Relating Stomatal Conductance to Leaf Functional Traits.
Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge
2015-10-12
Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.
Wu, Bing-Jie; Chow, Wah Soon; Liu, Yu-Jun; Shi, Lei; Jiang, Chuang-Dao
2014-12-01
During leaf development, the increase in stomatal conductance cannot meet photosynthetic demand for CO2, thus leading to stomatal limitation of photosynthesis (Ls). Considering the crucial influences of stomatal development on stomatal conductance, we speculated whether stomatal development limits photosynthesis to some extent. To test this hypothesis, stomatal development, stomatal conductance and photosynthesis were carefully studied in both Syringa oblata (normal greening species) and Euonymus japonicus Thunb (delayed greening species). Our results show that the size of stomata increased gradually with leaf expansion, resulting in increased stomatal conductance up to the time of full leaf expansion. During this process, photosynthesis also increased steadily. Compared to that in S. oblata, the development of chloroplasts in E. japonicus Thunb was obviously delayed, leading to a delay in the improvement of photosynthetic capacity. Further analysis revealed that before full leaf expansion, stomatal limitation increased rapidly in both S. oblata and E. japonicus Thunb; after full leaf expansion, stomatal limitation continually increased in E. japonicus Thunb. Accordingly, we suggested that the enhancement of photosynthetic capacity is the main factor leading to stomatal limitation during leaf development but that stomatal development can alleviate stomatal limitation with the increase of photosynthesis by controlling gas exchange. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees
Struthers, Raymond; Ivanova, Anna; Tits, Laurent; Swennen, Rony; Coppin, Pol
2015-07-01
Repeated measurements using thermal infrared remote sensing were used to characterize the change in canopy temperature over time and factors that influenced this change on 'Conference' pear trees (Pyrus communis L.). Three different types of sensors were used, a leaf porometer to measure leaf stomatal conductance, a thermal infrared camera to measure the canopy temperature and a meteorological sensor to measure weather variables. Stomatal conductance of water stressed pear was significantly lower than in the control group 9 days after stress began. This decrease in stomatal conductance reduced transpiration, reducing evaporative cooling that increased canopy temperature. Using thermal infrared imaging with wavelengths between 7.5 and13 μm, the first significant difference was measured 18 days after stress began. A second order derivative described the average rate of change of the difference between the stress treatment and control group. The average rate of change for stomatal conductance was 0.06 (mmol m-2 s-1) and for canopy temperature was -0.04 (°C) with respect to days. Thermal infrared remote sensing and data analysis presented in this study demonstrated that the differences in canopy temperatures between the water stress and control treatment due to stomata regulation can be validated.
Hernandez, Maria Jose; Montes, Fernando; Ruiz, Federico; Lopez, Gustavo; Pita, Pilar
2016-05-01
Stomatal conductance has long been considered of key interest in the study of plant adaptation to water stress. The expected increase in extreme meteorological events under a climate change scenario may compromise survival in Eucalyptus globulus plantations established in south-western Spain. We investigated to what extent changes in stomatal conductance in response to high vapour pressure deficits and water shortage are mediated by hydraulic and chemical signals in greenhouse-grown E. globulus clones. Rooted cuttings were grown in pots and submitted to two watering regimes. Stomatal conductance, shoot water potential, sap pH and hydraulic conductance were measured consecutively in each plant over 4 weeks under vapour pressure deficits ranging 0·42 to 2·25 kPa. Evapotranspiration, growth in leaf area and shoot biomass were also determined. There was a significant effect of both clone and watering regime in stomatal conductance and leaf-specific hydraulic conductance, but not in sap pH. Sap pH decreased as water potential and stomatal conductance decreased under increasing vapour pressure deficit. There was no significant relationship between stomatal conductance and leaf-specific hydraulic conductance. Stomata closure precluded shoot water potential from falling below -1·8 MPa. The percentage loss of hydraulic conductance ranged from 40 to 85 %. The highest and lowest leaf-specific hydraulic conductances were measured in clones from the same half-sib families. Water shortage reduced growth and evapotranspiration, decreases in evapotranspiration ranging from 14 to 32 % in the five clones tested. Changes in sap pH seemed to be a response to changes in atmospheric conditions rather than soil water in the species. Stomata closed after a considerable amount of hydraulic conductance was lost, although intraspecific differences in leaf-specific hydraulic conductance suggest the possibility of selection for improved productivity under water-limiting conditions
Kropp, H.; Loranty, M. M.; Natali, S.; Kholodov, A. L.; Alexander, H. D.; Zimov, N.
2017-12-01
Boreal forests may experience increased water stress under global climate change as rising air temperatures increase evaporative demand and decrease soil moisture. Increases in plant water stress can decrease stomatal conductance, and ultimately, decrease primary productivity. A large portion of boreal forests are located in Siberia, and are dominated by deciduous needleleaf trees, Larix spp. We investigated the variability and drivers of canopy stomatal conductance in upland Larix stands with different stand density that arose from differing fire severity. Our measurements focus on an open canopy stand with low tree density and deep permafrost thaw depth, and a closed canopy stand with high tree density and shallow permafrost thaw depth. We measured canopy stomatal conductance, soil moisture, and micrometeorological variables. Our results demonstrate that canopy stomatal conductance was significantly lower in the closed canopy stand with a significantly higher sensitivity to increases in atmospheric evaporative demand. Canopy stomatal conductance in both stands was tightly coupled to precipitation that occurred over the previous week; however, the closed canopy stand showed a significantly greater sensitivity to increases in precipitation compared to the open canopy stand. Differences in access to deep versus shallow soil moisture and the physical characteristics of the soil profile likely contribute to differences in sensitivity to precipitation between the two stands. Our results indicate that Larix primary productivity may be highly sensitive to changes in evaporative demand and soil moisture that can result of global climate change. However, the effect of increasing air temperatures and changes in precipitation will differ significantly depending on stand density, thaw depth, and the hydraulic characteristics of the soil profile.
Using Plant Temperature to Evaluate the Response of Stomatal Conductance to Soil Moisture Deficit
Directory of Open Access Journals (Sweden)
Ming-Han Yu
2015-10-01
Full Text Available Plant temperature is an indicator of stomatal conductance, which reflects soil moisture stresses. We explored the relationship between plant temperature and soil moisture to optimize irrigation schedules in a water-stress experiment using Firmiana platanifolia (L. f. Marsili in an incubator. Canopy temperature, leaf temperature, and stomatal conductance were measured using thermal imaging and a porometer. The results indicated that (1 stomatal conductance decreased with declines in soil moisture, and reflected average canopy temperature; (2 the variation of the leaf temperature distribution was a reliable indicator of soil moisture stress, and the temperature distribution in severely water-stressed leaves exhibited greater spatial variation than that in the presence of sufficient irrigation; (3 thermal indices (Ig and crop water stress index (CWSI were theoretically proportional to stomatal conductance (gs, Ig was certified to have linearity relationship with gs and CWSI have a logarithmic relationship with gs, and both of the two indices can be used to estimate soil moisture; and (4 thermal imaging data can reflect water status irrespective of long-term water scarcity or lack of sudden rainfall. This study applied thermal imaging methods to monitor plants and develop adaptable irrigation scheduling, which are important for the formulation of effective and economical agriculture and forestry policy.
Applicability of common stomatal conductance models in maize under varying soil moisture conditions.
Wang, Qiuling; He, Qijin; Zhou, Guangsheng
2018-07-01
In the context of climate warming, the varying soil moisture caused by precipitation pattern change will affect the applicability of stomatal conductance models, thereby affecting the simulation accuracy of carbon-nitrogen-water cycles in ecosystems. We studied the applicability of four common stomatal conductance models including Jarvis, Ball-Woodrow-Berry (BWB), Ball-Berry-Leuning (BBL) and unified stomatal optimization (USO) models based on summer maize leaf gas exchange data from a soil moisture consecutive decrease manipulation experiment. The results showed that the USO model performed best, followed by the BBL model, BWB model, and the Jarvis model performed worst under varying soil moisture conditions. The effects of soil moisture made a difference in the relative performance among the models. By introducing a water response function, the performance of the Jarvis, BWB, and USO models improved, which decreased the normalized root mean square error (NRMSE) by 15.7%, 16.6% and 3.9%, respectively; however, the performance of the BBL model was negative, which increased the NRMSE by 5.3%. It was observed that the models of Jarvis, BWB, BBL and USO were applicable within different ranges of soil relative water content (i.e., 55%-65%, 56%-67%, 37%-79% and 37%-95%, respectively) based on the 95% confidence limits. Moreover, introducing a water response function, the applicability of the Jarvis and BWB models improved. The USO model performed best with or without introducing the water response function and was applicable under varying soil moisture conditions. Our results provide a basis for selecting appropriate stomatal conductance models under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.
Global CO2 rise leads to reduced maximum stomatal conductance in Florida vegetation
Lammertsma, E.I.; de Boer, H.J.; Dekker, S.C.; Dilcher, D.L.; Lotter, A.F.; Wagner-Cremer, F.
2011-01-01
A principle response of C3 plants to increasing concentrations of atmospheric CO2 (CO2) is to reduce transpirational water loss by decreasing stomatal conductance (gs) and simultaneously increase assimilation rates. Via this adaptation, vegetation has the ability to alter hydrology and climate.
Directory of Open Access Journals (Sweden)
D. Lombardozzi
2012-08-01
Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.
Shimono, Hiroyuki; Nakamura, Hirofumi; Hasegawa, Toshihiro; Okada, Masumi
2013-08-01
An elevated atmospheric CO2 concentration ([CO2 ]) can reduce stomatal conductance of leaves for most plant species, including rice (Oryza sativa L.). However, few studies have quantified seasonal changes in the effects of elevated [CO2 ] on canopy evapotranspiration, which integrates the response of stomatal conductance of individual leaves with other responses, such as leaf area expansion, changes in leaf surface temperature, and changes in developmental stages, in field conditions. We conducted a field experiment to measure seasonal changes in stomatal conductance of the uppermost leaves and in the evapotranspiration, transpiration, and evaporation rates using a lysimeter method. The study was conducted for flooded rice under open-air CO2 elevation. Stomatal conductance decreased by 27% under elevated [CO2 ], averaged throughout the growing season, and evapotranspiration decreased by an average of 5% during the same period. The decrease in daily evapotranspiration caused by elevated [CO2 ] was more significantly correlated with air temperature and leaf area index (LAI) rather than with other parameters of solar radiation, days after transplanting, vapor-pressure deficit and FAO reference evapotranspiration. This indicates that higher air temperatures, within the range from 16 to 27 °C, and a larger LAI, within the range from 0 to 4 m(2) m(-2) , can increase the magnitude of the decrease in evapotranspiration rate caused by elevated [CO2 ]. The crop coefficient (i.e. the evapotranspiration rate divided by the FAO reference evapotranspiration rate) was 1.24 at ambient [CO2 ] and 1.17 at elevated [CO2 ]. This study provides the first direct measurement of the effects of elevated [CO2 ] on rice canopy evapotranspiration under open-air conditions using the lysimeter method, and the results will improve future predictions of water use in rice fields. © 2013 John Wiley & Sons Ltd.
The effect of competition from neighbours on stomatal conductance in lettuce and tomato plants.
Vysotskaya, Lidiya; Wilkinson, Sally; Davies, William J; Arkhipova, Tatyana; Kudoyarova, Guzel
2011-05-01
Competition decreased transpiration from young lettuce plants after 2 days, before any reductions in leaf area became apparent, and stomatal conductance (g(s) ) of lettuce and tomato plants was also reduced. Stomatal closure was not due to hydraulic signals or competition for nutrients, as soil water content, leaf water status and leaf nitrate concentrations were unaffected by neighbours. Competition-induced stomatal closure was absent in an abscisic acid (ABA)-deficient tomato mutant, flacca, indicating a fundamental involvement of ABA. Although tomato xylem sap ABA concentrations were unaffected by the presence of neighbours, ABA/pH-based stomatal modulation is still likely to underlie the response to competition, as soil and xylem sap alkalization was observed in competing plants. Competition also modulated leaf ethylene production, and treatment of lettuce plants with an ethylene perception inhibitor (1-methylcyclopropene) diminished the difference in g(s) between single and competing plants grown in a controlled environment room, but increased it in plants grown in the greenhouse: ethylene altered the extent of the stomatal response to competition. Effects of competition on g(s) are discussed in terms of the detection of the absence of neighbours: increases in g(s) and carbon fixation may allow faster initial space occupancy within an emerging community/crop. © 2011 Blackwell Publishing Ltd.
Gurovich, Luis; Schaffer, Bruce; García, Nicolás; Iturriaga, Rodrigo
2009-01-01
Avocado (Persea americana Mill.) trees are among the most sensitive of fruit tree species to root hypoxia as a result of flooded or poorly drained soil. Similar to drought stress, an early physiological response to root hypoxia in avocado is a reduction of stomatal conductance. It has been previously determined in avocado trees that an extracellular electrical signal between the base of stem and leaves is produced and related to reductions in stomatal conductance in response to drought stress. The current study was designed to determine if changes in the extracellular electrical potential between the base of the stem and leaves in avocado trees could also be detected in response to short-term (min) or long-term (days) root hypoxia, and if these signals could be related to stomatal conductance (gs), root and leaf ABA and ACC concentrations, ethylene emission from leaves and leaf abscission. In contrast to previous observations for drought-stressed trees, short-term or long-term root hypoxia did not stimulate an electrical potential difference between the base of the stem and leaves. Short-term hypoxia did not result in a significant decrease in gs compared with plants in the control treatment, and no differences in ABA concentration were found between plants subjected to hypoxia and control plants. Long-term hypoxia in the root zone resulted in a significant decrease in gs, increased leaf ethylene and increased leaf abscission. The results indicate that for avocado trees exposed to root hypoxia, electrical signals do not appear to be the primary root-to-shoot communication mechanism involved in signaling for stomatal closure as a result of hypoxia in the root zone. PMID:19649181
Lin, Y. S.; Medlyn, B. E.; Duursma, R.; Prentice, I. C.; Wang, H.
2014-12-01
Stomatal conductance (gs) is a key land surface attribute as it links transpiration, the dominant component of global land evapotranspiration and a key element of the global water cycle, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycles, a global scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. We present a unique database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We employed a model of optimal stomatal conductance to assess differences in stomatal behaviour, and estimated the model slope coefficient, g1, which is directly related to the marginal carbon cost of water, for each dataset. We found that g1 varies considerably among PFTs, with evergreen savanna trees having the largest g1 (least conservative water use), followed by C3 grasses and crops, angiosperm trees, gymnosperm trees, and C4 grasses. Amongst angiosperm trees, species with higher wood density had a higher marginal carbon cost of water, as predicted by the theory underpinning the optimal stomatal model. There was an interactive effect between temperature and moisture availability on g1: for wet environments, g1 was largest in high temperature environments, indicated by high mean annual temperature during the period when temperature above 0oC (Tm), but it did not vary with Tm across dry environments. We examine whether these differences in leaf-scale behaviour are reflected in ecosystem-scale differences in water-use efficiency. These findings provide a robust theoretical framework for understanding and predicting the behaviour of stomatal conductance across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of productivity and ecohydrological processes in a future changing climate.
Jiao, Liya; Wang, Lihong; Zhou, Qing; Huang, Xiaohua
2017-11-01
Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (P n ) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the P n by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the P n by promoting stomatal factors while high-dose BPA decreased the P n by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis. Copyright © 2017 Elsevier Inc. All rights reserved.
Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective
International Nuclear Information System (INIS)
Avissar, R.
1993-01-01
Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and,a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a
Observations of leaf stomatal conductance at the canopy scale: an atmospheric modeling perspective
International Nuclear Information System (INIS)
Avissar, R.
1993-01-01
Plant stomata play a key role in the redistribution of energy received on vegetated land into sensible and latent heat. As a result, they have a considerable impact on the atmospheric planetary boundary layer, the hydrologic cycle, the climate, and the weather. Current parameterizations of the stomatal mechanism in state-of-the-art atmospheric models are based on empirical relations that are established at the leaf scale between stomatal conductance and environmental conditions. In order to evaluate these parameterizations, an experiment was carried out on a potato field in New Jersey during the summer of 1989. Stomatal conductances were measured within a small homogeneous area in the middle of the potato field and under a relatively broad range of atmospheric conditions. A large variability of stomatal conductances was observed. This variability, which was associated with the variability of micro-environmental and physiological conditions that is found even in a homogeneous canopy, cannot be simulated explicitly on the scale of a single agricultural field and, a fortiori, on the scale of atmospheric models. Furthermore, this variability could not be related to the environmental conditions measured at a height of 2 m above the plant canopy simultaneously with the conductances, reinforcing the concept of scale decoupling suggested by Jarvis and McNaughton (1986) and McNaughton and Jarvis (1991). Thus, for atmospheric modeling purposes, a parameterization of stomatal conductance at the canopy scale using external environmental forcing conditions seems more appropriate than a parameterization based on leaf-scale stomatal conductance, as currently adopted in state-of-the-art atmospheric models. The measured variability was characterized by a lognormal probability density function (pdf) that remained relatively stable during the entire measuring period. These observations support conclusions by McNaughton and Jarvis (1991) that, unlike current parameterizations, a
Bonan, G. B.
2016-12-01
Soil moisture stress is a key regulator of canopy transpiration, the surface energy budget, and land-atmosphere coupling. Many land surface models used in Earth system models have an ad-hoc parameterization of soil moisture stress that decreases stomatal conductance with soil drying. Parameterization of soil moisture stress from more fundamental principles of plant hydrodynamics is a key research frontier for land surface models. While the biophysical and physiological foundations of such parameterizations are well-known, their best implementation in land surface models is less clear. Land surface models utilize a big-leaf canopy parameterization (or two big-leaves to represent the sunlit and shaded canopy) without vertical gradients in the canopy. However, there are strong biometeorological and physiological gradients in plant canopies. Are these gradients necessary to resolve? Here, I describe a vertically-resolved, multilayer canopy model that calculates leaf temperature and energy fluxes, photosynthesis, stomatal conductance, and leaf water potential at each level in the canopy. In this model, midday leaf water stress manifests in the upper canopy layers, which receive high amounts of solar radiation, have high leaf nitrogen and photosynthetic capacity, and have high stomatal conductance and transpiration rates (in the absence of leaf water stress). Lower levels in the canopy become water stressed in response to longer-term soil moisture drying. I examine the role of vertical gradients in the canopy microclimate (solar radiation, air temperature, vapor pressure, wind speed), structure (leaf area density), and physiology (leaf nitrogen, photosynthetic capacity, stomatal conductance) in determining above canopy fluxes and gradients of transpiration and leaf water potential within the canopy.
Wheeler, R. M.; Fitzpatrick, A. H.; Tibbitts, T. W.
2012-01-01
Potato (Solanum tuberosum L.) cvs. Russet Burbank, Denali, and Norland, were grown in environmental rooms controlled at approx 350 micro mol/mol (ambient during years 1987/1988) and 1000 micro mol/mol (enriched) CO2 concentrations. Plants and electric lamps were arranged to provide two irradiance zones, 400 and 800 micro mol/mol/square m/S PPF and studies were repeated using two photoperiods (12-h light / 12-h dark and continuous light). Leaf photosynthetic rates and leaf stomatal conductance were measured using fully expanded, upper canopy leaves at weekly intervals throughout growth (21 through 84 days after transplanting). Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod increased leaf photosynthetic rates by 39% at 400 micro mol/mol/square m/S PPF and 27% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under continuous light decreased leaf photosynthetic rates by 7% at 400 micro mol/mol/square m/S PPF and 13% at 800 micro mol/mol/square m/S PPF. Increasing the CO2 from approx 350 to 1000 micro mol/mol under the 12-h photoperiod plants decreased stomatal conductance by an average of 26% at 400 micro mol/mol/square m/S PPF and 42% at 800 micro mol/mol/square m/S PPF. Under continuous light, CO2 enrichment resulted in a small increase (2%) of stomatal conductance at 400 micro mol/mol/square m/S PPF, and a small decrease (3%) at 800 micro mol/mol/square m/S PPF. Results indicate that CO2 enrichment under the 12-h photoperiod showed the expected increase in photosynthesis and decrease in stomatal conductance for a C3 species like potato, but the decreases in leaf photosynthetic rates and minimal effect on conductance from CO2 enrichment under continuous light were not expected. The plant leaves under continuous light showed more chlorosis and some rusty flecking versus plants under the 12-h photoperiod, suggesting the continuous light was more stressful on the plants. The increased
CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions
Engineer, Cawas; Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Israelsson-Nordstrom, Maria; Azoulay-Shemer, Tamar; Rappel, Wouter-Jan; Iba, Koh; Schroeder, Julian
2015-01-01
Guard cells form epidermal stomatal gas exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense CO2 concentration changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in CO2-regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars which perform better in a shifting climate. PMID:26482956
Effects of a Heat Wave on Nocturnal Stomatal Conductance in Eucalyptus camaldulensis
Directory of Open Access Journals (Sweden)
Víctor Resco de Dios
2018-06-01
Full Text Available Nocturnal transpiration constitutes a significant yet poorly understood component of the global water cycle. Modeling nocturnal transpiration has been complicated by recent findings showing that stomata respond differently to environmental drivers over day- vs. night-time periods. Here, we propose that nocturnal stomatal conductance depends on antecedent daytime conditions. We tested this hypothesis across six genotypes of Eucalyptus camaldulensis Dehnh. growing under different CO2 concentrations (ambient vs. elevated and exposed to contrasting temperatures (ambient vs. heat wave for four days prior to the night of measurements, when all plants experienced ambient temperature conditions. We observed significant effects after the heat wave that led to 36% reductions in nocturnal stomatal conductance. The response was partly driven by changes in daytime stomatal behavior but additional factors may have come into play. We also observed significant differences in response to the heat wave across genotypes, likely driven by local adaptation to their climate of origin, but CO2 played no effect. Stomatal models may need to incorporate the role of antecedent effects to improve projections particularly after drastic changes in the environment such as heat waves.
Ewers, B. E.; Mackay, D. S.; Samanta, S.; Ahl, D. E.; Burrows, S. S.; Gower, S. T.
2001-12-01
Land use changes over the last century in northern Wisconsin have resulted in a heterogeneous landscape composed of the following four main forest types: northern hardwoods, northern conifer, aspen/fir, and forested wetland. Based on sap flux measurements, aspen/fir has twice the canopy transpiration of northern hardwoods. In addition, daily transpiration was only explained by daily average vapor pressure deficit across the cover types. The objective of this study was to determine if canopy average stomatal conductance could be used to explain the species effects on tree transpiration. Our first hypothesis is that across all of the species, stomatal conductance will respond to vapor pressure deficit so as to maintain a minimum leaf water potential to prevent catostrophic cavitiation. The consequence of this hypothesis is that among species and individuals there is a proportionality between high stomatal conductance and the sensitivity of stomatal conductance to vapor pressure deficit. Our second hypothesis is that species that do not follow the proportionality deviate because the canopies are decoupled from the atmosphere. To test our two hypotheses we calculated canopy average stomatal conductance from sap flux measurements using an inversion of the Penman-Monteith equation. We estimated the canopy coupling using a leaf energy budget model that requires leaf transpiration and canopy aerodynamic conductance. We optimized the parameters of the aerodynamic conductance model using a Monte Carlo technique across six parameters. We determined the optimal model for each species by selecting parameter sets that resulted in the proportionality of our first hypothesis. We then tested the optimal energy budget models of each species by comparing leaf temperature and leaf width predicted by the models to measurements of each tree species. In red pine, sugar maple, and trembling aspen trees under high canopy coupling conditions, we found the hypothesized proportionality
Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang
2017-11-02
Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Zhang, Y.; Shan, N.; Ju, W.; Chen, J.
2017-12-01
Transpiration is the process of plant water loss through the stomata on the leaf surface and plays a key role in the energy and water balance of the land surface. Plant stomata function as a control interface for regulating photosynthetic uptake of CO2 and transpiration, strongly linked to plant productivity. Stomatal conductance is fundamental to larger-scale regional prediction of carbon-water cycles and their feedbacks to climate. The widely used Ball-Berry model coupled photosynthesis to a semi-empirical model of stomatal conductance. However large uncertainties remain in simulation of carbon assimilation rate in ecosystem and regional scales. The strong correlations of solar-induced fluorescence (SIF) and GPP have been demonstrated and provides an important opportunity to accurately monitor photosynthetic activity and water exchange. In this presentation, we compared both canopy-observed SIF and satellite-derived SIF with tower-based canopy stomatal conductance from hourly to 8-day scales in forest and cropland ecosystem. Using the model of stomatal conductance based on SIF, the transpiration was estimated at hourly and daily scales and compared with flux tower measurements. The results showed that the seasonal pattern of canopy stomatal conductance agreed better with SIF compared to NDVI and their relationship was higher during sunny days for forest ecosystem. Canopy stomatal conductance correlated with both tower-observed SIF and SIF from the Global Ozone Monitoring Experiment-2. Estimation of transpiration from SIF performed well in both forest and cropland ecosystem. This remotely sensed approaches from SIF for modelling stomatal conductance opens a new era to analysis and simulation of coupled carbon and water cycles under climate change.
Craparo, A C W; Steppe, K; Van Asten, P J A; Läderach, P; Jassogne, L T P; Grab, S W
2017-12-31
Stomatal regulation is a key process in the physiology of Coffea arabica (C. arabica). Intrinsically linked to photosynthesis and water relations, it provides insights into the plant's adaptive capacity, survival and growth. The ability to rapidly quantify this parameter for C. arabica under different agroecological systems would be an indispensable tool. Using a Flir E6 MIR Camera, an index that is equivalent to stomatal conductance (I g ) was compared with stomatal conductance measurements (g s ) in a mature coffee plantation. In order to account for varying meteorological conditions between days, the methods were also compared under stable meteorological conditions in a laboratory and I g was also converted to absolute stomatal conductance values (g 1 ). In contrast to typical plant-thermography methods which measure indices once per day over an extended time period, we used high resolution hourly measurements over daily time series with 9 sun and 9 shade replicates. Eight daily time series showed a strong correlation between methods, while the remaining 10 were not significant. Including several other meteorological parameters in the calculation of g 1 did not contribute to any stronger correlation between methods. Total pooled data (combined daily series) resulted in a correlation of ρ=0.66 (P≤2.2e-16), indicating that our approach is particularly useful for situations where absolute values of stomatal conductance are not required, such as for comparative purposes, screening or trend analysis. We use the findings to advance the protocol for a more accurate methodology which may assist in quantifying advantageous microenvironment designs for coffee, considering the current and future climates of coffee growing regions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Paoletti, Elena; Contran, Nicla; Manning, William J.; Castagna, Antonella; Ranieri, Annamaria; Tagliaferro, Francesco
2008-01-01
Treatments with ethylenediurea (EDU) protect plants from ozone foliar injury, but the processes underlying this protection are poorly understood. Adult ash trees (Fraxinus excelsior), with or without foliar ozone symptoms in previous years, were treated with EDU at 450 ppm by gravitational trunk infusion in May-September 2005 (32.5 ppm h AOT40). At 30-day intervals, shoot growth, gas exchange, chlorophyll a fluorescence, and water potential were determined. In September, several biochemical parameters were measured. The protective influence of EDU was supported by enhancement in the number of leaflets. EDU did not contribute its nitrogen to leaf tissue as a fertiliser, as determined from lack of difference in foliar N between treatments. Both biochemical (increase in ascorbate-peroxidase and ascorbic acid, and decrease in apoplastic hydrogen peroxide) and biophysical (decrease in stomatal conductance) processes regulated EDU action. As total ascorbic acid increased only in the asymptomatic trees, its role in alleviating O 3 effects on leaf growth and visible injury is controversial. - Both biochemical and biophysical processes may regulate EDU action
A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance.
Dai, Yongjiu; Dickinson, Robert E.; Wang, Ying-Ping
2004-06-01
The energy exchange, evapotranspiration, and carbon exchange by plant canopies depend on leaf stomatal control. The treatment of this control has been required by land components of climate and carbon models. Physiological models can be used to simulate the responses of stomatal conductance to changes in atmospheric and soil environments. Big-leaf models that treat a canopy as a single leaf tend to overestimate fluxes of CO2 and water vapor. Models that differentiate between sunlit and shaded leaves largely overcome these problems.A one-layered, two-big-leaf submodel for photosynthesis, stomatal conductance, leaf temperature, and energy fluxes is presented in this paper. It includes 1) an improved two stream approximation model of radiation transfer of the canopy, with attention to singularities in its solution and with separate integrations of radiation absorption by sunlit and shaded fractions of canopy; 2) a photosynthesis stomatal conductance model for sunlit and shaded leaves separately, and for the simultaneous transfers of CO2 and water vapor into and out of the leaf—leaf physiological properties (i.e., leaf nitrogen concentration, maximum potential electron transport rate, and hence photosynthetic capacity) vary throughout the plant canopy in response to the radiation weight time-mean profile of photosynthetically active radiation (PAR), and the soil water limitation is applied to both maximum rates of leaf carbon uptake by Rubisco and electron transport, and the model scales up from leaf to canopy separately for all sunlit and shaded leaves; 3) a well-built quasi-Newton Raphson method for simultaneous solution of temperatures of the sunlit and shaded leaves.The model was incorporated into the Common Land Model (CLM) and is denoted CLM 2L. It was driven with observational atmospheric forcing from two forest sites [Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) and Boreal Ecosystem Atmosphere Study (BOREAS)] for 2 yr of simulation. The
Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone
Directory of Open Access Journals (Sweden)
A. Anav
2018-04-01
Full Text Available Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ∼ 7.7 TgO3. Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb extending from the surface to the upper troposphere (up to 650 hPa. Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.
Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone
Anav, Alessandro; Proietti, Chiara; Menut, Laurent; Carnicelli, Stefano; De Marco, Alessandra; Paoletti, Elena
2018-04-01
Soil moisture and water stress play a pivotal role in regulating stomatal behaviour of plants; however, in the last decade, the role of water availability has often been neglected in atmospheric chemistry modelling studies as well as in integrated risk assessments, despite the fact that plants remove a large amount of atmospheric compounds from the lower troposphere through stomata. The main aim of this study is to evaluate, within the chemistry transport model CHIMERE, the effect of soil water limitation on stomatal conductance and assess the resulting changes in atmospheric chemistry testing various hypotheses of water uptake by plants in the rooting zone. Results highlight how dry deposition significantly declines when soil moisture is used to regulate the stomatal opening, mainly in the semi-arid environments: in particular, over Europe the amount of ozone removed by dry deposition in one year without considering any soil water limitation to stomatal conductance is about 8.5 TgO3, while using a dynamic layer that ensures that plants maximize the water uptake from soil, we found a reduction of about 10 % in the amount of ozone removed by dry deposition ( ˜ 7.7 TgO3). Although dry deposition occurs from the top of canopy to ground level, it affects the concentration of gases remaining in the lower atmosphere, with a significant impact on ozone concentration (up to 4 ppb) extending from the surface to the upper troposphere (up to 650 hPa). Our results shed light on the importance of improving the parameterizations of processes occurring at plant level (i.e. from the soil to the canopy) as they have significant implications for concentration of gases in the lower troposphere and resulting risk assessments for vegetation or human health.
Barillot, Romain; Frak, Ela; Combes, Didier; Durand, Jean-Louis; Escobar-Gutiérrez, Abraham J
2010-06-01
Light quality and, in particular, its content of blue light is involved in plant functioning and morphogenesis. Blue light variation frequently occurs within a stand as shaded zones are characterized by a simultaneous decrease of PAR and blue light levels which both affect plant functioning, for example, gas exchange. However, little is known about the effects of low blue light itself on gas exchange. The aims of the present study were (i) to characterize stomatal behaviour in Festuca arundinacea leaves through leaf gas exchange measurements in response to a sudden reduction in blue light, and (ii) to test the putative role of Ci on blue light gas exchange responses. An infrared gas analyser (IRGA) was used with light transmission filters to study stomatal conductance (gs), transpiration (Tr), assimilation (A), and intercellular concentration of CO(2) (Ci) responses to blueless PAR (1.80 mumol m(-2) s(-1)). The results were compared with those obtained under a neutral filter supplying a similar photosynthetic efficiency to the blueless PAR filter. It was shown that the reduction of blue light triggered a drastic and instantaneous decrease of gs by 43.2% and of Tr by 40.0%, but a gradual stomatal reopening began 20 min after the start of the low blue light treatment, thus leading to new steady-states. This new stomatal equilibrium was supposed to be related to Ci. The results were confirmed in more developed plants although they exhibited delayed and less marked responses. It is concluded that stomatal responses to blue light could play a key role in photomorphogenetic mechanisms through their effect on transpiration.
Wieser, G.; Emberson, L. D.
It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.
Nagler, P. L.; Glenn, E. P.; morino, K.
2012-12-01
Saltcedar is an introduced, salt-tolerant shrub that now dominates many flow-regulated western U.S. rivers. Saltcedar control programs have been implemented to salvage water and to allow the return of native vegetation to infested rivers. However, there is much debate about how much water saltcedar actually uses and the range of ecohydrological niches it occupies. Ground methods for measuring riparian zone ET have improved and there is considerable interest in developing remote sensing methods for saltcedar to conduct wide-area monitoring of water use. Both thermal band and vegetation index methods have been used to estimate riparian ET. However, several problems present themselves in applying existing remote sensing methods to riparian corridors. First, many riparian corridors are narrow and are surrounded by arid uplands, hence they cannot be treated as energetically closed systems, an assumption of thermal band methods that calculate ET as a residual in the surface energy balance. Second, contrary to the assumption that riparian phreatophytes typically grow under unstressed conditions since they are rooted into groundwater, we find that saltcedar stands are under substantial degrees of apparent moisture stress, exhibiting midday depression of transpiration and stomatal conductance, and decreases in stomatal conductance over the growing season as depth to groundwater increases. Furthermore, the degree of stress is site-specific, depending on local soil texture, salinity of the groundwater and distance from the river. This violates a key assumption of vegetation index methods for estimating ET. The implications of these findings for arid-zone riparian ecohydrology and for remote sensing methods that assume either a constant daily evaporative fraction or rate of stomatal conductance will be discussed using saltcedar stands measured in the Cibola NWR on the lower Colorado River as a case study. Daily rates of saltcedar transpiration ranged from 1.6-3.0 mm/m2 leaf
Huang, Ming Xia; Wang, Jing; Tang, Jian Zhao; Yu, Qiang; Zhang, Jun; Xue, Qing Yu; Chang, Qing; Tan, Mei Xiu
2016-11-18
The suitability of four popular empirical and semi-empirical stomatal conductance models (Jarvis model, Ball-Berry model, Leuning model and Medlyn model) was evaluated based on para-llel observation data of leaf stomatal conductance, leaf net photosynthetic rate and meteorological factors during the vigorous growing period of potato and oil sunflower at Wuchuan experimental station in agro-pastoral ecotone in North China. It was found that there was a significant linear relationship between leaf stomatal conductance and leaf net photosynthetic rate for potato, whereas the linear relationship appeared weaker for oil sunflower. The results of model evaluation showed that Ball-Berry model performed best in simulating leaf stomatal conductance of potato, followed by Leuning model and Medlyn model, while Jarvis model was the last in the performance rating. The root-mean-square error (RMSE) was 0.0331, 0.0371, 0.0456 and 0.0794 mol·m -2 ·s -1 , the normalized root-mean-square error (NRMSE) was 26.8%, 30.0%, 36.9% and 64.3%, and R-squared (R 2 ) was 0.96, 0.61, 0.91 and 0.88 between simulated and observed leaf stomatal conductance of potato for Ball-Berry model, Leuning model, Medlyn model and Jarvis model, respectively. For leaf stomatal conductance of oil sunflower, Jarvis model performed slightly better than Leuning model, Ball-Berry model and Medlyn model. RMSE was 0.2221, 0.2534, 0.2547 and 0.2758 mol·m -2 ·s -1 , NRMSE was 40.3%, 46.0%, 46.2% and 50.1%, and R 2 was 0.38, 0.22, 0.23 and 0.20 between simulated and observed leaf stomatal conductance of oil sunflower for Jarvis model, Leuning model, Ball-Berry model and Medlyn model, respectively. The path analysis was conducted to identify effects of specific meteorological factors on leaf stomatal conductance. The diurnal variation of leaf stomatal conductance was principally affected by vapour pressure saturation deficit for both potato and oil sunflower. The model evaluation suggested that the stomatal
International Nuclear Information System (INIS)
Op de Beeck, M.; De Bock, M.; Vandermeiren, K.; Temmerman, L. de; Ceulemans, R.
2010-01-01
In this study we tested and compared a multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model in their ability to predict stomatal conductance to ozone (g st ) using leaf-level data from oilseed rape (Brassica napus L.) and broccoli (Brassica oleracea L. var. italica Plenck). For oilseed rape, the multiplicative model and the coupled model were able to explain 72% and 73% of the observed g st variance, respectively. For broccoli, the models were able to explain 53% and 51% of the observed g st variance, respectively. These results support the coupled semi-empirical stomatal-photosynthesis model as a valid alternative to the multiplicative stomatal model for O 3 flux modelling, in terms of predictive performance. - A multiplicative stomatal model and a coupled semi-empirical stomatal-photosynthesis model performed equally well when tested against leaf-level data for oilseed rape and broccoli.
Prado, Santiago Alvarez; Cabrera-Bosquet, Llorenç; Grau, Antonin; Coupel-Ledru, Aude; Millet, Emilie J; Welcker, Claude; Tardieu, François
2018-02-01
Stomatal conductance is central for the trades-off between hydraulics and photosynthesis. We aimed at deciphering its genetic control and that of its responses to evaporative demand and water deficit, a nearly impossible task with gas exchanges measurements. Whole-plant stomatal conductance was estimated via inversion of the Penman-Monteith equation from data of transpiration and plant architecture collected in a phenotyping platform. We have analysed jointly 4 experiments with contrasting environmental conditions imposed to a panel of 254 maize hybrids. Estimated whole-plant stomatal conductance closely correlated with gas-exchange measurements and biomass accumulation rate. Sixteen robust quantitative trait loci (QTLs) were identified by genome wide association studies and co-located with QTLs of transpiration and biomass. Light, vapour pressure deficit, or soil water potential largely accounted for the differences in allelic effects between experiments, thereby providing strong hypotheses for mechanisms of stomatal control and a way to select relevant candidate genes among the 1-19 genes harboured by QTLs. The combination of allelic effects, as affected by environmental conditions, accounted for the variability of stomatal conductance across a range of hybrids and environmental conditions. This approach may therefore contribute to genetic analysis and prediction of stomatal control in diverse environments. © 2017 John Wiley & Sons Ltd.
Bonan, G. B.; Williams, M.; Fisher, R. A.; Oleson, K. W.
2014-09-01
The Ball-Berry stomatal conductance model is commonly used in earth system models to simulate biotic regulation of evapotranspiration. However, the dependence of stomatal conductance (gs) on vapor pressure deficit (Ds) and soil moisture must be empirically parameterized. We evaluated the Ball-Berry model used in the Community Land Model version 4.5 (CLM4.5) and an alternative stomatal conductance model that links leaf gas exchange, plant hydraulic constraints, and the soil-plant-atmosphere continuum (SPA). The SPA model simulates stomatal conductance numerically by (1) optimizing photosynthetic carbon gain per unit water loss while (2) constraining stomatal opening to prevent leaf water potential from dropping below a critical minimum. We evaluated two optimization algorithms: intrinsic water-use efficiency (ΔAn /Δgs, the marginal carbon gain of stomatal opening) and water-use efficiency (ΔAn /ΔEl, the marginal carbon gain of transpiration water loss). We implemented the stomatal models in a multi-layer plant canopy model to resolve profiles of gas exchange, leaf water potential, and plant hydraulics within the canopy, and evaluated the simulations using leaf analyses, eddy covariance fluxes at six forest sites, and parameter sensitivity analyses. The primary differences among stomatal models relate to soil moisture stress and vapor pressure deficit responses. Without soil moisture stress, the performance of the SPA stomatal model was comparable to or slightly better than the CLM Ball-Berry model in flux tower simulations, but was significantly better than the CLM Ball-Berry model when there was soil moisture stress. Functional dependence of gs on soil moisture emerged from water flow along the soil-to-leaf pathway rather than being imposed a priori, as in the CLM Ball-Berry model. Similar functional dependence of gs on Ds emerged from the ΔAn/ΔEl optimization, but not the ΔAn /gs optimization. Two parameters (stomatal efficiency and root hydraulic
Ouyang, Wenjing; Struik, Paul C.; Yin, Xinyou; Yang, Jianchang
2017-01-01
Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (g s) and mesophyll conductance (g m) and their anatomical determinants were
Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time.
Franks, Peter J; Beerling, David J
2009-06-23
Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO(2) between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO(2) (g(c(max))) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO(2), the crucial significance of similarly large variations in S has been overlooked. Here, we use physical diffusion theory to explain why large changes in S necessarily accompanied the changes in D and atmospheric CO(2) over the last 400 million years. In particular, we show that high densities of small stomata are the only way to attain the highest g(cmax) values required to counter CO(2)"starvation" at low atmospheric CO(2) concentrations. This explains cycles of increasing D and decreasing S evident in the fossil history of stomata under the CO(2) impoverished atmospheres of the Permo-Carboniferous and Cenozoic glaciations. The pattern was reversed under rising atmospheric CO(2) regimes. Selection for small S was crucial for attaining high g(cmax) under falling atmospheric CO(2) and, therefore, may represent a mechanism linking CO(2) and the increasing gas-exchange capacity of land plants over geologic time.
Drake, B; Raschke, K
1974-06-01
Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO(2) exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO(2) concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO(2) concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO(2) concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO(2) concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO(2); they responded to changes in CO(2) concentration in the range from 100 to 1000 microliters per liter.
Drake, B.; Raschke, K.
1974-01-01
Greenhouse-grown plants of Xanthium strumarium L. were exposed in a growth cabinet to 10 C during days and 5 C during nights for periods of up to 120 hours. Subsequently, CO2 exchange, transpiration, and leaf temperature were measured on attached leaves and in leaf sections at 25 or 30 C, 19 C dew point of the air, 61 milliwatts per square centimeter irradiance, and CO2 concentrations between 0 and 1000 microliters per liter ambient air. Net photosynthesis and stomatal conductance decreased and dark respiration increased with increasing duration of prechilling. The reduction in net photosynthesis was not a consequence of decreased stomatal conductance because the intercellular CO2 concentration in prechilled leaves was equal to or greater than that in greenhouse-grown controls. The intercellular CO2 concentration at which one-half maximum net photosynthesis occurred remained the same in prechilled leaves and controls (175 to 190 microliters per liter). Stomata of the control plants responded to changes in the CO2 concentration of the air only slightly. Prechilling for 24 hours or more sensitized stomata to CO2; they responded to changes in CO2 concentration in the range from 100 to 1000 microliters per liter. PMID:16658795
Contribution of competition for light to within-species variability in stomatal conductance
Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Traver, Elizabeth; Kruger, Eric L.
2010-05-01
Sap flux (JS) measurements were collected across two stands dominated by either trembling aspen or sugar maple in northern Wisconsin. Observed canopy transpiration (EC-obs) values derived from JS were used to parameterize the Terrestrial Regional Ecosystem Exchange Simulator ecosystem model. Modeled values of stomatal conductance (GS) were used to determine reference stomatal conductance (GSref), a proxy for GS that removes the effects of temporal responses to vapor pressure deficit (D) on spatial patterns of GS. Values of GSref were compared to observations of soil moisture, several physiological variables, and a competition index (CI) derived from a stand inventory, to determine the underlying cause of observed variability. Considerable variability in GSref between individual trees was found, with values ranging from 20 to 200 mmol m-2 s-1 and 20 to 100 mmol m-2 s-1 at the aspen and maple stands, respectively. Model-derived values of GSref and a sensitivity to D parameter (m) showed good agreement with a known empirical relationship for both stands. At both sites, GSref did not vary with topographic position, as indicated by surface soil moisture. No relationships were observed between GSref and tree height (HT), and a weak correlation with sapwood area (AS) was only significant for aspen. Significant nonlinear inverse relationships between GSref and CI were observed at both stands. Simulations with uniform reductions in incident photosynthetically active radiation (Q0) resulted in better agreement between observed and simulated EC. Our results suggest a link between photosynthesis and plant hydraulics whereby individual trees subject to photosynthetic limitation as a result of competitive shading exhibit a dynamic stomatal response resulting in a more conservative strategy for managing hydrologic resources.
Wijk, van M.T.; Dekker, S.C.; Bouten, W.; Bosveld, F.C.; Kohsiek, W.; Kramer, K.; Mohren, G.M.J.
2000-01-01
Modeling stomatal conductance is a key element in predicting tree growth and water use at the stand scale. We compared three commonly used models of stomatal conductance, the Jarvis-Loustau, Ball-Berry and Leuning models, for their suitability for incorporating soil water stress into their
Hölttä, Teemu; Lintunen, Anna; Chan, Tommy; Mäkelä, Annikki; Nikinmaa, Eero
2017-07-01
Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Stomatal- and growth responses in willow to deficits in water- and nitrogen supply. Final report
Energy Technology Data Exchange (ETDEWEB)
Stadenberg, I. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dep. for Production Ecology
2002-02-01
The two plants, grown with an [N] of 100 mg per litre and subjected to a decrease in N-supply decreased their leaf relative growth rate from 22% per day to 13% per day within 2 days. Stomatal conductance did not change significantly after the decrease in N-supply. Xylem samples did not show any significant changes in its composition of mineral nutrient elements after decreased N-supply. The three plants, grown with an [N] of 50 mg per litre and subjected to a decrease in N-supply, significantly decreased leaf relative growth rate from 18.5 % to 9 % per day within 2 days. Stomatal conductance did not change significantly after the decrease in N-supply. Xylem sap samples showed a significant decrease in [K] (74 mg/l to 42 mg/l) and [S] (11 mg/l to 3.2 mg/l) within 2 days after decreased N-supply. The four plants subjected to root drying decreased their leaf relative growth rate slightly but not significantly during the drying period. Xylem samples showed a significant decrease in S-concentration (11 mg/l to 1.3 mg/l) and [NO{sub 3}] (8.0 mg/l to 1.0 mg/l), while [Fe] increased significantly (0.065 mg/l to 0.14 mg/l). Stomatal conductance is known to decrease when plants are subjected to drying of part of the root system. This was shown for Salix dasyclados in a recent publication.
Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake
Energy Technology Data Exchange (ETDEWEB)
Elvira, Susana [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain); Alonso, Rocio [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain); Gimeno, Benjamin S. [Ecotoxicology of Air Pollution, CIEMAT, Avda. Complutense 22 (ed. 70), 28040 Madrid (Spain)]. E-mail: benjamin.gimeno@ciemat.es
2007-04-15
The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O{sub 3}) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O{sub 3} stomatal conductance model used to estimate tree O{sub 3} uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O{sub 3} treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l{sup -1}. The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g {sub max}, f {sub min}, and new f {sub VPD}, f {sub temp} and f {sub phen} functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version. - Current EMEP stomatal uptake module needs to be re-parameterised for Mediterranean tree species.
Simulation of stomatal conductance for Aleppo pine to estimate its ozone uptake
International Nuclear Information System (INIS)
Elvira, Susana; Alonso, Rocio; Gimeno, Benjamin S.
2007-01-01
The data from a previous experiment carried out in open-top chambers to assess the effects of ozone (O 3 ) exposure on growth and physiology of Aleppo pine (Pinus halepensis Mill.) were re-assessed to test the performance of the EMEP O 3 stomatal conductance model used to estimate tree O 3 uptake at a European scale. Aleppo pine seedlings were exposed during three consecutive years to three different O 3 treatments: charcoal filtered air, non-filtered air and non-filtered air supplemented with 40 nl l -1 . The results of the model using the default parameterisation already published for Mediterranean conifers showed a poor performance when compared to measured data. Therefore, modifications of g max , f min , and new f VPD , f temp and f phen functions were developed according to the observed data. This re-parameterisation resulted in a significant improvement of the performance of the model when compared to its original version. - Current EMEP stomatal uptake module needs to be re-parameterised for Mediterranean tree species
Guehl, J M; Aussenac, G
1987-02-01
The responses of steady state CO(2) assimilation rate (A), transpiration rate (E), and stomatal conductance (g(s)) to changes in leaf-to-air vapor pressure difference (DeltaW) were examined on different dates in shoots from Abies alba trees growing outside. In Ecouves, a provenance representative of wet oceanic conditions in Northern France, both A and g(s) decreased when DeltaW was increased from 4.6 to 14.5 Pa KPa(-1). In Nebias, which represented the dry end of the natural range of A. alba in southern France, A and g(s) decreased only after reaching peak levels at 9.0 and 7.0 Pa KPa(-1), respectively. The representation of the data in assimilation rate (A) versus intercellular CO(2) partial pressure (C(i)) graphs allowed us to determine how stomata and mesophyll photosynthesis interacted when DeltaW was increased. Changes in A were primarily due to alterations in mesophyll photosynthesis. At high DeltaW, and especially in Ecouves when soil water deficit prevailed, A declined, while C(i) remained approximately constant, which may be interpreted as an adjustment of g(s) to changes in mesophyll photosynthesis. Such a stomatal control of gas exchange appeared as an alternative to the classical feedforward interpretation of E versus DeltaW responses with a peak rate of E. The gas exchange response to DeltaW was also characterized by considerable deviations from the optimization theory of IR Cowan and GD Farquhar (1977 Symp Soc Exp Biol 31: 471-505).
International Nuclear Information System (INIS)
Alonso, R.; Bermejo, V.; Sanz, J.; Valls, B.; Elvira, S.; Gimeno, B.S.
2007-01-01
Intra-genus and intra-specific variation and the influence of nitrogen enrichment on net assimilation and stomatal conductance of some annual Trifolium species of Mediterranean dehesa grasslands were assessed under experimental conditions. Also gas exchange rates were compared between some Leguminosae and Poaceae species growing in the field in a dehesa ecosystem in central Spain. The results showed that the previously reported different O 3 sensitivity of some Trifolium species growing in pots does not seem to be related to different maximum g s values. In addition, no clear differences on gas exchange rates could be attributed to Leguminosae and Poaceae families growing in the field, with intra-genus variation being more important than differences found between families. Further studies are needed to increase the database for developing a flux-based approach for setting O 3 critical levels for semi-natural Mediterranean species. - The stomatal conductance model incorporated within the EMEP DO 3 SE deposition module needs to be re-parameterised for Mediterranean semi-natural vegetation
Modelling of stomatal conductance and ozone deposition flux of Norway Spruce using deposition model
Czech Academy of Sciences Publication Activity Database
Zapletal, M.; Chroust, P.; Večeřa, Zbyněk; Mikuška, Pavel; Cudlín, Pavel; Urban, Otmar; Pokorný, Radek; Czerný, Radek; Janouš, Dalibor; Taufarová, Klára
2009-01-01
Roč. 12, 2-3 (2009), s. 75-81 ISSN 1335-339X R&D Projects: GA MŽP SP/1B7/189/07 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z40310501 Keywords : ozone concentration * ozone deposition * stomatal conductance * deposition velocity * resistance model * tropo-spheric ozone Subject RIV: DG - Athmosphere Sciences, Meteorology
S. Panda; D.M. Amatya; G. Hoogenboom
2014-01-01
Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...
Raschke, K; Zeevaart, J A
1976-08-01
Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (+/-)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells.The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight.
Gao, Qiong; Yu, Mei; Zhou, Chan
2013-01-01
Shrubs and subshrubs can tolerate wider ranges of moisture stresses in both soil and air than other plant life forms, and thus represent greater nonlinearity and uncertainty in ecosystem physiology. The objectives of this paper are to model shrub/subshrub stomatal conductance by synthesizing the field leaf gas exchanges data of 24 species in China, in order to detect the differences between deciduous shrubs and Artemisia subshrubs in their responses of stomatal conductance to changes in the moisture stresses. We revised a model of stomatal conductance by incorporating the tradeoff between xylem hydraulic efficiency and cavitation loss risk. We then fit the model at the three hierarchical levels: global (pooling all data as a single group), three functional groups (deciduous non-legume shrubs, deciduous legume shrubs, and subshrubs in Artemisia genus), and individual observations (species × sites). Bayesian inference with Markov Chain Monte Carlo method was applied to obtain the model parameters at the three levels. We found that the model at the level of functional groups is a significant improvement over that at the global level, indicating the significant differences in the stomatal behavior among the three functional groups. The differences in tolerance and sensitivities to changes in moisture stresses are the most evident between the shrubs and the subshrubs: The two shrub groups can tolerate much higher soil water stress than the subshrubs. The analysis at the observation level is also a significant improvement over that at the functional group level, indicating great variations within each group. Our analysis offered a clue for the equivocal issue of shrub encroachment into grasslands: While the invasion by the shrubs may be irreversible, the dominance of subshrubs, due to their lower resistance and tolerance to moisture stresses, may be put down by appropriate grassland management.
A rate equation model of stomatal responses to vapour pressure deficit and drought
Directory of Open Access Journals (Sweden)
Shanahan ST
2002-08-01
Full Text Available Abstract Background Stomata respond to vapour pressure deficit (D – when D increases, stomata begin to close. Closure is the result of a decline in guard cell turgor, but the link between D and turgor is poorly understood. We describe a model for stomatal responses to increasing D based upon cellular water relations. The model also incorporates impacts of increasing levels of water stress upon stomatal responses to increasing D. Results The model successfully mimics the three phases of stomatal responses to D and also reproduces the impact of increasing plant water deficit upon stomatal responses to increasing D. As water stress developed, stomata regulated transpiration at ever decreasing values of D. Thus, stomatal sensitivity to D increased with increasing water stress. Predictions from the model concerning the impact of changes in cuticular transpiration upon stomatal responses to increasing D are shown to conform to experimental data. Sensitivity analyses of stomatal responses to various parameters of the model show that leaf thickness, the fraction of leaf volume that is air-space, and the fraction of mesophyll cell wall in contact with air have little impact upon behaviour of the model. In contrast, changes in cuticular conductance and membrane hydraulic conductivity have significant impacts upon model behaviour. Conclusion Cuticular transpiration is an important feature of stomatal responses to D and is the cause of the 3 phase response to D. Feed-forward behaviour of stomata does not explain stomatal responses to D as feedback, involving water loss from guard cells, can explain these responses.
Plant water potential improves prediction of empirical stomatal models.
Directory of Open Access Journals (Sweden)
William R L Anderegg
Full Text Available Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.
Resco de Dios, Victor; Gessler, Arthur; Ferrio, Juan Pedro; Bahn, Michael; Milcu, Alexandru; Tissue, David; Voltas, Jordi; Roy, Jacques
2016-04-01
Plants are sessile and poikilothermic organisms that need to respond and adjust promptly to an ever-changing environment. Over a single 24 h period, a plant may experience the same level of variation in radiation as in its entire life-time and, in some climates, the oscillation in day-night temperature and vapor pressure deficit might be of similar magnitude to that experienced across a full year. Plants need to maintain a positive C balance without depleting soil water reserves in the face of such a diverse environment, and feedbacks between assimilation (A) and water losses (E) are thought to have evolved to optimize stomatal conductance (gs). In short, the optimal conductance hypothesis proposes that cross-talks between A and stomatal conductance gs lead to a constant marginal water use (λ) during a day, such that A is maximized and E minimized. The biological mechanism by which biochemical processes would feedback gs remains unknown, but multiple studies have shown empirical support for this hypothesis, leading to its current consideration of theory by many. Here we test whether optimal stomatal conductance is an endogenous property, that is, driven solely by factors internal to the plant, and in the absence of environmental fluctuations. After 5 days of entrainment, where monoculture canopies of bean and of cotton were subjected to the average environmental conditions of an August sunny day in Montpellier (at the CNRS European Ecotron, FR), we kept temperature, relative humidity and photosynthetically active radiation constant for 48 h at the values observed at noon. During this period, we monitored leaf gas exchange continuously every two minutes, and canopy gas exchange every 15 minutes. We observed a periodic oscillation in λ, showing a 24 h period, and consistent with a circadian regulation of water use efficiency. Hourly variations in λ could thus not be explained by the optimal stomatal hypothesis. Moreover, the pattern of variation (of maximal water
DEFF Research Database (Denmark)
Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte
2010-01-01
. Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...
Roussel, Magali; Dreyer, Erwin; Montpied, Pierre; Le-Provost, Grégoire; Guehl, Jean-Marc; Brendel, Oliver
2009-01-01
(13)C discrimination in organic matter with respect to atmospheric CO(2) (Delta(13)C) is under tight genetic control in many plant species, including the pedunculate oak (Quercus robur L.) full-sib progeny used in this study. Delta(13)C is expected to reflect intrinsic water use efficiency, but this assumption requires confirmation due to potential interferences with mesophyll conductance to CO(2), or post-photosynthetic discrimination. In order to dissect the observed Delta(13)C variability in this progeny, six genotypes that have previously been found to display extreme phenotypic values of Delta(13)C [either very high ('high Delta') or low ('low Delta') phenotype] were selected, and transpiration efficiency (TE; accumulated biomass/transpired water), net CO(2) assimilation rate (A), stomatal conductance for water vapour (g(s)), and intrinsic water use efficiency (W(i)=A/g(s)) were compared with Delta(13)C in bulk leaf matter, wood, and cellulose in wood. As expected, 'high Delta' displayed higher values of Delta(13)C not only in bulk leaf matter, but also in wood and cellulose. This confirmed the stability of the genotypic differences in Delta(13)C recorded earlier. 'High Delta' also displayed lower TE, lower W(i), and higher g(s). A small difference was detected in photosynthetic capacity but none in mesophyll conductance to CO(2). 'High Delta' and 'low Delta' displayed very similar leaf anatomy, except for higher stomatal density in 'high Delta'. Finally, diurnal courses of leaf gas exchange revealed a higher g(s) in 'high Delta' in the morning than in the afternoon when the difference decreased. The gene ERECTA, involved in the control of water use efficiency, leaf differentiation, and stomatal density, displayed higher expression levels in 'low Delta'. In this progeny, the variability of Delta(13)C correlated closely with that of W(i) and TE. Genetic differences of Delta(13)C and W(i) can be ascribed to differences in stomatal conductance and stomatal
Stomatal characteristics of Eucalyptus grandis clonal hybrids in ...
African Journals Online (AJOL)
This study describes the stomatal response occurring during water stress and subsequent recovery of three Eucalyptus grandis clonal hybrids. The aim was to investigate the degree to which stomatal conductance (gs) and stomatal density differ between the clonal hybrids across seasons and in response to water stress.
Raschke, Klaus; Zeevaart, Jan A. D.
1976-01-01
Among the four uppermost leaves of greenhouse-grown plants of Xanthium strumarium L. the content of abscisic acid per unit fresh or dry weight was highest in the youngest leaf and decreased gradually with increasing age of the leaves. Expressed per leaf, the second youngest leaf was richest in ABA; the amount of ABA per leaf declined only slightly as the leaves expanded. Transpiration and stomatal conductance were negatively correlated with the ABA concentration in the leaves; the youngest leaf lost the least amount of water. This correlation was always very good if the youngest leaf was compared with the older leaves but not always good among the older leaves. Since stomatal sensitivity to exogenous (±)-ABA was the same in leaves of all four age groups ABA may be in at least two compartments in the leaf, one of which is isolated from the guard cells. The ability to synthesize ABA in response to wilting or chilling was strongly expressed in young leaves and declined with leaf age. There was no difference between leaves in their content of the metabolites of ABA, phaseic, and dihydrophaseic acid, expressed per unit weight. PMID:16659640
Stomatal and Non-Stomatal Turbulent Deposition Flux of Ozone to a Managed Peatland
Directory of Open Access Journals (Sweden)
Tarek S. El-Madany
2017-09-01
Full Text Available Ozone is a key trace gas in the troposphere; because it is a greenhouse gas, it is very reactive, and it is potentially toxic to humans, fauna, and vegetation. The main sink processes for ozone are chemical reactions and the turbulent deposition flux to the earth’s surface. The deposition process itself is rather complex: The interactions between co-varying drivers such as the tropospheric ozone concentration, turbulence, and chemical reactions are not well understood. In the case of ozone deposition to vegetation, another aspect that must be studied is the role of stomatal regulation for a wide range of conditions. Therefore, we measured turbulent deposition fluxes of ozone with the eddy covariance technique during the peak of the growing season in 2014 over a managed, rewetted peatland in NW Germany. The deposition flux was large during the day (up to −15 nmol m−2 s−1 and relatively small during the night (between −1 and −2 nmol m−2 s−1. Flux partitioning by applying the surface resistance analogy and further analysis showed that the stomatal uptake was smaller than non-stomatal deposition. The correction of stomatal conductance with the gross primary production (GPP improved the estimation of day- and nighttime stomatal deposition fluxes. Statistical analysis confirmed that the friction velocity (u* was the single most important driver of non-stomatal ozone deposition and that relationships with other environmental drivers are not linear and highly variable. Further research is needed to develop a better process understanding of non-stomatal ozone deposition, to quantify the role of surface deposition to the ozone budget of the atmospheric boundary layer, and to estimate uncertainties associated with the partitioning of ozone deposition into stomatal and non-stomatal fluxes.
Directory of Open Access Journals (Sweden)
Jacek S. Nowak
2013-12-01
Full Text Available Euphorbia pulcherrima Wild.'Lilo' was grown in containers in 60% peat, 30% perlite and 10% clay (v/v mixture, with different irrigation treatments based on soil water potential. Plants were watered at two levels of drought stress: -50kPa or wilting. The treatments were applied at different stages of plant development for a month or soil was brought to the moisture stress only twice. Additionally, some plants were watered at -50 kPa during the entire cultivation period while the control plants were watered at -5kPa. Plants were also kept at maximum possible moisture level (watering at -0,5kPa or close to it (-1.OkPa through the entire growing period. Soil water potential was measured with tensiometer. Drought stress applied during entire cultivation period or during the flushing stage caused significant reduction in transpiration and conductance of leaves. Stress applied during bract coloration stage had not as great effect on the stomatal conductance and transpiration of leaves as the similar stress applied during the flushing stage. High soil moisture increased stomatal conductance and transpiration rate, respectively by 130% and 52% (flushing stage, and 72% and 150% (bract coloration stage at maximum, compared to the control.
Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice
Directory of Open Access Journals (Sweden)
Hyungmin Rho
2018-03-01
Full Text Available Bacterial and yeast endophytes isolated from the Salicaceae family have been shown to promote growth and alleviate stress in plants from different taxa. To determine the physiological pathways through which endophytes affect plant water relations, we investigated leaf water potential, whole-plant water use, and stomatal responses of rice plants to Salicaceae endophyte inoculation under CO2 enrichment and water deficit. Daytime stomatal conductance and stomatal density were lower in inoculated plants compared to controls. Leaf ABA concentrations increased with endophyte inoculation. As a result, transpirational water use decreased significantly with endophyte inoculation while biomass did not change or slightly increased. This response led to a significant increase in cumulative water use efficiency at harvest. Different endophyte strains produced the same results in host plant water relations and stomatal responses. These stomatal responses were also observed under elevated CO2 conditions, and the increase in water use efficiency was more pronounced under water deficit conditions. The effect on water use efficiency was positively correlated with daily light integrals across different experiments. Our results provide insights on the physiological mechanisms of plant-endophyte interactions involving plant water relations and stomatal functions.
J.-C. Domec; A. Noormets; Ge Sun; J. King; Steven McNulty; Michael Gavazzi; Johnny Boggs; Emrys Treasure
2009-01-01
The study examined the relationships between whole tree hydraulic conductance (Ktree) and the conductance in roots (Kroot) and leaves (Kleaf) in loblolly pine trees. In addition, the role of seasonal variations in Kroot and Kleaf in mediating stomatal...
Ward, E. J.; Bell, D.; Clark, J. S.; McCarthy, H. R.; Kim, H.; domec, J.; Noormets, A.; McNulty, D.; Sun, G.; Oren, R.
2013-12-01
A network of thermal dissipation probes (TDPs) monitoring sap flux density was used to estimate leaf-specific transpiration (EL) and canopy-averaged stomatal conductance (GS) in Pinus taeda (L.) exposed to +200 ppm atmospheric CO2 levels (eCO2) and nitrogen fertilization as part of the Duke FACE study. Data from scaling half-hourly measurements from hundreds of sensors over 11 years indicated that P. taeda in eCO2 intermittently (49% of monthly values) decreased stomatal conductance relative to the control, with a mean reduction of 13% in both total EL and mean daytime GS. This intermittent response was related to changes in a hydraulic allometry index (AH), defined as sapwood area per unit leaf area per unit canopy height, which was linearly related to GS at reference conditions (GSR) during the growing season across years (R2=0.67). Overall, AH decreased a mean of 15% with eCO2 over the course of the study, due mostly to a mean 19% increase in leaf area. Throughout the southeastern U.S., other P. taeda stands have been monitored with TDPs, such as the US-NC2 Ameriflux site and four fertilizer × throughfall displacement studies recently begun as part of the PINEMAP research network in VA, GA, FL and OK. We will also discuss the challenges and benefits of using a common modeling platform to combine FACE TDP data with that from a diversity of sites and treatments to draw inferences about EL and GS responses to environmental drivers and climate change, as well as their relation to AH, across the range of P. taeda.
Azoulay-Shemer, Tamar; Palomares, Axxell; Bagheri, Andisheh; Israelsson-Nordstrom, Maria; Engineer, Cawas B; Bargmann, Bastiaan O R; Stephan, Aaron B; Schroeder, Julian I
2015-08-01
Stomata mediate gas exchange between the inter-cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2 ]. [CO2 ] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll-deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll-deficient. Interestingly, approximately 45% of stomata had an unusual, previously not-described, morphology of thin-shaped chlorophyll-less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole-leaf photosynthetic parameters (PSII, qP, qN, FV '/FM' ) were comparable with wild-type plants. Time-resolved intact leaf gas-exchange analyses showed a reduction in stomatal conductance and CO2 -assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2 ] shifts. Detailed stomatal aperture measurements of normal kidney-shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2 ] elevation and abscisic acid (ABA), while thin-shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2 ] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll-less stomata cause a 'deflated' thin-shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping
2017-09-01
Stomata control the cycling of water and carbon between plants and the atmosphere; however, no consistent conclusions have been drawn regarding the response of stomatal frequency to climate change. Here, we conducted a meta-analysis of 1854 globally obtained data series to determine the response of stomatal frequency to climate change, which including four plant life forms (over 900 species), at altitudes ranging from 0 to 4500 m and over a time span of more than one hundred thousand years. Stomatal frequency decreased with increasing CO 2 concentration and increased with elevated temperature and drought stress; it was also dependent on the species and experimental conditions. The response of stomatal frequency to climate change showed a trade-off between stomatal control strategies and environmental factors, such as the CO 2 concentration, temperature, and soil water availability. Moreover, threshold effects of elevated CO 2 and temperature on stomatal frequency were detected, indicating that the response of stomatal density to increasing CO 2 concentration will decrease over the next few years. The results also suggested that the stomatal index may be more reliable than stomatal density for determination of the historic CO 2 concentration. Our findings indicate that the contrasting responses of stomata to climate change bring a considerable challenge in predicting future water and carbon cycles. © 2017 John Wiley & Sons Ltd.
Serbin, S.; Walker, A. P.; Wu, J.; Ely, K.; Rogers, A.; Wolfe, B.
2017-12-01
Tropical forests play a key role in regulating the global carbon (C), water, and energy cycles and stores, as well as influence climate through the exchanges of mass and energy with the atmosphere. However, projected changes in temperature and precipitation patterns are expected to impact the tropics and the strength of the tropical C sink, likely resulting in significant climate feedbacks. Moreover, the impact of stronger, longer, and more extensive droughts not well understood. Critical for the accurate modeling of the tropical C and water cycle in Earth System Models (ESMs) is the representation of the coupled photosynthetic and stomatal conductance processes and how these processes are impacted by environmental and other drivers. Moreover, the parameterization and representation of these processes is an important consideration for ESM projections. We use a novel model framework, the Multi-Assumption Architecture and Testbed (MAAT), together with the open-source bioinformatics toolbox, the Predictive Ecosystem Analyzer (PEcAn), to explore the impact of the multiple mechanistic hypotheses of coupled photosynthesis and stomatal conductance as well as the additional uncertainty related to model parameterization. Our goal was to better understand how model choice and parameterization influences diurnal and seasonal modeling of leaf-level photosynthesis and stomatal conductance. We focused on the 2016 ENSO period and starting in February, monthly measurements of diurnal photosynthesis and conductance were made on 7-9 dominant species at the two Smithsonian canopy crane sites. This benchmark dataset was used to test different representations of stomatal conductance and photosynthetic parameterizations with the MAAT model, running within PEcAn. The MAAT model allows for the easy selection of competing hypotheses to test different photosynthetic modeling approaches while PEcAn provides the ability to explore the uncertainties introduced through parameterization. We
Ghimire, Chandra Prasad; Bruijnzeel, L Adrian; Lubczynski, Maciek W; Zwartendijk, Bob W; Odongo, Vincent Omondi; Ravelona, Maafaka; van Meerveld, H J Ilja
2018-04-21
It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.
Stomatal Function Requires Pectin De-methyl-esterification of the Guard Cell Wall.
Amsbury, Sam; Hunt, Lee; Elhaddad, Nagat; Baillie, Alice; Lundgren, Marjorie; Verhertbruggen, Yves; Scheller, Henrik V; Knox, J Paul; Fleming, Andrew J; Gray, Julie E
2016-11-07
Stomatal opening and closure depends on changes in turgor pressure acting within guard cells to alter cell shape [1]. The extent of these shape changes is limited by the mechanical properties of the cells, which will be largely dependent on the structure of the cell walls. Although it has long been observed that guard cells are anisotropic due to differential thickening and the orientation of cellulose microfibrils [2], our understanding of the composition of the cell wall that allows them to undergo repeated swelling and deflation remains surprisingly poor. Here, we show that the walls of guard cells are rich in un-esterified pectins. We identify a pectin methylesterase gene, PME6, which is highly expressed in guard cells and required for stomatal function. pme6-1 mutant guard cells have walls enriched in methyl-esterified pectin and show a decreased dynamic range in response to triggers of stomatal opening/closure, including elevated osmoticum, suggesting that abrogation of stomatal function reflects a mechanical change in the guard cell wall. Altered stomatal function leads to increased conductance and evaporative cooling, as well as decreased plant growth. The growth defect of the pme6-1 mutant is rescued by maintaining the plants in elevated CO 2 , substantiating gas exchange analyses, indicating that the mutant stomata can bestow an improved assimilation rate. Restoration of PME6 rescues guard cell wall pectin methyl-esterification status, stomatal function, and plant growth. Our results establish a link between gene expression in guard cells and their cell wall properties, with a corresponding effect on stomatal function and plant physiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
zhou, S.; Prentice, C.; Medlyn, B. E.; Sabaté, S.
2013-12-01
Models disagree on how to represent effects of drought stress on plant gas exchange. Some models assume drought stress affects the marginal water use efficiency of plants (marginal WUE; i.e. the change in photosynthesis per unit of change in transpiration) whereas others assume drought stress acts directly on photosynthetic capacity. It is not clear whether either of these approaches is sufficient to capture the drought response, or whether the effect of drought varies among species and functional types. A collection of Eucalyptus and Quercus species derived from different hydro-climate habitats, in together with two European riparian species, were conducted with drought treatments respectively in Australia and Spain for three months. Measurements included net CO2 assimilation rate versus substomatal CO2 concentration (A-Ci) curves, fluorescence, and predawn leaf water potential at increasing levels of water stress. The correlations with quantitative plant traits of leaf, stomata, vessel, and wood density, leaf nitrogen content and 13C discrimination were also explored. We analysed the effect of drought effect on leaf gas exchange with a recently developed stomatal model that reconciles the empirical and optimal approaches on predicting optimal stomatal conductance. The model's single parameter g1 is a decreasing function of marginal WUE. The two genera showed consistence on the contrasting response patterns between species derived from mesic and arid habitats, which differed greatly in their estimated g1 values under moist conditions, and in the rate at which g1 declined with water stress. They also differed greatly in the predawn water potential at which apparent carboxylation capacity (apparent Vcmax) and mesophyll conductance (gm) declined most steeply, and in the steepness of this decline. Principal components analysis revealed a gradient in water relation strategies from sclerophyll species to malacophyll species. Malacophylls had higher g1, apparent Vcmax
Separating active and passive influences on stomatal control of transpiration.
McAdam, Scott A M; Brodribb, Timothy J
2014-04-01
Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior.
Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.
Fares, S; Loreto, F; Kleist, E; Wildt, J
2008-01-01
Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.
He, Jingjing; Zhang, Ruo-Xi; Peng, Kai; Tagliavia, Cecilia; Li, Siwen; Xue, Shaowu; Liu, Amy; Hu, Honghong; Zhang, Jingbo; Hubbard, Katharine E; Held, Katrin; McAinsh, Martin R; Gray, Julie E; Kudla, Jörg; Schroeder, Julian I; Liang, Yun-Kuan; Hetherington, Alistair M
2018-04-01
We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO 2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO 2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO 2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO 2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO 2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO 2 -mediated control of stomatal development. In the control of stomatal aperture by CO 2 , BIG is only required in elevated CO 2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO 2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO 2 -mediated responses. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Directory of Open Access Journals (Sweden)
Risheng Ding
Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and
A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorol...
Egea, G.; Verhoef, A.; Vidale, P. L.; Black, E.; Van den Hoof, C.
2012-04-01
Coupled photosynthesis-stomatal conductance (A-gs) models are commonly used in ecosystem models to represent the exchange rate of CO2 and H2O between vegetation and the atmosphere. The ways these models account for water stress differ greatly among modelling schemes. This study provides insight into the impact of contrasting model configurations of water stress on the simulated leaf-level values of net photosynthesis (A), stomatal conductance (gs), the functional relationship among them and their ratio, the intrinsic water use efficiency (A/gs), as soil dries. A simple, yet versatile, normalized soil moisture dependent function was used to account for the effects of water stress on gs, on mesophyll conductance (gm ) and on the biochemical capacity (Egea et al., 2011). Model output was compared to leaf-level values obtained from the literature. The sensitivity analyses emphasized the necessity to combine both stomatal and non-stomatal limitations of A in coupled A-gs models to accurately capture the observed functional relationships A vs. gs and A/gs vs. gs in response to drought. Accounting for water stress in coupled A-gs models by imposing either stomatal or biochemical limitations of A, as commonly practiced in most ecosystem models, failed to reproduce the observed functional relationship between key leaf gas exchange attributes. A quantitative limitation analysis revealed that the general pattern of C3 photosynthetic response to water stress can be represented in coupled A-gs models by imposing the highest limitation strength to mesophyll conductance, then to stomatal conductance and finally to the biochemical capacity. This more realistic representation of soil water stress on the simulated leaf-level values of A and gs was embedded in the JULES (Joint UK Land Environment Simulator; Best et al., 2011), model and tested for a number of vegetation types, for which driving and flux verification data were available. These simulations provide an insight into the
Separating Active and Passive Influences on Stomatal Control of Transpiration[OPEN
McAdam, Scott A.M.; Brodribb, Timothy J.
2014-01-01
Motivated by studies suggesting that the stomata of ferns and lycophytes do not conform to the standard active abscisic acid (ABA) -mediated stomatal control model, we examined stomatal behavior in a conifer species (Metasequoia glyptostroboides) that is phylogenetically midway between the fern and angiosperm clades. Similar to ferns, daytime stomatal closure in response to moderate water stress seemed to be a passive hydraulic process in M. glyptostroboides immediately alleviated by rehydrating excised shoots. Only after prolonged exposure to more extreme water stress did active ABA-mediated stomatal closure become important, because foliar ABA production was triggered after leaf turgor loss. The influence of foliar ABA on stomatal conductance and stomatal aperture was highly predictable and additive with the passive hydraulic influence. M. glyptostroboides thus occupies a stomatal behavior type intermediate between the passively controlled ferns and the characteristic ABA-dependent stomatal closure described in angiosperm herbs. These results highlight the importance of considering phylogeny as a major determinant of stomatal behavior. PMID:24488969
International Nuclear Information System (INIS)
Nunn, A.J.; Cieslik, S.; Metzger, U.; Wieser, G.; Matyssek, R.
2010-01-01
Stomatal O 3 fluxes to a mixed beech/spruce stand (Fagus sylvatica/Picea abies) in Central Europe were determined using two different approaches. The sap flow technique yielded the tree-level transpiration, whereas the eddy covariance method provided the stand-level evapotranspiration. Both data were then converted into stomatal ozone fluxes, exemplifying this novel concept for July 2007. Sap flow-based stomatal O 3 flux was 33% of the total O 3 flux, whereas derivation from evapotranspiration rates in combination with the Penman-Monteith algorithm amounted to 47%. In addition to this proportional difference, the sap flow-based assessment yielded lower levels of stomatal O 3 flux and reflected stomatal regulation rather than O 3 exposure, paralleling the daily courses of canopy conductance for water vapor and eddy covariance-based total stand-level O 3 flux. The demonstrated combination of sap flow and eddy covariance approaches supports the development of O 3 risk assessment in forests from O 3 exposure towards flux-based concepts. - Combined tree sap flow and eddy covariance-based methodologies yield stomatal O 3 flux as 33% in total stand flux.
Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O
2018-05-01
Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Optimal stomatal behaviour around the world
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.; Prentice, I. Colin; Wang, Han; Baig, Sofia; Eamus, Derek; de Dios, Victor Resco; Mitchell, Patrick; Ellsworth, David S.; de Beeck, Maarten Op; Wallin, Göran; Uddling, Johan; Tarvainen, Lasse; Linderson, Maj-Lena; Cernusak, Lucas A.; Nippert, Jesse B.; Ocheltree, Troy W.; Tissue, David T.; Martin-Stpaul, Nicolas K.; Rogers, Alistair; Warren, Jeff M.; de Angelis, Paolo; Hikosaka, Kouki; Han, Qingmin; Onoda, Yusuke; Gimeno, Teresa E.; Barton, Craig V. M.; Bennie, Jonathan; Bonal, Damien; Bosc, Alexandre; Löw, Markus; Macinins-Ng, Cate; Rey, Ana; Rowland, Lucy; Setterfield, Samantha A.; Tausz-Posch, Sabine; Zaragoza-Castells, Joana; Broadmeadow, Mark S. J.; Drake, John E.; Freeman, Michael; Ghannoum, Oula; Hutley, Lindsay B.; Kelly, Jeff W.; Kikuzawa, Kihachiro; Kolari, Pasi; Koyama, Kohei; Limousin, Jean-Marc; Meir, Patrick; Lola da Costa, Antonio C.; Mikkelsen, Teis N.; Salinas, Norma; Sun, Wei; Wingate, Lisa
2015-05-01
Stomatal conductance (gs) is a key land-surface attribute as it links transpiration, the dominant component of global land evapotranspiration, and photosynthesis, the driving force of the global carbon cycle. Despite the pivotal role of gs in predictions of global water and carbon cycle changes, a global-scale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here, we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour differs among PFTs according to their marginal carbon cost of water use, as predicted by the theory underpinning the optimal stomatal model and the leaf and wood economics spectrum. We also demonstrate a global relationship with climate. These findings provide a robust theoretical framework for understanding and predicting the behaviour of gs across biomes and across PFTs that can be applied to regional, continental and global-scale modelling of ecosystem productivity, energy balance and ecohydrological processes in a future changing climate.
Improvement of herpetic stomatitis therapy in patients with chronic tonsillitis
Directory of Open Access Journals (Sweden)
Lepilin А.V.
2011-12-01
Full Text Available The research goal is to determine the clinical and pathogenetic efficacy of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis. Materials and methods: Medical examination and treatment of 60 patients have been carried out. The marker of endogenous intoxication, infectious severity and immunity has been investigated. Results. It has been established that use of Cycloferon liniment in the combined therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis has allowed to decrease infectious severity in par-odontal recess and evidence of local inflammation, to normalize immunity indices and reduce the level of endogenous intoxication that has been liable for acceleration of recuperation processes and lowering of frequency of stomatitis recurrences. Conclusion. The clinical efficacy of Cycloferon liniment in the therapy in patients with herpetic stomatitis accompanied by chronic tonsillitis conditioned by the decreasing of activity of local inflammatory process according to the reducing of level pro-inflammatory cytokines, infectious burden of the mouth cavity, endogenous intoxication
Directory of Open Access Journals (Sweden)
Gustavo Maia Souza
2004-07-01
Full Text Available In this study we hypothesized that chaotic or complex behavior of stomatal conductance could improve plant homeostasis after water deficit. Stomatal conductance of sunflower and sugar beet leaves was measured in plants grown either daily irrigation or under water deficit using an infrared gas analyzer. All measurements were performed under controlled environmental conditions. In order to measure a consistent time series, data were scored with time intervals of 20s during 6h. Lyapunov exponents, fractal dimensions, KS entropy and relative LZ complexity were calculated. Stomatal conductance in both irrigated and non-irrigated plants was chaotic-like. Plants under water deficit showed a trend to a more complex behaviour, mainly in sunflower that showed better homeostasis than in sugar beet. Some biological implications are discussed.Este estudo testou a hipótese de que a condutância estomática de uma população de estômatos em uma folha poderia apresentar um comportamento caótico ou complexo sob diferentes condições hídricas, o que poderia favorecer a capacidade homeostática das plantas. A condutância estomática em folhas de girassol e de beterraba cultivadas com irrigação diária e sob deficiência hídrica foi medida com um analisador de gás por infra-vermelho em condições controladas. Os dados foram registrados a cada 20s durante 6h. As séries temporais obtidas foram analisadas por meio dos coeficientes de Lyapunov, dimensão fractal, entropia KS e complexidade LZ relativa. A condutância estomática nas plantas cultivadas com e sem deficiência hídrica exibiu um comportamento provavelmente caótico. As plantas sob estresse hídrico mostraram uma tendência para um comportamento mais complexo, principalmente as plantas de girassol cuja capacidade homeostática foi superior. Algumas implicações biológicas destes comportamentos são discutidas no texto.
Barclay, R. S.; Wing, S. L.
2013-12-01
The Paleocene-Eocene Thermal Maximum (PETM) was a geologically brief interval of intense global warming 56 million years ago. It is arguably the best geological analog for a worst-case scenario of anthropogenic carbon emissions. The PETM is marked by a ~4-6‰ negative carbon isotope excursion (CIE) and extensive marine carbonate dissolution, which together are powerful evidence for a massive addition of carbon to the oceans and atmosphere. In spite of broad agreement that the PETM reflects a large carbon cycle perturbation, atmospheric concentrations of CO2 (pCO2) during the event are not well constrained. The goal of this study is to produce a high resolution reconstruction of pCO2 using stomatal frequency proxies (both stomatal index and stomatal density) before, during, and after the PETM. These proxies rely upon a genetically controlled mechanism whereby plants decrease the proportion of gas-exchange pores (stomata) in response to increased pCO2. Terrestrial sections in the Bighorn Basin, Wyoming, contain macrofossil plants with cuticle immediately bracketing the PETM, as well as dispersed plant cuticle from within the body of the CIE. These fossils allow for the first stomatal-based reconstruction of pCO2 near the Paleocene-Eocene boundary; we also use them to determine the relative timing of pCO2 change in relation to the CIE that defines the PETM. Preliminary results come from macrofossil specimens of Ginkgo adiantoides, collected from an ~200ka interval prior to the onset of the CIE (~230-30ka before), and just after the 'recovery interval' of the CIE. Stomatal index values decreased by 37% within an ~70ka time interval at least 100ka prior to the onset of the CIE. The decrease in stomatal index is interpreted as a significant increase in pCO2, and has a magnitude equivalent to the entire range of stomatal index adjustment observed in modern Ginkgo biloba during the anthropogenic CO2 rise during the last 150 years. The inferred CO2 increase prior to the
Directory of Open Access Journals (Sweden)
Auricleia S. Paiva
2005-04-01
capacity in the soil decreased to 40; 60 and 80% (respectively, treatments T1, T2 and T3, while irrigation in T4 occurred only to assure seedling emergence. Direct measurements of stomatal conductance were taken every day under field conditions in both adaxial and abaxial leaf surfaces using porometer. In all treatments, several measurements showed reduced stomatal conductance in response to low values of matric potential and high values of vapor pressure deficit (DPV and vice-versa. The lowest values of stomatal conductance of T4 leaves, taken from plants under the most restrictive water supply regime tested in this study, were observed during the period of plant flowering and grain development.
Ward, Eric J; Oren, Ram; Bell, David M; Clark, James S; McCarthy, Heather R; Kim, Hyun-Seok; Domec, Jean-Christophe
2013-02-01
In this study, we employ a network of thermal dissipation probes (TDPs) monitoring sap flux density to estimate leaf-specific transpiration (E(L)) and stomatal conductance (G(S)) in Pinus taeda (L.) and Liquidambar styraciflua L. exposed to +200 ppm atmospheric CO(2) levels (eCO(2)) and nitrogen fertilization. Scaling half-hourly measurements from hundreds of sensors over 11 years, we found that P. taeda in eCO(2) intermittently (49% of monthly values) decreased stomatal conductance (G(S)) relative to the control, with a mean reduction of 13% in both total E(L) and mean daytime G(S). This intermittent response was related to changes in a hydraulic allometry index (A(H)), defined as sapwood area per unit leaf area per unit canopy height, which decreased a mean of 15% with eCO(2) over the course of the study, due mostly to a mean 19% increase in leaf area (A(L)). In contrast, L. styraciflua showed a consistent (76% of monthly values) reduction in G(S) with eCO(2) with a total reduction of 32% E(L), 31% G(S) and 23% A(H) (due to increased A(L) per sapwood area). For L. styraciflua, like P. taeda, the relationship between A(H) and G(S) at reference conditions suggested a decrease in G(S) across the range of A(H). Our findings suggest an indirect structural effect of eCO(2) on G(S) in P. taeda and a direct leaf level effect in L. styraciflua. In the initial year of fertilization, P. taeda in both CO(2) treatments, as well as L. styraciflua in eCO(2), exhibited higher G(S) with N(F) than expected from shifts in A(H), suggesting a transient direct effect on G(S). Whether treatment effects on mean leaf-specific G(S) are direct or indirect, this paper highlights that long-term treatment effects on G(S) are generally reflected in A(H) as well.
Xuanyuan, Guochao; Lu, Congming; Zhang, Ruofang; Jiang, Jiming
2017-08-01
Nuclear factor Y (NF-Y) is one of the most ubiquitous transcription factors (TFs), comprising NF-YA, NF-YB and NF-YC subunits, and has been identified and reported in various aspects of development for plants and animals. In this work, StNF-YB3.1, a putative potato NF-YB subunit encoding gene, was isolated from Solanum tuberosum by rapid amplification of cDNA ends (RACE). Overexpression of StNF-YB3.1 in potato (cv. Atlantic) resulted in accelerated onset of flowering, and significant increase in leaf chlorophyll content in field trials. However, transgenic potato plants overexpressing StNF-YB3.1 (OEYB3.1) showed significant decreases in photosynthetic rate and stomatal conductance both at tuber initiation and bulking stages. OEYB3.1 lines were associated with significantly fewer tuber numbers and yield reduction. Guard cell size and stomatal density were not changed in OEYB3.1 plants, whereas ABA-mediated stomatal closure was accelerated compared to that of wild type plants because of the up-regulation of genes for ABA signaling, such as StCPK10-like, StSnRK2.6/OST1-like, StSnRK2.7-like and StSLAC1-like. We speculate that the acceleration of stomatal closure was a possible reason for the significantly decreased stomatal conductance and photosynthetic rate. Copyright © 2017 Elsevier B.V. All rights reserved.
Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C
2016-01-01
Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.
Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.
Directory of Open Access Journals (Sweden)
Christopher Hepworth
Full Text Available Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development.
DEFF Research Database (Denmark)
Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl Otto
2015-01-01
) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non...
Slot, Martijn; Winter, Klaus
2017-12-01
Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (V CMax ) and RuBP-regeneration (J Max ), stomatal conductance (G s ), and respiration in the light (R Light ) in situ for 4 lowland tropical tree species in Panama. G s had the lowest temperature optimum (T Opt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. J Max peaked at 34-37 °C and V CMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. R Light significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. T Opt of V CMax and J Max fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration. © 2017 John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Juan Carlos Suárez-Salazar
2016-12-01
Full Text Available The objective of this work was to evaluate the variability of photosynthetic pigment content and daily stomatal conductance was evaluated in relation to environmental variables in Copoazú (Theobroma grandi orum ecotypes. The ecotypes used were part of the germoplasm bank of the University of the Amazon (Colombia. The study was carried out during the year 2015. Four leaves of the average stratum of four plants were collected for each ecotype, to extract and read at different levels of absorbance and determine the content of photosynthetic pigments. During the hours of 04:00 a.m. to 6:00 p.m., the stomatal conductance (gs was monitored for environmental variables (relative humidity, air temperature, radiation and vapor pressure de cit (VPD. An analysis of variance was made using the Tukey test, correlations and regressions were made between gs and environmental variables. The contents of chlorophyll a, b, total and carotenoids among ecotypes were different (P<0.0001, the ecotype UA-31 presented the highest values, contrasting with the ecotype UA-37. Concerning gs, the interaction ecotype*hour showed signi cant differences (P<0.0001 .The ecotypes that presented the highest values of gs were UA-67 and UA-039, (P<0.0001, radiation (-0.91, P<0.0001 and DPV (-0.94; P<0.0001 0.0001.The results suggest that ecotypes UA-039 and UA-31 were the most suitable in terms of gaseous exchange and content of photosynthetic pigments.
International Nuclear Information System (INIS)
Githunguri, C.M; Chewa, J.A; Ekanayake, I.J
1999-01-01
Cassava roots provide a cheap source of dietary energy to millions of people in the tropics. Variations in yield, stomatal conductance, transpiration rate and water use efficiency occur due to various factors. This makes selection of clones with wide ecological adaptation and high yield difficult. The influence of crop age and agroecozones (AEZ) in Nigeria on above parametres were studied. The tested AEZs were Sudan savanna (Minjibir), Southern Guinea savanna (Mokwa) and forest-savanna transition (Ibadan) AEZ. The environment plays a significant role in determining root yield with plant age playing a bigger role at the early stages. Results suggest root development was restricted by low moisture stress. Cassava ought to be harvested at eight months after planting (MAP) rather than at 12 MAP in order to obtain maximum yields. Yields at Mokwa were significantly higher than both Minjibir and Ibadan suggesting that cassava is not a crop for either forest or semi arid zones. During both seasons Minjbir had the highest stomatal conductance trend while Ibadan had the lowest. Stomatal conductance at Minjibir becomes critical at 12 MAP. The highest transpiration rate was recorded at Minijibir at 4 and 12 MAP. The lowest transpiration rate ws observed at Ibadan. The lowest transpiration rate was also observed during drought. There was a close positive close relationship between tuberous roots yield and transpiration. The lowest and highest water use efficiency (WUE) was recorded at 4 and 8 MAP during rains. The lowest and the highest WUE was recorded at Ibadan and Mokwa respectively. The two seasons trends were similar. Clone TMS 50395 had the highest WUE. Tere was close positive relationship between WUE and tuberous roots yield
Hung, Yi-Ping; Yang, Yi-Ping; Wang, Hsien-Chi; Liao, Jiunn-Wang; Hsu, Wei-Li; Chang, Chao-Chin; Chang, Shih-Chieh
2014-10-01
Feline lymphocytic-plasmacytic gingivitis/stomatitis (LPGS) or caudal stomatitis is an inflammatory disease that causes painfully erosive lesions and proliferations of the oral mucosa. The disease is difficult to cure and can affect cats at an early age, resulting in lifetime therapy. In this study, a new treatment using a combination of bovine lactoferrin (bLf) oral spray and oral piroxicam was investigated using a randomized double-blinded clinical trial in 13 cats with caudal stomatitis. Oral lesion grading and scoring of clinical signs were conducted during and after the trial to assess treatment outcome. Oral mucosal biopsies were used to evaluate histological changes during and after treatment. Clinical signs were significantly improved in 77% of the cats. In a 4-week study, clinical signs were considerably ameliorated by oral piroxicam during the first 2 weeks. In a 12-week study, the combined bLf oral spray and piroxicam, when compared with piroxicam alone, exhibited an enhanced effect that reduced the severity of the oral lesions (P = 0.059), while also significantly improving clinical signs (P piroxicam was safe and might be used to decrease the clinical signs of caudal stomatitis in cats. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Zhao, Wenzhi; Liu, Bing; Chang, Xuexiang; Yang, Qiyue; Yang, Yuting; Liu, Zhiling; Cleverly, James; Eamus, Derek
2016-07-01
Partitioning evapotranspiration (ET) into its components reveals details of the processes that underlie ecosystem hydrologic budgets and their feedback to the water cycle. We measured rates of actual evapotranspiration (ETa), canopy transpiration (Tc), soil evaporation (Eg), canopy-intercepted precipitation (EI), and patterns of stomatal conductance of the desert shrub Calligonum mongolicum in northern China to determine the water balance of this ecosystem. The ETa was 251 ± 8 mm during the growing period, while EI, Tc, and Eg accounted for 3.2%, 63.9%, and 31.3%, respectively, of total water use (256 ± 4 mm) during the growing period. In this unique ecosystem, groundwater was the main water source for plant transpiration and soil evaporation, Tc and exceeded 60% of the total annual water used by desert plants. ET was not sensitive to air temperature in this unique desert ecosystem. Partitioning ET into its components improves our understanding of the mechanisms that underlie adaptation of desert shrubs, especially the role of stomatal regulation of Tc as a determinant of ecosystem water balance.
[CORRELATION MATRIX OF CHARACTERISTICS OF CHRONIC RECURRENT APHTHOUS STOMATITIS].
Koridze, Kh; Aladashvili, L; Taboridze, I
2015-09-01
The purpose of the present work is to study the correlation between the risk factors of chronic recurrent aphthous stomatitis. The research was conducted on 62 patients between ages of 40 and 70 years at Tbilisi Hospital for Veterans of War. The analysis was carried out by Spearman's Rank Correlation method using the statistical package SPSS 11.5. We investigated: harmful habits, professional factors, background and accompanying illnesses, pathology of teeth, focal infection, emotional stress, genetic factors. Correlation matrix between the significant risk factors of chronic recurrent aphthous stomatitis is defined. Multiple correlations have the following factors: industrial dust, focal infections, emotional stress, anemia. Correlation diagram of etiological factors of chronic recurrent aphthous stomatitis is helpful for providing professional and expert services.
Directory of Open Access Journals (Sweden)
Daxing Gu
2017-06-01
Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.
Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty
1997-01-01
Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...
von Caemmerer, Susanne; Griffiths, Howard
2009-05-01
To investigate the diurnal variation of stomatal sensitivity to CO2, stomatal response to a 30 min pulse of low CO2 was measured four times during a 24 h time-course in two Crassulacean acid metabolism (CAM) species Kalanchoe daigremontiana and Kalanchoe pinnata, which vary in the degree of succulence, and hence, expression and commitment to CAM. In both species, stomata opened in response to a reduction in pCO2 in the dark and in the latter half of the light period, and thus in CAM species, chloroplast photosynthesis is not required for the stomatal response to low pCO2. Stomata did not respond to a decreased pCO2 in K. daigremontiana in the light when stomata were closed, even when the supply of internal CO2 was experimentally reduced. We conclude that stomatal closure during phase III is not solely mediated by high internal pCO2, and suggest that in CAM species the diurnal variability in the responsiveness of stomata to pCO2 could be explained by hypothesizing the existence of a single CO2 sensor which interacts with other signalling pathways. When not perturbed by low pCO2, CO2 assimilation rate and stomatal conductance were correlated both in the light and in the dark in both species.
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-mei; HAN Shi-jie; LIU Ying; JIA Xia
2005-01-01
Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle.
Novick, Kimberly A; Miniat, Chelcy F; Vose, James M
2016-03-01
We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.
Mizokami, Yusuke; Noguchi, Ko; Kojima, Mikiko; Sakakibara, Hitoshi; Terashima, Ichiro
2015-03-01
Under drought conditions, leaf photosynthesis is limited by the supply of CO2 . Drought induces production of abscisic acid (ABA), and ABA decreases stomatal conductance (gs ). Previous papers reported that the drought stress also causes the decrease in mesophyll conductance (gm ). However, the relationships between ABA content and gm are unclear. We investigated the responses of gm to the leaf ABA content [(ABA)L ] using an ABA-deficient mutant, aba1, and the wild type (WT) of Nicotiana plumbaginifolia. We also measured leaf water potential (ΨL ) because leaf hydraulics may be related to gm . Under drought conditions, gm decreased with the increase in (ABA)L in WT, whereas both (ABA)L and gm were unchanged by the drought treatment in aba1. Exogenously applied ABA decreased gm in both WT and aba1 in a dose-dependent manner. ΨL in WT was decreased by the drought treatment to -0.7 MPa, whereas ΨL in aba1 was around -0.8 MPa even under the well-watered conditions and unchanged by the drought treatment. From these results, we conclude that the increase in (ABA)L is crucial for the decrease in gm under drought conditions. We discuss possible relationships between the decrease in gm and changes in the leaf hydraulics. © 2014 John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Tao eLi
2016-02-01
Full Text Available The stimulating effect of diffuse light on radiation use efficiency (RUE of crops is often explained by the more homogeneous spatial light distribution, while rarely considering differences in temporal light distribution at leaf level. This study investigated whether diffuse light effects on crop RUE can be explained by dynamic responses of leaf photosynthesis to temporal changes of photosynthetic photon flux density (PPFD.Two Anthurium andreanum cultivars (‘Pink Champion’ and ‘Royal Champion’ were grown in two glasshouses covered by clear (control and diffuse glass, with similar light transmission. On clear days, diffusing the light resulted in less temporal fluctuations of PPFD. Stomatal conductance (gs varied strongly in response to transient PPFD in ‘Royal Champion’, whereas it remained relatively constant in ‘Pink Champion’. Instantaneous net leaf photosynthesis (Pn in both cultivars approached steady state Pn in diffuse light treatment. In control treatment this only occurred in ‘Pink Champion’. These cultivar differences were reflected by a higher RUE (8% in ‘Royal Champion’ in diffuse light treatment compared with control, whereas no effect on RUE was observed in ‘Pink Champion’. We conclude that the stimulating effect of diffuse light on RUE depends on the stomatal response to temporal PPFD fluctuations, which response is cultivar dependent.
Soares, Ana Sofia; Driscoll, Simon P; Olmos, Enrique; Harbinson, Jeremy; Arrabaça, Maria Celeste; Foyer, Christine H
2008-01-01
Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 microl l(-1) CO(2). Plant biomass was doubled as a result of growth at high CO(2) and the shoot:root ratio was decreased. Stomatal density was increased in the leaves of the high CO(2)-grown plants, which had greater numbers of smaller stomata and more epidermal cells on the abaxial surface. An asymmetric surface-specific regulation of photosynthesis and stomatal conductance was observed with respect to light orientation. This was not caused by dorso-ventral variations in leaf structure, the distribution of phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) proteins or light absorptance, transmittance or reflectance. Adaxial/abaxial specification in the regulation of photosynthesis results from differential sensitivity of stomatal opening to light orientation and fixed gradients of enzyme activation across the leaf.
Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K
2014-09-01
Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature, and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was dependent on light and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions, which explicitly accounts for the physicochemical properties of emitted compounds, we were able to simulate these observed stomatal effects, whether induced experimentally or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light-dependent monoterpenes comprise a significant fraction of emissions in ponderosa pine. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.
Energy Technology Data Exchange (ETDEWEB)
Harley, Peter; Eller, Allyson; Guenther, Alex; Monson, Russell K.
2014-07-12
Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in Δ-3-carene.
Aliniaeifard, Sasan; van Meeteren, Uulke
2014-12-01
Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling stomatal movements in different environments. We characterized the stomatal responses of 41 natural accessions of Arabidopsis thaliana to closing stimuli (ABA and desiccation) after they had been exposed for 4 days to moderate VPD (1.17 kPa) or low VPD (0.23 kPa). A fast screening system was used to test stomatal response to ABA using chlorophyll fluorescence imaging under low O2 concentrations of leaf discs floating on ABA solutions. In all accessions stomatal conductance (gs) was increased after prior exposure to low VPD. After exposure to low VPD, stomata of 39 out of 41 of the accessions showed a diminished ABA closing response; only stomata of low VPD-exposed Map-42 and C24 were as responsive to ABA as moderate VPD-exposed plants. In response to desiccation, most of the accessions showed a normal stomata closing response following low VPD exposure. Only low VPD-exposed Cvi-0 and Rrs-7 showed significantly less stomatal closure compared with moderate VPD-exposed plants. Using principle component analysis (PCA), accessions could be categorized to very sensitive, moderately sensitive, and less sensitive to closing stimuli. In conclusion, we present evidence for different stomatal responses to closing stimuli after long-term exposure to low VPD across Arabidopsis accessions. The variation can be a useful tool for finding the mechanism of stomatal malfunctioning. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Carlson, Jane E; Adams, Christopher A; Holsinger, Kent E
2016-01-01
Trait-environment relationships are commonly interpreted as evidence for local adaptation in plants. However, even when selection analyses support this interpretation, the mechanisms underlying differential benefits are often unknown. This study addresses this gap in knowledge using the broadly distributed South African shrub Protea repens. Specifically, the study examines whether broad-scale patterns of trait variation are consistent with spatial differences in selection and ecophysiology in the wild. In a common garden study of plants sourced from 19 populations, associations were measured between five morphological traits and three axes describing source climates. Trait-trait and trait-environment associations were analysed in a multi-response model. Within two focal populations in the wild, selection and path analyses were used to test associations between traits, fecundity and physiological performance. Across 19 populations in a common garden, stomatal density increased with the source population's mean annual temperature and decreased with its average amount of rainfall in midsummer. Concordantly, selection analysis in two natural populations revealed positive selection on stomatal density at the hotter, drier site, while failing to detect selection at the cooler, moister site. Dry-site plants with high stomatal density also had higher stomatal conductances, cooler leaf temperatures and higher light-saturated photosynthetic rates than those with low stomatal density, but no such relationships were present among wet-site plants. Leaf area, stomatal pore index and specific leaf area in the garden also co-varied with climate, but within-population differences were not associated with fitness in either wild population. The parallel patterns of broad-scale variation, differences in selection and differences in trait-ecophysiology relationships suggest a mechanism for adaptive differentiation in stomatal density. Densely packed stomata may improve performance by
Lugassi, Nitsan; Kelly, Gilor; Fidel, Lena; Yaniv, Yossi; Attia, Ziv; Levi, Asher; Alchanatis, Victor; Moshelion, Menachem; Raveh, Eran; Carmi, Nir; Granot, David
2015-01-01
Hexokinase (HXK) is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1) under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.
Sharma, B.; Apple, M. E.; Morales, S.; Zhou, X.; Holben, B.; Olson, J.; Prince, J.; Dobeck, L.; Cunningham, A. B.; Spangler, L.
2010-12-01
One measure to reduce atmospheric CO2 is to sequester it in deep geological formations. Rapid surface detection of any CO2 leakage is crucial. CO2 leakage rapidly affects vegetation above sequestration fields. Plant responses to high CO2 are valuable tools in surface detection of leaking CO2. The Zero Emission Research Technology (ZERT) site in Bozeman, MT is an experimental field for surface detection of CO2 where 0.15 ton/day of CO2 was released (7/19- 8/15/2010) from a 100m horizontal injection well, HIW, 1.5 m underground with deliberate leaks of CO2 at intervals, and from a vertical injector, VI, (6/3-6/24/2010). The vegetation includes Taraxacum officinale (Dandelion), Dactylis glomerata (Orchard Grass), and other herbaceous plants. We collected soil and roots 1, 3 and 5 m from the VI to determine the responses of mycorrhizal fungi and rhizosphere microbes to high CO2. Mycorrhizal fungi obtain C from root exudates, increase N and P availability, and reduce desiccation, while prokaryotic rhizosphere microbes fix atmospheric N and will be examined for abundance and expression of carbon and nitrogen cycling genes. We are quantifying mycorrhizal colonization and the proportion of spores, hyphae, and arbuscules in vesicular-arbuscular mycorrhizae (VAM) in cleared and stained roots. Stomatal conductance is an important measure of CO2 uptake and water loss via transpiration. We used a porometer (5-40°C, 0-90% RH, Decagon) to measure stomatal conductivity in dandelion and orchard grass at 1, 3, and 5 m from the VI and along a transect perpendicular to the HIW. Dandelion conductance was highest close to the VI and almost consistently higher close to hot spots (circular regions with maximum CO2 and leaf dieback) at the HIW, with 23.2 mmol/m2/s proximal to the hot spot, and 10.8 mmol/m2/s distally. Average conductance in grass (50.3 mmol/m2/s) was higher than in dandelion, but grass did not have high conductance near hot spots. Stomata generally close at elevated CO2
Directory of Open Access Journals (Sweden)
Fábio Afonso Mazzei Moura de Assis Figueiredo
2014-06-01
Full Text Available http://dx.doi.org/10.5902/1980509814566The gain reduction of wood biomass in trees has been assigned to root deformations even in the nursery phase. The objective of this work was the evaluation of the root system hydraulic conductivity, gas exchanges and photochemical efficiency of eucalypt clonal cuttings with and without root deformation inductions. The treatments were: 1 operational cuttings without root malformation inductions (grown according to the used methodology of Fibria Cellulose S.A.; 2 root deformation inductions. These inductions did not promote decrease in the root volume. However, the deformations brought reduction of the root system hydraulic conductivity. Lower photosynthetic rates were also observed along the day in the cuttings in the root deformed cuttings. This decreasing rate is connected to stomatal and non stomatal factors.
Smith, J; Grimmer, M; Waterhouse, S; Paveley, N
2013-01-01
The active ingredient fluxapyroxad belongs to the chemical group of carboxamides and is a new generation succinate dehydrogenase inhibitor (SDHI) in complex II of the mitochondrial respiratory chain. It has strong efficacy against the key foliar diseases of winter wheat in the UK: Septoria leaf blotch, yellow stripe rust and brown rust. Fluxapyroxad is marketed under the brand name of Xemium, was launched in 2012 and is available in the UK as a solo product (Imtrex) for co-application with triazoles, in co-formulation with epoxiconazole (Adexar), or in a three way formulation with epoxiconazole and pyraclostrobin (Ceriax). The objective of the study was to quantify the direct effects of Xemium on stomatal conductance and yield, mediated through stimulation of host physiology. Three field experiments and two controlled environment (CE) experiments were conducted across three cropping seasons (2010-2012) in Herefordshire and Cambridge, in the UK. Xemium was evaluated against boscalid, pyraclostrobin (F500), epoxiconazole and an untreated control. Across site-seasons, disease severity was significantly reduced when Xemium was applied as a foliar spray. Healthy canopy size and duration was increased by Xemium and canopy greening effects were seen shortly after application. Stomatal conductance was found to be consistently lower in Xemium treated plants but reduced stomatal opening was not found to be detrimental to yield in these experiments. Large, beneficial effects of Xemium on water use efficiency were found at the canopy level and this finding was supported by measurements of instantaneous water use efficiency at the leaf level. Effects on season long water use efficiency were largely driven by improvements in yield for a given amount of water uptake. Foliar applications of Xemium reduced the water required to produce 1.0 t grain per hectare by 82,330 L(82 t) when compared with an untreated crop. Yield was significantly higher in Xemium treatments and this was
Directory of Open Access Journals (Sweden)
Nitsan eLugassi
2015-12-01
Full Text Available Hexokinase (HXK is a sugar-phosphorylating enzyme involved in sugar-sensing. It has recently been shown that HXK in guard cells mediates stomatal closure and coordinates photosynthesis with transpiration in the annual species tomato and Arabidopsis. To examine the role of HXK in the control of the stomatal movement of perennial plants, we generated citrus plants that express Arabidopsis HXK1 (AtHXK1 under KST1, a guard cell-specific promoter. The expression of KST1 in the guard cells of citrus plants has been verified using GFP as a reporter gene. The expression of AtHXK1 in the guard cells of citrus reduced stomatal conductance and transpiration with no negative effect on the rate of photosynthesis, leading to increased water-use efficiency. The effects of light intensity and humidity on stomatal behavior were examined in rooted leaves of the citrus plants. The optimal intensity of photosynthetically active radiation and lower humidity enhanced stomatal closure of AtHXK1-expressing leaves, supporting the role of sugar in the regulation of citrus stomata. These results suggest that HXK coordinates photosynthesis and transpiration and stimulates stomatal closure not only in annual species, but also in perennial species.
Speirs, Jim; Binney, Allan; Collins, Marisa; Edwards, Everard; Loveys, Brian
2013-04-01
The influence of different levels of irrigation and of variation in atmospheric vapour pressure deficit (VPD) on the synthesis, metabolism, and transport of abscisic acid (ABA) and the effects on stomatal conductance were examined in field-grown Cabernet Sauvignon grapevines. Xylem sap, leaf tissue, and root tissue were collected at regular intervals during two seasons in conjunction with measurements of leaf water potential (Ψleaf) and stomatal conductance (gs). The different irrigation levels significantly altered the Ψleaf and gs of the vines across both seasons. ABA abundance in the xylem sap was correlated with gs. The expression of genes associated with ABA synthesis, NCED1 and NCED2, was higher in the roots than in the leaves throughout and highest in the roots in mid January, a time when soil moisture declined and VPD was at its highest. Their expression in roots was also inversely related to the levels of irrigation and correlated with ABA abundance in the roots, xylem sap, and leaves. Three genes encoding ABA 8'-hydroxylases were isolated and their identities confirmed by expression in yeast cells. The expression of one of these, Hyd1, was elevated in leaves when VPD was below 2.0-2.5 kPa and minimal at higher VPD levels. The results provide evidence that ABA plays an important role in linking stomatal response to soil moisture status and that changes in ABA catabolism at or near its site of action allows optimization of gas exchange to current environmental conditions.
Fares, S.; McKay, M.; Goldstein, A.
2008-12-01
Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.
Positive and negative peptide signals control stomatal density.
Shimada, Tomoo; Sugano, Shigeo S; Hara-Nishimura, Ikuko
2011-06-01
The stoma is a micro valve found on aerial plant organs that promotes gas exchange between the atmosphere and the plant body. Each stoma is formed by a strict cell lineage during the early stages of leaf development. Molecular genetics research using the model plant Arabidopsis has revealed the genes involved in stomatal differentiation. Cysteine-rich secretory peptides of the EPIDERMAL PATTERNING FACTOR-LIKE (EPFL) family play crucial roles as extracellular signaling factors. Stomatal development is orchestrated by the positive factor STOMAGEN/EPFL9 and the negative factors EPF1, EPF2, and CHALLAH/EPFL6 in combination with multiple receptors. EPF1 and EPF2 are produced in the stomatal lineage cells of the epidermis, whereas STOMAGEN and CHALLAH are derived from the inner tissues. These findings highlight the complex cell-to-cell and intertissue communications that regulate stomatal development. To optimize gas exchange, particularly the balance between the uptake of carbon dioxide (CO(2)) and loss of water, plants control stomatal activity in response to environmental conditions. The CO(2) level and light intensity influence stomatal density. Plants sense environmental cues in mature leaves and adjust the stomatal density of newly forming leaves, indicating the involvement of long-distance systemic signaling. This review summarizes recent research progress in the peptide signaling of stomatal development and discusses the evolutionary model of the signaling machinery.
Stomatal design principles in synthetic and real leaves
DEFF Research Database (Denmark)
Zwieniecki, Maciej A.; Haaning, Katrine S; Boyce, C. Kevin
2016-01-01
Stomata are portals in plant leaves that control gas exchange for photosynthesis, a process fundamental to life on Earth. Gas fluxes and plant productivity depend on external factors such as light, water and CO2 availability and on the geometrical properties of the stoma pores. The link between...... for major trends in stomatal patterning are not well understood. Here, we use a combination of biomimetic experiments and theory to rationalize the observed changes in stoma geometry. We show that the observed correlations between stoma size and density are consistent with the hypothesis that plants favour...... efficient use of space and maximum control of dynamic gas conductivity, and that the capacity for gas exchange in plants has remained constant over at least the last 325 Myr. Our analysis provides a new measure to gauge the relative performance of species based on their stomatal characteristics....
Raschke, K
1975-01-01
Open stomata of detached leaves of Xanthium strumarium L. closed only when carbon dioxide and abscisic acid (ABA) were presented simultaneously. Three parameters of stomatal closing were determined after additions of ABA to the irrigation water of detached leaves, while the leaves were exposed to various CO2 concentrations ([CO2]s) in the air; a) the delay between addition of ABA and a reduction of stomatal conductance by 5%, b) the velocity of stomatal closing, and c) the new conductance. Changes in all three parameters showed that stomatal responses to ABA were enhanced by CO2; this effect followed saturation kinetics. Half saturation occurred at an estimated [CO2] in the stomatal pore of 200 μl l(-1). With respect to ABA, stomata responded in normal air with half their maximal amplitude at [ABA]s between 10(-6) and 10(-5) M(+-)-ABA. The amounts of ABA taken up by the leaves during the delay increased with a power strumarium.Based on earlier findings and on the results of this investigation it is suggested that stomata close if the cytoplasm of the guard cells contains much malate and H(+). The acid content in turn is determined by the relative rates of production of malic acid (from endogenous as well as exogenous CO2) and its removal (by transport of the anion into the vacuole and exchange of the H(+) for K(+) with the environment of the guard cells). The simultaneous requirement of CO2 and ABA for stomatal closure leads to the inference that ABA inhibits the expulsion of H(+) from guard cells.
Paoletti, Elena
2005-04-01
The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol(-1) O3) on stomatal conductance (gs) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state gs compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury gs levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O3 exposure ("memory effect") and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O3 exposure. Nevertheless, measurements of steady-state gs at midday may not account for altered stomatal responses to stressors.
Grünhage, Ludger; Pleijel, Håkan; Mills, Gina; Bender, Jürgen; Danielsson, Helena; Lehmann, Yvonne; Castell, Jean-Francois; Bethenod, Olivier
2012-06-01
Field measurements and open-top chamber experiments using nine current European winter wheat cultivars provided a data set that was used to revise and improve the parameterisation of a stomatal conductance model for wheat, including a revised value for maximum stomatal conductance and new functions for phenology and soil moisture. For the calculation of stomatal conductance for ozone a diffusivity ratio between O(3) and H(2)O in air of 0.663 was applied, based on a critical review of the literature. By applying the improved parameterisation for stomatal conductance, new flux-effect relationships for grain yield, grain mass and protein yield were developed for use in ozone risk assessments including effects on food security. An example of application of the flux model at the local scale in Germany shows that negative effects of ozone on wheat grain yield were likely each year and on protein yield in most years since the mid 1980s. Copyright © 2012 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Maria Aparecida José de Oliveira
2002-03-01
. Data were collected daily in a laboratory, under a photosynthetic photon flux (PPF of 1200 mum-2 s-1, and studied by variance and regression analysis. Significant decreases of leaf water potential values and gas exchange rates were verified when water was withhold for more than six days. The smallest values were found at the tenth day without water replacement, with a reduction of 92% of the net photosynthetic rate, 87% of the stomatal conductance and 70% of the transpiration. By that time, the smallest measured leaf water potential was --1.9 MPa. Recovering from water stress was accomplished two days after rewatering, except for stomatal conductance. The partial closing of the stomata (decrease in stomatal conductance and the reduction of photosynthesis, suggest the existence of an acclimation mechanism of the peach palm, diminishing water loss under moderate stress.
Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R
2014-09-01
The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Lahr, Eleanor C; Dunn, Robert R; Frank, Steven D
2018-01-01
Photosynthesis is a fundamental process that trees perform over fluctuating environmental conditions. This study of red maple (Acer rubrum L.) characterizes photosynthesis, stomatal conductance, and water use efficiency in planted cultivars relative to wildtype trees. Red maple is common in cities, yet there is little understanding of how physiological processes affect the long-term growth, condition, and ecosystem services provided by urban trees. In the first year of our study, we measured leaf-level gas exchange and performed short-term temperature curves on urban planted cultivars and on suburban and rural wildtype trees. In the second year, we compared urban planted cultivars and urban wildtype trees. In the first year, urban planted trees had higher maximum rates of photosynthesis and higher overall rates of photosynthesis and stomatal conductance throughout the summer, relative to suburban or rural wildtype trees. Urban planted trees again had higher maximum rates of photosynthesis in the second year. However, urban wildtype trees had higher water use efficiency as air temperatures increased and similar overall rates of photosynthesis, relative to cultivars, in mid and late summer. Our results show that physiological differences between cultivars and wildtype trees may relate to differences in their genetic background and their responses to local environmental conditions, contingent on the identity of the horticultural variety. Overall, our results suggest that wildtype trees should be considered for some urban locations, and our study is valuable in demonstrating how site type and tree type can inform tree planting strategies and improve long-term urban forest sustainability.
Ethylene limits abscisic acid- or soil drying-induced stomatal closure in aged wheat leaves.
Chen, Lin; Dodd, Ian C; Davies, William J; Wilkinson, Sally
2013-10-01
The mechanism of age-induced decreased stomatal sensitivity to abscisic acid (ABA) and soil drying has been explored here. Older, fully expanded leaves partly lost their ability to close stomata in response to foliar ABA sprays, and soil drying which stimulated endogenous ABA production, while young fully expanded leaves closed their stomata more fully. However, ABA- or soil drying-induced stomatal closure of older leaves was partly restored by pretreating plants with 1-methylcyclopropene (1-MCP), which can antagonize ethylene receptors, or by inoculating soil around the roots with the rhizobacterium Variovorax paradoxus 5C-2, which contains 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase. ACC (the immediate biosynthetic precursor of ethylene) sprays revealed higher sensitivity of stomata to ethylene in older leaves than younger leaves, despite no differences in endogenous ACC concentrations or ethylene emission. Taken together, these results indicate that the relative insensitivity of stomatal closure to ABA and soil drying in older leaves is likely due to altered stomatal sensitivity to ethylene, rather than ethylene production. To our knowledge, this is the first study to mechanistically explain diminished stomatal responses to soil moisture deficit in older leaves, and the associated reduction in leaf water-use efficiency. © 2013 John Wiley & Sons Ltd.
Optimal stomatal behaviour around the world
DEFF Research Database (Denmark)
Lin, Yan-Shih; Medlyn, Belinda E.; Duursma, Remko A.
2015-01-01
, a globalscale database and an associated globally applicable model of gs that allow predictions of stomatal behaviour are lacking. Here,we present a database of globally distributed gs obtained in the field for a wide range of plant functional types (PFTs) and biomes. We find that stomatal behaviour diers among...
Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways
Felemban, Abrar
2016-05-01
Stomata are cellular valves in plants that play an essential role in the regulation of gas exchange and are distributed in the epidermis of aerial organs. In Arabidopsis thaliana, stomatal production and development are coordinated by the mitogen-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal development, by influencing the frequency at which stomata develop in leaves. This thesis presents an analysis of stomatal development in Arabidopsis mutants in two MAPK pathways: MEKK1-MKK1/MKK2-MPK4, and MAP3K17/18-MKK3. Obtained results demonstrate the effect of stress conditions on stomatal development and specify the involvement of analysed MAPK in stomatal patterning. First, both analysed pathways modulate stomatal patterning in Arabidopsis cotyledons. Second, plant growth-promoting bacteria tested enhance stomatal density and affect guard cell morphology. Third, the sucrose or mannitol treatment increases defects in stomatal patterning. Finally, salt stress or high temperature can suppress stomatal defects in mutants of the MEKK1-MKK1/MKK2-MPK4 pathway.
Energy Technology Data Exchange (ETDEWEB)
Paoletti, Elena [Istituto Protezione Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano, I-50019 Sesto Fiorentino (Italy)]. E-mail: e.paoletti@ipp.cnr.it
2005-04-01
The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol{sup -1} O{sub 3}) on stomatal conductance (g{sub s}) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g{sub s} compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g{sub s} levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O{sub 3} exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O{sub 3} exposure. Nevertheless, measurements of steady-state g{sub s} at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening.
International Nuclear Information System (INIS)
Paoletti, Elena
2005-01-01
The effect of a 90-d ozone exposure (charcoal-filtered air or 110 nmol mol -1 O 3 ) on stomatal conductance (g s ) was investigated in the Mediterranean evergreen broadleaf Arbutus unedo L. Ozone did not significantly reduce midday steady-state g s compared to controls. However, it slowed stomatal response to abrupt reduction of light intensity and to increasing water stress, applied by severing the leaf midrib. Ozone slowed stomatal closure, rather than aperture. Nevertheless, vein-cutting did not allow ozonated leaves to reach the pre-injury g s levels, like controls did, suggesting re-opening was still, slowly in progress. The sluggish behaviour was recorded 10 days after cessation of O 3 exposure ('memory effect') and may affect stomatal control in response to sunflecks and leaf wounding. Mediterranean evergreen broadleaves are regarded as tolerant to O 3 exposure. Nevertheless, measurements of steady-state g s at midday may not account for altered stomatal responses to stressors. - In response to ozone exposure, stomata were slower in closing rather than in opening
Directory of Open Access Journals (Sweden)
Dália R.A. Carvalho
2015-05-01
Full Text Available High relative air humidity (RH ≥ 85% during growth leads to stomata malfunctioning, resulting in water stress when plants are transferred to conditions of high evaporative demand. In this study, we hypothesized that an elevated air movement (MOV 24 h per day, during the whole period of leaf development would increase abscisic acid concentration ([ABA] enhancing stomatal functioning. Pot rose ‘Toril’ was grown at moderate (61% or high (92% RH combined with a negligible MOV or with a continuous MOV of 0.92 m s-1. High MOV reduced stomatal pore length and aperture in plants developed at high RH. Moreover, stomatal function improved when high MOV-treated plants were subjected to leaflet desiccation and ABA feeding. Endogenous concentration of ABA and its metabolites in the leaves was reduced by 35% in high RH, but contrary to our hypothesis this concentration was not significantly affected by high MOV. Interestingly, in detached leaflets grown at high RH, high MOV increased stomatal sensitivity to ABA since the amount of exogenous ABA required to decrease the transpiration rate was significantly reduced. This is the first study to show that high MOV increases stomatal functionality in leaves developed at high RH by reducing the stomatal pore length and aperture and enhancing stomatal sensitivity to ABA rather than increasing leaf [ABA].
Beyschlag, W; Pfanz, H
1990-01-01
Pressure infiltration of water into a leaf via the stomatal pores can be used to quickly determine whether all stomata are open, or as recently described for several mesophytic and xerophytic species, whether there is a non-homogeneous distribution of stomatal opening (stomatal patchiness) on the leaf surface. Information about this phenomenon is important since the commonly used algorithms for calculation of leaf conductance from water vapor exchange measurements imply homogeneously open stomata, which in the occurrence of stomatal patchiness will lead to erroneous results. Infiltration experiments in a growth chamber with leaves of the Mediterranean evergreen shrub Arbutus unedo, carried out under simulated Mediterranean summer day conditions, where the species typically exhibits a strong midday stomatal closure, revealed a temporary occurrence of stomatal patchiness during the phase of stomatal closure in the late morning and during the stomatal reopening in the afternoon. Leaves were, however, found to be fully (i.e. homogeneously) infiltratable in the morning and in the evening. At midday during maximum stomatal closure, leaves were almost non-infiltratable. During the day, the infiltrated amount of water was found to be linearly correlated with porometer measurements of leaf conductance of the same leaves, carried out with the attached leaves immediately before infiltration.
Hochberg, Uri; Bonel, Andrea Giulia; David-Schwartz, Rakefet; Degu, Asfaw; Fait, Aaron; Cochard, Hervé; Peterlunger, Enrico; Herrera, Jose Carlos
2017-06-01
Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.) that were first acclimated for 39 days to well-watered (WW), sustained water deficit (SD), or transient-cycles of dehydration-rehydration-water deficit (TD) conditions, and then subjected to varying degrees of drought. Vine development under SD led to the smallest leaves and petioles, but the TD vines had the smallest mean xylem vessel and calculated specific conductivity (k ts ). Unexpectedly, both the water deficit acclimation treatments resulted in vines more vulnerable to cavitation in comparison to WW, possibly as a result of developmental differences or cavitation fatigue. When exposed to drought, the SD vines maintained the highest stomatal (g s ) and leaf conductance (k leaf ) under low stem water potential (Ψ s ), despite their high xylem vulnerability and in agreement with their lower turgor loss point (Ψ TLP ). These findings suggest that the down-regulation of k leaf and g s is not associated with embolism, and the ability of drought-acclimated vines to maintain hydraulic conductance and gas exchange under stressed conditions is more likely associated with the leaf turgor and membrane permeability.
Transmission and pathogenesis of vesicular stomatitis viruses
Vesicular Stomatitis (VS) is caused by the Vesicular Stomatitis Virus (VSV), a negative single stranded RNA arthropod-borne virus member of the Family Rhabdoviridae. The virion is composed of the host derived plasma membrane, the envelope, and an internal ribonucleoprotein core. The envelope contain...
International Nuclear Information System (INIS)
Braun, Sabine; Schindler, Christian; Leuzinger, Sebastian
2010-01-01
For a quantitative estimate of the ozone effect on vegetation reliable models for ozone uptake through the stomata are needed. Because of the analogy of ozone uptake and transpiration it is possible to utilize measurements of water loss such as sap flow for quantification of ozone uptake. This technique was applied in three beech (Fagus sylvatica) stands in Switzerland. A canopy conductance was calculated from sap flow velocity and normalized to values between 0 and 1. It represents mainly stomatal conductance as the boundary layer resistance in forests is usually small. Based on this relative conductance, stomatal functions to describe the dependence on light, temperature, vapour pressure deficit and soil moisture were derived using multivariate nonlinear regression. These functions were validated by comparison with conductance values directly estimated from sap flow. The results corroborate the current flux parameterization for beech used in the DO 3 SE model. - A method was developed to derive stomatal functions and ozone uptake calculation from sap flow.
Stomatal Blue Light Response Is Present in Early Vascular Plants.
Doi, Michio; Kitagawa, Yuki; Shimazaki, Ken-ichiro
2015-10-01
Light is a major environmental factor required for stomatal opening. Blue light (BL) induces stomatal opening in higher plants as a signal under the photosynthetic active radiation. The stomatal BL response is not present in the fern species of Polypodiopsida. The acquisition of a stomatal BL response might provide competitive advantages in both the uptake of CO2 and prevention of water loss with the ability to rapidly open and close stomata. We surveyed the stomatal opening in response to strong red light (RL) and weak BL under the RL with gas exchange technique in a diverse selection of plant species from euphyllophytes, including spermatophytes and monilophytes, to lycophytes. We showed the presence of RL-induced stomatal opening in most of these species and found that the BL responses operated in all euphyllophytes except Polypodiopsida. We also confirmed that the stomatal opening in lycophytes, the early vascular plants, is driven by plasma membrane proton-translocating adenosine triphosphatase and K(+) accumulation in guard cells, which is the same mechanism operating in stomata of angiosperms. These results suggest that the early vascular plants respond to both RL and BL and actively regulate stomatal aperture. We also found three plant species that absolutely require BL for both stomatal opening and photosynthetic CO2 fixation, including a gymnosperm, C. revoluta, and the ferns Equisetum hyemale and Psilotum nudum. © 2015 American Society of Plant Biologists. All Rights Reserved.
Easlon, Hsien Ming; Carlisle, Eli; McKay, John K; Bloom, Arnold J
2015-03-01
The objective of this study was to determine if low stomatal conductance (g) increases growth, nitrate (NO3 (-)) assimilation, and nitrogen (N) utilization at elevated CO2 concentration. Four Arabidopsis (Arabidopsis thaliana) near isogenic lines (NILs) differing in g were grown at ambient and elevated CO2 concentration under low and high NO3 (-) supply as the sole source of N. Although g varied by 32% among NILs at elevated CO2, leaf intercellular CO2 concentration varied by only 4% and genotype had no effect on shoot NO3 (-) concentration in any treatment. Low-g NILs showed the greatest CO2 growth increase under N limitation but had the lowest CO2 growth enhancement under N-sufficient conditions. NILs with the highest and lowest g had similar rates of shoot NO3 (-) assimilation following N deprivation at elevated CO2 concentration. After 5 d of N deprivation, the lowest g NIL had 27% lower maximum carboxylation rate and 23% lower photosynthetic electron transport compared with the highest g NIL. These results suggest that increased growth of low-g NILs under N limitation most likely resulted from more conservative N investment in photosynthetic biochemistry rather than from low g. © 2015 American Society of Plant Biologists. All Rights Reserved.
Busch, Florian A
2014-02-01
Guard cells regulate CO2 uptake and water loss of a leaf by controlling stomatal movement in response to environmental factors such as CO2, humidity, and light. The mechanisms by which stomata respond to red light are actively debated in the literature, and even after decades of research it is still controversial whether stomatal movement is related to photosynthesis or not. This review summarizes the current knowledge of the red-light response of stomata. A comparison of published evidence suggests that stomatal movement is controlled by the redox state of photosynthetic electron transport chain components, in particular the redox state of plastoquinone. Potential consequences for the modeling of stomatal conductance are discussed.
Internal coordination between hydraulics and stomatal control in leaves.
Brodribb, Tim J; Jordan, Gregory J
2008-11-01
The stomatal response to changing leaf-atmospheric vapour pressure gradient (D(l)) is a crucial yet enigmatic process that defines the daily course of leaf gas exchange. Changes in the hydration of epidermal cells are thought to drive this response, mediated by the transpiration rate and hydraulic conductance of the leaf. Here, we examine whether species-specific variation in the sensitivity of leaves to perturbation of D(l) is related to the efficiency of water transport in the leaf (leaf hydraulic conductivity, K(leaf)). We found good correlation between maximum liquid (K(leaf)) and gas phase conductances (g(max)) in leaves, but there was no direct correlation between normalized D(l) sensitivity and K(leaf). The impact of K(leaf) on D(l) sensitivity in our diverse sample of eight species was important only after accounting for the strong relationship between K(leaf) and g(max). Thus, the ratio of g(max)/K(leaf) was strongly correlated with stomatal sensitivity to D(l). This ratio is an index of the degree of hydraulic buffering of the stomata against changes in D(l), and species with high g(max) relative to K(leaf) were the most sensitive to D(l) perturbation. Despite the potentially high adaptive significance of this phenomenon, we found no significant phylogenetic or ecological trend in our species.
Zhang, Ningyi; Li, Gang; Yu, Shanxiang; An, Dongsheng; Sun, Qian; Luo, Weihong; Yin, Xinyou
2017-01-01
Accurately predicting photosynthesis in response to water and nitrogen stress is the first step toward predicting crop growth, yield and many quality traits under fluctuating environmental conditions. While mechanistic models are capable of predicting photosynthesis under fluctuating environmental conditions, simplifying the parameterization procedure is important toward a wide range of model applications. In this study, the biochemical photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model) and the stomatal conductance model of Ball, Woodrow and Berry which was revised by Leuning and Yin (the BWB-Leuning-Yin model) were parameterized for Lilium (L. auratum × speciosum “Sorbonne”) grown under different water and nitrogen conditions. Linear relationships were found between biochemical parameters of the FvCB model and leaf nitrogen content per unit leaf area (Na), and between mesophyll conductance and Na under different water and nitrogen conditions. By incorporating these Na-dependent linear relationships, the FvCB model was able to predict the net photosynthetic rate (An) in response to all water and nitrogen conditions. In contrast, stomatal conductance (gs) can be accurately predicted if parameters in the BWB-Leuning-Yin model were adjusted specifically to water conditions; otherwise gs was underestimated by 9% under well-watered conditions and was overestimated by 13% under water-deficit conditions. However, the 13% overestimation of gs under water-deficit conditions led to only 9% overestimation of An by the coupled FvCB and BWB-Leuning-Yin model whereas the 9% underestimation of gs under well-watered conditions affected little the prediction of An. Our results indicate that to accurately predict An and gs under different water and nitrogen conditions, only a few parameters in the BWB-Leuning-Yin model need to be adjusted according to water conditions whereas all other parameters are either conservative or can be adjusted according to
Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L.
Sharkey, T D; Raschke, K
1981-11-01
Flux response curves were determined at 16 wavelengths of light for the conductance for water vapor of the lower epidermis of detached leaves of Xanthium strumarium L. An action spectrum of stomatal opening resulted in which blue light (wavelengths between 430 and 460 nanometers) was nearly ten times more effective than red light (wavelengths between 630 and 680 nanometers) in producing a conductance of 15 centimoles per square meter per second. Stomata responded only slightly to green light. An action spectrum of stomatal responses to red light corresponded to that of CO(2) assimilation; the inhibitors of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-s-triazine) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, eliminated the response to red light. This indicates that light absorption by chlorophyll is the cause of stomatal sensitivity to red light. Determination of flux response curves on leaves in the normal position (upper epidermis facing the light) or in the inverted position (lower epidermis facing the light) led to the conclusion that the photoreceptors for blue as well as for red light are located on or near the surfaces of the leaves; presumably they are in the guard cells themselves.
Mackay, D. S.; Ewers, B. E.; Kruger, E. L.
2006-12-01
Phenological variations impact water and carbon fluxes, as evidenced by the large interannual variability of net ecosystem exchange of carbon dioxide and evapotranspiration (ET). In northern Wisconsin we observed daily variations of canopy transpiration from hardwoods from 1.0 to 1.7 mm/day during the leaf unfolding period and 1.7 to 2.6 mm/day with leaves fully out. Correlations between such flux rates and phenology have not been extensively tested and mechanistic connections are in their infancy. Some data suggest that stomatal conductance and photosynthesis increases up to full expansion. Moreover, in conifers, the interaction of phenology and physiology is more complicated than in deciduous trees because needles are retained for several years. Using inverse modeling with a coupled photosynthesis-transpiration model we estimated reference canopy stomatal conductance, Gsref, for red pine (Pinus resinosa), and Gsref and leaf area index, L, for trembling aspen (Populus tremuloides), using 30-min continuous sap flux data spanning a period from just prior to the start of leaf expansion to just after leaf senescence. The red pine showed Gsref ramp up from 105 to 179 mmol m-2 leaf s-1, which represented a 37 to 50 percent increase in Gsref after accounting for maximum possible changes in L. After full leaf out, the trembling aspen were almost immediately defoliated, and then reflushed after three weeks. Model estimates of L reflected this pattern and were consistent with measurements. However, Gsref never exceeded 45 mmol m-2 s-1 prior to defoliation, but peaked at 112 mmol m-2 s-1 after reflushing. These results support the need for further work that aims to separate phenology and physiology.
Ecology of Candida-associated Denture Stomatitis
Budtz-Jørgensen, Ejvind
2011-01-01
Introduction of a prosthesis into the oral cavity results in profound alterations of the environmental conditions as the prosthesis and the underlying mucosa become colonized with oral microorganisms, including Candida spp. This may lead to denture stomatitis, a non-specific inflammatory reaction against microbial antigens, toxins and enzymes produced by the colonizing microorganisms. The role of Candida in the etiology of denture stomatitis is indicated by an increased number of yeasts on th...
DEFF Research Database (Denmark)
Marchin, Renée M.; Broadhead, Alice A.; Bostic, Laura E.
2016-01-01
chamber VPD. Warming increased mean water use of Carya by 140% and Quercus by 150%, but had no significant effect on water use of Acer. Increased water use of ring-porous species was attributed to (1) higher air T and (2) stomatal acclimation to VPD resulting in higher gs and more sensitive stomata......Future climate change is expected to increase temperature (T) and atmospheric vapour pressure deficit (VPD) in many regions, but the effect of persistent warming on plant stomatal behaviour is highly uncertain. We investigated the effect of experimental warming of 1.9-5.1 °C and increased VPD of 0.......5-1.3 kPa on transpiration and stomatal conductance (gs ) of tree seedlings in the temperate forest understory (Duke Forest, North Carolina, USA). We observed peaked responses of transpiration to VPD in all seedlings, and the optimum VPD for transpiration (Dopt ) shifted proportionally with increasing...
Wang, Jun; Lu, Wei; Tong, Yuxin; Yang, Qichang
2016-01-01
Red and blue light are both vital factors for plant growth and development. We examined how different ratios of red light to blue light (R/B) provided by light-emitting diodes affected photosynthetic performance by investigating parameters related to photosynthesis, including leaf morphology, photosynthetic rate, chlorophyll fluorescence, stomatal development, light response curve, and nitrogen content. In this study, lettuce plants (Lactuca sativa L.) were exposed to 200 μmol⋅m(-2)⋅s(-1) irradiance for a 16 h⋅d(-1) photoperiod under the following six treatments: monochromatic red light (R), monochromatic blue light (B) and the mixture of R and B with different R/B ratios of 12, 8, 4, and 1. Leaf photosynthetic capacity (A max) and photosynthetic rate (P n) increased with decreasing R/B ratio until 1, associated with increased stomatal conductance, along with significant increase in stomatal density and slight decrease in stomatal size. P n and A max under B treatment had 7.6 and 11.8% reduction in comparison with those under R/B = 1 treatment, respectively. The effective quantum yield of PSII and the efficiency of excitation captured by open PSII center were also significantly lower under B treatment than those under the other treatments. However, shoot dry weight increased with increasing R/B ratio with the greatest value under R/B = 12 treatment. The increase of shoot dry weight was mainly caused by increasing leaf area and leaf number, but no significant difference was observed between R and R/B = 12 treatments. Based on the above results, we conclude that quantitative B could promote photosynthetic performance or growth by stimulating morphological and physiological responses, yet there was no positive correlation between P n and shoot dry weight accumulation.
Effect of Light Quality on Stomatal Opening in Leaves of Xanthium strumarium L. 1
Sharkey, Thomas D.; Raschke, Klaus
1981-01-01
Flux response curves were determined at 16 wavelengths of light for the conductance for water vapor of the lower epidermis of detached leaves of Xanthium strumarium L. An action spectrum of stomatal opening resulted in which blue light (wavelengths between 430 and 460 nanometers) was nearly ten times more effective than red light (wavelengths between 630 and 680 nanometers) in producing a conductance of 15 centimoles per square meter per second. Stomata responded only slightly to green light. An action spectrum of stomatal responses to red light corresponded to that of CO2 assimilation; the inhibitors of photosynthetic electron transport, cyanazine (2-chloro-4[1-cyano-1-methylethylamino]-6-ethylamino-s-triazine) and 3-(3,4-dichlorophenyl)-1,1-dimethylurea, eliminated the response to red light. This indicates that light absorption by chlorophyll is the cause of stomatal sensitivity to red light. Determination of flux response curves on leaves in the normal position (upper epidermis facing the light) or in the inverted position (lower epidermis facing the light) led to the conclusion that the photoreceptors for blue as well as for red light are located on or near the surfaces of the leaves; presumably they are in the guard cells themselves. PMID:16662069
Testing of models of stomatal ozone fluxes with field measurements in a mixed Mediterranean forest
Czech Academy of Sciences Publication Activity Database
Fares, S.; Matteucci, G.; Mugnozza, S.; Morani, A.; Calfapietra, Carlo; Salvatori, E.; Fusaro, L.; Manes, F.; Loreto, F.
2013-01-01
Roč. 67, MAR (2013), s. 242-251 ISSN 1352-2310 Institutional support: RVO:67179843 Keywords : Ozone fluxes * Stomatal conductance models * GPP * Mediterranean forest Subject RIV: EH - Ecology, Behaviour Impact factor: 3.062, year: 2013
mechanisms of drought resistance in grain ii:.stomatal regulation
African Journals Online (AJOL)
Preferred Customer
STOMATAL REGULATION AND ROOT GROWTH ... maintenance of high plant water potential in common bean under stress was the function of stomatal regulation and/or root ... disadvantage since it will reduce CO2 fixation and hence may ...
Papanatsiou, Maria; Amtmann, Anna; Blatt, Michael R
2017-04-01
Stomata are microscopic pores formed by specialized cells in the leaf epidermis and permit gaseous exchange between the interior of the leaf and the atmosphere. Stomata in most plants are separated by at least one epidermal pavement cell and, individually, overlay a single substomatal cavity within the leaf. This spacing is thought to enhance stomatal function. Yet, there are several genera naturally exhibiting stomata in clusters and therefore deviating from the one-cell spacing rule with multiple stomata overlaying a single substomatal cavity. We made use of two Begonia species to investigate whether clustering of stomata alters guard cell dynamics and gas exchange under different light and dark treatments. Begonia plebeja, which forms stomatal clusters, exhibited enhanced kinetics of stomatal conductance and CO2 assimilation upon light stimuli that in turn were translated into greater water use efficiency. Our findings emphasize the importance of spacing in stomatal clusters for gaseous exchange and plant performance under environmentally limited conditions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest
Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.
2016-12-01
In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.
Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves
In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...
Directory of Open Access Journals (Sweden)
Ali Mohammad Sabzghabaee
2012-01-01
Full Text Available Background: The prevalence of denture stomatitis has been shown to vary from 15 to 65% in complete denture wearers. Satureja hortensis L. has been considered to have antinociceptive, anti-inflammatory, antifungal and antimicrobial activities in vitro and exhibits strong inhibitory effect on the growth of periodontal bacteria. The aim of this study was to evaluate the efficacy of a 1% gel formulation of S. hortensis essential oil for the treatment of denture stomatitis. Materials and Methods: A randomized, controlled clinical trial study was conducted on 80 patients (mean age 62.91±7.34 in two parallel groups treated either with S. hortensis essential oil 1% gel or placebo applied two times daily for two weeks. Denture stomatitis was diagnosed by clinical examination and paraclinical confirmation with sampling the palatal mucosa for Candida albicans. Data were analyzed using Chi-squared or Student′s t tests. Results: The erythematous lesions of palatal area were significantly reduced (P<0.0001 in the treatment group who applied 1% topical gel of S. hortensis essential oil and Candida colonies count were reduced significantly (P=0.001. Conclusion: Topical application of the essential oil of S. hortensis could be considered as an effective agent for the treatment of denture stomatitis.
Stomatal structure and physiology do not explain differences in water use among montane eucalypts.
Gharun, Mana; Turnbull, Tarryn L; Pfautsch, Sebastian; Adams, Mark A
2015-04-01
Understanding the regulation of water use at the whole-tree scale is critical to advancing the utility of physiological ecology, for example in its role in predictive hydrology of forested catchments. For three eucalypt species that dominate high-elevation catchments in south-eastern Australia, we examined if whole-tree water use could be related to three widely discussed regulators of water use: stomatal anatomy, sensitivity of stomata [i.e. stomatal conductance (g(s))] to environmental influences, and sapwood area. While daily tree water use varied sixfold among species, sap velocity and sapwood area varied in parallel. Combined, stomatal structure and physiology could not explain differences in species-specific water use. Species which exhibited the fastest (Eucalyptus delegatensis) and slowest (Eucalyptus pauciflora) rates of water use both exhibited greater capacity for physiological control of g(s) [indicated by sensitivity to vapour pressure deficit (VPD)] and a reduced capacity to limit g(s) anatomically [indicated by greater potential g(s) (g(max))]. Conversely, g(s) was insensitive to VPD and g(max) was lowest for Eucalyptus radiata, the species showing intermediate rates of water use. Improved knowledge of stomatal anatomy will help us to understand the capacity of species to regulate leaf-level water loss, but seems likely to remain of limited use for explaining rates of whole-tree water use in montane eucalypts at the catchment scale.
Mix-and-match: ligand-receptor pairs in stomatal development and beyond.
Torii, Keiko U
2012-12-01
Stomata are small valves on the plant epidermis balancing gas exchange and water loss. Stomata are formed according to positional cues. In Arabidopsis, two EPIDERMAL PATTERNING FACTOR (EPF) peptides, EPF1 and EPF2, are secreted from stomatal precursors enforcing proper stomatal patterning. Here, I review recent studies revealing the ligand-receptor pairs and revising the previously predicted relations between receptors specifying stomatal patterning: ERECTA-family and TOO MANY MOUTHS (TMM). Furthermore, EPF-LIKE9 (EPFL9/Stomagen) promotes stomatal differentiation from internal tissues. Two EPFL peptides specify inflorescence architecture, a process beyond stomatal development, as ligands for ERECTA. Thus, broadly expressed receptor kinases may regulate multiple developmental processes through perceiving different peptide ligands, each with a specialized expression pattern. TMM in the epidermis may fine-tune multiple EPF/EPFL signals to prevent signal interference. Copyright © 2012 Elsevier Ltd. All rights reserved.
Meinzer, Frederick C; Smith, Duncan D; Woodruff, David R; Marias, Danielle E; McCulloh, Katherine A; Howard, Ava R; Magedman, Alicia L
2017-08-01
Species' differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this continuum. Here, we evaluated kinetics of light-induced stomatal opening, activation of photosynthesis and features of quasi-steady-state photosynthetic gas exchange in 10 woody species selected to represent different degrees of anisohydry. Based on a previously developed proxy for the degree of anisohydry, species' leaf water potentials at turgor loss, we found consistent trends in photosynthetic gas exchange traits across a spectrum of isohydry to anisohydry. More anisohydric species had faster kinetics of stomatal opening and activation of photosynthesis, and these kinetics were closely coordinated within species. Quasi-steady-state stomatal conductance and measures of photosynthetic capacity and performance were also greater in more anisohydric species. Intrinsic water-use efficiency estimated from leaf gas exchange and stable carbon isotope ratios was lowest in the most anisohydric species. In comparisons between gas exchange traits, species rankings were highly consistent, leading to species-independent scaling relationships over the range of isohydry to anisohydry observed. © 2017 John Wiley & Sons Ltd.
Buckley, Thomas N; Roberts, David W
2006-02-01
Conventional wisdom holds that the ratio of leaf area to sapwood area (L/S) should decline during height (H) growth to maintain hydraulic homeostasis and prevent stomatal conductance (g(s)) from declining. We contend that L/S should increase with H based on a numerical simulation, a mathematical analysis and a conceptual argument: (1) numerical simulation--a tree growth model, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is regulated to maximize C gain, predicts L/S should increase during most of H growth; (2) mathematical analysis--the formal criterion for optimal C allocation, applied to a simplified analytical model of whole tree carbon-water balance, predicts L/S should increase with H if leaf-level gas exchange parameters including g(s) are conserved; and (3) conceptual argument--photosynthesis is limited by several substitutable resources (chiefly nitrogen (N), water and light) and H growth increases the C cost of water transport but not necessarily of N and light capture, so if the goal is to maximize C gain or growth, allocation should shift in favor of increasing photosynthetic capacity and irradiance, rather than sustaining g(s). Although many data are consistent with the prediction that L/S should decline with H, many others are not, and we discuss possible reasons for these discrepancies.
Chronic gingivitis and aphthous stomatitis relationship hypothesis: A neuroimmunobiological approach
Directory of Open Access Journals (Sweden)
Chiquita Prahasanti
2009-03-01
Full Text Available Background: Traumatic injuries to the oral mucosa in fixed orthodontic patients are common, especially in the first week of bracket placement, and occasionally lead to the development of aphthous stomatitis or ulcers. Nevertheless, these lesions are selflimiting. Purpose: The objective of this study is to reveal the connection between chronic gingivitis and aphthous stomatitis which is still unclear. Case: A patient with a persistent lesion for more than six months. Case Management: RAS was treated with scaling procedure, the gingival inflammation was healed. However, in this case report, despite the appropriate management procedures had been done, the lesion still worsen and became more painful. Moreover, the symptoms did not heal for more than two weeks. Actually, they had been undergone orthodontic treatment more than six months and rarely suffered from aphthous stomatitis. Coincidentally, at that time they also suffered from chronic gingivitis. It was interesting that after scaling procedures, the ulcer subsides in two days. Conclusion: Recently, the neuroimmunobiological researches which involved neurotransmitters and cytokines on cell-nerve signaling, and heat shock proteins in gingivitis and stomatitis are in progress. Nevertheless, they were done separately, thus do not explain the interrelationship. This proposed new concept which based on an integrated neuroimmunobiological approach could explain the benefit of periodontal treatment, especially scaling procedures, for avoiding prolonged painful episodes and unnecessary medications in aphthous stomatitis. However, for widely acceptance of the chronic gingivitis and aphthous stomatitis relationship, further clinical and laboratory study should be done. Regarding to the relatively fast healing after scaling procedures in this case report; it was concluded that the connection between chronic gingivitis and aphthous stomatitis is possible.
Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio
2014-07-01
The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DEFF Research Database (Denmark)
Liu, Fulai; Andersen, Mathias N.; Jensen, Christian Richardt
2009-01-01
was used for model parameterization, where measurements of midday leaf gas exchange of potted potatoes were done during progressive soil drying for 2 weeks at tuber initiation and earlier bulking stages. The measured photosynthetic rate (An) was used as an input for the model. To account for the effects......The capability of the ‘Ball-Berry' model (BB-model) in predicting stomatal conductance (gs) and water use efficiency (WUE) of potato (Solanum tuberosum L.) leaves under different irrigation regimes was tested using data from two independent pot experiments in 2004 and 2007. Data obtained from 2004...... of soil water deficits on gs, a simple equation modifying the slope (m) based on the mean soil water potential (Ψs) in the soil columns was incorporated into the original BB-model. Compared with the original BB-model, the modified BB-model showed better predictability for both gs and WUE of potato leaves...
Directory of Open Access Journals (Sweden)
Heidi J Renninger
2015-05-01
Full Text Available Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE between oaks (Quercus alba, Q. prinus, Q. velutina and pines (Pinus rigida, P. echinata. We also determined environmental drivers (vapor pressure deficit (VPD, soil moisture, solar radiation of canopy stomatal conductance (GS estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.
Renninger, Heidi J; Carlo, Nicholas J; Clark, Kenneth L; Schäfer, Karina V R
2015-01-01
Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource uptake and efficiency. Therefore, we compared resource use in terms of transpiration rates and leaf nitrogen content and resource-use efficiency including water-use efficiency (WUE) via gas exchange and leaf carbon isotopes and photosynthetic nitrogen-use efficiency (PNUE) between oaks (Quercus alba, Q. prinus, Q. velutina) and pines (Pinus rigida, P. echinata). We also determined environmental drivers [vapor pressure deficit (VPD), soil moisture, solar radiation] of canopy stomatal conductance (GS) estimated via sap flow and stomatal sensitivity to light and soil moisture. Net assimilation rates were similar between genera, but oak leaves used about 10% more water and pine foliage contained about 20% more N per unit leaf area. Therefore, oaks exhibited greater PNUE while pines had higher WUE based on gas exchange, although WUE from carbon isotopes was not significantly different. For the environmental drivers of GS, oaks had about 10% lower stomatal sensitivity to VPD normalized by reference stomatal conductance compared with pines. Pines exhibited a significant positive relationship between shallow soil moisture and GS, but only GS in Q. velutina was positively related to soil moisture. In contrast, stomatal sensitivity to VPD was significantly related to solar radiation in all oak species but only pines at one site. Therefore, oaks rely more heavily on groundwater resources but have lower WUE, while pines have larger leaf areas and nitrogen acquisition but lower PNUE demonstrating a trade-off between using water and nitrogen efficiently in a resource-limited ecosystem.
Li, Chao; Wei, Zhiwei; Liang, Dong; Zhou, Shasha; Li, Yonghong; Liu, Changhai; Ma, Fengwang
2013-09-01
High salinity is a major abiotic factor that limits crop production. The dwarfing apple rootstock M.26 is sensitive to such stress. To obtain an apple that is adaptable to saline soils, we transformed this rootstock with a vacuolar Na(+)/H(+) antiporter, MdNHX1. Differences in salt tolerance between transgenic and wild-type (WT) rootstocks were examined under field conditions. We also compared differences when 'Naganofuji No. 2' apple was grafted onto these transgenic or WT rootstocks. Plants on the transgenic rootstocks grew well during 60 d of mild stress (100 mM NaCl) while the WT exhibited chlorosis, inhibited growth and even death. Compared with the untreated control, the stomatal density was greater in both non-grafted and grafted WT plants exposed to 200 mM NaCl. In contrast, that density was significantly decreased in leaves from grafted transgenic plants. At 200 mM NaCl, net photosynthesis, stomatal conductance, intercellular CO2 concentration, and chlorophyll contents were markedly reduced in the WT, whereas the declines in those values were only minor in similarly stressed transgenic plants. Therefore, we conclude that overexpressing plants utilize a better protective mechanism for retaining higher photosynthetic capacity. Furthermore, this contrast in tolerance and adaptability to stress is linked to differences in stomatal behavior and photosynthetic rates. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Wang, Fumin; Gonsamo, Alemu; Chen, Jing M; Black, T Andrew; Zhou, Bin
2014-11-01
Daily canopy photosynthesis is usually temporally upscaled from instantaneous (i.e., seconds) photosynthesis rate. The nonlinear response of photosynthesis to meteorological variables makes the temporal scaling a significant challenge. In this study, two temporal upscaling schemes of daily photosynthesis, the integrated daily model (IDM) and the segmented daily model (SDM), are presented by considering the diurnal variations of meteorological variables based on a coupled photosynthesis-stomatal conductance model. The two models, as well as a simple average daily model (SADM) with daily average meteorological inputs, were validated using the tower-derived gross primary production (GPP) to assess their abilities in simulating daily photosynthesis. The results showed IDM closely followed the seasonal trend of the tower-derived GPP with an average RMSE of 1.63 g C m(-2) day(-1), and an average Nash-Sutcliffe model efficiency coefficient (E) of 0.87. SDM performed similarly to IDM in GPP simulation but decreased the computation time by >66%. SADM overestimated daily GPP by about 15% during the growing season compared to IDM. Both IDM and SDM greatly decreased the overestimation by SADM, and improved the simulation of daily GPP by reducing the RMSE by 34 and 30%, respectively. The results indicated that IDM and SDM are useful temporal upscaling approaches, and both are superior to SADM in daily GPP simulation because they take into account the diurnally varying responses of photosynthesis to meteorological variables. SDM is computationally more efficient, and therefore more suitable for long-term and large-scale GPP simulations.
Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M; Batke, Sven P; Lawson, Tracy; McElwain, Jennifer C
2016-01-01
One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.
Improving stomatal functioning at elevated growth air humidity: A review.
Fanourakis, Dimitrios; Bouranis, Dimitrios; Giday, Habtamu; Carvalho, Dália R A; Rezaei Nejad, Abdolhossein; Ottosen, Carl-Otto
2016-12-01
Plants grown at high relative air humidity (RH≥85%) are prone to lethal wilting upon transfer to conditions of high evaporative demand. The reduced survival of these plants is related to (i) increased cuticular permeability, (ii) changed anatomical features (i.e., longer pore length and higher stomatal density), (iii) reduced rehydration ability, (iv) impaired water potential sensitivity to leaf dehydration and, most importantly, (v) compromised stomatal closing ability. This review presents a critical analysis of the strategies which stimulate stomatal functioning during plant development at high RH. These include (a) breeding for tolerant cultivars, (b) interventions with respect to the belowground environment (i.e., water deficit, increased salinity, nutrient culture and grafting) as well as (c) manipulation of the aerial environment [i.e., increased proportion of blue light, increased air movement, temporal temperature rise, and spraying with abscisic acid (ABA)]. Root hypoxia, mechanical disturbance, as well as spraying with compounds mimicking ABA, lessening its inactivation or stimulating its within-leaf redistribution are also expected to improve stomatal functioning of leaves expanded in humid air. Available evidence leaves little doubt that genotypic and phenotypic differences in stomatal functioning following cultivation at high RH are realized through the intermediacy of ABA. Copyright © 2016 Elsevier GmbH. All rights reserved.
Plant twitter: ligands under 140 amino acids enforcing stomatal patterning.
Rychel, Amanda L; Peterson, Kylee M; Torii, Keiko U
2010-05-01
Stomata are an essential land plant innovation whose patterning and density are under genetic and environmental control. Recently, several putative ligands have been discovered that influence stomatal density, and they all belong to the epidermal patterning factor-like family of secreted cysteine-rich peptides. Two of these putative ligands, EPF1 and EPF2, are expressed exclusively in the stomatal lineage cells and negatively regulate stomatal density. A third, EPFL6 or CHALLAH, is also a negative regulator of density, but is expressed subepidermally in the hypocotyl. A fourth, EPFL9 or STOMAGEN, is expressed in the mesophyll tissues and is a positive regulator of density. Genetic evidence suggests that these ligands may compete for the same receptor complex. Proper stomatal patterning is likely to be an intricate process involving ligand competition, regional specificity, and communication between tissue layers. EPFL-family genes exist in the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, and rice, Oryza sativa, and their sequence analysis yields several genes some of which are related to EPF1, EPF2, EPFL6, and EPFL9. Presence of these EPFL family members in the basal land plants suggests an exciting hypothesis that the genetic components for stomatal patterning originated early in land plant evolution.
Haghighi, Erfan; Kirchner, James W.; Entekhabi, Dara
2017-04-01
Stomata play a critical role in terrestrial water and carbon cycles, regulating the trade-off between photosynthetic carbon gain and water loss in leaves. They adjust their aperture in response to a number of physiological and environmental factors, yet the mechanisms driving this response, particularly under climate extremes, remain poorly understood. Partial or complete stomatal closure reduces plant water stress under water-limited or high atmospheric evaporative demand conditions, but at the cost of reduced productivity, elevated heat, leaf shedding, and mortality. A proper account of such complex stomatal behavior is of particular importance for current ecosystem models that poorly capture observed vegetation responses in the context of climate change which is predicted to cause more frequent and intense temperature extremes along with an increase in the frequency of drought in many regions in the future. This study seeks to explore stomatal responses to environmental change accounted for by a varying soil-plant resistance under different atmospheric and soil moisture conditions. To this end, we developed a physically based transpiration model that couples stomatal control of leaf gas exchange to the leaf surface energy balance and the entire plant hydraulic system by considering the interdependence of the guard cell water potential (or turgor pressure) and transpiration rates. Model simulations of diurnal variations in transpiration rates were in good agreement with field observations, and facilitated quantitative prediction of stomatal and xylem flow regulation under a wide range of environmental conditions. Preliminary results demonstrate how soil and plant hydraulic conductances regulating stomatal opening and closure can help mitigate climatic water deficit (e.g., at midday) by boosting evaporative cooling. Our results are expected to advance physical understanding of the water cycle in the soil-plant-atmosphere continuum, and shed light on observed
Directory of Open Access Journals (Sweden)
Renu Saradadevi
2017-07-01
Full Text Available End-of-season drought or “terminal drought,” which occurs after flowering, is considered the most significant abiotic stress affecting crop yields. Wheat crop production in Mediterranean-type environments is often exposed to terminal drought due to decreasing rainfall and rapid increases in temperature and evapotranspiration during spring when wheat crops enter the reproductive stage. Under such conditions, every millimeter of extra soil water extracted by the roots benefits grain filling and yield and improves water use efficiency (WUE. When terminal drought develops, soil dries from the top, exposing the top part of the root system to dry soil while the bottom part is in contact with available soil water. Plant roots sense the drying soil and produce signals, which on transmission to shoots trigger stomatal closure to regulate crop water use through transpiration. However, transpiration is linked to crop growth and productivity and limiting transpiration may reduce potential yield. While an early and high degree of stomatal closure affects photosynthesis and hence biomass production, a late and low degree of stomatal closure exhausts available soil water rapidly which results in yield losses through a reduction in post-anthesis water use. The plant hormone abscisic acid (ABA is considered the major chemical signal involved in stomatal regulation. Wheat genotypes differ in their ability to produce ABA under drought and also in their stomatal sensitivity to ABA. In this viewpoint article we discuss the possibilities of exploiting genotypic differences in ABA response to soil drying in regulating the use of water under terminal drought. Root density distribution in the upper drying layers of the soil profile is identified as a candidate trait that can affect ABA accumulation and subsequent stomatal closure. We also examine whether leaf ABA can be designated as a surrogate characteristic for improved WUE in wheat to sustain grain yield under
Directory of Open Access Journals (Sweden)
Giacomo Gerosa
Full Text Available An Open-Top Chamber experiment on two tomato cultivars (cv. Oxheart and cv. San Marzano was carried out in Curno (Northern Italy between June and September 2007. Two ozone treatments were applied for a 3.5 months period: Non-Filtered OTC (NF-OTC, 95% of ambient ozone and Charcoal-Filtered OTC (CF-OTC, 50% of ambient ozone. Diurnal cycles of porometry measurements were performed during the season and allowed to draw a stomatal conductance model for each cultivar in order to calculate the ozone stomatal fluxes taken up by plants. Assessments on fruits yield were performed during the season, taking into account the number of fruits, their fresh weight and their marketability. In addition, measurements on the chlorophyll fluorescence of photosystems were carried out to assess possible negative effects on photosynthetic efficiency. Despite the two cultivars absorbed a similar ozone stomatal dose during the season (with an 8% difference, their responses to ozone treatments were totally divergent in relation to both fruits yield and photosynthetic efficiency. Plants of cv. Oxheart grown in NF-OTCs showed significant yield loss in the total weight of fruits (-35.9% which is exclusively related to a decrease in the number of fruits produced (-35.7% of total fruits; -30.6% of marketable fruits, since mean fresh weight of fruits remained unaffected. Moreover the same plants displayed low values (in comparison to CF-OTCs plants of the photosynthetic efficiency index (PIabs during the most intense period of ozone stress (July occurred in the flowering stage of plants and at the beginning of fructification. Plants of the cv. San Marzano had an opposite response behaviour with an increase of the mean fresh weight of fruits in plants grown in NF-OTC (even if not statistically significant and no difference in the number of fruits produced and in the values of photosynthetic efficiency.
Jonard, F.; André, F.; Ponette, Q.; Vincke, C.; Jonard, M.
2011-10-01
SummarySap flux density of European beech and common oak trees was determined from sap flow measurements in pure and mixed stands during the summer drought of 2003. Eight trees per species and per stand were equipped with sap flow sensors. Soil water content was monitored in each stand at different depths by using time-domain reflectometry (TDR). Leaf area index and vertical root distribution were also investigated during the growing season. From sap flux density ( SFD) data, mean stomatal conductance of individual trees ( G s) was calculated by inverting the Penman-Monteith equation. Linear mixed models were developed to analyse the effects of species and stand type (pure vs. mixed) on SFD and G s and on their sensitivity to environmental variables (vapour pressure deficit ( D), incoming solar radiation ( R G), and relative extractable water ( REW)). For reference environmental conditions, we did not find any tree species or stand type effects on SFD. The sensitivity of SFD to D was higher for oak than for beech in the pure stands ( P sapwood-to-leaf area ratio compared to oak. The sensitivity of G s to REW was higher for beech than for oak and was ascribed to a higher vulnerability of beech to air embolism and to a more sensitive stomatal regulation. The sensitivity of beech G s to REW was lower in the mixed than in the pure stand, which could be explained by a better sharing of the resources in the mixture, by facilitation processes (hydraulic lift), and by a rainfall partitioning in favour of beech.
Utilization of Dexaltin ointment to radiation stomatitis in patients with cancer of the oral cavity
International Nuclear Information System (INIS)
Ohhashi, Yasushi; Abe, Masaki; Ueda, Noboru
1981-01-01
Dexaltin ointment (sodium polyactylic acid, containing 0.1% dexamethasone) was used to the patients with stomatitis induced by radiotherapy. Fifteen patients with cancer of the oral cavity, aged from 44 to 77, were exposed to 60 Co γ-rays or electron beams, with the irradiation dose of 2400 to 9000 rad. About 60 g of the ointment was pasted for mean period of 6.6 weeks after meals, before sleep, and whenever the patients wanted. Therapeutic effect was observed in every case and in 87% of the case the pain at meals was decreased. The ointment adhered mostly for 1 - 2 hrs and in some cases, more than 3 hrs. No adverse reaction was observed. Therefore it was suggested that Dexaltin was a promising ointment to the radiation stomatitis. (Nakanishi, T.)
International Nuclear Information System (INIS)
Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji
2014-01-01
Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO 2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O 3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O 3 uptake through stomata, as AOT40 peaked in April, but with O 3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O 3 uptake in springtime, even when the highest O 3 concentrations were observed. -- Highlights: • We estimate canopy-level O 3 uptake in a warm-temperate mixed forest in Japan. • The Penman–Monteith approach is compensated by a photosynthesis-dependent model. • Stomatal conductance can be estimated, even in a partly-opened or wet canopy. • The estimated O 3 dose peaks in summer though O 3 exposure peaks in spring. -- Estimation of seasonal O 3 uptake over a mixed-temperate forest compensated by a photosynthesis-dependent stomatal model
International Nuclear Information System (INIS)
Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.
2010-01-01
This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.
Preventive effects of Ancer 20 injection against radiation stomatitis
Energy Technology Data Exchange (ETDEWEB)
Watanabe, Naohiko; Nomura, Yasuya; Takano, Shinya (Showa Univ., Tokyo (Japan). School of Medicine) (and others)
1993-10-01
Ancer 20 was injected subcutaneously twice a day into 23 patients during the couse of radiation therapy for head and neck cancer, with the aim of preventing radiation stomatitis. Oral mucosa was assessed both subjectively and objectively, in addition to white blood cell counts. Objective findings of oral mucosa revealed grade I in 71%, grade II in 52%, grade III in 14%, and grade IV in 5%. The dose of irradiation needed to produce grade I in 50% was 22.8 Gy. Subjective findings revealed grade I in 67%, grade II in 33%, and grade III in 10%. Irradiation dose needed to produce grade I in 50% was 23.9 Gy. Mucosous damage was slight when the white blood cell count of 6,000/mm[sup 3] was maintained. According to the rate of leukopenia, this drug was effective in 86.4%. These findings showed that Ancer 20 injection is useful in maintaining white blood cell counts and in preventing radiation stomatitis associated with radiation therapy especially to the field of mucous membrane. There was inverse correlation between white blood cell counts and both the occurrence rate and degree of radiation stomatitis. It seemed necessary to maintain white blood cell counts to prevent radiation stomatitis. (N.K.).
Medeiros, David B; Barros, Kallyne A; Barros, Jessica Aline S; Omena-Garcia, Rebeca P; Arrivault, Stéphanie; Sanglard, Lílian M V P; Detmann, Kelly C; Silva, Willian Batista; Daloso, Danilo M; DaMatta, Fábio M; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L
2017-11-01
Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis ( Arabidopsis thaliana ) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO 2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected. © 2017 American Society of Plant Biologists. All Rights Reserved.
Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana
Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.
2016-04-01
Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.
Shtein, Ilana; Shelef, Yaniv; Marom, Ziv; Zelinger, Einat; Schwartz, Amnon; Popper, Zoë A; Bar-On, Benny; Harpaz-Saad, Smadar
2017-04-01
Stomatal morphology and function have remained largely conserved throughout ∼400 million years of plant evolution. However, plant cell wall composition has evolved and changed. Here stomatal cell wall composition was investigated in different vascular plant groups in attempt to understand their possible effect on stomatal function. A renewed look at stomatal cell walls was attempted utilizing digitalized polar microscopy, confocal microscopy, histology and a numerical finite-elements simulation. The six species of vascular plants chosen for this study cover a broad structural, ecophysiological and evolutionary spectrum: ferns ( Asplenium nidus and Platycerium bifurcatum ) and angiosperms ( Arabidopsis thaliana and Commelina erecta ) with kidney-shaped stomata, and grasses (angiosperms, family Poaceae) with dumbbell-shaped stomata ( Sorghum bicolor and Triticum aestivum ). Three distinct patterns of cellulose crystallinity in stomatal cell walls were observed: Type I (kidney-shaped stomata, ferns), Type II (kidney-shaped stomata, angiosperms) and Type III (dumbbell-shaped stomata, grasses). The different stomatal cell wall attributes investigated (cellulose crystallinity, pectins, lignin, phenolics) exhibited taxon-specific patterns, with reciprocal substitution of structural elements in the end-walls of kidney-shaped stomata. According to a numerical bio-mechanical model, the end walls of kidney-shaped stomata develop the highest stresses during opening. The data presented demonstrate for the first time the existence of distinct spatial patterns of varying cellulose crystallinity in guard cell walls. It is also highly intriguing that in angiosperms crystalline cellulose appears to have replaced lignin that occurs in the stomatal end-walls of ferns serving a similar wall strengthening function. Such taxon-specific spatial patterns of cell wall components could imply different biomechanical functions, which in turn could be a consequence of differences in
Directory of Open Access Journals (Sweden)
Leonardo Oliveira Medici
2007-04-01
Full Text Available The objective of this work was to evaluate the effect of drought and nitrogen (N stresses on stomatal conductance of three maize cultivars grown in the field. The stomatal conductance of Sol da Manhã variety (BRS 4157 and Pioneer 6875 hybrid, under drought and high N, was lower than under drought and low N, which indicates drought tolerance, since these cultivars did not exhibit reduction in grain yield by drought, as observed for Amarelão variety, which flowered under more severe drought. 'Sol da Manhã' exhibited shorter anthesis-silking interval under high N than under low N, an additional indication of tolerance.O objetivo deste trabalho foi avaliar o efeito do deficit hídrico e de nitrogênio (N sobre a condutância estomática, em três cultivares de milho cultivadas em campo. A condutância estomática da variedade Sol da Manhã (BRS 4157 e do híbrido Pioneer 6875, em condições de seca e alto teor de N, foi menor que com seca e baixo teor N, o que indica tolerância à seca, pois estas cultivares não tiveram a produção de grãos reduzida com a seca, como ocorreu com a variedade Amarelão, que floresceu sob condições de seca mais severa. 'Sol da Manhã' exibiu maior sincronia entre pendoamento e espigamento com alto teor de N do que com baixo N, o que é evidência adicional de tolerância.
Wang, Ming; Yang, Kezhen; Le, Jie
2015-03-01
In Arabidopsis, stomatal development initiates after protodermal cells acquire stomatal lineage cell fate. Stomata or their precursors communicate with their neighbor epidermal cells to ensure the "one cell spacing" rule. The signals from EPF/EPFL peptide ligands received by Too Many Mouths (TMM) and ERECTA-family receptors are supposed to be transduced by YODA MAPK cascade. A basic helix-loop-helix transcription factor SPEECHLESS (SPCH) is another key regulator of stomatal cell fate determination and asymmetric entry divisions, and SPCH activity is regulated by YODA MAPK cascade. Brassinosteroid (BR) signaling, one of the most well characterized signal transduction pathways in plants, contributes to the control of stomatal production. But opposite organ-specific effects of BR on stomatal production were reported. Here we confirm that stomatal production in hypocotyls is controlled by BR levels. YODA and CYCD4 are not essential for BR stomata-promoting function. Furthermore, we found that BR could confer tmm hypocotyls clustered stomatal phenotype, indicating that the BR organ-specific effects on stomatal production might coordinate with the TMM organ-specific actions. © 2014 Institute of Botany, Chinese Academy of Sciences.
Tazoe, Youshi; VON Caemmerer, Susanne; Estavillo, Gonzalo M; Evans, John R
2011-04-01
In C₃ leaves, the mesophyll conductance to CO₂ diffusion, g(m) , determines the drawdown in CO₂ concentration from intercellular airspace to the chloroplast stroma. Both g(m) and stomatal conductance limit photosynthetic rate and vary in response to the environment. We investigated the response of g(m) to changes in CO₂ in two Arabidopsis genotypes (including a mutant with open stomata, ost1), tobacco and wheat. We combined measurements of gas exchange with carbon isotope discrimination using tunable diode laser absorption spectroscopy with a CO₂ calibration system specially designed for a range of CO₂ and O₂ concentrations. CO₂ was initially increased from 200 to 1000 ppm and then decreased stepwise to 200 ppm and increased stepwise back to 1000 ppm, or the sequence was reversed. In 2% O₂ a step increase from 200 to 1000 ppm significantly decreased g(m) by 26-40% in all three species, whereas following a step decrease from 1000 to 200 ppm, the 26-38% increase in g(m) was not statistically significant. The response of g(m) to CO₂ was less in 21% O₂. Comparing wild type against the ost1 revealed that mesophyll and stomatal conductance varied independently in response to CO₂. We discuss the effects of isotope fractionation factors on estimating g(m) . © 2011 Blackwell Publishing Ltd.
Directory of Open Access Journals (Sweden)
Francisco Jara-Rojas
2009-03-01
Full Text Available The coupled model of assimilation and stomatal conductance (A-g s was evaluated to estimate leaf stomatal conductance of a drip-irrigated vineyard (Vitis vinifera L. cv. Cabernet Sauvignon located in the Pencahue Valley (35º22’ S, 71°47’ W, 150 m.a.s.l., Maule Region, Chile, during the 2003-2004 and the 2004-2005 growing seasons. Additionally, a calibration of the three parameters mesophyll conductance (g m, maximum specific humidity (Dmax and coupled factor (f0 was applied on vines growing in 35 L pots. An infrared gas analyzer was used to calibrate and evaluate the A-g s which allowed simultaneous measuring of the leaf net CO2 assimilation (A and stomatal conductance (g s in 2 to 3 h intervals of time. The calibration indicated that the g m,, Dmax and f0 values were 1.15 mm s-1, 52.31 g kg-1 and 0.90, respectively. The validation in the drip-irrigated vineyard indicated that the A-g s model was able to estimate the leaf stomatal conductance with a root mean square error (RMSE of 0.05 mol m-2 s-1, model efficiency of 61% and agreement index of 90%. The sensitivity analysis indicated that the A-g s model is affected considerably by the g m, Dmax and f0 parameterization.Validación de un modelo para estimar la conductancia estomática de hojas en vides cv. Cabernet Sauvignon. El modelo acoplado de asimilación neta y conductancia estomática (A-g s fue evaluado para estimar la conductancia estomática de hojas (g s de un viñedo regado por goteo (Vitis vinifera L. cv. Cabernet Sauvignon ubicado en el Valle de Pencahue (35º22’ S; 71º47’ O; 150 m.s.n.m., Región del Maule, Chile, durante las temporadas 2003-2004 y 2004-2005. Además, se realizó una calibración de la conductancia del mesófilo (g m, valor máximo de humedad específica a saturación (Dmax y el factor acoplado (f0 en vides creciendo en maceteros de 35 L. Para calibrar y evaluar el modelo A-g s se utilizó un analizador infrarrojo de gases, el cual permitió medir simult
Fern Stomatal Responses to ABA and CO2 Depend on Species and Growth Conditions.
Hõrak, Hanna; Kollist, Hannes; Merilo, Ebe
2017-06-01
Changing atmospheric CO 2 levels, climate, and air humidity affect plant gas exchange that is controlled by stomata, small pores on plant leaves and stems formed by guard cells. Evolution has shaped the morphology and regulatory mechanisms governing stomatal movements to correspond to the needs of various land plant groups over the past 400 million years. Stomata close in response to the plant hormone abscisic acid (ABA), elevated CO 2 concentration, and reduced air humidity. Whether the active regulatory mechanisms that control stomatal closure in response to these stimuli are present already in mosses, the oldest plant group with stomata, or were acquired more recently in angiosperms remains controversial. It has been suggested that the stomata of the basal vascular plants, such as ferns and lycophytes, close solely hydropassively. On the other hand, active stomatal closure in response to ABA and CO 2 was found in several moss, lycophyte, and fern species. Here, we show that the stomata of two temperate fern species respond to ABA and CO 2 and that an active mechanism of stomatal regulation in response to reduced air humidity is present in some ferns. Importantly, fern stomatal responses depend on growth conditions. The data indicate that the stomatal behavior of ferns is more complex than anticipated before, and active stomatal regulation is present in some ferns and has possibly been lost in others. Further analysis that takes into account fern species, life history, evolutionary age, and growth conditions is required to gain insight into the evolution of land plant stomatal responses. © 2017 American Society of Plant Biologists. All Rights Reserved.
International Nuclear Information System (INIS)
Van de Water, P.K.; Leavitt, S.W.; Betancourt, J.L.
1994-01-01
Measurements of stomatal density and delta 13C of limber pine (Pinus flexilis) needles (leaves) preserved in pack rat middens from the Great Basin reveal shifts in plant physiology and leaf morphology during the last 30,000 years. Sites were selected so as to offset glacia to Holocene climatic differences and thus to isolate the effects of changing atmospheric CO2 levels. Stomatal density decreased approximately 17 percent and delta 13C decreased approximately 1.5 per ml during deglaciation from 15,000 to 12,000 years ago, concomitant with a 30 percent increase in atmospheric CO2. Water-use efficiency increased approximately 15 percent during deglaciation, if temperature and humidity were held constant and the proxy values for CO2 and delta 13C of past atmospheres are accurate. The delta 13C variations may help constrain hypotheses about the redistribution of carbon between the atmosphere and biosphere during the last glacial-interglacial cycle
Zhang, Yanqun; Oren, Ram; Kang, Shaozhong
2012-03-01
Vineyards were planted in the arid region of northwest China to meet the local economic strategy while reducing agricultural water use. Sap flow, environmental variables, a plant characteristic (sapwood-to-leaf area ratio, A(s)/A(l)) and a canopy characteristic (leaf area index, L) were measured in a vineyard in the region during the growing season of 2009, and hourly canopy stomatal conductance (G(si)) was estimated for individual vines to quantify the relationships between G(si) and these variables. After accounting for the effects of vapor pressure deficit (D) and solar radiation (R(s)) on G(si), much of the remaining variation of reference G(si) (G(siR)) was driven by that of leaf-specific hydraulic conductivity, which in turn was driven by that of A(s)/A(l). After accounting for that effect on G(siR), appreciable temporal variation remained in the decline rate of G(siR) with decreasing vineyard-averaged relative extractable soil water (θ(E)). This variation was related to the differential decline ofθ(E) near each monitored vine, decreasing faster between irrigation events near vines where L was greater, thus adding to the spatiotemporal variation of G(siR) observed in the vineyard. We also found that the vines showed isohydric-like behavior whenθ(E) was low, but switched to anisohydric-like behavior with increasingθ(E). Modeledθ(E) and associated G(s) of a canopy with even L (1.9 m(2) m(-2)) were greater than that of the same average L but split between the lowest and highest L observed along sections of rows in the vineyard (1.2 and 2.6 m(2) m(-2)) by 6 and 12%, respectively. Our results suggest that managing sectional L near the average, rather than allowing a wide variation, can reduce soil water depletion, maintaining G(s) higher, thus potentially enhancing yield.
Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?
Hodgson, J G; Sharafi, M; Jalili, A; Díaz, S; Montserrat-Martí, G; Palmer, C; Cerabolini, B; Pierce, S; Hamzehee, B; Asri, Y; Jamzad, Z; Wilson, P; Raven, J A; Band, S R; Basconcelo, S; Bogard, A; Carter, G; Charles, M; Castro-Díez, P; Cornelissen, J H C; Funes, G; Jones, G; Khoshnevis, M; Pérez-Harguindeguy, N; Pérez-Rontomé, M C; Shirvany, F A; Vendramini, F; Yazdani, S; Abbas-Azimi, R; Boustani, S; Dehghan, M; Guerrero-Campo, J; Hynd, A; Kowsary, E; Kazemi-Saeed, F; Siavash, B; Villar-Salvador, P; Craigie, R; Naqinezhad, A; Romo-Díez, A; de Torres Espuny, L; Simmons, E
2010-04-01
Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the primary determinant of genome size. Stomata are crucial for photosynthesis and their size affects functional efficiency. Stomatal and leaf characteristics were measured for 1442 species from Argentina, Iran, Spain and the UK and, using PCA, some emergent ecological and taxonomic patterns identified. Subsequently, an assessment of the relationship between genome-size values obtained from the Plant DNA C-values database and measurements of stomatal size was carried out. Stomatal size is an ecologically important attribute. It varies with life-history (woody species < herbaceous species < vernal geophytes) and contributes to ecologically and physiologically important axes of leaf specialization. Moreover, it is positively correlated with genome size across a wide range of major taxa. Stomatal size predicts genome size within angiosperms. Correlation is not, however, proof of causality and here our interpretation is hampered by unexpected deficiencies in the scientific literature. Firstly, there are discrepancies between our own observations and established ideas about the ecological significance of stomatal size; very large stomata, theoretically facilitating photosynthesis in deep shade, were, in this study (and in other studies), primarily associated with vernal geophytes of unshaded habitats. Secondly, the lower size limit at which stomata can function efficiently, and the ecological circumstances under which these minute stomata might occur, have not been satisfactorally resolved. Thus, our hypothesis, that the optimization of stomatal size for functional efficiency is a major ecological determinant of genome size, remains unproven.
Vesicular stomatitis forecasting based on Google Trends.
Wang, JianYing; Zhang, Tong; Lu, Yi; Zhou, GuangYa; Chen, Qin; Niu, Bing
2018-01-01
Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.
Vesicular stomatitis forecasting based on Google Trends
Lu, Yi; Zhou, GuangYa; Chen, Qin
2018-01-01
Background Vesicular stomatitis (VS) is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends. Methods American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression. Results For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity), SP (specificity) and ACC (prediction accuracy) values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively. Conclusion This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast. PMID:29385198
Vesicular stomatitis forecasting based on Google Trends.
Directory of Open Access Journals (Sweden)
JianYing Wang
Full Text Available Vesicular stomatitis (VS is an important viral disease of livestock. The main feature of VS is irregular blisters that occur on the lips, tongue, oral mucosa, hoof crown and nipple. Humans can also be infected with vesicular stomatitis and develop meningitis. This study analyses 2014 American VS outbreaks in order to accurately predict vesicular stomatitis outbreak trends.American VS outbreaks data were collected from OIE. The data for VS keywords were obtained by inputting 24 disease-related keywords into Google Trends. After calculating the Pearson and Spearman correlation coefficients, it was found that there was a relationship between outbreaks and keywords derived from Google Trends. Finally, the predicted model was constructed based on qualitative classification and quantitative regression.For the regression model, the Pearson correlation coefficients between the predicted outbreaks and actual outbreaks are 0.953 and 0.948, respectively. For the qualitative classification model, we constructed five classification predictive models and chose the best classification predictive model as the result. The results showed, SN (sensitivity, SP (specificity and ACC (prediction accuracy values of the best classification predictive model are 78.52%,72.5% and 77.14%, respectively.This study applied Google search data to construct a qualitative classification model and a quantitative regression model. The results show that the method is effective and that these two models obtain more accurate forecast.
Directory of Open Access Journals (Sweden)
Eduardo Caruso Machado
1994-01-01
Full Text Available Avaliou-se, sob condições naturais e sem deficiência hídrica, o comportamento diário das taxas de assimilação de CO2 (A e de transpiração (E, a condutância estomática (g e a eficiência fotossintética do uso de água (E/A em milho (C4, arroz (C3 e trigo (C3. Nas três espécies, a curva de resposta de A em função da irradiância (I, apresentou a forma de uma hipérbole retangular, porém em milho não houve saturação lumínica. A resposta de g em relação a I apresentou a mesma forma, respondendo E linearmente, nas três espécies. Em relação à variação de g, a curva de resposta de A também mostrou a forma de hipérbole retangular, enquanto E respondeu linearmente. Devido à resposta diferencial de A e de E, tanto em função de I como de g, a razão E/A aumentou com o aumento de I. As espécies C3 (arroz e trigo revelaram valores maiores de E/A que a C4 (milho, em todos os níveis de I e valores de g, indicando melhor adaptabilidade da C4 na limitação de abertura estomática.Under natural condition and without water deficit, assimilation of CO2 (A and transpiration (E rates, stomatal conductance (g and photosyntetic efficiency of water use (E/A, were monitored daily on maize (C4, rice (C3 and wheat (C3. In all species, the shape of response curves of A in function of irradiance (I, was a retangular hyperbole. However, luminic saturation was not observed in maize. Stomatal conductance response curve in function of I was also a retangular hyperbole, while E was linear in all species. Due to differential response of A and E, as a function of I as well as g, the ratio E/A was increased with the increase of I. The C3 species (rice and wheat showed higher values of E/A than the C4 specie (maize, in all levels of I and g, showing the better C4 adaptation when stomatal limitation aperture occurs.
Löw, M; Häberle, K-H; Warren, C R; Matyssek, R
2007-03-01
Knowledge of responses of photosynthesis, respiration, and stomatal conductance to cumulative ozone uptake (COU) is still scarce, and this is particularly the case for adult trees. The effect of ozone (O(3)) exposure on trees was examined with 60-year-old beech trees (FAGUS SYLVATICA) at a forest site of southern Germany. Trees were exposed to the ambient O(3) regime (1 x O(3)) or an experimentally elevated twice-ambient O(3) regime (2 x O(3)). The elevated 2 x O (3) regime was provided by means of a free-air O(3) canopy exposure system. The hypotheses were tested that (1) gas exchange is negatively affected by O(3) and (2) the effects of O(3) are dose-dependent and thus the sizes of differences between treatments are positively related to COU. Gas exchange (light-saturated CO(2) uptake rate A(max), stomatal conductance g (s), maximum rate of carboxylation Vc (max), ribulose-1,5-bisphosphate turnover limited rate of photosynthesis J (max), CO(2) compensation point CP, apparent quantum yield of net CO(2) uptake AQ, carboxylation efficiency CE, day- and nighttime respiration) and chlorophyll fluorescence (electron transfer rate, ETR) were measured IN SITU on attached sun and shade leaves. Measurements were made periodically throughout the growing seasons of 2003 (an exceptionally dry year) and 2004 (a year with average rainfall). In 2004 Vc(max), J(max), and CE were lower in trees receiving 2 x O(3) compared with the ambient O(3) regime (1 x O(3)). Treatment differences in Vc (max), J (max), CE were rather small in 2004 (i.e., parameter levels were lower by 10 - 30 % in 2 x O(3) than 1 x O(3)) and not significant in 2003. In 2004 COU was positively correlated with the difference between treatments in A (max), g (s), and ETR (i.e., consistent with the dose-dependence of O(3)'s deleterious effects). However, in 2003, differences in A(max), g (s), and ETR between the two O(3) regimes were smaller at the end of the dry summer 2003 (i.e., when COU was greatest). The
Directory of Open Access Journals (Sweden)
Huiying Zhang
Full Text Available Stomatal movement plays a key role in plant development and response to drought and salt stress by regulating gas exchange and water loss. A number of genes have been demonstrated to be involved in the regulation of this process. Using inverse genetics approach, we characterized the function of a rice (Oryza sativa L. vacuolar H(+-ATPase subunit A (OsVHA-A gene in stomatal conductance regulation and physiological response to salt and osmotic stress. OsVHA-A was constitutively expressed in different rice tissues, and the fusion protein of GFP-OsVHA-A was exclusively targeted to tonoplast when transiently expressed in the onion epidermal cells. Heterologous expression of OsVHA-A was able to rescue the yeast mutant vma1Δ (lacking subunit A activity phenotype, suggesting that it partially restores the activity of V-ATPase. Meanwhile, RNAi-directed knockdown of OsVHA-A led to a reduction of vacuolar H(+-ATPase activity and an enhancement of plasma membrane H(+-ATPase activity, thereby increasing the concentrations of extracellular H(+ and intracellular K(+ and Na(+ under stress conditions. Knockdown of OsVHA-A also resulted in the upregulation of PAM3 (plasma membrane H(+-ATPase 3 and downregulation of CAM1 (calmodulin 1, CAM3 (calmodulin 3 and YDA1 (YODA, a MAPKK gene. Altered level of the ion concentration and the gene expression by knockdown of OsVHA-A probably resulted in expanded aperture of stomatal pores and increased stomatal density. In addition, OsVHA-A RNAi plants displayed significant growth inhibition under salt and osmotic stress conditions. Taken together, our results suggest that OsVHA-A takes part in regulating stomatal density and opening via interfering with pH value and ionic equilibrium in guard cells and thereby affects the growth of rice plants.
Directory of Open Access Journals (Sweden)
Marcelo P. Hernández
2010-12-01
Full Text Available Acacia aroma Gillies ex Hook. & Arn. grows in the Chacoan and Yungas Biogeographic Provinces, Argentina. It has numerous medicinal applications, sweet and edible fruits, and it may be used as forage. The objective of the present contribution was to analyse the stomatal distribution and stomatal density on the secondary leaflet surfaces, in different parts of the leaf, and at different tree crown levels, establishing the leaf movement and environmental condition relationships. The work was performed with fresh material and herbarium specimens, using conventional anatomical techniques. Stomatal distribution on the secondary leaflet surfaces was established, and differences in stomatal density among basal, medium and apical leaflets were found. A decrease in stomatal density from the lower level to the upper level of the tree crown would be connected with that. The stomatal distribution and density appear related to the secondary leaflet shape and its position on the secondary rachis, interacting with the daily secondary leaflets and leaf movement, and the weather conditions. It is interesting that the medium value of stomata density were found in the middle part of the leaf and at the middle level of the tree crown. Original illustrations are given.Acacia aroma crece en las Provincias Biogeográficas Chaqueña y de las Yungas, Argentina. Este árbol posee numerosas aplicaciones en medicina popular, sus frutos son comestibles y puede ser usada como forraje. Los objetivos de la presente contribución fueron: establecer la distribución y densidad de los estomas en el folíolo secundario, en distintos folíolos secundarios de la misma hoja y en los folíolos secundarios de las hojas de la parte basal, media y superior de la copa del árbol, estableciendo relaciones con el movimiento diario de las hojas y condiciones ambientales. Para el estudio se utilizó material fresco y ejemplares de herbario empleando técnicas de anatomía convencionales. Se
Stomatal uptake of O3 in aspen and aspen-birch forests under free-air CO2 and O3 enrichment
Johan Uddling; Alan J. Hogg; Ronald M. Teclaw; Mary Anne. Carroll; David S. Ellsworth
2010-01-01
Rising atmospheric carbon dioxide (CO2) may alleviate the toxicological impacts of concurrently rising tropospheric ozone (O3) during the present century if higher CO2 is accompanied by lower stomatal conductance (gs), as assumed by many models. We investigated how elevated...
International Nuclear Information System (INIS)
Stehn, H.
1985-01-01
A radioimmunological method was used to determine the cortisol plasma levels of 69 patients, treated with a stomatic paste containing prednisolone. Significant changes in plasma cortisol were only established in connection with a dose regimen of 3 times 1.25 mg daily. In isolated cases, however, there were major decreases in response to exposure to prednisolone. Therefore, the anamnestic data of any one patient being prescribed corticoids must be examined with care. (TRV) [de
Les caractéristiques des stomates des feuilles de Ficus benjamina L ...
African Journals Online (AJOL)
Objective: The main objective of this study is to assess the potential of Ficus benjamina stomata to be used as indicators of local air pollution. Methodology: Stomatal prints were taken from the species of study in the vicinity of roads, in residential and industrial areas and parks. Density, pore surface and stomatal resistance ...
Rui, Yue; Anderson, Charles T.
2016-01-01
Stomatal guard cells are pairs of specialized epidermal cells that control water and CO2 exchange between the plant and the environment. To fulfill the functions of stomatal opening and closure that are driven by changes in turgor pressure, guard cell walls must be both strong and flexible, but how the structure and dynamics of guard cell walls enable stomatal function remains poorly understood. To address this question, we applied cell biological and genetic analyses to investigate guard cell walls and their relationship to stomatal function in Arabidopsis (Arabidopsis thaliana). Using live-cell spinning disk confocal microscopy, we measured the motility of cellulose synthase (CESA)-containing complexes labeled by green fluorescent protein (GFP)-CESA3 and observed a reduced proportion of GFP-CESA3 particles colocalizing with microtubules upon stomatal closure. Imaging cellulose organization in guard cells revealed a relatively uniform distribution of cellulose in the open state and a more fibrillar pattern in the closed state, indicating that cellulose microfibrils undergo dynamic reorganization during stomatal movements. In cesa3je5 mutants defective in cellulose synthesis and xxt1 xxt2 mutants lacking the hemicellulose xyloglucan, stomatal apertures, changes in guard cell length, and cellulose reorganization were aberrant during fusicoccin-induced stomatal opening or abscisic acid-induced stomatal closure, indicating that sufficient cellulose and xyloglucan are required for normal guard cell dynamics. Together, these results provide new insights into how guard cell walls allow stomata to function as responsive mediators of gas exchange at the plant surface. PMID:26729799
International Nuclear Information System (INIS)
Elagoez, Vahram; Han, Susan S.; Manning, William J.
2006-01-01
Bush bean (Phaseolus vulgaris L.) lines 'S156' (O 3 -sensitive)/'R123' (O 3 -tolerant) and cultivars 'BBL 290' (O 3 -sensitive)/'BBL 274' (O 3 -tolerant) were used to study the effects of O 3 on stomatal conductance (g s ), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O 3 and plasticity of stomatal properties in response to O 3 . Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O 3 sensitivity and g s : while 'S156' had higher g s rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. G s rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O 3 -tolerant counterparts. Exposure to O 3 in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O 3 -sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O 3 concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O 3 concentrations (30 ppb). Exposure to O 3 eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O 3 and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O 3 has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This appeared to be more evident in O 3 -sensitive cultivars. - O 3 has the potential to affect stomatal development and the presence of different control mechanisms on each leaf surface is confirmed
Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives
Directory of Open Access Journals (Sweden)
Rachana Singh
2017-04-01
Full Text Available Reactive oxygen species (ROS, a by-product of aerobic metabolism were initially studied in context to their damaging effect but recent decades witnessed significant advancements in understanding the role of ROS as signaling molecules. Contrary to earlier views, it is becoming evident that ROS production is not necessarily a symptom of cellular dysfunction but it might represent a necessary signal in adjusting the cellular machinery according to the altered conditions. Stomatal movement is controlled by multifaceted signaling network in response to endogenous and environmental signals. Furthermore, the stomatal aperture is regulated by a coordinated action of signaling proteins, ROS-generating enzymes, and downstream executors like transporters, ion pumps, plasma membrane channels, which control the turgor pressure of the guard cell. The earliest hallmarks of stomatal closure are ROS accumulation in the apoplast and chloroplasts and thereafter, there is a successive increase in cytoplasmic Ca2+ level which rules the multiple kinases activity that in turn regulates the activity of ROS-generating enzymes and various ion channels. In addition, ROS also regulate the action of multiple proteins directly by oxidative post translational modifications to adjust guard cell signaling. Notwithstanding, an active progress has been made with ROS signaling mechanism but the regulatory action for ROS signaling processes in stomatal movement is still fragmentary. Therefore, keeping in view the above facts, in this mini review the basic concepts and role of ROS signaling in the stomatal movement have been presented comprehensively along with recent highlights.
Nitric oxide in guard cells as an important secondary messenger during stomatal closure
Directory of Open Access Journals (Sweden)
Gunja eGayatri
2013-10-01
Full Text Available he modulation of guard cell function is the basis of stomatal closure, essential for optimizing water use and CO2 uptake by leaves. Nitric oxide (NO in guard cells plays a very important role as a secondary messenger during stomatal closure induced by effectors, including hormones. For example, exposure to abscisic acid (ABA triggers a marked increase in NO of guard cells, well before stomatal closure. In guard cells of multiple species, like Arabidopsis, Vicia and pea, exposure to ABA or methyl jasmonate or even microbial elicitors (e.g. chitosan induces production of NO as well as reactive oxygen species (ROS. The role of NO in stomatal closure has been confirmed by using NO donors (e.g. SNP and NO scavengers (like cPTIO and inhibitors of NOS (L-NAME or NR (tungstate. Two enzymes: a L-NAME-sensitive, nitric oxide synthase (NOS-like enzyme and a tungstate-sensitive nitrate reductase (NR, can mediate ABA-induced NO rise in guard cells. However, the existence of true NOS in plant tissues and its role in guard cell NO-production are still a matter of intense debate. Guard cell signal transduction leading to stomatal closure involves the participation of several components, besides NO, such as cytosolic pH, ROS, free Ca2+ and phospholipids. Use of fluorescent dyes has revealed that the rise in NO of guard cells occurs after the increase in cytoplasmic pH and ROS. The rise in NO causes an elevation in cytosolic free Ca2+ and promotes the efflux of cations as well as anions from guard cells. Stomatal guard cells have become a model system to study the signalling cascade mechanisms in plants, particularly with NO as a dominant component. The interrelationships and interactions of NO with cytosolic pH, ROS, and free Ca2+ are quite complex and need further detailed examination. While assessing critically the available literature, the present review projects possible areas of further work related to NO-action in stomatal guard cells.
Merlot, Sylvain; Leonhardt, Nathalie; Fenzi, Francesca; Valon, Christiane; Costa, Miguel; Piette, Laurie; Vavasseur, Alain; Genty, Bernard; Boivin, Karine; Müller, Axel; Giraudat, Jérôme; Leung, Jeffrey
2007-01-01
Light activates proton (H+)-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO2 to photosynthetic tissues. Light to darkness transition, high CO2 levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H+-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO2 and darkness. The OST2 gene encodes the major plasma membrane H+-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H+-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure. PMID:17557075
Mori, Takehiko; Yamazaki, Rie; Aisa, Yoshinobu; Nakazato, Tomonori; Kudo, Masumi; Yashima, Tomoko; Kondo, Sakiko; Ikeda, Yasuo; Okamoto, Shinichiro
2006-04-01
We previously reported the efficacy of oral cryotherapy for the prevention of high-dose melphalan-induced stomatitis. The purpose of this study was to evaluate whether the further shortening of the duration of oral cryotherapy could minimize its side effects while sparing its efficacy. Seventeen consecutive recipients of allogeneic hematopoieic stem cell transplant conditioned with high-dose melphalan in combination with fludarabine alone or with fludarabine and additional radiation were enrolled in the study. The severity of stomatitis was graded according to the National Cancer Institute-Common Toxicity Criteria. Patients were kept on oral cryotherapy shortly before, during, and for additional 30 min after the completion of melphalan administration (60-min oral cryotherapy). Patients who were also enrolled in our previous study received the same type of oral cryotherapy but for additional 90 min after the completion of melphalan administration (120-min oral cryotherapy), and they served as controls. Only 2 (11.8%) of 17 patients receiving 60-min oral cryotherapy and 2 (11.1%) of 18 patients receiving 120-min oral cryotherapy developed grade 2 or 3 stomatitis, respectively. The difference between groups was not statistically significant (P = 0.677). The incidence of unpleasant symptoms such as chills and nausea during oral cryotherapy decreased significantly with 60-min oral cryotherapy, as compared with that associated with 120-min oral cryotherapy (P cryotherapy is as effective as 120-min oral cryotherapy at preventing high-dose melphalan-induced stomatitis, and shorter treatment might have contributed to relieve patient discomfort during oral cryotherapy.
Spinelli, GM; Shackel, KA; Gilbert, ME
2017-01-01
© 2017 Elsevier B.V. Water potential is a useful predictive tool in irrigation scheduling as it, or a component, is associated with physiological responses to water deficit. Increasing atmospheric demand for water increases transpiration and decreases water potential for the same stomatal conductance. However, based on supply by the soil-plant-atmosphere-continuum, decreasing soil water potential should decrease stomatal conductance and thus transpiration but also decrease water potential. Su...
Sun, Yanqi; Yan, Fei; Cui, Xiaoyong; Liu, Fulai
2014-09-01
The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg(-1) soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination (Δ(13)C) under P0. Midday leaf water potential (Ψleaf) and stomatal conductance (gs) was similar for DI and PRD, which was significantly lower than that of FI. Leaf contents of C, N, K, Ca and Mg were higher in PRD than in DI plants, particularly under P0. When analyzed across the three irrigation regimes, it was found that the P1 plants had significantly higher leaf contents of P and Mg, but significantly lower leaf K content compared to the P0 plants. Linear correlation analyses revealed that SS was positively correlated with Ψleaf and Δ(13)C; whereas SD was negatively correlated with Ψleaf, Δ(13)C and SLA, and positively correlated with leaf C, N and Ca contents. And gs was positively correlated with SS but negatively correlated with SD. Collectively, under low P level, the smaller and denser stomata in PRD plants may bring about a more efficient stomatal control over gas exchange, hereby potentially enhance water-use efficiency as exemplified by the lowered leaf Δ(13)C under fluctuating soil moisture conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.
Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi
2011-07-01
An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.
Energy Technology Data Exchange (ETDEWEB)
Elagoez, Vahram [Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 (United States)]. E-mail: velagoz@nsm.umass.edu; Han, Susan S. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States); Manning, William J. [Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003 (United States)
2006-04-15
Bush bean (Phaseolus vulgaris L.) lines 'S156' (O{sub 3}-sensitive)/'R123' (O{sub 3}-tolerant) and cultivars 'BBL 290' (O{sub 3}-sensitive)/'BBL 274' (O{sub 3}-tolerant) were used to study the effects of O{sub 3} on stomatal conductance (g {sub s}), density, and aperture size on leaf and pod surfaces with the objective of establishing links between the degree of plant sensitivity to O{sub 3} and plasticity of stomatal properties in response to O{sub 3}. Studies in open-top chambers (OTCs) and in continuously stirred tank reactors (CSTRs) established a clear relationship between plant developmental stages, degrees of O{sub 3} sensitivity and g {sub s}: while 'S156' had higher g {sub s} rates than 'R123' earlier in development, similar differences between 'BBL 290' and 'BBL 274' were observed at later stages. G {sub s} rates on the abaxial leaf surfaces of 'S156' and 'BBL 290', accompanied by low leaf temperatures, were significantly higher than their O{sub 3}-tolerant counterparts. Exposure to O{sub 3} in CSTRs had greater and more consistent impacts on both stomatal densities and aperture sizes of O{sub 3}-sensitive cultivars. Stomatal densities were highest on the abaxial leaf surfaces of 'S156' and 'BBL 290' at higher O{sub 3} concentrations (60 ppb), but the largest aperture sizes were recorded on the adaxial leaf surfaces at moderate O{sub 3} concentrations (30 ppb). Exposure to O{sub 3} eliminated aperture size differences on the adaxial leaf surfaces between sensitive and tolerant cultivars. Regardless of sensitivity to O{sub 3} and treatment regimes, the smallest aperture sizes and highest stomatal densities were found on the abaxial leaf surface. Our studies showed that O{sub 3} has the potential to affect stomatal plasticity and confirmed the presence of different control mechanisms for stomatal development on each leaf surface. This
Du, Hao; Chang, Yu; Huang, Fei; Xiong, Lizhong
2015-11-01
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental programs. Gibberellic acid (GA) and abscisic acid (ABA) play critical roles in the developmental programs and environmental responses, respectively, through complex signaling and metabolism networks. However, crosstalk between the two phytohormones in stress responses remains largely unknown. In this study, we report that GIBBERELLIN-INSENSITIVE DWARF 1 (GID1), a soluble receptor for GA, regulates stomatal development and patterning in rice (Oryza sativa L.). The gid1 mutant showed impaired biosynthesis of endogenous ABA under drought stress conditions, but it exhibited enhanced sensitivity to exogenous ABA. Scanning electron microscope and infrared thermal image analysis indicated an increase in the stomatal conductance in the gid1 mutant under drought conditions. Interestingly, the gid1 mutant had increased levels of chlorophyll and carbohydrates under submergence conditions, and showed enhanced reactive oxygen species (ROS)-scavenging ability and submergence tolerance compared with the wild-type. Further analyses suggested that the function of GID1 in submergence responses is partially dependent on ABA, and GA signaling by GID1 is involved in submergence tolerance by modulating carbohydrate consumption. Taken together, these findings suggest GID1 plays distinct roles in stomatal response and submergence tolerance through both the ABA and GA signaling pathways in rice. © 2014 Institute of Botany, Chinese Academy of Sciences.
Ulcerative Uremic Stomatitis - Review of the Literature and A Rare Case Report
Directory of Open Access Journals (Sweden)
Shantala Arunkumar
2015-01-01
Full Text Available Uremic Stomatitis (US represents a comparatively uncommon intraoral complication seen, mostly, in cases of end-stage renal disease or undiagnosed or untreated chronic renal failure. Its frequency has diminished due to the advent of renal dialysis. Clinically uremic stomatitis is characterized by the presence of painful plaques and crusts that are usually distributed on the buccal and labial mucosa, dorsal or ventral surface of the tongue, gingiva, and floor of the mouth. Ultimate treatment consists of improvement of blood urea concentration and underlying renal failure is supported by enhancement of oral hygiene with antiseptic mouthwashes and antimicrobial/antifungal agents, if necessary. Here we report a rare case of ulcerative type of uremic stomatitis occurring in a patient of chronic renal failure due to sudden relapse of uremia and reviewed the possible pathophysiology of oral symptoms of chronic renal failure.
Mead, Daniel G; Howerth, Elizabeth W; Murphy, Molly D; Gray, Elmer W; Noblet, Raymond; Stallknecht, David E
2004-01-01
The transmission routes of Vesicular stomatitis New Jersey virus (VSNJV), a causative agent of vesicular stomatitis, an Office International des Epizooties List-A disease, are not completely understood. Epidemiological and entomological studies conducted during the sporadic epidemics in the western United States have identified potential virus transmission routes involving insect vectors and animal-to-animal contact. In the present study we experimentally tested the previously proposed transmission routes which were primarily based on field observations. Results obtained provide strong evidence for the following: (1) hematophagous insects acquire VSNJV by unconventional routes while blood feeding on livestock, (2) clinical course of VSNJV infection in livestock following transmission by an infected insect is related to insect bite site, (3) infection of livestock via insect bite can result in multiple transmission possibilities, including animal-to-animal contact. Taken together, these data significantly add to our understanding of the transmission routes of a causative agent of one of the oldest known infectious diseases of livestock, for which the details have remained largely unknown despite decades of research.
Ozone exposure and stomatal sluggishness in different plant physiognomic classes
Energy Technology Data Exchange (ETDEWEB)
Paoletti, Elena, E-mail: e.paoletti@ipp.cnr.i [IPP-CNR, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Florence (Italy); Grulke, Nancy E. [US Forest Service, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)
2010-08-15
Gas exchange responses to static and variable light were tested in three species: snap bean (Phaseolus vulgaris, two cultivars), California black oak (Quercus kelloggii), and blue oak (Q. douglasii). The effects of 1-month (snap beans) and 2-month (oaks) O{sub 3} (ozone) exposure (70 ppb over 8 h per day in open-top chambers) were investigated. A delay in stomatal responses (i.e., 'sluggish' responses) to variable light was found to be both an effect of O{sub 3} exposure and a reason for increased O{sub 3} sensitivity in snap bean cultivars, as it implied higher O{sub 3} uptake during times of disequilibrium. Sluggishness increased the time to open (thus limiting CO{sub 2} uptake) and close stomata (thus increasing transpirational water loss) after abrupt changes in light level. Similar responses were shown by snap beans and oaks, suggesting that O{sub 3}-induced stomatal sluggishness is a common trait among different plant physiognomic classes. - Sluggish stomatal responses are suggested to be both an effect of O{sub 3} exposure and a reason of increased O{sub 3} sensitivity in plants.
bin Abdullah, Muhammad Naim
2011-01-01
Denture Stomatitis merupakan lesi mukosa oral berwarna merah, sakit, dan bengkak, kondisi ini karena kebiasaan jelek pada pemakai gigitiruan yang tidak mumbuka protesa pada malam hari dan jarang dibersihkan. Faktor sistemik yang mendukung terjadinya Denture Stomatitis dapat disebabkan oleh beberapa bakteri, salah satunya Staphylococcus aureus. Pencegahan Denture Stomatitis dapat dilakukan dengan sering membersihkan gigitiruan dan pemakaian obat kumur. Tujuan penelitian ini adalah untuk menguj...
domec, J.; Palmroth, S.; Oren, R.; Johnson, D. M.; Ward, E. J.; McCulloh, K.; Gonzalez, C.; Warren, J.
2013-12-01
Anatomical and physiological acclimation to water stress of the tree hydraulic system involves tradeoffs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth. Here we study the role of variations in root, trunk and branch maximum hydraulic specific conductivity (Ks-max) under high and low soil moisture in determining whole-tree hydraulic conductance (Ktree) and in mediating stomatal control of gas exchange in loblolly pine trees growing under ambient and elevated CO2 (CO2a and CO2e). We hypothesized that Ktree would adjust to CO2e, through an increase in root and branch Ks-max in response to anatomical adjustments. Embolism in roots explained the loss of Ktree and therefore indirectly constituted a hydraulic signal involved in stomatal regulation and in the reduction of canopy conductance and carbon assimilation. Across roots, trunk and branches, the increase in Ks-max was associated with a decrease resistance to drought, a consequence of structural acclimation such as larger conduits and lower wood density. In loblolly pine, higher xylem dysfunction under CO2e might impact tree performance in a future climate when increased evaporative demand could cause a greater loss of hydraulic function. The results contributed to our knowledge of the physiological and morphological mechanisms underpinning the responses of tree species to drought and more generally to global change.
Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells
Hu, Honghong
2009-12-13
The continuing rise in atmospheric CO2 causes stomatal pores in leaves to close and thus globally affects CO2 influx into plants, water use efficiency and leaf heat stress. However, the CO2-binding proteins that control this response remain unknown. Moreover, which cell type responds to CO2, mesophyll or guard cells, and whether photosynthesis mediates this response are matters of debate. We demonstrate that Arabidopsis thaliana double-mutant plants in the beta-carbonic anhydrases betaCA1 and betaCA4 show impaired CO2-regulation of stomatal movements and increased stomatal density, but retain functional abscisic-acid and blue-light responses. betaCA-mediated CO2-triggered stomatal movements are not, in first-order, linked to whole leaf photosynthesis and can function in guard cells. Furthermore, guard cell betaca-overexpressing plants exhibit instantaneous enhanced water use efficiency. Guard cell expression of mammalian alphaCAII complements the reduced sensitivity of ca1 ca4 plants, showing that carbonic anhydrase-mediated catalysis is an important mechanism for betaCA-mediated CO2-induced stomatal closure and patch clamp analyses indicate that CO2/HCO3- transfers the signal to anion channel regulation. These findings, together with ht1-2 (ref. 9) epistasis analysis demonstrate that carbonic anhydrases function early in the CO2 signalling pathway, which controls gas-exchange between plants and the atmosphere.
Directory of Open Access Journals (Sweden)
Weiqing Zeng
2011-10-01
Full Text Available Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata, multiplication in the intercellular space (apoplast of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA, and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to
Baetz, Ulrike; Huck, Nicola V.; Zhang, Jingbo
2017-01-01
Stomatal pores are formed between a pair of guard cells and allow plant uptake of CO2 and water evaporation. Their aperture depends on changes in osmolyte concentration of guard cell vacuoles, specifically of K+ and Mal2−. Efflux of Mal2− from the vacuole is required for stomatal closure; however, it is not clear how the anion is released. Here, we report the identification of ALMT4 (ALUMINUM ACTIVATED MALATE TRANSPORTER4) as an Arabidopsis thaliana ion channel that can mediate Mal2− release from the vacuole and is required for stomatal closure in response to abscisic acid (ABA). Knockout mutants showed impaired stomatal closure in response to the drought stress hormone ABA and increased whole-plant wilting in response to drought and ABA. Electrophysiological data show that ALMT4 can mediate Mal2− efflux and that the channel activity is dependent on a phosphorylatable C-terminal serine. Dephosphomimetic mutants of ALMT4 S382 showed increased channel activity and Mal2− efflux. Reconstituting the active channel in almt4 mutants impaired growth and stomatal opening. Phosphomimetic mutants were electrically inactive and phenocopied the almt4 mutants. Surprisingly, S382 can be phosphorylated by mitogen-activated protein kinases in vitro. In brief, ALMT4 likely mediates Mal2− efflux during ABA-induced stomatal closure and its activity depends on phosphorylation. PMID:28874508
Tabassum, Muhammad Adnan; Zhu, Guanglong; Hafeez, Abdul; Wahid, Muhammad Atif; Shaban, Muhammad; Li, Yong
2016-11-16
The leaf venation architecture is an ideal, highly structured and efficient irrigation system in plant leaves. Leaf vein density (LVD) and vein thickness are the two major properties of this system. Leaf laminae carry out photosynthesis to harvest the maximum biological yield. It is still unknown whether the LVD and/or leaf vein thickness determines the plant hydraulic conductance (K plant ) and leaf photosynthetic rate (A). To investigate this topic, the current study was conducted with two varieties under three PEG-induced water deficit stress (PEG-IWDS) levels. The results showed that PEG-IWDS significantly decreased A, stomatal conductance (g s ), and K plant in both cultivars, though the IR-64 strain showed more severe decreases than the Hanyou-3 strain. PEG-IWDS significantly decreased the major vein thickness, while it had no significant effect on LVD. A, g s and K plant were positively correlated with each other, and they were negatively correlated with LVD. A, g s and K plant were positively correlated with the inter-vein distance and major vein thickness. Therefore, the decreased photosynthesis and hydraulic conductance in rice plants under water deficit conditions are related to the decrease in the major vein thickness.
Love, D. M.; Venturas, M.; Sperry, J.; Wang, Y.; Anderegg, W.
2017-12-01
Modeling approaches for tree stomatal control often rely on empirical fitting to provide accurate estimates of whole tree transpiration (E) and assimilation (A), which are limited in their predictive power by the data envelope used to calibrate model parameters. Optimization based models hold promise as a means to predict stomatal behavior under novel climate conditions. We designed an experiment to test a hydraulic trait based optimization model, which predicts stomatal conductance from a gain/risk approach. Optimal stomatal conductance is expected to maximize the potential carbon gain by photosynthesis, and minimize the risk to hydraulic transport imposed by cavitation. The modeled risk to the hydraulic network is assessed from cavitation vulnerability curves, a commonly measured physiological trait in woody plant species. Over a growing season garden grown plots of aspen (Populus tremuloides, Michx.) and ponderosa pine (Pinus ponderosa, Douglas) were subjected to three distinct drought treatments (moderate, severe, severe with rehydration) relative to a control plot to test model predictions. Model outputs of predicted E, A, and xylem pressure can be directly compared to both continuous data (whole tree sapflux, soil moisture) and point measurements (leaf level E, A, xylem pressure). The model also predicts levels of whole tree hydraulic impairment expected to increase mortality risk. This threshold is used to estimate survivorship in the drought treatment plots. The model can be run at two scales, either entirely from climate (meteorological inputs, irrigation) or using the physiological measurements as a starting point. These data will be used to study model performance and utility, and aid in developing the model for larger scale applications.
Sack, Lawren; Scoffoni, Christine
2012-12-31
Water is a key resource, and the plant water transport system sets limits on maximum growth and drought tolerance. When plants open their stomata to achieve a high stomatal conductance (gs) to capture CO2 for photosynthesis, water is lost by transpiration(1,2). Water evaporating from the airspaces is replaced from cell walls, in turn drawing water from the xylem of leaf veins, in turn drawing from xylem in the stems and roots. As water is pulled through the system, it experiences hydraulic resistance, creating tension throughout the system and a low leaf water potential (Ψ(leaf)). The leaf itself is a critical bottleneck in the whole plant system, accounting for on average 30% of the plant hydraulic resistance(3). Leaf hydraulic conductance (K(leaf) = 1/ leaf hydraulic resistance) is the ratio of the water flow rate to the water potential gradient across the leaf, and summarizes the behavior of a complex system: water moves through the petiole and through several orders of veins, exits into the bundle sheath and passes through or around mesophyll cells before evaporating into the airspace and being transpired from the stomata. K(leaf) is of strong interest as an important physiological trait to compare species, quantifying the effectiveness of the leaf structure and physiology for water transport, and a key variable to investigate for its relationship to variation in structure (e.g., in leaf venation architecture) and its impacts on photosynthetic gas exchange. Further, K(leaf) responds strongly to the internal and external leaf environment(3). K(leaf) can increase dramatically with irradiance apparently due to changes in the expression and activation of aquaporins, the proteins involved in water transport through membranes(4), and K(leaf) declines strongly during drought, due to cavitation and/or collapse of xylem conduits, and/or loss of permeability in the extra-xylem tissues due to mesophyll and bundle sheath cell shrinkage or aquaporin deactivation(5
Konrad, Wilfried; Katul, Gabriel; Roth-Nebelsick, Anita; Grein, Michaela
2017-06-01
To address questions related to the acceleration or deceleration of the global hydrological cycle or links between the carbon and water cycles over land, reliable data for past climatic conditions based on proxies are required. In particular, the reconstruction of palaeoatmospheric CO2 content (Ca) is needed to assist the separation of natural from anthropogenic Ca variability and to explore phase relations between Ca and air temperature Ta time series. Both Ta and Ca are needed to fingerprint anthropogenic signatures in vapor pressure deficit, a major driver used to explain acceleration or deceleration phases in the global hydrological cycle. Current approaches to Ca reconstruction rely on a robust inverse correlation between measured stomatal density in leaves (ν) of many plant taxa and Ca. There are two methods that exploit this correlation: The first uses calibration curves obtained from extant species assumed to represent the fossil taxa, thereby restricting the suitable taxa to those existing today. The second is a hybrid eco-hydrological/physiological approach that determines Ca with the aid of systems of equations based on quasi-instantaneous leaf-gas exchange theories and fossil stomatal data collected along with other measured leaf anatomical traits and parameters. In this contribution, a reduced order model (ROM) is proposed that derives Ca from a single equation incorporating the aforementioned stomatal data, basic climate (e.g. temperature), estimated biochemical parameters of assimilation and isotope data. The usage of the ROM is then illustrated by applying it to isotopic and anatomical measurements from three extant species. The ROM derivation is based on a balance between the biochemical demand and atmospheric supply of CO2 that leads to an explicit expression linking stomatal conductance to internal CO2 concentration (Ci) and Ca. The resulting expression of stomatal conductance from the carbon economy of the leaf is then equated to another
Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R
2013-09-01
Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.
Oral symptoms and salivary findings in oral lichen planus, oral lichenoid lesions and stomatitis
DEFF Research Database (Denmark)
Larsen, Kristine Roen; Johansen, Jeanne Duus; Reibel, Jesper
2017-01-01
BACKGROUND: To examine if patients with oral lichen planus, oral lichenoid lesions and generalised stomatitis and concomitant contact allergy have more frequent and severe xerostomia, lower unstimulated and chewing-stimulated saliva and citric-acid-stimulated parotid saliva flow rates, and higher...... of xerostomia, clinical examination, sialometry, mucosal biopsy and contact allergy testing. RESULTS: Nineteen patients had oral lichen planus, 19 patients had oral lichenoid lesions and 11 patients had generalised stomatitis. 38.8% had contact allergy. Xerostomia was significantly more common and severe...... in the chewing stimulated saliva samples from patients when compared to healthy controls. The differences were not significant and they were irrespective of the presence of contact allergy. CONCLUSION: Xerostomia is prevalent in patients with oral lichen planus, lichenoid lesions and generalised stomatitis...
Aquaporins Contribute to ABA-Triggered Stomatal Closure through OST1-Mediated Phosphorylation
Grondin, Alexandre; Rodrigues, Olivier; Verdoucq, Lionel; Merlot, Sylvain; Leonhardt, Nathalie; Maurel, Christophe
2015-01-01
Stomatal movements in response to environmental stimuli critically control the plant water status. Although these movements are governed by osmotically driven changes in guard cell volume, the role of membrane water channels (aquaporins) has remained hypothetical. Assays in epidermal peels showed that knockout Arabidopsis thaliana plants lacking the Plasma membrane Intrinsic Protein 2;1 (PIP2;1) aquaporin have a defect in stomatal closure, specifically in response to abscisic acid (ABA). ABA induced a 2-fold increase in osmotic water permeability (Pf) of guard cell protoplasts and an accumulation of reactive oxygen species in guard cells, which were both abrogated in pip2;1 plants. Open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6), a protein kinase involved in guard cell ABA signaling, was able to phosphorylate a cytosolic PIP2;1 peptide at Ser-121. OST1 enhanced PIP2;1 water transport activity when coexpressed in Xenopus laevis oocytes. Upon expression in pip2;1 plants, a phosphomimetic form (Ser121Asp) but not a phosphodeficient form (Ser121Ala) of PIP2;1 constitutively enhanced the Pf of guard cell protoplasts while suppressing its ABA-dependent activation and was able to restore ABA-dependent stomatal closure in pip2;1. This work supports a model whereby ABA-triggered stomatal closure requires an increase in guard cell permeability to water and possibly hydrogen peroxide, through OST1-dependent phosphorylation of PIP2;1 at Ser-121. PMID:26163575
Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana.
Wei, Jian; Li, Dong-Xu; Zhang, Jia-Rong; Shan, Chi; Rengel, Zed; Song, Zhong-Bang; Chen, Qi
2018-04-27
Melatonin has been detected in plants in 1995; however, the function and signaling pathway of this putative phytohormone are largely undetermined due to a lack of knowledge about its receptor. Here, we discovered the first phytomelatonin receptor (CAND2/PMTR1) in Arabidopsis thaliana and found that melatonin governs the receptor-dependent stomatal closure. The application of melatonin induced stomatal closure through the heterotrimeric G protein α subunit-regulated H 2 O 2 and Ca 2+ signals. The Arabidopsis mutant lines lacking AtCand2 that encodes a candidate G protein-coupled receptor were insensitive to melatonin-induced stomatal closure. Accordingly, the melatonin-induced H 2 O 2 production and Ca 2+ influx were completely abolished in cand2. CAND2 is a membrane protein that interacts with GPA1 and the expression of AtCand2 was tightly regulated by melatonin in various organs and guard cells. CAND2 showed saturable and specific 125 I-melatonin binding, with apparent K d (dissociation constant) of 0.73 ± 0.10 nmol/L (r 2 = .99), demonstrating this protein is a phytomelatonin receptor (PMTR1). Our results suggest that the phytomelatonin regulation of stomatal closure is dependent on its receptor CAND2/PMTR1-mediated H 2 O 2 and Ca 2+ signaling transduction cascade. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pérez De León, Adalberto A; O'Toole, Donal; Tabachnick, Walter J
2006-05-01
Intrathoracically inoculated Culicoides sonorensis Wirth & Jones were capable of transmitting vesicular stomatitis New Jersey virus (family Rhabdoviridae, genus Vesiculovirus, VSNJV) during blood feeding on the abdomen of six guinea pigs. None of the guinea pigs infected in this manner developed clinical signs of vesicular stomatitis despite seroconversion for VSNJV. Guinea pigs infected by intradermal inoculations of VSNJV in the abdomen also failed to develop clinical signs of vesicular stomatitis. Three guinea pigs given intradermal inoculations of VSNJV in the foot pad developed lesions typical of vesicular stomatitis. Transmission by the bite of C. sonorensis may have facilitated guinea pig infection with VSNJV because a single infected C. sonorensis caused seroconversion and all guinea pigs infected by insect bite seroconverted compared with 50% of the guinea pigs infected by intradermal inoculation with a higher titer VSNJV inoculum. The role of C. sonorensis in the transmission of VSNJV is discussed.
Growth, leaf and stomatal traits of crabwood (Carapa guianensis Aubl. in central Amazonia
Directory of Open Access Journals (Sweden)
Miguel Angelo Branco Camargo
2012-02-01
Full Text Available Crabwood (Carapa guianensis Aubl. is a fast growing tree species with many uses among Amazonian local communities. The main objective of this study was to assess the effect of seasonal rainfall pattern on growth rates, and seasonal and diurnal changes in leaf gas exchange and leaf water potential (ΨL in crabwood. To assess the effect of rainfall seasonality on growth and physiological leaf traits an experiment was conducted in Manaus, AM (03º 05' 30" S, 59º 59' 35" S. In this experiment, six 6-m tall plants were used to assess photosynthetic traits and ΨL. In a second experiment the effect of growth irradiance on stomatal density (S D, size (S S and leaf thickness was assessed in 0.8-m tall saplings. Stomatal conductance (g s and light-saturated photosynthesis (Amax were higher in the wet season, and between 09:00 and 15:00 h. However, no effect of rainfall seasonality was found on ΨL and potential photosynthesis (CO2-saturated. ΨL declined from -0.3 MPa early in the morning to -0.75 MPa after midday. It increased in the afternoon but did not reach full recovery at sunset. Growth rates of crabwood were high, and similar in both seasons (2 mm month-1. Leaf thickness and S D were 19% and 47% higher in sun than in shade plants, whereas the opposite was true for S S. We conclude that ΨL greatly affects carbon assimilation of crabwood by reducing g s at noon, although this effect is not reflected on growth rates indicating that other factors offset the effect of g s on Amax.
Czech Academy of Sciences Publication Activity Database
Karbulková, J.; Schreiber, L.; Macek, Petr; Šantrůček, Jiří
2008-01-01
Roč. 59, č. 14 (2008), s. 3987-3995 ISSN 0022-0957 R&D Projects: GA AV ČR(CZ) IAA601410505 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z60050516 Keywords : Hedera helix * stomatal conductance * Zamioculcas zamiifolia Subject RIV: EF - Botanics Impact factor: 4.001, year: 2008
Directory of Open Access Journals (Sweden)
Marie Desclos-Theveniau
2012-02-01
Full Text Available Stomata play an important role in plant innate immunity by limiting pathogen entry into leaves but molecular mechanisms regulating stomatal closure upon pathogen perception are not well understood. Here we show that the Arabidopsis thaliana L-type lectin receptor kinase-V.5 (LecRK-V.5 negatively regulates stomatal immunity. Loss of LecRK-V.5 function increased resistance to surface inoculation with virulent bacteria Pseudomonas syringae pv tomato DC3000. Levels of resistance were not affected after infiltration-inoculation, suggesting that LecRK-V.5 functions at an early defense stage. By contrast, lines overexpressing LecRK-V.5 were more susceptible to Pst DC3000. Enhanced resistance in lecrk-V.5 mutants was correlated with constitutive stomatal closure, while increased susceptibility phenotypes in overexpression lines were associated with early stomatal reopening. Lines overexpressing LecRK-V.5 also demonstrated a defective stomatal closure after pathogen-associated molecular pattern (PAMP treatments. LecRK-V.5 is rapidly expressed in stomatal guard cells after bacterial inoculation or treatment with the bacterial PAMP flagellin. In addition, lecrk-V.5 mutants guard cells exhibited constitutive accumulation of reactive oxygen species (ROS and inhibition of ROS production opened stomata of lecrk-V.5. LecRK-V.5 is also shown to interfere with abscisic acid-mediated stomatal closure signaling upstream of ROS production. These results provide genetic evidences that LecRK-V.5 negatively regulates stomatal immunity upstream of ROS biosynthesis. Our data reveal that plants have evolved mechanisms to reverse bacteria-mediated stomatal closure to prevent long-term effect on CO(2 uptake and photosynthesis.
Effect of water deficit on growth and photosynthetic characteristics of ...
African Journals Online (AJOL)
Water deficit decreased total leaf area, above-ground biomass, net photosynthesis, stomatal conductance, internal CO2 concentration and the actual quantum yield of PS II electron transport relative to cultivars that were grown under control condition. Measurement of stomatal conductance provided useful information to ...
DEFF Research Database (Denmark)
Larsen, Kristine Røn; Johansen, Jeanne Duus; Reibel, Jesper
2017-01-01
The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty-nine pat......The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty...... analyzed and compared between groups. Nineteen patients had OLP, primarily with ulcerative lesions on the buccal mucosa, 19 patients had OLL, and 11 patients had generalized stomatitis. All patients had oral symptoms, mainly stinging and burning. Nineteen patients and 10 healthy subjects had contact...... higher levels of IL-6 than the healthy subjects. Interferon-γ, IL-12p40, and IL-12p70 were below detection limit. Our findings indicate that OLP, OLL, and generalized stomatitis cannot be discriminated by means of the selected serum cytokines, and that the presence of concomitant contact allergy does...
Wang, Yin; Noguchi, Ko; Ono, Natsuko; Inoue, Shin-ichiro; Terashima, Ichiro; Kinoshita, Toshinori
2014-01-07
Stomatal pores surrounded by a pair of guard cells in the plant epidermis control gas exchange between plants and the atmosphere in response to light, CO2, and the plant hormone abscisic acid. Light-induced stomatal opening is mediated by at least three key components: the blue light receptor phototropin (phot1 and phot2), plasma membrane H(+)-ATPase, and plasma membrane inward-rectifying K(+) channels. Very few attempts have been made to enhance stomatal opening with the goal of increasing photosynthesis and plant growth, even though stomatal resistance is thought to be the major limiting factor for CO2 uptake by plants. Here, we show that transgenic Arabidopsis plants overexpressing H(+)-ATPase using the strong guard cell promoter GC1 showed enhanced light-induced stomatal opening, photosynthesis, and plant growth. The transgenic plants produced larger and increased numbers of rosette leaves, with ∼42-63% greater fresh and dry weights than the wild type in the first 25 d of growth. The dry weights of total flowering stems of 45-d-old transgenic plants, including seeds, siliques, and flowers, were ∼36-41% greater than those of the wild type. In addition, stomata in the transgenic plants closed normally in response to darkness and abscisic acid. In contrast, the overexpression of phototropin or inward-rectifying K(+) channels in guard cells had no effect on these phenotypes. These results demonstrate that stomatal aperture is a limiting factor in photosynthesis and plant growth, and that manipulation of stomatal opening by overexpressing H(+)-ATPase in guard cells is useful for the promotion of plant growth.
Reconstitution of the fusogenic activity of vesicular stomatitis virus
Metsikkö, K.; van Meer, G.; Simons, K.
1986-01-01
Enveloped virus glycoproteins exhibit membrane fusion activity. We have analysed whether the G protein of vesicular stomatitis virus, reconstituted into liposomes, is able to fuse nucleated cells in a pH-dependent fashion. Proteoliposomes produced by octylglucoside dialysis did not exhibit cell
DEFF Research Database (Denmark)
Schou, L; Wight, C; Cumming, C
1987-01-01
The purpose of the present study was to examine the relation between oral hygiene habits, denture plaque, presence of yeasts and stomatitis in institutionalised elderly. A sample of 201 residents, 48-99 yr of age (mean age 82 yr), was selected from four different institutions in Lothian, Scotland....... Clinical recordings were carried out under standardised circumstances using well recognised indices. Information about oral hygiene habits was obtained through structured interviews conducted immediately before the clinical examination. A multivariate analysis, principal component, was carried out...
Linking stomatal sensitivity and whole-tree hydraulic architecture
Katherine A. McCulloh; David R. Woodruff
2012-01-01
Despite the complexity of the relationship between stomatal sensitivity, water loss and vulnerability to embolism, the goal of teasing apart the subtleties is a necessary one. As Litvak et al. (2012) mention, determining transpiration patterns based on vulnerability to embolism would be much easier than the lengthy and potentially expensive processes involved in sap...
Energy Technology Data Exchange (ETDEWEB)
Zeiger, E; Rafalowsky, J [Chile Univ., Santiago. Departamento de Biologia y Genetica
1976-01-01
A bioassay for cell differentiation during stomatal development in barley (Hordeum vulgare L.) has been defined. It uses cell kinetics analysis to follow the temporal course of cell divisions in the developmental sequence. The rate of displacement of the divisions along the stomatal rows provides a measure of differentiation. Physical factors affecting differentiation may be tested with intact seedlings. The bioassay showed that X-ray irradiation inhibited the divisions leading to stomatal formation. The inhibition kinetics was similar to the one observed in root meristems. Chemical substances are tested by culturing excised shoots in a synthetic medium. Detached leaves responded to sucrose and light with increasing rates of stomatal divisions. Gibberellic acid (GA/sub 3/) was assayed for its effects on the growth of the leaf and the differentiation of stomata. GA/sub 3/ increased the overall length of the leaves without affecting the rates of cell division. The treated cells responded with increased elongation rates and a precocious initiation and completion of cell enlargement. GA/sub 3/ had no specific effect on stomatal differentiation.
Modelling stomatal ozone flux and deposition to grassland communities across Europe
International Nuclear Information System (INIS)
Ashmore, M.R.; Bueker, P.; Emberson, L.D.; Terry, A.C.; Toet, S.
2007-01-01
Regional scale modelling of both ozone deposition and the risk of ozone impacts is poorly developed for grassland communities. This paper presents new predictions of stomatal ozone flux to grasslands at five different locations in Europe, using a mechanistic model of canopy development for productive grasslands to generate time series of leaf area index and soil water potential as inputs to the stomatal component of the DO 3 SE ozone deposition model. The parameterisation of both models was based on Lolium perenne, a dominant species of productive pasture in Europe. The modelled seasonal time course of stomatal ozone flux to both the whole canopy and to upper leaves showed large differences between climatic zones, which depended on the timing of the start of the growing season, the effect of soil water potential, and the frequency of hay cuts. Values of modelled accumulated flux indices and the AOT40 index showed a five-fold difference between locations, but the locations with the highest flux differed depending on the index used; the period contributing to the accumulation of AOT40 did not always coincide with the modelled period of active ozone canopy uptake. Use of a fixed seasonal profile of leaf area index in the flux model produced very different estimates of annual accumulated total canopy and leaf ozone flux when compared with the flux model linked to a simulation of canopy growth. Regional scale model estimates of both the risks of ozone impacts and of total ozone deposition will be inaccurate unless the effects of climate and management in modifying grass canopy growth are incorporated. - Modelled stomatal flux of ozone to productive grasslands in Europe shows different spatial and temporal variation to AOT40, and is modified by management and soil water status
Effect of nitrogen supply on transpiration and stomatal behaviour of beans (Phaseolus vulgaris L. )
Energy Technology Data Exchange (ETDEWEB)
Shimshi, D
1970-01-01
The effect of nitrogen supply on the transpiration rate and stomatal opening of potted bean plants was studied in a series of experiments. The transpiration rates of N-supplied plants were higher than those of N-deficient plants when soil moisture was relatively high; as soil moisture approached the wilting range, the transpiration rates of N-supplied plants dropped to below those of N-deficient plants. In spite of the marked differences in transpiration rates, as influenced by soil moisture and nitrogen supply, the stomata appeared closed. By coating the upper or lower surfaces of the leaves with a vapor-impervious compound it was shown that stomatal apertures below the limit of microscopic resolution control the rate of transpiration. Under conditions that encourage stomatal opening (covering the plants with transparent plastic bags), the stomata of the N-deficient plants opened to a lesser degree than those of N-supplied plants. There was some evidence that when stomata were visibly open, transpiration rates were regulated by the degree of plant hydration rather than by the degree of stomatal opening. It is concluded that N-deficient plants fail to open their stomata as widely and to close them as tightly as N-supplied plants. 8 references, 2 tables.
Directory of Open Access Journals (Sweden)
Madeline R Carins Murphy
Full Text Available Producing leaves with closely spaced veins is a key innovation linked to high rates of photosynthesis in angiosperms. A close geometric link between veins and stomata in angiosperms ensures that investment in enhanced venous water transport provides the strongest net carbon return to the plant. This link is underpinned by "passive dilution" via expansion of surrounding cells. However, it is not known whether this 'passive dilution' mechanism is present in plant lineages other than angiosperms and is another key feature of the angiosperms' evolutionary success. Consequently, we sought to determine whether the 'passive dilution' mechanism is; (i exclusive to the angiosperms, (ii a conserved mechanism that evolved in the common ancestor of ferns and angiosperms, or (iii has evolved continuously over time. To do this we first we assessed the plasticity of vein and stomatal density and epidermal cell size in ferns in response to light environment. We then compared the relationships between these traits found among ferns with modelled relationships that assume vein and stomatal density respond passively to epidermal cell expansion, and with those previously observed in angiosperms. Vein density, stomatal density and epidermal cell size were linked in ferns with remarkably similar relationships to those observed in angiosperms, except that fern leaves had fewer veins per stomata. However, plasticity was limited in ferns and stomatal spacing was dependent on active stomatal differentiation as well as passive cell expansion. Thus, ferns (like angiosperms appear to coordinate vein and stomatal density with epidermal cell expansion to some extent to maintain a constant ratio between veins and stomata in the leaf. The different general relationships between vein density and stomatal density in ferns and angiosperms suggests the groups have different optimum balances between the production of vein tissue dedicated to water supply and stomatal tissue for gas
Experience with TL-102M for the treatment of radiation stomatitis
International Nuclear Information System (INIS)
Nishio, Juntaro; Matsuya, Tokuzo; Inoue, Kazuo; Miyazaki, Tadashi; Maeda, Noriaki.
1984-01-01
TL-102M was administered to 14 patients who had radiation stomatitis following radiation therapy for malignant tumors in the oral cavity. Regarding the degree of overall improvement, one of the 14 patients was evaluated as ''extremely improved'', eight as ''improved'', four as ''slightly improved'', and one as ''unchanged''. None of the patients had side effects. Adherent, powdered TL-102M was easy to take for patients. Most of the patients desired to continue to take this drug because of having neither painfulness nor adhesive feeling. The usage of TL-102M could be helpful in promoting the treatment for cancer, thus suggesting that it is useful in treating radiation stomatitis. (Namekawa, K.)
Analysis of Stomatal Patterning in Selected Mutants of MAPK Pathways
Felemban, Abrar
2016-01-01
-activated protein kinase (MAPK) signalling pathway, which modulates a variety of other processes, including cell proliferation, regulation of cytokinesis, programed cell death, and response to abiotic and biotic stress. The environment also plays a role in stomatal
Fanourakis, Dimitrios; Hyldgaard, Benita; Gebraegziabher, Habtamu; Bouranis, Dimitris; Körner, Oliver; Nielsen, Kai Lønne; Ottosen, Carl-Otto
2017-01-01
High relative air humidity (RH ≥ 85%) impairs stomatal functionality, attenuating plant capacity to cope with abiotic stress. Previous studies were limited to C3 species, so the RH effect on stomatal physiology of CAM plants remains unexplored. We addressed the topic through
The effect of denture stability, occlusion, oral hygiene and smoking on denture-induced stomatitis
International Nuclear Information System (INIS)
Nimri, Gadeer Mukatash
2008-01-01
This longitudinal clinical investigation was undertaken to find out the effect of denture wearing habit (day versus day and night), denture hygiene and cigarette smoking habit on the frequency of denture induced stomatitis. Comparisons were made between 240 complete denture wearers, half of whom were asked to wear their dentures at the daytime only and the other half to wear the denture day and night. All these participants were male patients with a mean age of 57.6 years who had received maxillary complete acrylic dentures for the first time. Fifty percent of the samples were smokers. A standard method for examination of the mouth and denture construction, insertion and follow up were employed. Putative risk factors (denture wearing habits, denture hygiene and smoking) were investigated. Subjects were recalled 12 months after insertion to examine the quality of the denture and the condition of the maxillary mucosa. No significant correlation was found between deterioration of stability or occlusion and type of habitual use of the dentures (P > 0.05). Fourteen percent of the cases reported with inflamed maxillary mucosa. Deterioration of retention or occlusion separately showed no correlation with the condition of the mucosa. However, associated deterioration of both stability and occlusion proved to be significantly correlated with the occurrence of denture stomatitis (P < 0.05). Denture stomatitis was significantly more frequently with subjects wearing their dentures overnight compared with those who removed them (P < 0.05). A significant correlation was also found between cigarette smoking, poor oral hygiene and the presence of denture induced stomatitis (P < 0.05). Nocturnal denture wearing habit, deficient oral and denture hygiene, and cigarette smoking are all important predisposing factors to denture-induced stomatitis, however, none of these factors was the sole cause of mucosal inflammation. (author)
Quantitative trait loci mapping for stomatal traits in interspecific ...
Indian Academy of Sciences (India)
Dr.YASODHA
seedling raising, field planting and maintenance of the mapping population. ... tereticornis and production of interspecific hybrids displaying hybrid vigour in terms of .... A total of 114, 115 and 129 SSR, ISSR and SRAP markers were generated .... stomatal traits with yield and adaptability would help to improve productivity of ...
Directory of Open Access Journals (Sweden)
Hernani José Brazão Rodrigues
2011-06-01
Full Text Available No presente trabalho foram estudadas as variações da condutância estomática (g s para o período chuvoso (março e seco (agosto do ano de 2003, e suas relações de dependência com algumas variáveis meteorológicas medidas em um ecossistema de manguezal amazônico. As informações utilizadas foram do projeto ECOBIOMA, parte integrante do Experimento de Grande Escala da Biosfera-Atmosfera da Amazônia (LBA. A g s acompanha a tendência de variação do balanço de radiação, atingindo valores máximos durante o dia e mínimos durante a noite. A condutância apresentou maiores flutuações no período chuvoso, com valor médio de g s = 0,015 m s-¹, porém com magnitudes inferiores as do período seco. Durante a época seca apresentou um valor médio de g s = 0,027 m s-¹, com menor amplitude, variando de 0,010 This work investigated the variations of stomatal conductance (g s in the rainy and dry seasons and its dependence relations with meteorological variables measured in an Amazonian mangrove ecosystem. Data were originated from the ECOBIOMA project, part of the Large Scale Biosphere-Atmosphere Experiment in Amazon (LBA. Stomatal conductance followed the tendency of the radiation balance variation, reaching maximum values during the day and minimum values at night. The conductance showed greater fluctuations in the rainy season, with mean value of g s = 0.015 m s-¹, however smaller in magnitude than in the dry season. During the dry season, the mean value was g s = 0.027 m s-¹, with lower range, varying between 0.010 and 0.042 m s-¹. The meteorological variables used for establishing the dependence relations with the daily variability of stomatal conductance were the following; specific moisture deficit (δq, vapor pressure deficit (PVD, net radiation (Rn and wind velocity (Vv. The PVD showed the best correlation with g s, with R² = 0.99 for both periods. In spite of the importance of Vv in the gaseous changes between the
Epizootic vesicular stomatitis in Colorado, 1982: epidemiologic and entomologic studies.
Walton, T E; Webb, P A; Kramer, W L; Smith, G C; Davis, T; Holbrook, F R; Moore, C G; Schiefer, T J; Jones, R H; Janney, G C
1987-01-01
An epizootic of vesicular stomatitis (VS) caused by the New Jersey serotype of VS virus affected livestock and humans in 14 western states in 1982-1983. Epidemiological observations were made on at least 10% of the cattle in 4 dairy herds that were located in the vicinity of Grand Junction, Colorado. High rates of neutralizing antibody to the New Jersey serotype were seen in all cattle regardless of whether livestock in the dairy had clinical VS or a decrease in mild production. Antibody titers remained high in these cattle for as long as 2 years after the epizootic. No virus isolations were made from 32 humans with clinical signs compatible with viral disease. Entomological information was obtained during the epizootic from 23 premises in northwestern Colorado. Insect collections yielded 4 isolates from Culicoides spp. midges, 2 from C. variipennis, and 1 each from C. stellifer and C. (Selfia) spp. This is the first report of VS virus isolations from field-collected Culicoides.
Ozone decreases soybean productivity and water use efficiency
Betzelberger, A. M.; VanLoocke, A. D.; Ainsworth, E. A.; Bernacchi, C. J.
2011-12-01
The combination of population growth and climate change will increase pressure on agricultural and water resources throughout this century. An additional consequence of this growth is an increase in anthropogenic emissions that lead to the formation of tropospheric ozone (O3), which in concert with climate change, poses a significant threat to human health and nutrition. In addition to being an important greenhouse gas, O3 reduces plant productivity, an effect that has been particularly pronounced in soybean, which provides over half of the world's oilseed production. Plant productivity is linked to feedbacks in the climate system, indirectly through the carbon cycle, as well as directly through the partitioning of radiation into heat and moisture fluxes. Soybean, along with maize, comprises the largest ecosystem in the contiguous U.S. Therefore, changes in productivity and water use under increasing O3 could impact human nutrition as well as the regional climate. Soybean response to increasing O3 concentrations was tested under open-air agricultural conditions at the SoyFACE research site. During the 2009 growing season, eight 20 m diameter FACE plots were exposed to different O3 concentrations, ranging from 40 to 200 ppb. Canopy growth (leaf area index) and physiological measurements of leaf photosynthesis and stomatal conductance were taken regularly throughout the growing season. Canopy fluxes of heat and moisture were measured using the residual energy balance micrometeorological technique. Our results indicate that as O3 increased from 40 to 200 ppb, rates of photosynthesis and stomatal conductance decreased significantly. Further, the seed yield decreased by over 60%, while water use decreased by 30% and the water-use-efficiency (yield/water-use) declined by 50%. The growing season average canopy temperatures increased by 1°C and midday temperatures increased by 2°C compared to the control. Warmer and drier canopies may result in a positive feedback on O3
Wong, Shau-Lian; Chen, Chung-Wei; Huang, Hsien-Wen; Weng, Jen-Hsien
2012-05-01
We aimed to understand the relation of photosynthetic rate (A) with g(s) and electron transport rate (ETR) in species of great taxonomic range and light adaptation capability during photosynthetic light induction. We studied three woody species (Alnus formosana, Ardisia crenata and Ardisia cornudentata) and four fern species (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai) with different light adaptation capabilities. Pot-grown materials received 100 and/or 10% sunlight according to their light adaptation capabilities. At least 4 months after light acclimation, CO(2) and H(2)O exchange and chlorophyll fluorescence were measured simultaneously by equipment in the laboratory. In plants adapted or acclimated to low light, dark-adapted leaves exposed to 500 or 2000 µmol m(-2) s(-1) photosynthetic photon flux (PPF) for 30 min showed low gross photosynthetic rate (P(g)) and short time required to reach 90% of maximum P(g) (). At the initiation of illumination, two broad-leaved understory shrubs and the four ferns, especially ferns adapted to heavy shade, showed higher stomatal conductance (g(s)) than pioneer tree species; materials with higher g(s) had short at both 500 and 2000 µmol m(-2) s(-1) PPF. With 500 or 2000 µmol m(-2) s(-1) PPF, the g(s) for the three woody species increased from 2 to 30 min after the start of illumination, but little change in the g(s) of the four ferns. Thus, P(g) and g(s) were not correlated for all material measured at the same PPF and induction time. However, P(g) was positively correlated with ETR, even though CO(2) assimilation may be influenced by stomatal, biochemical and photoinhibitory limitations. In addition, was closely related to time required to reach 90% maximal ETR for all materials and with two levels of PPF combined. Thus, ETR is a good indicator for estimating the light induction of photosynthetic rate of species, across a wide taxonomic range and light adaptation and acclimation
Directory of Open Access Journals (Sweden)
Beguerisse-Dıaz Mariano
2012-11-01
Full Text Available Abstract Background Stomata are tiny pores in plant leaves that regulate gas and water exchange between the plant and its environment. Abscisic acid and ethylene are two well-known elicitors of stomatal closure when acting independently. However, when stomata are presented with a combination of both signals, they fail to close. Results Toshed light on this unexplained behaviour, we have collected time course measurements of stomatal aperture and hydrogen peroxide production in Arabidopsis thaliana guard cells treated with abscisic acid, ethylene, and a combination of both. Our experiments show that stomatal closure is linked to sustained high levels of hydrogen peroxide in guard cells. When treated with a combined dose of abscisic acid and ethylene, guard cells exhibit increased antioxidant activity that reduces hydrogen peroxide levels and precludes closure. We construct a simplified model of stomatal closure derived from known biochemical pathways that captures the experimentally observed behaviour. Conclusions Our experiments and modelling results suggest a distinct role for two antioxidant mechanisms during stomatal closure: a slower, delayed response activated by a single stimulus (abscisic acid ‘or’ ethylene and another more rapid ‘and’ mechanism that is only activated when both stimuli are present. Our model indicates that the presence of this rapid ‘and’ mechanism in the antioxidant response is key to explain the lack of closure under a combined stimulus.
Ohsumi, Akihiro; Hamasaki, Akihiro; Nakagawa, Hiroshi; Yoshida, Hiroe; Shiraiwa, Tatsuhiko; Horie, Takeshi
2007-02-01
Identification of physiological traits associated with leaf photosynthetic rate (Pn) is important for improving potential productivity of rice (Oryza sativa). The objectives of this study were to develop a model which can explain genotypic variation and ontogenetic change of Pn in rice under optimal conditions as a function of leaf nitrogen content per unit area (N) and stomatal conductance (g(s)), and to quantify the effects of interaction between N and g(s) on the variation of Pn. Pn, N and g(s) were measured at different developmental stages for the topmost fully expanded leaves in ten rice genotypes with diverse backgrounds grown in pots (2002) and in the field (2001 and 2002). A model of Pn that accounts for carboxylation and CO diffusion processes, and assumes that the ratio of internal conductance to g(s) is constant, was constructed, and its goodness of fit was examined. Considerable genotypic differences in Pn were evident for rice throughout development in both the pot and field experiments. The genotypic variation of Pn was correlated with that of g(s) at a given stage, and the change of Pn with plant development was closely related to the change of N. The variation of g(s) among genotypes was independent of that of N. The model explained well the variation in Pn of the ten genotypes grown under different conditions at different developmental stages. Conclusions The response of Pn to increased N differs with g(s), and the increase in Pn of genotypes with low g(s) is smaller than that of genotypes with high g(s). Therefore, simultaneous improvements of these two traits are essential for an effective breeding of rice genotypes with increased Pn.
Yu, Gui-Rui; Wang, Qiu-Feng; Zhuang, Jie
2004-03-01
Understanding the variability of plant WUE and its control mechanism can promote the comprehension to the coupling relationship of water and carbon cycle in terrestrial ecosystem, which is the foundation for developing water-carbon coupling cycle model. In this paper, we made clear the differences of net assimilation rate, transpiration rate, and WUE between the two species by comparing the experiment data of soybean (Glycine max Merr.) and maize (Zea mays L.) plants under water and soil nutrient stresses. WUE of maize was about two and a half times more than that of soybean in the same weather conditions. Enhancement of water stresses led to the marked decrease of Am and Em of two species, but water stresses of some degree could improve WUE, and this effect was more obvious for soybean. WUE of the two species changed with psiL in a second-order curve relation, and the WUE at high fertilization was higher than that at low fertilization, this effect was especially obvious for maize. Moreover, according to the synthetic model of photosynthesis-transpiration based on stomatal behavior (SMPTSB) presented by Yu et al. (2001), the WUE model and its applicability were discussed with the data measured in this experiment. The WUE estimated by means of the model accorded well with the measured values. However, this model underestimated the WUE for maize slightly, thus further improvement on the original model was made in this study. Finally, by discussing some physiological factors controlling Am and WUE, we made clear the physiological explanation for differences of the relative contributions of stomata- and mesophyll processes to control of Am and WUE, and the applicability of WUE model between the two species. Because the requirement to stomatal conductance by unit change of net assimilation rate is different, the responses of opening-closing activity of stomata to environmental stresses are different between the two species. To obtain the same level of net assimilation
Islam, Md Moshiul; Ye, Wenxiu; Matsushima, Daiki; Khokon, Md Atiqur Rahman; Munemasa, Shintaro; Nakamura, Yoshimasa; Murata, Yoshiyuki
2015-01-01
Acrolein is a reactive α,β-unsaturated aldehyde derived from lipid peroxides, which are produced in plants under a variety of stress. We investigated effects of acrolein on light-induced stomatal opening using Arabidopsis thaliana. Acrolein inhibited light-induced stomatal opening in a dose-dependent manner. Acrolein at 100 μM inhibited plasma membrane inward-rectifying potassium (Kin) channels in guard cells. Acrolein at 100 μM inhibited Kin channel KAT1 expressed in a heterologous system using Xenopus leaves oocytes. These results suggest that acrolein inhibits light-induced stomatal opening through inhibition of Kin channels in guard cells.
Sullivan, P.; Brownlee, A.; Ellison, S.; Sveinbjornsson, B.
2014-12-01
Tree cores collected from trees growing at high latitudes have long been used to reconstruct past climates, because of close positive correlations between temperature and tree growth. However, in recent decades and at many sites, these relationships have deteriorated and have even become negative in some instances. The observation of declining tree growth in response to rising temperature has prompted many investigators to suggest that high latitude trees may be increasingly exhibiting drought-induced stomatal closure. In the Brooks Range of northern Alaska, the observation of low and declining growth of white spruce is more prevalent in the central and eastern parts of the range, where precipitation is lower, providing superficial support for the drought stress hypothesis. In this study, we investigated the occurrence of white spruce drought-induced stomatal closure in four watersheds along a west to east gradient near the Arctic treeline in the Brooks Range. We obtained a historical perspective on tree growth and water relations by collecting increment cores for analysis of ring widths and carbon isotopes in tree-ring alpha-cellulose. Meanwhile, we made detailed assessments of contemporary water relations at the scales of the whole canopy and the needle. All of our data indicate that drought-induced stomatal closure is probably not responsible for low and declining growth in the central and eastern Brooks Range. Carbon isotope discrimination has generally increased over the past century and our calculations indicate that needle inter-cellular CO2 concentration is much greater now than it was in the early 1900's. Measurements of needle gas exchange are consistent with the tree core record, in the sense that instances of low photosynthesis at our sites are not coincident with similarly low stomatal conductance and low inter-cellular CO2 concentration. Finally, hourly measurements of xylem sap flow indicate that trees at our study sites are able to maintain near
Aisa, Yoshinobu; Mori, Takehiko; Kudo, Masumi; Yashima, Tomoko; Kondo, Sakiko; Yokoyama, Akihiro; Ikeda, Yasuo; Okamoto, Shinichiro
2005-04-01
The purpose of this study was to evaluate the efficacy of oral cryotherapy to prevent high-dose melphalan-induced stomatitis. Eighteen consecutive recipients of allogeneic hematopoietic stem cell transplant conditioned with high-dose melphalan (140 mg/m2) in combination with fludarabine alone or with fludarabine and additional chemotherapy or radiation were enrolled. The severity of stomatitis was graded according to the National Cancer Institute Common Toxicity Criteria. Patients were kept on oral cryotherapy using ice chips and ice-cold water shortly before, during, and for additional 90 min after completion of melphalan administration. Only two of 18 patients (11.1%) developed grade 2 or 3 stomatitis while six of seven patients in the historical control developed it (85.7%; P=0.001). These results suggested that oral cryotherapy could effectively prevent stomatitis caused by high-dose melphalan, and we recommend that it should be incorporated into the conditioning regimen with high-dose melphalan.
Meng, Lai-Sheng; Yao, Shun-Qiao
2015-09-01
One goal of modern agriculture is the improvement of plant drought tolerance and water-use efficiency (WUE). Although stomatal density has been linked to WUE, the causal molecular mechanisms and engineered alternations of this relationship are not yet fully understood. Moreover, YODA (YDA), which is a MAPKK kinase gene, negatively regulates stomatal development. BR-INSENSITIVE 2 interacts with phosphorylates and inhibits YDA. However, whether YDA is modulated in the transcriptional level is still unclear. Plants lacking ANGUSTIFOLIA3 (AN3) activity have high drought stress tolerance because of low stomatal densities and improved root architecture. Such plants also exhibit enhanced WUE through declining transpiration without a demonstrable reduction in biomass accumulation. AN3 negatively regulated YDA expression at the transcriptional level by target-gene analysis. Chromatin immunoprecipitation analysis indicated that AN3 was associated with a region of the YDA promoter in vivo. YDA mutation significantly decreased the stomatal density and root length of an3 mutant, thus proving the participation of YDA in an3 drought tolerance and WUE enhancement. These components form an AN3-YDA complex, which allows the integration of water deficit stress signalling into the production or spacing of stomata and cell proliferation, thus leading to drought tolerance and enhanced WUE. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Gracilene Fernandes da Costa
2007-06-01
Full Text Available O potencial hídrico da folha é um dos fatores mais importantes que afetam o funcionamento dos estômatos. O objetivo deste trabalho foi avaliar o efeito da variação diurna na irradiância e déficit de pressão de vapor (DPV na fotossíntese (A, condutância estomática (g s e potencial hídrico da folha (psi em Carapa guianensis (Aubl.. Os dados foram coletados de 07:00 às 17:00 h. A taxa fotossintética atingiu um valor máximo (2,5 µmol m-2 s-1 às 10:00 h, depois declinou até atingir um mínimo de 1 µmolm-2 s-1 às 16:00 h. A condutância estomática oscilou durante o dia, de 0,04 molm-2s-1 (ao meio dia para 0,02 molm-2s- 1 no final da tarde. O potencial hídrico da folha foi máximo nas primeiras horas do dia (-0,3 MPa e mínimo (-0,75 MPa no meio da tarde (14:30 a 15:00 h. Após ter alcançado um mínimo, o psi aumentou até -0,64 MPa no fim da tarde. A taxa fotossintética aumentou linearmente em função do g s (P Leaf water potential is one of the most important factors affecting stomatal functioning. The aim of this study was to assess the effect of variation in diurnal irradiance and vapour pressure deficit on photosynthesis (A, stomatal conductance (g s and leaf water potential (psi in Carapa guianensis (Aubl.. Data were collected from 07:00 to 17:00 h. Photosynthetic rates reached a maximum (2.5 µmol m-2 s-1 at 10:00 h, thereafter declined to a minimum of 1 µmol m-2 s-1 at 16:00 h. Stomatal conductance oscillated during the day, from 0.04 mol m-2 s-1 (at midday to 0.02.mol.m-2.s-1 at the end of the afternoon. Leaf water potential was higher early in the morning (-0.3 MPa and lower (-0.75 MPa at mid-afternoon (14:30 -15:00 h. After reaching a minimum, psi increased up to -0.64 MPa at sunset. Photosynthetic rates increased linearly as a function of g s (P < 0.01. Also there was a positive relationship between psi and g s (P< 0.01. Photosynthetic rates declined during the day after reaching a peak early in the morning, which
Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto; Rosenqvist, Eva
2015-02-01
The chlorophyll fluorescence parameter Fv /Fm reflects the maximum quantum efficiency of photosystem II (PSII) photochemistry and has been widely used for early stress detection in plants. Previously, we have used a three-tiered approach of phenotyping by Fv /Fm to identify naturally existing genetic variation for tolerance to severe heat stress (3 days at 40°C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv /Fm value) in terms of growth and photosynthetic traits under moderate heat stress (1 week at 36/30°C day/night temperature in greenhouse) closer to natural heat waves in North-Western Europe. Dry matter accumulation after 7 days of heat stress was positively correlated to Fv /Fm . The high Fv /Fm group maintained significantly higher total chlorophyll and net photosynthetic rate (PN ) than the low group, accompanied by higher stomatal conductance (gs ), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv /Fm and intracellular CO2 (Ci ) was non-significant under the given heat stress. This study validated that our three-tiered approach of phenotyping by Fv /Fm performed under increasing severity of heat was successful in identifying wheat cultivars differing in photosynthesis under moderate and agronomically more relevant heat stress. The identified cultivars may serve as a valuable resource for further studies to understand the physiological mechanisms underlying the genetic variability in heat sensitivity of photosynthesis. © 2014 Scandinavian Plant Physiology Society.
Chloroplastic and stomatal aspects of ozone-induced reduction of net photosynthesis in plants
Energy Technology Data Exchange (ETDEWEB)
Torsethaugen, Gro
1998-09-01
The present thesis relates to ozone-induced reduction of photosynthesis in plants. As a photochemical oxidant O{sub 3} is formed by the interaction of hydrocarbons, nitrogen oxides and oxygen in sunlight. Ozone (O{sub 3}) is the most phytotoxic of all the air pollutants and is known to reduce plant growth and net photosynthesis, cause stomatal closure, induce visible injury, accelerate senescence and induce or inhibit transcription of a variety of genes with a corresponding increase/decrease in protein products. The underlying cellular mechanisms for many of these changes are unknown. Following fields are investigated: Ozone-induced reduction of net photosynthesis; ozone and the photosynthetic apparatus in the chloroplasts; ozone and stomata; ozone effects on plant membranes; protection against ozone injury in plants. 249 refs., 22 figs., 4 tabs.
International Nuclear Information System (INIS)
Nagai, Masao; Houzawa, Jiro; Hakamada, Masaru
1984-01-01
In order to compare the preventive effect on radiation stomatitis, flavin adenine dinucleotide (FAD) or vitamin C was administered intravenously until the blood level reached the maximum at the time of irradiation. Thirtyfive patients with cranial or cervical tumors were allocated into the group with FAD (15), the group with vitamin C (10), and the group with irradiation alone (10). The incidence of stomititis was significantly lower and the number of patients in whom the drug was withdrawn due to stomatitis was extremely smaller in the group with FAD than in the other groups. FAD administered before irradiation was considered very useful in preventing radiation stomatitis. (Namekawa, K.)
Directory of Open Access Journals (Sweden)
Rahmi Amtha
2017-12-01
Full Text Available Mouth ulcer plaster is effective in accelerating the healing of recurrent aphthous stomatitis and traumatic ulcers. Recurrent aphthous stomatitis (RAS is one of the most commonly occurring oral diseases. The prevalence of oral ulceration worldwide is 4%, with RAS having the largest proportion (25%. Recurrent aphthous stomatitis is oral ulceration which has a self-limiting disease, but the specific medication to reduce pain caused by lesion is still less varied nowadays. This study aimed to examine the differences in the effectiveness between topical application of hyaluronic acid (HA, mouth ulcer plaster (MUP and 0.1% triamcinolone acetonide (TA as a positive control in the healing of RAS and traumatic ulcers (TU. This was a quasi-experimental study by measuring the lesion diameter as well as visual analogue scale (VAS pre- and post-administration of three types of medication. Kruskal-walis test results show that there are differences in effectiveness (p=0.000 of the three types of medication to cure RAS and TU. There are signicant differences in the reduction of RAS and TU lesion diameter (p = 0.015 and VAS (p = 0.038 with the use of HA and MUP on the 4th day. There is no signicant difference in effectiveness (diameter and VAS of MUP and TA medication on the fourth day (p = 0.880 and p = 1.000 respectively. There is no signicant difference among HA, MUP and TA on the healing of the lesions on the seventh day (p>0.05. It can be concluded that the effectiveness of MUP is similar to that of topical medications containing corticosteroids in the healing of RAS and traumatic ulcers. ABSTRAK Stomatitis aftosa rekuren (SAR merupakan salah satu penyakit mulut yang paling umum terjadi. Prevalensi ulserasi mulut di seluruh dunia adalah 4%, dengan SAR menempati urutan terbesar yaitu 25%. Stomatitis aftosa rekuren merupakan ulserasi mulut yang memiliki self-limiting disease, namun sediaan obat yang spesifik untuk mengurangi rasa sakit yang
Directory of Open Access Journals (Sweden)
Yan Li
Full Text Available Reactive oxygen species (ROS have been established to participate in stomatal closure induced by live microbes and microbe-associated molecular patterns (MAMPs. Chlorella as a beneficial microorganism can be expected to trigger stomatal closure via ROS production. Here, we reported that Chlorella induced stomatal closure in a dose-and time-dependent manner in epidermal peels of Vicia faba. Using pharmacological methods in this work, we found that the Chlorella-induced stomatal closure was almost completely abolished by a hydrogen peroxide (H2O2 scavenger, catalase (CAT, significantly suppressed by an NADPH oxidase inhibitor, diphenylene iodonium chloride (DPI, and slightly affected by a peroxidase inhibitor, salicylhydroxamic acid (SHAM, suggesting that ROS production involved in Chlorella-induced stomatal closure is mainly mediated by DPI-sensitive NADPH oxidase. Additionally, Exogenous application of optimal concentrations of Chlorella suspension improved instantaneous water use efficiency (WUEi in Vicia faba via a reduction in leaf transpiration rate (E without a parallel reduction in net photosynthetic rate (Pn assessed by gas-exchange measurements. The chlorophyll fluorescence and content analysis further demonstrated that short-term use of Chlorella did not influence plant photosynthetic reactions center. These results preliminarily reveal that Chlorella can trigger stomatal closure via NADPH oxidase-dependent ROS production in epidermal strips and improve WUEi in leave levels.
Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Liu, Xiaobing; Hu, Enzhu
2017-12-01
High ground-level O 3 is a new threat to agricultural production in Northeast China with the increasing ambient O 3 concentration. Little is known about its impacts on soybean production in this key agricultural region. Accumulated O 3 exposure-response and stomatal O 3 flux-response relationships were developed during two continuous growing seasons to evaluate O 3 -induced yield reduction of four typical soybean cultivars in Northeast China. Results showed that critical levels of AOT40 (accumulated hourly O 3 concentrations over a threshold of 40nmol·mol -1 ), SUM06 (sum of all hourly average O 3 concentrations over 0.06μmol·mol -1 ) and W126 (sum of O 3 concentrations weighted by a sigmoidal function) in relation to 5% reduction in relative seed yield were 4.2, 7.6 and 6.8μmol·mol -1 ·h, respectively. The effect of O 3 on plants was influenced by leaf position in canopy. An improved Jarvis stomatal conductance model including leaf (node) position fitted well with field measurements. The best linear relationship between stomatal O 3 flux and relative soybean yield was obtained when phytotoxic ozone dose was integrated over a threshold of 9.6nmol·m -2 ·s -1 (POD 9.6 ) to represent the detoxification capacity of soybean. POD 9.6 and the commonly used POD 6 in relation to 5% reduction in relative seed yield of soybean were 0.9mmol·m -2 and 1.8mmol·m -2 , respectively. O 3 concentrations above ~38nmol·mol -1 contributed to POD 9.6 and caused seed yield loss in soybean. Current annual yield loss of soybean at ambient O 3 was estimated to range between 23.4% and 30.2%. The O 3 dose-response relationships and corresponding thresholds obtained here will benefit regional O 3 risk assessment on soybean production in Northeast China. Copyright © 2017 Elsevier B.V. All rights reserved.
Forest response and recovery following disturbance in upland forests of the Atlantic Coastal Plain.
Schäfer, Karina V R; Renninger, Heidi J; Carlo, Nicholas J; Vanderklein, Dirk W
2014-01-01
Carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling and may be affected by disturbance and climate change. As a larger body of research becomes available about leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, a more mechanistic understanding is developing which can improve modeling efforts. Here, we summarize some of the major effects of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. During drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance.
Haworth, Matthew; Heath, James; McElwain, Jennifer C
2010-03-01
The inverse relationship between stomatal density (SD: number of stomata per mm(2) leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI-[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2]. Methods Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2). T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI-[CO2] relationship is not apparent across the genus Callitris. Conclusions The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species.
International Nuclear Information System (INIS)
Massad, Raia Silvia; Loubet, Benjamin; Tuzet, Andree; Cellier, Pierre
2008-01-01
The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH 4 + ] apo ) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal compensation point, except the model of Riedo et al. (2002. Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecological Modelling 158, 83-110), which represents the exchanges between the plant's nitrogen pools. The first step to model the ammonia stomatal compensation point is to adequately model [NH 4 + ] apo . This [NH 4 + ] apo has been studied experimentally, but there are currently no process-based quantitative models describing its relation to plant metabolism and environmental conditions. This study summarizes the processes involved in determining the ammonia stomatal compensation point at the leaf scale and qualitatively evaluates the ability of existing whole plant N and C models to include a model for [NH 4 + ] apo . - A model for ammonia stomatal compensation point at the leaf level scale was developed
Study about ion exchange for decreasing the conductivity of water in power plant and refineries
International Nuclear Information System (INIS)
Khosravi, M.; Samani; Hajihosseini, N.
2002-01-01
Water has been used directly or indirectly for industries, its use would be in factories: such as steam or as a cooler or the product of the industrial material. water is used more than other material in many industries and what ever is obtained as the effect of industrial activities, it is destabilising like waste. By the control of P H and reducing (total dissolved solid) of water or decreasing conductivity of water, we can protect boiler from corrosion. We want to study this article for different method of decreasing (TDS) in order to produce <1μs/cm conductivity. The suitable method which is ion exchange system will be selected
Frederick C. Meinzer; Duncan D. Smith; David R. Woodruff; Danielle E. Marias; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman
2017-01-01
Speciesâ differences in the stringency of stomatal control of plant water potential represent a continuum of isohydric to anisohydric behaviours. However, little is known about how quasi-steady-state stomatal regulation of water potential may relate to dynamic behaviour of stomata and photosynthetic gas exchange in species operating at different positions along this...
International Nuclear Information System (INIS)
Dunigan, D.D.; Lucas-Lenard, J.M.
1983-01-01
When mouse L-cells are infected with vesicular stomatitis virus, there is a decrease in the rate of protein synthesis ranging from 20 to 85% of that in mock-infected cells. Vesicular stomatitis virus, irradiated with increasing doses of UV light, eventually loses this capacity to inhibit protein synthesis. The UV inactivation curve was biphasic, suggesting that transcription of two regions of the viral genome is necessary for the virus to become inactivated in this capacity. The first transcription produced corresponded to about 373 nucleotides, and the second corresponded to about 42 nucleotides. Inhibition of transcription of the larger product by irradiating the virus with low doses of UV light left a residual inhibition of protein synthesis consisting of approximately 60 to 65% of the total inhibition. This residual inhibition could be obviated by irradiating the virus with a UV dose of greater than 20,000 ergs/mm 2 and was thus considered to represent the effect of the smaller transcription product. In the R1 mutant of another author, the inhibition of transcription of the larger product sufficed to restore protein synthesis to the mock-infected level, suggesting that the smaller transcription product is nonfunctional with respect to protein synthesis inhibition. Extracts from cells infected with virus irradiated with low doses of UV light showed a protein synthesis capacity quite similar to that of their in vivo counterparts, indicating that these extracts closely reflect the in vivo effects of virus infection
Stomatal and pavement cell density linked to leaf internal CO2 concentration.
Santrůček, Jiří; Vráblová, Martina; Simková, Marie; Hronková, Marie; Drtinová, Martina; Květoň, Jiří; Vrábl, Daniel; Kubásek, Jiří; Macková, Jana; Wiesnerová, Dana; Neuwithová, Jitka; Schreiber, Lukas
2014-08-01
Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lifescience Database Archive (English)
Full Text Available MeCab user dictionary for science technology term vesicular stomatitis virus 名詞 一般 ...* * * * 水疱性口内炎ウイルス スイホウセイコウナイエンウイルス スイホーセイコーナイエンウイルス Thesaurus2015 200906056003651861 C LS07 UNKNOWN_2 vesicular stomatitis virus
Directory of Open Access Journals (Sweden)
Sara Samimi Loghmani
2014-05-01
Full Text Available Phosphorus (P is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa and duck weed (lemna minor with four treatments and three replications. Data were analyzed in a factorial completely randomized design. Treatments included effluent with and without the plants, and effluent diluted (dilution grade 1/2 with and without the plants. Total dissolved P, electrical conductivity (EC and pH value were measured after 8, 16 and 24 days in effluent samples. The results showed that pH value decreased up to 0.2 units during of 24 days of the experiment, but there was found no significant difference (p≤0.05 in pH values among the treatments. Both plants decreased EC about 7 % relative to the control (without plant after 24 days. The plants were also effective in reducing total dissolved phosphorus, so that duck weed and elodea decreased total dissolved P in the effluent about 49 and 7%, respectively. It is concluded that duck weed is more effective in the P removal from the effluent than the other plant.
Chater, Caspar C.; Kamisugi, Yasuko
2016-01-01
The patterning of stomata plays a vital role in plant development and has emerged as a paradigm for the role of peptide signals in the spatial control of cellular differentiation. Research in Arabidopsis has identified a series of epidermal patterning factors (EPFs), which interact with an array of membrane-localised receptors and associated proteins (encoded by ERECTA and TMM genes) to control stomatal density and distribution. However, although it is well-established that stomata arose very early in the evolution of land plants, until now it has been unclear whether the established angiosperm stomatal patterning system represented by the EPF/TMM/ERECTA module reflects a conserved, universal mechanism in the plant kingdom. Here, we use molecular genetics to show that the moss Physcomitrella patens has conserved homologues of angiosperm EPF, TMM and at least one ERECTA gene that function together to permit the correct patterning of stomata and that, moreover, elements of the module retain function when transferred to Arabidopsis. Our data characterise the stomatal patterning system in an evolutionarily distinct branch of plants and support the hypothesis that the EPF/TMM/ERECTA module represents an ancient patterning system. PMID:27407102
Energy Technology Data Exchange (ETDEWEB)
Massad, Raia Silvia [Institut National de la Recherche Agronomique (INRA), Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)], E-mail: massad@grignon.inra.fr; Loubet, Benjamin; Tuzet, Andree; Cellier, Pierre [Institut National de la Recherche Agronomique (INRA), Environnement et Grandes Cultures, 78850 Thiverval-Grignon (France)
2008-08-15
The ammonia stomatal compensation point of plants is determined by leaf temperature, ammonium concentration ([NH{sub 4}{sup +}]{sub apo}) and pH of the apoplastic solution. The later two depend on the adjacent cells metabolism and on leaf inputs and outputs through the xylem and phloem. Until now only empirical models have been designed to model the ammonia stomatal compensation point, except the model of Riedo et al. (2002. Coupling soil-plant-atmosphere exchange of ammonia with ecosystem functioning in grasslands. Ecological Modelling 158, 83-110), which represents the exchanges between the plant's nitrogen pools. The first step to model the ammonia stomatal compensation point is to adequately model [NH{sub 4}{sup +}]{sub apo}. This [NH{sub 4}{sup +}]{sub apo} has been studied experimentally, but there are currently no process-based quantitative models describing its relation to plant metabolism and environmental conditions. This study summarizes the processes involved in determining the ammonia stomatal compensation point at the leaf scale and qualitatively evaluates the ability of existing whole plant N and C models to include a model for [NH{sub 4}{sup +}]{sub apo}. - A model for ammonia stomatal compensation point at the leaf level scale was developed.
Soares, A.S.; Discoll, S.P.; Olmos, E.; Harbinson, J.; Arrabaca, M.C.
2008-01-01
Whole-plant morphology, leaf structure and composition were studied together with the effects of light orientation on the dorso-ventral regulation of photosynthesis and stomatal conductance in Paspalum dilatatum cv. Raki plants grown for 6 wk at either 350 or 700 µl l¿1 CO2. Plant biomass was
Ali Niaei Fard, S.; Meeteren, van U.
2014-01-01
Stomatal responses to closing stimuli are disturbed after long-term exposure of plants to low vapour pressure deficit (VPD). The mechanism behind this disturbance is not fully understood. Genetic variation between naturally occurring ecotypes can be helpful to elucidate the mechanism controlling
The relationship between reference canopy conductance and simplified hydraulic architecture
Novick, Kimberly; Oren, Ram; Stoy, Paul; Juang, Jehn-Yih; Siqueira, Mario; Katul, Gabriel
2009-06-01
Terrestrial ecosystems are dominated by vascular plants that form a mosaic of hydraulic conduits to water movement from the soil to the atmosphere. Together with canopy leaf area, canopy stomatal conductance regulates plant water use and thereby photosynthesis and growth. Although stomatal conductance is coordinated with plant hydraulic conductance, governing relationships across species has not yet been formulated at a practical level that can be employed in large-scale models. Here, combinations of published conductance measurements obtained with several methodologies across boreal to tropical climates were used to explore relationships between canopy conductance rates and hydraulic constraints. A parsimonious hydraulic model requiring sapwood-to-leaf area ratio and canopy height generated acceptable agreement with measurements across a range of biomes (r2=0.75). The results suggest that, at long time scales, the functional convergence among ecosystems in the relationship between water-use and hydraulic architecture eclipses inter-specific variation in physiology and anatomy of the transport system. Prognostic applicability of this model requires independent knowledge of sapwood-to-leaf area. In this study, we did not find a strong relationship between sapwood-to-leaf area and physical or climatic variables that are readily determinable at coarse scales, though the results suggest that climate may have a mediating influence on the relationship between sapwood-to-leaf area and height. Within temperate forests, canopy height alone explained a large amount of the variance in reference canopy conductance (r2=0.68) and this relationship may be more immediately applicable in the terrestrial ecosystem models.
Populus species from diverse habitats maintain high night-time conductance under drought.
Cirelli, Damián; Equiza, María Alejandra; Lieffers, Victor James; Tyree, Melvin Thomas
2016-02-01
We investigated the interspecific variability in nocturnal whole-plant stomatal conductance under well-watered and drought conditions in seedlings of four species of Populus from habitats characterized by abundant water supply (mesic and riparian) or from drier upland sites. The study was carried out to determine whether (i) nocturnal conductance varies across different species of Populus according to their natural habitat, (ii) nocturnal conductance is affected by water stress similarly to daytime conductance based on species habitat and (iii) differences in conductance among species could be explained partly by differences in stomatal traits. We measured whole-plant transpiration and conductance (G) of greenhouse-grown seedlings using an automated high-resolution gravimetric technique. No relationship was found between habitat preference and daytime G (GD), but night-time G (GN) was on average 1.5 times higher in riparian and mesic species (P. deltoides Bartr. ex Marsh. and P. trichocarpa Torr. & Gray) than in those from drier environments (P. tremuloides Michx. and P. × petrowskyana Schr.). GN was not significantly reduced under drought in riparian species. Upland species restricted GN significantly in response to drought, but it was still at least one order of magnitude greater that the cuticular conductance until leaf death was imminent. Under both well-watered and drought conditions, GN declined with increasing vapour pressure deficit (D). Also, a small increase in GN towards the end of the night period was observed in P. deltoides and P. × petrowskyana, suggesting the involvement of endogenous regulation. The anatomical analyses indicated a positive correlation between G and variable stomatal pore index among species and revealed that stomata are not likely to be leaky but instead seem capable of complete occlusion, which raises the question of the possible physiological role of the significant GN observed under drought. Further comparisons among
Influence of stomatic aperture on photosynthetic activity of bean-seedlings leaves
International Nuclear Information System (INIS)
Suarez Moya, J.; Fernandez Gonzalez, J.
1984-01-01
The present paper contains the data of photosynthetic activity and stomatic aperture of bean-seedlings Ieaves, and the relations obtained with both results. It has been observed that the product of photosynthetic activity by the resistance; to transpiration measured by a promoter ia a constant, between some limits. (Author) 45 refs
Kimberly A. Novick; Chelcy F. Miniat; James M. Vose
2016-01-01
We merge concepts from stomatal optimization theory and cohesionâtension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a âdemand limitationâ driven by an assumption of optimal stomatal functioning; (2) âhydraulic limitationâ of water movement from the roots to the leaves...
Directory of Open Access Journals (Sweden)
Koh Iba
2017-05-01
Full Text Available Specific cellular components including products of phosphatidylinositol (PI metabolism play an important role as signaling molecules in stomatal responses to environmental signals. In this study, pharmacological inhibitors of a set of cellular components, including PI4-kinase (PI4K and PI3K, were used to investigate stomatal closure in response to CO2, darkness, and abscisic acid (ABA. Treatment with PAO, a specific inhibitor of PI4K, specifically inhibited the stomatal response to CO2 compared with that to darkness and ABA. In contrast, treatment with LY294002, a PI3K-specific inhibitor, specifically inhibited the stomatal response to darkness compared with that to CO2 and ABA. The specific inhibitory effects of PAO and LY294002 were also observed as changes in the spatial density of dot-like structures labeled by green fluorescent protein-tagged PATROL1, a protein that controls stomatal aperture possibly via regulation of H+-ATPase amount in guard cell plasma membranes. Our results suggest an important role for PI4K and PI3K in the CO2 and darkness signal transduction pathways, respectively, that mediate PATROL1 dynamics.
Energy Technology Data Exchange (ETDEWEB)
Hansen, B.C.S. [Minnesota Univ., Minneapolis, MN (United States). Limnological Research Center; MacDonald, G.M. [California Univ., Los Angeles, CA (United States). Dept. of Botanical Sciences; Moser, K.A. [McMaster Univ., Hamilton, ON (Canada)
1996-05-01
The relationship between conifer stomata and existing vegetation across tundra, forest-tundra, and closed zones in the Yellowknife area of the Northwest Territories was studied. Conifer stomata were identified in surface samples from lakes in the treeline zone, but were absent in samples from tundra lakes. Stomate analysis was recorded and the results were presented in a concentration diagram plotting stomate concentrations according to vegetation zone. Conifer stomate analysis was not able to resolve differences between forest-tundra and closed forest. Nevertheless, it was suggested that stomate analysis will become an important technique supplementing pollen analysis for reconstructing past tree-line changes since the presence of stomata in lakes make it possible to separate the tundra from forest-tundra and closed forest. The limited dispersal of conifer stomata permitted a better resolution of tree-line boundaries than did pollen. 13 refs., 3 figs.
International Nuclear Information System (INIS)
Alonso, Rocio; Elvira, Susana; Sanz, Maria J.; Gerosa, Giacomo; Emberson, Lisa D.; Bermejo, Victoria; Gimeno, Benjamin S.
2008-01-01
A sensitivity analysis of a proposed parameterization of the stomatal conductance (g s ) module of the European ozone deposition model (DO 3 SE) for Quercus ilex was performed. The performance of the model was tested against measured g s in the field at three sites in Spain. The best fit of the model was found for those sites, or during those periods, facing no or mild stress conditions, but a worse performance was found under severe drought or temperature stress, mostly occurring at continental sites. The best performance was obtained when both f phen and f SWP were included. A local parameterization accounting for the lower temperatures recorded in winter and the higher water shortage at the continental sites resulted in a better performance of the model. The overall results indicate that two different parameterizations of the model are needed, one for marine-influenced sites and another one for continental sites. - No redundancy between phenological and water-related modifying functions was found when estimating stomatal behavior of Holm oak
International Nuclear Information System (INIS)
Kawata, Keishi; Hanawa, Takehisa; Hanawa, Kazumi
2001-01-01
Stomatitis is well-known as one of the undesirable side effects induced by high and/or multiple dosing of cytotoxic drugs such as 5-fluorouracil (5-FU). Stomatitis causes pain in the oral cavity, impaired swallowing or loss of appetite, and finally, lowering of the quality of life (QOL) of patients. In this study, we attempted to apply a new mouthwash containing rebamipide (REB) which is known as the anti-activated oxygen agent. Rebamipide mouthwash (REB-M) showed the effectiveness to the crisis of the stomatitis during the cancer chemotherapy and/or radiotherapy. (author)
Nitric Oxide (NO) Measurements in Stomatal Guard Cells.
Agurla, Srinivas; Gayatri, Gunja; Raghavendra, Agepati S
2016-01-01
The quantitative measurement of nitric oxide (NO) in plant cells acquired great importance, in view of the multifaceted function and involvement of NO as a signal in various plant processes. Monitoring of NO in guard cells is quite simple because of the large size of guard cells and ease of observing the detached epidermis under microscope. Stomatal guard cells therefore provide an excellent model system to study the components of signal transduction. The levels and functions of NO in relation to stomatal closure can be monitored, with the help of an inverted fluorescence or confocal microscope. We can measure the NO in guard cells by using flouroprobes like 4,5-diamino fluorescein diacetate (DAF-2DA). This fluorescent dye, DAF-2DA, is cell permeable and after entry into the cell, the diacetate group is removed by the cellular esterases. The resulting DAF-2 form is membrane impermeable and reacts with NO to generate the highly fluorescent triazole (DAF-2T), with excitation and emission wavelengths of 488 and 530 nm, respectively. If time-course measurements are needed, the epidermis can be adhered to a cover-glass or glass slide and left in a small petri dishes. Fluorescence can then be monitored at required time intervals; with a precaution that excitation is done minimally, only when a fluorescent image is acquired. The present method description is for the epidermis of Arabidopsis thaliana and Pisum sativum and should work with most of the other dicotyledonous plants.
Directory of Open Access Journals (Sweden)
R Thriveni
2018-01-01
Full Text Available Background and Objectives: Recurrent aphthous ulcers are common painful mucosal conditions affecting the oral cavity. Despite of so many treatment modalities, there is no specific and definitive treatment. Hence a study was carried out to evaluate the clinical effects Single Application of Doxycycline Hyclate 100 mg for Recurrent apthous Stomatitis (RAS. Materials and Methods: Forty study subjects were included in the study. Patients were randomly assigned into two groups. There were 20 patients in each group; Group A patients received Doxycycline Hyclate 100 mg in the first visit, Group B patients received placebo. The results were analyzed with unpaired 't' test. Results: The data indicated a significant reduction in pain in group A (i.e., faster reduction in pain compared with group B. Interpretation and Conclusion: A single application of doxycycline hyclate decreased pain and speeded recovery.
DEFF Research Database (Denmark)
Shinde, Prashant V; Xu, Haifeng C; Maney, Sathish Kumar
2018-01-01
Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169(+) cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169(+) cells during viral infections remain...... stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF) which signals via TNFR1 and promote "enforced virus replication" in CD169(+) macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance....
A photosynthesis-based two-leaf canopy stomatal ...
A coupled photosynthesis-stomatal conductance model with single-layer sunlit and shaded leaf canopy scaling is implemented and evaluated in a diagnostic box model with the Pleim-Xiu land surface model (PX LSM) and ozone deposition model components taken directly from the meteorology and air quality modeling system—WRF/CMAQ (Weather Research and Forecast model and Community Multiscale Air Quality model). The photosynthesis-based model for PX LSM (PX PSN) is evaluated at a FLUXNET site for implementation against different parameterizations and the current PX LSM approach with a simple Jarvis function (PX Jarvis). Latent heat flux (LH) from PX PSN is further evaluated at five FLUXNET sites with different vegetation types and landscape characteristics. Simulated ozone deposition and flux from PX PSN are evaluated at one of the sites with ozone flux measurements. Overall, the PX PSN simulates LH as well as the PX Jarvis approach. The PX PSN, however, shows distinct advantages over the PX Jarvis approach for grassland that likely result from its treatment of C3 and C4 plants for CO2 assimilation. Simulations using Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) rather than LAI measured at each site assess how the model would perform with grid averaged data used in WRF/CMAQ. MODIS LAI estimates degrade model performance at all sites but one site having exceptionally old and tall trees. Ozone deposition velocity and ozone flux along with LH
Stomatal and pavement cell density linked to leaf internal CO2 concentration
Czech Academy of Sciences Publication Activity Database
Šantrůček, Jiří; Vráblová, M.; Šimková, Marie; Hronková, Marie; Drtinová, M.; Květoň, J.; Vrábl, D.; Kubásek, J.; Macková, J.; Wiesnerová, Dana; Neuwithová, J.; Schreiber, L.
2014-01-01
Roč. 114, č. 2 (2014), s. 191-202 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GAP501/12/1261 Institutional support: RVO:60077344 Keywords : Stomatal density * Stomata development * Pavement cells Subject RIV: CE - Biochemistry Impact factor: 3.654, year: 2014
Snir, Ainit; Gurevitz, Michael; Marcus, Yehouda
2006-12-01
Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 mumol photons m(-2) s(-1)). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO(2) (35 muM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO(2)-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.
Estimating Latest Cretaceous and Tertiary Atmospheric PCO2 from Stomatal Indices
Royer, D. L.; Wing, S. L.; Beerling, D. J.
2001-05-01
Most modern C3 seed plants show an inverse relationship between PCO2 and stomatal index (SI), where SI is the proportion of epidermal cells that are stomatal packages. This plant-atmosphere response therefore provides a reliable approach for estimating paleo-CO2 levels. Since stomatal responses to CO2 are generally species-specific, one is limited in paleo-reconstructions to species that exist both in the fossil record and living today. Fossils morphologically similar to living Ginkgo biloba and Metasequoia glyptostroboides extend back to the early and late Cretaceous, respectively, indicating that the fossil and living forms are very closely related. Measurements of SI made on fossil Ginkgo and Metasequoia were calibrated with historical collections of G. biloba and M. glyptostroboides leaves from sites that developed during the anthropogenically-driven CO2 increases of the past 145 years (288-369 ppmv) and with saplings of G. biloba and M. glyptostroboides grown in CO2 controlled growth chambers (350-800 ppmv). Both nonlinear regressions are highly significant (Ginkgo: n = 40, r2 = 0.91; Metasequoia: n = 18; r2 = 0.85). Results from a sequence of 23 latest Cretaceous to early Eocene-aged Ginkgo-bearing sites indicate that CO2 remained between 300 and 450 ppmv with the exception of one high estimate ( ~800 ppmv) near the Paleocene/Eocene boundary, and results from 4 middle Miocene-aged Ginkgo- and Metasequoia-bearing sites indicate that CO2 was between 320 and 400 ppmv. If correct, the CO2 values estimated here are too low to explain via the CO2 greenhouse effect alone the higher global mean temperatures (e.g., 3-4 ° C for the early Eocene) inferred from models and geological data for these two intervals.
Directory of Open Access Journals (Sweden)
Xiaohui eLiu
2014-11-01
Full Text Available Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological and molecular techniques (stomata assay, gas exchange, phylogenetic analysis, QTL analysis, and gene expression to investigate stomatal behaviour and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterisation of stomatal behaviour of large numbers of varieties and genetic lines. Furthermore, we have found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant CM72 showed significantly larger stomatal aperture in 200 mM NaCl treatment than that of salt-sensitive Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield in salt treatment. Phenotypic characterisation and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to high barley grain yield in the field.
Recalibrating the Ginkgo Stomatal Index Proxy for Past CO2 with Herbarium Specimens
Conde, G. D.; Retallack, G.
2015-12-01
The stomatal index of plant cuticles is inversely related to atmospheric CO2 concentrations, as calibrated from greenhouse experiments and herbarium specimens. Such calibration data for Ginkgo biloba are available for the ongoing rise in atmospheric CO2 and for high levels of CO2 anticipated in the future, but lacking for low CO2 levels of preindustrial and glacial ages. The oldest modern specimen that we have been able to obtain consists of leaf fragments collected in 1829 and provided by Arne Anderberg from the Swedish Natural History Museum. The specimen was labeled "Argentina", but also "Hortus Botanicus Augustinus", a garden founded in 1638 in Amsterdam, Netherlands. Ginkgo has a very thin cuticle that is difficult to prepare, but images very similar to cuticular preparation can be obtained by backscatter SEM imagery. We also obtained secondary SEM images of the same areas and counted 13 images with 6,184 cells from five leaf fragments. Our analyses yield a stomatal index of 10.9 ± 0.9 % for an atmospheric CO2 of 286 ppm, as determined by ice core data from Ciais and Sabine for IPCC-2013. This value is lower than from previous calibration curves for this level of CO2 and changes their curvature. With additional late nineteenth, twentieth and twenty-first century leaves, we can improve both the precision and lower limits of the transfer function for atmospheric CO2 from Ginkgo stomatal index last revised in 2009.
The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity
Abulfaraj, Aala A.; Mariappan, Kiruthiga; Bigeard, Jean; Manickam, Prabhu; Blilou, Ikram; Guo, Xiujie; Al-Babili, Salim; Pflieger, Delphine; Hirt, Heribert; Rayapuram, Naganand
2018-01-01
Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.
The Arabidopsis homolog of human G3BP1 is a key regulator of stomatal and apoplastic immunity
Abulfaraj, Aala Abdulaziz Hussien
2018-05-31
Mammalian Ras-GTPase–activating protein SH3-domain–binding proteins (G3BPs) are a highly conserved family of RNA-binding proteins that link kinase receptor-mediated signaling to RNA metabolism. Mammalian G3BP1 is a multifunctional protein that functions in viral immunity. Here, we show that the Arabidopsis thaliana homolog of human G3BP1 negatively regulates plant immunity. Arabidopsis g3bp1 mutants showed enhanced resistance to the virulent bacterial pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated in Atg3bp1 mutants by altered stomatal and apoplastic immunity. Atg3bp1 mutants restricted pathogen entry into stomates showing insensitivity to bacterial coronatine–mediated stomatal reopening. AtG3BP1 was identified as a negative regulator of defense responses, which correlated with moderate up-regulation of salicylic acid biosynthesis and signaling without growth penalty.
New stomatal flux-based critical levels for ozone effects on vegetation
Mills, Gina; Pleijel, Håkan; Braun, Sabine; Büker, Patrick; Bermejo, Victoria; Calvo, Esperanza; Danielsson, Helena; Emberson, Lisa; Fernández, Ignacio González; Grünhage, Ludger; Harmens, Harry; Hayes, Felicity; Karlsson, Per-Erik; Simpson, David
2011-09-01
The critical levels for ozone effects on vegetation have been reviewed and revised by the LRTAP Convention. Eight new or revised critical levels based on the accumulated stomatal flux of ozone (POD Y, the Phytotoxic Ozone Dose above a threshold flux of Y nmol m -2 PLA s -1, where PLA is the projected leaf area) have been agreed. For each receptor, data were combined from experiments conducted under naturally fluctuating environmental conditions in 2-4 countries, resulting in linear dose-response relationships with response variables specific to each receptor ( r2 = 0.49-0.87, p Norway spruce. For (semi-)natural vegetation, the critical level for effects on productive and high conservation value perennial grasslands was based on effects on important component species of the genus Trifolium (clover species). These critical levels can be used to assess protection against the damaging effects of ozone on food security, important ecosystem services provided by forest trees (roundwood production, C sequestration, soil stability and flood prevention) and the vitality of pasture.
Energy Technology Data Exchange (ETDEWEB)
Alonso, Rocio [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: rocio.alonso@ciemat.es; Elvira, Susana [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: susana.elvira@ciemat.es; Sanz, Maria J. [Fundacion CEAM, Charles Darwin 14, 46980 Paterna, Valencia (Spain)], E-mail: mjose@ceam.es; Gerosa, Giacomo [Department of Mathematics and Physics, Universita Cattolica del Sacro Cuore, via Musei 41, 25121 Brescia (Italy)], E-mail: giacomo.gerosa@unicatt.it; Emberson, Lisa D. [Stockholm Environment Institute, University of York, York YO 10 5DD (United Kingdom)], E-mail: lde1@york.ac.uk; Bermejo, Victoria [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: victoria.bermejo@ciemat.es; Gimeno, Benjamin S. [Ecotoxicology of Air Pollution, CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: benjamin.gimeno@ciemat.es
2008-10-15
A sensitivity analysis of a proposed parameterization of the stomatal conductance (g{sub s}) module of the European ozone deposition model (DO{sub 3}SE) for Quercus ilex was performed. The performance of the model was tested against measured g{sub s} in the field at three sites in Spain. The best fit of the model was found for those sites, or during those periods, facing no or mild stress conditions, but a worse performance was found under severe drought or temperature stress, mostly occurring at continental sites. The best performance was obtained when both f{sub phen} and f{sub SWP} were included. A local parameterization accounting for the lower temperatures recorded in winter and the higher water shortage at the continental sites resulted in a better performance of the model. The overall results indicate that two different parameterizations of the model are needed, one for marine-influenced sites and another one for continental sites. - No redundancy between phenological and water-related modifying functions was found when estimating stomatal behavior of Holm oak.
Directory of Open Access Journals (Sweden)
Masaki Shimono
Full Text Available Historically viewed as primarily functioning in the regulation of gas and water vapor exchange, it is now evident that stomata serve an important role in plant immunity. Indeed, in addition to classically defined functions related to cell architecture and movement, the actin cytoskeleton has emerged as a central component of the plant immune system, underpinning not only processes related to cell shape and movement, but also receptor activation and signaling. Using high resolution quantitative imaging techniques, the temporal and spatial changes in the actin microfilament array during diurnal cycling of stomatal guard cells has revealed a highly orchestrated transition from random arrays to ordered bundled filaments. While recent studies have demonstrated that plant stomata close in response to pathogen infection, an evaluation of stimulus-induced changes in actin cytoskeletal dynamics during immune activation in the guard cell, as well as the relationship of these changes to the function of the actin cytoskeleton and stomatal aperture, remains undefined. In the current study, we employed quantitative cell imaging and hierarchical clustering analyses to define the response of the guard cell actin cytoskeleton to pathogen infection and the elicitation of immune signaling. Using this approach, we demonstrate that stomatal-localized actin filaments respond rapidly, and specifically, to both bacterial phytopathogens and purified pathogen elicitors. Notably, we demonstrate that higher order temporal and spatial changes in the filament array show distinct patterns of organization during immune activation, and that changes in the naïve diurnal oscillations of guard cell actin filaments are perturbed by pathogens, and that these changes parallel pathogen-induced stomatal gating. The data presented herein demonstrate the application of a highly tractable and quantifiable method to assign transitions in actin filament organization to the activation of
Gervais, B R.; MacDonald, G M.
2001-04-01
We sampled and analyzed surface sediments from 31 lakes along a latitudinal transect crossing the coniferous treeline on the Kola Peninsula, Russia. The major vegetation zones along the transect were tundra, birch-forest tundra, pine-forest tundra, and forest. The results indicate that the major vegetation types in our study area have distinct pollen spectra. Sum-of-squares cluster analysis and principal components analysis (PCA) groupings of pollen sites correspond to the major vegetation zones. PCA ordination of taxa indicates that the first axis separates taxa typical of the forest zone (Pinus, Picea) from taxa typical of tundra and forest-tundra zones (Polypodiaceae, Ericaceae, and Betula). The current position of the coniferous treeline, defined in our region by Pinus sylvestris, occurs roughly where Pinus pollen values reach 35% or greater. Arboreal pollen (AP)/non-arboreal pollen (NAP) ratios were calculated for each site and plotted against geographic distance along the transect. AP/NAP ratios of 7 or greater are found within pine-forest tundra and forest vegetation zones. Pinus stomates (dispersed stomatal guard cells) are absent from sites north of the coniferous treeline and all but two samples from the forested sites contain stomates. Stomate concentrations among the samples are highly variable and range from 10 to 458 per ml and positively correlate with the changing Pinus pollen values.
Abscisic Acid Induces Rapid Reductions in Mesophyll Conductance to Carbon Dioxide.
Directory of Open Access Journals (Sweden)
Giuseppe Sorrentino
Full Text Available The rate of photosynthesis (A of plants exposed to water deficit is a function of stomatal (gs and mesophyll (gm conductance determining the availability of CO2 at the site of carboxylation within the chloroplast. Mesophyll conductance often represents the greatest impediment to photosynthetic uptake of CO2, and a crucial determinant of the photosynthetic effects of drought. Abscisic acid (ABA plays a fundamental role in signalling and co-ordination of plant responses to drought; however, the effect of ABA on gm is not well-defined. Rose, cherry, olive and poplar were exposed to exogenous ABA and their leaf gas exchange parameters recorded over a four hour period. Application with ABA induced reductions in values of A, gs and gm in all four species. Reduced gm occurred within one hour of ABA treatment in three of the four analysed species; indicating that the effect of ABA on gm occurs on a shorter timescale than previously considered. These declines in gm values associated with ABA were not the result of physical changes in leaf properties due to altered turgor affecting movement of CO2, or caused by a reduction in the sub-stomatal concentration of CO2 (Ci. Increased [ABA] likely induces biochemical changes in the properties of the interface between the sub-stomatal air-space and mesophyll layer through the actions of cooporins to regulate the transport of CO2. The results of this study provide further evidence that gm is highly responsive to fluctuations in the external environment, and stress signals such as ABA induce co-ordinated modifications of both gs and gm in the regulation of photosynthesis.
Wyka, T P; Duarte, H M; Lüttge, U E
2005-03-01
In continuous light, the Crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perrier has a circadian rhythm of gas exchange with peaks occurring during the subjective night. The rhythm of gas exchange is coupled to a weak, reverse phased rhythm of quantum yield of photosystem II (Phi (PSII)). To test if the rhythm of Phi (PSII) persists in the absence of stomatal control, leaves were coated with a thin layer of translucent silicone grease which prevented CO2 and H2O exchange. In spite of this treatment, the rhythm of Phi (PSII) occurred with close to normal phase timing and with a much larger amplitude than in uncoated leaves. The mechanism underlying the Phi (PSII) rhythm in coated leaves can be explained by a circadian activity of phosphoenolpyruvate carboxylase (PEPC). At peaks of PEPC activity, the small amount of CO2 contained in the coated leaf could have become depleted, preventing the carboxylase activity of Rubisco and causing decreases in electron transport rates (observed as deep troughs of Phi (PSII) at 23-h in LL and at ca. 24-h intervals afterwards). Peaks of Phi (PSII) would be caused by a downregulation of PEPC leading to improved supply of CO2 to Rubisco. Substrate limitation of photochemistry at 23 h (trough of Phi (PSII)) was also suggested by the weak response of ETR in coated leaves to stepwise light enhancement. These results show that photosynthetic rhythmicity in K. daigremontiana is independent of stomatal regulation and may originate in the mesophyll.
Panek, Jeanne A
2004-03-01
This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.
International Nuclear Information System (INIS)
Ranford, Jonathan; Reiling, Kevin
2007-01-01
European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g s ), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l -1 O 3 added for 7 h d -1 over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons. - Ozone significantly alters Ilex aquifolium leaf production and loss over multiple seasons
Boer, H.J. de; Lammertsma, E.I.; Wagner-Cremer, F.; Dilcher, D.L.; Wassen, M.J.; Dekker, S.C.
2011-01-01
Plant physiological adaptation to the global rise in atmospheric CO 2 concentration (CO2) is identified as a crucial climatic forcing. To optimize functioning under rising CO2, plants reduce the diffusive stomatal conductance of their leaves (gs) dynamically by closing stomata and structurally by
Thompson, Andrew J; Andrews, John; Mulholland, Barry J; McKee, John M T; Hilton, Howard W; Horridge, Jon S; Farquhar, Graham D; Smeeton, Rachel C; Smillie, Ian R A; Black, Colin R; Taylor, Ian B
2007-04-01
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.
Species climate range influences hydraulic and stomatal traits in Eucalyptus species.
Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan
2017-07-01
Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Bi, Huangai; Dong, Xubing; Wu, Guoxiu; Wang, Meiling; Ai, Xizhen
2015-02-01
Four CsTK antisense transgenic cucumber plants were obtained. Decreased TK activity decreased the photosynthetic rate, seed germination rate, growth yield, and the tolerance to low temperature and weak light stress. Transketolase (TK, EC 2.2.1.1) is a key enzyme in the photosynthetic carbon reduction cycle (Calvin cycle). A cDNA fragment (526 bp) encoding transketolase was cloned from cucumber plants (Cucumis sativa L. cv 'Jinyou 3') by RT-PCR. The antisense expression [(PBI-CsTK(-)] vector containing the CsTK gene fragment was constructed. The resulting plasmid was introduced into the cucumber inbred lines '08-1' using the agrobacterium-mediated method, and four antisense transgenic cucumber plants were obtained. Decreased CsTK expression either unaltered or slightly increased the mRNA abundance and activities of the other main enzymes in the Calvin cycle, however, it decreased the TK activity and net photosynthetic rate (Pn) in antisense transgenic cucumber leaves. Antisense plants showed decreases in the growth, ratio of female flowers and yield compared with the wild-type (WT) plants. The decrease in Pn, stomatal conductance (Gs), transpiration rate (Tr), photochemical efficiency (Fv/Fm) and actual photochemical efficiency of PSII (ΦPSII) and the increase in electrolyte leakage (EL) were greater in antisense transgenic plants than in WT plants under low temperature (5 °C) and low light intensity (100 μmol m(-2) s(-1)).
Directory of Open Access Journals (Sweden)
Yanfei eCai
2015-12-01
Full Text Available Rhododendron delavayi Franch is an evergreen shrub or small tree with large scarlet flowers that makes it highly attractive as an ornamental species. The species is native to southwest China and southeast Asia, especially the Himalayan region, showing good adaptability and tolerance to drought. To understand the water stress coping mechanisms of R. delavayi, we analysed the plant’s photosynthetic performance during water stress and recovery. In particular, we looked at the regulation of stomatal (gs and mesophyll conductance (gm, and maximum rate of carboxylation (Vcmax. After four days of water stress treatment, the net CO2 assimilation rate (AN declined slightly while gs and gm were not affected and stomatal limitation (SL was therefore negligible. At this stage mesophyll conductance limitation (MCL and biochemical limitation (BL constituted the main limitation factors. After eight days of water stress treatment, AN, gs and gm had decreased notably. At this stage SL increased markedly and MCL even more so, while BL remained relatively constant. After re-watering, the recovery of AN, gs and gm was rapid, although remaining below the levels of the control plants, while Vcmax fully regained control levels after three days of re-watering. MCL remained the main limitation factor irrespective of the degree of photosynthetic recovery. In conclusion, in our experiment MCL was the main photosynthetic limitation factor of R. delavayi under water stress and during the recovery phase, with the regulation of gm probably being the result of interactions between the environment and leaf anatomical features.
Directory of Open Access Journals (Sweden)
Eduardo Caruso Machado
2002-03-01
Full Text Available Em espécies perenes podem ocorrer variações nas taxas de trocas gasosas e nas relações hídricas em função da variação das condições ambientais, durante os diferentes meses do ano. Avaliaram-se, em laranjeira ´Valência´ enxertada sobre quatro espécies de porta-enxerto, mantida sem deficiência hídrica, as taxas de fotossíntese (A e de transpiração (E, a condutância estomática (g e o potencial da água na folha (psi f , medidos nos períodos da manhã (9h00 às 11h00 e da tarde (13h00 às 15h00 nos meses de janeiro, março e julho em Campinas - SP. As espécies de porta-enxertos não tiveram efeitos sobre as variáveis medidas. Independente do porta-enxerto A, g e Y f foram menores no período da tarde. A queda de A deve estar relacionada com a queda de g que diminuiu em resposta ao aumento do déficit de pressão de vapor entre o ar e a folha (DPVar-folha nos horários mais quentes do dia. Apesar de ocorrer fechamento parcial dos estômatos no período da tarde E foi similar ao período da manhã, devido ao aumento do DPVar-folha. Também observou-se queda em A e em g no sentido de janeiro para julho. Sugere-se que a queda em A e em g ocorrida em março em comparação a janeiro esteja relacionada à queda da atividade de crescimento da planta, afetando as relações fonte-dreno, visto que as condições ambientais nestes dois meses foram semelhantes. As quedas de A e de g observadas em julho, em relação à janeiro e março, parecem estar relacionadas tanto à queda na temperatura noturna quanto à queda na atividade de crescimento.Seasonal variation in environmental conditions may influence gas exchange rates as well as water relations in perennial species. This work was carried out to evaluate photosynthetic rates (A, transpiration (E, stomatal conductance (g and leaf water potential (psi f in 'Valencia' orange trees grafted on four different rootstocks. Measurements were made twice a day: from 9h00 to 11h00 a.m. and
Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?
Hodgson, J.G.; Sharafi, M.; Jalili, A.; Diaz, S.; Montserrat-Marti, G.; Palmer, C.; Cerabolini, B.; Pierce, S.; Hamzehee, B.; Asri, Y.; Jamzad, Z.; Wilson, P.; Zarrinkamar, F.; Raven, J.; Band, S.R.; Basconcelo, S.; Bogard, A.; Carter, G.; Charles, M.; Castro-Diez, P.; Cornelissen, J.H.C.; Funes, G.; Jones, M.; Khoshnevis, M.; Perez-Harguindeguy, N.; Perez-Rontome, M.C.; Shirvany, F.A.; Vendramini, F.; Yazdani, S.; Abbas-Azimi, R.; Boustani, S.; Dehghan, M.; Hynd, F.A.; Kowsary, E.; Kazemi-Saeed, F.; Siavash, B.; Villar-Salvador, P.; Cragie, R.; Naqinezhad, A.; Romo-Diez, A.; De Torres Espuny, L.; Simmons, E.
2010-01-01
Background and Aims Genome size is a function, and the product, of cell volume. As such it is contingent on ecological circumstance. The nature of 'this ecological circumstance' is, however, hotly debated. Here, we investigate for angiosperms whether stomatal size may be this 'missing link': the
Dow, Graham J; Berry, Joseph A; Bergmann, Dominique C
2017-10-01
Stomata are simultaneously tasked with permitting the uptake of carbon dioxide for photosynthesis while limiting water loss from the plant. This process is mainly regulated by guard cell control of the stomatal aperture, but recent advancements have highlighted the importance of several genes that control stomatal development. Using targeted genetic manipulations of the stomatal lineage and a combination of gas exchange and microscopy techniques, we show that changes in stomatal development of the epidermal layer lead to coupled changes in the underlying mesophyll tissues. This coordinated response tends to match leaf photosynthetic potential (V cmax ) with gas-exchange capacity (g smax ), and hence the uptake of carbon dioxide for water lost. We found that different genetic regulators systematically altered tissue coordination in separate ways: the transcription factor SPEECHLESS (SPCH) primarily affected leaf size and thickness, whereas peptides in the EPIDERMAL PATTERNING FACTOR (EPF) family altered cell density in the mesophyll. It was also determined that interlayer coordination required the cell-surface receptor TOO MANY MOUTHS (TMM). These results demonstrate that stomata-specific regulators can alter mesophyll properties, which provides insight into how molecular pathways can organize leaf tissues to coordinate gas exchange and suggests new strategies for improving plant water-use efficiency. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping
2013-01-01
In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.
Energy Technology Data Exchange (ETDEWEB)
Quinones, M.A.; Lu Zhenmin; Zeiger, E. (Univ. of California, Los Angeles (United States))
1993-05-01
A blue light (BL) response of adaxial (AD) guard cells was investigated in two cotton lines with contrasting rates of stomatal conductances (g). This response is expressed as an enhancement of the red light-induced chlorophyll a fluorescence quenching by BL, and has an action spectrum indicative of a carotenoid photoreceptor. Ad guard cell from the high g, advanced line Pima S-6 have a higher carotenoid content and a larger BL response than those from the low g, primitive cotton, B368. In a growth chamber-grown F2 population of a cross between the two lines (n=30), g of individual plants segregated over a range exceeding the average g of the parental populations. Carotenoid content and the BL response of ad guard cell also segregated. There was a positive, strong correlation (r=0.71) between leaf g and the magnitude of the BL response of ad guard cells, indicating that both parameters are under genetic control, and that the BL response of guard cells contributes to the modulation of g. The concentration of all xanthopylls and [beta]-carotene in the ad guard cells correlated poorly with the BL response, except for zeaxanthin (r=0.71). In all green systems, xanthophylls are located inside the chloroplast which suggests that zeaxanthin functions in these organelle as a blue light photoreceptor for cotton guard cells.
Guo, Ruqing; Sun, Shucun; Liu, Biao
2016-09-15
This study is to test the effects of Bt gene introduction on the foliar water/nitrogen use efficiency in cotton. We measured leaf stomatal conductance, photosynthetic rate, and transpiration rate under light saturation condition at different stages of a conventional cultivar (zhongmian no. 16) and its counterpart Bt cultivar (zhongmian no. 30) that were cultured on three levels of fertilization, based on which leaf instantaneous water use efficiency was derived. Leaf nitrogen concentration was measured to calculate leaf photosynthetic nitrogen use efficiency, and leaf δ(13)C was used to characterize long term water use efficiency. Bt cultivar was found to have lower stomatal conductance, net photosynthetic rates and transpiration rates, but higher instantaneous and long time water use efficiency. In addition, foliar nitrogen concentration was found to be higher but net photosynthetic rate was lower in the mature leaves of Bt cultivar, which led to lower photosynthetic nitrogen use efficiency. This might result from the significant decrease of photosynthetic rate due to the decrease of stomatal conductance. In conclusion, our findings show that the introduction of Bt gene should significantly increase foliar water use efficiency but decrease leaf nitrogen use efficiency in cotton under no selective pressure.
Directory of Open Access Journals (Sweden)
Javier Sánchez-Martín
2016-11-01
Full Text Available Stomatal dysfunction known as locking has been linked to the elicitation of a hypersensitive response (HR following attack of fungal pathogens in cereals. We here assess how spatial and temporal patterns of different resistance mechanisms, such as HR and penetration resistance influence stomatal and photosynthetic parameters in oat (Avena sativa and the possible involvement of hydrogen peroxide (H2O2 in the dysfunctions observed. Four oat cultivars with differential resistance responses (i.e. penetration resistance, early and late HR to powdery mildew (Blumeria graminis f. sp. avenae, Bga were used. Results demonstrated that stomatal dysfunctions were genotype but not response-type dependent since genotypes with similar resistance responses when assessed histologically showed very different locking patterns. Maximum quantum yield (Fv/Fm of photosystem II were compromised in most Bga–oat interactions and photoinhibition increased. However, the extent of the photosynthetic alterations was not directly related to the extent of HR. H2O2 generation is triggered during the execution of resistance responses and can influence stomatal function. Artificially increasing H2O2 by exposing plants to increased light intensity further reduced Fv/Fm ratios and augmented the patterns of stomatal dysfunctions previously observed. The latter results suggest that the observed dysfunctions and hence a cost of resistance may be linked with oxidative stress occurring during defence induced photosynthetic disruption.
Grego, Kathleen Fernandes; Carvalho, Marcelo Pires Nogueira de; Cunha, Marcos Paulo Vieira; Knöbl, Terezinha; Pogliani, Fabio Celidonio; Catão-Dias, José Luiz; Sant'Anna, Sávio Stefanini; Ribeiro, Martha Simões; Sellera, Fábio Parra
2017-12-01
Antimicrobial photodynamic therapy (APDT) has been broadly investigated as an alternative to treat localized infections, without leading to the selection of resistant microorganisms. Infectious stomatitis is a multifactorial disease frequently reported in captive snakes characterized by infection of the oral mucosa and surrounding tissues. In this study, we investigated methylene blue (MB)-mediated APDT to treat infectious stomatitis in snakes and verified the resistance phenotype and genotype before and after APDT. Three Boid snakes presented petechiae, edema and caseous material in their oral cavities. MB (0.01%) was applied on the lesions and after 5min they were irradiated using a red laser (λ=660nm), fluence of 280J/cm 2 , 8J and 80s per point, 100mW, spot size 0.028cm 2 and fluence rate of 3.5W/cm 2 . APDT was repeated once a week during 3 months. Samples of the lesions were collected to identify bacteria and antibiotic resistance profiles. To analyze the clonality of bacterial isolates before and after APDT, isolates were subjected to ERIC PCR analysis. Snakes presented clinical improvement such as reduction of inflammatory signs and caseous material. Pseudomonas aeruginosa and Escherichia coli were present in all snakes; Klebsiella pneumoniae and Morganella morganii were also identified in some animals. We also observed that the oral microbiota was completely replaced following APDT. However, K. pneumoniae isolates before and after APDT were a single clone with 100% of genetic similarity that lost resistance phenotype for seven antibiotics of four classes. These results show that APDT can be used to treat infectious stomatitis in snakes. Copyright © 2017 Elsevier B.V. All rights reserved.
Srinivasan, V.; Pignon, C.
2017-12-01
C4 plants have a carbon concentrating mechanism that has evolved under historically low CO2 concentrations of around 200 ppm. However, increases in global CO2 concentrations in recent times (current CO2 concentrations are at 400 ppm and it is projected to be 550 ppm by mid-century) have diminished the relative advantage of C4 plants over C3 plants, which lack the expensive carbon concentrating machinery. Here we show by employing model simulations that under pre-historic CO2 concentrations, C4 plants are near optimal in their stomatal behavior and nitrogen partitioning between carbon concentrating machinery and carboxylation machinery, and they are significantly supra-optimal under current and future elevated CO2 concentrations. Model simulations performed at current CO2 concentrations of 400 ppm show that, under high light conditions, decreasing stomatal conductance by 20% results in a 15% increase in water use efficiency with negligible loss in photosynthesis. Under future elevated CO2 concentrations of 550 ppm, a 40% decrease in stomatal conductance produces a 35% increase in water use efficiency. Furthermore, stomatal closure is shown to be more effective in decreasing whole canopy transpiration compared to canopy top leaf transpiration, since shaded leaves are more supra-optimal than sunlit leaves. Model simulations for optimizing nitrogen distribution in C4 leaves show that under high light conditions, C4 plants over invest in carbon concentrating machinery and under invest in carboxylation machinery. A 20% redistribution in leaf nitrogen results in a 10% increase in leaf carbon assimilation without significant increases in transpiration under current CO2 concentrations of 400 ppm. Similarly, a 40% redistribution in leaf nitrogen results in a 15% increase in leaf carbon assimilation without significant increases in transpiration under future elevated CO2 concentrations of 550 ppm. Our model optimality simulations show that C4 leaves a supra optimal in their
Energy Technology Data Exchange (ETDEWEB)
Bernacchi, Carl J., E-mail: bernacch@illinois.edu [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Leakey, Andrew D.B. [Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Kimball, Bruce A. [USDA-ARS US Arid-Land Agricultural Research Center, 21881 N. Cardon Lane, Maricopa, AZ 85238 (United States); Ort, Donald R. [Global Change and Photosynthesis Research Unit, United States Department of Agriculture Agricultural Research Service, Urbana, IL 61801 (United States); Institute for Genomic Biology and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States)
2011-06-15
Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O{sub 3}]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O{sub 3}] on crop ecosystem energy fluxes and water use. Elevated [O{sub 3}] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: > Globally, tropospheric ozone is currently and will likely continue to increase into the future. > We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. > High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. > Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.
International Nuclear Information System (INIS)
Bernacchi, Carl J.; Leakey, Andrew D.B.; Kimball, Bruce A.; Ort, Donald R.
2011-01-01
Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O 3 ]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O 3 ] on crop ecosystem energy fluxes and water use. Elevated [O 3 ] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 deg. C. - Highlights: → Globally, tropospheric ozone is currently and will likely continue to increase into the future. → We examine the impact of elevated ozone on water use by soybean at the SoyFACE research facility. → High ozone grown soybean had reduced rates of evapotranspiration and higher soil moisture. → Increases in ozone have the potential to impact the hydrologic cycle where these crops are grown. - Soybean grown in elevated concentrations of ozone is shown to evapotranspire less water compared with soybean canopies grown under current atmospheric conditions.
Ecophysiological Responses of Invasive and Native Grass Communities with Simulated Warming
Quade, B.; Ravi, S.; Huxman, T. E.
2010-12-01
William Quade1, Sujith Ravi2, Ashley Weide2, Greg Barron-Gafford2, Katerina Dontsova2 and Travis E Huxman2 1Carthage College, WI 2 B2 Earthscience & UA Biosphere 2, University of Arizona, Tucson. Abstract Climate change, anthropogenic disturbances and lack of proper management practices have rendered many arid regions susceptible to invasions by exotic grasses with consequent ecohydrological, biogeochemical and socio economic implications. Thus, understanding the ecophysiological processes driving these large-scale vegetation shifts in drylands, in the context of rising temperatures and recurrent droughts is fundamental to global change research. Using the Biosphere 2 facility to maintain distinct temperature treatments of ambient and predicted warmer conditions (+ 4o C) inside, we compared the physiological (e.g. photosynthesis, stomatal conductance, biomass) responses of a native grass - Heteropogan contortus (Tanglehead) and an invasive grass - Pennisetum ciliare (Buffelgrass) growing in single and mixed communities. The results indicate that Buffelgrass can assimilate more CO2 per unit leaf area under current conditions, though warming seems to inhibit the performance when looking at biomass, photosynthesis and stomatal conductance. Under similar moisture regimes Buffelgrass performed better than Tangle head in mixed communities regardless of the temperature. Both grasses had decrease in stomatal conductance with warmer conditions, however the Buffel grass did not have the same decrease of conductance when planted in a mixed communities. Key words: Buffelgrass, Tanglehead, Biosphere 2, stomatal conductance, climate change
Directory of Open Access Journals (Sweden)
Izumi C Mori
2006-10-01
Full Text Available Abscisic acid (ABA signal transduction has been proposed to utilize cytosolic Ca(2+ in guard cell ion channel regulation. However, genetic mutants in Ca(2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca(2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell-expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca(2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca(2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca(2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca(2+ oscillation experiments revealed that Ca(2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca(2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca(2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling.
Negi, Sanjana; Tak, Himanshu; Ganapathi, T R
2018-03-01
MusaSNAC1 function in H 2 O 2 mediated stomatal closure and promote drought tolerance by directly binding to CGT[A/G] motif in regulatory region of multiple stress-related genes. Drought is a abiotic stress-condition, causing reduced plant growth and diminished crop yield. Guard cells of the stomata control photosynthesis and transpiration by regulating CO 2 exchange and water loss, thus affecting growth and crop yield. Roles of NAC (NAM, ATAF1/2 and CUC2) protein in regulation of stress-conditions has been well documented however, their control over stomatal aperture is largely unknown. In this study we report a banana NAC protein, MusaSNAC1 which induced stomatal closure by elevating H 2 O 2 content in guard cells during drought stress. Overexpression of MusaSNAC1 in banana resulted in higher number of stomata closure causing reduced water loss and thus elevated drought-tolerance. During drought, expression of GUS (β-glucuronidase) under P MusaSNAC1 was remarkably elevated in guard cells of stomata which correlated with its function as a transcription factor regulating stomatal aperture closing. MusaSNAC1 is a transcriptional activator belonging to SNAC subgroup and its 5'-upstream region contain multiple Dof1 elements as well as stress-associated cis-elements. Moreover, MusaSNAC1 also regulate multiple stress-related genes by binding to core site of NAC-proteins CGT[A/G] in their 5'-upstream region. Results indicated an interesting mechanism of drought tolerance through stomatal closure by H 2 O 2 generation in guard cells, regulated by a NAC-protein in banana.
J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy
2010-01-01
Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.
Sara Samimi Loghmani; Ali Abbaspour
2014-01-01
Phosphorus (P) is one of essential elements for living organisms, though its critical concentration in surface and ground waters impose a serious problem such as eutrophication. So treatment of polluted waters is required before discharging to water resources. One of effective ways to decrease water pollution is using aquatic plants. An experiment was conducted in pilots with a closed flowing system on two plants, elodea (egria densa) and duck weed (lemna minor) with four treatments and three...
Johansen, Jeanne Duus; Reibel, Jesper; Zachariae, Claus; Pedersen, Anne Marie Lynge
2017-01-01
Abstract The objective of this study was to examine if clinical and histopathological variables in patients with oral lichen planus (OLP), oral lichenoid lesions (OLL), and generalized stomatitis display different cytokine profiles and if concomitant contact allergy influences this profile. Forty‐nine patients and 29 healthy age‐ and gender‐matched subjects were included. Demographic and clinical data immunohistochemical findings in mucosal specimens, results of contact allergy testing, and serum levels of tumor necrosis factor‐α, interferon‐γ, interleukin (IL)‐6, IL‐10, IL‐12p40, and IL‐12p70 were analyzed and compared between groups. Nineteen patients had OLP, primarily with ulcerative lesions on the buccal mucosa, 19 patients had OLL, and 11 patients had generalized stomatitis. All patients had oral symptoms, mainly stinging and burning. Nineteen patients and 10 healthy subjects had contact allergies, primarily to fragrance ingredients. Patient groups did not differ with regard to oral symptoms, clinical pattern of the lesions, or contact allergy. Serum cytokine levels did not differ between the different patient groups and were not related to histopathological findings. The patients had higher levels of IL‐6 than the healthy subjects. Interferon‐γ, IL‐12p40, and IL‐12p70 were below detection limit. Our findings indicate that OLP, OLL, and generalized stomatitis cannot be discriminated by means of the selected serum cytokines, and that the presence of concomitant contact allergy does not influence the cytokine expression. PMID:29744205
Riquelme, Mario; Quataert, Eliot; Verscharen, Daniel
2018-02-01
We use particle-in-cell (PIC) simulations of a collisionless, electron–ion plasma with a decreasing background magnetic field, {\\boldsymbol{B}}, to study the effect of velocity-space instabilities on the viscous heating and thermal conduction of the plasma. If | {\\boldsymbol{B}}| decreases, the adiabatic invariance of the magnetic moment gives rise to pressure anisotropies with {p}| | ,j> {p}\\perp ,j ({p}| | ,j and {p}\\perp ,j represent the pressure of species j (electron or ion) parallel and perpendicular to B ). Linear theory indicates that, for sufficiently large anisotropies, different velocity-space instabilities can be triggered. These instabilities in principle have the ability to pitch-angle scatter the particles, limiting the growth of the anisotropies. Our simulations focus on the nonlinear, saturated regime of the instabilities. This is done through the permanent decrease of | {\\boldsymbol{B}}| by an imposed plasma shear. We show that, in the regime 2≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated ion and electron pressure anisotropies are controlled by the combined effect of the oblique ion firehose and the fast magnetosonic/whistler instabilities. These instabilities grow preferentially on the scale of the ion Larmor radius, and make {{Δ }}{p}e/{p}| | ,e≈ {{Δ }}{p}i/{p}| | ,i (where {{Δ }}{p}j={p}\\perp ,j-{p}| | ,j). We also quantify the thermal conduction of the plasma by directly calculating the mean free path of electrons, {λ }e, along the mean magnetic field, finding that {λ }e depends strongly on whether | {\\boldsymbol{B}}| decreases or increases. Our results can be applied in studies of low-collisionality plasmas such as the solar wind, the intracluster medium, and some accretion disks around black holes.
Zhang, Na; Huang, Hongjun; Tan, Binghe; Wei, Yinglei; Xiong, Qingqing; Yan, Yan; Hou, Lili; Wu, Nannan; Siwko, Stefan; Cimarelli, Andrea; Xu, Jianrong; Han, Honghui; Qian, Min; Liu, Mingyao; Du, Bing
2017-10-06
Vesicular stomatitis virus (VSV) and rabies and Chandipura viruses belong to the Rhabdovirus family. VSV is a common laboratory virus to study viral evolution and host immune responses to viral infection, and recombinant VSV-based vectors have been widely used for viral oncolysis, vaccination, and gene therapy. Although the tropism of VSV is broad, and its envelope glycoprotein G is often used for pseudotyping other viruses, the host cellular components involved in VSV infection remain unclear. Here, we demonstrate that the host protein leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is essential for VSV and VSV-G pseudotyped lentivirus (VSVG-LV) to infect susceptible cells. Accordingly, Lgr4-deficient mice had dramatically decreased VSV levels in the olfactory bulb. Furthermore, Lgr4 knockdown in RAW 264.7 cells also significantly suppressed VSV infection, and Lgr4 overexpression in RAW 264.7 cells enhanced VSV infection. Interestingly, only VSV infection relied on Lgr4, whereas infections with Newcastle disease virus, influenza A virus (A/WSN/33), and herpes simplex virus were unaffected by Lgr4 status. Of note, assays of virus entry, cell ELISA, immunoprecipitation, and surface plasmon resonance indicated that VSV bound susceptible cells via the Lgr4 extracellular domain. Pretreating cells with an Lgr4 antibody, soluble LGR4 extracellular domain, or R-spondin 1 blocked VSV infection by competitively inhibiting VSV binding to Lgr4. Taken together, the identification of Lgr4 as a VSV-specific host factor provides important insights into understanding VSV entry and its pathogenesis and lays the foundation for VSV-based gene therapy and viral oncolytic therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Directory of Open Access Journals (Sweden)
Jaykumar R Gade
2011-01-01
Full Text Available Denture stomatitis is a condition associated with wearing of a denture. The predisposing factor leading to denture stomatitis could be poor oral hygiene, ill-fitting denture and relief areas. Around 30 patients with denture stomatitis were advised to rinse with chlorhexidine gluconate mouthwash for 14 days and were directed to immerse the upper denture in the chlorhexidine solution for 8 hours. The samples were collected by scraping maxillary denture in saline at three intervals, prior to, at the end of 24 hours and after 14 days of treatment, then were inoculated and quantitative estimation of the yeast growth on Sabouraud′s dextrose agar plate was done. It was observed that after a period of 14 days, there was a reduction in the growth of yeast and also improvement in the clinical picture of the oral mucosa
RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack
DEFF Research Database (Denmark)
Liu, Jun; Elmore, James M.; Fuglsang, Anja Thoe
2009-01-01
Abstract Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4- mediated immune signal transduction, we...... purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H+-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines...... exhibit differential PM H+-ATPase activity. PM H+-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H+-ATPase activity and, importantly, its...
Recurrent aphthous stomatitis (RAS and exfoliative cheilitis in elderly psoriasis sufferer
Directory of Open Access Journals (Sweden)
Siti Hardiyanti Nurhasanah
2016-04-01
Full Text Available Recurrent Aphthous Stomatitis (RAS is a disorder in the oral cavity, with a characterized symptom as ulceration, recurrent and very painfull. The etiology is idiopathic, with multifactorial predisposition. Exfoliative cheilitis is a persistent lesion on the lip, with a characterized cracking and desquamative, with crustae and inflammation. An elderly male (72 yrs suffered with ulcer on his oral cavity, cracking lips and pain on both of his cheeks, skin, since 5 years ago. The pain is recurrent. On the clinical examination, there were some desquamation, both on the skin and vermilion border, whether on the inner lips (labial fold mucosa, there were ulcers with diameter about 1 cm. The laboratory test was within normal limits, except the LED was 40 mm/hour (n:<15. The diagnosis was Recurrent Aphthous Stomatitis (RAS for the ulcer and Exfoliative cheilitis for the cracking lips. The treatment he received was a gargle liquid, topical corticosteroid and supplement. The skin’s disorder was revered to the skin and genital disease department, for further management. As a dental general practioner, had to be very careful and familiar for every changes that may be occur both in the outer or inner oral cavity. Other disorder that need refferal, had to be done with team work, to the colleague from the right connection.
DEFF Research Database (Denmark)
Jensen, Helle; Andresen, Lars; Nielsen, Jens
2011-01-01
Vesicular stomatitis virus (VSV) has recently gained attention for its oncolytic ability in cancer treatment. Initially, we hypothesized that VSV infection could increase immune recognition of cancer cells through induction of the immune stimulatory NKG2D-ligands. Here we show that VSV infection ...
International Nuclear Information System (INIS)
Ismail, I.M.; Basahi, J.M.; Hassan, I.A.
2014-01-01
Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009–2013) at a rural site in northern Egypt. Net photosynthetic rates (P N ), stomatal conductance (g s ), intercellular CO 2 (C i ) and chlorophyll fluorescence were measured. Ozone (O 3 ) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. P N of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O 3 . The maximum impairment in P N was recorded in the cultivar Victory (46%) in 2013 when the highest O 3 levels were recorded (90 nL L −1 ). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between P N and C i , indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The P N vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (Φ PSII ) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively. - Highlights: • Ozone (O 3 ) concentrations recorded were within the ranges of phytotoxicity. • O 3 has a clear influence on the physiological parameters. • O 3 decreased Photosynthetic rates, chlorophyll
Directory of Open Access Journals (Sweden)
Jin-Hua Ran
Full Text Available Stomata play significant roles in plant evolution. A trio of closely related basic Helix-Loop-Helix (bHLH subgroup Ia genes, SPCH, MUTE and FAMA, mediate sequential steps of stomatal development, and their functions may be conserved in land plants. However, the evolutionary history of the putative SPCH/MUTE/FAMA genes is still greatly controversial, especially the phylogenetic positions of the bHLH Ia members from basal land plants. To better understand the evolutionary pattern and functional diversity of the bHLH genes involved in stomatal development, we made a comprehensive evolutionary analysis of the homologous genes from 54 species representing the major lineages of green plants. The phylogenetic analysis indicated: (1 All bHLH Ia genes from the two basal land plants Physcomitrella and Selaginella were closely related to the FAMA genes of seed plants; and (2 the gymnosperm 'SPCH' genes were sister to a clade comprising the angiosperm SPCH and MUTE genes, while the FAMA genes of gymnosperms and angiosperms had a sister relationship. The revealed phylogenetic relationships are also supported by the distribution of gene structures and previous functional studies. Therefore, we deduce that the function of FAMA might be ancestral in the bHLH Ia subgroup. In addition, the gymnosperm "SPCH" genes may represent an ancestral state and have a dual function of SPCH and MUTE, two genes that could have originated from a duplication event in the common ancestor of angiosperms. Moreover, in angiosperms, SPCHs have experienced more duplications and harbor more copies than MUTEs and FAMAs, which, together with variation of the stomatal development in the entry division, implies that SPCH might have contributed greatly to the diversity of stomatal development. Based on the above, we proposed a model for the correlation between the evolution of stomatal development and the genes involved in this developmental process in land plants.
Perez de Leon, Adalberto A; Tabachnick, Walter J
2006-03-01
Laboratory-reared Culicoides sonorensis Wirth & Jones were infected with vesicular stomatitis virus serotype New Jersey (family Rhabdoviridae, genus Vesiculovirus, VSNJV) through intrathoracic inoculation. After 10-d incubation at 25 degrees C, these insects were allowed to blood feed on four steers. Two other steers were exposed to VSNJV through intralingual inoculation with 10(8) tissue culture infective dose50 VSNJV. All six steers became seropositive for VSNJV. The results demonstrate the ability of C. sonorensis to transmit VSNJV to livestock. Only the animals intralingually inoculated with VSNJV showed clinical signs in the form of vesicles at the site of inoculation. Uninfected C. sonorensis allowed to feed on the exposed animals did not become infected with VSNJV. Animals infected by C. sonorensis showed a slower antibody response compared with intralingually inoculated animals. This is probably because of different amounts of virus received via insect transmission and syringe inoculation. A significant difference was found in the serum acute-phase protein alpha-1-acid glycoprotein in animals that received VSNJV through C. sonorensis transmission. These animals had previously been exposed to insect attack in the field compared with intralingually inoculated animals and C. sonorensis-infected animals that had been protected from insect attack. The failure to observe clinical signs of vesicular stomatitis through transmission of VSNJV by C. sonorensis may explain widespread subclinical infections during vesicular stomatitis epidemics.
Energy Technology Data Exchange (ETDEWEB)
Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)
2014-07-18
Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.
International Nuclear Information System (INIS)
Dong, Yan; Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha; Xia, Xinli; Yin, Weilun
2014-01-01
Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth
DEFF Research Database (Denmark)
Sun, Yanqi; Yan, Fei; Cui, Xiaoyong
2014-01-01
The morphological features of stomata including their size and density could be modulated by environmental cues; however, the underlying mechanisms remain largely elusive. Here, the effect of different irrigation and phosphorus (P) regimes on stomatal size (SS) and stomatal density (SD) of potato...... potentially enhance water-use efficiency as exemplified by the lowered leaf δ13C under fluctuating soil moisture conditions....... leaves was investigated. The plants were grown in split-root pots under two P fertilization rates (viz., 0 and 100mgkg-1 soil, denoted as P0 and P1, respectively) and subjected to full (FI), deficit (DI), and partial root-zone drying (PRD) irrigation regimes. Results showed that SS and SD were...... unresponsive to P but significantly affected by the irrigation treatment. FI plants had the largest SS, followed by DI, and PRD the smallest; and the reverse was the case for SD. Compared to FI and DI, PRD plants had significantly lower values of specific leaf area (SLA) and leaf carbon isotope discrimination...
Recurrent aphthous stomatitis: a case report
Directory of Open Access Journals (Sweden)
Xiomara Serpa-Romero
2016-07-01
Full Text Available Recurrent aphthosus stomatitis is an alteration of the oral mucosa in some cases associated with depression of the immune system that affects the tissue response at the level of the epithelium, triggering repetitive clinical picture of small and medium ulcers (3-5 mm which necrotic presented erythematous background and lasting no more than 15 days. The picture becomes recurrent, symptomatic, compromising the health of the patient who consults again with the same characteristics in oral cavity. The literature associates the process with hormonal changes, trauma, prolonged intake of medications, and stress. A case of female patient 53, who attends the service of dentistry to present multiple oral thrush that hard to swallow, drooling and feverish marked presents in Santa Marta, at the Center for Implantology and Oral Rehabilitation. According to the interrogation and clinical examination it is associated with a reactive inflammatory process caused by the intake of drugs to treat infectious or viral process, which is given the presumptive diagnosis of erythema drug. Any medication intake was suspended and additional tests are ordered antinuclear antibodies
Way, Danielle A; Katul, Gabriel G; Manzoni, Stefano; Vico, Giulia
2014-07-01
C4 photosynthesis evolved independently numerous times, probably in response to declining atmospheric CO2 concentrations, but also to high temperatures and aridity, which enhance water losses through transpiration. Here, the environmental factors controlling stomatal behaviour of leaf-level carbon and water exchange were examined across the evolutionary continuum from C3 to C4 photosynthesis at current (400 μmol mol(-1)) and low (280 μmol mol(-1)) atmospheric CO2 conditions. To this aim, a stomatal optimization model was further developed to describe the evolutionary continuum from C3 to C4 species within a unified framework. Data on C3, three categories of C3-C4 intermediates, and C4 Flaveria species were used to parameterize the stomatal model, including parameters for the marginal water use efficiency and the efficiency of the CO2-concentrating mechanism (or C4 pump); these two parameters are interpreted as traits reflecting the stomatal and photosynthetic adjustments during the C3 to C4 transformation. Neither the marginal water use efficiency nor the C4 pump strength changed significantly from C3 to early C3-C4 intermediate stages, but both traits significantly increased between early C3-C4 intermediates and the C4-like intermediates with an operational C4 cycle. At low CO2, net photosynthetic rates showed continuous increases from a C3 state, across the intermediates and towards C4 photosynthesis, but only C4-like intermediates and C4 species (with an operational C4 cycle) had higher water use efficiencies than C3 Flaveria. The results demonstrate that both the marginal water use efficiency and the C4 pump strength increase in C4 Flaveria to improve their photosynthesis and water use efficiency compared with C3 species. These findings emphasize that the advantage of the early intermediate stages is predominantly carbon based, not water related. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Finsinger, Walter; Dos Santos, Thibaut; McKey, Doyle
2013-07-01
Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree of which may be fundamental to the ability to maintain high water-use efficiency and thus to deal with environmental change. We analysed stomatal frequency and morphology (pore length, pore width) in leaves from several individuals from nine populations of four sub-species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.), allowing estimation of the contribution of different levels to overall variation, using variance-component analysis. SI showed significant variation among sites ("site" is largely confounded with "sub-species"), being highest in the sub-species localized in the highest-elevation site. However, most of the observed variance was accounted for at intra-site and intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in response to highly local variation in micro-environmental conditions.
Photodynamic antimicrobial therapy in the treatment of denture stomatitis
International Nuclear Information System (INIS)
Senna, Andre Machado de
2012-01-01
Denture stomatitis (DS), also called chronic atrophic candidiasis, is the most common oral fungal infection in denture wearers. It has a multifactorial etiology, but the presence of Candida spp. biofilm on the denture is considered the most important factor for the establishment of the DS. This study aimed to evaluate the treatment of DS through the use of photodynamic antimicrobial therapy (PAT), mediated by methylene blue. For this purpose, preclinical studies and clinical trials were performed. Simulators prototypes dentures were made of methyl methacrylate polymer to serve as a basis for biofilm growth of the following species of Candida: C. albicans, C. glabrata, C. dubliniensis, C. krusei, C. tropicalis, C. parapsilosis and C. guilliermondii. Methylene blue solution at a concentration of 450 μg/mL was used as a photosensitizer. The prototypes and biofilms were irradiated with a laser of wavelength of 660 nm, potency of 100 mW, for 80 seconds. For the clinical study, subjects were divided into two groups. The first group received conventional treatment based on the use of antifungal Miconazole. The second group received the treatment by PAT. The preclinical results showed that all species of the genus Candida were susceptible to PAT, with a reduction in colonies that ranged from 2.48 to 3.93 log 10 . Clinical outcomes were evaluated for the reduction of colonies of Candida spp. located in the mucosa and in the prosthesis and relative to the improvement of the clinical aspect of the affected mucosa. Both the conventional therapy and PAT were effective in treating DS. There was no significant statistical difference between PAT and conventional treatment for any of the factors evaluated. Thus, it was concluded that PAT is effective in the treatment of denture stomatitis. (author)
Results of the Study of Helminths-Carrying as a Comorbidity in Children with Herpetic Stomatitis
Directory of Open Access Journals (Sweden)
E.S. Suerkulov
2016-09-01
Full Text Available The paper analyzes the helminths-carrying in children with herpetic stomatitis according to the data of the department of maxillofacial surgery of the National center of mother and child welfare, and determines the relationship of oral diseases with disorders of various parts of the gastrointestinal tract.
Directory of Open Access Journals (Sweden)
Camilo Sánchez
2013-04-01
Full Text Available Plants as C3 and CAM react photosynthetically different but both can grow in the same agroecological zone in the tropics. Therefore we studied the behavior of stomatal opening in fruits and leaves of the purple passion fruit and fruits and cladodes of the yellow pitaya was studied under natural growing conditions in Granada and Fusagasuga, Cundinamarca (Colombia. Imprints were made on the surface of leaves, fruits and cladodes using cosmetic enamel impressions. Three cycles were carried out, each cycle took 72 hours, obtaining three different samples every 3 hours; then the impressions were observed by microscope and the opened and closed stomata were counted in each species. In each sampling, data of solar radiation, temperature and relative humidity (RH were measured. The purple passion fruit had the typical behavior of a C3 plant in the leaves as well as the fruits, and a positive correlation between the stomatal aperture and radiation and temperature was found, along with a negative correlation between stomatal aperture and RH. The pitaya showed the typical behavior of a CAM plant with a negative correlation between the stomatal opening and radiation and temperature, as well as a positive correlation between stomatal opening and RH. Radiation, temperature and RH affected the stomatal opening in the fruits and cladodes. Stomatal densities differed greatly between the species and plant organs. In the purple passion fruit, 106.53 stomata per mm² leaf surface were found, but only 12.64 stomata per mm² fruit surface; whereas in the pitaya, 11.28 and 1.43 stomata per mm² were found on the cladodes and fruits, respectively
Wang, Yan; Sun, Tao; Li, Tingting; Wang, Meng; Yang, Guangxiao; He, Guangyuan
2016-01-01
In plants, the CBL-CIPK signaling pathways play key roles in the response to abiotic stresses. However, functional studies of CIPKs in the important staple crop wheat are very rare. In this study, we identified a CIPK gene from wheat, designated TaCIPK2. Expression analysis results showed that TaCIPK2 could be up-regulated in wheat leaves by polyethylene glycol, abscisic acid and H2O2 treatments. Subcellular localization analyses revealed that TaCIPK2 was present in whole wheat epidermal cells. A yeast two-hybrid assay indicated that TaCIPK2 interacted with TaCBL1, 2, 3 and 4 in vitro. Transgenic tobacco plants over-expressing TaCIPK2 exhibited increased drought tolerance, indicated by a larger proportion of green cotyledons and higher survival rates under the osmotic and drought stress conditions compared with control plants. Additionally, physiological index analyses revealed that the transgenic tobacco plants had lower water loss rates and ion leakage, accumulated less malondialdehyde and H2O2, and had higher catalase and superoxide dismutase activities than the control plants. The transgenic plants also exhibited faster stomatal closure following exposure to osmotic stress conditions. The seed germination rates and stomatal aperture of TaCIPK2-overexpressing tobacco plants decreased after exogenous abscisic acid treatment was applied, implying that the transgenic tobacco plants were more sensitive to exogenous abscisic acid than the control plants. Our results indicate that TaCIPK2 plays a positive regulatory role in drought stress responses in transgenic tobacco plants.
Energy Technology Data Exchange (ETDEWEB)
Fan, Shihe; Grossnickle, S.C. [British Columbia Research Corp., Vancouver, BC (Canada). Forest Biotechnology Centre
1999-08-01
Variation in physiological response during autumn acclimation was investigated in somatic seedlings of 10 interior spruce (Picea glauca (Moench) Voss x P. engelmannii Parry ex Engelm.) clones from five full-sib families. Experiments were conducted on 2-yr-old seedlings through simulation in a growth chamber. Throughout the experimental period, gas-exchange parameters (net photosynthesis, stomatal conductance to water vapour and instantaneous water-use efficiency) were measured weekly and freezing tolerance was determined five times. Results showed that as seedlings acclimated to decreasing air temperature and photoperiod, stomatal conductance decreased linearly, photosynthesis was unchanged until air temperature and photoperiod were below 10 deg C and 11 h, respectively, water-use efficiency nearly doubled and freezing tolerance increased in a curvilinear fashion. There was significant between- and within-family clonal variation in all of these physiological parameters. 47 refs, 7 figs
Matsuda, Shuichi; Takano, Sho; Sato, Moeko; Furukawa, Kaoru; Nagasawa, Hidetaka; Yoshikawa, Shoko; Kasuga, Jun; Tokuji, Yoshihiko; Yazaki, Kazufumi; Nakazono, Mikio; Takamure, Itsuro; Kato, Kiyoaki
2016-03-07
Water stress is one of the major environmental stresses that affect agricultural production worldwide. Water loss from plants occurs primarily through stomatal pores. Here, we report that an Oryza sativa half-size ATP-binding cassette (ABC) subfamily G protein, RCN1/OsABCG5, is involved in stomatal closure mediated by phytohormone abscisic acid (ABA) accumulation in guard cells. We found that the GFP-RCN1/OsABCG5-fusion protein was localized at the plasma membrane in guard cells. The percentage of guard cell pairs containing both ABA and GFP-RCN1/OsABCG5 increased after exogenous ABA treatment, whereas they were co-localized in guard cell pairs regardless of whether exogenous ABA was applied. ABA application resulted in a smaller increase in the percentage of guard cell pairs containing ABA in rcn1 mutant (A684P) and RCN1-RNAi than in wild-type plants. Furthermore, polyethylene glycol (drought stress)-inducible ABA accumulation in guard cells did not occur in rcn1 mutants. Stomata closure mediated by exogenous ABA application was strongly reduced in rcn1 mutants. Finally, rcn1 mutant plants had more rapid water loss from detached leaves than the wild-type plants. These results indicate that in response to drought stress, RCN1/OsABCG5 is involved in accumulation of ABA in guard cells, which is indispensable for stomatal closure. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.
Effects of Disturbance on Carbon Sequestration in the New Jersey Pine Barrens
Energy Technology Data Exchange (ETDEWEB)
Schafer, Karina [Rutgers Univ., Newark, NJ (United States). Biology Dept.; Bohrer, Gil [The Ohio State Univ., Columbus, OH (United States)
2016-10-23
While carbon and water cycling of forests contribute significantly to the Earth's overall biogeochemical cycling, it may be affected by disturbance and climate change. In this research, we contributed to the body of research on leaf-level, ecosystem and regional scale effects of disturbances on forest ecosystems, in an effort to foster more mechanistic understanding, which in turn can improve modeling efforts. Here, we summarize some of the major findings in this research of physical and biogenic disturbances, such as drought, prescribed fire, and insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine forest. Following we have incorporated some of our findings into a new version of the Finite-element Tree-Crown Hydrodynamics (model version 2) model, which improved timing and hysteresis of transpiration modeling for trees. Furthermore, incorporation of hydrodynamics into modeling transpiration improved latent heat flux estimates. In our study on the physiology of the trees, we showed that during drought, stomatal conductance and canopy stomatal conductance were reduced, however, defoliation increased conductance on both leaf-level and canopy scale. Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for pines but decreased for oaks, while canopy stomatal conductance decreased temporarily, but then rebounded the following growing season, thus exhibiting transient responses. This study suggests that forest response to disturbance varies from the leaf to ecosystem level as well as species level and thus, these differential responses interplay to determine the fate of forest structure and functioning post disturbance. Incorporating this responses improves model outcome.
Locke, Anna M.; Ort, Donald R.
2014-01-01
Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701
Miner, Grace L; Bauerle, William L
2017-09-01
The Ball-Berry (BB) model of stomatal conductance (g s ) is frequently coupled with a model of assimilation to estimate water and carbon exchanges in plant canopies. The empirical slope (m) and 'residual' g s (g 0 ) parameters of the BB model influence transpiration estimates, but the time-intensive nature of measurement limits species-specific data on seasonal and stress responses. We measured m and g 0 seasonally and under different water availability for maize and sunflower. The statistical method used to estimate parameters impacted values nominally when inter-plant variability was low, but had substantial impact with larger inter-plant variability. Values for maize (m = 4.53 ± 0.65; g 0 = 0.017 ± 0.016 mol m -2 s -1 ) were 40% higher than other published values. In maize, we found no seasonal changes in m or g 0 , supporting the use of constant seasonal values, but water stress reduced both parameters. In sunflower, inter-plant variability of m and g 0 was large (m = 8.84 ± 3.77; g 0 = 0.354 ± 0.226 mol m -2 s -1 ), presenting a challenge to clear interpretation of seasonal and water stress responses - m values were stable seasonally, even as g 0 values trended downward, and m values trended downward with water stress while g 0 values declined substantially. © 2017 John Wiley & Sons Ltd.
Shaneka S. Lawson; Paula M. Pijut; Charles H. Michler
2014-01-01
Recent physiological analysis of Arabidopsis stomatal density (SD) mutants indicated that SD was not the major factor controlling aboveground biomass accumulation. Despite the general theory that plants with fewer stomata have limited biomass acquisition capabilities, epf1 and several other Arabidopsis mutants varied significantly in leaf fresh...
Conditional expression of the vesicular stomatitis virus glycoprotein gene in Escherichia coli.
Rose, J K; Shafferman, A
1981-01-01
Bacterial plasmids that directed expression of the vesicular stomatitis virus glycoprotein (G-protein) gene under control of the tryptophan operon regulatory region were constructed. A plasmid directing the synthesis of a G-protein-like protein (containing the NH2-terminal segment of seven amino acids encoded by the trpE gene fused to the complete G-protein sequence lacking only its NH2-terminal methionine) could be transformed into trpR+ (repressed) but not into trpR- (derepressed) cells. Th...
de Silva, Nayana Dilini Gardiyehewa; Cholewa, Ewa; Ryser, Peter
2012-10-01
The effects of heavy metal stress, drought stress, and their combination on xylem structure in red maple (Acer rubrum) seedlings were investigated in an outdoor pot experiment. As metal-contaminated substrate, a mixture of 1.5% slag with sand was used, with Ni, Cu, Co, and Cr as the main contaminants. Plants grown on contaminated substrate had increased leaf metal concentrations. The two stresses reduced plant growth in an additive manner. The effects of metal and drought stresses on xylem characteristics were similar to each other, with a reduced proportion of xylem tissue, reduced conduit density in stems, and reduced conduit size in the roots. This resulted, in both stems and roots, in reductions in hydraulic conductance, xylem-specific conductivity, and leaf-specific conductivity. The similarity of the responses to the two stresses suggests that the plants' response to metals was actually a drought response, probably due to the reduced water uptake capacity of the metal-exposed roots. The only plant responses specific to metal stress were decreasing trends of stomatal density and chlorophyll content. In conclusion, the exposure to metals aggravates water stress in an additive manner, making the plants more vulnerable to drought.
International Nuclear Information System (INIS)
Tufail, A.; Ahmad, F.; Hameed, M.; Ahmad, R.
2017-01-01
Evolution has great ecological significance in terms of plant morphological and stomatal characteristics that must have been genetically fixed during the long evolutionary period. Impact of environmental conditions on growth and stomatal features of twelve ecotypes of Cynodon dactylon that were collected from ecologically different habitats in the Punjab, Pakistan were evaluated. The collected ecotypes Derawar Fort-saline desert (DF-SD), Muzaffar garh-River bank (M-RB), Khabbeki Lake-hyper saline (KL-HS), Ucchali Lake-hyper saline (UL-HS), Kalar Kahar Lake-saline (KKL-S), Treemu-saline wetland (T-SW), Sahianwala-saline wetland (S-SW), Sahianwala-hyper saline (S-HS), Pakka Anna-hyper saline (PA-HS), Pakka Anna-reclaimed field (PA-RF), Botanic Garden-non saline (BG-NS) and Gatwala-saline semiarid (G-SSA) were grown in controlled environments at University of Agriculture, Faisalabad till their acclimatization to evaluate genetically fixed characteristics. After 6-month growth in soil, the plants were transferred to half-strength Hoagland's nutrient medium. There was a huge variation in all morphological characteristics recorded during the investigation, which were due to environmental heterogeniety to which these ecotypes were originally adapted. An exclusive feature of the DF-SD ecotypes is the long and numerous roots, and tillering capacity that surpassed all other ecotypes. Leaves per plant were also exceptionally high that may improve the photosymthetic efficiency of the plant. It showed a good potential of overall growth and biomass production. The robust growth was also recorded in the KKL-S ecotypes, and this can be related to the complete dominance of these two ecotypes in their respective habitats. Small stomata were recorded in the three ecotypes (DF-SD, KL-HS and PA-HS), which are of great ecological significance. Stomatal shape, however, is different in different ecotypes, but its contribution towards stress tolerance is still to be investigated. (author)
Stomatal characterization of five species of the genus Vanilla.
Directory of Open Access Journals (Sweden)
Delfino Reyes-López
2015-06-01
Full Text Available The objective was to characterize the stomata of five species of vanilla. Throughout 2012, leaf samples of V. planifolia G. Jackson, V. pompona Schiede, V. indora Schiede, V. insignis Ames and V. odorota Presl were taken from the vanilla germplasm bank at the Benemérita Universidad Autónoma de Puebla. The stomata size was obtained considering their length and width, as well as the index and stomata number of the abaxial and adaxial leaf surfaces in a randomized complete block design with three replications. V. pompona Schiede and V. inodora Schiede showed the highest stomatal index with 8713 and 8246 stomata per mm2, respectively, followed by V. odorata Presl with 4412 stomata per mm2. V. insignis Ames and V. planifolia G. Jackson showed the lowest stomata index with 2968 and 1378 stomata per mm2, respectively, in the abaxial leaf surface, these differences were statistically significant (P≤0.05. According to the position of the leaf stomata, V. planifolia G. Jackson and V. inodora Schiede can be considered to be hypostomatics since they showed stomata only in the abaxial leaf surface. V. insignis Ames, V. inodora Schiede and V. odorata Presl. can be considered to be anfiestomatic because they showed stomata in both the abaxial and adaxial leaf surfaces. V. inodora Schiede had smaller stomata compared with the other species.That is an important feature to be included in the genetic improvement of the genus Vanilla, because due to climate change, temperature will increase and precipitation will decrease, so Vainilla will require more efficient genotypes for water use.
Stomatal characterization of five species of the genus Vanilla
International Nuclear Information System (INIS)
Reyes-Lopez, Delfino; Quiroz-Valentin, Jonathan; Kelso-Bucio, Henry Arturo; Huerta-Lara, Manuel; Avendano-Arrazate, Carlos Hugo; Lobato-Ortiz, Ricardo
2015-01-01
The stomata of five species of vanilla were characterized. Throughout 2012, leaf samples of V. planifolia G. Jackson, V. pompona Schiede, V. inodora Schiede, V. insignis Ames and V. odorota Presl were taken from the vanilla germplasm bank at the Benemerita Universidad Autonoma de Puebla, throughout 2012. The stomata size was obtained considering their length and width, as well as the index and stomata number of the abaxial and adaxial leaf surfaces in a randomized complete block design with three replications. The highest stomatal index with 8713 and 8246 stomata per mm"2, was showed in V. pompona Schiede an V. inodora Schiede respectively, followed by V. odorata Presl with 4412 stomata per mm"2. The lowest stomata index with 2968 and 1378 stomata per mm"2, was showed by V. insignis Ames and V. planifolia G. Jackson respectively, in the abaxial leaf surface, these differences were statistically significant (p≤0,05). According to the position of the leaf stomata, V. planifolia G. Jackson and V. inodora Schiede can be considered to be hypostomatics since they showed stomata only in the abaxial leaf surface. V. insignis Ames, V. inodora Schiede and V. odorata Presl. can be considered to be anfiestomatic because they showed stomata in both the abaxial and adaxial leaf surfaces. V. inodora Schiede has had smaller stomata compared with the other species. That is an important feature to be included in the genetic improvement of the genus Vanilla, because due to climate change, temperature will increase and precipitation will decrease, so Vainilla will require more efficient genotypes for water use. (author) [es
ROS signaling and stomatal movement in plant responses to drought stress and pathogen attack.
Qi, Junsheng; Song, Chun-Peng; Wang, Baoshan; Zhou, Jianmin; Kangasjärvi, Jaakko; Zhu, Jian-Kang; Gong, Zhizhong
2018-04-16
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO 2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors including water status, light, CO 2 levels and pathogen attack, as well as endogenous signals such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO 2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli. This article is protected by copyright. All rights reserved.
Kim, Ki Woo; Koo, Kyosang; Kim, Pan-Gi
2011-05-01
Effects of seawater spray on leaf structure were investigated in Quercus acutissima by electron microscopy and X-ray microanalysis. Two-year-old seedlings of Q. acutissima were sprayed with seawater and kept in a greenhouse maintained at 25°C. The most recognizable symptoms of seawater-sprayed seedlings included leaf necrosis, crystal deposition, stomatal clogging, and chloroplast degeneration. Field emission scanning electron microscopy revealed that the leaf surface was covered with additional layers of remnants of seawater spray. Composed of sodium and chloride, cube-shaped crystals (halite) were prevalently found on trichomes and epidermis, and formed aggregates. Meanwhile, wedge-shaped crystals were deposited on epidermis and consisted of calcium and sulfur. As a result of stomatal clogging by crystal deposition on the abaxial surface, it was conceivable that plant respiration became severely hampered. Transmission electron microscopy showed degenerated cytoplasm of seawater-sprayed leaves. It was common to observe severe plasmolysis and disrupted chloroplasts with a reduced number of thylakoids in grana. These results indicate that foliar applications of seawater were sufficient to induce necrosis of Q. acutissima seedlings as an abiotic disturbance factor. Copyright © 2010 Wiley-Liss, Inc.
International Nuclear Information System (INIS)
Srivastava, A.; Zeiger, E.
1995-01-01
Zeaxanthin, antheraxanthin and violaxanthin concentrations in guard cells from sonicated abaxial epidermal peels of Vicia faba were measured from dawn to dusk, and compared with concentrations in mesophyll tissue of the same leaves. Measured changes in guard cell zeaxanthin and violaxanthin concentrations indicate that guard cells operate the xanthophyll cycle throughout the day. Mesophyll tissue had no detectable zeaxanthin at dawn, whereas guard cells had 30–50 mmol mol −1 chlorophyll a+b. On a chlorophyll basis, maximal zeaxanthin levels were 3–4 fold higher in guard cells than in mesophyll cells. Zeaxanthin concentrations tracked levels of photosynthetically active radiation (PAR) in both mesophyll and guard cells. In the mesophyll, most of the zeaxanthin changes occurred in mid-morning and mid-afternoon. In guard cells, zeaxanthin concentrations changed nearly linearly with PAR in the early morning and late afternoon, and closely tracked PAR levels throughout the day. Guard cell zeaxanthin concentrations were also closely correlated with stomatal apertures. The close relationship between zeaxanthin concentrations and PAR levels in guard cells indicates that zeaxanthin is well suited to function as a molecular photosensor in stomatal movements. (author)
OsPRX2 contributes to stomatal closure and improves potassium deficiency tolerance in rice.
Mao, Xiaohui; Zheng, Yanmei; Xiao, Kaizhuan; Wei, Yidong; Zhu, Yongsheng; Cai, Qiuhua; Chen, Liping; Xie, Huaan; Zhang, Jianfu
2018-01-01
Peroxiredoxins (Prxs) which are thiol-based peroxidases have been implicated in the toxic reduction and intracellular concentration regulation of hydrogen peroxide. In Arabidopsis thaliana At2-CysPrxB (At5g06290) has been demonstrated to be essential in maintaining the water-water cycle for proper H 2 O 2 scavenging. Although the mechanisms of 2-Cys Prxs have been extensively studied in Arabidopsis thaliana, the function of 2-Cys Prxs in rice is unclear. In this study, a rice homologue gene of At2-CysPrxB, OsPRX2 was investigated aiming to characterize the effect of 2-Cys Prxs on the K + -deficiency tolerance in rice. We found that OsPRX2 was localized in the chloroplast. Overexpressed OsPRX2 causes the stomatal closing and K + -deficiency tolerance increasing, while knockout of OsPRX2 lead to serious defects in leaves phenotype and the stomatal opening under the K + -deficiency tolerance. Detection of K + accumulation, antioxidant activity of transgenic plants under the starvation of potassium, further confirmed that OsPRX2 is a potential target for engineering plants with improved potassium deficiency tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.
Rodrigues, Olivier; Reshetnyak, Ganna; Grondin, Alexandre; Saijo, Yusuke; Leonhardt, Nathalie; Maurel, Christophe; Verdoucq, Lionel
2017-08-22
Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the At PIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability ( P f ) of guard cell protoplasts through activation of At PIP2;1. The use of HyPer, a genetic probe for intracellular hydrogen peroxide (H 2 O 2 ), revealed that both ABA and flg22 triggered an accumulation of H 2 O 2 in wild-type but not pip2;1 guard cells. Pretreatment of guard cells with flg22 or ABA facilitated the influx of exogenous H 2 O 2 Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1) and open stomata 1 (OST1)/Snf1-related protein kinase 2.6 (SnRK2.6) were both necessary to flg22-induced P f and both phosphorylated At PIP2;1 on Ser121 in vitro. Accumulation of H 2 O 2 and stomatal closure as induced by flg22 was restored in pip2;1 guard cells by a phosphomimetic form (Ser121Asp) but not by a phosphodeficient form (Ser121Ala) of At PIP2;1. We propose a mechanism whereby phosphorylation of At PIP2;1 Ser121 by BAK1 and/or OST1 is triggered in response to flg22 to activate its water and H 2 O 2 transport activities. This work establishes a signaling role of plasma membrane aquaporins in guard cells and potentially in other cellular context involving H 2 O 2 signaling.
DEFF Research Database (Denmark)
Zhou, Qin; Ravnskov, Sabine; Jiang, Dong
2015-01-01
Drought is a major abiotic factor limiting agricultural crop production. One of the effective ways to increase drought resistance in plants could be to optimize the exploitation of symbiosis with arbuscular mycorrhizal fungi (AMF). Hypothesizing that alleviation of water deficits by AMF in wheat...... will help maintain photosynthetic carbon-use, we studied the role of AMF on gas-exchange, light-use efficiencies, carbon/nitrogen ratios and growth and yield parameters in the contrasting wheat (Triticum aestivum L.) cultivars ‘Vinjett’ and ‘1110’ grown with/without AMF symbiosis. Water deficits applied...... at the floret initiation stage significantly decreased rates of photosynthetic carbon gain, transpiration and stomatal conductance in the two wheat cultivars. AMF increased the rates of photosynthesis, transpiration and stomatal conductance under drought conditions. Water deficits decreased electron transport...
Wei, Zhenhua; Du, Taisheng; Li, Xiangnan; Fang, Liang; Liu, Fulai
2018-01-01
Stomatal conductance ( g s ) and water use efficiency ( WUE ) of tomato leaves exposed to different irrigation regimes and at ambient CO 2 ( a [CO 2 ], 400 ppm) and elevated CO 2 ( e [CO 2 ], 800 ppm) environments were simulated using the "Ball-Berry" model (BB-model). Data obtained from a preliminary experiment (Exp. I) was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate ( P n ) was used as an input for the model. Considering the effect of soil water deficits on g s , an equation modifying the slope ( m ) based on the mean soil water potential (Ψ s ) in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both g s and WUE of tomato leaves at each [CO 2 ] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II) where plants were subjected to three irrigation regimes: full irrigation (FI), deficit irrigation (DI), and alternative partial root-zone irrigation (PRI) for 40 days at both a [CO 2 ] and e [CO 2 ] environment. The simulation results indicated that g s was independently acclimated to e [CO 2 ] from P n . The modified BB-model performed better in estimating g s and WUE , especially for PRI strategy at both [CO 2 ] environments. A greater WUE could be seen in plants grown under e [CO 2 ] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting g s and WUE of tomato leaves in various irrigation regimes at both a [CO 2 ] and e [CO 2 ] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO 2 enriched environment.
Physiological responses to glyphosate are dependent on Eucalyptus urograndis genotype
Two experiments were conducted to evaluate the response of Eucalyptus urograndis genotypes (C219 and GG100) to glyphosate in growth chambers. As glyphosate dose increased (18 up to 720 g ae ha-1), CO2 assimilation rate, transpiration rate, and stomatal conductance decreased fastest and strongest in ...
Energy Technology Data Exchange (ETDEWEB)
Ismail, I.M.; Basahi, J.M. [Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589 (Saudi Arabia); Hassan, I.A., E-mail: ihassan_eg@yahoo.com [Air Pollution Laboratory (APL), Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, P. O. Box 80216, Jeddah 21589 (Saudi Arabia); Department of Botany, Faculty of Science, Alexandria University, 21526 El Shatby, Alexandria (Egypt)
2014-11-01
Egyptian pea cultivars (Pisum sativum L. cultivars Little Marvel, Perfection and Victory) grown in open-top chambers were exposed to either charcoal-filtered (FA) or non-filtered air (NF) for five consecutive years (2009–2013) at a rural site in northern Egypt. Net photosynthetic rates (P{sub N}), stomatal conductance (g{sub s}), intercellular CO{sub 2} (C{sub i}) and chlorophyll fluorescence were measured. Ozone (O{sub 3}) was found to be the most prevalent pollutant common at the rural site and is suspected to be involved in the alteration of the physiological parameters measured in the present investigation. P{sub N} of different cultivars were found to respond similarly; decreases of 23, 29 and 39% were observed in the cultivars Perfection, Little Marvel and Victory, respectively (averaged over the five years) due to ambient O{sub 3}. The maximum impairment in P{sub N} was recorded in the cultivar Victory (46%) in 2013 when the highest O{sub 3} levels were recorded (90 nL L{sup −1}). The average stomatal conductance decreased by 20 and 18% in the cultivars Little Marvel and Perfection, respectively, while the average stomatal conductance increased on average by 27% in the cultivar Victory. A significant correlation was found between P{sub N} and C{sub i}, indicating the importance of non-stomatal limitations of photosynthesis, especially in the cultivar Victory. The P{sub N} vs. Ci curves were fitted to a non-rectangular hyperbolic model. The actual quantum yield (Φ{sub PSII}) and photochemical quenching coefficient (qP) were significantly decreased in the leaves of plants exposed to NF air. Non-photochemical quenching (NPQ) was increased in all cultivars. Exposure to NF air caused reductions in chlorophyll (Chl a) of 19, 16 and 30% in the Little Marvel, Perfection and Victory cultivars, respectively. - Highlights: • Ozone (O{sub 3}) concentrations recorded were within the ranges of phytotoxicity. • O{sub 3} has a clear influence on the physiological
N N Kuzmina; G R Movsisyan
2005-01-01
PFAPA (periodic fever, aphtous stomatitis, pharingitis, cervical adenitis) or Marshall’s syndrome is one of the rare periodic fever conditions appearing in children. Its cause is unknown. This syndrome may continue for several years. During interictal period the child is quite well, grows and develops normally. The disease should be differentiated from Behcet’s disease, cyclic neutropenia, familial Mediterranean fever, familial Ireland fever, hyperimmunoglobulinemia D syndrome, systemic juven...
Directory of Open Access Journals (Sweden)
Paulo Augusto Manfron
2007-01-01
Full Text Available Áreas com cultivo irrigado têm o déficit de saturação de vapor (DPV etemperatura do ar modificados. Sendo a resposta estomática influenciada por essas variáveis e outras como temperatura do dossel, a cultura do feijão irrigado tende a apresentar condutância estomática à difusão de vapor (Gva e transpiração, diferenciados com relação ao cultivo de sequeiro. Avaliando-se Gva e transpiração com porômetros de equilíbrio dinâmico, verificou-se que a taxa de transpiração apresentou melhor correlação em relação à temperatura da folhagem em condições de folhas ao sol, do que em relação a folhassombreadas. Relações de Gva com temperatura do ar, DPV e radiação fotossinteticamente ativa (PAR reforçam a interação dos fatores ambientais com a resposta estomática. Valores de Gva apresentaram correlação exponencial negativa tanto com temperatura do ar e DPV,para valores entre 20 e 35°C, de 0,5 à 3 KPa, respectivamente e aumento exponencial quando relacionada a PAR, mesmo com valores superiores a 2000 mmol m-2 s-1.Irrigated areas present environmental variables such as vapor pressure deficit (DPV and modified air temperature. The stomatal response is not only affected by these modified environmental conditions, but also by others such as canopy temperature. Thus, an irrigated bean crop tend to present modifications in stomatal conductance (Gva and transpiration in relation to a non irrigatedcommon bean crop. Gva and transpiration were measured with steady-state null-balance porometers. Results showed that transpiration rate correlated better with canopy temperature in conditions of sunny leaves than of shaded leaves. The relation between Gva and air temperature, and between DPV and photosynthetic active radiation (PAR reinforce the interaction of the environmental variables with stomatal response. Gva values presented negative exponential correlation with air temperature and DPV, for values between 20 and 35°C, and 0
Enhanced Gene Transfer with Fusogenic Liposomes Containing Vesicular Stomatitis Virus G Glycoprotein
Abe, Akihiro; Miyanohara, Atsushi; Friedmann, Theodore
1998-01-01
Exposure of Lipofectin-DNA complexes to the partially purified G glycoprotein of the vesicular stomatitis virus envelope (VSV-G) results in loss of serum-mediated inhibition and in enhanced efficiency of gene transfer. Sucrose density gradient sedimentation analysis indicated that the VSV-G associates physically with the DNA-lipid complex to produce a VSV-G liposome. The ability to incorporate surrogate viral or cellular envelope components such as VSV-G into liposomes may allow more-efficient and possibly targeted gene delivery by lipofection, both in vitro and in vivo. PMID:9621082
Rezaei Nejad, A.; Harbinson, J.; Meeteren, van U.
2006-01-01
The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions.
DEFF Research Database (Denmark)
Kaminski, Kacper Piotr; Sørensen, Kirsten Kørup; Nielsen, Kåre Lehmann
2014-01-01
photosynthetic water use efficiency (pWUE) by stimulation in net photosynthesis rate (62% and 43% increase of An) with coincident decline in both stomatal conductance (21% and 43% decrease of gs) and leaf transpiration rate (19% and 40% decrease of E) resulting in pWUE increments of 89% and 147%. Furthermore...
Galle, Alexander; Florez-Sarasa, Igor; Tomas, Magdalena; Pou, Alicia; Medrano, Hipolito; Ribas-Carbo, Miquel; Flexas, Jaume
2009-01-01
While the responses of photosynthesis to water stress have been widely studied, acclimation to sustained water stress and recovery after re-watering is poorly understood. In particular, the factors limiting photosynthesis under these conditions, and their possible interactions with other environmental conditions, are unknown. To assess these issues, changes of photosynthetic CO(2) assimilation (A(N)) and its underlying limitations were followed during prolonged water stress and subsequent re-watering in tobacco (Nicotiana sylvestris) plants growing under three different climatic conditions: outdoors in summer, outdoors in spring, and indoors in a growth chamber. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence), and biochemistry (V(c,max)) were assessed. Leaf gas exchange and chlorophyll fluorescence data revealed that water stress induced a similar degree of stomatal closure and decreased A(N) under all three conditions, while V(c,max) was unaffected. However, the behaviour of g(m) differed depending on the climatic conditions. In outdoor plants, g(m) strongly declined with water stress, but it recovered rapidly (1-2 d) after re-watering in spring while it remained low many days after re-watering in summer. In indoor plants, g(m) initially declined with water stress, but then recovered to control values during the acclimation period. These differences were reflected in different velocities of recovery of A(N) after re-watering, being the slowest in outdoor summer plants and the fastest in indoor plants. It is suggested that these differences among the experiments are related to the prevailing climatic conditions, i.e. to the fact that stress factors other than water stress have been superimposed (e.g. excessive light and elevated temperature). In conclusion, besides g(s), g(m) contributes greatly to the limitation of photosynthesis during water stress and during
Théroux Rancourt, Guillaume; Éthier, Gilbert; Pepin, Steeve
2015-02-01
Improvement of water use efficiency is a key objective to improve the sustainability of cultivated plants, especially fast growing species with high water consumption like poplar. It is well known that water use efficiency (WUE) varies considerably among poplar genotypes, and it was recently suggested that the use of the mesophyll-to-stomatal conductance ratio (gm/gs) would be an appropriate trait to improve WUE. The responses of 7-week-old cuttings of four hybrid poplar clones and one native Balsam poplar (Populus balsamifera L.) to a water stress-recovery cycle were examined to evaluate the relation between the gm/gs ratio and transpiration efficiency (TE), a leaf-level component of WUE. A contrasting gs response to water stress was observed among the five clones, from stomatal closure early on during soil drying up to limited closure in Balsam poplar. However in the hybrids, the decline in gm was consistently delayed by a few days compared with gs. Moreover, in the most water use-efficient hybrids, the recovery following rehydration occurred faster for gm than for gs. Thus, the delay in the response of gm to drought and its faster recovery upon rewatering increased the gm/gs of the hybrids and this ratio scaled positively with TE. Our results support the use of the gm/gs ratio to select genotypes with improved WUE, and the notion that breeding strategies focusing mainly on stomatal responses to soil drying should also look for a strong curvilinearity between net carbon assimilation rate and gs, the indication of a significant increase in gm/gs in the earlier stages of stomatal closure. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Rugo, Hope S; Seneviratne, Lasika; Beck, J Thaddeus; Glaspy, John A; Peguero, Julio A; Pluard, Timothy J; Dhillon, Navneet; Hwang, Leon Christopher; Nangia, Chaitali; Mayer, Ingrid A; Meiller, Timothy F; Chambers, Mark S; Sweetman, Robert W; Sabo, J Randy; Litton, Jennifer K
2017-05-01
Stomatitis is a class effect associated with the inhibition of mTOR and is associated with everolimus therapy for breast cancer. Topical steroids might reduce stomatitis incidence and severity, and the need for dose reductions and interruptions of everolimus. Anecdotal use of topical steroid oral prophylaxis has been reported in patients with breast cancer. We aimed to assess dexamethasone-based mouthwash for prevention of stomatitis in patients with breast cancer. This US-based, multicentre, single-arm, phase 2 prevention study enrolled women aged 18 years and older with postmenopausal status who had histologically or cytologically confirmed metastatic hormone receptor-positive, HER2-negative breast cancer. Beginning on day 1 of cycle 1, patients received everolimus 10 mg plus exemestane 25 mg daily, with 10 mL of alcohol-free dexamethasone 0·5 mg per 5 mL oral solution (swish for 2 min and spit, four times daily for 8 weeks). After 8 weeks, dexamethasone mouthwash could be continued for up to eight additional weeks at the discretion of the clinician and patient. The primary endpoint was incidence of grade 2 or worse stomatitis by 8 weeks assessed in the full analysis set (patients who received at least one dose of everolimus and exemestane and at least one confirmed dose of dexamethasone mouthwash) versus historical controls from the BOLERO-2 trial (everolimus and exemestane treatment in patients with hormone receptor-positive advanced breast cancer who were not given dexamethasone mouthwash for prevention of stomatitis). This trial is registered at ClinicalTrials.gov, number NCT02069093. Between May 28, 2014, and Oct 8, 2015, we enrolled 92 women; 85 were evaluable for efficacy. By 8 weeks, the incidence of grade 2 or worse stomatitis was two (2%) of 85 patients (95% CI 0·29-8·24), versus 159 (33%) of 482 patients (95% CI 28·8-37·4) for the duration of the BOLERO-2 study. Overall, 83 (90%) of 92 patients had at least one adverse event. The most frequently
Directory of Open Access Journals (Sweden)
Masoumeh
2016-06-01
Full Text Available Background. Recurrent aphthous stomatitis (RAS is one of the most common ulcerative diseases of the oral mucosa. Definitive etiology of RAS has not been conclusively established. There is no certain treatment for aphthous stomatitis but some drugs such as steroids are commonly used for the treatment of RAS. Regarding the effect of zinc on the healing process of epithelial layer and cell division, in this research the effect of triamcinolone (with orabase in combination with a zinc-containing mouthwash and triamcinolone alone on the healing process of RAS lesions was assessed. Methods. The present study consisted of 20 patients diagnosed with RAS. The patients were instructed to rinse the mouth-wash or placebo three times a day and triamcinolone ointment twice a day for two weeks. The largest dimension of the ulcer was measured by a digital caliper and the severity of pain was assessed by visual analogue scale (VAS. Number, size, dura-tion, ulcer-free period and pain of the lesions were evaluated twice a week for twomonths. Data were analyzed by SPSS 16 using Mann-Whitney U test and t-test. Results. A decrease was seen in the mean pain severity score (P = 0.631 and the size of the lesions but it was not statistically significant (P = 0.739. Also the difference between the number of lesions (P = 0.739, duration and ulcer-free period (P = 0.873 were not statistically significant. Conclusion. Zinc mouthwash seems to be as effective on wound healing process as typical treatment modalities for RAS.
Leaf stomatal traits variation within and among black poplar native populations in Serbia
Cortan, Dijana; Vilotic, Dragica; Sijacic-Nikolic, Mirjana; Miljkovic, Danijela
2017-01-01
Populus nigra as a keystone riparian pioneer tree species is one of the rarest and most endangered species in Europe due to the loss of its natural habitats. Genetic diversity existence is a key factor in survival of one species, and stomata as genetically controlled trait could be used for differentiation studies. With the aim of proving stomatal phenotypic variation of the four native populations of Populus nigra located on the banks of three biggest river valleys (Dunabe, Tisa and Sava) in...
Wilkinson, Sally; Davies, William J
2008-01-01
The apoplastic pH of intact Forsythiaxintermedia (cv. Lynwood) and tomato (Solanum lycopersicum) plants has been manipulated using buffered foliar sprays, and thereby stomatal conductance (g(s)), leaf growth rate, and plant water loss have been controlled. The more alkaline the pH of the foliar spray, the lower the g(s) and/or leaf growth rate subsequently measured. The most alkaline pH that was applied corresponds to that measured in sap extracted from shoots of tomato and Forsythia plants experiencing, respectively, soil drying or a relatively high photon flux density (PFD), vapour pressure deficit (VPD), and temperature in the leaf microclimate. The negative correlation between PFD/VPD/temperature and g(s) determined in well-watered Forsythia plants exposed to a naturally varying summer microclimate was eliminated by spraying the plants with relatively alkaline but not acidic buffers, providing evidence for a novel pH-based signalling mechanism linking the aerial microclimate with stomatal aperture. Increasing the pH of the foliar spray only reduced g(s) in plants of the abscisic acid (ABA)-deficient flacca mutant of tomato when ABA was simultaneously sprayed onto leaves or injected into stems. In well-watered Forsythia plants exposed to a naturally varying summer microclimate (variable PFD, VPD, and temperature), xylem pH and leaf ABA concentration fluctuated but were positively correlated. Manipulation of foliar apoplastic pH also affected the response of g(s) and leaf growth to ABA injected into stems of intact Forsythia plants. The techniques used here to control physiology and water use in intact growing plants could easily be applied in a horticultural context.
Frederick C. Meinzer; David R. Woodruff; Danielle E. Marias; Duncan D. Smith; Katherine A. McCulloh; Ava R. Howard; Alicia L. Magedman; Josep Penuelas
2016-01-01
The concept of iso- vs. anisohydry has been used to describe the stringency of stomatal regulation of plant water potential (Ï). However, metrics that accurately and consistently quantify speciesâ operating ranges along a continuum of iso- to anisohydry have been elusive. Additionally, most approaches to quantifying iso/anisohydry require labour-intensive measurements...
Physiological acclimation to drought stress in Solidago canadensis.
Nolf, Markus; Pagitz, Konrad; Mayr, Stefan
2014-04-01
Solidago canadensis is an invasive species from North America that is spreading across Europe, Australia and temperate Asia. We hypothesized that the species' wide ecological amplitude is also based on its potential in hydraulic acclimation, and analyzed hydraulic and anatomical properties along a transect with decreasing soil humidity. Stem hydraulic conductivity, vulnerability to drought-induced embolism, stomatal closure during dehydration and xylem-anatomical parameters were quantified at three sites. At the humid site, specific hydraulic conductivity of stems (1.0 ± 0.2 kg m(-1) MPa(-1) s(-1)) was about twofold higher, and leaf-specific conductivity about 1.5 times higher (3.1 ± 0.5 kg m(-1) MPa(-1) s(-1)) than at the dry site. Water potential (Ψ) at 50% loss of conductivity was -3.7 ± 0.1 MPa at the dry site and -3.1 ± 0.2 MPa at the humid site (September). Vulnerability to drought-induced embolism decreased along the transect and over the vegetation period. At drier sites, stomata started closing at lower Ψ while complete stomatal closure was reached at less negative Ψ (12% of maximum stomatal conductance: -2.5 ± 0.0 and -3.0 ± 0.2 MPa at the dry and humid site). The safety margin between stomatal closure and 50% loss of conductivity was 1.2 and 0.2 MPa at the dry and humid sites. The observed variability indicated an efficient acclimation in hydraulic conductivity and safety: plants at dry sites exhibited lower specific hydraulic conductivity, higher embolism resistance and broader safety margins, signifying a trade-off between the hydraulic safety and efficiency. The observed intraspecific plasticity in hydraulic and anatomical traits may help to explain the invasive potential of this species. © 2013 Scandinavian Plant Physiology Society.
Directory of Open Access Journals (Sweden)
Zhenhua Wei
2018-04-01
Full Text Available Stomatal conductance (gs and water use efficiency (WUE of tomato leaves exposed to different irrigation regimes and at ambient CO2 (a[CO2], 400 ppm and elevated CO2 (e[CO2], 800 ppm environments were simulated using the “Ball-Berry” model (BB-model. Data obtained from a preliminary experiment (Exp. I was used for model parameterization, where measurements of leaf gas exchange of potted tomatoes were done during progressive soil drying for 5 days. The measured photosynthetic rate (Pn was used as an input for the model. Considering the effect of soil water deficits on gs, an equation modifying the slope (m based on the mean soil water potential (Ψs in the whole root zone was introduced. Compared to the original BB-model, the modified model showed greater predictability for both gs and WUE of tomato leaves at each [CO2] growth environment. The models were further validated with data obtained from an independent experiment (Exp. II where plants were subjected to three irrigation regimes: full irrigation (FI, deficit irrigation (DI, and alternative partial root-zone irrigation (PRI for 40 days at both a[CO2] and e[CO2] environment. The simulation results indicated that gs was independently acclimated to e[CO2] from Pn. The modified BB-model performed better in estimating gs and WUE, especially for PRI strategy at both [CO2] environments. A greater WUE could be seen in plants grown under e[CO2] associated with PRI regime. Conclusively, the modified BB-model was capable of predicting gs and WUE of tomato leaves in various irrigation regimes at both a[CO2] and e[CO2] environments. This study could provide valuable information for better predicting plant WUE adapted to the future water-limited and CO2 enriched environment.
Ren, Weibo; Hu, Ningning; Hou, Xiangyang; Zhang, Jize; Guo, Huiqin; Liu, Zhiying; Kong, Lingqi; Wu, Zinian; Wang, Hui; Li, Xiliang
2017-01-01
Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis , an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate) were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold) a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis . This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis phenotypic traits
Directory of Open Access Journals (Sweden)
Xiangyang Hou
2017-04-01
Full Text Available Previous studies of transgenerational plasticity have demonstrated that long-term overgrazing experienced by Leymus chinensis, an ecologically dominant, rhizomatous grass species in eastern Eurasian temperate grassland, significantly affects its clonal growth in subsequent generations. However, there is a dearth of information on the reasons underlying this overgrazing-induced memory effect in plant morphological plasticity. We characterized the relationship between a dwarf phenotype and photosynthesis function decline of L. chinensis from the perspective of leaf photosynthesis by using both field measurement and rhizome buds culture cultivated in a greenhouse. Leaf photosynthetic functions (net photosynthetic rate, stomatal conductance, intercellular carbon dioxide concentration, and transpiration rate were significantly decreased in smaller L. chinensis individuals that were induced to have a dwarf phenotype by being heavily grazed in the field. This decreased photosynthetic function was maintained a generation after greenhouse tests in which grazing was excluded. Both the response of L. chinensis morphological traits and photosynthetic functions in greenhouse were deceased relative to those in the field experiment. Further, there were significant decreases in leaf chlorophyll content and Rubisco enzyme activities of leaves between bud-cultured dwarf and non-dwarf L. chinensis in the greenhouse. Moreover, gene expression patterns showed that the bud-cultured dwarf L. chinensis significantly down-regulated (by 1.86- to 5.33-fold a series of key genes that regulate photosynthetic efficiency, stomata opening, and chloroplast development compared with the non-dwarf L. chinensis. This is among the first studies revealing a linkage between long-term overgrazing affecting the transgenerational morphological plasticity of clonal plants and physiologically adaptive photosynthesis function. Overall, clonal transgenerational effects in L. chinensis
Barbieri, Giancarlo; Vallone, Simona; Orsini, Francesco; Paradiso, Roberta; De Pascale, Stefania; Negre-Zakharov, Florence; Maggio, Albino
2012-11-15
Increasing salinity tolerance and water-use efficiency in crop plants are two major challenges that agriculture must face in the next decades. Many physiological mechanisms and molecular components mediating crop response to environmental stresses have been identified. However, the functional inter-links between stress adaptation responses have not been completely understood. Using two basil cultivars (Napoletano and Genovese) with contrasting ability to respond to salt stress, here we demonstrate that reduced stomatal density, high ascorbate level and polyphenol oxidase (PPO) activity coordinately contribute to improve basil adaptation and water use efficiency (WUE) in saline environment. The constitutively reduced stomatal density was associated with a "delayed" accumulation of stress molecules (and growth inhibiting signals) such as abscisic acid (ABA) and proline, in the more tolerant Genovese. Leaf volatile profiling also revealed cultivar-specific patterns, which may suggest a role for the volatile phenylpropanoid eugenol and monoterpenes in conferring stress tolerance via antioxidant and signalling functions. Copyright © 2012 Elsevier GmbH. All rights reserved.
Directory of Open Access Journals (Sweden)
Maria Cătălina PASTIA
2017-12-01
Full Text Available The physiological reaction of saline stress which Brassica juncea (L. Czern. plants undergo shows a greater growth and fresh substance gain process on previously cultivated soils that were fined with 20% zeolitic tuff and 5.09 g of neutral peat than the ones that had a substrate which hasn’t been cultivated on before that was fined with 5% zeolitic tuff and 1.39 g of perlite. The dry substance values obtained present a positive correlation with the values of fresh substance. Analysis of stomatal conductance enhances the hydric stress of plants which respond to saline stress with osmotic adjustment, accumulating high quantities of water comparing to the witness plant, which induces lower values of stomatal conductance and implicitly values are decreasing for photosynthesis, determining a low productivity. Higher values of stomatal conductance are reached at plants grown on previously cultivated soils fined with 20% zeolitic tuff and peat, and also at the ones grown on uncultivated soils fined with peat (29.45, respectively 30.05 mmol/m2/s.
Directory of Open Access Journals (Sweden)
Ayşenur Paç Kısaarslan
2017-06-01
Full Text Available Periodic fever, aphthous stomatitis, pharyngitis, and cervical lymphadenitis (PFAPA syndrome is the most frequent cause of periodic fever in childhood. The pathogenesis of PFAPA is still unknown. Differantial diagnosis must be made with cyclic neutropenia and other autoinflammatory diseases. Because PFAPA is self limiting and benign, there is no certain treatment model. Treatment options must be specific to the patient, with a strong family and doctor relationship.
Directory of Open Access Journals (Sweden)
Panda Debabrata
2011-09-01
Full Text Available The influence of submergence on the photosynthetic activity in rice plants either possessing or not possessing Sub1 QTL i.e. Swarna and Swarna Sub1 cultivars (cv. were evaluated under simulated complete submergence. The leaf photosynthetic rate and stomatal conductance decreased in both the cv. during the progression of submergence as compared to control plant but significant varietal differences was observed after 1 day (d of submergence. Submergence also alters the photo-system (PS II activity, as reflected in a decrease in the values of Fo, Fm and the Fv/Fm ratio and degradation of chlorophyll, more in Swarna than that of Swarna Sub1. Under complete submergence the shape of the OJIP transient also changed in rice leaves with decrease in maximal fluorescence (P=Fm intensity, resulted lowering of variable fluorescence levels. The decrease was more pronounced in Swarna compared to the Swarna Sub1 cv. Thus, Swarna Sub1 improves photosynthetic activity showing more photosynthetic rate compared to Swarna under submergence because, of less degradation of chlorophyll, higher stomatal conductance, and efficient PS II activity.
A Recombinant Vesicular Stomatitis Virus Ebola Vaccine.
Regules, Jason A; Beigel, John H; Paolino, Kristopher M; Voell, Jocelyn; Castellano, Amy R; Hu, Zonghui; Muñoz, Paula; Moon, James E; Ruck, Richard C; Bennett, Jason W; Twomey, Patrick S; Gutiérrez, Ramiro L; Remich, Shon A; Hack, Holly R; Wisniewski, Meagan L; Josleyn, Matthew D; Kwilas, Steven A; Van Deusen, Nicole; Mbaya, Olivier Tshiani; Zhou, Yan; Stanley, Daphne A; Jing, Wang; Smith, Kirsten S; Shi, Meng; Ledgerwood, Julie E; Graham, Barney S; Sullivan, Nancy J; Jagodzinski, Linda L; Peel, Sheila A; Alimonti, Judie B; Hooper, Jay W; Silvera, Peter M; Martin, Brian K; Monath, Thomas P; Ramsey, W Jay; Link, Charles J; Lane, H Clifford; Michael, Nelson L; Davey, Richard T; Thomas, Stephen J
2017-01-26
The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)-based vaccine candidate designed to prevent EVD. We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses
Wentworth, Mark; Murchie, Erik H; Gray, Julie E; Villegas, Daniel; Pastenes, Claudio; Pinto, Manuel; Horton, Peter
2006-01-01
The photosynthetic characteristics of two contrasting varieties of common bean (Phaseolus vulgaris) have been determined. These varieties, Arroz and Orfeo, differ in their productivity under stress conditions, resistance to drought stress, and have distinctly different stomatal behaviour. When grown under conditions of high irradiance and high temperature, both varieties displayed evidence of photosynthetic acclimation at the chloroplast level-there was an increase in chlorophyll a/b ratio, a decreased content of Lhcb proteins, and an increased xanthophyll cycle pool size. Both varieties also showed reduced chlorophyll content on a leaf area basis and a decrease in leaf area. Both varieties showed an increase in leaf thickness but only Arroz showed the characteristic elongated palisade cells in the high light-grown plants; Orfeo instead had a larger number of smaller, rounded cells. Differences were found in stomatal development: whereas Arroz showed very little change in stomatal density, Orfeo exhibited a large increase, particularly on the upper leaf surface. It is suggested that these differences in leaf cell structure and stomatal density give rise to altered rates of photosynthesis and stomatal conductance. Whereas, Arroz had the same photosynthetic rate in plants grown at both low and high irradiance, Orfeo showed a higher photosynthetic capacity at high irradiance. It is suggested that the higher yield of Orfeo compared with Arroz under stress conditions can be explained, in part, by these cellular differences.
Analysis of the RNA species isolated from defective particles of vesicular stomatitis virus.
Adler, R; Banerjee, A K
1976-10-01
Serial high multiplicity passage of a cloned stock of vesicular stomatitis virus was found to generate defective interfering particles containing three size classes of RNA, with sedimentaiton coefficients of 31 S, 23 S and 19 S. The 31 S and 23 S RNA species were found to be complementary to both the 12 to 18 S and 31 S size classes of VSV mRNAs. The 19 S class of RNA was found to be partially base-paired. All three RNA species were found to contain ppAp at their 5' termini.
First case report of vesicular stomatitis in the State of Paraíba, Brazil
Directory of Open Access Journals (Sweden)
Inácio José Clementino
2014-10-01
Full Text Available The present report describes the first case of vesicular stomatitis in the State of Paraíba, Brazil. Records from the Official Veterinary Services of the State of Paraíba were analyzed while responding to a suspected case of vesicular disease at a property (property I in the municipality of Pombal in which the cattle showed clinical signs and lesions of vesicular disease. Surveillance in the surrounding area revealed similar lesions in cattle at two other properties (II and III. Based on these events, the suspicion was considered well founded, and samples were collected for evaluation at the National Agricultural Laboratory of the State of Pará. The property was interdicted, and those located within a 3 km radius (perifocal from the focus were inspected. At property I, 42.86% (6/14 of the cattle showed vesicular disease lesions characterized by intense sialorrhea, ruptured oral vesicles, epithelial detachment of the tongue and muzzle, and vesicular lesions in the udder and interdigital space. Similar lesions were detected in cattle at properties II and III, affecting 80.95% (34/42 and 11.54% (3/26 of the animals, respectively. Tissue samples collected from the three properties were positive for the vesicular stomatitis virus (Indiana 3 subtype. The properties were monitored for 21 days after the last infected animal was cured, and afterwards, the three properties were released.
Ludwig, Fulco; Jewitt, Rebecca A; Donovan, Lisa A
2006-06-01
Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource availability on night-time stomatal conductance (g) and transpiration (E). Water (low and high) and nutrients (low and high) were applied factorially during the growing season to naturally occurring seedlings of the annual Helianthus anomalus. Plant height and biomass were greatest in the treatment where both water and nutrients were added, confirming resource limitations in this habitat. Plants from all treatments showed significant night-time g (approximately 0.07 mol m(-2) s(-1)) and E (approximately 1.5 mol m(-2) s(-1)). In July, water and nutrient additions had few effects on day- or night-time gas exchange. In August, however, plants in the nutrient addition treatments had lower day-time photosynthesis, g and E, paralleled by lower night-time g and E. Lower predawn water potentials and higher integrated photosynthetic water-use efficiency suggests that the nutrient addition indirectly induced a mild water stress. Thus, soil resources can affect night-time g and E in a manner parallel to day-time, although additional factors may also be involved.
Haematological parameters and recurrent aphthous stomatitis
International Nuclear Information System (INIS)
Khan, N. F.; Saeed, M.; Chaudhary, S.
2013-01-01
Objective: To find out the relationship between recurrent aphthous stomatitis (RAS) with deficiencies of haemoglobin, haematocrit, serum vitamin B12, serum Ferritin and red blood cells (RBC) Folate level. Study Design: An analytical cross-sectional study. Place and Duration of Study: Department of Oral Health Sciences, Shaikh Zayed Federal Postgraduate Medical Complex, Lahore, from February to July 2008. Methodology: Sixty consecutive subjects with active RAS were taken as the aphthous group; 60 age and gender matched subjects without RAS were as the Non-Aphthous group. Five milliliter blood was taken from both groups to evaluate the levels of serum B12, and RBC Folate through radio immuno assay and serum ferritin with enzyme linked immuno-sorbent assay tests. Complete blood count was carried out to determine the level of haemoglobin and haematocrit in both groups. Proportion of subjects with lower values was compared using 2 text of proportions with significance at p < 0.05. Results: Serum Ferritin (p = 0.001), haematocrit (p < 0.001), RBC Folate (p < 0.001) and serum B12 (p < 0.001) were significantly lower in the RAS group. Combined deficiency state (haemoglobin, serum Ferritin, haematocrit, RBC Folate and serum B12) was identified in 13% (n = 8) RAS patients. Conclusion: Frequency of haematinic deficiencies was high in RAS patients. Serum B12 and RBC Folate were significantly low in aphthous group. (author)
Directory of Open Access Journals (Sweden)
Kürklü-Gürleyen E
2016-05-01
Full Text Available Esma Kürklü-Gürleyen,1 Merve Öğüt-Erişen,1 Onur Çakır,1 Ömer Uysal,2 Gülsüm Ak1 1Department of Oral Surgery, Faculty of Dentistry, Istanbul University, 2Department of Biostatistics and Medical Informatics, Faculty of Medicine, BezmiÂlem Vakif University, Istanbul, Turkey Purpose: To assess 1 patient satisfaction of a mucoadhesive biopatch with citrus essential oil and 2 the change in pain severity and the oral health-related quality of life in patients with recurrent aphthous stomatitis. Patients and methods: Thirty-seven patients with recurrent aphthous stomatitis participated in the study. Baseline records of personal data, ulcer assessment, visual analog scale, and Oral Health Impact Profile-14 were documented. A mucoadhesive patch was applied over the ulcer. Patients were recommended more applications if pain continued. On the fifth day, a post-therapy assessment was made. Results: The mean visual analog scale scores at baseline and posttreatment were significantly different (7.3±2.11 and 4.9±2.6, respectively; P=0.001. The mean duration of pain reduced after patch application. The mean total Oral Health Impact Profile-14 scores before and after treatment showed a statistically significant difference (P=0.001. In total, 78.4% of patients reported a considerable improvement in oral functions after treatment (P=0.008. Conclusion: The mucoadhesive biopatch containing citrus essential oil resulted in satisfying pain alleviation and restoration of oral functions with a significant improvement in the oral health-related quality of life. Keywords: recurrent aphthous stomatitis, pain, quality of life, essential oil, biopatch, local therapy
International Nuclear Information System (INIS)
Boutraa, T.; Akhkha, A.; Shoaibi, A.K.
2015-01-01
The present study investigated the effects of three temperature regimes, low (20 degree C), moderate (25 degree C) and high (30 degree C), on growth and physiological parameters of two local Saudi wheat (Triticum durum) cultivars, Hab-Ahmar and Algaimi. Plants were grown under controlled environment in growth chambers. After four weeks plants were harvested and the following growth parameters were measured; plant height, number of tillers, leaf area, root length, fresh and dry weight. Physiological traits include chlorophyll content, photosynthesis rates, stomatal conductance, dark respiration and chlorophyll fluorescence parameters; Fo, Fm and Fv/Fm. In cultivar Hab-Ahmar, moderate and high temperatures caused significant decrease in most growth and physiological parameters such as plant height, number of tillers, leaf area, fresh and dry weight, chlorophyll content, photosynthesis rates, stomatal conductance, dark respiration and the maximum quantum yield of photosystem II (Fv/Fm). In contrast, cv. Algaimi was shown to be more thermotolerant to moderate and high temperatures, with the exception of some growth parameters that were decreased. Unlike cultivar Hab-Ahmar, cultivar Algaimi had an increased rate of dark respiration when temperature was high (30 degree C). Stomatal behavior is shown to be positively correlated with the rates of photosynthesis in both cultivars; however, in cultivar Hab-Ahmar such correlation decreased as temperature increased. (author)
Kato, Yoichiro; Okami, Midori
2011-09-01
Increasing physical water scarcity is a major constraint for irrigated rice (Oryza sativa) production. 'Aerobic rice culture' aims to maximize yield per unit water input by growing plants in aerobic soil without flooding or puddling. The objective was to determine (a) the effect of water management on root morphology and hydraulic conductance, and (b) their roles in plant-water relationships and stomatal conductance in aerobic culture. Root system development, stomatal conductance (g(s)) and leaf water potential (Ψ(leaf)) were monitored in a high-yielding rice cultivar ('Takanari') under flooded and aerobic conditions at two soil moisture levels [nearly saturated (> -10 kPa) and mildly dry (> -30 kPa)] over 2 years. In an ancillary pot experiment, whole-plant hydraulic conductivity (soil-leaf hydraulic conductance; K(pa)) was measured under flooded and aerobic conditions. Adventitious root emergence and lateral root proliferation were restricted even under nearly saturated conditions, resulting in a 72-85 % reduction in total root length under aerobic culture conditions. Because of their reduced rooting size, plants grown under aerobic conditions tended to have lower K(pa) than plants grown under flooded conditions. Ψ(leaf) was always significantly lower in aerobic culture than in flooded culture, while g(s) was unchanged when the soil moisture was at around field capacity. g(s) was inevitably reduced when the soil water potential at 20-cm depth reached -20 kPa. Unstable performance of rice in water-saving cultivations is often associated with reduction in Ψ(leaf). Ψ(leaf) may reduce even if K(pa) is not significantly changed, but the lower Ψ(leaf) would certainly occur in case K(pa) reduces as a result of lower water-uptake capacity under aerobic conditions. Rice performance in aerobic culture might be improved through genetic manipulation that promotes lateral root branching and rhizogenesis as well as deep rooting.
Impacts of elevated ozone on growth and photosynthesis of Metasequoia glyptostroboides Hu et Cheng.
Zhang, Weiwei; Feng, Zhaozhong; Wang, Xiaoke; Niu, Junfeng
2014-09-01
One-year-old Metasequoia glyptostroboides seedlings were exposed to non-filtered ambient air (NF) and elevated ozone (E-O3, NF+60 ppb) in open-top chambers for two years. E-O3 accelerated leaf senescence, as indicated by significant decreases in photosynthetic pigment contents with the elongation of O3 exposure. E-O3 significantly affected gas exchange and carboxylation, inducing reductions in light-saturated photosynthesis (Asat), the maximum activity of Rubisco (Vc,max) and the maximum electron transport rate (Jmax). Chl a/b, Vc,max/Jmax and stomatal limitation (l) were not affected. Stomatal conductance (gs) was significantly decreased by E-O3 in the first year, but remained unchanged in the second year. It can be inferred that the decrease in Asat by E-O3 was mainly attributed to the changes in non-stomatal factors. After two years' exposure, E-O3 caused significant decreases in canopy photosynthesis and leaf mass per area, and a significant increase in the number of branches, but induced slight, not significant decreases in growth and biomass. Therefore, it can be concluded that the carbon accumulation of the species M. glyptostroboides could be negatively affected after long-term exposure to high O3 concentration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Endah Ayu Tri Wulandari
2008-11-01
Full Text Available Recurrent Aphthous Stomatitis (RAS is a common inflammatory condition of the oral mucosa. The aetiology of RAS remains unclear, yet there are several predisposing factors which could be involved in the onset of the lesion. The herpetiform type of RAS appeared to be similar to recurrent oral Herpes Simplex infection and also could be part of Behçet Syndrome. This case report discussed a patient suffering from a herpetiform type of RAS with its clinical appearance resembling recurrent oral Herpes Simplex infection and Behçet syndrome. Initial treatment was undertaken based on the empirical treatment, yet the respond was not satisfactory. Then, laboratory tests were undertaken, including complete blood count, the total population of T lymphocyte, B lymphocyte, T helper, T suppressor, NK cells, T helper/T suppressor ratio, C3, C4, IgG, IgA, and IgM. These tests showed that there were immune and hematinic deficiency condition. Nevertheless, the clinical appearance, laboratory findings and consultation did not support the diagnosis of recurrent oral Herpes Simplex infection and Behçet Syndrome, thus, enhancing the definite diagnosis of the herpetiform type of RAS with immune and hematinic deficiency as the underlying condition. Based on the definite diagnosis, treatment plan was then revised to target the underlying condition.
The influence of climate change on stomatal ozone flux to a mountain Norway spruce forest
Czech Academy of Sciences Publication Activity Database
Zapletal, M.; Pretel, J.; Chroust, P.; Cudlín, Pavel; Edwards-Jonášová, Magda; Urban, Otmar; Pokorný, Radek; Czerný, Radek; Hůnová, I.
2012-01-01
Roč. 169, OCT 2012 (2012), s. 267-273 ISSN 0269-7491 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC10022; GA MŠk(CZ) LM2010007 Institutional research plan: CEZ:AV0Z60870520 Keywords : Stomatal ozone flux * AOT40 * Phytotoxic Ozone Dose * Norway spruce * Net ecosystem production * Ozone * Climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 3.730, year: 2012
Periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (pfapa) syndrome in children.
Semianchuk, Vira B
Periodic fever, aphthous stomatitis, pharyngitis and cervical adenitis (PFAPA) syndrome refers to a group of primary immunodeficiencies, namely autoinflammatory diseases. Most pediatricians and otolaryngologists do not suspect PFAPA syndrome when treating recurrent pharyngitis (according to Ukrainian classification - tonsillitis) and stomatitis. Therefore, patients with a given syndrome receive unnecessary treatment (antibiotic therapy or antiviral drugs) and the diagnosis is made late. The aim of the research was to provide pediatricians, family physicians and otolaryngologists with information on the importance of early diagnosis of PFAPA syndrome. The analysis of the prevalence and diagnosis of PFAPA syndrome in Ukraine and worldwide has been made as well as a late diagnosis of PFAPA syndrome in a child living in Ivano-Frankivsk, Ukraine has been described (case report). The Сase report 7-year-old boy, who grows and develops normally. The symptoms of pharyngitis including high body temperature (>40 º С), sore throat and white spots on the tonsils appeared for the first time at the age of two years. The boy received antibacterial drugs about 10 times a year. During a four-year period of recurrent episodes of the disease antimicrobial susceptibility testing to determine susceptibility of the oropharyngeal flora to the antibiotics were continuously performed, different blood tests for herpes viruses, Epstein-Barr virus infection and cytomegalovirus in particular were made using the enzyme immunoassay (EIA) and polymerase chain reaction (PCR) in addition to long-term treatment. An example of late diagnosing PFAPA syndrome (four years after the onset of first symptoms) resulting in regular examinations, medical manoeuvres, outpatient and inpatient treatment, use of antibiotic therapy including intravenous injections on a monthly basis has been studied.
Directory of Open Access Journals (Sweden)
F Rad
2010-10-01
The aim of this study was to compare the therapeutic effect of topical Myrtus communis (myrtle solution with topical triamcinolone (Adcortyle in the treatment of minor apotheosis. Materials & Methods: This clinical-trial study was conducted at Kurdistan University of Medical Sciences in 2009. 100 patients were randomly assigned into 2 groups. The 1st group received topical myrtle solution. The 2nd group received topical trimcinolone (Adcortyle. After one week, patients' declaration about time of the recovery of the pain and deterioration of oral lesion was recorded. The gathered data was then analyzed using the SPSS statistical software using t-test and chi-square. Results: After treatment, both groups showed response to topical medications with no significant difference between them (p>0.05. Conclusion: results of this study showed that topical myrtle solution is effective in the treatment of minor aphthous stomatitis and its therapeutic effect is comparable with topical triamcinolone (Adcortyle.
Liu, Peng; Yin, Lina; Deng, Xiping; Wang, Shiwen; Tanaka, Kiyoshi; Zhang, Suiqi
2014-09-01
The fact that silicon application alleviates water deficit stress has been widely reported, but the underlying mechanism remains unclear. Here the effects of silicon on water uptake and transport of sorghum seedlings (Sorghum bicolor L.) growing under polyethylene glycol-simulated osmotic stress in hydroponic culture and water deficit stress in sand culture were investigated. Osmotic stress dramatically decreased dry weight, photosynthetic rate, transpiration rate, stomatal conductance, and leaf water content, but silicon application reduced these stress-induced decreases. Although silicon application had no effect on stem water transport capacity, whole-plant hydraulic conductance (Kplant) and root hydraulic conductance (Lp) were higher in silicon-treated seedlings than in those without silicon treatment under osmotic stress. Furthermore, the extent of changes in transpiration rate was similar to the changes in Kplant and Lp. The contribution of aquaporin to Lp was characterized using the aquaporin inhibitor mercury. Under osmotic stress, the exogenous application of HgCl2 decreased the transpiration rates of seedlings with and without silicon to the same level; after recovery induced by dithiothreitol (DTT), however, the transpiration rate was higher in silicon-treated seedlings than in untreated seedlings. In addition, transcription levels of several root aquaporin genes were increased by silicon application under osmotic stress. These results indicate that the silicon-induced up-regulation of aquaporin, which was thought to increase Lp, was involved in improving root water uptake under osmotic stress. This study also suggests that silicon plays a modulating role in improving plant resistance to osmotic stress in addition to its role as a mere physical barrier. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Zuo, Li-Xiang; Li, Yang-Yang; Chen, Jia-Cun
2014-06-01
'Old and dwarf trees' on the loess plateau region mainly occurred among mature trees rather than among small trees. To elucidate the mechanism of tree age on 'old and dwarf trees' formation, taking Populus simonii, a tree species that accounted for the largest portion of 'old and dwarf trees' on the loess plateau, as an example, the growth, photosynthesis and hydraulic traits of P. simonii trees with different ages (young: 13-15 years, mid-aged: 31-34 years, and old: 49-54 years) were measured. The results showed that the dieback length increased, and net photosynthetic rate, stomatal conductance, transpiration rate, and whole plant hydraulic conductance decreased significantly with the increasing tree age. Both net photosynthetic rate and stomatal conductance measured at different dates were significantly and positively related to the whole plant hydraulic conductance, suggesting that the decreasing photosynthetic rate of old trees was possibly caused by the declined hydraulic conductance. Although the resistance to cavitation in stems and leaves was stronger in old trees than in young and mid-aged trees, there were no differences in midday native stem embolization degree and leaf hydraulic conductance based on the vulnerability curve estimation, suggesting that the increased hydraulic resistance of the soil-root system is probably the most important reason for decreasing the whole plant hydraulic conductance of old trees.
Effects of sulfite and pH an abscisic acid (ABA) dependent transpiration and on stomatal opening
Energy Technology Data Exchange (ETDEWEB)
Kondo, N.; Maruta, I.; Sugahara, K.
1980-01-01
In rice, alday, wheat and tobacco (Nicotiana tabacum l. samsun and samsun nn) plants which contained large amounts of ABA, the transpiration rate decreased rapidly with 2 ppM SO/sub 2/ fumigation and reached 20 to 65% of the initial level after 5- to 30-min exposure depending on their ABAj contents. In the cases of broad bean and tobacco (n. Gutinosa l.) with low ABA contents, the rate slightly increased for 20 and 40 min, respectively, after the start of the fumigation and then decreased gradually. The transpiration rates of corn and sorghum, in spite of their extremely low ABA contents, pronouncedly decreased with SO/sub 2/ fumigation and reached 65 and 50%, respectively, of the initial levels after 40-min exposure. Foliar application of 0.04 N HCL to N. tacum l. samsun nn leaves remarkably depressed the transpiration rate, while the application of 0.04 m NA/sub 2/SO/sub 3/ decreased the rate only to the same level as water treatment. Foliar application of either HCL of Na/sub 2/SO/sub 3/ to N. glutinosa l. leaves exerted little change in the transpiration rate. When 10-4 m ABA was applied to broad bean leaves prior to HCl and Na/sub 2/SO/sub 3/ treatment, their transpiration rate was decreased by HCl, but not by Na/sub 2/SO/sub 3/ application. In sonicated epidermal strips peeled from broad bean leaves, Na/sub 2/SO/sub 3/ produced a slight increase in the stomatal aperture size in the absence of ABA, but showed no effect in the presence of ABA. The aperture size was identical in the pH range of 3.0 to 7.0 in the incubation medium. In the presence of ABA in the medium, the aperture size was small in the acidic region of pH with a minimal value at pH 4.0. ABA decreased the aperture size at concentrations above 10-9 m at pH 4.0 and 10-6 m at pH 7.0 in the medium. ABA uptake by epidermal strips was large in the acidic region, especially at pH 4.0.
Veronika, lara
2017-01-01
Zona Hambat Ekstrak Daun Sirih Merah terhadap Staphylococcus aureus dan Candida albicans diisolasi dari denture stomatitis xi + 43 halaman Ekstrak daun sirih merah merupakan salah satu obat tradisional yang saat ini banyak digunakan masyarakat Indonesia. Ekstrak daun sirih merah ini dapat menghambat pertumbuhan bakteri dan jamur disebabkan karena adanya senyawa alkaloid, flavonoid, polifenol, tanin dan minyak atsiri. Salah satu bakteri dan jamur yang dapat dihambat oleh ekstrak daun sir...
A novel approach for diagnosing isohydric and anisohydric plant water use during drought
Novick, K. A.; Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Phillips, R.
2014-12-01
Recent years have seen the emergence of a new framework for describing plant water use, whereby species-specific water use strategies during periods of hydrologic stress are classified as falling on a spectrum of isohydric to anisohydric behavior. Trees that regulate water potential to within a relatively narrow range, and thereby reduce the risk of damaging xylem cavitation, are categorized as isohydric. In contrast, anisohydric trees allow their leaf water potential to decrease during drought, which may improve gas exchange rates, but at the cost of a greater risk of cavitation in the xylem. To date, most of the approaches to diagnose and characterize isohydric as compared to anisohydric behavior rely on observations of stem or leaf water potential measurements, which are difficult to collect at a high temporal and spatial frequency and rely on destructive techniques. Here, we use cohesion-tension theory to develop a novel approach for diagnosing isohydric/anisohydric behavior in observations of leaf- or canopy-scale stomatal conductance, which are data that may be collected in situ and with relative ease. The approach is particularly focused on exploring how the relationship between stomatal conductance and vapor pressure deficit changes during dry-down periods. The theoretical predictions suggest that the sensitivity of stomatal conductance to vapor pressure deficit may decrease over the course of the drought event for more anisohydric trees, and increase in the case of more isohydric trees. Species-specific, leaf-level observations of the relevant variables collected during the course of a severe drought event affecting the Morgan-Monroe State Forest in 2012 are shown to confirm the theoretical predictions. Finally, the diagnostic approach is evaluated in the context of other emerging approaches for describing stomatal behavior, including the growing recognition of the role of hydraulic capacitance during drought, and recent advances in stomatal optimization
Shim, Y J; Choi, J-H; Ahn, H-J; Kwon, J-S
2012-10-01
To compare the effects of sodium lauryl sulfate (SLS)-free and SLS-containing dentifrice in patient with recurrent aphthous stomatitis (RAS). The design of this study was a double-blind crossover trial. The 90 subjects were divided into three groups: group I used SLS-free (a commercially available SLS-free dentifrice) and SLS-A (SLS-free + 1.5% SLS), group II used SLS-A and SLS-B (a commercially available 1.5% SLS-containing dentifrice), and group III used SLS-free and SLS-B. The subjects used one of the two assigned dentifrices for 8 weeks and then the other for the following 8 weeks. The order of the dentifrices used was selected at random, and there was a 2-week washout period between the two phases. The clinical parameters (number of ulcers, number of episodes, duration of ulcers, mean pain score) were compared between the two phases for each group. The number of ulcers and episodes did not differ significantly between SLS-A, SLS-B, and SLS-free. Only duration of ulcers and mean pain score was significantly decreased during the period using SLS-free. Although SLS-free did not reduce the number of ulcers and episodes, it affected the ulcer-healing process and reduces pain in daily lives in patients with RAS. © 2012 John Wiley & Sons A/S.
Directory of Open Access Journals (Sweden)
Joseph Prescott
2014-01-01
Full Text Available Andes virus (ANDV is highly pathogenic in humans and is the primary etiologic agent of hantavirus cardiopulmonary syndrome (HCPS in South America. Case-fatality rates are as high as 50% and there are no approved vaccines or specific therapies for infection. Our laboratory has recently developed a replication-competent recombinant vesicular stomatitis virus (VSV-based vaccine that expressed the glycoproteins of Andes virus in place of the native VSV glycoprotein (G. This vaccine is highly efficacious in the Syrian hamster model of HCPS when given 28 days before challenge with ANDV, or when given around the time of challenge (peri-exposure, and even protects when administered post-exposure. Herein, we sought to test the durability of the immune response to a single dose of this vaccine in Syrian hamsters. This vaccine was efficacious in hamsters challenged intranasally with ANDV 6 months after vaccination (p = 0.025, but animals were not significantly protected following 1 year of vaccination (p = 0.090. The decrease in protection correlated with a reduction of measurable neutralizing antibody responses, and suggests that a more robust vaccination schedule might be required to provide long-term immunity.
Hove, van L.W.A.; Heeres, P.; Bossen, M.E.
2002-01-01
The stomatal ammonia compensation point for ammonia (NH3) of an intensively managed pasture of rye grass (Lolium perenne L.) was followed from mid January till November 2000. Leaf samples were taken every week. Simultaneously, the ambient NH3 concentration was measured. Meteorological data
DEFF Research Database (Denmark)
Kalvodova, Lucie; Sampaio, Julio L; Cordo, Sandra
2009-01-01
kidney cells can be infected by two different viruses, namely, vesicular stomatitis virus and Semliki Forest virus, from the Rhabdoviridae and Togaviridae families, respectively. We purified the host plasma membrane and the two different viruses after exit from the host cells and analyzed the lipid...
Perrone, Irene; Gambino, Giorgio; Chitarra, Walter; Vitali, Marco; Pagliarani, Chiara; Riccomagno, Nadia; Balestrini, Raffaella; Kaldenhoff, Ralf; Uehlein, Norbert; Gribaudo, Ivana; Schubert, Andrea; Lovisolo, Claudio
2012-10-01
We functionally characterized the grape (Vitis vinifera) VvPIP2;4N (for Plasma membrane Intrinsic Protein) aquaporin gene. Expression of VvPIP2;4N in Xenopus laevis oocytes increased their swelling rate 54-fold. Northern blot and quantitative reverse transcription-polymerase chain reaction analyses showed that VvPIP2;4N is the most expressed PIP2 gene in root. In situ hybridization confirmed root localization in the cortical parenchyma and close to the endodermis. We then constitutively overexpressed VvPIP2;4N in grape 'Brachetto', and in the resulting transgenic plants we analyzed (1) the expression of endogenous and transgenic VvPIP2;4N and of four other aquaporins, (2) whole-plant, root, and leaf ecophysiological parameters, and (3) leaf abscisic acid content. Expression of transgenic VvPIP2;4N inhibited neither the expression of the endogenous gene nor that of other PIP aquaporins in both root and leaf. Under well-watered conditions, transgenic plants showed higher stomatal conductance, gas exchange, and shoot growth. The expression level of VvPIP2;4N (endogenous + transgene) was inversely correlated to root hydraulic resistance. The leaf component of total plant hydraulic resistance was low and unaffected by overexpression of VvPIP2;4N. Upon water stress, the overexpression of VvPIP2;4N induced a surge in leaf abscisic acid content and a decrease in stomatal conductance and leaf gas exchange. Our results show that aquaporin-mediated modifications of root hydraulics play a substantial role in the regulation of water flow in well-watered grapevine plants, while they have a minor role upon drought, probably because other signals, such as abscisic acid, take over the control of water flow.
Energy Technology Data Exchange (ETDEWEB)
Tognetti, R.; Miglietta, F.; Raschi, A. [Consiglio Nazionale della Ricerche, Firenze (Italy); Longobucco, A. [Centro Studi per l`Informatica applicata all`Agricoltura, Firenze (Italy)
1999-04-01
Variations in water relations and stomatal response of downy oak (Quercus pubescens) were analyzed under Mediterranean field conditions during two consecutive summers at two locations characterized by different atmospheric CO{sub 2} concentrations due to the presence of a CO{sub 2} spring at one of the locations. The heat-pulse velocity technique was used to estimate water use during a five-month period from June to November 1994. At the end of the sap flow measurements, the trees were harvested and foliage and sapwood area measured. The effect of elevated CO{sub 2} concentration on leaf conductance was less at high leaf-to-air water vapour pressure difference than at low leaf-to-air water vapour pressure difference. Mean and diurnal sap fluxes were consistently higher in trees at the control site than in the trees at the CO{sub 2} spring site. Results are discussed in terms of effects of elevated CO{sub 2} concentration on plant water use at the organ and whole-tree level. 76 refs., 9 figs.
Drolet, Barbara S.; Stuart, Melissa A.; Derner, Justin D.
2009-01-01
Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV. PMID:19286779
Drolet, Barbara S; Stuart, Melissa A; Derner, Justin D
2009-05-01
Knowledge of the many mechanisms of vesicular stomatitis virus (VSV) transmission is critical for understanding of the epidemiology of sporadic disease outbreaks in the western United States. Migratory grasshoppers [Melanoplus sanguinipes (Fabricius)] have been implicated as reservoirs and mechanical vectors of VSV. The grasshopper-cattle-grasshopper transmission cycle is based on the assumptions that (i) virus shed from clinically infected animals would contaminate pasture plants and remain infectious on plant surfaces and (ii) grasshoppers would become infected by eating the virus-contaminated plants. Our objectives were to determine the stability of VSV on common plant species of U.S. Northern Plains rangelands and to assess the potential of these plant species as a source of virus for grasshoppers. Fourteen plant species were exposed to VSV and assayed for infectious virus over time (0 to 24 h). The frequency of viable virus recovery at 24 h postexposure was as high as 73%. The two most common plant species in Northern Plains rangelands (western wheatgrass [Pascopyrum smithii] and needle and thread [Hesperostipa comata]) were fed to groups of grasshoppers. At 3 weeks postfeeding, the grasshopper infection rate was 44 to 50%. Exposure of VSV to a commonly used grasshopper pesticide resulted in complete viral inactivation. This is the first report demonstrating the stability of VSV on rangeland plant surfaces, and it suggests that a significant window of opportunity exists for grasshoppers to ingest VSV from contaminated plants. The use of grasshopper pesticides on pastures would decrease the incidence of a virus-amplifying mechanical vector and might also decontaminate pastures, thereby decreasing the inter- and intraherd spread of VSV.
Zhao, Chenchen; Cai, Shengguan; Wang, Yizhou; Chen, Zhong-Hua
2016-06-02
Nitrate reductases NIA1 and NIA2 determine NO production in plants and are critical to abscisic acid (ABA)-induced stomatal closure. However, the role for NIA1 and NIA2 in ABA signaling has not been paid much attention in nitrate reductase loss-of-function mutant nia1nia2. Recently, we have demonstrated that ABA-inhibited K(+)in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for stomatal closure in nia1nia2. In this study, we found that mutating NIA1 and NIA2 impaired nearly all the key components of guard cell ABA signaling pathway in Arabidopsis. We also propose a simplified model for ABA signaling in the nia1nia2 mutant.
Zeiger, E; Schwartz, A
1982-11-12
Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.
Effects of SO/sub 2/ pollution on stomatal movements in Vicia faba
Energy Technology Data Exchange (ETDEWEB)
Majernik, O; Mansfield, T A
1971-01-01
Leaves of broad bean Vicia faba L. exposed to controlled levels of SO/sub 2/ pollution in the range 0.25 to 9.0 ppm had much wider stomatal openings than control plants. The stimulation of opening relative to the controls was proportional to SO/sub 2/ concentration over the range 0.25 to 1.0 ppm. The ability of the stomata to close at night was not appreciably affected. The possible implications of this unnatural reaction of the stomata are discussed. Abnormal opening could lead to the plant's losing its usual control over transpiration, with resulting water stress. The main disadvantage, however, is that SO/sub 2/ will gain easier access to the interior of the leaf.
Directory of Open Access Journals (Sweden)
fatemeh Salimi
2014-09-01
Full Text Available Jasmonate is new plant growth regulator that plays an essential role at increasing plants resistance to the environmental stresses like salinity stress. Hence, in this research the effect of foliar application of methyl jasmonate on some physiological indices and yield of German chamomile under salinity conditions was studied. A factorial experiment was laid out based on randomized complete block design (RCBD with three replications in the greenhouse condition. Foliar application of methyl jasmonate was five levels (MJ1; 0, MJ2; 75, MJ3; 150, MJ4; 225 and MJ5; 300 μM and salinity stress was four levels (S1; 2, S2; 6, S3; 10, S4; 14 dS m-1. The effect of methyl jasmonate, salinity condition treatments and their interaction was significant for traits of photosynthesis rate, stomata conductance, transpiration rate, carboxylation efficiency, intercellular CO2 concentration and yield of flower. The highest values of photosynthetic rate, stomata conductance, transpiration rate, carboxylation efficiency and yield of flower (3.76 g pot-1 and the lowest intercellular CO2 concentration were achieved at MJ×S treatment. Maximum value of photosynthetic water use efficiency was revealed at MJ5×S2 treatment. With decreasing stomata conductance, photosynthetic water use efficiency and intercellular CO2 concentration were increased. In general, it seems that application of methyl jasmonate by lower dose (MJ2 under salinity conditions especially mild salinity stress (S2 can improve physiological indices and yield of chamomile.
Duan, Honglang; O'Grady, Anthony P; Duursma, Remko A; Choat, Brendan; Huang, Guomin; Smith, Renee A; Jiang, Yanan; Tissue, David T
2015-07-01
Future climate regimes characterized by rising [CO2], rising temperatures and associated droughts may differentially affect tree growth and physiology. However, the interactive effects of these three factors are complex because elevated [CO2] and elevated temperature may generate differential physiological responses during drought. To date, the interactive effects of elevated [CO2] and elevated temperature on drought-induced tree mortality remain poorly understood in gymnosperm species that differ in stomatal regulation strategies. Water relations and carbon dynamics were examined in two species with contrasting stomatal regulation strategies: Pinus radiata D. Don (relatively isohydric gymnosperm; regulating stomata to maintain leaf water potential above critical thresholds) and Callitris rhomboidea R. Br (relatively anisohydric gymnosperm; allowing leaf water potential to decline as the soil dries), to assess response to drought as a function of [CO2] and temperature. Both species were grown in two [CO2] (C(a) (ambient, 400 μl l(-1)) and C(e) (elevated, 640 μl l(-1))) and two temperature (T(a) (ambient) and T(e) (ambient +4 °C)) treatments in a sun-lit glasshouse under well-watered conditions. Drought plants were then exposed to a progressive drought until mortality. Prior to mortality, extensive xylem cavitation occurred in both species, but significant depletion of non-structural carbohydrates was not observed in either species. Te resulted in faster mortality in P. radiata, but it did not modify the time-to-mortality in C. rhomboidea. C(e) did not delay the time-to-mortality in either species under drought or T(e) treatments. In summary, elevated temperature (+4 °C) had greater influence than elevated [CO2] (+240 μl l(-1)) on drought responses of the two studied gymnosperm species, while stomatal regulation strategies did not generally affect the relative contributions of hydraulic failure and carbohydrate depletion to mortality under severe drought.
Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki
2013-07-01
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.
DEFF Research Database (Denmark)
Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto
2015-01-01
Plants grown at high relative air humidity (RH) often show disturbed water relations due to less responsive stomata. The attenuation of stomatal responsiveness as a result of high RH during leaf expansion depends on the cultivar. We hypothesized that tolerant cultivars to high RH experience a low...
Zhou, Y.; Vroegop-Vos, I.; Schuurink, R.C.; Pieterse, C.M.J.; Van Wees, S.C.M.
Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different
Directory of Open Access Journals (Sweden)
Maharani Laillyza Apriasari
2011-09-01
Full Text Available Background: Oral ulceration often becomes the main reason for the patients to see a dentist. Therapy of the oral ulceration is by giving the palliative therapy with topical antiseptic. Nowadays, there are many researches concerning with the traditional medicines as alternative therapy. One of them is Piper betle linn which contains the antiseptic agent. Purpose: This research is aimed to observe the sensitivity difference of Streptococcus viridans on 35% Piper betle linn extract and 10%povidone iodine. Methods: This laboratory research was conducted by the post test only design with random complete design. The research sampel is Streptococcus viridans culture that was scrapped from the ulcer of the recurrent aphthous stomatitis patient, then it was replicated by using the Federer theory. Results: Inhibitory zone of 35% Piper betle linn extract is bigger than 10% povidone iodine. Conclusion: Streptococcus viridans are more sensitive to 35% Piper bittle linn extract than 10% povidone iodine. 35% Piper betle linn extract has more antibacterial effect than 10% povidone iodine.Latar belakang: Ulserasi rongga mulut seringkali menjadi alasan utama bagi pasien untuk memeriksakan diri ke dokter gigi. Terapi ulserasi rongga mulut adalah pemberian terapi paliatif kepada penderita, seperti: pemberian obat topikal yang mengandung antiseptik. Saat ini banyak penelitian dalam pengembangan obat tradisional yang dapat dijadikan sebagai obat alternatif. Salah satu diantaranya adalah daun sirih yang mengandung zat antiseptik. Tujuan: Penelitian ini bertujuan mengetahui perbedaan sensitivitas Streptococcus viridans terhadap ekstrak daun sirih 35% jika dibandingkan dengan povidone iodine 10%. Metode: Penelitian laboratoris yang dilakukan dengan post test only design dengan rancangan acak lengkap. Sampel penelitian adalah kultur Streptococcus viridans yang diambil melalui swab dari hapusan ulser pada pasien yang menderita stomatitis aftosa rekuren, kemudian dilakukan
Enhancing tolerance of rice (Oryza sativa) to simulated acid rain by exogenous abscisic acid.
Wu, Xi; Liang, Chanjuan
2017-02-01
Abscisic acid (ABA) regulates much important plant physiological and biochemical processes and induces tolerance to different stresses. Here, we studied the regulation of exogenous ABA on adaptation of rice seedlings to simulated acid rain (SAR) stress by measuring biomass dry weight, stomatal conductance, net photosynthesis rate, nutrient elements, and endogenous hormones. The application of 10 μM ABA alleviated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and decreases in contents of nutrient (K, Mg, N, and P) and hormone (auxin, gibberellins, and zeatin). Moreover, 10 μM ABA could stimulate the Ca content as signaling molecules under SAR stress. Contrarily, the application of 100 μM ABA aggravated the SAR-induced inhibition on growth, stomatal conductance, net photosynthesis rate, and contents of nutrient and hormone. The results got after a 5-day recovery (without SAR) show that exogenous 10 μM ABA can promote self-restoration process in rice whereas 100 μM ABA hindered the restoration by increasing deficiency of nutrients and disturbing the balance of hormones. These results confirmed that exogenous ABA at proper concentration could enhance the tolerance of rice to SAR stress.
Qiu, Changpeng; Ethier, Gilbert; Pepin, Steeve; Dubé, Pascal; Desjardins, Yves; Gosselin, André
2017-09-01
The temperature dependence of mesophyll conductance (g m ) was measured in well-watered red raspberry (Rubus idaeus L.) plants acclimated to leaf-to-air vapour pressure deficit (VPDL) daytime differentials of contrasting amplitude, keeping a fixed diurnal leaf temperature (T leaf ) rise from 20 to 35 °C. Contrary to the great majority of g m temperature responses published to date, we found a pronounced reduction of g m with increasing T leaf irrespective of leaf chamber O 2 level and diurnal VPDL regime. Leaf hydraulic conductance was greatly enhanced during the warmer afternoon periods under both low (0.75 to 1.5 kPa) and high (0.75 to 3.5 kPa) diurnal VPDL regimes, unlike stomatal conductance (g s ), which decreased in the afternoon. Consequently, the leaf water status remained largely isohydric throughout the day, and therefore cannot be evoked to explain the diurnal decrease of g m . However, the concerted diurnal reductions of g m and g s were well correlated with increases in leaf abscisic acid (ABA) content, thus suggesting that ABA can induce a significant depression of g m under favourable leaf water status. Our results challenge the view that the temperature dependence of g m can be explained solely from dynamic leaf anatomical adjustments and/or from the known thermodynamic properties of aqueous solutions and lipid membranes.. © 2017 John Wiley & Sons Ltd.
Energy Technology Data Exchange (ETDEWEB)
Wilkinson, M. [Univ. of Essex, Colchester (United Kingdom)]|[Writtle Coll. (United Kingdom)
1996-08-01
The response of intra and interspecific variation in photosynthetic acclimation to growth at elevated atmospheric CO{sub 2} concentration (600{micro}mol mol-l) in six important grassland species was investigated. Plants were grown in a background sward of Lolium perenne and measurements were made after four years of growth at elevated C{sub a}. Elevated CO{sub 2} was maintained using a FACE (Free-Air Carbon Enrichment) system. Significant intra and interspecific variation in acclimation response was demonstrated. The response of adaxial and abaxial stomatal conductance to elevated CO{sub 2} was also investigated. The stomatal conductance of both the adaxial and abaxial leaf surfaces was found to be reduced by elevated C{sub a}. Significant asymmetric responses in stomatal conductance was demonstrated in D. glomerata and T. pratense. Analysis of stomatal indices and densities indicated that the observed reductions in stomatal conductance were probably the result of changes in stomatal aperture.
Herrera, A
2013-01-01
This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during 8 years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs) and photosynthetic rate (PN) during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential (ψ) suggests that flooding does not cause water deficit. The PN decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates (TNC) accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high gs and PN. The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased PN. Therefore, trees would perform as if flooding did not signify a stress to their physiology.
A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.
Directory of Open Access Journals (Sweden)
Réka Albert
2017-09-01
Full Text Available Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA. This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs of the protein kinase OPEN STOMATA 1 (OST1 and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed
A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops.
Albert, Réka; Acharya, Biswa R; Jeon, Byeong Wook; Zañudo, Jorge G T; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M
2017-09-01
Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network's domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions
Energy Technology Data Exchange (ETDEWEB)
Lu, P.; Outlaw, W.H. Jr.; Smith, B.G.; Freed, G.A.
1996-12-31
At various times after pulse labeling Vicia faba L. leaflets with {sup 14}CO{sub 2}, whole-leaf pieces and rinsed epidermal peels were harvested and subsequently processed for histochemical analysis. Cells dissected from whole leaf retained apoplastic contents whereas those from rinsed peels contained only cytoplastic contents. Sucrose specific radioactivity peaked in palisade cells, 111 GBq{center_dot}mol{sup {minus}1}, at 20 min. In contrast, the {sup 14}C content and sucrose specific radioactivity were very low in guard cells for 20 min, implying little CO{sub 2} incorporation; both then peaked at 40 min. The guard-cell apoplast had a high maximum sucrose specific radioactivity and a high sucrose influx rate. These and other comparisons implied the presence of (a) multiple sucrose pools in mesophyll cells, (b) a localized mesophyll-apoplast region that exchanges with phloem and stomata, and (c) mesophyll-derived sucrose in guard-cell walls sufficient to diminish stomatal opening by {approximately} 4 {micro}m. Factors expected to enhance sucrose accumulation in guard-cell walls are (a) high transpiration rate, which closes stomata, and (b) high apoplastic sucrose concentration, which is elevated when mesophyll-sucrose efflux exceeds translocation. Therefore, multiple physiological factors are integrated in the attenuation of stomatal-aperture size by this previously unrecognized mechanism.
Energy Technology Data Exchange (ETDEWEB)
Grossman-Clarke, S
2000-09-01
Primary responses of C{sub 3}-plants to elevated atmospheric CO{sub 2} concentrations are an increase in the net assimilation rate, leading to greater biomass, and an associated decrease in the transpiration rate per unit leaf area due to CO{sub 2}-induced stomatal closure. The question has therefore arisen: does canopy transpiration increase because of the greater biomass, or decrease because of the stomatal closure? The direct impact of an elevated atmospheric CO{sub 2} concentration of 550 {mu}mol mol{sup -1} on the seasonal course of canopy transpiration of a spring wheat crop was investigated by means of the simulation model DEMETER for production under unlimited water and nutrient supply, production under limited water but unlimited nutrient supply and the production under unlimited water but limited nitrogen supply. Independent data of the free-air carbon dioxide enrichment wheat experiments in Arizona, USA (1993-96) were used to test if the model is able to make reasonable predictions of water use and productivity of the spring wheat crop using only parameters derived from the literature. A model integrating leaf photosynthesis, stomatal conductance and energy fluxes between the plant and the atmosphere was scaled to a canopy level in order to be used in the wheat crop growth model. Temporal changes of the model parameters were considered by describing them as dependent on the changing leaf nitrogen content. Comparison of the simulation and experimental results showed that the applicability of the model approach was limited after anthesis by asynchronous changes in mesophyll and stomatal conductance. Therefore a new model approach was developed describing the interaction between assimilation rate and stomatal conductance during grain filling. The simulation results revealed only small differences in the cumulative sum of canopy transpiration and soil evaporation between elevated CO{sub 2} and control conditions. For potential growth conditions the model
Quality of life in patients with Behcet's disease and Recurrent aphthous stomatitis
Directory of Open Access Journals (Sweden)
Burcu Tuğrul Ayanoğlu
2015-12-01
Full Text Available Background and Design: Behçet’s disease (BD is an important cause of morbidity and mortality. Recurrent aphthous stomatitis (RAS is a condition affecting oral health-related quality of life (QoL. In this study, we aimed to evaluate QoL of BD patients by using the Behçet’s disease quality of life instrument (BDQLI and to compare the QoL of patients with BD with that of patients with RAS and healthy controls. Materials and Methods: Forty patients with BD and 40 patients with RAS and 40 healthy subjects with similar sociodemographic characteristics were included in the study. We used the BDQLI to evaluate QoL of patients with BD and the Dermatology-specific quality of life instrument for comparison of QqL between patients with BD and RAS. 36-Item Short Form Health Survey and clinical data form were applied in all participants. The results were analyzed statistically. The power of the study was 99%. Results: QoL of patients with BD were lower than that of healthy controls. It was observed that patients with BD had decreased physical functions, impaired perception of pain and poor general health (p0.05. Female gender, relapse periods and mucocutaneous symptoms negatively affected QoL of patients with BD. Female gender and duration of the disease were found to be the main factors affecting QoL of patients with RAS. Conclusion: Unlike the results obtained with other instruments, with BDQLI, QoL, particularly in patients with active period and female gender was found to be decreased. In this study, there was a dominance of active mucocutaneous symptoms. This may explain the effect of mucocutaneous symptoms on QoL and the fact that there was no difference in QoL between BD and RAS patients. Further studies comparing QoL of patients with BD in whom visceral involvement is also observed with those with other diseases. QoL of BD patients may be improved by paying attention on symptoms that patients have trouble and by evaluating QoL with
Luo, Ming-Hua; Hu, Jin-Yao; Wu, Qing-Gui; Yang, Jing-Tian; Su, Zhi-Xian
2010-03-01
Taking the seedlings of Salvia miltiorrhiza cv. Sativa (SA) and S. miltiorrhiza cv. Silcestris (SI) as test materials, this paper studied the effects of drought stress on their leaf gas exchange and chlorophyll fluorescence parameters. After 15 days of drought stress, the net photosynthetic rate (P(n)) and the maximal photochemical efficiency of PS II (F(v)/F(m)) of SA were decreased by 66.42% and 10.98%, whereas those of SI were decreased by 29.32% and 5.47%, respectively, compared with the control, suggesting that drought stress had more obvious effects on the P(n) and F(v)/F(m) of SA than of SI. For SI, the reduction of P, under drought stress was mainly due to stomatal limitation; while for SA, it was mainly due to non-stomatal limitation. Drought led to a decrease of leaf stomatal conductance (G(s)), but induced the increase of water use efficiency (WUE), non-photochemical quenching coefficient (q(N)), and the ratio of photorespiration rate to net photosynthetic rate (P(r)/P(n)), resulting in the enhancement of drought resistance. The increment of WUE, q(N), and P(r)/P(n) was larger for SI than for SA, indicating that SI had a higher drought resistance capacity than SA.
Chambers, Mark S; Rugo, Hope S; Litton, Jennifer K; Meiller, Timothy F
2018-04-01
Patients with metastatic breast cancer may develop oral morbidities that result from therapeutic interventions. Mammalian target of rapamycin (mTOR) inhibitor-associated stomatitis (mIAS) is a common adverse event (AE), secondary to mTOR inhibitor therapy, that can have a negative impact on treatment adherence, quality of life, and health care costs. A multidisciplinary team approach is important to minimize mIAS and to maximize treatment benefits to patients with breast cancer. In this review, we discuss the pathophysiology, diagnosis, and natural history of mIAS. Current and new management strategies for the prevention and treatment of mIAS are described in the context of fostering a coordinated team care approach to optimizing patient care. The authors conducted a PubMed search from 2007 through 2017 using the terms "stomatitis," "mIAS," "everolimus," "mTOR," "metastatic breast cancer," and "oral care." They selected articles published in peer-reviewed journals that reported controlled trials and evidence-based guidelines. mIAS can be distinguished from mucositis caused by cytotoxic chemotherapy or radiotherapy on the basis of cause, clinical presentation, and treatment paradigms. Specific preventive and therapeutic management strategies can be implemented across the continuum of patient oral health care. Oral health care providers are on the frontline of oral health care for patients with metastatic breast cancer and are uniquely positioned to provide patient education, advocate accurate reporting of mIAS, and support early identification, monitoring, and prompt intervention to mitigate the severity and duration of this manageable, potentially dose-limiting AE. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.
Buonocore, Linda; Blight, Keril J.; Rice, Charles M.; Rose, John K.
2002-01-01
We generated recombinant vesicular stomatitis viruses (VSV) expressing genes encoding hybrid proteins consisting of the extracellular domains of hepatitis C virus (HCV) glycoproteins fused at different positions to the transmembrane and cytoplasmic domains of the VSV G glycoprotein (E1G and E2G). We show that these chimeric proteins are transported to the cell surface and incorporated into VSV virions efficiently. We also generated VSV recombinants in which the gene encoding the VSV G protein...
International Nuclear Information System (INIS)
Pfeiffer, P.; Hansen, O.; Madsen, E.L.; May, O.
1990-01-01
Radiotherapy in sufficient dose involving the oral cavity always causes stomatitis, the severity of which is dependent on primary diagnosis, age, oral status and whether concomitant chemotherapy is given or not. The aim of the present pilot study was to assess whether mouth-swishing with sucralfate suspension might reduce oral radiation mucositis without disturbing side effects. (orig./MG)
Energy Technology Data Exchange (ETDEWEB)
Pfeiffer, P.; Hansen, O.; Madsen, E.L.; May, O. (Odense Univ. (Denmark). Dept. of Oncology)
1990-01-01
Radiotherapy in sufficient dose involving the oral cavity always causes stomatitis, the severity of which is dependent on primary diagnosis, age, oral status and whether concomitant chemotherapy is given or not. The aim of the present pilot study was to assess whether mouth-swishing with sucralfate suspension might reduce oral radiation mucositis without disturbing side effects. (orig./MG).
Ludwig, F.; Jewitt, R.A.; Donovan, L.A.
2006-01-01
Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource
Ozone flux over a Norway spruce forest and correlation with net ecosystem production
International Nuclear Information System (INIS)
Zapletal, Milos; Cudlin, Pavel; Chroust, Petr; Urban, Otmar; Pokorny, Radek; Edwards-Jonasova, Magda; Czerny, Radek; Janous, Dalibor; Taufarova, Klara; Vecera, Zbynek; Mikuska, Pavel; Paoletti, Elena
2011-01-01
Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s -1 and 0.36 cm s -1 by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s -1 . In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O 3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation. - Highlights: → We estimate ozone deposition flux to a Norway spruce forest using the gradient method and model. → The mean stomatal uptake of ozone is approximately 47% of the total deposition. → We measure net ecosystem production (NEP) using Eddy Covariance. → We test whether elevated total deposition and stomatal uptake of O 3 imply a reduction of NEP. → Deposition and stomatal uptake of O 3 decrease NEP, especially by high intensities of solar radiation. - Net ecosystem production of a Norway spruce forest decreases with increasing deposition and stomatal uptake of ozone.
Directory of Open Access Journals (Sweden)
Ana eHerrera
2013-05-01
Full Text Available This review summarizes the research on physiological responses to flooding of trees in the seasonal black-water wetland of the Mapire River in Venezuela. Inter-annual variability was found during eight years of sampling, in spite of which a general picture emerged of increased stomatal conductance (gs and photosynthetic rate (PN during the flooded period to values as high as or higher than in plants in drained wet soil. Models explaining the initial inhibitory responses and the acclimation to flooding are proposed. In the inhibitory phase of flooding, hypoxia generated by flooding causes a decrease in root water absorption and stomatal closure. An increase with flooding in xylem water potential ( suggests that flooding does not cause water deficit. The PN decreases due to changes in relative stomatal and non-stomatal limitations to photosynthesis; an increase in the latter is due to reduced chlorophyll and total soluble protein content. Total non-structural carbohydrates accumulate in leaves but their content begins to decrease during the acclimatized phase at full flooding, coinciding with the resumption of high gs and PN. The reversal of the diminution in gs is associated, in some but not all species, to the growth of adventitious roots. The occurrence of morpho-anatomical and biochemical adaptations which improve oxygen supply would cause the acclimation, including increased water absorption by the roots, increased rubisco and chlorophyll contents and ultimately increased PN. Therefore, trees would perform as if flooding did not signify a stress to their physiology.
Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit
2014-03-24
Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P water deficit (ΨLwater availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.
Buckley, Thomas N; Cescatti, Alessandro; Farquhar, Graham D
2013-08-01
Measured profiles of photosynthetic capacity in plant crowns typically do not match those of average irradiance: the ratio of capacity to irradiance decreases as irradiance increases. This differs from optimal profiles inferred from simple models. To determine whether this could be explained by omission of physiological or physical details from such models, we performed a series of thought experiments using a new model that included more realism than previous models. We used ray-tracing to simulate irradiance for 8000 leaves in a horizontally uniform canopy. For a subsample of 500 leaves, we simultaneously optimized both nitrogen allocation (among pools representing carboxylation, electron transport and light capture) and stomatal conductance using a transdermally explicit photosynthesis model. Few model features caused the capacity/irradiance ratio to vary systematically with irradiance. However, when leaf absorptance varied as needed to optimize distribution of light-capture N, the capacity/irradiance ratio increased up through the crown - that is, opposite to the observed pattern. This tendency was counteracted by constraints on stomatal or mesophyll conductance, which caused chloroplastic CO(2) concentration to decline systematically with increasing irradiance. Our results suggest that height-related constraints on stomatal conductance can help to reconcile observations with the hypothesis that photosynthetic N is allocated optimally. © 2013 John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Yalçın Baş
2016-08-01
Full Text Available Background: The Recurrent Aphthous Stomatitis (RAS is the most frequently observed painful pathology of the oral mucosa in the society. It appears mostly in idiopathic form; however, it may also be related with systemic diseases like Behçet’s Disease (BD. Aims: Determining the prevalence of RAS and BD in the Northern Anatolian Region, which is one of the important routes on the Antique Silk Road. Study Design: Cross-sectional study. Methods: Overall, 85 separate exemplification groups were formed to reflect the population density, and the demographic data of the region they represent. In the first stage, the individuals, who were selected in random order, were invited to a Family Physician Unit at a certain date and time. The dermatological examinations of the volunteering individuals were performed by only 3 dermatology specialists. In the second stage, those individuals who had symptoms of BD were invited to our hospital, and the Pathergy Test and eye examinations were performed. Results: The annual prevalence of RAS was determined as 10.84%. The annual prevalence was determined to be higher in women than in men (p=0.000. It was observed that the prevalence was at the peak level in the 3rd decade, and then decreased proportionally in the following decades (p=0.000. It was also observed that the aphtha recurrence decreased in the following decades (p=0.048. The Behçet’s prevalence was found to be 0.60%. The prevalence in women was found to be higher than in men (0.86% female, 0.14% male; p=0.022. Conclusion: While the RAS prevalence ratio was at an average value when compared with the other societies; the BD prevalence was found as the highest ratio in the world according to the literature.
Cağlayan, F; Miloglu, O; Altun, O; Erel, O; Yilmaz, A B
2008-11-01
Recurrent aphthous stomatitis (RAS) is the most common oral ulcerative condition affecting 5-25% of the general population. The aim of this study was to evaluate the oxidative stress parameters in saliva of patients with RAS and to investigate the relationship among these parameters in either group. The study involved 50 patients with RAS of whom 24 were male and 26 were female, and 25 healthy controls of whom 13 were male and 12 were female. There was no statistically significant difference in the salivary total antioxidant capacity, total oxidant status, oxidative stress index levels, and myeloperoxidase activity between patients with RAS and those in the control group. The results show that reactive oxygen species may not play a role in the etiology of RAS.
Vinodkumar, Malavika; Rajagopalan, Srinivasa
2009-09-01
Multiple micronutrient deficiencies exist in many developing countries. We conducted a study to test the efficacy of ferrous glycine phosphate in reducing anemia and of riboflavin in reducing angular stomatitis when these micronutrients were added to the noon meal for schoolchildren. A pre- and post-test design was used to study children 5 to 9 years of age, with an experimental and a control group. Two schools in the same locality in Chennai were chosen for the study. The experimental school had 65 children and the control school had 71 children, all of whom consumed a noon meal at the school daily. The children in the experimental school received a powder containing ferrous glycine phosphate and riboflavin, which was added to the meal during cooking every day for 6 months. The dosage was 28 mg of elemental iron and 1 mg of riboflavin per child per day. The children attended school for 5 days each week from Monday to Friday, except for holidays; they received the fortificants on 100 days during the 6-month period. There was no intervention in the control school. Children in the experimental and control groups were matched by socioeconomic status, age, and eating habits at baseline. All the children in the experimental and control schools were dewormed at baseline and at endline after 6 months. Hemoglobin was measured by the cynamethemoglobin method at baseline and endline. Binary logistic regression showed a significant (p < .001) time x group interaction for anemia. The prevalence of anemia in the experimental school was 69.0% at baseline and 32.8% after 100 days of intervention over 6 months, a statistically significant change (p < .001). The prevalence of anemia in the control school was 91.5% at baseline and increased to 97.2% at endline; the increase was not statistically significant. The prevalence of angular stomatitis was reduced from 21% at baseline to 0% at endline in the experimental school, whereas it was 23% at baseline and 20% at endline in the
Liu, Li-Min; Qi, Hua; Luo, Xin-Lan; Zhang, Xuan
2008-09-01
Some important phenomena and behaviors concerned with the coordination effect between vapor water loss through plant stomata and liquid water supply in SPAC were discussed in this paper. A large amount of research results showed that plants show isohydric behavior when the plant hydraulic and chemical signals cooperate to promote the stomatal regulation of leaf water potential. The feedback response of stomata to the change of environmental humidity could be used to explain the midday depression of stomatal conductance and photosynthesis under drought condition, and also, to interpret the correlation between stomatal conductance and hydraulic conductance. The feed-forward response of stomata to the change of environmental humidity could be used to explain the hysteresis response of stomatal conductance to leaf-atmosphere vapor pressure deficit. The strategy for getting the most of xylem transport requires the rapid stomatal responses to avoid excess cavitation and the corresponding mechanisms for reversal of cavitation in short time.
Heidi J. Renninger; Nicholas J. Carlo; Kenneth L. Clark; Karina V.R. Schäfer
2015-01-01
Pine-oak ecosystems are globally distributed even though differences in anatomy and leaf habit between many co-occurring oaks and pines suggest different strategies for resource use, efficiency and stomatal behavior. The New Jersey Pinelands contain sandy soils with low water- and nutrient-holding capacity providing an opportunity to examine trade-offs in resource...
Study of the sap-flow and related quantities of oak trees in field experiments
International Nuclear Information System (INIS)
Kanalas, P.; Olah, V.; Szoelloesi, E.; Meszaros, I.; Ander, I.; Fenyvesi, A.
2009-01-01
Complete text of publication follows. Climatology model calculations for the next decades in the Carpathian Basin predict more frequent occurrence of meteorological extremes and, especially, longer droughts with elevated average temperatures during the growing season. A drift of the transition zone between the wooden steppe and the forest regions is predicted, too, resulting in significant reduction and alteration of the climazonal forest communities in the mountainous regions. The aim of our project is obtaining information on the climatic sensitivity of the tree species in the sessile oak - Austrian oak forest stand of the Sikfoekut Project Long Term Ecological Research (LTER) area (Buekk Mountains, NE Hungary). 'Campaign-like' complex field measurements have been performed in contrasting vegetation seasons of 2007 and 2008. As a function of time, stomatal conductance and intensity of sap-flow and stem diameter of Quercus petraea and Quercus cerris trees were measured simultaneously with photosynthetic photon flux density (PPFD), atmospheric pressure, temperature and relative humidity and vapour pressure deficit (VPD) of air, precipitation and soil moisture. It was found that the two oak species of forest stand exhibit similar daily course of stomatal conductance in rainy periods. However, during drought stomatal conductance of Quercus cerris was higher, and after a transitional decrease around midday it exhibited a second maximum in late afternoon. In dry days after a maximum of stomatal conductance at early morning the stomatal closure of Quercus petraea was permanent which might result in 'carbon starvation' of trees if drought is too long. During rainy periods, sap-flow of both species changed in correlation with VPD. In dry period this correlation weakened especially in case of Quercus petraea but a stronger correlation of sap-flow maximum appeared with the decreasing soil moisture content. Quercus cerris showed smaller stem radial variation, than Quercus
Estimation of mesophyll conductance to CO2 flux by three different methods
International Nuclear Information System (INIS)
Loreto, F.; Harley, P.C.; Di Marco, G.; Sharkey, T.D.
1992-01-01
The resistance to diffusion of CO2 from the intercellular airspaces within the leaf through the mesophyll to the sites of carboxylation during photosynthesis was measured using three different techniques, The three techniques include a method based on discrimination against the heavy stable isotope of carbon, 13C, and two modeling methods. The methods rely upon different assumptions, but the estimates of mesophyll conductance were similar with all three methods. The mesophyll conductance of leaves from a number of species was about 1.4 times the stomatal conductance for CO2 diffusion determined in unstressed plants at high light. The relatively low CO2 partial pressure inside chloroplasts of plants with a low mesophyll conductance did not lead to enhanced O2 sensitivity of photosynthesis because the low conductance caused a significant drop in the chloroplast CO2 Partial pressure upon switching to low O2. We found no correlation between mesophyll conductance and the ratio of internal leaf area to leaf surface area and only a weak correlation between mesophyll conductance and the proportion of leaf volume occupied by air. Mesophyll conductance was independent of CO2 and O2 partial pressure during the measurement, indicating that a true physical parameter, independent of biochemical effects, was being measured. No evidence for accumulating mechanisms was found. Some plants, notably Citrus aurantium and Simmondsia chinensis, had very low conductances that limit the rate of photosynthesis these plants can attain at atmospheric CO2 level
Broader leaves result in better performance of indica rice under drought stress.
Farooq, M; Kobayashi, N; Ito, O; Wahid, A; Serraj, R
2010-09-01
Leaf growth is one of the first physiological processes affected by changes in plant water status under drought. A decrease in leaf expansion rate usually precedes any reduction in stomatal conductance or photosynthesis. Changes in leaf size and stomatal opening are potential adaptive mechanisms, which may help avoid drought by reducing transpiration rate, and can be used to improve rice genotypes in water-saving cultivation. The indica rice cultivar IR64 and four of its near-isogenic lines (NILs; BC(3)-derived lines) unique for leaf size traits, YTK 124 (long leaves), YTK 127 (broad leaves), YTK 205 (short leaves) and YTK 214 (narrow leaves), were compared in this study for changes in leaf growth and its water status. The plants were subjected to two soil water regimes, well-watered and progressive soil drying measured by the fraction of transpirable soil water (FTSW). Applied drought reduced leaf number, total leaf area, specific leaf area, plant biomass, tiller number, plant height, stomatal conductance, amount of water transpired, leaf relative water content, and leaf water potential more in IR64 and the NILs than in the respective controls; nonetheless, transpiration efficiency (TE) was slightly higher under drought than in the well-watered controls. NILs with broader leaves had higher biomass (and its individual components), less stomatal conductance, and higher TE under drought than NILs with narrow and shorter leaves. Under drought, leaf number was positively correlated with tiller number and plant height; nonetheless, root weight and total biomass, water transpired and TE, and plant height and TE were positively correlated with each other. However, a negative correlation was observed between stomatal conductance and the FTSW threshold at which normalized transpiration started to decline during soil drying. Overall, the IR64-derived lines with broader leaves performed better than NILs with narrow and short leaves under drought. Copyright 2010 Elsevier Gmb
Taylor, Samuel H; Ripley, Brad S; Martin, Tarryn; De-Wet, Leigh-Ann; Woodward, F Ian; Osborne, Colin P
2014-06-01
Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m(-2) s(-1) higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4-8.1 mmol mol(-1)) than C3 averages (0.7-6.8 mmol mol(-1)), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are
Experimental determination of thermal conductivity and gap conductance of fuel rod for HTGR
International Nuclear Information System (INIS)
Kikuchi, Teruo; Iwamoto, Kazumi; Ikawa, Katsuichi; Ishimoto, Kiyoshi
1985-01-01
The thermal conductivity of fuel compacts and the gap conductance between the fuel compact and the graphite sleeve in fuel rods for a high-temperature gas-cooled reactor (HTGR) were measured by the center heating method. These measurements were made as functions of volume percent particle loading and temperature for thermal conductivity and as functions of gap distance and gas composition for gap conductance. The thermal conductivity of fuel compacts decreases with increasing temperature and with increasing particle loading. The gap conductance increases with increasing temperature and decrease with increasing gap distance. A good gap conductance was observed with helium fill gas. It was seen that the gap conductance was dependent on the thermal conductivity of fill gas and conductance by radiation and could be neglected the conductance through solid-solid contact points of fuel compact and graphite sleeve. (author)
The significance of radiative coupling between vegetation and the atmosphere
International Nuclear Information System (INIS)
Martin, P.
1989-01-01
In a recent theoretical study, Jarvis and McNaughton derived an expression for the elasticity of evaporation with respect to canopy conductance to analyze the coupling between vegetation and the atmosphere. They concluded that one cannot expect a fractional change in stomatal resistance to cause a proportional change in leaf or canopy transpiration, especially for vegetation with low aerodynamic roughness. However, a potentially important stomatal feedback was left out. As stomata close, transpiration decreases, while the temperature of sunlit leaves and the associated outgoing long-wave radiation from the leaf increase. The net result is a change both in transpiration and leaf net radiation. This paper examines the assumptions made in Jarvis and McNaughton's analysis, presents an alternative derivation for the elasticity of evaporation to conductance, and discusses its theoretical and practical implications
Ionic conductivity in irradiated KCL
International Nuclear Information System (INIS)
Vignolo Rubio, J.
1979-01-01
The ionic conductivity of X and gamma irradiated KCl single crystals has been studied between room temperature and 600 deg C. The radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 deg C respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. Howewer, it has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that small radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (auth)
Ionic conductivity in irradiated KCL
International Nuclear Information System (INIS)
Vignolo Rubio, J.
1979-01-01
The ionic conductivity of X and gamma irradiated KCL single crystals has been studied between room temperature and 600 degree centigree. the radiation induced damage resulting in a decrease of the conductivity heals by thermal annealing in two steps which are at about 350 and 550 degree centigree respectively. It has been found that the radiation induced colour centres are not involved in the observed decrease of the ionic conductivity. However. It has been observed that the effects of quenching and plastic deformation on the conductivity of the samples are very similar to the effect induced by irradiation. It is suggested that, samples radiation induced dislocation loops might cause the ionic conductivity decrease observed in irradiated samples. (Author)
Luo, Hai-Bo; Ma, Ling; Xi, Hui-Feng; Duan, Wei; Li, Shao-Hua; Loescher, Wayne; Wang, Jun-Fang; Wang, Li-Jun
2011-01-01
The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures. The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P(n)). However, with treatments at 40 and 45°C, P(n) was decreased, accompanied by an increase in substomatal CO(2) concentration (C(i)), decreases in stomatal conductance (g(s)) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P(n), g(s) and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P(n) during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco. Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P(n) in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P(n) in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.
Impact of root growth and root hydraulic conductance on water availability of young walnut trees
Jerszurki, Daniela; Couvreur, Valentin; Hopmans, Jan W.; Silva, Lucas C. R.; Shackel, Kenneth A.; de Souza, Jorge L. M.
2015-04-01
Walnut (Juglans regia L.) is a tree species of high economic importance in the Central Valley of California. This crop has particularly high water requirements, which makes it highly dependent on irrigation. The context of decreasing water availability in the state calls for efficient water management practices, which requires improving our understanding of the relationship between water application and walnut water availability. In addition to the soil's hydraulic conductivity, two plant properties are thought to control the supply of water from the bulk soil to the canopy: (i) root distribution and (ii) plant hydraulic conductance. Even though these properties are clearly linked to crop water requirements, their quantitative relation remains unclear. The aim of this study is to quantitatively explain walnut water requirements under water deficit from continuous measurements of its water consumption, soil and stem water potential, root growth and root system hydraulic conductance. For that purpose, a greenhouse experiment was conducted for a two month period. Young walnut trees were planted in transparent cylindrical pots, equipped with: (i) rhizotron tubes, which allowed for non-invasive monitoring of root growth, (ii) pressure transducer tensiometers for soil water potential, (iii) psychrometers attached to non-transpiring leaves for stem water potential, and (iv) weighing scales for plant transpiration. Treatments consisted of different irrigation rates: 100%, 75% and 50% of potential crop evapotranspiration. Plant responses were compared to predictions from three simple process-based soil-plant-atmosphere models of water flow: (i) a hydraulic model of stomatal regulation based on stem water potential and vapor pressure deficit, (ii) a model of plant hydraulics predicting stem water potential from soil-root interfaces water potential, and (iii) a model of soil water depletion predicting the water potential drop between the bulk soil and soil-root interfaces
Diurnal photosynthesis and stomatal resistance in field-grown soybeans
International Nuclear Information System (INIS)
Miller, J.E.; Muller, R.N.; Seegers, P.
1976-01-01
The process of photosynthesis in green plants is the major determinant of crop yield. Although the effects of air pollutants, such as sulfur dioxide, on photosynthesis has been studied, many unsolved questions remain. This is especially true with regard to reduction of photosynthetic rate under conditions of chronic exposure causing little or no visible injury. It was the purpose of these studies to develop techniques suitable for measuring photosynthetic rates of field-grown plants without dramatically altering the microenvironment of the plants. Gross photosynthetic rates of soybeans (Glycine max. cv. Wayne) in the field were measured by exposing a small section of representative leaves for 30 seconds to 14 CO 2 in a normal atmospheric mixture by a technique similar to that of Incoll and Wright. A 1-cm 2 section of the area exposed to 14 CO 2 is punched from the leaf and processed for liquid scintillation counting. Since the treatment period is of such short duration, there is little photorespiratory loss of 14 CO 2 , and thus, the amount of 14 C fixed in the leaf can be related to the gross photosynthetic rate. Other parameters measured during the course of these experiments were stomatal resistance, light intensity, leaf water potential, and air temperature
Directory of Open Access Journals (Sweden)
Kiril L Hristov
Full Text Available Patients suffering from a variety of neurological diseases such as spinal cord injury, Parkinson's disease, and multiple sclerosis often develop neurogenic detrusor overactivity (NDO, which currently lacks a universally effective therapy. Here, we tested the hypothesis that NDO is associated with changes in detrusor smooth muscle (DSM large conductance Ca(2+-activated K(+ (BK channel expression and function. DSM tissue samples from 33 patients were obtained during open bladder surgeries. NDO patients were clinically characterized preoperatively with pressure-flow urodynamics demonstrating detrusor overactivity, in the setting of a clinically relevant neurological condition. Control patients did not have overactive bladder and did not have a clinically relevant neurological disease. We conducted quantitative polymerase chain reactions (qPCR, perforated patch-clamp electrophysiology on freshly-isolated DSM cells, and functional studies on DSM contractility. qPCR experiments revealed that DSM samples from NDO patients showed decreased BK channel mRNA expression in comparison to controls. Patch-clamp experiments demonstrated reduced whole cell and transient BK currents (TBKCs in freshly-isolated DSM cells from NDO patients. Functional studies on DSM contractility showed that spontaneous phasic contractions had a decreased sensitivity to iberiotoxin, a selective BK channel inhibitor, in DSM strips isolated from NDO patients. These results reveal the novel finding that NDO is associated with decreased DSM BK channel expression and function leading to increased DSM excitability and contractility. BK channel openers or BK channel gene transfer could be an alternative strategy to control NDO. Future clinical trials are needed to evaluate the value of BK channel opening drugs or gene therapies for NDO treatment and to identify any possible adverse effects.
Schmidtmann, E T; Tabachnick, W J; Hunt, G J; Thompson, L H; Hurd, H S
1999-01-01
Entomologic and epizootic data are reviewed concerning the potential for transmission of vesicular stomatitis (VS) virus by insects, including field data from case-positive premises in New Mexico and Colorado during the 1995 outbreak of the New Jersey serotype (VSNJ). As with previous outbreaks of VSNJ in the western United States, the 1995 epizootic illustrated that risk of exposure is seasonal, increasing during warm weather and decreasing with onset of cool weather; virus activity spread from south to north along river valleys of the southwestern and Rocky Mountain states; clinical disease was detected most commonly in horses, but also occurred in cattle and 1 llama; and most infections were subclinical. Overall, 367 case-positive premises were identified during the 1995 outbreak, with foci of virus activity along the Rio Grande River south of Albuquerque, NM, in southwestern Colorado, and along the Colorado River near Grand Junction, CO. The establishment of a 16-km (10-mile) radius zone of restricted animal movement around confirmed positive premises, along with imposition of state and international embargoes, created economic hardship for livestock owners and producers. The importance of defining the role of blood-feeding insects as biological vectors of VSNJ virus relative to risk factors that promote high levels of insect transmission, such as the presence of livestock along western river valleys, blood feeding activity, and frequent transport of animals for recreational purposes, is emphasized as a basis for developing effective disease management.
Gavanji, Shahin; Larki, Behrouz; Bakhtari, Azizollah
2014-06-01
Herbal drugs are considered alternative agents and have been used for several years arou