collected from LE NOROIT in the North Atlantic Ocean and South...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from Surface underway, discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 2007-10-08 to 2007-12-26 (NODC Accession 0108123)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108123 includes Surface underway, discrete sample and profile data collected from MIRAI in the Bering Sea, North Pacific Ocean and South Pacific...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2007-01-17 to 2007-02-26 (NODC Accession 0112331)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112331 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean and South Atlantic Ocean from 1995-01-13 to 1995-04-02 (NODC Accession 0115764)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115764 includes chemical, discrete sample, physical and profile data collected from L'ATALANTE in the Gulf of Guinea, North Atlantic Ocean and South...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-01-14 to 2004-02-26 (NODC Accession 0112283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112283 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-01-20 to 2004-02-06 (NODC Accession 0112210)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112210 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-06-16 to 2004-08-13 (NODC Accession 0112212)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112212 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and Calcium collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship MILLER FREEMAN in the North Pacific Ocean and South Pacific Ocean from 1979-04-01 to 1982-06-30 (NODC Accession 0000180)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0000180 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MILLER FREEMAN in the North Pacific Ocean and South...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2001-10-10 to 2001-12-06 (NODC Accession 0115281)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115281 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean, Philippine Sea...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2002-10-01 to 2002-11-27 (NODC Accession 0115283)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115283 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1993-08-07 to 1993-10-05 (NODC Accession 0112229)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112229 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from RYOFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2010-07-06 to 2010-08-22 (NODC Accession 0109921)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109921 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean, Philippine Sea...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from MIRAI in the Indian Ocean and Southern Oceans from 2013-01-06 to 2013-02-15 (NCEI Accession 0156925)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156925 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the Indian Ocean and Southern...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1993-04-13 to 1993-06-11 (NODC Accession 0112228)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112228 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean and South Pacific Ocean from 1992-02-24 to 1992-05-19 (NODC Accession 0117498)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117498 includes biological, chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the North Pacific Ocean...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2010-03-08 to 2010-04-17 (NODC Accession 0108156)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108156 includes chemical, discrete sample, physical and profile data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South...

  12. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 1998-12-29 to 1999-02-01 (NODC Accession 0112349)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112349 includes biological, chemical, discrete sample, meteorological, physical and profile data collected from MIRAI in the North Pacific Ocean and...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from THOMAS G. THOMPSON in the Bering Sea, North Pacific Ocean and South Pacific Ocean from 1993-07-05 to 1993-09-02 (NODC Accession 0115008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115008 includes chemical, discrete sample, physical and profile data collected from THOMAS G. THOMPSON in the Bering Sea, North Pacific Ocean and...

  14. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South Atlantic Ocean from 2013-08-03 to 2013-10-01 (NCEI Accession 0157363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157363 includes chemical, discrete sample, physical and profile data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean and South...

  15. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the North Pacific Ocean and South Pacific Ocean from 2002-01-07 to 2002-02-16 (NODC Accession 0112354)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112354 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the North Pacific Ocean and South...

  16. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean and South Pacific Ocean from 2000-12-27 to 2001-02-08 (NODC Accession 0112353)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112353 includes biological, chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean and South Pacific...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from L'ATALANTE in the North Atlantic Ocean and South Atlantic Ocean from 1993-02-13 to 1993-03-19 (NODC Accession 0115158)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115158 includes biological, chemical, discrete sample, physical and profile data collected from L'ATALANTE in the North Atlantic Ocean and South...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1994-08-08 to 1994-10-06 (NODC Accession 0112339)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112339 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  19. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the North Pacific Ocean and South Pacific Ocean from 1999-11-21 to 1999-12-27 (NODC Accession 0112351)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112351 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the North Pacific Ocean and South...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2005-06-15 to 2005-08-12 (NODC Accession 0112215)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112215 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2001-01-19 to 2001-03-09 (NODC Accession 0115321)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115321 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from POLARSTERN in the South Atlantic Ocean and Southern Oceans from 2014-12-02 to 2015-02-01 (NCEI Accession 0157620)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157620 includes biological, chemical, discrete sample, optical, physical and profile data collected from POLARSTERN in the South Atlantic Ocean and...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2003-07-14 to 2003-08-01 (NODC Accession 0112282)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112282 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1994-04-13 to 1994-06-11 (NODC Accession 0112230)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112230 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2005-07-08 to 2005-07-28 (NODC Accession 0112288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112288 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  6. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship MALCOLM BALDRIGE in the North Atlantic Ocean and South Atlantic Ocean from 1991-07-11 to 1991-09-02 (NODC Accession 0115225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115225 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the North Atlantic Ocean and South...

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2008-01-17 to 2008-02-28 (NODC Accession 0112334)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112334 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2002-06-25 to 2002-08-01 (NODC Accession 0112204)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112204 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2003-06-25 to 2003-08-07 (NODC Accession 0112208)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112208 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and South Pacific Ocean from 1992-08-07 to 1992-10-05 (NODC Accession 0112227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112227 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and South...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2006-06-30 to 2006-07-20 (NODC Accession 0112292)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112292 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean and South Pacific Ocean from 2007-06-06 to 2007-07-24 (NODC Accession 0112295)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112295 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean and South...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and South Pacific Ocean from 2008-06-17 to 2008-08-03 (NODC Accession 0112336)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112336 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and South...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2006-01-13 to 2006-02-22 (NODC Accession 0112290)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112290 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 1997-09-12 to 1997-11-07 (NODC Accession 0115286)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115286 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2004-07-04 to 2004-07-21 (NODC Accession 0112285)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112285 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 1998-09-16 to 1998-11-13 (NODC Accession 0115280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115280 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2008-01-22 to 2008-03-04 (NODC Accession 0112297)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112297 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean, Philippine...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KEIFU MARU in the North Pacific Ocean, Philippine Sea and South Pacific Ocean from 2002-01-17 to 2002-03-06 (NODC Accession 0115278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115278 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean, Philippine Sea...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2000-09-20 to 2000-11-04 (NODC Accession 0115288)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115288 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean and South Pacific Ocean from 2007-01-18 to 2007-03-12 (NODC Accession 0112294)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112294 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean and South...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from RYOFU MARU in the North Pacific Ocean and South Pacific Ocean from 2011-05-15 to 2011-08-26 (NODC Accession 0115178)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115178 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and South...

  3. Early Development of the Threespine Stickleback in Relation to Water pH

    Directory of Open Access Journals (Sweden)

    Olivier Glippa

    2017-12-01

    Full Text Available Ocean acidification is a growing environmental problem, and there is a need to investigate how the decreasing pH will affect marine organisms. Here we studied the effects of lowered pH on the growth and development of the threespine stickleback (Gasterosteus aculeatus eggs. Adult fish, collected from the natural environment, were allowed to mate in aquaria and the newly produced eggs were incubated in an experiment. Eggs and larvae from ambient conditions (produced in the laboratory were reared at three different pH concentrations (control: pH 7.8; and reduced pH treatments: pH 7.5 and 7.0 for 21 days in the laboratory. Dissolved oxygen concentration (8.1 ± 0.1 mg l−1 and temperature (18.6 ± 0.02°C were monitored regularly. Then, egg diameter, larval length, weight and survival were measured. There was no relationship between egg diameter and pH or oxygen, but a negative relationship was found with temperature. Survival of larvae was not affected by pH or temperature, whereas dissolved oxygen concentration had a positive effect on number of survivors. The pH did not have a significant effect on the final larval length on day 21, but interacted significantly with dissolved oxygen. Higher temperatures were found to have a positive effect on the final larval length and weight. Larval weight, on the other hand, was not related to pH nor oxygen. Coastal zones are characterized by pH levels that fluctuate due to natural processes, such as upwelling and river runoff. Our results suggest that the threespine stickleback larvae are well adapted to the different pHs tested, and egg development will likely not be affected by decreasing pH, but even slight temperature and oxygen changes can have a great impact on the threespine stickleback development.

  4. Temperature, salinity, nutrients, oxygen, pH, and other measurements collected using bottle, CTD, XCTD, BT, from Kofu, Ryofu, Keifu, and other platforms in the Pacific Ocean and Sea of Japan during 2004 (NODC Accession 0002643)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data Report of Oceanographic and Marine Meteorological Observations, No. 95, Jan-Dec. 2004. The Japan Meteorologial Agency(JMA) has been carrying out oceanographic...

  5. Impact of seawater acidification on pH at the tissue–skeleton interface and calcification in reef corals

    Science.gov (United States)

    Venn, Alexander A.; Tambutté, Eric; Holcomb, Michael; Laurent, Julien; Allemand, Denis; Tambutté, Sylvie

    2013-01-01

    Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue–skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO2-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue–skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry. PMID:23277567

  6. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals.

    Science.gov (United States)

    Venn, Alexander A; Tambutté, Eric; Holcomb, Michael; Laurent, Julien; Allemand, Denis; Tambutté, Sylvie

    2013-01-29

    Insight into the response of reef corals and other major marine calcifiers to ocean acidification is limited by a lack of knowledge about how seawater pH and carbonate chemistry impact the physiological processes that drive biomineralization. Ocean acidification is proposed to reduce calcification rates in corals by causing declines in internal pH at the calcifying tissue-skeleton interface where biomineralization takes place. Here, we performed an in vivo study on how partial-pressure CO(2)-driven seawater acidification impacts intracellular pH in coral calcifying cells and extracellular pH in the fluid at the tissue-skeleton interface [subcalicoblastic medium (SCM)] in the coral Stylophora pistillata. We also measured calcification in corals grown under the same conditions of seawater acidification by measuring lateral growth of colonies and growth of aragonite crystals under the calcifying tissue. Our findings confirm that seawater acidification decreases pH of the SCM, but this decrease is gradual relative to the surrounding seawater, leading to an increasing pH gradient between the SCM and seawater. Reductions in calcification rate, both at the level of crystals and whole colonies, were only observed in our lowest pH treatment when pH was significantly depressed in the calcifying cells in addition to the SCM. Overall, our findings suggest that reef corals may mitigate the effects of seawater acidification by regulating pH in the SCM, but they also highlight the role of calcifying cell pH homeostasis in determining the response of reef corals to changes in external seawater pH and carbonate chemistry.

  7. Food web changes under ocean acidification promote herring larvae survival.

    Science.gov (United States)

    Sswat, Michael; Stiasny, Martina H; Taucher, Jan; Algueró-Muñiz, Maria; Bach, Lennart T; Jutfelt, Fredrik; Riebesell, Ulf; Clemmesen, Catriona

    2018-05-01

    Ocean acidification-the decrease in seawater pH due to rising CO 2 concentrations-has been shown to lower survival in early life stages of fish and, as a consequence, the recruitment of populations including commercially important species. To date, ocean-acidification studies with fish larvae have focused on the direct physiological impacts of elevated CO 2 , but largely ignored the potential effects of ocean acidification on food web interactions. In an in situ mesocosm study on Atlantic herring (Clupea harengus) larvae as top predators in a pelagic food web, we account for indirect CO 2 effects on larval survival mediated by changes in food availability. The community was exposed to projected end-of-the-century CO 2 conditions (~760 µatm pCO 2 ) over a period of 113 days. In contrast with laboratory studies that reported a decrease in fish survival, the survival of the herring larvae in situ was significantly enhanced by 19 ± 2%. Analysis of the plankton community dynamics suggested that the herring larvae benefitted from a CO 2 -stimulated increase in primary production. Such indirect effects may counteract the possible direct negative effects of ocean acidification on the survival of fish early life stages. These findings emphasize the need to assess the food web effects of ocean acidification on fish larvae before we can predict even the sign of change in fish recruitment in a high-CO 2 ocean.

  8. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  9. Transcriptomic Resilience of the Montipora digitata Holobiont to Low pH

    Directory of Open Access Journals (Sweden)

    Raúl A. González-Pech

    2017-12-01

    Full Text Available Ocean acidification is considered as one of the major threats for coral reefs at a global scale. Marine calcifying organisms, including stony corals, are expected to be the most affected by the predicted decrease of the surface water pH at the end of the century. The severity of the impacts on coral reefs remains as a matter of controversy. Although previous studies have explored the physiological response of stony corals to changes in pH, the response of the holobiont (i.e., the coral itself plus its symbionts remains largely unexplored. In the present study, we assessed the changes in overall gene expression of the coral Montipora digitata and its microalgal symbionts after a short (3 days and a longer (42 days exposure to low pH (7.6. The short-term exposure to low pH caused small differences in the expression level of the host, impacting mostly genes associated with stress response in other scleractinians. Longer exposure to low pH resulted in no significant changes in gene expression of treated vs. control coral hosts. Gene expression in the eukaryotic symbionts remained unaltered at both exposure times. Our findings suggest resilience, in terms of gene expression, of the M. digitata holobiont to pH decrease, as well as capability to acclimatize to extended periods of exposure to low pH.

  10. Coral and mollusc resistance to ocean acidification adversely affected by warming

    OpenAIRE

    Rodolfo-Metalpa, R; Houlbrèque, F; Tambutté, E; Boisson, F; Baggini, C; Patti, FP; Jeffree, R; Fine, M; Foggo, A; Gattuso, JP; Hall-Spencer, JM

    2011-01-01

    Increasing atmospheric carbon dioxide (CO 2) concentrations are expectedto decrease surface ocean pH by 0.3-0.5 units by 2100 (refs,), lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO 2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to cal...

  11. Ocean warming and acidification synergistically increase coral mortality

    Science.gov (United States)

    Prada, F.; Caroselli, E.; Mengoli, S.; Brizi, L.; Fantazzini, P.; Capaccioni, B.; Pasquini, L.; Fabricius, K. E.; Dubinsky, Z.; Falini, G.; Goffredo, S.

    2017-01-01

    Organisms that accumulate calcium carbonate structures are particularly vulnerable to ocean warming (OW) and ocean acidification (OA), potentially reducing the socioeconomic benefits of ecosystems reliant on these taxa. Since rising atmospheric CO2 is responsible for global warming and increasing ocean acidity, to correctly predict how OW and OA will affect marine organisms, their possible interactive effects must be assessed. Here we investigate, in the field, the combined temperature (range: 16-26 °C) and acidification (range: pHTS 8.1-7.4) effects on mortality and growth of Mediterranean coral species transplanted, in different seasonal periods, along a natural pH gradient generated by a CO2 vent. We show a synergistic adverse effect on mortality rates (up to 60%), for solitary and colonial, symbiotic and asymbiotic corals, suggesting that high seawater temperatures may have increased their metabolic rates which, in conjunction with decreasing pH, could have led to rapid deterioration of cellular processes and performance. The net calcification rate of the symbiotic species was not affected by decreasing pH, regardless of temperature, while in the two asymbiotic species it was negatively affected by increasing acidification and temperature, suggesting that symbiotic corals may be more tolerant to increasing warming and acidifying conditions compared to asymbiotic ones.

  12. Ocean Acidification | Smithsonian Ocean Portal

    Science.gov (United States)

    Natural History Blog For Educators At The Museum Media Archive Ocean Life & Ecosystems Mammals Sharks Mangroves Poles Census of Marine Life Planet Ocean Tides & Currents Waves & Storms The Seafloor ocean is affected. Such a relatively quick change in ocean chemistry doesn't give marine life, which

  13. Impacts of ocean acidification on sediment processes in shallow waters of the Arctic Ocean.

    Science.gov (United States)

    Gazeau, Frédéric; van Rijswijk, Pieter; Pozzato, Lara; Middelburg, Jack J

    2014-01-01

    Despite the important roles of shallow-water sediments in global biogeochemical cycling, the effects of ocean acidification on sedimentary processes have received relatively little attention. As high-latitude cold waters can absorb more CO2 and usually have a lower buffering capacity than warmer waters, acidification rates in these areas are faster than those in sub-tropical regions. The present study investigates the effects of ocean acidification on sediment composition, processes and sediment-water fluxes in an Arctic coastal system. Undisturbed sediment cores, exempt of large dwelling organisms, were collected, incubated for a period of 14 days, and subject to a gradient of pCO2 covering the range of values projected for the end of the century. On five occasions during the experimental period, the sediment cores were isolated for flux measurements (oxygen, alkalinity, dissolved inorganic carbon, ammonium, nitrate, nitrite, phosphate and silicate). At the end of the experimental period, denitrification rates were measured and sediment samples were taken at several depth intervals for solid-phase analyses. Most of the parameters and processes (i.e. mineralization, denitrification) investigated showed no relationship with the overlying seawater pH, suggesting that ocean acidification will have limited impacts on the microbial activity and associated sediment-water fluxes on Arctic shelves, in the absence of active bio-irrigating organisms. Only following a pH decrease of 1 pH unit, not foreseen in the coming 300 years, significant enhancements of calcium carbonate dissolution and anammox rates were observed. Longer-term experiments on different sediment types are still required to confirm the limited impact of ocean acidification on shallow Arctic sediment processes as observed in this study.

  14. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  15. Reversal of ocean acidification enhances net coral reef calcification.

    Science.gov (United States)

    Albright, Rebecca; Caldeira, Lilian; Hosfelt, Jessica; Kwiatkowski, Lester; Maclaren, Jana K; Mason, Benjamin M; Nebuchina, Yana; Ninokawa, Aaron; Pongratz, Julia; Ricke, Katharine L; Rivlin, Tanya; Schneider, Kenneth; Sesboüé, Marine; Shamberger, Kathryn; Silverman, Jacob; Wolfe, Kennedy; Zhu, Kai; Caldeira, Ken

    2016-03-17

    Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.

  16. Ocean tides

    Science.gov (United States)

    Hendershott, M. C.

    1975-01-01

    A review of recent developments in the study of ocean tides and related phenomena is presented. Topics briefly discussed include: the mechanism by which tidal dissipation occurs; continental shelf, marginal sea, and baroclinic tides; estimation of the amount of energy stored in the tide; the distribution of energy over the ocean; the resonant frequencies and Q factors of oceanic normal modes; the relationship of earth tides and ocean tides; and numerical global tidal models.

  17. Response of Halimeda to ocean acidification: Field and laboratory evidence

    Science.gov (United States)

    Robbins, L.L.; Knorr, P.O.; Hallock, P.

    2009-01-01

    Rising atmospheric pCO2 levels are changing ocean chemistry more dramatically now than in the last 20 million years. In fact, pHvalues of the open ocean have decreased by 0.1 since the 1800s and are predicted to decrease 0.1-0.4 globally in the next 90 years. Ocean acidification will affect fundamental geochemical and biological processes including calcification and carbonate sediment production. The west Florida shelf is a natural laboratory to examine the effects of ocean acidification on aragonite production by calcareous green algae. Scanning electron microscopy (SEM) of crystal morphology of calcifying organisms reveals ultrastructural details of calcification that occurred at different saturation states. Comparison of archived and recent specimens of calcareous green alga Halimeda spp. from the west Florida shelf, demonstrates crystal changes in shape and abundance over a 40+ year time span. Halimeda crystal data from apical sections indicate that increases in crystal concentration and decreases in crystal width occurred over the last 40+ years. Laboratory experiments using living specimens of Halimeda grown in environments with known pH values were used to constrain historical observations. Percentages of organic and inorganic carbon per sample weight of pooled species did not significantly change. However, individual species showed decreased inorganic carbon and increased organic carbon in more recent samples, although the sample sizes were limited. These results indicate that the effect of increased pCO 2 and decreased pH on calcification is reflected in the crystal morphology of this organism. More data are needed to confirm the observed changes in mass of crystal and organic carbon. ?? Author(s) 2009.

  18. Indirect effects of ocean acidification drive feeding and growth of juvenile crown-of-thorns starfish, Acanthaster planci.

    Science.gov (United States)

    Kamya, Pamela Z; Byrne, Maria; Mos, Benjamin; Hall, Lauren; Dworjanyn, Symon A

    2017-06-14

    The indirect effects of changing climate in modulating trophic interactions can be as important as the direct effects of climate stressors on consumers. The success of the herbivorous juvenile stage of the crown-of-thorns starfish (COTS), Acanthaster planci, may be affected by the impacts of ocean conditions on its crustose coralline algal (CCA) food. To partition the direct effects of near future ocean acidification on juvenile COTS and indirect effects through changes in their CCA food, COTS were grown in three pH T levels (7.9, 7.8, 7.6) and fed CCA grown at similar pH levels. Consumption of CCA by COTS was bolstered when the COTS were grown in low pH and when they were fed CCA grown in low pH regardless of the pH in which the COTS were reared. COTS fed CCA grown at pH 7.6 grew fastest, but the pH/ p CO 2 that the COTS were reared in had no direct effect on growth. Ocean acidification conditions decreased the C : N ratio and carbonate levels in the CCA. Bolstered growth in COTS may be driven by enhanced palatability, increased nutritive state and reduced defences of their CCA food. These results indicate that near future acidification will increase the success of early juvenile COTS and boost recruitment into the coral-eating life stage. © 2017 The Author(s).

  19. The Oceans 2015 Initiative, Part I - An updated synthesis of the observed and projected impacts of climate change on physical and biological processes in the oceans

    International Nuclear Information System (INIS)

    Howes, Ella L.; Joos, Fortunat; Eakin, Mark; Gattuso, Jean-Pierre

    2015-01-01

    The oceans have absorbed approximately 93% of the excess heat caused by global warming. Warming increases stratification, limiting the circulation of nutrients from deep waters to the surface. There is evidence that enhanced stratification and increasing temperature are causing a decline in dissolved oxygen concentration and expanding existing oxygen minimum zones (OMZs). Approximately 26% of anthropogenic CO 2 is absorbed by the oceans, resulting in a reduction in pH and carbonate ion concentration, termed ocean acidification. Anthropogenic CO 2 has caused global ocean pH to decrease by 0.1 units since the start of the Industrial Revolution. The ocean ecosystems are responding to the changing environment, but at different rates and magnitudes and with interspecific and geographic variation in responses. Warming causes shifts in species' geographic distribution, abundance, migration patterns and phenology. Organisms that produce shells and skeletons from calcium carbonate are at most risk from ocean acidification as it lowers the saturation state of the mineral, favouring a dissolution reaction. To date, there are few observations of ocean acidification effects in natural communities; however, experimental evidence suggests that the risk to ecosystems will increase over the coming decades. Decreasing dissolved oxygen concentrations and expanding OMZs will favour anaerobic metabolisers such as bacteria and small microbes whilst reducing habitat for larger, oxygen dependent organisms. The interaction of multiple drivers can amplify or alleviate each other's effects. It is likely that marine organisms will experience a combination of warming, acidification and declining oxygen concentrations as well as regionally specific local stressors. This makes it difficult to predict the responses of individual species to multiple drivers, and species interactions make ecosystem- based projections challenging. Using the available evidence, projections have been

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Bismarck Sea, North Pacific Ocean and South Pacific Ocean from 2005-05-25 to 2005-07-02 (NODC Accession 0108081)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108081 includes chemical, discrete sample, physical, profile and underway - surface data collected from MIRAI in the Bismarck Sea, North Pacific...

  1. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NATHANIEL B. PALMER in the South Pacific Ocean, Southern Oceans and Tasman Sea from 2014-03-20 to 2014-05-05 (NCEI Accession 0157621)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157621 includes chemical, discrete sample, meteorological, optical, physical and profile data collected from NATHANIEL B. PALMER in the South Pacific...

  2. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship MALCOLM BALDRIGE in the North Atlantic Ocean and South Atlantic Ocean from 1993-07-04 to 1993-08-30 (NODC Accession 0114997)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0114997 includes biological, chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the North Atlantic...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, PAR Sensor and other instruments from MIRAI in the Bismarck Sea, North Pacific Ocean and South Pacific Ocean from 2011-01-12 to 2012-02-09 (NCEI Accession 0157014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157014 includes biological, chemical, discrete sample, optical, physical and profile data collected from MIRAI in the Bismarck Sea, North Pacific...

  4. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from THOMAS G. THOMPSON in the Gulf of Alaska, North Pacific Ocean and South Pacific Ocean from 2006-02-13 to 2006-03-30 (NODC Accession 0108062)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108062 includes biological, chemical, discrete sample, physical and profile data collected from THOMAS G. THOMPSON in the Gulf of Alaska, North...

  5. Ph3CCOOSnPh3.Ph3PO AND Ph3CCOOSnPh3.Ph3AsO: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    ABDOU MBAYE

    2014-08-01

    Full Text Available The mixture of ethanolic solutions of Ph3CCOOSnPh3 and Ph3PO or Ph3AsO gives Ph3CCOOSnPh3.Ph3PO and Ph3CCOOSnPh3.Ph3AsO adducts which have been characterized by infrared spectroscopy. A discrete structure is suggested for both, the environment around the tin centre being trigonal bipyramidal, the triphenylacetate anion behaving as a mondentate ligand.

  6. Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis

    Directory of Open Access Journals (Sweden)

    Frédéric eGazeau

    2014-11-01

    Full Text Available In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis, specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3 °C and acidity (-0.3 pH units for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment: control, lowered pH, elevated temperature and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100 % mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25 °C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of ~0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming

  7. Impact of ocean acidification on the hypoxia tolerance of the woolly sculpin, Clinocottus analis.

    Science.gov (United States)

    Hancock, Joshua R; Place, Sean P

    2016-01-01

    As we move into the Anthropocene, organisms inhabiting marine environments will continue to face growing challenges associated with changes in ocean pH (ocean acidification), dissolved oxygen (dead zones) and temperature. These factors, in combination with naturally variable environments such as the rocky intertidal zone, may create extreme physiological challenges for organisms that are already performing near their biological limits. Although numerous studies have examined the impacts of climate-related stressors on intertidal animals, little is known about the underlying physiological mechanisms driving adaptation to ocean acidification and how this may alter organism interactions, particularly in marine vertebrates. Therefore, we have investigated the effects of decreased ocean pH on the hypoxia response of an intertidal sculpin, Clinocottus analis . We used both whole-animal and biochemistry-based analyses to examine how the energetic demands associated with acclimation to low-pH environments may impact the fish's reliance on facultative air breathing in low-oxygen environments. Our study demonstrated that acclimation to ocean acidification resulted in elevated routine metabolic rates and acid-base regulatory capacity (Na + ,K + -ATPase activity). These, in turn, had downstream effects that resulted in decreased hypoxia tolerance (i.e. elevated critical oxygen tension). Furthermore, we present evidence that these fish may be living near their physiological capacity when challenged by ocean acidification. This serves as a reminder that the susceptibility of teleost fish to changes in ocean pH may be underestimated, particularly when considering the multiple stressors that many experience in their natural environments.

  8. The inhibition of marine nitrification by ocean disposal of carbon dioxide

    International Nuclear Information System (INIS)

    Huesmann, M.H.; Skillman, A.D.; Crecelius, E.A.

    2002-01-01

    In an attempt to reduce the threat of global warming, it has been proposed that the rise of atmospheric carbon dioxide concentrations be reduced by the ocean disposal of CO 2 from the flue gases of fossil fuel-fired power plants. The release of large amounts of CO 2 into mid or deep ocean waters will result in large plumes of acidified seawater with pH values ranging from 6 to 8. In an effort to determine whether these CO 2 -induced pH changes have any effect on marine nitrification processes, surficial (euphotic zone) and deep (aphotic zone) seawater samples were sparged with CO 2 for varying time durations to achieve a specified pH reduction, and the rate of microbial ammonia oxidation was measured spectrophotometrically as a function of pH using an inhibitor technique. For both seawater samples taken from either the euphotic or aphotic zone, the nitrification rates dropped drastically with decreasing pH. Relative to nitrification rates in the original seawater at pH 8, nitrification rates were reduced by ca. 50% at pH 7 and more than 90% at pH 6.5. Nitrification was essentially completely inhibited at pH 6. These findings suggest that the disposal of CO 2 into mid or deep oceans will most likely result in a drastic reduction of ammonia oxidation rates within the pH plume and the concomitant accumulation of ammonia instead of nitrate. It is unlikely that ammonia will reach the high concentration levels at which marine aquatic organisms are known to be negatively affected. However, if the ammonia-rich seawater from inside the pH plume is upwelled into the euphotic zone, it is likely that changes in phytoplankton abundance and community structure will occur. Finally, the large-scale inhibition of nitrification and the subsequent reduction of nitrite and nitrate concentrations could also result in a decrease of denitrification rates which, in turn, could lead to the buildup of nitrogen and unpredictable eutrophication phenomena. Clearly, more research on the

  9. Bioenergetic trade-offs in the sea cucumber Apostichopus japonicus (Echinodermata: Holothuroidea) in response to CO2-driven ocean acidification.

    Science.gov (United States)

    Yuan, Xiutang; Shao, Senlin; Yang, Xiaolong; Yang, Dazuo; Xu, Qinzeng; Zong, Humin; Liu, Shilin

    2016-05-01

    Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %·day(-1) decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.

  10. Measuring pH variability using an experimental sensor on an underwater glider

    Science.gov (United States)

    Hemming, Michael P.; Kaiser, Jan; Heywood, Karen J.; Bakker, Dorothee C. E.; Boutin, Jacqueline; Shitashima, Kiminori; Lee, Gareth; Legge, Oliver; Onken, Reiner

    2017-05-01

    Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET) sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m), but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ), and dissolved oxygen concentrations (c(O2)) measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2) values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m-3) highlighted the variability of water masses in the Sardinian

  11. Trans-generational responses to low pH depend on parental gender in a calcifying tubeworm.

    Science.gov (United States)

    Lane, Ackley; Campanati, Camilla; Dupont, Sam; Thiyagarajan, Vengatesen

    2015-06-03

    The uptake of anthropogenic CO2 emissions by oceans has started decreasing pH and carbonate ion concentrations of seawater, a process called ocean acidification (OA). Occurring over centuries and many generations, evolutionary adaptation and epigenetic transfer will change species responses to OA over time. Trans-generational responses, via genetic selection or trans-generational phenotypic plasticity, differ depending on species and exposure time as well as differences between individuals such as gender. Males and females differ in reproductive investment and egg producing females may have less energy available for OA stress responses. By crossing eggs and sperm from the calcareous tubeworm Hydroides elegans (Haswell, 1883) raised in ambient (8.1) and low (7.8) pH environments, we observed that paternal and maternal low pH experience had opposite and additive effects on offspring. For example, when compared to offspring with both parents from ambient pH, growth rates of offspring of fathers or mothers raised in low pH were higher or lower respectively, but there was no difference when both parents were from low pH. Gender differences may result in different selection pressures for each gender. This may result in overestimates of species tolerance and missed opportunities of potentially insightful comparisons between individuals of the same species.

  12. Ocean acidification but not warming alters sex determination in the Sydney rock oyster, Saccostrea glomerata.

    Science.gov (United States)

    Parker, Laura M; O'Connor, Wayne A; Byrne, Maria; Dove, Michael; Coleman, Ross A; Pörtner, Hans-O; Scanes, Elliot; Virtue, Patti; Gibbs, Mitchell; Ross, Pauline M

    2018-02-14

    Whether sex determination of marine organisms can be altered by ocean acidification and warming during this century remains a significant, unanswered question. Here, we show that exposure of the protandric hermaphrodite oyster, Saccostrea glomerata to ocean acidification, but not warming, alters sex determination resulting in changes in sex ratios. After just one reproductive cycle there were 16% more females than males. The rate of gametogenesis, gonad area, fecundity, shell length, extracellular pH and survival decreased in response to ocean acidification. Warming as a sole stressor slightly increased the rate of gametogenesis, gonad area and fecundity, but this increase was masked by the impact of ocean acidification at a level predicted for this century. Alterations to sex determination, sex ratios and reproductive capacity will have flow on effects to reduce larval supply and population size of oysters and potentially other marine organisms. © 2018 The Author(s).

  13. Oceanic archipelagos

    DEFF Research Database (Denmark)

    Triantis, Kostas A.; Whittaker, Robert James; Fernández-Palacios, José María

    2016-01-01

    Since the contributions of Charles Darwin and Alfred Russel Wallace, oceanic archipelagos have played a central role in the development of biogeography. However, despite the critical influence of oceanic islands on ecological and evolutionary theory, our focus has remained limited to either the i...... of the archipelagic geological dynamics that can affect diversity at both the island and the archipelagic level. We also reaffirm that oceanic archipelagos are appropriate spatiotemporal units to frame analyses in order to understand large scale patterns of biodiversity....

  14. Ocean Acidification: Adaptive Challenge or Extinction Threat?

    Science.gov (United States)

    Caldeira, K.

    2012-12-01

    Most of the carbon dioxide that we emit to this atmosphere through fossil-fuel burning and deforestation is ultimately absorbed by the oceans. The effects of excess carbon dioxide on the inorganic chemistry of the ocean are largely well understood, but it is less clear what these chemical changes mean for the future of marine biota. Excess dissolved CO2 increases hydrogen-ion concentration (i.e., decreases pH) and decreases carbonate-ion concentrations, affecting the chemical speciation of nutrients and other chemicals dissolved in the ocean, and affecting the ability of organisms to form calcium carbonate shells or skeletons. Some organisms, such as corals, develop shells or skeletons made from aragonite, a particularly soluble form of calcium carbonate. The uptake of O2 and the release of CO2 from the blood of fish are affected by pH, with lower pH leading to a decrease in both O2 uptake and CO2 release. Of these concerns, the effects of excess CO2 on calcification may be the most worrisome. Doubling or quadrupling of atmospheric CO2 content within the space of a few centuries means doubling or quadrupling hydrogen-ion concentrations and halving or quartering the carbonate-ion concentration within a few centuries. Experiments and theory indicate that chemical changes of this magnitude could have important biotic consequences. Changes of this magnitude and rapidity have not occurred on this planet with the possible exception of various paroxysmal extreme events buried deep in Earth history. Most major changes to ocean chemistry occurred over millions of years allowing (i) seawater chemistry to be in approximate equilibrium with respect to riverine and sedimentary fluxes and (ii) marine biota to adapt in evolutionary time. Man's great geochemical experiment will go on at global scale for thousands of years. But experiments can be done in the laboratory in small tanks or in the sea in small enclosures only for limited periods of time. It is difficult to infer from

  15. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... This analysis starts with a review of ocean transportation demand and supply including projections of ship capacity demand and world shipbuilding capacity under various economic and political assumptions...

  16. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus.

    Science.gov (United States)

    Evans, Tyler G; Padilla-Gamiño, Jacqueline L; Kelly, Morgan W; Pespeni, Melissa H; Chan, Francis; Menge, Bruce A; Gaylord, Brian; Hill, Tessa M; Russell, Ann D; Palumbi, Stephen R; Sanford, Eric; Hofmann, Gretchen E

    2015-07-01

    Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Sodium provides unique insights into transgenerational effects of ocean acidification on bivalve shell formation.

    Science.gov (United States)

    Zhao, Liqiang; Schöne, Bernd R; Mertz-Kraus, Regina; Yang, Feng

    2017-01-15

    Ocean acidification is likely to have profound impacts on marine bivalves, especially on their early life stages. Therefore, it is imperative to know whether and to what extent bivalves will be able to acclimate or adapt to an acidifying ocean over multiple generations. Here, we show that reduced seawater pH projected for the end of this century (i.e., pH7.7) led to a significant decrease of shell production of newly settled juvenile Manila clams, Ruditapes philippinarum. However, juveniles from parents exposed to low pH grew significantly faster than those from parents grown at ambient pH, exhibiting a rapid transgenerational acclimation to an acidic environment. The sodium composition of the shells may shed new light on the mechanisms responsible for beneficial transgenerational acclimation. Irrespective of parental exposure, the amount of Na incorporated into shells increased with decreasing pH, implying active removal of excessive protons through the Na + /H + exchanger which is known to depend on the Na + gradient actively built up by the Na + /K + -ATPase as a driving force. However, the shells with a prior history of transgenerational exposure to low pH recorded significantly lower amounts of Na than those with no history of acidic exposure. It therefore seems very likely that the clams may implement less costly and more ATP-efficient ion regulatory mechanisms to maintain pH homeostasis in the calcifying fluid following transgenerational acclimation. Our results suggest that marine bivalves may have a greater capacity to acclimate or adapt to ocean acidification by the end of this century than currently understood. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Projections of Ocean Acidification Under the U.N. Framework Convention of Climate Change Using a Reduced-Form Climate Carbon-Cycle Model

    Science.gov (United States)

    Hartin, C.

    2016-02-01

    Ocean chemistry is quickly changing in response to continued anthropogenic emissions of carbon to the atmosphere. Mean surface ocean pH has already decreased by 0.1 units relative to the preindustrial era. We use an open-source, simple climate and carbon cycle model ("Hector") to investigate future changes in ocean acidification (pH and calcium carbonate saturations) under the climate agreement from the United Nations Convention on Climate Change Conference (UNFCCC) of Parties in Paris 2015 (COP 21). Hector is a reduced-form, very fast-executing model that can emulate the global mean climate of the CMIP5 models, as well as the inorganic carbon cycle in the upper ocean, allowing us to investigate future changes in ocean acidification. We ran Hector under three different emissions trajectories, using a sensitivity analysis approach to quantify model uncertainty and capture a range of possible ocean acidification changes. The first trajectory is a business-as-usual scenario comparable to a Representative Concentration Pathway (RCP) 8.5, the second a scenario with the COP 21 commitments enacted, and the third an idealized scenario keeping global temperature change to 2°C, comparable to a RCP 2.6. Preliminary results suggest that under the COP 21 agreements ocean pH at 2100 will decrease by 0.2 units and surface saturations of aragonite (calcite) will decrease by 0.9 (1.4) units relative to 1850. Under the COP 21 agreement the world's oceans will be committed to a degree of ocean acidification, however, these changes may be within the range of natural variability evident in some paleo records.

  19. Cherchez la femme - impact of ocean acidification on the egg jelly coat and attractants for sperm.

    Science.gov (United States)

    Foo, Shawna A; Deaker, Dione; Byrne, Maria

    2018-04-19

    The impact of ocean acidification on marine invertebrate eggs and consequences for sperm chemotaxis are unknown. In the sea urchins Heliocidaris tuberculata and H. erythrogramma , with small (93µm) and large (393µm) eggs, respectively, we documented the effect of decreased pH on the egg jelly coat, an extracellular matrix that increases target size for sperm and contains sperm attracting molecules. In near future conditions (pH 7.8, 7.6) the jelly coat of H. tuberculata decreased by 11 and 21%, reducing egg target size by 9 and 17%, respectively. In contrast, the egg jelly coat of H. erythrogramma was not affected. The reduction in the jelly coat has implications for sperm chemotaxis in H. tuberculata In the presence of decreased pH and egg chemicals, the sperm of this species increased their velocity, motility and linearity, behaviour that was opposite to that seen for sperm exposed to egg chemicals in ambient conditions. Egg chemistry appears to cause a reduction in sperm velocity where attractants guide them in the direction of the egg. Investigation of the effects of decreased pH on sperm isolated from egg chemistry does not provide an integrative assessment of the effects of ocean acidification on sperm function. Differences in the sensitivity of the jelly coat of the two species is likely associated with egg evolution in H. erythrogramma We highlight important unappreciated impacts of ocean acidification on marine gamete functionality, and insights into potential winners and losers in a changing ocean, pointing to the advantage conveyed by evolution of large eggs. © 2018. Published by The Company of Biologists Ltd.

  20. Ocean acidification in the Mediterranean Sea: pelagic mesocosm experiments. A synthesis

    OpenAIRE

    Maugendre , L.; Guieu , C.; Gattuso , J.-P.; Gazeau , F.

    2017-01-01

    International audience; Planet Earth has entered a new geological era, the Anthropocene, in which geologically significant conditions and processes are profoundly altered by human activities (Waters et al., 2016). Among many impacts, human activities have released excessive amounts of carbon dioxide (CO2) in the atmosphere leading to warming and ocean acidification: a decrease in pH and CO32- concentration and an increase in CO2 and HCO3- concentrations (Gattuso and Hansson, 2011). On average...

  1. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    Science.gov (United States)

    Trull, Thomas W.; Passmore, Abraham; Davies, Diana M.; Smit, Tim; Berry, Kate; Tilbrook, Bronte

    2018-01-01

    restricted to subtropical and northern subantarctic waters. The cause of the strong southward decrease in PIC abundance in the Southern Ocean is not yet clear. The poleward decrease in pH is small, and while calcite saturation decreases strongly southward, it remains well above saturation ( > 2). Nitrate and phosphate variations would predict a poleward increase. Temperature and competition with diatoms for limiting iron appear likely to be important. While the future trajectory of coccolithophore distributions remains uncertain, their current low abundances suggest small impacts on overall Southern Ocean pelagic ecology.

  2. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    Directory of Open Access Journals (Sweden)

    T. W. Trull

    2018-01-01

    coccolithophores as overly restricted to subtropical and northern subantarctic waters. The cause of the strong southward decrease in PIC abundance in the Southern Ocean is not yet clear. The poleward decrease in pH is small, and while calcite saturation decreases strongly southward, it remains well above saturation ( > 2. Nitrate and phosphate variations would predict a poleward increase. Temperature and competition with diatoms for limiting iron appear likely to be important. While the future trajectory of coccolithophore distributions remains uncertain, their current low abundances suggest small impacts on overall Southern Ocean pelagic ecology.

  3. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  4. Ocean acidification

    National Research Council Canada - National Science Library

    Gattuso, J.P; Hansson, L

    2011-01-01

    The fate of much of the CO 2 we produce will be to enter the ocean. In a sense, we are fortunate that ocean water is endowed with the capacity to absorb far more CO 2 per litre than were it salt free...

  5. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    Science.gov (United States)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  6. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

    Science.gov (United States)

    Collard, Marie; De Ridder, Chantal; David, Bruno; Dehairs, Frank; Dubois, Philippe

    2015-02-01

    Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global

  7. Effects of acidifying ocean conditions on growth and survival of two life stages of the blue crab, Callinectes sapidus.

    Science.gov (United States)

    Giltz, S.; Taylor, C.

    2016-02-01

    Blue crabs, Callinectes sapidus, begin their larval phase offshore and circulate for approximately 30 days before settling near shore. As crabs transition to the juvenile stage, they move into coastal or estuarine environments characterized by lower salinity. Presently the average pH of the ocean is 8.1, 30% down from the beginning of the industrial revolution and is forecasted to drop to 7.8 by 2100. Decreasing pH causes dissolution of calcium carbonate shells, but the overall effects on crustaceans, such as blue crabs, are unknown. This study investigated the effect of a lower pH environment on the growth, survival, carapace hardness and molt frequency of larval and juvenile blue crabs in the Northern Gulf of Mexico. Larval crabs showed delayed growth under low pH (7.8) conditions compared to crabs in a control (present day) pH (8.1) environment. Population crashes (complete mortality) were experienced in 55% of the low pH aquaria but not in any of the control aquaria, suggesting that acidification poses a mortality risk. Under low pH conditions the intermolt duration decreased in juveniles, but the body length and weight did not differ from crabs raised in the control pH. Larvae (in tanks that did not crash) and juveniles did not experience increased mortality from a lower pH, but there do appear to be sublethal effects on growth and molting that differ between life history stages.

  8. Seagrass ecophysiological performance under ocean warming and acidification.

    Science.gov (United States)

    Repolho, Tiago; Duarte, Bernardo; Dionísio, Gisela; Paula, José Ricardo; Lopes, Ana R; Rosa, Inês C; Grilo, Tiago F; Caçador, Isabel; Calado, Ricardo; Rosa, Rui

    2017-02-01

    Seagrasses play an essential ecological role within coastal habitats and their worldwide population decline has been linked to different types of anthropogenic forces. We investigated, for the first time, the combined effects of future ocean warming and acidification on fundamental biological processes of Zostera noltii, including shoot density, leaf coloration, photophysiology (electron transport rate, ETR; maximum PSII quantum yield, F v /F m ) and photosynthetic pigments. Shoot density was severely affected under warming conditions, with a concomitant increase in the frequency of brownish colored leaves (seagrass die-off). Warming was responsible for a significant decrease in ETR and F v /F m (particularly under control pH conditions), while promoting the highest ETR variability (among experimental treatments). Warming also elicited a significant increase in pheophytin and carotenoid levels, alongside an increase in carotenoid/chlorophyll ratio and De-Epoxidation State (DES). Acidification significantly affected photosynthetic pigments content (antheraxanthin, β-carotene, violaxanthin and zeaxanthin), with a significant decrease being recorded under the warming scenario. No significant interaction between ocean acidification and warming was observed. Our findings suggest that future ocean warming will be a foremost determinant stressor influencing Z. noltii survival and physiological performance. Additionally, acidification conditions to occur in the future will be unable to counteract deleterious effects posed by ocean warming.

  9. Economic Vulnerability Assessment of U.S. Fishery Revenues to Ocean Acidification

    Science.gov (United States)

    Cooley, S. R.; Doney, S. C.

    2008-12-01

    Ocean acidification, a predictable consequence of rising anthropogenic CO2 emissions, is poised to change marine ecosystems profoundly by decreasing average ocean pH and the carbonate mineral saturation state worldwide. These conditions slow or reverse marine plant and animal calcium carbonate shell growth, thereby harming economically valuable species. In 2006, shellfish and crustaceans provided 50% of the 4 billion U.S. domestic commercial harvest value; value added to commercial fishery products contributed 35 billion to the gross national product that year. Laboratory studies have shown that ocean acidification decreases shellfish calcification; ocean acidification--driven declines in commercial shellfish and crustacean harvests between now and 2060 could decrease nationwide time-integrated primary commercial revenues by 860 million to 14 billion (net present value, 2006 dollars), depending on CO2 emissions, discount rates, biological responses, and fishery structure. This estimate excludes losses from coral reef damage and possible fishery collapses if ocean acidification pushes ecosystems past ecological tipping points. Expanding job losses and indirect economic costs will follow harvest decreases as ocean acidification broadly damages marine habitats and alters marine resource availability. Losses will harm many regions already possessing little economic resilience. The only true solution to ocean acidification is reducing atmospheric CO2 emissions, but implementing regional adaptive responses now from an ecosystem-wide, fisheries perspective will help better preserve sustainable ecosystem function and economic yields. Comprehensive management strategies must include monitoring critical fisheries, explicitly accounting for ocean acidification in management models, reducing fishing pressure and environmental stresses, and supporting regional economies most sensitive to acidification's impacts.

  10. Ocean energy

    International Nuclear Information System (INIS)

    2006-01-01

    This annual evaluation is a synthesis of works published in 2006. Comparisons are presented between the wind power performances and European Commission White Paper and Biomass action plan objectives. The sector covers the energy exploitation of all energy flows specifically supplied by the seas and oceans. At present, most efforts in both research and development and in experimental implementation are concentrated on tidal currents and wave power. 90% of today worldwide ocean energy production is represented by a single site: the Rance Tidal Power Plant. Ocean energies must face up two challenges: progress has to be made in finalizing and perfecting technologies and costs must be brought under control. (A.L.B.)

  11. Differential tolerances to ocean acidification by parasites that share the same host.

    Science.gov (United States)

    MacLeod, C D; Poulin, R

    2015-06-01

    Ocean acidification is predicted to cause major changes in marine ecosystem structure and function over the next century, as species-specific tolerances to acidified seawater may alter previously stable relationships between coexisting organisms. Such differential tolerances could affect marine host-parasite associations, as either host or parasite may prove more susceptible to the stressors associated with ocean acidification. Despite their important role in many ecological processes, parasites have not been studied in the context of ocean acidification. We tested the effects of low pH seawater on the cercariae and, where possible, the metacercariae of four species of marine trematode parasite. Acidified seawater (pH 7.6 and 7.4, 12.5 °C) caused a 40-60% reduction in cercarial longevity and a 0-78% reduction in metacercarial survival. However, the reduction in longevity and survival varied distinctly between parasite taxa, indicating that the effects of reduced pH may be species-specific. These results suggest that ocean acidification has the potential to reduce the transmission success of many trematode species, decrease parasite abundance and alter the fundamental regulatory role of multi-host parasites in marine ecosystems. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  12. Ocean Acidification

    Science.gov (United States)

    Ocean and coastal acidification is an emerging issue caused by increasing amounts of carbon dioxide being absorbed by seawater. Changing seawater chemistry impacts marine life, ecosystem services, and humans. Learn what EPA is doing and what you can do.

  13. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... The discussion of technology considers the ocean transportation system as a whole, and the composite subsystems such as hull, outfit, propulsion, cargo handling, automation, and control and interface technology...

  14. Ocean transportation

    National Research Council Canada - National Science Library

    Frankel, Ernst G; Marcus, Henry S

    1973-01-01

    .... In ocean transportation economics we present investment and operating costs as well as the results of a study of financing of shipping. Similarly, a discussion of government aid to shipping is presented.

  15. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  16. Ocean Quality

    OpenAIRE

    Brevik, Roy Schjølberg; Jordheim, Nikolai; Martinsen, John Christian; Labori, Aleksander; Torjul, Aleksander Lelis

    2017-01-01

    Bacheloroppgave i Internasjonal Markedsføring fra ESADE i Spania, 2017 In this thesis we were going to answer the problem definition “which segments in the Spanish market should Ocean Quality target”. By doing so we started to collect data from secondary sources in order to find information about the industry Ocean Quality are operating in. After conducting the secondary research, we still lacked essential information about the existing competition in the aquaculture industry o...

  17. Dissolved Inorganic Carbon, Alkalinity, pH, temperature, salinity, and other variables collected from profile observations using CTD, discrete bottles, and other instruments from February 12, 1985 to June 17, 2009, as synthesized in the Pacific Ocean Interior Carbon (PACIFICA) Database (NODC Accession 0110865)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — PACIFICA Data Synthesis Project PACIFICA (PACIFic ocean Interior CArbon) was an international collaborative project for the data synthesis of ocean interior carbon...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the ODEN in the Arctic Ocean, Barents Sea and others from 2002-04-20 to 2002-06-06 (NODC Accession 0113590)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113590 includes chemical, discrete sample, physical and profile data collected from ODEN in the Arctic Ocean, Barents Sea, North Atlantic Ocean and...

  19. Instability of seawater pH in the South China Sea during the mid-late Holocene: Evidence from boron isotopic composition of corals

    Science.gov (United States)

    Liu, Yajing; Liu, W.; Peng, Z.; Xiao, Y.; Wei, G.; Sun, W.; He, J.; Liu, Gaisheng; Chou, C.-L.

    2009-01-01

    We used positive thermal ionization mass spectrometry (PTIMS) to generate high precision ??11B records in Porites corals of the mid-late Holocene from the South China Sea (SCS). The ??11B values of the Holocene corals vary significantly, ranging from 22.2??? to 25.5???. The paleo-pH records of the SCS, reconstructed from the ??11B data, were not stable as previously thought but show a gradual increase from the Holocene thermal optimal and a sharp decrease to modern values. The latter is likely caused by the large amount of anthropogenic CO2 emissions since the Industrial Revolution but variations of atmospheric pCO2 cannot explain the pH change of the SCS before the Industrial Revolution. We suggest that variations of monsoon intensity during the mid-late Holocene may have driven the sea surface pH increase from the mid to late Holocene. Results of this study indicate that the impact of anthropogenic atmospheric CO2 emissions may have reversed the natural pH trend in the SCS since the mid-Holocene. Such ocean pH records in the current interglacial period can help us better understand the physical and biological controls on ocean pH and possibly predict the long-term impact of climate change on future ocean acidification. ?? 2008 Elsevier Ltd. All rights reserved.

  20. Effect of ocean acidification on growth, calcification, and gene expression in the pearl oyster, Pinctada fucata.

    Science.gov (United States)

    Liu, Wenguang; Yu, Zonghe; Huang, Xiande; Shi, Yu; Lin, Jianshi; Zhang, Hua; Yi, Xuejie; He, Maoxian

    2017-09-01

    In this study, shell growth, shell microstructure, and expression levels of shell matrix protein genes (aspein, n16, and nacrein) that play a key role in the CaCO 3 crystal polymorphism (calcite and aragonite) of the shell were investigated in the pearl oyster Pinctada fucata at pH 8.10, 7.70, and 7.40. We found that the shell length and total weight index did not vary significantly between oysters reared at pH 8.10 and 7.70, but was significantly lower at pH 7.40. Calcium content and shell hardness were not significantly different between pH 8.10 and 7.70, but were significantly different at pH 7.40. At pH 7.40, the shell exhibited a poorly organized nacreous microstructure, and showed an apparent loss of structural integrity in the nacreous layer. The prismatic layer appeared morphologically dissimilar from the samples at pH 8.10 and 7.70. The internal layer was corroded and had dissolved. At pH 7.40, the expression levels of nacrein, aspein, and n16 decreased on day 1, and remained low between days 2 and 42. The expression levels of these genes were significantly lower at pH 7.40 than at pH 8.10 and 7.70 during days 2-42. These results suggest that ocean acidification will have a limited impact on shell growth, calcification, and associated gene expression levels at a pH of 7.70, which is projected to be reached by the end of the century. The negative effects were found on calcification and gene expression occurred at the lowest experimental pH (7.40). Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Red coral extinction risk enhanced by ocean acidification.

    Science.gov (United States)

    Cerrano, Carlo; Cardini, Ulisse; Bianchelli, Silvia; Corinaldesi, Cinzia; Pusceddu, Antonio; Danovaro, Roberto

    2013-01-01

    The red coral Corallium rubrum is a habitat-forming species with a prominent and structural role in mesophotic habitats, which sustains biodiversity hotspots. This precious coral is threatened by both over-exploitation and temperature driven mass mortality events. We report here that biocalcification, growth rates and polyps' (feeding) activity of Corallium rubrum are significantly reduced at pCO2 scenarios predicted for the end of this century (0.2 pH decrease). Since C. rubrum is a long-living species (>200 years), our results suggest that ocean acidification predicted for 2100 will significantly increases the risk of extinction of present populations. Given the functional role of these corals in the mesophotic zone, we predict that ocean acidification might have cascading effects on the functioning of these habitats worldwide.

  2. Ocean acidification impact on copepod swimming and mating behavior: consequences for population dynamics

    Science.gov (United States)

    Seuront, L.

    2010-12-01

    There is now ample evidence that ocean acidification caused by the uptake of additional carbon dioxide from the atmosphere at the ocean surface will severely impact on marine ecosystem structure and function. To date, most research effort has focused on the impact of ocean acidification on calcifying marine organisms. These include the dissolution of calcifying plankton, reduced growth and shell thickness in gastropods and echinoderms and declining growth of reef-building corals. The effects of increasing the partial pressure in carbon dioxide and decreasing carbonate concentrations on various aspects of phytoplankton biology and ecology have received some attention. It has also recently been shown that the ability of fish larvae to discriminate between the olfactory cues of different habitat types at settlement and to detect predator olfactory cues are impaired at the level of ocean acidification predicted to occur around 2100 on a business-as-usual scenario of CO2 emissions. Average ocean pH has decreased by 0.1 units since the pre-industrial times, and it is predicted to decline another 0.3-0.4 units by 2100, which nearly corresponds to a doubling PCO2. In addition, some locations are expected to exhibit an even greater than predicted rate of decline. In this context, understanding the direct and indirect links between ocean acidification and the mortality of marine species is critical, especially for minute planktonic organisms such as copepods at the base of the ocean food chains. In this context, this work tested if ocean acidification could affect copepod swimming behavior, and subsequently affect, and ultimately disrupt, the ability of male copepods to detect and follow the pheromone plume produced by conspecific females. To ensure the generality and the ecological relevance of the present work, the species used for the experimentation are two of the most common zooplankton species found in estuarine and coastal waters of the Northern Hemisphere, the

  3. Ocean acidification does not affect the physiology of the tropical coral Acropora digitifera during a 5-week experiment

    Science.gov (United States)

    Takahashi, A.; Kurihara, H.

    2013-03-01

    The increase in atmospheric CO2 concentration, which has resulted from the burning of fossil fuels, is being absorbed by the oceans and is causing ocean acidification. Ocean acidification involves the decrease of both the pH and the calcium carbonate saturation state. Ocean acidification is predicted to impact the physiology of marine organisms and reduce the calcification rates of corals. In the present study, we measured the rates of calcification, respiration, photosynthesis, and zooxanthellae density of the tropical coral Acropora digitifera under near-natural summertime temperature and sunlight for a 5-week period. We found that these key physiological parameters were not affected by both mid-CO2 (pCO2 = 744 ± 38, pH = 7.97 ± 0.02, Ωarag = 2.6 ± 0.1) and high-CO2 conditions (pCO2 = 2,142 ± 205, pH = 7.56 ± 0.04, Ωarag = 1.1 ± 0.2) throughout the 35 days experimental period. Additionally, there was no significant correlation between calcification rate and seawater aragonite saturation (Ωarag). These results suggest that the impacts of ocean acidification on corals physiology may be more complex than have been previously proposed.

  4. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    Science.gov (United States)

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited. © 2013 FEBS.

  5. Assessing physiological tipping points in response to ocean acidification

    Science.gov (United States)

    Dupont, S. T.; Dorey, N.; Lançon, P.; Thorndyke, M. S.

    2011-12-01

    Impact of near-future ocean acidification on marine invertebrates was mostly assessed in single-species perturbation experiment. Moreover, most of these experiments are short-term, only consider one life-history stage and one or few parameters. They do not take into account important processes such as natural variability and acclimation and evolutionary processes. In many studies published so far, there is a clear lack between the observed effects and individual fitness, most of the deviation from the control being considered as potentially negative for the tested species. However, individuals are living in a fluctuating world and changes can also be interpreted as phenotypic plasticity and may not translate into negative impact on fitness. For example, a vent mussel can survive for decades in very acidic waters despite a significantly reduced calcification compare to control (Tunnicliffe et al. 2009). This is possible thanks to the absence of predatory crabs as a result of acidic conditions that may also inhibit carapace formation. This illustrates the importance to take into account ecological interactions when interpreting single-species experiments and to consider the relative fitness between interacting species. To understand the potential consequence of ocean acidification on any given ecosystem, it is then critical to consider the relative impact on fitness for every interactive species and taking into account the natural fluctuation in environment (e.g. pH, temperature, food concentration, abundance) and discriminate between plasticity with no direct impact on fitness and teratology with direct consequence on survival. In this presentation, we will introduce the concept of "physiological tipping point" in the context of ocean acidification. This will be illustrated by some work done on sea urchin development. Embryos and larvae of the sea urchin Strongylocentrotus droebachiensis were exposed to a range of pH from 8.1 to 6.5. When exposed to low pH, growth

  6. Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics.

    Science.gov (United States)

    Karelitz, Sam E; Uthicke, Sven; Foo, Shawna A; Barker, Mike F; Byrne, Maria; Pecorino, Danilo; Lamare, Miles D

    2017-02-01

    As the ocean warms, thermal tolerance of developmental stages may be a key driver of changes in the geographical distributions and abundance of marine invertebrates. Additional stressors such as ocean acidification may influence developmental thermal windows and are therefore important considerations for predicting distributions of species under climate change scenarios. The effects of reduced seawater pH on the thermal windows of fertilization, embryology and larval morphology were examined using five echinoderm species: two polar (Sterechinus neumayeri and Odontaster validus), two temperate (Fellaster zelandiae and Patiriella regularis) and one tropical (Arachnoides placenta). Responses were examined across 12-13 temperatures ranging from -1.1 °C to 5.7 °C (S. neumayeri), -0.5 °C to 10.7 °C (O. validus), 5.8 °C to 27 °C (F. zelandiae), 6.0 °C to 27.1 °C (P. regularis) and 13.9 °C to 34.8 °C (A. placenta) under present-day and near-future (2100+) ocean acidification conditions (-0.3 pH units) and for three important early developmental stages 1) fertilization, 2) embryo (prehatching) and 3) larval development. Thermal windows for fertilization were broad and were not influenced by a pH decrease. Embryological development was less thermotolerant. For O. validus, P. regularis and A. placenta, low pH reduced normal development, albeit with no effect on thermal windows. Larval development in all five species was affected by both temperature and pH; however, thermal tolerance was not reduced by pH. Results of this study suggest that in terms of fertilization and development, temperature will remain as the most important factor influencing species' latitudinal distributions as the ocean continues to warm and decrease in pH, and that there is little evidence of a synergistic effect of temperature and ocean acidification on the thermal control of species ranges. © 2016 John Wiley & Sons Ltd.

  7. Combined Effect of Ocean Acidification and Seawater Freshening: Response of Pteropod Swimming Behavior

    Science.gov (United States)

    Manno, C.; Morata, N.; Primicerio, R.

    2012-12-01

    Increasing anthropogenic carbon dioxide emissions induce ocean acidification. Pteropods, the main planktonic producers of aragonite in the worlds' oceans, may be particularly vulnerable to changes in sea water chemistry. The negative effects are expected to be most severe at high-latitudes, where natural carbonate ion concentrations are low. In this study we investigated the combined effects of ocean acidification and freshening on Limacina retroversa, the dominant pteropod in sub polar areas. Living Limacina retroversa, collected in Northern Norwegian Sea, were exposed to four different pH values ranging from the pre-industrial level to the forecasted end of century ocean acidification scenario. Since over the past half-century the Norwegian Sea has experienced a progressive freshening with time, each pH level was combined with a salinity gradient. Survival, shell degradation and swimming behavior were investigated. Mortality was strongly affected only when both pH and salinity reduced simultaneously. The combined effects of lower salinity and lower pH also affected negatively the ability of pteropods to swim where they decreasing the locomotory speed upwards and increasing the wing beats. Results suggest that, the extra energy cost due to maintaining of body fluids and to avoid sinking (in low salinity scenario) combined with the extra energy cost necessary to counteract the dissolution (in high pCO2 scenario), exceeds the available energy budget of this organism and then pteropods change in swimming behavior and begin to collapse. Since Limacina retroversa play an important role in the transport of carbonates to the deep oceans these findings have significant implications for the mechanisms influencing the inorganic carbon cycle in the sub-polar area.

  8. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    Science.gov (United States)

    Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-01-01

    As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  9. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    Directory of Open Access Journals (Sweden)

    Paulina Kaniewska

    Full Text Available As atmospheric levels of CO(2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  10. Impacts of Ocean Acidification

    Energy Technology Data Exchange (ETDEWEB)

    Bijma, Jelle (Alfred Wegener Inst., D-27570 Bremerhaven (Germany)) (and others)

    2009-08-15

    There is growing scientific evidence that, as a result of increasing anthropogenic carbon dioxide (CO{sub 2}) emissions, absorption of CO{sub 2} by the oceans has already noticeably increased the average oceanic acidity from pre-industrial levels. This global threat requires a global response. According to the Intergovernmental Panel on Climate Change (IPCC), continuing CO{sub 2} emissions in line with current trends could make the oceans up to 150% more acidic by 2100 than they were at the beginning of the Anthropocene. Acidification decreases the ability of the ocean to absorb additional atmospheric CO{sub 2}, which implies that future CO{sub 2} emissions are likely to lead to more rapid global warming. Ocean acidification is also problematic because of its negative effects on marine ecosystems, especially marine calcifying organisms, and marine resources and services upon which human societies largely depend such as energy, water, and fisheries. For example, it is predicted that by 2100 around 70% of all cold-water corals, especially those in the higher latitudes, will live in waters undersaturated in carbonate due to ocean acidification. Recent research indicates that ocean acidification might also result in increasing levels of jellyfish in some marine ecosystems. Aside from direct effects, ocean acidification together with other global change-induced impacts such as marine and coastal pollution and the introduction of invasive alien species are likely to result in more fragile marine ecosystems, making them more vulnerable to other environmental impacts resulting from, for example, coastal deforestation and widescale fisheries. The Marine Board-ESF Position Paper on the Impacts of Climate Change on the European Marine and Coastal Environment - Ecosystems indicated that presenting ocean acidification issues to policy makers is a key issue and challenge. Indeed, as the consequences of ocean acidification are expected to emerge rapidly and drastically, but are

  11. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature, and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  12. Regional acidification trends in Florida shellfish estuaries: A 20+ year look at pH, oxygen, temperature and salinity

    Science.gov (United States)

    Robbins, Lisa L.; Lisle, John T.

    2018-01-01

    Increasing global CO2 and local land use changes coupled with increased nutrient pollution are threatening estuaries worldwide. Local changes of estuarine chemistry have been documented, but regional associations and trends comparing multiple estuaries latitudinally have not been evaluated. Rapid climate change has impacted the annual and decadal chemical trends in estuaries, with local ecosystem processes enhancing or mitigating the responses. Here, we compare pH, dissolved oxygen, temperature, and salinity data from 10 Florida shellfish estuaries and hundreds of shellfish bed stations. Over 80,000 measurements, spanning from 1980 to 2008, taken on Atlantic Ocean and West Florida coast showed significant regional trends of consistent pH decreases in 8 out of the 10 estuaries, with an average rate of decrease on the Gulf of Mexico side estuaries of Florida of 7.3 × 10−4 pH units year−1, and average decrease on the Atlantic Coast estuaries of 5.0 × 10−4 pH units year−1. The rates are approximately 2–3.4 times slower than observed in pH decreases associated with ocean acidification in the Atlantic and Pacific. Other significant trends observed include decreasing dissolved oxygen in 9 out of the 10 estuaries, increasing salinity in 6 out of the 10, and temperature increases in 3 out of the 10 estuaries. The data provide a synoptic regional view of Florida estuary trends which reflect the complexity of changing climate and coastal ocean acidification superimposed on local conditions. These data provide context for understanding, and interpreting the past and predicting future of regional water quality health of shellfish and other organisms of commercial and ecological significance along Florida’s coasts.

  13. Anticipating ocean acidification's economic consequences for commercial fisheries

    International Nuclear Information System (INIS)

    Cooley, Sarah R; Doney, Scott C

    2009-01-01

    Ocean acidification, a consequence of rising anthropogenic CO 2 emissions, is poised to change marine ecosystems profoundly by increasing dissolved CO 2 and decreasing ocean pH, carbonate ion concentration, and calcium carbonate mineral saturation state worldwide. These conditions hinder growth of calcium carbonate shells and skeletons by many marine plants and animals. The first direct impact on humans may be through declining harvests and fishery revenues from shellfish, their predators, and coral reef habitats. In a case study of US commercial fishery revenues, we begin to constrain the economic effects of ocean acidification over the next 50 years using atmospheric CO 2 trajectories and laboratory studies of its effects, focusing especially on mollusks. In 2007, the $3.8 billion US annual domestic ex-vessel commercial harvest ultimately contributed $34 billion to the US gross national product. Mollusks contributed 19%, or $748 million, of the ex-vessel revenues that year. Substantial revenue declines, job losses, and indirect economic costs may occur if ocean acidification broadly damages marine habitats, alters marine resource availability, and disrupts other ecosystem services. We review the implications for marine resource management and propose possible adaptation strategies designed to support fisheries and marine-resource-dependent communities, many of which already possess little economic resilience.

  14. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  15. Ocean energy

    International Nuclear Information System (INIS)

    2009-01-01

    There are 5 different ways of harnessing ocean energy: tides, swells, currents, osmotic pressure and deep water thermal gradients. The tidal power sector is the most mature. A single French site - The Rance tidal power station (240 MW) which was commissioned in 1966 produces 90% of the world's ocean energy. Smaller scale power stations operate around the world, 10 are operating in the European Union and 5 are being tested. Underwater generators and wave energy converters are expanding. In France a 1 km 2 sea test platform is planned for 2010. (A.C.)

  16. Seasonal and long-term changes in pH in the Dutch coastal zone

    Directory of Open Access Journals (Sweden)

    P. Provoost

    2010-11-01

    Full Text Available Recent observations and modelling studies suggest that biogeochemical changes can mask atmospheric CO2-induced pH decreases. Data collected by the Dutch monitoring authorities in different coastal systems (North Sea, Wadden Sea, Ems-Dollard, Eastern Scheldt and Scheldt estuary since 1975 provide an excellent opportunity to test whether this is the case in the Dutch coastal zone. The time-series were analysed using Multi-Resolution Analysis (MRA which resulted in the identification of system-dependent patterns on both seasonal and intra-annual time scales. The observed rates of pH change greatly exceed those expected from enhanced CO2 uptake, thus suggesting that other biogeochemical processes, possibly related to changes in nutrient loading, can play a dominant role in ocean acidification.

  17. Bioremediation of waste under ocean acidification: Reviewing the role of Mytilus edulis.

    Science.gov (United States)

    Broszeit, Stefanie; Hattam, Caroline; Beaumont, Nicola

    2016-02-15

    Waste bioremediation is a key regulating ecosystem service, removing wastes from ecosystems through storage, burial and recycling. The bivalve Mytilus edulis is an important contributor to this service, and is used in managing eutrophic waters. Studies show that they are affected by changes in pH due to ocean acidification, reducing their growth. This is forecasted to lead to reductions in M. edulis biomass of up to 50% by 2100. Growth reduction will negatively affect the filtering capacity of each individual, potentially leading to a decrease in bioremediation of waste. This paper critically reviews the current state of knowledge of bioremediation of waste carried out by M. edulis, and the current knowledge of the resultant effect of ocean acidification on this key service. We show that the effects of ocean acidification on waste bioremediation could be a major issue and pave the way for empirical studies of the topic. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Ocean Acidification

    Science.gov (United States)

    Ludwig, Claudia; Orellana, Mónica V.; DeVault, Megan; Simon, Zac; Baliga, Nitin

    2015-01-01

    The curriculum module described in this article addresses the global issue of ocean acidification (OA) (Feely 2009; Figure 1). OA is a harmful consequence of excess carbon dioxide (CO[subscript 2]) in the atmosphere and poses a threat to marine life, both algae and animal. This module seeks to teach and help students master the cross-disciplinary…

  19. Ocean energies

    International Nuclear Information System (INIS)

    Charlier, R.H.; Justus, J.R.

    1993-01-01

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  20. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    Directory of Open Access Journals (Sweden)

    Paulina Kaniewska

    Full Text Available Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5 decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  1. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    Science.gov (United States)

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  2. Iron Mobilization from Particles as a Function of pH and Particle Source

    National Research Council Canada - National Science Library

    Rohrbough, James

    2000-01-01

    .... The work presented here shows the role pH can play in iron mobilization from particles. At low pH, bioavailability of iron can be greatly increased, and can be significantly decreased at higher pH...

  3. Effects of ocean acidification on juvenile red king crab (Paralithodes camtschaticus and Tanner crab (Chionoecetes bairdi growth, condition, calcification, and survival.

    Directory of Open Access Journals (Sweden)

    William Christopher Long

    Full Text Available Ocean acidification, a decrease in the pH in marine waters associated with rising atmospheric CO2 levels, is a serious threat to marine ecosystems. In this paper, we determine the effects of long-term exposure to near-future levels of ocean acidification on the growth, condition, calcification, and survival of juvenile red king crabs, Paralithodes camtschaticus, and Tanner crabs, Chionoecetes bairdi. Juveniles were reared in individual containers for nearly 200 days in flowing control (pH 8.0, pH 7.8, and pH 7.5 seawater at ambient temperatures (range 4.4-11.9 °C. In both species, survival decreased with pH, with 100% mortality of red king crabs occurring after 95 days in pH 7.5 water. Though the morphology of neither species was affected by acidification, both species grew slower in acidified water. At the end of the experiment, calcium concentration was measured in each crab and the dry mass and condition index of each crab were determined. Ocean acidification did not affect the calcium content of red king crab but did decrease the condition index, while it had the opposite effect on Tanner crabs, decreasing calcium content but leaving the condition index unchanged. This suggests that red king crab may be able to maintain calcification rates, but at a high energetic cost. The decrease in survival and growth of each species is likely to have a serious negative effect on their populations in the absence of evolutionary adaptation or acclimatization over the coming decades.

  4. Ocean acidification and the loss of phenolic substances in marine plants.

    Directory of Open Access Journals (Sweden)

    Thomas Arnold

    Full Text Available Rising atmospheric CO(2 often triggers the production of plant phenolics, including many that serve as herbivore deterrents, digestion reducers, antimicrobials, or ultraviolet sunscreens. Such responses are predicted by popular models of plant defense, especially resource availability models which link carbon availability to phenolic biosynthesis. CO(2 availability is also increasing in the oceans, where anthropogenic emissions cause ocean acidification, decreasing seawater pH and shifting the carbonate system towards further CO(2 enrichment. Such conditions tend to increase seagrass productivity but may also increase rates of grazing on these marine plants. Here we show that high CO(2 / low pH conditions of OA decrease, rather than increase, concentrations of phenolic protective substances in seagrasses and eurysaline marine plants. We observed a loss of simple and polymeric phenolics in the seagrass Cymodocea nodosa near a volcanic CO(2 vent on the Island of Vulcano, Italy, where pH values decreased from 8.1 to 7.3 and pCO(2 concentrations increased ten-fold. We observed similar responses in two estuarine species, Ruppia maritima and Potamogeton perfoliatus, in in situ Free-Ocean-Carbon-Enrichment experiments conducted in tributaries of the Chesapeake Bay, USA. These responses are strikingly different than those exhibited by terrestrial plants. The loss of phenolic substances may explain the higher-than-usual rates of grazing observed near undersea CO(2 vents and suggests that ocean acidification may alter coastal carbon fluxes by affecting rates of decomposition, grazing, and disease. Our observations temper recent predictions that seagrasses would necessarily be "winners" in a high CO(2 world.

  5. Life in the oceanic realms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    Keywords Phytoplankton,zooplankton,pri- mary and secondary producers, zooxanthellae. Chandralata Raghukumar is an emeritus scientist at the National Institute of Oceanography, Goa. After obtaining a PhD in plant pathology, she worked for 5 years on fungal... marine animals and plants were collected during such voyages by the researchers onboardthe vesselsandsystematicallydescribed. The HMS Beagle with Charles Darwin on board sailed around different oceans for nearly 4 years and this was the beginning...

  6. Response of the Miliolid Archaias angulatus to simulated ocean acidification

    Science.gov (United States)

    Knorr, Paul O.; Robbins, Lisa L.; Harries, Peter J.; Hallock, Pamela; Wynn, Jonathan

    2015-01-01

    A common, but not universal, effect of ocean acidification on benthic foraminifera is a reduction in the growth rate. The miliolid Archaias angulatus is a high-Mg (>4 mole% MgCO3), symbiont-bearing, soritid benthic foraminifer that contributes to Caribbean reef carbonate sediments. A laboratory culture study assessed the effects of reduced pH on the growth of A. angulatus. We observed a statistically significant 50% reduction in the growth rate (p < 0.01), calculated from changes in maximum diameter, from 160 μm/28 days in the pH 8.0/pCO2air 480 ppm control group to 80 μm/28 days at a treatment level of pH 7.6/pCO2air 1328 ppm. Additionally, pseudopore area, δ18O values, and Mg/Ca ratio all increased, albeit slightly in the latter two variables. The reduction in growth rate indicates that under a high-CO2 setting, future A. angulatus populations will consist of smaller adults. A model using the results of this study estimates that at pH 7.6 A. angulatus carbonate production in the South Florida reef tract and Florida Bay decreases by 85%, from 0.27 Mt/yr to 0.04 Mt/yr, over an area of 9,000 km2.

  7. A Possible Late Paleocene-Early Eocene Ocean Acidification Event Recoded in the Adriatic Carbonate Platform

    Science.gov (United States)

    Weiss, A.; Martindale, R. C.; Kosir, A.; Oefinger, J.

    2017-12-01

    The Paleocene-Eocene Thermal Maximum (PETM) event ( 56.3 Ma) was a period of massive carbon release into the Earth system, resulting in significant shifts in ocean chemistry. It has been proposed that ocean acidification - a decrease in the pH and carbonate saturation state of the water as a result of dissolved carbon dioxide in sea water - occurred in both the shallow and deep marine realms. Ocean acidification would have had a devastating impact on the benthic ecosystem, and has been proposed as the cause of decreased carbonate deposition in marine sections and coral reef collapse during the late Paleocene. To date, however, the only physical evidence of Paleocene-Eocene ocean acidification has been shown for offshore sites (i.e., a shallow carbonate compensation depth), but isotope analysis (i.e. B, I/Ca) suggests that acidification occurred in the shallow shelves as well. Several sites in the Kras region of Slovenia, has been found to contain apparent erosion surfaces coeval with the Paleocene-Eocene Boundary. We have investigated these potentially acidified horizons using petrography, stable carbon isotopes, cathodoluminescence, and elemental mapping. These datasets will inform whether the horizons formed by seafloor dissolution in an acidified ocean, or are due to subaerial exposure, or burial diagenesis (i.e. stylotization). Physical erosion and diagenesis can easily be ruled out based on field relationships and petrography, but the other potential causes must be analyzed more critically.

  8. Proceedings of oceans '91

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This volume contains the proceedings of the Oceans '91 Conference. Topics addressed include: ocean energy conversion, marine communications and navigation, ocean wave energy conversion, environmental modeling, global climate change, ocean minerals technology, oil spill technology, and submersible vehicles

  9. Marine gametes in a changing ocean: Impacts of climate change stressors on fecundity and the egg.

    Science.gov (United States)

    Foo, Shawna A; Byrne, Maria

    2017-07-01

    In marine invertebrates, the environmental history of the mother can influence fecundity and egg size. Acclimation of females in climate change stressors, increased temperature and low pH, results in a decrease in egg number and size in many taxa, with the exception of cephalopods, where eggs increase in size. With respect to spawned eggs, near future levels of ocean acidification can interfere with the egg's block to polyspermy and intracellular pH. Reduction of the extracellular egg jelly coat seen in low pH conditions has implications for impaired egg function and fertilization. Some fast generation species (e.g. copepods, polychaetes) have shown restoration of female reproductive output after several generations in treatments. It will be important to determine if the changes to egg number and size induced by exposure to climate change stressors are heritable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Cascading effects of ocean acidification in a rocky subtidal community.

    Directory of Open Access Journals (Sweden)

    Valentina Asnaghi

    Full Text Available Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae and their grazers (sea urchins. Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness. There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from

  11. Cascading effects of ocean acidification in a rocky subtidal community.

    Science.gov (United States)

    Asnaghi, Valentina; Chiantore, Mariachiara; Mangialajo, Luisa; Gazeau, Frédéric; Francour, Patrice; Alliouane, Samir; Gattuso, Jean-Pierre

    2013-01-01

    Temperate marine rocky habitats may be alternatively characterized by well vegetated macroalgal assemblages or barren grounds, as a consequence of direct and indirect human impacts (e.g. overfishing) and grazing pressure by herbivorous organisms. In future scenarios of ocean acidification, calcifying organisms are expected to be less competitive: among these two key elements of the rocky subtidal food web, coralline algae and sea urchins. In order to highlight how the effects of increased pCO2 on individual calcifying species will be exacerbated by interactions with other trophic levels, we performed an experiment simultaneously testing ocean acidification effects on primary producers (calcifying and non-calcifying algae) and their grazers (sea urchins). Artificial communities, composed by juveniles of the sea urchin Paracentrotus lividus and calcifying (Corallina elongata) and non-calcifying (Cystoseira amentacea var stricta, Dictyota dichotoma) macroalgae, were subjected to pCO2 levels of 390, 550, 750 and 1000 µatm in the laboratory. Our study highlighted a direct pCO2 effect on coralline algae and on sea urchin defense from predation (test robustness). There was no direct effect on the non-calcifying macroalgae. More interestingly, we highlighted diet-mediated effects on test robustness and on the Aristotle's lantern size. In a future scenario of ocean acidification a decrease of sea urchins' density is expected, due to lower defense from predation, as a direct consequence of pH decrease, and to a reduced availability of calcifying macroalgae, important component of urchins' diet. The effects of ocean acidification may therefore be contrasting on well vegetated macroalgal assemblages and barren grounds: in the absence of other human impacts, a decrease of biodiversity can be predicted in vegetated macroalgal assemblages, whereas a lower density of sea urchin could help the recovery of shallow subtidal rocky areas affected by overfishing from barren grounds to

  12. Ocean acidification

    International Nuclear Information System (INIS)

    Soubelet, Helene; Veyre, Philippe; Monnoyer-Smith, Laurence

    2017-09-01

    This brief publication first recalls and outlines that ocean acidification is expected to increase, and will result in severe ecological impacts (more fragile coral reefs, migration of species, and so on), and therefore social and economic impacts. This issue is particularly important for France who possesses the second exclusive maritime area in the world. The various impacts of ocean acidification on living species is described, notably for phytoplankton, coral reefs, algae, molluscs, and fishes. Social and economic impacts are also briefly presented: tourism, protection against risks (notably by coral reefs), shellfish aquaculture and fishing. Issues to be addressed by scientific research are evoked: interaction between elements of an ecosystem and between different ecosystems, multi-stress effects all along organism lifetime, vulnerability and adaptability of human societies

  13. PH og modernismen

    DEFF Research Database (Denmark)

    Ahnfeldt-Mollerup, Merete

    2012-01-01

    Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus.......Artiklen kaster et kritisk blik på Poul Henningsens samfundsanalyse og dennes sammenhæng med hans design. PH ses i en bredere national og international sammenhæng. Diskussion af designmetoder, æstetik og Bauhaus....

  14. Vulnerability of the paper Nautilus (Argonauta nodosa) shell to a climate-change ocean: potential for extinction by dissolution.

    Science.gov (United States)

    Wolfe, Kennedy; Smith, Abigail M; Trimby, Patrick; Byrne, Maria

    2012-10-01

    Shell calcification in argonauts is unique. Only females of these cephalopods construct the paper nautilus shell, which is used as a brood chamber for developing embryos in the pelagic realm. As one of the thinnest (225 μm) known adult mollusc shells, and lacking an outer protective periostracum-like cover, this shell may be susceptible to dissolution as the ocean warms and decreases in pH. Vulnerability of the A. nodosa shell was investigated through immersion of shell fragments in multifactorial experiments of control (19 °C/pH 8.1; pCO(2) 419; Ω(Ca) = 4.23) and near-future conditions (24 °C/pH 7.8-7.6; pCO(2) 932-1525; Ω(Ca) = 2.72-1.55) for 14 days. More extreme pH treatments (pH 7.4-7.2; pCO(2) 2454-3882; Ω(Ca) = 1.20-0.67) were used to assess tipping points in shell dissolution. X-ray diffractometry revealed no change in mineralogy between untreated and treated shells. Reduced shell weight due to dissolution was evident in shells incubated at pH 7.8 (projected for 2070) after 14 days at control temperature, with increased dissolution in warmer and lower pH treatments. The greatest dissolution was recorded at 24 °C (projected for local waters by 2100) compared to control temperature across all low-pH treatments. Scanning electron microscopy revealed dissolution and etching of shell mineral in experimental treatments. In the absence of compensatory mineralization, the uncovered female brood chamber will be susceptible to dissolution as ocean pH decreases. Since the shell was a crucial adaptation for the evolution of the argonauts' holopelagic existence, persistence of A. nodosa may be compromised by shell dissolution in an ocean-change world.

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean from 1996-08-07 to 1996-10-03 (NODC Accession 0112232)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112232 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean from...

  16. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from GARCIA DEL CID in the North Atlantic Ocean from 1984-02-18 to 1984-03-07 (NCEI Accession 0143392)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143392 includes discrete sample and profile data collected from GARCIA DEL CID in the North Atlantic Ocean from 1984-02-18 to 1984-03-07 and...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the North Pacific Ocean from 2001-07-23 to 2001-08-28 (NODC Accession 0108152)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108152 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2001-07-23 to 2001-08-28....

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the ODEN in the Arctic Ocean, Beaufort Sea and Bering Sea from 2005-08-19 to 2005-09-25 (NODC Accession 0108129)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108129 includes chemical, discrete sample, physical and profile data collected from ODEN in the Arctic Ocean, Beaufort Sea and Bering Sea from...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2006-04-18 to 2006-05-22 (NODC Accession 0112329)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112329 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MARTHA L. BLACK in the Davis Strait, Labrador Sea and North Atlantic Ocean from 2012-06-01 to 2012-06-17 (NCEI Accession 0144337)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144337 includes discrete sample and profile data collected from MARTHA L. BLACK in the Davis Strait, Labrador Sea and North Atlantic Ocean from...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean from 2015-05-04 to 2015-05-24 (NCEI Accession 0160487)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0160487 includes chemical, discrete sample, physical and profile data collected from HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the BOSEI MARU NO. 2 in the North Pacific Ocean from 1998-10-03 to 1998-10-20 (NODC Accession 0112190)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112190 includes chemical, discrete sample, physical and profile data collected from BOSEI MARU NO. 2 in the North Pacific Ocean from 1998-10-03 to...

  3. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from THALASSA in the North Atlantic Ocean from 2008-06-10 to 2008-07-11 (NODC Accession 0110257)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110257 includes chemical, discrete sample, physical and profile data collected from THALASSA in the North Atlantic Ocean from 2008-06-10 to...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean from 2014-05-02 to 2014-05-24 (NCEI Accession 0157623)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157623 includes chemical, discrete sample, physical and profile data collected from HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean...

  5. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from Sarmiento de Gamboa in the North Atlantic Ocean from 2009-07-25 to 2009-08-13 (NCEI Accession 0144251)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144251 includes discrete sample and profile data collected from Sarmiento de Gamboa in the North Atlantic Ocean from 2009-07-25 to 2009-08-13. These...

  6. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MARIA S. MERIAN in the North Atlantic Ocean from 2006-05-23 to 2006-06-28 (NODC Accession 0110256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110256 includes chemical, discrete sample, physical and profile data collected from MARIA S. MERIAN in the North Atlantic Ocean from 2006-05-23 to...

  7. pH, alkalinity, temperature, salinity and other variables collected from profile observations using Alkalinity titrator, CTD and other instruments from the HESPERIDES in the North Atlantic Ocean and Strait of Gibraltar from 2008-10-06 to 2008-10-12 (NODC Accession 0112927)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112927 includes chemical, discrete sample, physical and time series profile data collected from HESPERIDES in the North Atlantic Ocean and Strait of...

  8. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from THALASSA in the North Atlantic Ocean from 2010-06-08 to 2010-06-30 (NODC Accession 0112842)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112842 includes discrete sample and profile data collected from THALASSA in the North Atlantic Ocean from 2010-06-08 to 2010-06-30 and retrieved...

  9. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from THALASSA in the North Atlantic Ocean from 2002-06-11 to 2002-07-11 (NODC Accession 0113917)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113917 includes discrete sample and profile data collected from THALASSA in the North Atlantic Ocean from 2002-06-11 to 2002-07-11. These data...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship GORDON GUNTER in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2013-06-09 to 2013-11-25 (NCEI Accession 0144340)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144340 includes discrete sample and profile data collected from NOAA Ship GORDON GUNTER in the North Atlantic Ocean and Stellwagen Bank National...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2007-09-04 to 2007-10-02 (NODC Accession 0112270)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112270 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2007-09-04 to 2007-10-02...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean from 1998-01-24 to 1998-02-23 (NODC Accession 0113920)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113920 includes chemical, discrete sample, physical and profile data collected from NOAA Ship RONALD H. BROWN in the North Atlantic Ocean from...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2002-10-31 to 2002-11-11 (NODC Accession 0112205)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112205 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the NATSUSHIMA in the North Pacific Ocean from 2004-05-19 to 2004-06-05 (NODC Accession 0112249)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112249 includes chemical, discrete sample, physical and profile data collected from NATSUSHIMA in the North Pacific Ocean from 2004-05-19 to...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the Indian Ocean and Mozambique Channel from 2003-12-09 to 2004-01-24 (NODC Accession 0108101)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108101 includes discrete sample and profile data collected from MIRAI in the Indian Ocean and Mozambique Channel from 2003-12-09 to 2004-01-24. These...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MELVILLE in the South Pacific Ocean and Tasman Sea from 2009-11-21 to 2010-02-11 (NODC Accession 0109920)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109920 includes discrete sample and profile data collected from MELVILLE in the South Pacific Ocean and Tasman Sea from 2009-11-21 to 2010-02-11 and...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the CHARLES DARWIN in the Indian Ocean from 2002-03-01 to 2002-04-15 (NODC Accession 0108226)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108226 includes chemical, discrete sample, physical and profile data collected from CHARLES DARWIN in the Indian Ocean from 2002-03-01 to 2002-04-15...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the OSHORO MARU in the North Pacific Ocean from 2003-03-11 to 2003-03-20 (NODC Accession 0112273)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112273 includes chemical, discrete sample, physical and profile data collected from OSHORO MARU in the North Pacific Ocean from 2003-03-11 to...

  19. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KNORR in the Caribbean Sea and North Atlantic Ocean from 1996-11-02 to 1997-09-03 (NODC Accession 0115005)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115005 includes chemical, discrete sample, physical and profile data collected from KNORR in the Caribbean Sea and North Atlantic Ocean from...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the North Pacific Ocean from 2007-07-24 to 2007-09-03 (NODC Accession 0108121)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108121 includes discrete sample and profile data collected from MIRAI in the North Pacific Ocean from 2007-07-24 to 2007-09-03 and retrieved during...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 2001-07-17 to 2001-08-07 (NODC Accession 0113587)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113587 includes biological, chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 2001-07-17 to...

  2. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the CORNIDE DE SAAVEDRA in the Bay of Biscay and North Atlantic Ocean from 1977-10-07 to 1977-10-27 (NODC Accession 0113528)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113528 includes chemical, discrete sample, physical and profile data collected from CORNIDE DE SAAVEDRA in the Bay of Biscay and North Atlantic Ocean...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2001-07-10 to 2001-07-31 (NODC Accession 0112203)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112203 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2004-03-27 to 2004-04-17 (NODC Accession 0112261)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112261 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2004-03-27 to 2004-04-17...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1998-06-01 to 1998-06-15 (NODC Accession 0112237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112237 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1998-06-01 to...

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the South Pacific Ocean and Tasman Sea from 2003-08-03 to 2003-10-16 (NODC Accession 0108122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108122 includes chemical, discrete sample, physical and profile data collected from MIRAI in the South Pacific Ocean and Tasman Sea from 2003-08-03...

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 2000-06-21 to 2000-07-05 (NODC Accession 0112244)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112244 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 2000-06-21 to...

  8. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from METEOR in the Labrador Sea and North Atlantic Ocean from 1999-07-11 to 1999-08-10 (NODC Accession 0113585)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113585 includes chemical, discrete sample, physical and profile data collected from METEOR in the Labrador Sea and North Atlantic Ocean from...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the Labrador Sea and North Atlantic Ocean from 2003-07-23 to 2003-08-29 (NODC Accession 0113891)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113891 includes chemical, discrete sample, physical and profile data collected from METEOR in the Labrador Sea and North Atlantic Ocean from...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the ROGER REVELLE in the South Pacific Ocean from 1997-10-20 to 1997-11-24 (NODC Accession 0116068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116068 includes chemical, discrete sample, physical and profile data collected from ROGER REVELLE in the South Pacific Ocean from 1997-10-20 to...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2005-09-13 to 2005-10-27 (NODC Accession 0112265)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112265 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2005-09-13 to 2005-10-27...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 1998-10-30 to 1998-12-15 (NODC Accession 0112251)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112251 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 1998-10-30 to 1998-12-15...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2005-02-28 to 2005-03-24 (NODC Accession 0112264)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112264 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2005-02-28 to 2005-03-24...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the Bering Sea and North Pacific Ocean from 2002-10-11 to 2002-11-06 (NODC Accession 0112258)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112258 includes chemical, discrete sample, physical and profile data collected from MIRAI in the Bering Sea and North Pacific Ocean from 2002-10-11...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2004-10-13 to 2004-11-08 (NODC Accession 0112262)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112262 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2004-10-13 to 2004-11-08...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2006-05-26 to 2006-06-18 (NODC Accession 0112266)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112266 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2006-05-26 to 2006-06-18...

  17. pH, alkalinity, temperature, salinity and other variables collected from time series profile observations using Alkalinity titrator, CTD and other instruments from the Al Amir Moulay Abdellah in the North Atlantic Ocean and Strait of Gibraltar from 2005-05-04 to 2007-05-08 (NODC Accession 0112928)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112928 includes chemical, discrete sample, physical and time series profile data collected from Al Amir Moulay Abdellah in the North Atlantic Ocean...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2003-10-28 to 2003-11-17 (NODC Accession 0112209)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112209 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from RYOFU MARU in the North Pacific Ocean from 2012-07-26 to 2012-09-13 (NODC Accession 0116564)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116564 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 2012-07-26...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean from 2011-05-06 to 2011-05-28 (NODC Accession 0108124)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108124 includes chemical, discrete sample, physical and profile data collected from HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the Bering Sea and North Pacific Ocean from 2008-10-11 to 2008-11-07 (NODC Accession 0112271)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112271 includes chemical, discrete sample, physical and profile data collected from MIRAI in the Bering Sea and North Pacific Ocean from 2008-10-11...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean from 2001-04-24 to 2001-05-28 (NODC Accession 0115266)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115266 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 2001-04-24...

  3. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the DISCOVERY in the North Atlantic Ocean from 1989-05-11 to 1989-06-07 (NODC Accession 0113530)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113530 includes chemical, discrete sample, physical and profile data collected from DISCOVERY in the North Atlantic Ocean from 1989-05-11 to...

  4. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from POLARSTERN in the Arctic Ocean, Kara Sea and Laptev Sea from 1995-07-07 to 1995-09-20 (NODC Accession 0116408)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116408 includes chemical, discrete sample, physical and profile data collected from POLARSTERN in the Arctic Ocean, Kara Sea and Laptev (or...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ROGER REVELLE in the Bay of Bengal and Indian Ocean from 2007-03-22 to 2007-05-01 (NODC Accession 0110791)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110791 includes discrete sample and profile data collected from ROGER REVELLE in the Bay of Bengal and Indian Ocean from 2007-03-22 to 2007-05-01....

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from MIRAI in the South Atlantic Ocean from 2003-11-06 to 2003-12-05 (NODC Accession 0108099)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108099 includes chemical, discrete sample, physical and profile data collected from MIRAI in the South Atlantic Ocean from 2003-11-06 to 2003-12-05....

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2001-06-04 to 2001-07-18 (NODC Accession 0112256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112256 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2001-06-04 to 2001-07-18...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2004-04-21 to 2004-05-11 (NODC Accession 0112211)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112211 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2000-05-09 to 2000-06-10 (NODC Accession 0112255)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112255 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2000-05-09 to 2000-06-10...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the NATHANIEL B. PALMER in the South Pacific Ocean from 1997-04-04 to 1997-05-12 (NODC Accession 0116065)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116065 includes chemical, discrete sample, physical and profile data collected from NATHANIEL B. PALMER in the South Pacific Ocean from 1997-04-04 to...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from ROGER REVELLE in the North Pacific Ocean from 2005-06-17 to 2005-07-17 (NCEI Accession 0163194)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0163194 includes chemical, discrete sample, physical and profile data collected from ROGER REVELLE in the North Pacific Ocean from 2005-06-17 to...

  12. Dissolved inorganic carbon, alkalinity, pH, temperature, salinity, and other variables collected from profile observations using CTD, discrete bottles, and other instruments from October 7, 1977 to March 11, 2006, as synthesized in the CARbon dioxide IN the Atlantic Ocean (CARINA) Database (NODC Accession 0113899)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CARINA (CARbon dioxide IN the Atlantic Ocean) data synthesis project is an international collaborative effort of the EU IP CARBOOCEAN, and US partners. It has...

  13. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the AKADEMIK SERGEY VAVILOV in the South Atlantic Ocean from 2004-11-04 to 2004-12-08 (NODC Accession 0113753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113753 includes chemical, discrete sample, physical and profile data collected from AKADEMIK SERGEY VAVILOV in the South Atlantic Ocean from...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HESPERIDES in the North Atlantic Ocean from 1998-07-30 to 1998-08-21 (NODC Accession 0113756)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113756 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean from 1998-07-30 to...

  15. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the LE NOROIT in the North Atlantic Ocean from 1989-05-09 to 1989-05-26 (NODC Accession 0113759)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113759 includes chemical, discrete sample, physical and profile data collected from LE NOROIT in the North Atlantic Ocean from 1989-05-09 to...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from OCEAN RESEARCHER I in the East China Sea from 2008-01-02 to 2008-01-09 (NODC Accession 0109902)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109902 includes biological, chemical, discrete sample, physical and profile data collected from OCEAN RESEARCHER I in the East China Sea (Tung Hai)...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the MARION DUFRESNE in the Indian Ocean from 1999-01-04 to 1999-02-23 (NODC Accession 0113760)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113760 includes chemical, discrete sample, physical and profile data collected from MARION DUFRESNE in the Indian Ocean from 1999-01-04 to 1999-02-23...

  18. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the CORNIDE DE SAAVEDRA in the North Atlantic Ocean from 1993-05-10 to 1993-06-01 (NODC Accession 0113529)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113529 includes chemical, discrete sample, physical and profile data collected from CORNIDE DE SAAVEDRA in the North Atlantic Ocean from 1993-05-10...

  19. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from HESPERIDES in the South Atlantic Ocean from 2010-02-08 to 2010-03-10 (NODC Accession 0110255)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110255 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the South Atlantic Ocean from 2010-02-08 to...

  20. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the BELGICA in the North Atlantic Ocean from 2006-05-31 to 2006-06-09 (NODC Accession 0112838)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112838 includes chemical, discrete sample, physical and profile data collected from BELGICA in the North Atlantic Ocean from 2006-05-31 to...

  1. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the BELGICA in the North Atlantic Ocean from 2007-05-10 to 2007-05-24 (NODC Accession 0112839)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112839 includes chemical, discrete sample, physical and profile data collected from BELGICA in the North Atlantic Ocean from 2007-05-10 to...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the PELAGIA in the English Channel, North Atlantic Ocean and others from 2001-08-18 to 2002-05-25 (NODC Accession 0112844)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112844 includes chemical, discrete sample, physical and profile data collected from PELAGIA in the English Channel, North Atlantic Ocean, North Sea,...

  3. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the BELGICA in the North Atlantic Ocean from 2008-05-07 to 2008-05-23 (NODC Accession 0112840)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112840 includes chemical, discrete sample, physical and profile data collected from BELGICA in the North Atlantic Ocean from 2008-05-07 to...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the THOMAS G. THOMPSON in the South Pacific Ocean from 1994-01-25 to 1994-02-19 (NODC Accession 0115762)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115762 includes chemical, discrete sample, physical and profile data collected from THOMAS G. THOMPSON in the South Pacific Ocean from 1994-01-25 to...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the MELVILLE in the Coral Sea and South Pacific Ocean from 1994-03-27 to 1994-06-25 (NODC Accession 0115761)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115761 includes chemical, discrete sample, physical and profile data collected from MELVILLE in the Coral Sea and South Pacific Ocean from 1994-03-27...

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the S. A. AGULHAS in the South Atlantic Ocean from 1997-12-04 to 1998-02-06 (NODC Accession 0113247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113247 includes chemical, discrete sample, physical and profile data collected from S. A. AGULHAS in the South Atlantic Ocean from 1997-12-04 to...

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1998-06-22 to 1998-07-06 (NODC Accession 0112238)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112238 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1998-06-22 to...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the Bering Sea and North Pacific Ocean from 2004-08-07 to 2004-08-30 (NODC Accession 0113609)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113609 includes chemical, discrete sample, physical and profile data collected from MIRAI in the Bering Sea and North Pacific Ocean from 2004-08-07...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean from 2000-04-20 to 2000-05-24 (NODC Accession 0115282)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115282 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 2000-04-20...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 1997-11-11 to 1997-12-04 (NODC Accession 0112250)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112250 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 1997-11-11 to 1997-12-04...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean from 2002-04-24 to 2002-05-29 (NODC Accession 0115595)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115595 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 2002-04-24...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from POLARSTERN in the South Atlantic Ocean from 1992-09-29 to 1992-11-30 (NODC Accession 0117714)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117714 includes biological, chemical, discrete sample, physical and profile data collected from POLARSTERN in the South Atlantic Ocean from...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean from 2000-09-12 to 2000-11-21 (NODC Accession 0112345)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112345 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean from...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the BOSEI MARU NO. 2 in the North Pacific Ocean from 2000-10-06 to 2000-10-21 (NODC Accession 0112200)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112200 includes chemical, discrete sample, physical and profile data collected from BOSEI MARU NO. 2 in the North Pacific Ocean from 2000-10-06 to...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the BOSEI MARU NO. 2 in the North Pacific Ocean from 1999-10-07 to 1999-10-26 (NODC Accession 0112199)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112199 includes chemical, discrete sample, physical and profile data collected from BOSEI MARU NO. 2 in the North Pacific Ocean from 1999-10-07 to...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the OSHORO MARU in the North Pacific Ocean from 2003-08-11 to 2003-08-25 (NODC Accession 0112276)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112276 includes chemical, discrete sample, physical and profile data collected from OSHORO MARU in the North Pacific Ocean from 2003-08-11 to...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hakuho Maru in the North Pacific Ocean from 2003-09-30 to 2003-10-17 (NODC Accession 0112348)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112348 includes chemical, discrete sample, physical and profile data collected from Hakuho Maru in the North Pacific Ocean from 2003-09-30 to...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the OSHORO MARU in the North Pacific Ocean from 2003-05-10 to 2003-05-23 (NODC Accession 0112274)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112274 includes chemical, discrete sample, physical and profile data collected from OSHORO MARU in the North Pacific Ocean from 2003-05-10 to...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the OSHORO MARU in the North Pacific Ocean from 2003-06-03 to 2003-06-16 (NODC Accession 0112275)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112275 includes chemical, discrete sample, physical and profile data collected from OSHORO MARU in the North Pacific Ocean from 2003-06-03 to...

  20. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean from 2011-09-26 to 2011-10-31 (NODC Accession 0109914)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109914 includes discrete sample and profile data collected from NOAA Ship RONALD H. BROWN in the South Atlantic Ocean from 2011-09-26 to 2011-10-31....

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean from 2010-05-13 to 2010-05-30 (NODC Accession 0108225)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108225 includes chemical, discrete sample, physical and profile data collected from HUDSON in the Davis Strait, Labrador Sea and North Atlantic Ocean...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean and Philippine Sea from 1997-11-10 to 1998-01-19 (NODC Accession 0112342)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112342 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean and...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the North Pacific Ocean from 2001-08-13 to 2001-10-22 (NODC Accession 0112346)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112346 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the North Pacific Ocean from...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2005-04-19 to 2005-05-09 (NODC Accession 0112214)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112214 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2000-01-05 to 2000-02-06 (NODC Accession 0112254)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112254 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2000-01-05 to 2000-02-06...

  6. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the DARVIN in the North Atlantic Ocean from 1991-05-01 to 1991-05-15 (NODC Accession 0113524)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113524 includes biological, chemical, discrete sample, physical and profile data collected from DARVIN in the North Atlantic Ocean from 1991-05-01 to...

  7. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the PROFESSOR SIEDLECKI in the North Atlantic Ocean from 1988-11-17 to 1988-11-26 (NODC Accession 0113592)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113592 includes chemical, discrete sample, physical and profile data collected from PROFESSOR SIEDLECKI in the North Atlantic Ocean from 1988-11-17...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2007-04-24 to 2007-05-14 (NODC Accession 0112332)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112332 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the WAKATAKA MARU in the North Pacific Ocean from 1996-05-16 to 1996-05-25 (NODC Accession 0112374)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112374 includes biological, chemical, discrete sample, physical and profile data collected from WAKATAKA MARU in the North Pacific Ocean from...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from MIRAI in the Japan Sea, North Pacific Ocean and Sea of Okhotsk from 2006-08-01 to 2006-08-20 (NODC Accession 0112267)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112267 includes chemical, discrete sample, optical, physical and profile data collected from MIRAI in the Japan Sea, North Pacific Ocean and Sea of...

  11. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ATLANTIS in the North Atlantic Ocean from 2012-04-19 to 2012-05-15 (NODC Accession 0108160)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108160 includes discrete sample and profile data collected from ATLANTIS in the North Atlantic Ocean from 2012-04-19 to 2012-05-15. These data...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ATLANTIS in the Caribbean Sea and North Atlantic Ocean from 2012-03-24 to 2012-04-17 (NODC Accession 0109915)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109915 includes discrete sample and profile data collected from ATLANTIS in the Caribbean Sea and North Atlantic Ocean from 2012-03-24 to 2012-04-17...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ROGER REVELLE in the Indian Ocean from 2009-03-20 to 2009-05-15 (NODC Accession 0108075)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0108075 includes discrete sample and profile data collected from ROGER REVELLE in the Indian Ocean from 2009-03-20 to 2009-05-15. These data include...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KAIYO-MARU in the North Pacific Ocean and Philippine Sea from 1994-01-07 to 1994-02-10 (NODC Accession 0115007)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115007 includes chemical, discrete sample, physical and profile data collected from KAIYO-MARU in the North Pacific Ocean and Philippine Sea from...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the DISCOVERY in the North Atlantic Ocean from 1997-08-07 to 1997-09-17 (NODC Accession 0113535)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113535 includes biological, chemical, discrete sample, physical and profile data collected from DISCOVERY in the North Atlantic Ocean from 1997-08-07...

  16. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from GARCIA DEL CID in the Bay of Biscay and North Atlantic Ocean from 1984-07-11 to 1984-08-08 (NCEI Accession 0143393)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143393 includes discrete sample and profile data collected from GARCIA DEL CID in the Bay of Biscay and North Atlantic Ocean from 1984-07-11 to...

  17. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from GARCIA DEL CID in the Bay of Biscay and North Atlantic Ocean from 1986-09-04 to 1986-10-03 (NCEI Accession 0143391)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143391 includes discrete sample and profile data collected from GARCIA DEL CID in the Bay of Biscay and North Atlantic Ocean from 1986-09-04 to...

  18. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from GARCIA DEL CID in the North Atlantic Ocean from 1982-11-10 to 1982-11-19 (NODC Accession 0084477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0084477 includes chemical, discrete sample, physical and profile data collected from GARCIA DEL CID in the North Atlantic Ocean from 1982-11-10 to...

  19. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from GARCIA DEL CID in the North Atlantic Ocean from 1983-12-01 to 1983-12-12 (NCEI Accession 0143396)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0143396 includes discrete sample and profile data collected from GARCIA DEL CID in the North Atlantic Ocean from 1983-12-01 to 1983-12-12 and...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from METEOR in the Labrador Sea and North Atlantic Ocean from 2001-05-07 to 2001-05-31 (NODC Accession 0113586)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0113586 includes chemical, discrete sample, physical and profile data collected from METEOR in the Labrador Sea and North Atlantic Ocean from...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the ROGER REVELLE in the South Pacific Ocean from 1997-12-02 to 1998-01-03 (NODC Accession 0116136)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116136 includes chemical, discrete sample, physical and profile data collected from ROGER REVELLE in the South Pacific Ocean from 1997-12-02 to...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the NATSUSHIMA in the North Pacific Ocean from 2003-07-05 to 2003-07-18 (NODC Accession 0112248)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112248 includes chemical, discrete sample, physical and profile data collected from NATSUSHIMA in the North Pacific Ocean from 2003-07-05 to...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from KAIYO-MARU and MIRAI in the North Pacific Ocean from 1999-05-23 to 1999-09-10 (NODC Accession 0115168)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115168 includes biological, chemical, discrete sample, physical and profile data collected from KAIYO-MARU and MIRAI in the North Pacific Ocean from...

  4. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the L'ATALANTE in the North Atlantic Ocean from 2001-02-03 to 2001-02-24 (NODC Accession 0113520)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113520 includes chemical, discrete sample, physical and profile data collected from L'ATALANTE in the North Atlantic Ocean from 2001-02-03 to...

  5. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the L'ATALANTE in the North Atlantic Ocean from 2001-03-22 to 2001-04-13 (NODC Accession 0113521)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113521 includes chemical, discrete sample, physical and profile data collected from L'ATALANTE in the North Atlantic Ocean from 2001-03-22 to...

  6. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from Sarmiento de Gamboa in the North Atlantic Ocean from 2011-01-28 to 2011-03-14 (NCEI Accession 0144248)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0144248 includes discrete sample and profile data collected from Sarmiento de Gamboa in the North Atlantic Ocean from 2011-01-28 to 2011-03-14. These...

  7. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the THALASSA in the North Atlantic Ocean from 2001-08-23 to 2001-09-13 (NODC Accession 0113600)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113600 includes chemical, discrete sample, physical and profile data collected from THALASSA in the North Atlantic Ocean from 2001-08-23 to...

  8. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HESPERIDES in the South Atlantic Ocean from 1995-12-03 to 1996-01-05 (NODC Accession 0113549)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113549 includes biological, chemical, discrete sample, physical and profile data collected from HESPERIDES in the South Atlantic Ocean from...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HESPERIDES in the North Atlantic Ocean from 1992-06-14 to 1992-08-15 (NODC Accession 0115227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115227 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean from 1992-06-14 to...

  10. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HESPERIDES in the South Atlantic Ocean from 1996-01-17 to 1996-02-05 (NODC Accession 0113755)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113755 includes biological, chemical, discrete sample, physical and profile data collected from HESPERIDES in the South Atlantic Ocean from...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the MARION DUFRESNE in the South Atlantic Ocean from 2008-02-07 to 2008-03-24 (NODC Accession 0112841)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112841 includes chemical, discrete sample, physical and profile data collected from MARION DUFRESNE in the South Atlantic Ocean from 2008-02-07 to...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HAKUREI MARU in the South Pacific Ocean from 1996-04-12 to 1996-06-10 (NODC Accession 0112341)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112341 includes biological, chemical, discrete sample, physical and profile data collected from HAKUREI MARU in the South Pacific Ocean from...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the OSHORO MARU in the North Pacific Ocean from 1993-06-11 to 1993-06-20 (NODC Accession 0115404)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115404 includes chemical, discrete sample, physical and profile data collected from OSHORO MARU in the North Pacific Ocean from 1993-06-11 to...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean and Philippine Sea from 1997-01-21 to 1997-02-09 (NODC Accession 0112277)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112277 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean and...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 1999-05-08 to 1999-05-30 (NODC Accession 0112252)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112252 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 1999-05-08 to 1999-05-30...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2003-04-22 to 2003-05-12 (NODC Accession 0112207)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112207 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the DISCOVERY in the North Atlantic Ocean from 1990-06-12 to 1990-06-24 (NODC Accession 0113885)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113885 includes chemical, discrete sample, physical and profile data collected from DISCOVERY in the North Atlantic Ocean from 1990-06-12 to...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from MELVILLE in the North Pacific Ocean and Philippine Sea from 2013-03-21 to 2013-05-01 (NODC Accession 0117338)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117338 includes chemical, discrete sample, physical and profile data collected from MELVILLE in the North Pacific Ocean and Philippine Sea from...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and Philippine Sea from 2000-11-05 to 2000-11-20 (NODC Accession 0115289)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115289 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and Philippine...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from RYOFU MARU in the North Pacific Ocean from 2012-07-26 to 2012-09-13 (NODC Accession 0117671)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0117671 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 2012-07-26...

  1. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the KNORR in the South Pacific Ocean from 2005-08-21 to 2005-10-06 (NODC Accession 0108071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108071 includes chemical, discrete sample, physical and profile data collected from KNORR in the South Pacific Ocean from 2005-08-21 to 2005-10-06...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean from 1997-05-30 to 1997-06-22 (NODC Accession 0117505)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117505 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 1997-05-30...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and HYDROSTATIC PRESSURE collected from discrete sample and profile observations using CTD, bottle and other instruments from the SEWARD JOHNSON in the North Atlantic Ocean from 2003-04-18 to 2003-05-22 (NODC Accession 0113596)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113596 includes chemical, discrete sample, physical and profile data collected from SEWARD JOHNSON in the North Atlantic Ocean from 2003-04-18 to...

  4. Dissolved inorganic carbon, pH, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 1999-06-10 to 1999-07-09 (NODC Accession 0113584)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113584 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 1999-06-10 to 1999-07-09...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship GORDON GUNTER in the North Atlantic Ocean and Stellwagen Bank National Marine Sanctuary from 2014-03-01 to 2014-03-08 (NCEI Accession 0157464)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157464 includes chemical, discrete sample, physical and profile data collected from NOAA Ship GORDON GUNTER in the North Atlantic Ocean and...

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship PISCES in the North Atlantic Ocean from 2012-10-27 to 2012-11-13 (NCEI Accession 0157447)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157447 includes chemical, discrete sample, physical and profile data collected from NOAA Ship PISCES in the North Atlantic Ocean from 2012-10-27 to...

  7. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1992-06-20 to 1992-07-05 (NODC Accession 0112235)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112235 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1992-06-20 to...

  8. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 2001-07-10 to 2001-07-21 (NODC Accession 0112247)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112247 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 2001-07-10 to...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 2000-06-01 to 2000-06-15 (NODC Accession 0112243)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112243 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 2000-06-01 to...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1999-06-22 to 1999-07-06 (NODC Accession 0112241)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112241 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1999-06-22 to...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1992-06-20 to 1992-07-05 (NODC Accession 0112234)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112234 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1992-06-20 to...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1998-07-18 to 1998-08-18 (NODC Accession 0112239)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112239 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1998-07-18 to...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1999-07-19 to 1999-08-19 (NODC Accession 0112242)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112242 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1999-07-19 to...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1999-06-01 to 1999-06-15 (NODC Accession 0112240)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112240 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1999-06-01 to...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 2001-06-04 to 2001-06-10 (NODC Accession 0112246)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112246 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 2001-06-04 to...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1997-07-11 to 1997-08-11 (NODC Accession 0112236)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112236 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1997-07-11 to...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 1992-06-20 to 1992-07-05 (NODC Accession 0112233)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112233 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 1992-06-20 to...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Hokusei Maru in the North Pacific Ocean from 2000-07-29 to 2000-08-08 (NODC Accession 0112245)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112245 includes chemical, discrete sample, physical and profile data collected from Hokusei Maru in the North Pacific Ocean from 2000-07-29 to...

  19. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean from 2003-06-20 to 2003-07-13 (NODC Accession 0112281)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112281 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean from...

  20. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2000-05-09 to 2000-06-09 (NODC Accession 0112201)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112201 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  1. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean from 1998-06-09 to 1998-07-02 (NODC Accession 0115287)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115287 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 1998-06-09...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean from 2002-06-20 to 2002-08-05 (NODC Accession 0115277)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115277 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean from 2002-06-20...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean from 2004-06-08 to 2004-07-03 (NODC Accession 0112284)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112284 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean from...

  4. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the North Pacific Ocean from 2003-04-25 to 2003-05-12 (NODC Accession 0112280)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112280 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean from...

  5. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the North Pacific Ocean and Philippine Sea from 1999-04-19 to 1999-05-26 (NODC Accession 0115284)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115284 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the North Pacific Ocean and Philippine...

  6. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the OSHORO MARU in the North Pacific Ocean from 2002-06-06 to 2002-06-19 (NODC Accession 0112272)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112272 includes chemical, discrete sample, physical and profile data collected from OSHORO MARU in the North Pacific Ocean from 2002-06-06 to...

  7. PH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from Sarmiento de Gamboa in the Labrador Sea and North Atlantic Ocean from 2012-06-22 to 2012-07-20 (NCEI Accession 0156920)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0156920 includes chemical, discrete sample, physical and profile data collected from Sarmiento de Gamboa in the Labrador Sea and North Atlantic Ocean...

  8. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship MALCOLM BALDRIGE in the Indian Ocean and Laccadive Sea from 1995-09-22 to 1995-10-25 (NODC Accession 0114478)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0114478 includes chemical, discrete sample, physical and profile data collected from NOAA Ship MALCOLM BALDRIGE in the Indian Ocean and Laccadive Sea...

  9. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Hakuho Maru in the Indian Ocean from 1994-12-13 to 1995-01-28 (NODC Accession 0113955)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113955 includes biological, chemical, discrete sample, physical and profile data collected from Hakuho Maru in the Indian Ocean from 1994-12-13 to...

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2008-04-22 to 2008-05-12 (NODC Accession 0112335)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112335 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2008-08-04 to 2008-08-19 (NODC Accession 0112337)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112337 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  12. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from RYOFU MARU in the North Pacific Ocean and Philippine Sea from 2000-06-20 to 2000-07-31 (NODC Accession 0112278)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0112278 includes discrete sample and profile data collected from RYOFU MARU in the North Pacific Ocean and Philippine Sea from 2000-06-20 to...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the KAIYO-MARU in the North Pacific Ocean and Philippine Sea from 1996-06-17 to 1996-07-02 (NODC Accession 0115016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115016 includes chemical, discrete sample, physical and profile data collected from KAIYO-MARU in the North Pacific Ocean and Philippine Sea from...

  14. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the KEIFU MARU in the North Pacific Ocean and Philippine Sea from 2001-05-09 to 2001-06-18 (NODC Accession 0112202)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112202 includes biological, chemical, discrete sample, physical and profile data collected from KEIFU MARU in the North Pacific Ocean and Philippine...

  15. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the MIKHAIL SOMOV in the South Atlantic Ocean from 1981-10-09 to 1981-11-25 (NODC Accession 0117504)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0117504 includes chemical, discrete sample, physical and profile data collected from MIKHAIL SOMOV in the South Atlantic Ocean from 1981-10-09 to...

  16. pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 1996-09-10 to 1996-10-03 (NODC Accession 0113582)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113582 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 1996-09-10 to 1996-10-03...

  17. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the Ryofu Maru II in the North Pacific Ocean from 2005-06-15 to 2005-07-04 (NODC Accession 0109905)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0109905 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the North Pacific Ocean from...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AKADEMIK ALEKSANDR NESMEYANOV in the North Pacific Ocean and Sea of Okhotsk from 1993-08-08 to 1993-09-21 (NODC Accession 0115169)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115169 includes discrete sample and profile data collected from AKADEMIK ALEKSANDR NESMEYANOV in the North Pacific Ocean and Sea of Okhotsk from...

  19. Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification.

    Science.gov (United States)

    Mos, Benjamin; Byrne, Maria; Dworjanyn, Symon A

    2016-02-01

    Decreasing oceanic pH (ocean acidification) has emphasised the influence of carbonate chemistry on growth of calcifying marine organisms. However, calcifiers can also change carbonate chemistry of surrounding seawater through respiration and calcification, a potential limitation for aquaculture. This study examined how seawater exchange rate and stocking density of the sea urchin Tripneustes gratilla that were reproductively mature affected carbonate system parameters of their culture water, which in turn influenced growth, gonad production and gonad condition. Growth, relative spine length, gonad production and consumption rates were reduced by up to 67% by increased density (9-43 individuals.m(-2)) and reduced exchange rates (3.0-0.3 exchanges.hr(-1)), but survival and food conversion efficiency were unaffected. Analysis of the influence of seawater parameters indicated that reduced pH and calcite saturation state (ΩCa) were the primary factors limiting gonad production and growth. Uptake of bicarbonate and release of respiratory CO2 by T. gratilla changed the carbonate chemistry of surrounding water. Importantly total alkalinity (AT) was reduced, likely due to calcification by the urchins. Low AT limits the capacity of culture water to buffer against acidification. Direct management to counter biogenic acidification will be required to maintain productivity and reproductive output of marine calcifiers, especially as the ocean carbonate system is altered by climate driven ocean acidification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Geobiological Responses to Ocean Acidification

    Science.gov (United States)

    Potts, D. C.

    2008-12-01

    During 240Ma of evolution, scleractinian corals survived major changes in ocean chemistry, yet recent concerns with rapid acidification after ca. 40Ma of almost constant oceanic pH have tended to distract attention from natural pH variation in coastal waters, where most corals and reefs occur. Unaltered skeletal environmental proxies reflect conditions experienced by individual organisms, with any variation on micro- habitat and micro-time scales appropriate for that individual's ecology, behavior and physiology, but proxy interpretation usually extrapolates to larger spatial (habitat, region to global) and temporal (seasonal, annual, interannual) scales. Therefore, predicting consequences of acidification for both corals and reefs requires greater understanding of: 1. Many potential indirect consequences of pH change that may affect calcification and/or carbonate accretion: e.g. an individual's developmental rates, growth, final size, general physiology and reproductive success; its population's distribution and abundance, symbionts, food availability, predators and pathogens; and its community and ecosystem services. 2. Potentially diverse responses to declining pH, ranging from non-evolutionary, rapid physiological changes (acclimation) or long term (seasonal to interannual) plasticity (acclimatization) of individuals, through genetic adaptation in local populations, and up to directional changes in species" characteristics and/or radiations/extinctions. 3. The evolutionary and environmental history of an organism's lineage, its ecological (own lifetime) exposure to environmental variation, and "pre-adaptation" via other factors acting on correlated characters.

  1. Coral calcifying fluid pH is modulated by seawater carbonate chemistry not solely seawater pH.

    Science.gov (United States)

    Comeau, S; Tambutté, E; Carpenter, R C; Edmunds, P J; Evensen, N R; Allemand, D; Ferrier-Pagès, C; Tambutté, S; Venn, A A

    2017-01-25

    Reef coral calcification depends on regulation of pH in the internal calcifying fluid (CF) in which the coral skeleton forms. However, little is known about calcifying fluid pH (pH CF ) regulation, despite its importance in determining the response of corals to ocean acidification. Here, we investigate pH CF in the coral Stylophora pistillata in seawater maintained at constant pH with manipulated carbonate chemistry to alter dissolved inorganic carbon (DIC) concentration, and therefore total alkalinity (A T ). We also investigate the intracellular pH of calcifying cells, photosynthesis, respiration and calcification rates under the same conditions. Our results show that despite constant pH in the surrounding seawater, pH CF is sensitive to shifts in carbonate chemistry associated with changes in [DIC] and [A T ], revealing that seawater pH is not the sole driver of pH CF Notably, when we synthesize our results with published data, we identify linear relationships of pH CF with the seawater [DIC]/[H + ] ratio, [A T ]/ [H + ] ratio and [[Formula: see text

  2. Alterations in seawater pH and CO 2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta)

    Science.gov (United States)

    Semesi, I. Sware; Kangwe, Juma; Björk, Mats

    2009-09-01

    Calcification in the marine environment is the basis for the accretion of carbonate in structures such as coral reefs, algal ridges and carbonate sands. Among the organisms responsible for such calcification are the Corallinaceae (Rhodophyta), recognised as major contributors to the process world-wide. Hydrolithon sp. is a coralline alga that often forms rhodoliths in the Western Indian Ocean. In Zanzibar, it is commonly found in shallow lagoons, where it often grows within seagrass beds and/or surrounded by green algae such as Ulva sp. Since seagrasses in Zanzibar have recently been shown to raise the pH of the surrounding seawater during the day, and since calcification rates are sensitive to pH, which changes the saturation state of calcium carbonate, we measured the effects of pH on photosynthetic and calcification rates of this alga. It was found that pH had significant effects on both calcification and photosynthesis. While increased pH enhanced calcification rates both in the light and in the dark at pH >8.6, photosynthetic rates decreased. On the other hand, an increase in dissolved CO 2 concentration to ˜26 μmol kg -1 (by bubbling with air containing 0.9 mbar CO 2) caused a decrease in seawater pH which resulted in 20% less calcification after 5 days of exposure, while enhancing photosynthetic rates by 13%. The ecological implications of these findings is that photosynthetically driven changes in water chemistry by surrounding plants can affect calcification rates of coralline algae, as may future ocean acidification resulting from elevated atmospheric CO 2.

  3. Scales and sources of pH and dissolved oxygen variability in a shallow, upwelling-driven ecosystem

    Science.gov (United States)

    Tanner, C. A.; Martz, T.; Levin, L. A.

    2011-12-01

    semidiurnal pH variability increases 5-fold relative to the magnitude of change during northward alongshore. Applying an empirically-determined alkalinity relationship, we conclude that changes in the carbonate chemistry parameters are largely driven by changes in total carbon. On small spatial scales, cross-shore differences exist in mean oxygen and pH but differences in alongshore mean oxygen and pH at a given depth appears to be negligible. Cross-shore differences can equate to a 0.05 pH unit decrease and 25 μmol kg-1 oxygen decrease over 1 km at a given depth. Strong spatial variability in pH and oxygen conditions exist over vertical gradients in the kelp forest, with mean pH at the surface (7m) being 0.2 pH units greater than at the bottom (17m) and mean oxygen being 104 μmol kg-1 greater. The observed range of pH (7.55-8.22) observed in this shallow environment during the course of a year is greater than open ocean predictions for a global mean pH reduction of 0.2-0.3 units predicted by the year 2100. These results suggest that organisms on exposed upwelling coasts may be adapted to a range of pH conditions and highlight the need for scientists to consider biological response to varying scales of pH change in order to develop more realistic predictions of the impacts of climate change for the coastal zone.

  4. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  5. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera.

    Science.gov (United States)

    Prazeres, Martina; Uthicke, Sven; Pandolfi, John M

    2015-03-22

    Large benthic foraminifera are significant contributors to sediment formation on coral reefs, yet they are vulnerable to ocean acidification. Here, we assessed the biochemical and morphological impacts of acidification on the calcification of Amphistegina lessonii and Marginopora vertebralis exposed to different pH conditions. We measured growth rates (surface area and buoyant weight) and Ca-ATPase and Mg-ATPase activities and calculated shell density using micro-computer tomography images. In A. lessonii, we detected a significant decrease in buoyant weight, a reduction in the density of inner skeletal chambers, and an increase of Ca-ATPase and Mg-ATPase activities at pH 7.6 when compared with ambient conditions of pH 8.1. By contrast, M. vertebralis showed an inhibition in Mg-ATPase activity under lowered pH, with growth rate and skeletal density remaining constant. While M. vertebralis is considered to be more sensitive than A. lessonii owing to its high-Mg-calcite skeleton, it appears to be less affected by changes in pH, based on the parameters assessed in this study. We suggest difference in biochemical pathways of calcification as the main factor influencing response to changes in pH levels, and that A. lessonii and M. vertebralis have the ability to regulate biochemical functions to cope with short-term increases in acidity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  6. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  7. The Vertical Profile of Ocean Mixing

    Science.gov (United States)

    Ferrari, R. M.; Nikurashin, M.; McDougall, T. J.; Mashayek, A.

    2014-12-01

    The upwelling of bottom waters through density surfaces in the deep ocean is not possible unless the sloping nature of the sea floor is taken into account. The bottom--intensified mixing arising from interaction of internal tides and geostrophic motions with bottom topography implies that mixing is a decreasing function of height in the deep ocean. This would further imply that the diapycnal motion in the deep ocean is downward, not upwards as is required by continuity. This conundrum regarding ocean mixing and upwelling in the deep ocean will be resolved by appealing to the fact that the ocean does not have vertical side walls. Implications of the conundrum for the representation of ocean mixing in climate models will be discussed.

  8. Modelling coral polyp calcification in relation to ocean acidification

    Directory of Open Access Journals (Sweden)

    S. Hohn

    2012-11-01

    Full Text Available Rising atmospheric CO2 concentrations due to anthropogenic emissions induce changes in the carbonate chemistry of the oceans and, ultimately, a drop in ocean pH. This acidification process can harm calcifying organisms like coccolithophores, molluscs, echinoderms, and corals. It is expected that ocean acidification in combination with other anthropogenic stressors will cause a severe decline in coral abundance by the end of this century, with associated disastrous effects on reef ecosystems. Despite the growing importance of the topic, little progress has been made with respect to modelling the impact of acidification on coral calcification. Here we present a model for a coral polyp that simulates the carbonate system in four different compartments: the seawater, the polyp tissue, the coelenteron, and the calcifying fluid. Precipitation of calcium carbonate takes place in the metabolically controlled calcifying fluid beneath the polyp tissue. The model is adjusted to a state of activity as observed by direct microsensor measurements in the calcifying fluid. We find that a transport mechanism for bicarbonate is required to supplement carbon into the calcifying fluid because CO2 diffusion alone is not sufficient to sustain the observed calcification rates. Simulated CO2 perturbation experiments reveal decreasing calcification rates under elevated pCO2 despite the strong metabolic control of the calcifying fluid. Diffusion of CO2 through the tissue into the calcifying fluid increases with increasing seawater pCO2, leading to decreased aragonite saturation in the calcifying fluid. Our modelling study provides important insights into the complexity of the calcification process at the organism level and helps to quantify the effect of ocean acidification on corals.

  9. Measuring pH variability using an experimental sensor on an underwater glider

    Directory of Open Access Journals (Sweden)

    M. P. Hemming

    2017-05-01

    Full Text Available Autonomous underwater gliders offer the capability of measuring oceanic parameters continuously at high resolution in both vertical and horizontal planes, with timescales that can extend to many months. An experimental ion-sensitive field-effect transistor (ISFET sensor measuring pH on the total scale was attached to a glider during the REP14-MED experiment in June 2014 in the Sardinian Sea in the northwestern Mediterranean. During the deployment, pH was sampled at depths of up to 1000 m along an 80 km transect over a period of 12 days. Water samples were collected from a nearby ship and analysed for dissolved inorganic carbon concentration and total alkalinity to derive the pH for validating the ISFET sensor measurements. The vertical resolution of the pH sensor was good (1 to 2 m, but stability was poor and the sensor drifted in a non-monotonous fashion. In order to remove the sensor drift, a depth-constant time-varying offset was applied throughout the water column for each dive, reducing the spread of the data by approximately two-thirds. Furthermore, the ISFET sensor required temperature- and pressure-based corrections, which were achieved using linear regression. Correcting for this decreased the apparent sensor pH variability by a further 13 to 31 %. Sunlight caused an apparent sensor pH decrease of up to 0.1 in surface waters around local noon, highlighting the importance of shielding the sensor from light in future deployments. The corrected pH from the ISFET sensor is presented along with potential temperature, salinity, potential density anomalies (σθ, and dissolved oxygen concentrations (c(O2 measured by the glider, providing insights into the physical and biogeochemical variability in the Sardinian Sea. The pH maxima were identified close to the depth of the summer chlorophyll maximum, where high c(O2 values were also found. Longitudinal pH variations at depth (σθ > 28. 8 kg m−3 highlighted the variability of

  10. Stylophora pistillata in the Red Sea demonstrate higher GFP fluorescence under ocean acidification conditions

    Science.gov (United States)

    Grinblat, Mila; Fine, Maoz; Tikochinski, Yaron; Loya, Yossi

    2018-03-01

    Ocean acidification is thought to exert a major impact on calcifying organisms, including corals. While previous studies have reported changes in the physiological response of corals to environmental change, none have described changes in expression of the ubiquitous host pigments—fluorescent proteins (FPs)—to ocean acidification. The function of FPs in corals is controversial, with the most common consideration being that these primarily regulate the light environment in the coral tissue and protect the host from harmful UV radiation. Here, we provide for the first time experimental evidence that increased fluorescence of colonies of the coral Stylophora pistillata is independent of stress and can be regulated by a non-stressful decrease in pH. Stylophora pistillata is the most abundant and among the most resilient coral species in the northern Gulf of Eilat/Aqaba (GoE/A). Fragmented "sub-colonies" ( n = 72) incubated for 33 days under three pH treatments (ambient, 7.9, and 7.6), under ambient light, and running seawater showed no stress or adverse physiological performance, but did display significantly higher fluorescence, with lower pH. Neither the average number of planulae shed from the experimental sub-colonies nor planulae green fluorescent protein (GFP) expression changed significantly among pH treatments. Sub-colonies incubated under the lower-than-ambient pH conditions showed an increase in both total protein and GFP expression. Since extensive protein synthesis requires a high level of transcription, we suggest that GFP constitutes a UV protection mechanism against potential RNA as well as against DNA damage caused by UV exposure. Manipulating the regulation of FPs in adult corals and planulae, under controlled and combined effects of pH, light, and temperature, is crucial if we are to obtain a better understanding of the role played by this group of proteins in cnidarians.

  11. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, E.M.; Fenton, M.; Meredith, M.P.; Clargo, N.M.; Ossebaar, S.; Ducklow, H.W.; Venables, H.J.; De Baar, H.J.W.

    2017-01-01

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium

  12. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, Elizabeth M.; Fenton, Mairi; Meredith, Michael P.; Clargo, Nicola M.; Ossebaar, Sharyn; Ducklow, Hugh W.; Venables, Hugh J.; de Baar, Henricus

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Omega) for two biologically-important

  13. Ocean Uses: Hawaii (PROUA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  14. Intra-Specific Variation Reveals Potential for Adaptation to Ocean Acidification in a Cold-Water Coral from the Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Melissa D. Kurman

    2017-05-01

    Full Text Available Ocean acidification, the decrease in seawater pH due to the absorption of atmospheric CO2, profoundly threatens the survival of a large number of marine species. Cold-water corals are considered to be among the most vulnerable organisms to ocean acidification because they are already exposed to relatively low pH and corresponding low calcium carbonate saturation states (Ω. Lophelia pertusa is a globally distributed cold-water scleractinian coral that provides critical three-dimensional habitat for many ecologically and economically significant species. In this study, four different genotypes of L. pertusa were exposed to three pH treatments (pH = 7.60, 7.75, and 7.90 over a short (2-week experimental period, and six genotypes were exposed to two pH treatments (pH = 7.60 and 7.90 over a long (6-month experimental period. Their physiological response was measured as net calcification rate and the activity of carbonic anhydrase, a key enzyme in the calcification pathway. In the short-term experiment, net calcification rates did not significantly change with pH, although they were highly variable in the low pH treatment, including some genotypes that maintained positive net calcification in undersaturated conditions. In the 6-month experiment, average net calcification was significantly reduced at low pH, with corals exhibiting net dissolution of skeleton. However, one of the same genotypes that maintained positive net calcification (+0.04% day−1 under the low pH treatment in the short-term experiment also maintained positive net calcification longer than the other genotypes in the long-term experiment, although none of the corals maintained positive calcification for the entire 6 months. Average carbonic anhydrase activity was not affected by pH, although some genotypes exhibited small, insignificant, increases in activity after the sixth month. Our results suggest that while net calcification in L. pertusa is adversely affected by ocean

  15. Differential response of two Mediterranean cold-water coral species to ocean acidification

    Science.gov (United States)

    Movilla, Juancho; Orejas, Covadonga; Calvo, Eva; Gori, Andrea; López-Sanz, Àngel; Grinyó, Jordi; Domínguez-Carrió, Carlos; Pelejero, Carles

    2014-09-01

    Cold-water coral (CWC) reefs constitute one of the most complex deep-sea habitats harboring a vast diversity of associated species. Like other tropical or temperate framework builders, these systems are facing an uncertain future due to several threats, such as global warming and ocean acidification. In the case of Mediterranean CWC communities, the effect may be exacerbated due to the greater capacity of these waters to absorb atmospheric CO2 compared to the global ocean. Calcification in these organisms is an energy-demanding process, and it is expected that energy requirements will be greater as seawater pH and the availability of carbonate ions decrease. Therefore, studies assessing the effect of a pH decrease in skeletal growth, and metabolic balance are critical to fully understand the potential responses of these organisms under a changing scenario. In this context, the present work aims to investigate the medium- to long-term effect of a low pH scenario on calcification and the biochemical composition of two CWCs from the Mediterranean, Dendrophyllia cornigera and Desmophyllum dianthus. After 314 d of exposure to acidified conditions, a significant decrease of 70 % was observed in Desmophyllum dianthus skeletal growth rate, while Dendrophyllia cornigera showed no differences between treatments. Instead, only subtle differences between treatments were observed in the organic matter amount, lipid content, skeletal microdensity, or porosity in both species, although due to the high variability of the results, these differences were not statistically significant. Our results also confirmed a heterogeneous effect of low pH on the skeletal growth rate of the organisms depending on their initial weight, suggesting that those specimens with high calcification rates may be the most susceptible to the negative effects of acidification.

  16. CO2-induced ocean acidification does not affect individual or group behaviour in a temperate damselfish.

    Science.gov (United States)

    Kwan, Garfield Tsz; Hamilton, Trevor James; Tresguerres, Martin

    2017-07-01

    Open ocean surface CO 2 levels are projected to reach approximately 800 µatm, and ocean pH to decrease by approximately 0.3 units by the year 2100 due to anthropogenic CO 2 emissions and the subsequent process of ocean acidification (OA). When exposed to these CO 2 /pH values, several fish species display abnormal behaviour in laboratory tests, an effect proposed to be linked to altered neuronal GABA A- receptor function. Juvenile blacksmith ( Chromis punctipinnis ) are social fish that regularly experience CO 2 /pH fluctuations through kelp forest diurnal primary production and upwelling events, so we hypothesized that they might be resilient to OA. Blacksmiths were exposed to control conditions (pH ∼ 7.92; p CO 2  ∼ 540 µatm), constant acidification (pH ∼ 7.71; p CO 2  ∼ 921 µatm) and oscillating acidification (pH ∼ 7.91, p CO 2  ∼ 560 µatm (day), pH ∼ 7.70, p CO 2  ∼ 955 µatm (night)), and caught and tested in two seasons of the year when the ocean temperature was different: winter (16.5 ± 0.1°C) and summer (23.1 ± 0.1°C). Neither constant nor oscillating CO 2 -induced acidification affected blacksmith individual light/dark preference, inter-individual distance in a shoal or the shoal's response to a novel object, suggesting that blacksmiths are tolerant to projected future OA conditions. However, blacksmiths tested during the winter demonstrated significantly higher dark preference in the individual light/dark preference test, thus confirming season and/or water temperature as relevant factors to consider in behavioural tests.

  17. Genome-Wide Mutation Rate Response to pH Change in the Coral Reef Pathogen Vibrio shilonii AK1.

    Science.gov (United States)

    Strauss, Chloe; Long, Hongan; Patterson, Caitlyn E; Te, Ronald; Lynch, Michael

    2017-08-22

    Recent application of mutation accumulation techniques combined with whole-genome sequencing (MA/WGS) has greatly promoted studies of spontaneous mutation. However, such explorations have rarely been conducted on marine organisms, and it is unclear how marine habitats have influenced genome stability. This report resolves the mutation rate and spectrum of the coral reef pathogen Vibrio shilonii , which causes coral bleaching and endangers the biodiversity maintained by coral reefs. We found that its mutation rate and spectrum are highly similar to those of other studied bacteria from various habitats, despite the saline environment. The mutational properties of this marine bacterium are thus controlled by other general evolutionary forces such as natural selection and genetic drift. We also found that as pH drops, the mutation rate decreases and the mutation spectrum is biased in the direction of generating G/C nucleotides. This implies that evolutionary features of this organism and perhaps other marine microbes might be altered by the increasingly acidic ocean water caused by excess CO 2 emission. Nonetheless, further exploration is needed as the pH range tested in this study was rather narrow and many other possible mutation determinants, such as carbonate increase, are associated with ocean acidification. IMPORTANCE This study explored the pH dependence of a bacterial genome-wide mutation rate. We discovered that the genome-wide rates of appearance of most mutation types decrease linearly and that the mutation spectrum is biased in generating more G/C nucleotides with pH drop in the coral reef pathogen V. shilonii . Copyright © 2017 Strauss et al.

  18. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification

  19. Physiological responses to ocean acidification and warming synergistically reduce condition of the common cockle Cerastoderma edule.

    Science.gov (United States)

    Ong, E Z; Briffa, M; Moens, T; Van Colen, C

    2017-09-01

    The combined effect of ocean acidification and warming on the common cockle Cerastoderma edule was investigated in a fully crossed laboratory experiment. Survival of the examined adult organisms remained high and was not affected by elevated temperature (+3 °C) or lowered pH (-0.3 units). However, the morphometric condition index of the cockles incubated under high pCO 2 conditions (i.e. combined warming and acidification) was significantly reduced after six weeks of incubation. Respiration rates increased significantly under low pH, with highest rates measured under combined warm and low pH conditions. Calcification decreased significantly under low pH while clearance rates increased significantly under warm conditions and were generally lower in low pH treatments. The observed physiological responses suggest that the reduced food intake under hypercapnia is insufficient to support the higher energy requirements to compensate for the higher costs for basal maintenance and growth in future high pCO 2 waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. PhD Dissertations

    OpenAIRE

    Redazione Reti Medievali (a cura di)

    2010-01-01

    Report of PhD Dissertations.Anna Airò La scrittura delle regole. Politica e istituzioni a Taranto nel Quattrocento, Tesi di dottorato di ricerca in Storia medievale, Università degli studi di Firenze, 2005 Pasquale Arfé La Clavis Physicae II (316-529) di Honorius Augustodunensis. Studio ed edizione critica, Tesi di dottorato in Storia della filosofia medievale, Università degli Studi di Napoli "L'Orientale", 2005 Alessandro Azzimonti Scrittura agiografica e strutture di potere nell'Italia c...

  1. The reef-building coral Siderastrea siderea exhibits parabolic responses to ocean acidification and warming.

    Science.gov (United States)

    Castillo, Karl D; Ries, Justin B; Bruno, John F; Westfield, Isaac T

    2014-12-22

    Anthropogenic increases in atmospheric CO2 over this century are predicted to cause global average surface ocean pH to decline by 0.1-0.3 pH units and sea surface temperature to increase by 1-4°C. We conducted controlled laboratory experiments to investigate the impacts of CO2-induced ocean acidification (pCO2 = 324, 477, 604, 2553 µatm) and warming (25, 28, 32°C) on the calcification rate of the zooxanthellate scleractinian coral Siderastrea siderea, a widespread, abundant and keystone reef-builder in the Caribbean Sea. We show that both acidification and warming cause a parabolic response in the calcification rate within this coral species. Moderate increases in pCO2 and warming, relative to near-present-day values, enhanced coral calcification, with calcification rates declining under the highest pCO2 and thermal conditions. Equivalent responses to acidification and warming were exhibited by colonies across reef zones and the parabolic nature of the corals' response to these stressors was evident across all three of the experiment's 30-day observational intervals. Furthermore, the warming projected by the Intergovernmental Panel on Climate Change for the end of the twenty-first century caused a fivefold decrease in the rate of coral calcification, while the acidification projected for the same interval had no statistically significant impact on the calcification rate-suggesting that ocean warming poses a more immediate threat than acidification for this important coral species.

  2. SALIVARY PH CHANGES AFTER GIC RESTORATION ON DECIDUOUS TEETH

    Directory of Open Access Journals (Sweden)

    Chandra Nila Sukma

    2015-06-01

    Full Text Available Glass Ionomer Cement (GIC is the most widely used material in pediatric dentistry. The purpose of this study was to analyze pH changes of saliva after GIC restoration on primary teeth. For this purpose, 20 primary canines which were restored with GIC 24 hours previously were plunged into 20 tubes containing each 1,5 ml pH 6,8 Fusayama artificial saliva and then stored in incubator at the temperature of 37°C. The pH changes were measured at 30, 60, and 90 minutes later with digital pH meter PH-201. It was revealed that the highest pH acceleration was at 30 minutes exposure an decrease thereafter and the lowest pH acceleration was at 90 minutes exposure. Statistical analysis was performed by Anova and Tukey HSD.

  3. Ocean Prediction Center

    Science.gov (United States)

    Social Media Facebook Twitter YouTube Search Search For Go NWS All NOAA Weather Analysis & Forecasts of Commerce Ocean Prediction Center National Oceanic and Atmospheric Administration Analysis & Unified Surface Analysis Ocean Ocean Products Ice & Icebergs NIC Ice Products NAIS Iceberg Analysis

  4. The combined effects of ocean warming and acidification on shallow-water meiofaunal assemblages.

    Science.gov (United States)

    Lee, Matthew R; Torres, Rodrigo; Manríquez, Patricio H

    2017-10-01

    Climate change due to increased anthropogenic CO 2 in the atmosphere is causing an increase in seawater temperatures referred to as ocean warming and a decrease in seawater pH, referred to as ocean acidification. The meiofauna play an important role in the ecology of marine ecosystems and the functions they provide. Using microcosms, meiofaunal assemblages were exposed to two temperatures (15 and 19 °C) and two pHs (pCO 2 of 400 and 1000 ppm), both individually and in combination, for a period of 90 days. The hypothesis that increased temperature will increase meiofaunal abundance was not supported. The hypothesis that a reduced pH will reduce meiofaunal abundance and species richness was supported. The combination of future conditions of temperature and pH (19 °C and pCO 2 of 1000 ppm) did not affect overall abundance but the structure of the nematode assemblage changed becoming dominated by a few opportunistic species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Esophageal pH monitoring

    Science.gov (United States)

    pH monitoring - esophageal; Esophageal acidity test ... Esophageal pH monitoring is used to check how much stomach acid is entering the esophagus. It also checks how well the acid is cleared downward into the ...

  6. Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification

    Science.gov (United States)

    Hennige, S. J.; Wicks, L. C.; Kamenos, N. A.; Bakker, D. C. E.; Findlay, H. S.; Dumousseaud, C.; Roberts, J. M.

    2014-01-01

    Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, μmol O2 g-1 tissue dry weight h-1) than corals in control conditions (28.6±7.30 SE μmol O2 g-1 tissue dry weight h-1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.

  7. The complex effects of ocean acidification on the prominent N2-fixing cyanobacterium Trichodesmium.

    Science.gov (United States)

    Hong, Haizheng; Shen, Rong; Zhang, Futing; Wen, Zuozhu; Chang, Siwei; Lin, Wenfang; Kranz, Sven A; Luo, Ya-Wei; Kao, Shuh-Ji; Morel, François M M; Shi, Dalin

    2017-05-05

    Acidification of seawater caused by anthropogenic carbon dioxide (CO 2 ) is anticipated to influence the growth of dinitrogen (N 2 )-fixing phytoplankton, which contribute a large fraction of primary production in the tropical and subtropical ocean. We found that growth and N 2 -fixation of the ubiquitous cyanobacterium Trichodesmium decreased under acidified conditions, notwithstanding a beneficial effect of high CO 2 Acidification resulted in low cytosolic pH and reduced N 2 -fixation rates despite elevated nitrogenase concentrations. Low cytosolic pH required increased proton pumping across the thylakoid membrane and elevated adenosine triphosphate production. These requirements were not satisfied under field or experimental iron-limiting conditions, which greatly amplified the negative effect of acidification. Copyright © 2017, American Association for the Advancement of Science.

  8. Ocean climate and seal condition

    Directory of Open Access Journals (Sweden)

    Crocker Daniel E

    2005-03-01

    Full Text Available Abstract Background The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual. Results The mean annual weaning weight of pups declined from 1975 to the late 1990s, a period characterized by a large-scale, basin-wide warm decadal regime that included multiple strong or long-duration El Niños; and increased with a return to a cool decadal regime from about 1999 to 2004. Increased foraging effort and decreased mass gain of adult females, indicative of reduced foraging success and nutritional stress, were associated with high ocean temperatures. Conclusion Despite ranging widely and foraging deeply in cold waters beyond coastal thermoclines in the northeastern Pacific, elephant seals are impacted significantly by ocean thermal dynamics. Ocean warming redistributes prey decreasing foraging success of females, which in turn leads to lower weaning mass of pups. Annual fluctuations in weaning mass, in turn, reflect the foraging success of females during the year prior to giving birth and signals changes in ocean temperature cycles.

  9. The Southern Ocean biogeochemical divide.

    Science.gov (United States)

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  10. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from AIRCRAFT, ARCTIC IVIK and others in the Arctic Ocean, Baffin Bay and others from 1974-08-11 to 2009-10-15 (NODC Accession 0116709)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0116709 includes biological, chemical, discrete sample, physical and profile data collected from AIRCRAFT, ARCTIC IVIK, Amundsen, HENRY LARSEN, JOHN...

  11. National Coral Reef Monitoring Program: Dissolved inorganic carbon, total alkalinity, pH and other variables collected from surface discrete observations using infrared dissolved inorganic carbon analyzer, alkalinity titrator and other instruments from the North Atlantic Ocean near Key West, Florida (Class III climate monitoring sites) from 2012-03-23 to 2014-12-11 (NCEI Accession 0132022)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains data collected to monitor changes to coral reef carbonate chemistry over time, at US affiliated coral reef sites, through quantifying...

  12. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using Alkalinity titrator, CTD and other instruments from the MIRAI in the Coral Sea, North Pacific Ocean and others from 2009-04-10 to 2009-07-03 (NODC Accession 0108084)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108084 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from MIRAI in the Coral Sea, North...

  13. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Ryofu Maru II in the East China Sea (Tung Hai), North Pacific Ocean and Philippine Sea from 2004-10-21 to 2004-11-09 (NODC Accession 0112286)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112286 includes biological, chemical, discrete sample, physical and profile data collected from Ryofu Maru II in the East China Sea (Tung Hai), North...

  14. Temperature, salinity, dissolved oxygen, pH and chlorophyll profile data collected by CTD from the annual Longline Survey by multiple platforms in the Bering Sea and North Pacific Ocean from 2009-05-25 to 2009-08-29 (NCEI Accession 0136940)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The IPHC conducts an annual longline fish survey on a 10x10 nautical mile grid from southern Oregon north to the Gulf of Alaska, out along the Aleutian Island chain,...

  15. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from ENDEAVOUR, JOHN P. TULLY and PARIZEAU in the Coastal Waters of SE Alaska, Gulf of Alaska and North Pacific Ocean from 1985-02-12 to 2010-06-18 (NODC Accession 0110260)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0110260 includes discrete sample and profile data collected from ENDEAVOUR, JOHN P. TULLY and PARIZEAU in the Coastal Waters of SE Alaska, Gulf of...

  16. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from NOAA Ship DISCOVERER in the Gulf of Alaska and North Pacific Ocean from 1991-03-07 to 1991-04-07 (NODC Accession 0115175)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115175 includes chemical, discrete sample, physical and profile data collected from NOAA Ship DISCOVERER in the Gulf of Alaska and North Pacific...

  17. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample, profile and underway - surface observations using CTD, Carbon dioxide (CO2) gas analyzer and other instruments from the METEOR in the South Atlantic Ocean from 1992-12-27 to 1993-01-31 (NODC Accession 0115173)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115173 includes chemical, discrete sample, meteorological, physical, profile and underway - surface data collected from METEOR in the South Atlantic...

  18. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the RYOFU MARU in the East China Sea (Tung Hai), North Pacific Ocean and Philippine Sea from 1997-06-23 to 1997-07-22 (NODC Accession 0115597)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115597 includes biological, chemical, discrete sample, physical and profile data collected from RYOFU MARU in the East China Sea (Tung Hai), North...

  19. Partial pressure (or fugacity) of carbon dioxide, pH (total scale), salinity and other variables collected from time series observations from Mooring_GraysRf_81W_31N in the Gray's Reef National Marine Sanctuary, North Atlantic Ocean from 2006-07-18 to 2015-10-15 (NODC Accession 0109904)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0109904 includes chemical, meteorological, physical and time series data collected from MOORING GRAYSRF_81W_31N and Mooring_GraysRf_81W_31N in the...

  20. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, pH, alkalinity, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer and other instruments from Benguela Stream in the Caribbean Sea, English Channel and North Atlantic Ocean from 2011-01-08 to 2011-12-29 (NCEI Accession 0157237)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0157237 includes Surface underway, biological, chemical, meteorological, optical and physical data collected from Benguela Stream in the Caribbean...